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Abstract

Tracking latent time-varying parameters in the presence of possible model mis-
specification is challenging, particularly when the true parameters exhibit large fluc-
tuations and/or non-stationary dynamics. We derive performance guarantees for
score-driven filters by presenting upper bounds for long-run root mean squared filter-
ing errors. We distinguish between two classes of filters: explicit score-driven (ESD)
and implicit score-driven (ISD). While the first class contains all score-driven filters
in the literature, known variously as dynamic conditional score (DCS) or general-
ized autoregressive score (GAS) filters, the second class is essentially new. We relax
conditions on the true parameter process considerably compared to recent work on
error bounds for tracking latent time-varying parameters. These studies typically im-
pose a limit on the true parameter variation, thereby excluding many realistic data
generating processes, such as linear and Gaussian dynamics relevant to, for exam-
ple, the Kalman filter. In contrast, we only necessitate a finite second moment for
the (pseudo-)true parameter increments over time. Our theoretical analysis reveals,
for the first time, that ESD filters require regularity conditions on the researcher-
postulated logarithmic observation density. Specifically, Lipschitz continuity of the
gradient, or equivalently, β-smoothness, is required to prevent the ESD filter from
frequently ‘overshooting’ and, possibly, diverging to infinity. In contrast, ISD filters
do not require this restrictive regularity condition. Indeed, our simulation studies
across a wide variety of settings demonstrate that, when the true-parameter process
is quite volatile, the ISD filter successfully tracks the true parameter even when the
ESD filter diverges.
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1 Introduction

Time-varying parameter models incorporate the idea that parameters may change over

time. Numerous justifications exist for rejecting the assumption of constant parameters; we

refer to Blasques et al. (2023) for a comprehensive overview. These models are broadly cat-

egorized into parameter-driven and observation-driven classes (Cox et al., 1981), although

hybrid models combining both classes exist (Harvey, 1989). Parameter-driven models con-

sider parameters as dynamic processes, each with their own source of randomness. Con-

versely, observation-driven models update parameters based on a function of observations,

enabling maximum likelihood estimation (MLE) through the prediction error decomposi-

tion. An exploration of the differences between these classes is detailed in Koopman et al.

(2016) through an extensive simulation study.

The tracking or filtering of unobserved time-varying parameters, or equivalently, states,

is a fundamental problem in econometrics and statistics. Filtering concerns the real-time

estimation of the states based on all past and current observations, assuming the model’s

static parameters are known. This task becomes more challenging in the presence of model

misspecification, which is typically the case in practice, and when the true parameters

feature large fluctuations and/or non-stationary dynamics.

Score-driven (SD) filters, variously known as dynamic conditional score (DCS; Harvey,

2013) or generalized autoregressive score (GAS; Creal et al., 2013) filters, find widespread

applicability in both literature and practice, with over 300 articles available on the topic

at www.gasmodel.com. These filters use the score of the conditional logarithmic likelihood

function with respect to the parameter of interest to update state estimates. Their popu-

larity stems from their generality, simplicity, and predictive capabilities, as showcased by,

e.g. the recent Oxford encyclopedia entry by Artemova et al. (2022a,b).
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In this article, we propose a new classification of score-driven filters into explicit score-

driven (ESD) and implicit score-driven (ISD) filters. The explicit-implicit distinction,

prevalent for decades in numerical analysis, see e.g. Ascher et al. (1995), is exemplified

by methods related to SD filters such as stochastic gradient descent (SGD; Robbins and

Monro, 1951). Remarkably, all score-driven filters in the existing literature, despite not ex-

plicitly using the term, are in fact explicit score-driven filters. With the exception of Lange

et al. (2022), ISD filters have not been used in the time-varying parameter literature, and

hence this class is essentially new.

ESD and ISD filters differ in their approach to estimating latent time-varying parame-

ters. While ESD and ISD both employ linear first-order prediction steps, ISD employs an

implicit update driven by the score evaluated in the updated parameter, thus appearing on

both sides of the equation, a departure from ESD’s explicit parameter-update where the

score is evaluated in the predicted state. In the paper we show that standard quasi-Newton

methods can solve the implicit update step under some regularity conditions. The implicit

approach uses contemporaneous information, enhancing stability (Toulis et al., 2014) and

allowing larger learning rates compared to explicit approaches (Toulis and Airoldi, 2017;

Moulines and Bach, 2011; Ryu and Boyd, 2014).

We demonstrate that the ISD filter’s parameter update step is the solution to an op-

timization problem maximizing the logarithmic observation density subject to a weighted

quadratic penalty centered at the prediction. Replacing the log-density with its first-order

approximation yields the ESD filter’s parameter update step, characterizing the explicit ver-

sion as a first-order approximation of the implicit filter; something pointed out by Lange

et al. (2022), but not noticed in the extensive literature on score-driven models.

This article focuses on deriving performance guarantees for score-driven filters in track-
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ing latent time-varying parameters, particularly in the context of possible model misspecifi-

cation. The effectiveness of these filters is assessed through the derivation of upper bounds

on long-run root mean squared filtering errors, where the sharpness of the bound offers a

measure of accuracy in tracking latent states. A finite bound serves as a performance guar-

antee, preventing issues such as the difference between the true and filtered path diverging

to infinity.

Our objective is to establish performance guarantees under minimal restrictions on the

dynamics of the true parameter process. To enable tracking of the true parameter path over

time, erratic variations must be ruled out. The minimal condition ensuring an upper bound

on long-run root mean squared filtering errors is identified as a bounded second moment

for any true parameter increment; this condition is considerably weaker than common

assumptions in the existing literature. This expands the applicability of the performance

guaranteed to a much broader range of data-generating processes; allowing e.g. unit root

processes.

Our theoretical analysis reveals a new requirement for ESD filters to ensure a bounded

filtering error over time. Lipschitz continuity of the gradient, or β-smoothness, of the

researcher-postulated logarithmic observation density is deemed necessary to prevent ‘over-

shooting’ or divergence of the filter. In contrast, the ISD filter does not require this restric-

tive condition. While recent literature uses this condition as being sufficient for deriving

certain optimality results (Gorgi et al., 2023), it fails to recognize that this condition may,

in fact, be necessary. An illustration of a Poisson model with varying intensity in Section 3

highlights potential dramatic differences between implicit and explicit score-driven filters

in tracking a scalar latent state when this condition is not met.

Filtering performance of explicit and implicit filters is explored in the choice of a penalty
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matrix. We derive that selecting a scalar multiple of the identity matrix minimizes the

upper bounds on the long-run root mean squared error for both filters, ensuring a finite

error bound for the implicit filter across all choices of (positive) penalty or learning rate,

consistent with the related implicit SGD method (Toulis and Airoldi, 2017; Toulis et al.,

2021). In contrast, the explicit filter requires a sufficiently low learning rate to avoid

‘overshooting’ or diverging. The sharpness of the error bound is strongly influenced by the

curvature in the observation log-density, with constant curvature yielding the most precise

bounds.

Naturally, these error bounds can be improved if we know more about the true parameter

process. As a special case, we show that in a correctly specified local level model, the bound

is tight, i.e. it can neither be surpassed nor improved further. The learning rate minimizing

the bound is exactly the steady-state Kalman filter covariance, leading to optimality in the

minimum mean squared error sense. Notably, both explicit and implicit filters can track

unit root true parameter processes, but the identity prediction step is crucial for success.

A Monte Carlo study demonstrates that without Lipschitz continuity of the gradient,

the ESD filter may frequently ‘overshoot’ or diverge to infinity, depending on the scaling

of the score, while the ISD filter successfully tracks the true parameter. In conclusion, the

ISD filter consistently outperforms ESD filters in terms of filtering RMSE across various

scaling for the score, providing a stable and predictable performance even under large state

variations or unit root dynamics.
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2 Implicit and explicit score-driven filters

2.1 Problem setting

The n×1 observation yt is drawn at times t = 1, . . . , T from a true (but typically unknown)

conditional observation density p†(yt|θ†t ,ψ†,Ft−1). Here, θ
†
t a time-varying parameter vec-

tor taking its values in some parameter space Θ†,ψ† is a vector of static shape parameters,

and Ft−1 denotes the information set at time t − 1. The inclusion of Ft−1 allows the

observation density to depend on exogenous variables and/or lags of yt. For readability,

the dependence on ψ† and Ft−1 will be suppressed. In the case of discrete observations,

p†(yt|θ†t ) is interpreted as a probability rather than a density. Here we do not specify

the dynamics of the true process {θ†t}; instead, we focus on the filtering method used by

the researcher. We denote by p(yt|θ) the researcher-postulated density, which is typically

misspecified, where θ ∈ Rd denotes a vector of parameters the researcher is interested in

tracking over time. The assumption θ ∈ Rd is made for simplicity; if the parameter of

interest has a natural range (e.g. being positive), standard link functions (such as the ex-

ponential function) may be employed. The hope is that the researcher-postulated density

p(y|θ) evaluated at the filtered parameter path, specified below, tracks the true density

p†(y|θ) evaluated at the true path {θ†t}.

2.2 Filter specification

We consider implicit score-driven (ISD) and explicit score-driven (ESD) filters, where the

nomenclature will shorty become apparent. The corresponding sequences of filtered states

are denoted by {θimt|t } and {θext|t}, respectively. Similarly, sequences of predictions are de-

noted by {θimt|t−1} and {θext|t−1}. As is standard, filtered and predicted states reflect the
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researcher’s estimates of the time-varying parameter using the contemporaneous informa-

tion set Ft and lagged information set Ft−1, respectively.

Given two initializations θj0|0 ∈ Rd with j ∈ {im, ex}, both filters employ a linear

first-order prediction step for all t = 1, . . . , T , i.e.

prediction step: θjt|t−1 = ω + Φθjt−1|t−1, j ∈ {im, ex}, (1)

where ω is the d×1 intercept, and Φ is a d×d autoregressive matrix. While ω and Φ need

not be identical for both filters (i.e. we allow ωj and Φj with j ∈ {im, ex}), for readability

their superscript may be suppressed. If the true process is (believed to be) a random walk,

we may set ω = 0 and Φ = Id, where Id is the d×d identity. While in specific cases it may

be possible to improve on this simple linear structure, in general we expect no immediate

benefits as no (additional) information is revealed during the prediction step.

