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Abstract

Cho and Kreps (1987) proposed a series of criteria for selecting equilibria in signaling games.

Their procedure for applying each criterion was to identify all implausible sender types associated

with a given off-path message, then look for sequential equilibria assigning probability zero to ev-

ery implausible type. This paper proposes a different selection procedure for each given selection

criterion: the iterated exclusion of implausible types. We show that this procedure has more selec-

tion power, is easier to implement, is independent of the exclusion order, and selects equilibrium

outcomes with higher internal consistency. We prove that sequentially stable outcomes, which

exist in all finite signaling games, pass the iterated exclusion procedure. Moreover, we show how

the procedure can be used to establish whether or not a given outcome is sequentially stable.
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1 Introduction

Since the seminal paper of Spence (1973), the study of signaling games has been central to informa-

tion economics, with applications in settings such as job markets, insurance markets, and bargaining.

While signaling games are often simple, their study is complicated by their high equilibrium multiplic-

ity, which makes it necessary to narrow predictions through equilibrium selection. In the literature,

this is most commonly done using the selection criteria introduced by Cho and Kreps (1987)—namely,

from weakest to strongest, the Intuitive Criterion (IC), D1, D2, and Never a Weak Best Response

(NWBR).1 These “classical” selection criteria have played a major role in the analysis of signaling

games and are often used to determine theoretical predictions in applications.2

Cho and Kreps proposed to apply each selection criterion as follows. Fix a sequential outcome

ω and an off-path message m; then identify all sender types t for whom sending m is implausible

according to the criterion. (For example, the IC says that if the type-t sender obtains a strictly lower

payoff from sending m than from behaving as specified by the outcomeω, independently of the sender’s

response to m, then m is implausible for type t.) After identifying all implausible pairs (t, m), check

whether there is a sequential equilibrium with outcome ω in which, after observing m, the receiver

assigns positive probability only to plausible types. The outcome ω passes the selection criterion if

and only if such a sequential equilibrium exists.

While this procedure ensures a certain degree of internal consistency, it fails to exclude some

outcomes that are fragile to repeated application of the logic described. Indeed, an outcome passing

a given criterion may be supported only by sequential equilibria in which, after observing an off-path

message m, the receiver assigns positive probability to types who cannot benefit from choosing m for

any best response of the receiver to beliefs assigning probability zero to the types pruned out by the

criterion. It would be natural for such types to be pruned out as well. To ensure full consistency, one

would have to prune types iteratively until no further types could be pruned out, and then require

that supporting sequential equilibria assign probability zero to all pruned types.

In this paper we introduce a selection method based on the iterative application of the classical

selection criteria, with two goals in mind: (1) to select “fully consistent” equilibrium outcomes (i.e.,

outcomes immune to the above criticism), and (2) to do so in a simple and intuitive manner. For each

1Banks and Sobel (1987) proposed different selection methods, called Divinity and Universal Divinity, which are iterative
but significantly more difficult to use. Here we focus on generalizing the simpler methodology of Cho and Kreps (1987).

2Although the criteria of Cho and Kreps (1987) have proved to be the most popular, other criteria have also been proposed;
see the literature review.
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criterion X ∈{IC,D1, D2,NWBR}, we define a procedure called iterated exclusion through X (IEX ),

which works as follows. Fix a sequential outcomeω and an off-path message m. In each step, there is

a standing set of pairs that were excluded in the previous steps. The criterion X is used to exclude the

next type–message pair. (For example, if X=IC, then the pair (t, m) is excluded if the type-t sender

obtains a strictly lower payoff from sending m than from behaving as specified by ω, for all of the

receiver’s best responses to beliefs assigning probability zero to the previously excluded types.) The

outcomeω passes IEX if, for every m, after the exclusion of all implausible pairs, there is a sequential

equilibrium with outcome ω in which, after observing m, the receiver assigns positive probability

only to non-excluded types.3 We show that if, at some step in the iteration, there is no sequential

equilibrium with outcome ω in which, after observing m, the receiver assigns probability zero to all

currently excluded types, then ω fails IEX . Hence it may not be necessary to run IEX exhaustively to

assess whether an outcome passes.

We find that IEX has desirable properties for all criteria X . First, it is stronger than the classical

selection procedure: If an outcome passes IEX , then it passes the procedure of Cho and Kreps (1987)

for the criterion X , while the converse may not be true. Second, the order of exclusion is irrelevant to

the procedure’s output. This implies that one can exclude multiple pairs in each step, but one need not

exclude all currently implausible types before moving to the next step. Third, because it is iterative

and the results are independent of the order of exclusion, IEX is not subject to certain criticisms

applied to the classical procedure, in which two pairs may simultaneously exclude each other—that

is, one pair may be excluded owing to the presence of the second, while the second is excluded owing

to the presence of the first. Finally, each IEX is easier to apply than the classical procedure X , because,

as the set of non-excluded types shrinks after each step, the set of the receiver’s responses to beliefs

assigning positive probability only to non-excluded types shrinks as well, making it easier to verify

whether each remaining type should be excluded.

In the second part of the paper, we study the relationship between iterated exclusion and sequen-

tially stable outcomes (Dilmé, 2023b). We first prove that any sequentially stable outcome passes

every IEX . Hence, since every signaling game has a sequentially stable outcome, there is an outcome

passing each IEX . Furthermore, if there is a unique outcome passing IEX for some X , then such an

outcome is both sequentially stable and strategically stable (Kohlberg and Mertens, 1986). We provide

two results characterizing the sequential stability of outcomes passing IEX .

3If all types are excluded at some step,ω passes IEX if there is a sequential equilibrium where the receiver assigns probability
one to the type pruned out in the last iteration.
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Overall, we see iterated exclusion as a convenient and effective tool for equilibrium selection in

signaling games, encompassing and strengthening the classical selection criteria. We hope it will allow

a more consistent equilibrium selection across applications.

1.1 Literature review

Ever since their introduction by Spence (1973), signaling games have been acknowledged to have very

high equilibrium multiplicity, which limits their ability to make predictions in applications. Indeed,

most signaling games feature not only a plethora of Nash equilibria (Nash, 1950), but also large sets of

equilibria satisfying various forms of sequential rationality, such as subgame perfect equilibria (Selten,

1965), trembling-hand perfect equilibria (Selten, 1975), or sequential equilibria (Kreps and Wilson,

1982).

The dominant approach to resolving this problem is via equilibrium selection criteria tailored to

signaling games.4 Most applications use the selection criteria proposed by Cho and Kreps (1987),

which are based on ruling out certain equilibria by imposing formal restrictions on off-path beliefs.5

Our work takes these criteria a step further by applying them iteratively; this leads to a stronger

selection method, which we also argue is easier to use.

Some of the equilibrium refinements in the literature are aimed at eliminating outcomes that are

not strategically stable (Kohlberg and Mertens, 1986; see the discussions in Cho and Kreps, 1987,

and Banks and Sobel, 1987). In this paper, however, we focus on linking our iterated exclusion

procedure to sequential stability (Dilmé, 2023b) rather than to strategic stability. This is because

sequential stability and iterated exclusion both apply to outcomes (whereas strategic stability applies

to connected sets of Nash equilibria), and sequentially stable outcomes admit a simple characterization

in signaling games. For generic payoffs, sequential stability coincides with strategic stability.

The rest of the paper is organized as follows. In Section 2, we define our signaling game and

related notation. In Section 3 we briefly recall the four classical selection criteria, then define the

iterated exclusion process and describe how to use it. Section 4 describes the connection between

iterated exclusion and sequential stability. Finally, Appendix A contains the proofs of the results.

4This approach is also widespread in the cheap-talk literature, since communication games are often degenerate signaling
games. Works introducing selection criteria for communication games include Farrell (1993), Chen et al. (2008), Kartik
(2009), and Dilmé (2023a).

5See McLennan (1985) and Cho (1987) for a similar approach in extensive-form games. Other examples of selection criteria
in signaling games can be found in Banks and Sobel (1987), Mailath et al. (1993), and Carlsson and Dasgupta (1997).
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2 Signaling games

In this section we define our signaling game, which coincides with that of Cho and Kreps (1987), and

provide some notation. We will keep the signaling game fixed throughout the paper.