The crucial difference between both filters lies in their updating steps, which employ

either implicit- or explicit-gradient methods, in both cases for all t = 1, . . . , T :

implicit-gradient update: θimt|t = θimt|t−1 + Ht∇ℓ(yt | θimt|t ), (2)

explicit-gradient update: θext|t = θext|t−1 + Ht∇ℓ(yt | θext|t−1), (3)

where Ht ∈ Rd×d is the Ft−1-measurable learning-rate matrix, assumed symmetric and

positive definite (i.e. Ht ≻ O), ∇ := d/ dθ is the gradient operator acting on the second

argument of ℓ(y|θ), and ℓ(y|θ) := log p(y|θ). Hence ∇ℓ(y|θ) is the score, which explains

part of the nomenclature. While the learning-rate matrixHt need not be identical for both

methods (i.e. we allowHj
t with j ∈ {im, ex}), its superscript is suppressed when convenient.

In the implicit update (2), the score on the right-hand side is evaluated at the point θimt|t ,

which also appears on the left-hand side; this renders the method implicit, as the solution

appears on both sides of the equation. In contrast, the explicit update (3) is immediately
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computable, since the score on the right-hand side is evaluated in the (explicitly known)

prediction θext|t−1, completing our motivation for the nomenclature. While ISD and ESD

updates generally produce different outcomes, the example below illustrates a famous case

in which both methods—albeit with different learning rates—yield identical filters.

Example 1 (Kalman filter is a special case of ISD ánd ESD filters) Consider

a correctly specified linear Gaussian state-space model, such that Kalman’s (1960) filter

applies; i.e. the observation is yt = d + Zθ†t + εt, where εt ∼ i.i.d. N(0,R) with R ≻ O,

while the latent state progresses as θ†t = ω + Φθ†t−1 + ηt, where ηt ∼ i.i.d. N(0,Q) with

Q ≻ O. Denote Kalman’s predicted and filtered states as θKF

t|t−1 and θ
KF

t|t , with corresponding

covariance matrices P KF

t|t−1 and P KF

t|t . Kalman’s predicted state has the linear first-order

form (47). Kalman’s filtered state can be written (see Appendix X for details) as (i) ISD

update with learning rate P KF

t|t−1, i.e. θ
KF

t|t = θKF

t|t−1 + P
KF

t|t−1∇ℓ(yt|θKF

t|t ), or as (ii) an ESD

update with learning rate P KF

t|t , i.e. θ
KF

t|t = θKF

t|t−1+P
KF

t|t ∇ℓ(yt|θKF

t|t−1). Hence, either the score

or the learning rate is evaluated in the updated state. This “dual” representation of the

Kalman filter has received little—if any—attention in the literature; most Kalman-filter

extensions are based on its ESD representation (e.g. Fahrmeir, 1992, p. 504). While the

learning rate P KF

t|t for the ESD method should be Ft−1 measurable, this is unproblematic

as P KF

t|t is known at time t − 1, although it’s not clear how easily generalizable this is.

Clearly, the implicit learning rate exceeds the explicit one, as P KF

t|t−1 ≻ P KF

t|t . The equivalence

of both methods (for different learning rates) is due to the linearity (in θ) of the score

∇ℓ(yt|θ) = Z ′R−1(yt − d−Zθ).
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2.3 Reformulation as optimization-based filters

Updating the parameter estimate in the direction of the gradient appears to be natural,

as doing so would seem to improve the goodness of fit ℓ(yt|θ)—although in the case of

explicit updates there are some caveats as discussed below. On the other hand, the step size

governed by the learning rateHt should not be excessively large; otherwise, the filtered path

could become excessively volatile. To make explicit the trade-off between both competing

aims (improving the goodness of fit, while maintaining stability over time), we reformulate

both gradient-based updates in terms of an optimization framework.

Specifically, it is easy to check that the ISD update (2) is, in fact, the first-order condi-

tion corresponding to the following (multivariate) optimization problem:

θimt|t = argmax
θ∈Rd

{
ℓ (yt | θ)−

1

2

∥∥θ − θimt|t−1

∥∥2

Pt

}
. (4)

Here, the penalty matrix Pt ∈ Rd×d is the inverse of the learning-rate matrix, i.e. Pt :=

H−1
t ≻ O, while the penalty term ∥·∥2Pt

= (·)′Pt(·) is a squared (weighted) Euclidean norm.

The first-order condition associated with argmax (4) reads 0d = ∇ℓ(yt|θimt|t ) − Pt(θ
im
t|t −

θimt|t−1), which can be rearranged to yield the implicit update (2). As optimization (4)

clarifies, the implicit update maximizes the logarithmic observation density ℓ(yt|θ) subject

to a weighted quadratic penalty centered at the prediction; for this reason, optimization (4)

is also known as a “proximal” method (reference).

The relation between both the ISD and ESD updates becomes apparent when in op-

timization problem (4) we linearly approximate (by a Taylor expansion) the logarithmic

observation density around the prediction, which yields the explicit parameter update:

θext|t = argmax
θ∈Rd

ℓ(yt | θext|t−1) + (θ − θext|t−1)
′∇ℓ(yt | θext|t−1)︸ ︷︷ ︸

≈ℓ(yt|θ)

−1

2

∥∥θ − θext|t−1

∥∥2

Pt

 . (5)

The penalty matrix is again the inverse of the learning rate, i.e. Pt = H−1
t ≻ O, which
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need not be identical for both methods. The objective function in optimization (5), in curly

brackets, is linear-quadratic in θ; hence θext|t is analytically solveable. Indeed, the first-order

condition is 0 = ∇ℓ(yt|θext|t−1)− Pt(θ
ex
t|t − θext|t−1), which can be rearranged to yield (3).

The downside of the linearized optimization (5) is that the intuitively appealing form (4)

is lost. Moreover, while the full optimization (4) guarantees ℓ(yt|θimt|t ) ≥ ℓ(yt|θimt|t−1), i.e.

the goodness of fit at each time step is improved, the same is not true for the linearized

version (5). To explain, note that for the full optimization problem, the optimal value of

the objective function (i.e. when evaluated at the argmax) must exceed the (suboptimal)

value at any other point (e.g. at the predicted parameter). This fact yields ℓ(yt|θimt|t ) −

1/2∥θimt|t − θimt|t−1∥2Pt
≥ ℓ(yt|θimt|t−1). After rearrangement, we have ℓ(yt|θimt|t )− ℓ(yt|θimt|t−1) ≥

1/2∥θimt|t − θimt|t−1∥2Pt
≥ 0, which yields two desirable consequences: (i) the fit is improved

at every time step, i.e. ℓ(yt|θimt|t ) − ℓ(yt|θimt|t−1) ≥ 0, and (ii) the stepsize is bounded, i.e.

∥θimt|t − θimt|t−1∥Pt < ∞, as long as the prediction is not arbitrarily bad and θ 7→ ℓ(yt|θ) is

upper bounded, almost surely in yt. Hence the boundedness of the implicit update derives

not from the boundedness of the gradient, but from the upper boundedness of the objective

function itself, which provides a higher level of robustness.

In contrast, the solution (3) to the linearized update (5) may be prone to “overshooting”;

i.e. unless the learning rate is very small, the undesirable situation ℓ(yt|θext|t) < ℓ(yt|θext|t−1)

may regularly occur. In Section 4 we will find that for the explicit method to asymptoti-

cally achieve bounded filtering errors over time, we require that, almost surely in yt, the

driving force Ht∇ℓ(yt|θext|t−1) is Lipschitz in θext|t−1. This additional condition, which is not

needed for the implicit method, is required to avoid the explicit method from repeatedly

overshooting and, possibly, diverging.
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2.4 Computing the implicit-gradient update

Naturally, some assumptions (in Section 4) are required to ensure that the maximizer (4)

exists. For example, the logarithmic observation density θ 7→ ℓ(yt|θ) being upper semi-

continuous and concave, almost surely in yt, is sufficient but stronger than necessary. If

θ 7→ ℓ(yt|θ) is also sufficiently smooth, then the unique global optimum can be found

using standard quasi-Newton techniques (e.g. reference). For example, when θ 7→ ℓ(yt|θ)

is concave and twice continuously differentiable, almost surely in yt, standard Newton-

Raphson (NR, e.g. reference) iterates read

θimt|t ← θimt|t +
[
Pt −∇2ℓ(yt|θimt|t )

]−1 [∇ℓ(yt|θimt|t ) − Pt (θ
im
t|t − θ

im
t|t−1)

]
, (6)

where ∇2 := ∇∇′ = (d/ dθ)(d/ dθ)′ denotes the Hessian operator. The algorithm may be

initialized with θimt|t ← θimt|t−1. For high-dimensional problems, it may be beneficial to employ

an algorithm that avoids large-matrix inversions, such as the Broyden–Fletcher–Goldfarb–Shanno

(BFGS) algorithm (reference).

When computational efficiency is critical, algorithm (6) may be terminated after a

single NR iteration, in which case the output (after one iteration) reads θimt|t−1 + [Pt −

∇2ℓ(yt|θimt|t−1)]
−1∇ℓ(yt|θimt|t−1). This “1NR” version is similar to the explicit update (3) in

being computationally inexpensive; however, it is based on a quadratic (rather than lin-

ear) approximation of ℓ(yt|θ) around the prediction, which, as illustrated in Section 3, is

advantageous when θ 7→ ℓ(yt|θ) exhibits strong curvature. On the other hand, additional

iterations typically provide additional precision; hence, depending on the available com-

puter power, researchers may decide to execute more or fewer iterations of algorithm (6).

In our simulation studies, ∼ 5 iterations typically provide an excellent level of accuracy.

11



2.5 Differences with literature on (explicit) score-driven filters

Here we compare our approach above with the well-known class of generalized autoregres-

sive score (GAS; Creal et al., 2013) or dynamic conditional score (DCS; Harvey, 2013)

filters. These filters have become collectively known as score-driven filters (e.g. Arte-

mova et al., 2022a) and have found wide applicability; e.g. more than 300 articles are

available on www.gasmodel.com. It turns out that this model class is nested within the

framework presented above; more precisely, all score-driven filters in this literature are

explicit score-driven filters, even as the word “explicit” is not typically used there. To

demonstrate the equivalence, we substitute the explicit update (3) into the explicit predic-

tion (47) to obtain the following (explicitly computable) prediction-to-prediction recursion:

θext+1|t = ω+Φθext|t−1+ΦHt∇ℓ(yt|θext|t−1). Up to reparameterization, this recursion is identi-

cal to that used in the (explicit) score-driven literature. To demonstrate this, we note that

in this literature it is typical (e.g. Artemova et al., 2022a, p. 5) to takeHt =H I(θext|t−1)
−ζ

with ζ ∈ {0, 1/2, 1}, where H ≻ O is a static matrix, while the Fisher information matrix

is I(θ) :=
∫
p(y|θ)∇ℓ(y|θ)∇′ℓ(y|θ) dy ≻ O, which is positive definite under the usual

identification assumptions. Interestingly, however, taking Ht = H I(θext|t−1)
−ζ guarantees

neither symmetry nor positive definiteness of Ht, even as imposing these properties would

seem quite natural based on optimization (5).

Importantly for our purpose, we point out three important differences with the litera-

ture cited above. First, the literature on (explicit) score-driven filters has not considered

splitting up the prediction-to-prediction recursion into distinct prediction and updating

steps, as we have done here. We argue that differentiating between both steps is at once

(i) familiar from state-space models and the Kalman filter (e.g. reference), (ii) conceptu-

ally useful, as new information is revealed during the updating (but not the prediction)
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step, and (iii) practically useful, as it may be beneficial to distinguish between predictions

and nowcasts. Indeed, nowcasting studies using ESD filters are nonexistent as real-time

updates are, in this literature, not defined. Second, the vast majority of the literature

cited above assumes that the (explicit) score-driven filters are correctly specified in the

sense that the filter, in fact, generated the data. Here we take the more realistic view that

the data-generating process remains unknown, while we can only hope to show (in Sec-

tion 4) that the ISD and ESD filters are reasonably accurate in tracking the (pseudo-)true

time-varying parameter. Third, perhaps most fundamentally, the literature on (explicit)

score-driven models has stopped short of recognizing that the ESD update (3) is identical

to the solution of the linearized optimization problem (5). The lack of this connection be-

ing made has—arguably—prohibited researchers from considering the “full” optimization

problem (4). With the exception of Lange et al. (2022), the implicit update (2) has, in the

literature on time-varying parameters, not been employed. As our theory and simulations

show, the ISD filter allows sharper error bounds to be derived; indeed, we will show that

the ISD filter successfully tracks the true parameter even when the ESD filter diverges.

3 Illustration: Poisson data with varying intensity

o highlight the relevance of our theoretical results in the next section, here we illustrate

the—in some cases, dramatic—differences between implicit and explicit score-driven filters

in tracking a scalar latent state (i.e. d = 1) for a fundamental distribution.

True process: We consider Poisson-generated count data yt ∈ N with a time-varying

intensity λ†
t = exp(θ†t ), where θ†t ∈ R is the time-varying parameter of interest, while the

exponential link function ensures λ†
t > 0. We assume correct specification of the observation

density, i.e. p†(y|λ) = p(y|λ) = λy/y! exp(−λ) for y ∈ N and λ > 0.
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Figure 1: Expected update E(θjt|t) when θ†t = 0 with learning rate ηex = 0.2.

ISD filter: We implement the linear prediction (47) in combination with the implicit

update (4). The filter is initialized using the true parameter value, i.e. θim0|0 = θ†0 = 0. The

score is∇ℓ(y|θ) = y−exp(θ) for y ∈ N and θ ∈ R, while the Hessian ∇2ℓ(y|θ) = − exp(θ) <

0 is strictly negative, such that θ 7→ ℓ(y|θ) is strictly concave. Since the negative Hessian

−∇2ℓ(y|θ) = exp(θ) does not depend on y, it equals the Fisher information quantity. We

take a static learning rate H im
t = ηim > 0, where ηim is a parameter to be estimated. The

global maximizer (4) can be found using standard Newton-Raphson (NR) iterates (6).

ESD filter: We implement the linear prediction (47) in combination with the explicit

update (3). As above, the filter is initialized using the true parameter value, i.e. θex0|0 =

θ†0 = 0. We follow the literature (e.g. Koopman et al., 2016) in taking the learning rate

to be Hex
t = ηex exp(−ζ θext|t−1) with ζ ∈ {0, 1/2, 1}, where ηex > 0 is a static parameter to

be estimated; hence, Hex
t is time-varying unless ζ = 0. The driving force in the explicit

filter is Hex
t ∇ℓ(yt|θext|t−1) = ηex exp(−ζ θext|t−1)(y − exp(θext|t−1)). This driving force contains
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exponential terms—except if y = 0 and ζ = 1—and hence fails to be Lipschitz in the

variable θext|t−1. Moreover, its average (over y) fails to be Lipschitz irrespective of ζ ∈

{0, 1/2, 1}. To illustrate, suppose the true parameter is zero, i.e. θ†t = 0, such that the

expected update equals

E
[
θext|t | Ft−1, θ

†
t = 0

]
= θext|t−1 + ηex exp(−ζ θext|t−1)(1− exp(θext|t−1)), ζ ∈ {0, 1/2, 1}, (7)

where we have used E[yt|θ†t = 0] = 1.

Expected explicit-gradient update: Figure 1 shows the expected update (7) as a

function of the prediction θext|t−1. Large positive prediction errors (corresponding to large

values of θext|t−1 = θext|t−1 − θ†t ) on average generate excessively large negative filtering errors

for ζ = 0 and ζ = 1/2, as the corresponding curves exit the figure on the bottom right.

Similarly, large negative prediction errors (corresponding to negative values of θext|t−1) on

average generate exceedingly large positive filtering errors for ζ = 1/2 and ζ = 1, as the

corresponding curves exit the figure on the top left. This behavior is illustrative of the

tendency of explicit-gradient methods to overshoot; indeed, the magnitude of prediction

errors can be arbitrarily magnified. Even as Koopman et al. (2016) advocate using ζ = 1/2,

we show here that the possibility of overshooting from both the left- and right-hand sides

means that the filtered path may diverge, in alternating fashion, to infinity. In sum, for any

fixed learning rate ηex > 0, any true parameter θ†t ∈ R and any choice ζ ∈ {0, 1/2, 1}, there

exist (sufficiently inaccurate) predictions θext|t−1 for which the expected update E[θext|t|θ
†
t ,Ft−1]

is exponentially divergent; for ζ = 1/2, this may even imply a catastrophic runaway effect.

Expected implicit-gradient update: The expectation of the implicit-gradient up-

date (2), also contained in Figure 1, is somewhat more involved; see Appendix X for the

derivation. Figure 1 illustrates that, on average, the updated parameter θjt|t is drawn

closer to the true parameter θ†t = 0, i.e. abs(E[θjt|t|Ft−1, θ
†
t ]) < abs(θjt|t−1), for implicit but
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not explicit updates. For the implicit update, the grey area in Figure 1 illustrates that

E[θimt|t |Ft−1, θ
†
t ] has the same sign as θimt|t−1, while being smaller in magnitude: on average,

the prediction error is reduced in magnitude while its sign is unchanged.

4 Theory: Error bounds for score-driven filters

4.1 Assumptions

Our primary goal is to track the true density over time. Throughout, we consider the

(root) mean-squared error ((R)MSE) relative to the pseudo-true parameter θ⋆t as the loss

function of interest. The pseudo-true parameter θ⋆t is defined as the minimizer of the

Kullback-Leibler divergence to the true density; when correctly specified, θ⋆t = θ
†
t .

Definition 1 (Pseudo-true parameter) Consider a true distribution p†(yt|θ†t ) modeled

by some postulated distribution p(yt|θt). Then θ⋆t := argmin
θ∈Θ

∫
p†(y|θ†t )

[
ℓ†(y|θ†t )− ℓ(y|θ)

]
dy

is the pseudo-true parameter, provided a unique solution exists, and ℓ†(·|θ†t ) := log p†(·|θ†t ).

To establish optimality guarantees, we require some regularity on both the true process

and the postulated model. We first present mild assumptions on the evolution of the

(pseudo-)true process to make tracking feasible. Afterwards, we discuss the regularity of

our proposed observation density. Our core result on error bounds for score-driven filters

concludes this section.

To be able to track the pseudo-true parameter path {θ⋆t } over time, it cannot be allowed

to change haphazardly from one period to the next. Assumption 1a excludes this scenario

for the misspecified case by imposing that the pseudo-true parameter increments {θ⋆t−θ⋆t−1}

have a finite second moment uniformly across time. This condition is needed to ensure

that the RMSE loss can be computed; it is not related to our particular filtering setup.
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Assumption 1b considers the correctly specified case, which is not a prerequisite for our

main result but naturally allows for even stronger performance guarantees. Specifically,

Assumption 1b states that the postulated density is correctly specified (such that θ⋆t = θ
†
t ,

for t = 1, . . . , T ) and that {θ†t} follows linear Gaussian dynamics with known coefficients, as

is also assumed in deriving the Kalman filter. Assumption 1b therefore implies Assumption

1a.

Assumption 1 (Regularity of the (pseudo-)true process) Consider a true distribu-

tion p†(yt|θ†t ) modeled by some postulated distribution p(yt|θt). Assume for t = 1, . . . , T

that:

(a) The pseudo-truth θ⋆t exists and is unique. In addition, the increments of the pseudo-

true parameter have finite second (cross) moments. That is,

E
[(
θ⋆t − θ⋆t−1

) (
θ⋆t − θ⋆t−1

)′] ⪯ Q, (8)

where Od ⪯ Q ∈ Rd×d with q2 := tr(Q) <∞.

(b) The postulated density is correctly specified, i.e. p(yt|·) = p†(yt|·) almost surely in yt,

and the true parameter follows linear Gaussian state dynamics:

θ†t = ω
† +Φ†θ†t−1 + ηt, ηt ∼ i.i.d. N(0,Q†), (9)

with finite covariance matrix Od ⪯ Q† ∈ Rd×d where σ2
η := tr(Q†) < ∞, intercept

ω† ∈ Rd and auto-regressive matrix Φ† ∈ Rd×d with spectral radius ρ(Φ†) ≤ 1, which

are assumed known.

Effectively, Assumption 1a implies the existence of a number of moments of the increments

of the true process {θ†t−θ
†
t−1}, with the number depending on the form of postulated density
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and the severity of the misspecification. If the mapping from the true to the pseudo-true

parameter is Lipschitz continuous—which trivially includes the correctly specified density

case—then the boundedness of second moments of true-parameter increments is sufficient.