A signaling game proceeds as follows. First, nature chooses a type t∈T with distributionµ0∈∆(T )

having full support. After observing t, the sender chooses a message m∈Mt . Finally, having observed

the message but not the type, the receiver chooses a response r∈Rm. We assume that T , M :=∪t∈T Mt ,

and R:=∪m∈M Rm are finite. We let Tm⊂T be the set of types for which the sender can send message

m. We let ut(m, r) and ur(t, m, r) denote the payoffs of the sender and the receiver, respectively. For a

given outcomeω (i.e., a distribution over terminal histories), we let ut(ω) denote the sender’s payoff

conditional on the realized type being t.

A strategy σ for the sender assigns, to each t∈T , some mixed choice of messages σt∈∆(Mt). A

strategy ρ for the receiver assigns, to each m∈M , a mixed reply ρm∈∆(Rm)=:Rm.

Sequential equilibria

Following Cho and Kreps (1987), we base our equilibrium selection process on the concept of sequen-

tial equilibrium (Kreps and Wilson, 1982), which we now define.

A belief system µ assigns a posterior µm∈∆(Tm) to each m∈M . For a given belief system µ and

message m, we let BRm(µm)⊂Rm be the set of (mixed) best responses of the receiver to m and belief

µm. We let BRm :=∪µm∈∆(Tm)BRm(µm) be the set of all best responses of the receiver, across all beliefs.

Finally, for each T ′⊂Tm, we let BRm(T ′):=∪µm∈∆(T ′)BRm(µm) be the set of all best responses of the

receiver to beliefs with support in T ′.

An assessment is a pair comprising a strategy profile and a belief system. A sequential equilibrium

is an assessment (σ,ρ,µ) such that (i) the sender best-responds to the receiver’s strategy (i.e., σ

is optimal given ρ), (ii) the receiver is sequentially rational given the posterior (i.e., ρm∈BRm(µm)

for all m), and (iii) the assessment is consistent (i.e., each µm is the limit of the type distribution

conditional on m through a sequence of fully mixed sender’s strategies). The following result states

that, in signaling games, consistency is equivalent to the on-path Bayes rule.

Lemma 2.1. An assessment is consistent if and only if it satisfies the on-path Bayes rule.

Lemma 2.1 establishes that, in signaling games, consistency does not dictate any restriction on off-

path beliefs. The implication is that focusing on sequential equilibria (as opposed to Nash equilibria,
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for example) imposes a minimal plausibility requirement: that, off path, the receiver best-responds

to some beliefs about the sender’s types. For future convenience, we let SEω denote the set of all

sequential equilibria with a given outcome ω, and for all m∈M and T ′⊂Tm, we let

SEω,m(T
′):=

�

(σ,ρ,µ)∈SEω
�

�µm(t)=0 ∀t∈Tm\T ′
	

.

We say that ω is a sequential outcome if there is a sequential equilibrium with outcome ω (i.e., if

SEω 6=;).

3 Selection criteria and iterated exclusion

In this section, we first present the classical selection criteria of Cho and Kreps (1987), then introduce

our procedure for iterated exclusion through each criterion, and finally provide some examples.

3.1 The Intuitive Criterion, D1, D2, and Never a Weak Best Response

Here we briefly recall the classical criteria of Cho and Kreps (1987): the Intuitive Criterion (IC), D1,

D2, and Never a Weak Best Response (NWBR). We fix an outcomeω and an off-path message m (note

that, unlike Cho and Kreps, we do not require thatω is first verified to be a sequential outcome before

applying our method). For notational convenience, we assume that Tm=T , and to make the analysis

non-trivial, we assume that |Tm|≥2. For each T ′⊂T with T ′ 6=; and each t∈T , we define

Dt(T
′):=

�

ρm∈BRm(T ′)
�

�ut(m,ρm)>ut(ω)
	

and

D0
t (T

′):=
�

ρm∈BRm(T ′)
�

�ut(m,ρm)=ut(ω)
	

.

Note that, unlike Cho and Kreps, we allow these sets to depend on a set of types; this will be useful

when we analyze the iterated exclusion procedures introduced in Section 3.2.