We emphasize that Assumption 1a is substantially weaker than common assumptions

in the existing literature, which often consider bounded (pseudo-)true parameter variation

(e.g. Wilson et al., 2018; Cao et al., 2019; Simonetto et al., 2020; Lanconelli and Lauria,

2023). These assumptions exclude most realistic data generating processes, such as the

linear Gaussian dynamics in Assumption 1b, as would be relevant for e.g. the Kalman

filter. In contrast, our theory is built on a minimal assumption needed for the loss function

of interest to take finite value and does not presuppose correct specification; our core result

will therefore be widely applicable. When correctly specified (i.e. Assumption 1b holds)

these results may be further strengthened.

The score-driven filters of Section 2 connect the parameter update to the postulated

observation density, the properties of which are therefore of paramount importance. Fol-

lowing standard practice in the gradient-based optimization literature (e.g. Boyd and Van-

denberghe, 2004), Assumption 2 posits smoothness and concavity.

Assumption 2 (Regularity of the observation density) Consider data yt drawn from

a true density p†(yt|θ†t ) and modeled by some postulated distribution p(yt|θ) that is once

continuously differentiable in θ, almost surely in yt. Assume for t = 1, . . . , T that either:

(a) ℓ(yt|θ) is α-strongly concave in θ, α > 0, almost surely in yt, or

(b) ℓ(yt|θ) is α-strongly concave and β-smooth in θ, where 0 < α ≤ β < ∞, almost

surely in yt.

Assumption 2a is sufficient to ensure that the score on average points in the direction of the
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pseudo-truth θ⋆t , while its magnitude grows sufficiently fast as the prediction θjt|t−1, j ∈ {im, ex}

is moved away from θ⋆t . Furthermore, Assumption 2b additionally requires that the postu-

lated log likelihood is β-smooth. This is equivalent to β-Lipschitz gradient continuity and

limits the maximum growth of the score and/or the curvature of the postulated logarithmic

observation density ℓ(yt|·). Assumption 2b turns out to be a necessary ingredient to obtain

a finite error bound for the ESD—but not the ISD—filter.

Assumption 3 (Bounded information) Consider a true distribution p†(yt|θ†t ) modeled

by some postulated distribution p(yt|θt). Assume for t = 1, . . . , T that

σ2
t :=

∫
p†(y|θ†t )∥∇ℓ(y|θ⋆t )∥2 dy ≤ σ2

max < ∞. (10)

While Assumptions 1–3 allow a rich combination of DGPs and postulated observation

densities, we explicitly point out an important special case that is allowed in our setup but

often ruled out in other literature.

Example 2 (Linear Gaussian state-space model) Consider a correctly specified linear

Gaussian state-space model, for which the observation equation reads yt = d + Zθ†t + εt,

where εt ∼ i.i.d. N(0,R) and R ≻ O is a positive-definite covariance matrix with finite

trace r = tr(R) < ∞, while the state transition satisfies the linear Gaussian dynam-

ics (46) in Assumption 1b. The negative Hessian of the logarithmic observation density

reads −∇2ℓ(yt|θ) = Z ′R−1Z; hence, Assumption 2b is satisfied with minimum and max-

imum curvature α = λmin(Z
′R−1Z) > 0 and β = λmax(Z

′R−1Z) < ∞, respectively.

Finally, Assumption 3 is satisfied as E[∥∇ℓ(yt|θ†t )∥2] = E[∥Z ′R−1(yt − d − Zθ†t )∥2] =

E[∥Z ′R−1εt∥2] = E[tr(Z ′R−1εtε
′
tR

−1Z)] = tr(Z ′R−1 E[εtε
′
t]R

−1Z) = tr(Z ′R−1Z) ≤

dλmax(Z
′R−1Z) = dβ <∞.
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4.2 Error bounds

First, let us introduce some notation. For a d×d matrixA, we write ∥A∥2 :=
√

λmax(A′A)

for the spectral norm. Here, λmax(A) denotes the maximum eigenvalue of matrix A. We

consider the root mean-squared error of the filtered parameter relative to the pseudo-true

parameter RMSEt|t :=
√

E[∥θt|t − θ⋆t ∥2] as the loss function of interest. Furthermore, we

denote by s2 the maximum of the second moment of the true state over time, which may

be non-finite E[∥θ⋆t ∥2] ≤ s2 for t = 1, . . . , T . Let µmin and µmax represent the minimum

and maximum eigenvalue of penalty matrix Pt, respectively.

Here, we provide performance guarantees for ISD and ESD filters under possible model

misspecification. More precisely, Theorem 1 presents upper bounds for long-run root mean

squared filtering errors (RMSEs) under the very mild conditions on the (pseudo-)true pa-

rameter process given in Assumption 1a. The ISD and ESD filter’s error bounds (12)

and (14) are guaranteed under the sufficient contraction conditions (11) and (13) on the

filter’s specification and postulated distribution.

Theorem 1 (RMSE bounds under misspecification) Let the postulated conditional

density p(·|·) be such that Assumptions 1a and 3 hold. Additionally, let the ISD filter

satisfy Assumption 2a, and the ESD filter Assumption 2b.

1) Consider the ISD filter, i.e. prediction (47) and implicit update (2). Let

√
µmax ∥Φ∥2√

µmin + 2α + α2

µmax

< 1. (11)

Then

lim sup
t→∞

RMSEt|t ≤
σmax√
µmin

+
√
µmax [q + ∥ω∥+ ∥Φ− Id∥2 s]√

µmin + 2α + α2

µmax
−√µmax∥Φ∥2

. (12)

2) Consider the ESD filter, i.e. prediction (47) and explicit update (3). Let(√
µmax − 2α

µmin

+
β

µmin

)
∥Φ∥2 < 1. (13)
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Then

lim sup
t→∞

RMSEt|t ≤
σmax√
µmin

+
(√

µmax − 2α + β√
µmin

)
[q + ∥ω∥+ ∥Φ− Id∥2 s]

√
µmin −

(√
µmax − 2α + β√

µmin

)
∥Φ∥2

. (14)

The upper bounds on the long-run RMSEs of both score-driven filtering classes are mini-

mized for µmin = µmax, or equivalently, when the penalty matrix is a scalar multiple of the

identity matrix Pt = γId, which automatically holds in the univariate case. Hence, this

choice for the penalty matrix is not only practically useful as less parameters need to be

estimated, it is also theoretically supported. Moreover, the RMSE bounds and contraction

conditions from Theorem 1 simplify considerably, as depicted in the Appendix.

Corollary 1.1 Let the conditions of Theorem 1 hold, and let the penalty matrix be a scalar

multiple of the identity matrix Pt = γId. Then the contraction condition for the ISD filter

reads γ
γ+α
∥Φ∥2 < 1, such that 1) the RMSE bound is minimal, 2) the contraction condition

is automatically satisfied for any non-explosive autoregressive matrix ∥Φ∥2 ≤ 1.

Corollary 1.1 implies that for this choice of penalty, the ISD filter can always guarantee an

upper bound on the long-run RMSE. In contrast, the ESD filter cannot generally ensure

bounded errors when the learning rate is a scalar multiple of the identity, as it depends on

the penalty size γ and the minimum and maximum curvature in the observation log-density,

denoted by α and β, respectively. However, the ESD RMSE bound is similarly minimized

for Pt = γI.

Consider a trivial filter that persistently estimates the latent state by its unconditional

mean, disregarding any variations in the level. This filter achieves an upper bound on

long-run RMSE for mean-reverting true states. However, if the true state tends to infinity,

due to, for instance, unit root dynamics, this trivial filter cannot guarantee such an upper

bound. In essence, tracking states with non-stationary dynamics poses greater difficulty for
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a filter. Corollary 1.2 ensures that even with unit root dynamics Φ† = Id causing s→∞,

ESD and ISD filters are capable of accurately tracking latent states in the long run.

Corollary 1.2 Let the conditions of Theorem 1 hold. Both ISD and ESD filters can guar-

antee an upper bound on the long-run root mean squared filtering error for tracking latent

states with unit root dynamics using an identity transformation (ω = 0 and Φ = Id) in the

filter’s prediction step (47), provided that the relevant contraction condition is satisfied.

The RMSE bounds in Theorem 1 are derived under minimal assumptions on the true

parameter process, i.e. Assumption 1a. Consequently, these bounds can be sharpened with

more available information about the true parameter process is available. In the derivation

of the Kalman filter, it is assumed that the true parameter process is correctly specified with

a linear and Gaussian state-transition equation. Theorem 2 presents the RMSE bounds

and contraction conditions of the ISD and ESD filter under this assumption (1b).

Theorem 2 ((R)MSE bounds under correct specification) Let the postulated con-

ditional density p(·|·) be such that Assumptions 1b and 3 hold. Additionally, let the ISD

filter satisfy Assumption 2a, and the ESD filter Assumption 2b.

1) Consider the ISD filter, i.e. prediction (47) and implicit update (2). Let

µmax

µmin + 2α + α2

µmax

∥Φ∥22 < 1, (15)

Then

lim sup
t→∞

MSEt|t ≤
σ2
max

µmin
+ µmaxσ

2
η

µmin + 2α + α2

µmax
− µmax∥Φ∥2

. (16)

2) Consider the ESD filter, i.e. prediction (47) and explicit update (3). Let

(√
µmax − 2α

µmin

+
δ

µmin

)
∥Φ⋆∥2 < 1 (17)
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Then

lim sup
t→∞

RMSEt|t ≤
σmax√
µmin

+ ση

(√
µmax − 2α + β√

µmin

)
√
µmin −

(√
µmax − 2α + β√

µmin

)
∥Φ⋆∥2

. (18)

The error bound’s precision is strongly influenced by the curvature in the observation log-

density, specifically, by α and β denoting the minimum and maximum curvature. Specif-

ically, the bounds decrease with α and increase with β. Hence, a model with constant

curvature in the observation log-density produces the most precise bounds. Example 3

illustrates that a correctly specified (Gaussian) local level model with constant curvature

achieves a tight RMSE bound, in the sense that it can neither be surpassed nor improved

further. This is derived by establishing that the learning rate minimizing this bound equals

the inverse of the steady-state Kalman filter covariance for the local level model in Durbin

and Koopman (2012). As the Kalman filter is optimal in the minimum mean squared error

sense, the bound is tight.

Example 3 (MSE bounds ISD filter local level model) Let the data be generated from

a local level model: yt = θ⋆t + εt, θ
⋆
t+1 = θ⋆t + ηt, εt ∼ NID(0, σ2

ε), ηt ∼ NID(0, σ2
η), where

εt and ηt are mutually independent for all t, such that P = γ, σ2
max = 1

σ2
ϵ
and α = 1

σ2
ϵ
.

Suppose we are correctly specified, such that Assumptions 1b, 2b, and 3 are satisfied, then

lim sup
t→∞

MSEt|t ≤
σ2
ε + σ2

ησ
4
εγ

2

2γσ2
ε + 1

, (19)

which is minimized for penalty

γ̂ =
2(

σ2
η + σ2

η

√
4σ2

ε + σ2
η

) =:
1

p̄
, (20)

where p̄ is exactly the steady-state Kalman filter covariance for the local level model.
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5 Simulation

This Monte Carlo study emphasizes the importance of the theoretical results in the pre-

ceding section. It illustrates the potential implications of employing an ESD filter without

sufficient regularity in the researcher-postulated logarithmic observation density, specifi-

cally β-smoothness. Furthermore, we show that when the true process is volatile, the ISD

filter successfully tracks the true parameter, even in cases where the ESD filter diverges.

We consider nine univariate data-generating processes (DGPs) from Koopman et al.

(2016) with linear Gaussian state dynamics, thereby satisfying Assumption 1a. Table 1

from Lange (2020) depicts an overview of the observation densities, score and link functions,

and other relevant quantities. The first seven DGPs are log-concave, while the Gaussian

and Student-t copula (SCg and SCt) models are not. Here, we focus on the Poisson model

with time-varying intensity from the Illustration 3, but similar results hold for the other

eight models from Koopman et al. (2016) as shown in the Appendix.
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Table 1: Overview of data-generating processes in simulation studies.

DGP Link function Density Score Realised information Information

Type Distribution p(yt|θt)
dℓ(yt|θt)

dθt
−d2ℓ(yt|θt)

dθ2t
E
[
−d2ℓ(yt|θt)

dθ2t

∣∣∣θt]
Count Poisson λt = exp(θt) λyt

t exp(−λt)/yt! yt − λt λt λt

Count Negative bin. λt = exp(θt)
Γ(κ+ yt)

(
κ

κ+λt

)κ (
λt

κ+λt

)yt

Γ(κ)Γ(yt + 1)
yt −

λt(κ+ yt)

κ+ λt

κλt(κ+ yt)

(κ+ λt)2
κλt

κ+ λt

Intensity Exponential λt = exp(θt) λt exp(−λtyt) 1− λt yt ytλt 1

Duration Gamma βt = exp(θt)
yκ−1
t exp(−yt/βt)

Γ(κ)βκ
t

yt
βt
− κ

yt
βt

κ

Duration Weibull βt = exp(θt)
κ (yt/βt)

κ−1

βt exp{(yt/βt)κ}
κ

(
yt
βt

)κ

− κ κ2

(
yt
βt

)κ

κ2

Volatility Gaussian σ2
t = exp(θt)

exp{−y2t /(2σ2
t )}

{2πσ2
t }1/2

y2t
2σ2

t

− 1

2

y2t
2σ2

t

1

2

Volatility Student’s t σ2
t = exp(θt)

Γ
(
ν+1
2

) (
1 +

y2
t

(ν−2)σ2
t

)− ν+1
2√

(ν − 2)πΓ (ν/2)σt

ωt y
2
t

2σ2
t

− 1

2

ν − 2

ν + 1

ω2
t y

2
t

2σ2
t

ν

2ν + 6

ωt :=
ν + 1

ν − 2 + y2t /σ
2
t

Dependence Gaussian ρt =
1− exp(−θt)
1 + exp(−θt)

exp
{
−y2

1t+y2
2t−2ρty1ty2t

2(1−ρ2
t )

}
2π

√
1− ρ2t

ρt
2

+
1

2

z1t z2t
1− ρ2t

0 ≰
1

4

z21t + z22t
1− ρ2t

− 1− ρ2t
4

1 + ρ2t
4

z1t := y1t − ρty2t
z2t := y2t − ρty1t

Dependence Student’s t ρt =
1− exp(−θt)
1 + exp(−θt)

ν
(
1 +

y2
1t+y2

2t−2ρty1ty2t

(ν−2)(1−ρ2
t )

)− ν+2
2

2π(ν − 2)
√

1− ρ2t

ρt
2

+
ωt

2

z1t z2t
1− ρ2t

0 ≰
ωt

4

z21t + z22t
1− ρ2t

− 1− ρ2t
4
− 1

2

ω2
t

ν + 2

z21t z
2
2t

(1− ρ2t )
2

2 + ν(1 + ρ2t )

4(ν + 4)

z1t := y1t − ρty2t ωt :=
ν + 2

ν − 2 +
y2
1t+y2

2t−2ρty1ty2t

1−ρ2
t

z2t := y2t − ρty1t

Note: The table contains nine data-generating processes (DGPs) and link functions from Koopman et al. (2016). For each model, the DGP is given by the linear
Gaussian state equation in combination with the observation density and link functions indicated in the table. The table further displays scores, realised information
quantities and expected information quantities. The realised information quantities are nonnegative except for the bottom two models.
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True process: We consider Poisson-generated count data yt ∈ N with a time-varying

intensity λ†
t = exp(θ†t ), where θ†t ∈ R is the time-varying parameter of interest, while the

exponential link function ensures λ†
t > 0. We assume correct specification of the observation

density, i.e. p†(y|λ) = p(y|λ) = λy/y! exp(−λ) for y ∈ N and λ > 0. The true process follows

a linear Gaussian state-transition equation, i.e. θ†t = ω† + ϕ†θ†t−1 + ηt for t = 1, . . . , T , with

θ†0 = 0, T = 5000, ω† = 0, ϕ† = 0.98 and Gaussian disturbances ηt ∼ i.i.d. N(0, σ2
η),∀t. We

vary the value of ση ≥ 0 and, for each value of ση, perform 103 replications. As a point of

reference, we implement the standard bootstrap particle filter (Malik and Pitt, 2011) using

the correct state transition and true (hyper)parameter values, which should give highly

accurate—if generally infeasible—state estimates.

ISD filter: We implement the linear prediction (47) in combination with the implicit

update (4). The filter is initialized using the true parameter value, i.e. θim0|0 = θ†0 = 0. The

score is∇ℓ(y|θ) = y−exp(θ) for y ∈ N and θ ∈ R, while the Hessian ∇2ℓ(y|θ) = − exp(θ) <

0 is strictly negative, such that θ 7→ ℓ(y|θ) is strictly concave. Since the negative Hessian

−∇2ℓ(y|θ) = exp(θ) does not depend on y, it equals the Fisher information quantity. We

take a static learning rate H im
t = ηim > 0, where ηim is a parameter to be estimated. The

global maximizer (4) can be found using standard Newton-Raphson (NR) iterates (6).

ESD filter: We implement the linear prediction (47) in combination with the explicit

update (3). As above, the filter is initialized using the true parameter value, i.e. θex0|0 =

θ†0 = 0. We follow the literature (e.g. Koopman et al., 2016) in taking the learning rate

to be Hex
t = ηex exp(−ζ θext|t−1) with ζ ∈ {0, 1/2, 1}, where ηex > 0 is a static parameter to

be estimated; hence, Hex
t is time-varying unless ζ = 0. The driving force in the explicit

filter is Hex
t ∇ℓ(yt|θext|t−1) = ηex exp(−ζ θext|t−1)(y − exp(θext|t−1)). This driving force contains
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exponential terms—except if y = 0 and ζ = 1—and hence fails to be Lipschitz in the

variable θext|t−1. Moreover, its average (over y) fails to be Lipschitz irrespective of ζ ∈

{0, 1/2, 1}.

(Hyper)parameter tuning: Both score-driven filters contain three static parameters,

which are collected in the (hyper)parameter vector ψj := (ωj, ϕj, ηj)′ for j ∈ {im, ex}. We

extend the standard practice (e.g. Blasques et al., 2023) for explicit filters by computing

ψ̂j := argmaxψj

∑
t ℓ(yt|θ

j
t|t−1) for j ∈ {im, ex}, using the in-sample period consisting of

the first 2500 data points. As the true process is (believed to be) stationary, we impose

ϕ̂j ∈ (0, 1) for j ∈ {im, ex}. As the estimated values of ωj and ϕj tend to be very close

to ω† and ϕ†, respectively, we also consider the case where we set ωj = ω† and ϕj = ϕ†

for j ∈ {im, ex}. Only a single static (hyper)parameter is then estimated for each filter:

the learning-rate parameter ηj > 0 for j ∈ {im, ex}. Using the estimated parameters, the

whole data set (i.e. including the out-of-sample period) is used to construct filtered paths.

We are particularly interested in how the estimate η̂j varies with ση.

Results: As Figure 2b illustrates, the estimated learning rate for the ISD filter is

monotone increasing in ση ≥ 0, which controls the variability of the true path {θ†t}. This

is intuitive: as the true-parameter changes are more pronounced, the filter’s sensitivity

should be increased. The estimated learning rate of the explicit filter, however, achieves

a maximum, after which it falls. The reason is that tracking the true path {θ†t} becomes

increasingly difficult as ση is increased, such that large prediction errors occur more fre-

quently; this would lead to the explicit filter to frequently overshoot or diverge unless the

learning rate is artificially reduced. This reduction, however, may come at the cost of

filtering performance.
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Finally, as Figure 2a illustrates, the implicit and explicit filters achieve similar root

mean squared errors (RMSEs) in tracking the true state {θ†t} for state-variation parameters

not exceeding 0.15. Moreover, the explicit filter with ζ = 1/2 demonstrates (slightly)

better RMSE performance under modest state variations compared to the other explicit

filters, consistent with Koopman et al. (2016). From this point, however, the tracking

performance of the explicit filters sharply deteriorates, as can be seen from the RMSE

curves either exiting the figure at the top or abruptly vanishing. A closer inspection of

the data reveals that this is indeed due to overshooting and/or diverging, depending on

the value of ζ ∈ {0, 1/2, 1}. The implicit filter, on the other hand, provides a stable and

predictable performance for all values of ση.