We now define four statements about T ′⊂T and t∈T , one for each criterion:

ICt(T
′) holds if Dt(T

′)∪D0
t (T

′)=; ,

D1t(T
′) holds if Dt(T

′)∪D0
t (T

′)⊂Dt ′(T
′) for some type t ′∈T ,

D2t(T
′) holds if Dt(T

′)∪D0
t (T

′)⊂∪t ′∈T\{t}Dt ′(T
′) ,

NWBRt(T
′) holds if Dt(T

′)∪D0
t (T

′)⊂∪t ′∈T Dt ′(T
′) .
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As explained in the introduction, Cho and Kreps (1987) propose the following selection method for

each criterion X ∈{IC, D1,D2, NWBR}. In Step 1, all implausible types (according to criterion X ) are

pruned out.6 That is, Step 1 is to identify the set of plausible types T̂ , which is the complement of the

set of implausible types

T\T̂ :={ t∈T |X t(T ) holds } .

In Step 2, one checks whether there is a sequential equilibrium assigning probability zero to all pruned

types (i.e., those in T\T̂): If yes, ω passes the criterion X ; if not, it fails it.

Observations

We now make several observations about the classical selection criteria.

First, note that our version of the IC is slightly different from that of Cho and Kreps (1987).

We have made this alteration for consistency, that is, to put the IC on the same footing as the other

selection criteria. Cho and Kreps, in their selection procedure for the IC, do not use Step 2 as described

above; instead, they say that an outcome fails IC if there is a type who strictly profits from deviating

to m for all receiver best responses to beliefs assigning zero probability to pruned types. Our version

has slightly greater selection power, as fewer outcomes pass it.

Second, note that if Dt(T )∪D0
t (T )=; for all t∈T , then each of the criteria IC, D1, D2, and NWBR

prunes out all types; thus, no sequential equilibrium assigns probability zero to all pruned types.

Still, it seems clear that the outcome should not be deemed implausible in this eventuality. Cho

and Sobel (1990) address this issue by saying that an outcome survives criterion D1 if one can find

a corresponding sequential equilibrium where, “for all off-the-equilibrium-path signals m, µm(t)=0

whenever Dt(T )∪D0
t (T )⊂Dt ′(T ) holds for some t ′ such that Dt ′(T ) 6=;” (p. 385). Similar fixes can

be used for the other criteria. As we shall see, our iterated exclusion procedure will also sometimes

prune out all types.

Third, note that our definition of NWBRt(T ′) is not the same as the one in Cho and Kreps (1987).

6Given that we undertake our analysis for a fixed ω and m, with our procedure iteratively reducing the set of types for
whom sending m is plausible, we will speak of pruning or excluding types t, rather than type–message pairs (t, m) as in
Cho and Kreps (1987).
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However, the formulations are equivalent: It is clear that for all T ′ and t,

Dt(T
′)∪D0

t (T
′)⊂∪t ′∈T Dt ′(T

′) if and only if D0
t (T

′)⊂∪t ′∈T\{t}Dt ′(T
′) . (3.1)

We believe that our definition of NWBRt(T ′) elucidates the connection between the different criteria,

and it also makes obvious their relative strength: Visual inspection shows that, for all T ′ and t,

ICt(T
′) holds ⇒ D1t(T

′) holds ⇒ D2t(T
′) holds ⇒ NWBRt(T

′) holds . (3.2)

That is, NWBR prunes out more types than D2, which prunes out more types than D1, which prunes

out more types than IC (Grossman and Perry, 1986, Banks and Sobel, 1987, and Cho and Kreps, 1987,

show that the reverse implications do not hold in general). Often, however, the pruning out of types

with weaker criteria is technically less involved.

Finally, we present a generalization of a result that is stated but not formally proven by Cho and

Kreps (1987), and that gives the NWBR criterion its name.

Lemma 3.1. For all t and T ′, NWBRt(T ′) holds if and only if there is no sequential equilibrium in

SEω,m(T ′) where m is a weak best response for t.