Figure 3 displays a single state path of a Poisson model characterized by state-transition

parameters ση = 0.825, ω† = −0.01, and ϕ† = 0.98. We filter the true state path using

the ESD filter with three choices of scaling for the score and the ISD filter. In Figure 3a,

employing identity scaling, the ESD filter frequently exhibits overshooting downward and

slow recovery. Notably, around time 3800, it takes over 1000 time points for the filter

to approach the true state path. The ESD filter with inverse square root Fisher scaling

in Figure 3b performs even worse as it exponentially diverges to infinity in alternating

fashion. The ESD filter with inverse Fisher scaling, shown in Figure 3c, is neither capable

of reliably filtering the same state path, which is evident from the upward overshooting of

the filter. Conversely, the ISD filter shown in Figure 3d performs substantially better, as

it neither overshoots nor diverges, but instead quite successfully tracks the true path, with

the exception of occasional low state values.
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(a) RMSEs of predicted updates {θjt|t−1}.
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(b) Estimated learning rates η̂

Figure 2: RMSE = root mean squared error. ESD = explicit score-driven. ISD = implicit

score-driven. (a) RMSEs of predicted updates {θjt|t−1} and (b) estimated learning rates η̂

while filtering a Poisson model with varying state variations ση using the ESD filter with

identity scaling (ζ = 0), inverse square root Fisher scaling (ζ = 1/2), inverse Fisher scaling

(ζ = 1), and using the ISD filter.
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(a) ESD (ζ = 0) filtered path.
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(b) ESD (ζ = 1/2) filtered path.
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(c) ESD (ζ = 1) filtered path.
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(d) ISD filtered path.

Figure 3: ESD = explicit score-driven. ISD = implicit score-driven. Filtering one true

state {θ†t} path of a Poisson model (grey lines) with state-transition parameters ση = 0.825,

ω† = −0.01, and ϕ† = 0.98 using the ESD filter with (a) identity scaling (ζ = 0), (b) inverse

square root Fisher scaling (ζ = 1/2), (c) inverse Fisher scaling (ζ = 1), and (d) using the

ISD filter (black lines). Figures (a), (b), (c), and (d) show the same simulated path.
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6 Conclusion

Tracking latent time-varying parameters in the presence of possible model misspecifica-

tion is challenging, particularly when the true parameters exhibit large fluctuations and/or

non-stationary dynamics. We derived performance guarantees for score-driven filters by

presenting upper bounds for long-run root mean squared filtering errors. We distinguished

between two classes of filters: explicit score-driven (ESD) and implicit score-driven (ISD).

While the first class contains all score-driven filters in the literature, known variously as dy-

namic conditional score (DCS) or generalized autoregressive score (GAS) filters, the second

class is essentially new. We relaxed conditions on the true parameter process considerably

compared to recent work on error bounds for tracking latent time-varying parameters.

These studies typically impose a limit on the true parameter variation, thereby excluding

many realistic data generating processes, such as linear and Gaussian dynamics relevant to,

for example, the Kalman filter. In contrast, we only necessitate a finite second moment for

the (pseudo-)true parameter increments over time. Our theoretical analysis revealed, for

the first time, that ESD filters require regularity conditions on the researcher-postulated

logarithmic observation density. Specifically, Lipschitz continuity of the gradient, or equiv-

alently, β-smoothness, is required to prevent the ESD filter from frequently ‘overshooting’

and, possibly, diverging to infinity. In contrast, ISD filters do not require this restrictive

regularity condition. Indeed, our simulation studies across a wide variety of settings demon-

strated that, when the true-parameter process is quite volatile, the ISD filter successfully

tracks the true parameter even when the ESD filter diverges.
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Appendix

A Proof Theorem 1

Here, we derive an upper bound on the long-run RMSE, and corresponding contraction

condition for the ISD filter under potential misspecification. Suppose Assumptions 1a,

2a, and 3 hold. Start with the ISD filter’s update step, which uses differentiability of the

log-observation density:

θt|t = θt|t−1 + P
−1
t ∇ℓ(yt | θt|t) (21)

Take P−1
t ∇ℓ(yt | θt|t) to the left-hand side, pre-multiply both sides by P

1
2
t , subtract from

both sides P
1
2
t θ

⋆
t − P

− 1
2

t ∇ℓ(yt | θ⋆t ), and rewrite, to obtain:

P
1
2
t (θt|t−θ⋆t )−P

− 1
2

t (∇ℓ(yt | θt|t)−∇ℓ(yt | θ⋆t )) = P
1
2
t (θt|t−1−θ⋆t )+P

− 1
2

t ∇ℓ(yt | θ⋆t ). (22)

Compute the quadratic norm on both sides, to obtain:

∥θt|t − θ⋆t ∥2Pt
+ ∥∇ℓ(yt | θt|t)−∇ℓ(yt | θ⋆t )∥2P−1

t
− 2⟨∇ℓ(yt | θt|t)−∇ℓ(yt | θ⋆t ),θt|t − θ⋆t ⟩ =

∥θt|t−1 − θ⋆t ∥2Pt
+ ∥∇ℓ(yt | θ⋆t )∥2P−1

t
+ 2⟨θt|t−1 − θ⋆t ,∇ℓ(yt | θ⋆t )⟩

Using that by α-strong concavity ⟨∇ℓ(yt | θt|t) − ∇ℓ(yt | θ⋆t ),θ⋆t − θt|t⟩ ≥ α
∥∥θt|t − θ⋆t ∥∥2

and subsequently that ∥∇ℓ(yt | θt|t)−∇ℓ(yt | θ⋆t )∥2P−1
t
≥ α2

µmax

∥∥θt|t − θ⋆t ∥∥2
:

∥θt|t − θ⋆t ∥2Pt
+ ∥∇ℓ(yt | θt|t)−∇ℓ(yt | θ⋆t )∥2P−1

t
+ 2α∥θt|t − θ⋆t ∥2 ≤

∥θt|t−1 − θ⋆t ∥2Pt
+ ∥∇ℓ(yt | θ⋆t )∥2P−1

t
+ 2⟨θt|t−1 − θ⋆t ,∇ℓ(yt | θ⋆t )⟩ ⇒

∥θt|t − θ⋆t ∥2Pt
+

α2

µmax

∥θt|t − θ⋆t ∥2 + 2α∥θt|t − θ⋆t ∥2 ≤

∥θt|t−1 − θ⋆t ∥2Pt
+ ∥∇ℓ(yt | θ⋆t )∥2P−1

t
+ 2⟨θt|t−1 − θ⋆t ,∇ℓ(yt | θ⋆t )⟩
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Let E1:t[·] := Ey1...yt;θ†1...θ
†
t
[·] =

∫
θ⋆t

∫
yt

∫
θ⋆t−1

∫
yt−1

. . .
[∫
θ⋆1

[∫
y1
(·)p†(y | θ†t )dy

]
pθ†(θ)dθ

]
dydθ . . . .dydθ

denote the expectation with respect to the true state and observation path until time t,

where first the expectation is taken w.r.t. θ†t , then yt, θ
†
t−1, yt−1 etc. Note that the pseudo-

true parameter is some unknown function f(·) of the true parameter: θ⋆t = f(θ†t ). Now we

take the expectation with respect to the true state and observation path until time t on

both sides and combine terms:

E1:t[∥θt|t − θ⋆t ∥2Pt+(2α+ α2

µmax
)Id

] ≤ E1:t[∥θt|t−1 − θ⋆t ∥2Pt
] + E1:t[∥∇(yt | θ⋆t )∥2P−1

t
] (23)

Here, we used that E1:t[⟨θt|t−1 − θ⋆t ,∇ℓ(yt | θ⋆t )⟩] = 0, as E1:t[∇ℓ(yt | θ⋆t )] = 0. Now, using

Assumption 3 and that Pt is assumed to be positive definite:

E1:t[∥θt|t − θ⋆t ∥2Pt+(2α+ α2

µmax
)Id

] ≤ E1:t[∥θt|t−1 − θ⋆t ∥2Pt
] +

σ2
max

µmin

(24)

Hence, the MSE is contractive unless the prediction is within the noise-dominated region

(NDR). In the next step, we get slackness of the bound.

λmin(Pt + (2α +
α2

µmax

)Id)︸ ︷︷ ︸
= µmin + 2α+ α2

µmax

E1:t[∥θt|t − θ⋆t ∥2] ≤ µmax E1:t[∥θt|t−1 − θ⋆t ∥2] +
σ2
max

µmin

E1:t[∥θt|t − θ⋆t ∥2]︸ ︷︷ ︸
=: MSEt|t

≤ µmax

µmin + 2α + α2

µmax︸ ︷︷ ︸
> 0, we can choose Pt s.t. this term < 1

E1:t[∥θt|t−1 − θ⋆t ∥2]︸ ︷︷ ︸
=: MSEt|t−1

+

σ2
max

µmin

µmin + 2α + α2

µmax︸ ︷︷ ︸
> 0

(25)

As we are interested in root mean squared filtering errors over time, we take the square

root on both sides, and use that
√
z1 + z2 ≤

√
z1+
√
z2, for non-negative scalars z1 and z2,

to obtain:
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RMSEt|t ≤
√

µmax

µmin + 2α + α2

µmax

RMSEt|t−1 +

√√√√ σ2
max

µmin

µmin + 2α + α2

µmax

(26)

RMSEt|t−1 =
√

E1:t[∥θt|t−1 − θ⋆t ∥2]

=
√
E1:t[∥θt|t−1 − θ⋆t−1︸ ︷︷ ︸

=: z1

−(θ⋆t − θ⋆t−1)︸ ︷︷ ︸
=: z2

∥2]

≤
√

E1:t[∥θt|t−1 − θ⋆t−1∥2] +
√
E1:t[∥θ⋆t − θ⋆t−1∥2]︸ ︷︷ ︸

=: q

=
√

E1:t−1[∥ω +Φθt−1|t−1 − θ⋆t−1∥2] + q

=
√

E1:t−1[∥Φ(θt−1|t−1 − θ⋆t−1)︸ ︷︷ ︸
=: z1

+ω + (Φ− Id)θ⋆t−1︸ ︷︷ ︸
=: z2

∥2] + q

≤
√

E1:t−1[∥Φ(θt−1|t−1 − θ⋆t−1)∥2] + q +
√
E1:t−1[∥ ω︸︷︷︸

=: z1

+(Φ− Id)θ⋆t−1︸ ︷︷ ︸
=: z2

∥2]

≤
√
E1:t−1

[
∥θt−1|t−1 − θ⋆t−1∥2Φ′Φ

]
+ q +

√
E1:t−1 [∥ω∥2] +

√
E1:t−1

[
∥(Φ− Id)θ⋆t−1∥2

]
≤

√
λmax(Φ′Φ) E1:t−1

[
∥θt−1|t−1 − θ⋆t−1∥2

]
+ q +

√
ω′ω +

√
E1:t−1

[
∥θ⋆t−1∥2(Φ−Id)′(Φ−Id)