The intuition for Lemma 3.1 is that, if there is a sequential equilibrium (σ,ρ,µ)∈SEω,m(T ′)where

ρm∈D0
t (T

′) (so m is a best response for t), then it must be that ρm /∈∪t ′ 6=t Dt ′(T ′), since otherwise

there would be a type t ′∈T who would strictly benefit from choosing m. Conversely, if D0
t (T

′) 6⊂

∪t ′ 6=t Dt ′(T ′), one can construct a sequential equilibrium with outcome ω where m is a best response

for t. Note that our result applies to any T ′⊂T , not just T ′=T .

3.2 Iterated exclusion through a selection criterion

The motivation for using the classical selection criteria is that they ensure some degree of internal

consistency: An outcome passes a given criterion if it is supported by a sequential equilibrium as-

signing probability zero, after each off-path message, to all types who cannot benefit from deviating

to that message. However, the sequential equilibrium may fail a further consistency requirement: It

may assign positive probability to some types who cannot benefit from deviating under any plausible

beliefs of the receiver (i.e., any beliefs assigning a positive probability only to non-pruned types); see

Example 3.1.

In this section we present an alternative selection method, based on the iterative application of the
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classical selection criteria, which will be shown to ensure full consistency. For each X ∈{IC,D1, D2,NWBR},

we define a procedure called iterated exclusion through criterion X (“IEX ” for short).7 Intuitively, for a

given outcome and message, the IEX process iteratively excludes types that are implausible according

to criterion X , given the current set of excluded types. The formal definition is as follows:

Iterated exclusion through criterion X (IEX ). Initialize T1=T . Then, in each step n≥1, if

X t(Tn) holds for some t∈Tn, set Tn+1 :=Tn\{t}. Otherwise, set Tn+1 :=Tn.

This iterative process is aimed at identifying whether ω is the outcome of some sequential equi-

librium with reasonable receiver beliefs. Roughly, it works as follows. In the first iteration, we rule

out some type t1 that is implausible given m, according to the selection criterion X ; thus, we set

T1=T\{t1}. In the second iteration, we exclude a type t2 that is implausible, according to X , given

that t1 has already been excluded; thus, T2=T1\{t1}. (For example, if X=IC, then t2 is excluded if,

for all of the receiver’s best responses to beliefs assigning probability zero to t1, type t2 strictly loses

from deviating to m.) In the third iteration, we exclude a type t3 that is implausible given that t1 and

t2 have both been excluded, and so on.

Note that IEX converges in at most |T | steps. Note also that there are potentially different “imple-

mentations” of IEX , since, if there are two types that could be excluded at a given step, the procedure

does not specify which one to exclude first. We now establish that once IEX has converged (i.e., when

no more types can be excluded), the set of excluded types is independent of the order of exclusion.

Proposition 3.1. For all X , the set of types excluded by applying IEX is independent of the order of

exclusion.

From now on, we denote by T X
ω,m the set of types not excluded after running any implementation

of IEX . The fact that T X
ω,m is independent of the order of exclusion is important for several reasons.

First, it implies that unlike some procedures, such as the iterated elimination of weakly dominated

strategies, IEX produces the same results regardless of how it is implemented. Second, it allows

one to exclude a set of types, instead of a single type, in each round; this is especially useful in

large games.8 The IEX procedure is therefore stronger than applying criterion X à la Cho and Kreps

(1987) (see Examples 3.1 and 3.2). It is also easier to use: Since Tn shrinks as types get excluded,

7If, for example, X=D1, we say “iterated exclusion through D1” (or IED1), and if X=NWBR, we abuse language and say
“iterated exclusion of never-a-weak-best-response” (or IENWBR).

8The results of IEX are also independent of the order in which sets of types are excluded, but this does not follow directly
from Proposition 3.1. Rather, it follows from an intermediate result in the proof (Lemma A.1) establishing that if a given
type t can be excluded in a given step n of an implementation of IEX , then t can be excluded in all the steps that follow n.
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verifying whether X t(Tn) holds becomes easier at each step. Finally, Proposition 3.1 permits us to

define a canonical implementation of IEX in which, at each step n, all types for whom X t(Tn) holds

are excluded.9 Under the canonical implementation of IEX , the first step of our procedure coincides

with Step 1 in the selection method of Cho and Kreps for criterion X .