]
= ∥Φ∥2

√
E1:t−1

[
∥θt−1|t−1 − θ⋆t−1∥2

]︸ ︷︷ ︸
=: RMSEt−1|t−1

+q + ∥ω∥+ ∥(Φ− Id)∥2
√

E1:t−1

[
∥θ⋆t−1∥2

]︸ ︷︷ ︸
≤ s

where we used Hölders inequality for random vectors with p = q = 2 in the first, second,

and third inequality. That is, for the probability space (Ω,F ,P), for 1 < p, q <∞ satisfy-

ing 1
p
+ 1

q
= 1, and for real- or complex-valued random vectors z1 and z2 on Ω, with i-th

components zi1 and zi2, respectively, Hölder’s inequality states:

E

[
n∑

i=1

∫
Ω

∣∣zi1(ω)zi2(ω)∣∣ dP
]
≤ E

[
n∑

i=1

∫
Ω

∣∣zi1(ω)zi2(ω)∣∣p dP

]1/p

E

[
n∑

i=1

∫
Ω

∣∣zi1(ω)zi2(ω)∣∣q dP

]1/q

Hence:

38



E[z′1z2] ≤ E[|z′1z2|] ≤
√

E[z′1z1][z
′
2z2] By Hölders inequality for random vectors.√

E[(z1 + z2)′(z1 + z2)] =
√

E[z′1z1] + E[z′2z2] + 2E[z′1z2]

≤
√

E[z′1z1] + E[z′2z2] + 2
√

E[z′1z1][z
′
2z2] =

√
(
√
E[z′1z1] +

√
E[z′2z2])

2

=
√

E[z′1z1] +
√

E[z′2z2]

Combining:

RMSEt|t ≤
√

µmax

µmin + 2α + α2

µmax︸ ︷︷ ︸
=: c

RMSEt|t−1 +

√√√√ σ2
max

µmin

µmin + 2α + α2

µmax︸ ︷︷ ︸
=: d

(27)

RMSEt|t−1 ≤ ∥Φ∥2︸ ︷︷ ︸
=: a

RMSEt−1|t−1 + q + ∥ω∥+ ∥(Id −Φ)∥2 s︸ ︷︷ ︸
=: b

(28)

Repeated substitution of the recursions (32) and (33) yields:

RMSEt|t ≤ ctat−1RMSE1|0 + d
t−1∑
i=0

(ca)i + bc
t−2∑
i=0

(ca)i

= ctat−1RMSE1|0 + d
1− (ca)t

1− ca
+ bc

1− (ca)t−1

1− ca
, ca ̸= 1

where use a geometric series result:
∑t

i=0 x
i = (1− xt+1) /(1 − x) for x ̸= 1. Moreover,

under the following condition, which we refer to as the contraction condition:

√
µmax

µmin + 2α + α2

µmax

∥Φ∥2 < 1 (29)

The sums converge as t → ∞, i.e. we can upper bound the long-run root mean squared

filtering error :

lim sup
t→∞

RMSEt|t ≤
σmax√
µmin

+
√
µmax [q + ∥ω∥+ ∥Φ− Id∥2 s]√

µmin + 2α + α2

µmax
−√µmax∥Φ∥2

. (30)

39



Next, we derive an upper bound on the long-run RMSE, and corresponding contraction

condition for the ESD filter under potential misspecification. Suppose Assumptions 1a, 2b

and 3 hold. Start with θt|t = θt|t, then subtract the true state θ⋆t on both sides, subtract

θt|t−1 − θt|t−1 from the right side, and pre-multiply both sides by P
1
2
t :

P
1
2
t (θt|t − θ⋆t ) = P

1
2
t (θt|t − θt|t−1 + θt|t−1 − θ⋆t )

Compute the quadratic norm on both sides, to obtain:

∥θt|t − θ∗t ∥2P = ∥θt|t − θt|t−1∥2P + ∥θt|t−1 − θ∗t ∥2P + 2⟨P (θt|t − θt|t−1),θt|t−1 − θ∗t ⟩

Substituting Pt(θt|t − θt|t−1) = ∇ℓ(yt | θt|t−1) and θt|t − θt|t−1 = P
−1
t ℓ(yt | θt|t−1) from the

ESD filter’s prediction step, and taking the with respect to the true state and observation

path until time t, we get:

E1:t[∥θt|t − θ⋆t ∥2Pt
]

= E1:t[∥P−1
t ∇ℓ(yt | θt|t−1)∥2Pt

] + E1:t[∥θt|t−1 − θ⋆t ∥2Pt
] + 2E1:t[⟨∇ℓ(yt | θt|t−1),θt|t−1 − θ⋆t ⟩]

= E1:t[∥∇ℓ(yt | θt|t−1)∥2P−1
t
] + E1:t[∥θt|t−1 − θ⋆t ∥2Pt

]− 2E1:t[⟨∇ℓ(yt | θt|t−1)−∇ℓ(yt | θ⋆t ),θ⋆t − θt|t−1⟩]

≤ E1:t[∥∇ℓ(yt | θt|t−1)∥2P−1
t
] + E1:t[∥θt|t−1 − θ⋆t ∥2Pt

]− 2αE1:t[∥θt|t−1 − θ⋆t ∥2]

Here, we used that E1:t[⟨θt|t−1− θ⋆t ,∇ℓ(yt | θ⋆t )⟩] = 0, as E1:t[∇ℓ(yt | θ⋆t )] = 0, by subtract-

ing it from the right side. In the last step, we used that the log-likelihood ℓ(yt | θ) is once

continuously differentiable and strongly concave in θ with parameter α (Assumption 2a).

After adding weight matrices and bounding the terms using the eigenvalues of the weight
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matrices, we get:

µmin E1:t[∥θt|t − θ⋆t ∥2]︸ ︷︷ ︸
=: MSEt|t

≤ E1:t[∥θt|t − θ⋆t ∥2Pt
]

≤ λmax(Pt − 2αId)︸ ︷︷ ︸
= µmax − 2α

E1:t[∥θt|t−1 − θ⋆t ∥2]︸ ︷︷ ︸
=: MSEt|t−1

+λmax(P
−1
t )︸ ︷︷ ︸

= 1
µmin

E1:t[∥∇ℓ(yt | θt|t−1)∥2]

Rewrite:

MSEt|t ≤
µmax − 2α

µmin

MSEt|t−1 +
E1:t[∥∇ℓ(yt | θt|t−1)∥2]

µ2
min

(31)

As we are interested in the root mean squared filtering errors over time, we twice use

√
z1 + z2 ≤

√
z1 +

√
z2, for non-negative scalar z1 and z2, subsequently Hölders inequality

for random vectors, and in the last inequality we use that the log-likelihood ℓ(yt | θ) is

once continuously differentiable and β-smooth in θ with parameter β (Assumption 2b) and

bounded information (Assumption 3), to obtain:

RMSEt|t

≤
√

µmax − 2α

µmin

RMSEt|t−1 +
1

µmin

√
E1:t[∥∇ℓ(yt | θt|t−1)∥2]

≤
√

µmax − 2α

µmin

RMSEt|t−1 +
1

µmin

(√
E1:t[∥∇ℓ(yt | θt|t−1)−∇ℓ(yt | θ⋆t )∥2] +

√
E1:t[∥∇ℓ(yt | θ⋆t )∥2]

)

≤
√

µmax − 2α

µmin

=: RMSEt|t−1 +
1

µmin

β
√

E1:t[∥θt|t−1 − θ⋆t ∥2]︸ ︷︷ ︸
RMSEt|t−1

+σmax


We note that the “(one-step) predicted RMSE” of the ESD filter is equivalent to that of
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the ISD filter, thus after combining, we get:

RMSEt|t ≤
(√

µmax − 2α

µmin

+
β

µmin

)
︸ ︷︷ ︸

=: c

RMSEt|t−1 +
σmax

µmin︸ ︷︷ ︸
=: d

(32)

RMSEt|t−1 ≤ ∥Φ∥2︸ ︷︷ ︸
=: a

RMSEt−1|t−1 + q + ∥ω∥+ ∥(Id −Φ)∥2 s︸ ︷︷ ︸
=: b

(33)

Repeated substitution of the recursions (32) and (33) yields:

RMSEt|t ≤ ctat−1RMSE1|0 + d
t−1∑
i=0

(ca)i + bc

t−2∑
i=0

(ca)i

= ctat−1RMSE1|0 + d
1− (ca)t

1− ca
+ bc

1− (ca)t−1

1− ca
, ca ̸= 1

where use a geometric series result:
∑t

i=0 x
i = (1− xt+1) /(1 − x) for x ̸= 1. Moreover,

under the following condition, which we refer to as the contraction condition:

(√
µmax − 2α

µmin

+
β

µmin

)
∥Φ∥2 < 1 (34)

The sums converge as t → ∞, i.e. we can upper bound the long-run root mean squared

filtering error :

lim sup
t→∞

RMSEt|t ≤
σmax√
µmin

+
(√

µmax − 2α + β√
µmin

)
[q + ∥ω∥+ ∥Φ− Id∥2 s]

√
µmin −

(√
µmax − 2α + β√

µmin

)
∥Φ∥2

. (35)

B Proof Corollary 1.1

Here, we present an upper bound on the long-run RMSE, and corresponding contraction

condition for the ISD filter under potential misspecification, when the penalty matrix is

a scalar multiple of the identity matrix. Suppose Assumptions 1a, 2a, and 3 hold. As

Pt = γId, this implies that µmin = µmax = γ. Then the contraction condition (29) can
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be simplified as follows:
√

γ

γ+2α+α2

γ

∥Φ∥2 < 1 ⇔
√

γ2

γ2+2αγ+α2∥Φ∥2 < 1 ⇔
√

γ2

(γ+α)2
∥Φ∥2 <

1⇔ γ
γ+α
∥Φ∥2 < 1. As we have imposed the penalty to be positive (γ > 0), the observation

log-density is assumed to be strongly concave (α > 0), the contraction condition is satisfied

for any non-explosive autoregressive matrix (∥Φ∥2 ≤ 1). For this choice of penalty matrix,

the upper bound on the long-run RMSE of the ISD filter (30) is minimal, and simplifies to:

lim sup
t→∞

RMSEt|t ≤
σmax + γ [q + ∥ω∥+ ∥Φ− Id∥2 s]

γ(1− ∥Φ∥2) + α
. (36)

For the RMSE bound and contraction condition of the ESD filter when Pt = γId, we

additionally assume β−smoothness of the observation log-density, i.e. Assumption 2b holds.

The contraction condition (34) simplifies to: (
√

γ−2α
γ

+ β
γ
)∥Φ∥2 < 1. For this choice of

penalty matrix, the upper bound on the long-run RMSE of the ESD filter (35) is minimal,

and simplifies to:

lim sup
t→∞

RMSEt|t ≤
σmax +

(√
γ2 − 2αγ + β

)
[q + ∥ω∥+ ∥Φ− Id∥2 s]

γ −
(√

γ2 − 2αγ + β
)
∥Φ∥2

. (37)

C Proof Theorem 2

Here, we derive an upper bound on the long-run RMSE, and corresponding contraction

condition for the ISD filter. Suppose now that next to Assumptions 2a and 3, now 1b

holds (instead of 1a), i.e. the model is correctly specified, and the state-transition equation

is linear and Gaussian with known coefficients:

θ†t = ω
† +Φ†θ†t−1 + ηt, ηt ∼ i.i.d. N(0,Q†), ρ(Φ†) ≤ 1, σ2

η := tr(Q†) <∞. (38)

We use the ISD filter, evaluated in the true = pseudo-true parameters, that is:

prediction step: θimt|t−1 = ω⋆ + Φ⋆ θimt−1|t−1, (39)

implicit-gradient update: θimt|t = θimt|t−1 + Ht∇ℓ(yt | θimt|t ). (40)
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The “(one-step) filtered MSE bound” is equivalent to that using Assumption 1a, i.e.:

E1:t[∥θt|t − θ⋆t ∥2]︸ ︷︷ ︸
=: MSEt|t

≤ µmax

µmin + 2α + α2

µmax︸ ︷︷ ︸
> 0, we can choose Pt s.t. this term < 1

E1:t[∥θt|t−1 − θ⋆t ∥2]︸ ︷︷ ︸
=: MSEt|t−1

+

σ2
max

µmin

µmin + 2α + α2

µmax︸ ︷︷ ︸
> 0

.

(41)

The “(one-step) predicted MSE bound”, is however different. To see this, we substitute

the prediction step (47) and implicit update step (48) in MSEt|t−1:

E1:t[∥θt|t − θ⋆t ∥2]︸ ︷︷ ︸
=: MSEt|t−1

= E1:t[∥Φ⋆(θt−1|t−1 − θ⋆t−1)− ηt∥2]

= E1:t−1[∥θt−1|t−1 − θ⋆t−1∥2Φ⋆′Φ⋆ ] + E1:t[∥ηt∥2]︸ ︷︷ ︸
= tr(Q†) =: σ2

η

−2E1:t[⟨Φ⋆(θt−1|t−1 − θ⋆t−1),ηt⟩]

≤ λmax(Φ
⋆′Φ⋆)︸ ︷︷ ︸

= ∥Φ⋆∥22

E1:t−1[∥θt−1|t−1 − θ⋆t−1∥2]︸ ︷︷ ︸
=:MSEt−1|t−1

+σ2
η.

where we have used that E1:t[⟨Φ⋆(θt−1|t−1 − θ⋆t−1),ηt⟩] = 0. Combining yields:

MSEt|t ≤
µmax

µmin + 2α + α2

µmax︸ ︷︷ ︸
=: c

MSEt|t−1 +

σ2
max

µmin

µmin + 2α + α2

µmax︸ ︷︷ ︸
=: d

(42)

MSEt|t−1 ≤ ∥Φ⋆∥22︸ ︷︷ ︸
=: a

MSEt−1|t−1 + σ2
η︸︷︷︸

=: b

(43)

Repeated substitution of the recursions (42) and (43) yields:

MSEt|t ≤ ctat−1MSE1|0 + d
t−1∑
i=0

(ca)i + bc
t−2∑
i=0

(ca)i

= ctat−1MSE1|0 + d
1− (ca)t

1− ca
+ bc

1− (ca)t−1

1− ca
, ca ̸= 1

where use a geometric series result:
∑t

i=0 x
i = (1− xt+1) /(1 − x) for x ̸= 1. Moreover,
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under the following condition, which we refer to as the contraction condition:

µmax

µmin + 2α + α2

µmax

∥Φ⋆∥22 < 1, (44)

the sums converge as t → ∞, i.e. we upper bound the long-run mean squared filtering

error :

lim sup
t→∞

MSEt|t ≤
σ2
max

µmin
+ µmaxσ

2
η

µmin + 2α + α2

µmax
− µmax∥Φ⋆∥2

. (45)

Next, we derive an upper bound on the long-run RMSE, and corresponding contraction

condition for the ESD filter. Suppose in addition to Assumptions 2b and 3, now Assumption

1b holds (instead of 1a), i.e. the model is correctly specified, and the state-transition

equation is linear and Gaussian with known coefficients:

θ†t = ω
† +Φ†θ†t−1 + ηt, ηt ∼ i.i.d. N(0,Q†), ρ(Φ†) ≤ 1, σ2

η := tr(Q†) <∞. (46)

We use the ESD filter, evaluated in the true = pseudo-true parameters, that is:

prediction step: θext|t−1 = ω⋆ + Φ⋆ θext−1|t−1, (47)

implicit-gradient update: θext|t = θext|t−1 + Ht∇ℓ(yt | θext|t). (48)

The “(one-step) filtered RMSE bound” is equivalent to that under Assumption 1a (mis-

specification) as both use the same implicit-gradient update (48):

RMSEt|t ≤
(√

µmax − 2α

µmin

+
δ

µmin

)
︸ ︷︷ ︸

=: c

RMSEt|t−1 +
σmax

µmin︸ ︷︷ ︸
=: d

. (49)

The “(one-step) predicted MSE bound” is equivalent to that using the ISD filter since both

types of filters use prediction step (47): MSEt|t−1 ≤ ∥Φ⋆∥22MSEt−1|t−1 + σ2
η. To obtain

the “(one-step) predicted RMSE bound”, we first take square roots on both sides and
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subsequently use that
√
z1 + z2 ≤

√
z1 +

√
z2 for non-negative scalars z1 and z2:

RMSEt|t−1 ≤ ∥Φ⋆∥2︸ ︷︷ ︸
=: a

RMSEt−1|t−1 + ση︸︷︷︸
=: b

(50)

Repeated substitution of the recursions (49) and (50) yields:

RMSEt|t ≤ ctat−1RMSE1|0 + d

t−1∑
i=0

(ca)i + bc

t−2∑
i=0

(ca)i

= ctat−1RMSE1|0 + d
1− (ca)t

1− ca
+ bc

1− (ca)t−1

1− ca
, ca ̸= 1

where use a geometric series result:
∑t

i=0 x
i = (1− xt+1) /(1 − x) for x ̸= 1. Moreover,

under the following condition, which we refer to as the contraction condition:

(√
µmax − 2α

µmin

+
δ

µmin

)
∥Φ⋆∥2 < 1 (51)

The sums converge as t → ∞, i.e. we can upper bound the long-run root mean squared

filtering error :

lim sup
t→∞

RMSEt|t ≤
σmax√
µmin

+ ση

(√
µmax − 2α + β√

µmin

)
√
µmin −

(√
µmax − 2α + β√

µmin

)
∥Φ⋆∥2

. (52)

D Proof Example 3

Here, we present an upper bound on the long-run MSE, and corresponding contraction

condition for the ISD filter under Assumption 1b (correct specification), when the penalty

matrix is a scalar multiple of the identity matrix. Suppose additionally Assumptions 1a

and 3 hold. As Pt = γId, this implies that µmin = µmax = γ. Then the contraction

condition (44) can be simplified as follows: γ

γ+2α+α2

γ

∥Φ⋆∥22 < 1 ⇔ γ2

(γ+α)2
∥Φ⋆∥22 < 1. Now,

the contraction condition is always satisfied, since Φ⋆ = Φ† with ρ(Φ†) ≤ 1 (Assumption
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1b). For this choice of penalty matrix, the upper bound on the long-run MSE of the ISD

filter (45) is minimal, and simplifies to:

lim sup
t→∞

MSEt|t ≤
σ2
max + σ2

ηγ
2

α2 + 2αγ + (1− ∥Φ⋆∥22)γ
. (53)

Now, suppose the data is generated by a local level model: yt = θ⋆t + εt, θ
⋆
t+1 = θ⋆t + ηt, εt ∼

NID(0, σ2
ε), ηt ∼ NID(0, σ2

η), where εt and ηt are mutually independent for all t, such

that P = γ.

Then σ2
max =

1
σ2
ϵ
and α = 1

σ2
ϵ
. Substituting these in the RMSE bound (53), we obtain:

lim sup
t→∞

MSEt|t ≤
σ2
ε + σ2

ησ
4
εγ

2

2γσ2
ε + 1

. (54)

Which is exactly minimized for a learning rate that is equal to the steady state Kalman

covariance for the local level model.

For the RMSE bound and contraction condition of the ESD filter when Pt = γId, we

additionally assume β−smoothness of the observation log-density, i.e. Assumption 2b holds.

The contraction condition (51) simplifies to: (
√

γ−2α
γ

+ β
γ
)∥Φ⋆∥2 < 1, which is not always

satisfied, in contrast to the ISD filter. For this choice of penalty matrix, the upper bound

on the long-run RMSE of the ESD filter (52) is minimal, and simplifies to:

lim sup
t→∞

RMSEt|t ≤
σmax + ση

(√
γ2 − 2αγ + β

)
γ −

(√
γ2 − 2αγ + β

)
∥Φ⋆∥2

. (55)

E Further simulation results
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(a) ESD (ζ = 0) filtered {θ} path.
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(b) ESD (ζ = 1/2) filtered {θ} path.
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(c) ESD (ζ = 0) filtered {exp(θ)} path.
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(d) ESD (ζ = 1/2) filtered {exp(θ)} path.

Figure 4: ESD = explicit score-driven. Zooming in on the filtered path of one true state {θ†t}

(cyan) based on the counts of a Poisson (grey dotted line) with state variation ση = 0.39

and state parameters ω† = −0.01 and ϕ† = 0.98 using an ESD filter with (a) identity

scaling (ζ = 0), and (b) inverse square root Fisher scaling (ζ = 1/2). Figures (c) and (d)

take instead the exponent of the true and filtered states.
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