Having defined IEX as a procedure for excluding types, we can now state what it means for an

outcome to pass or fail IEX :

Definition 3.1. For all X , we say that ω passes IEX if, for all off-path m, either (i) SEω,m(T X
ω,m) 6=;, or

(ii) T X
ω,m=; and, letting t̂ be the last type excluded through some implementation of IEX , we have

SEω,m({ t̂}) 6=;. Otherwise, we say that ω fails IEX .

Let us shed some light on this definition. If T X
ω,m 6=; and SEω,m(T X

ω,m) 6=;, then ω is supported by

a sequential equilibrium that assigns a positive probability only to types not excluded by criterion X ,

even after the criterion has been applied iteratively as many times as possible; hence IEX does not rule

outω (for m). If T X
ω,m 6=; and SEω,m(T X

ω,m)=;, then there is no such sequential equilibrium supporting

ω; hence IEX rules out ω. Finally, if T X
ω,m=;, then ω is said to pass if, under some implementation

of IEX , there was a sequential equilibrium supporting ω before the last type was excluded. We note

that if T X
ω,m=;, then, by the proof Proposition 3.1, the property “SEω,m({ t̂}) 6=; for the last excluded

type t̂” is independent of the order of exclusion in IEX ; in other words, if ω passes (under condition

(ii) of Definition 3.1) for some implementation of IEX , then it passes for all implementations of IEX .

(The proof of this result is highly non-trivial, because different implementations of IEX may entail

the exclusion of types corresponding to significantly different sets of sequential equilibria in each

step.) Condition (ii) of Definition 3.1 can thus be interpreted as saying that ω is supported by a

sequential equilibrium assigning a positive probability only to non-excluded types at every stage of

every implementation of IEX . In fact, it is easy to see that ω passes IEX and T X
ω,m=; only if there is

a sequential equilibrium where all types strictly lose from sending m (but note that the existence of

one such equilibrium is not sufficient for ω to pass IEX for m).

Our motivation for using IEX instead of X is to find internally consistent sequential equilibria

supporting a given outcome. Consider, for example, the criterion X=IC, which requires that the

receiver assigns probability zero to the types who cannot possibly gain from choosing m if the receiver

chooses a best response to some belief. Clearly, if m is chosen, then the receiver’s beliefs should assign

9A disadvantage of the canonical implementation of IENWBR is that, in each step, one needs to exclude all types for whom
m is never a weak best response; this can be difficult in some games. Thanks to Proposition 3.1, however, one can use a
different implementation and obtain the same results.
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probability zero to the initially pruned types, and the receiver should best-respond accordingly. If

there is a type that cannot possibly gain from choosing m under these circumstances, it makes sense to

exclude this type as well. It is easy to see that T X
ω,m is the biggest set T ′ satisfying the property “t∈T ′ if

and only if type t can (weakly) benefit from choosing m for some best response of the receiver to some

belief with support in T ′.” Hence, if T X
ω,m 6=;, there is an internally consistent sequential equilibrium

with outcome ω when SEω,m(T X
ω,m) 6=;, while there is no such equilibrium when SEω,m(T X

ω,m)=;.
10

Remark 3.1 (Divinity and universal divinity). Banks and Sobel (1987) define two selection criteria,

called divinity and universal divinity, which, similarly to our IEX , consist in the iterated exclusion

of types. However, these criteria are difficult to apply, which is why the criteria of Cho and Kreps

(1987) have been more widely used. As Cho and Kreps point out, divinity and universal divinity are

roughly based on requiring D2 and that, if Dt(T )∪D0
t (T ) is nonempty, then µm(t)≥µ0(t). Banks and

Sobel prove that divine equilibrium outcomes exist for all games, and universally divine equilibrium

outcomes exist for generic signaling games.

Early assessment that ω fails IEX

The following result establishes that IEX need not be applied exhaustively until there are no more

excludable types: If, in some step, there is no sequential equilibrium with outcome ω where the

receiver assigns probability zero to the currently excluded types, then ω fails IEX .

Proposition 3.2. For all X , if Tn 6=; and SEω,m(Tn)=; at some step of an implementation of IEX , then

ω fails IEX .

Proposition 3.2 gives researchers a convenient way to assess the plausibility of an outcome without

having to apply IEX exhaustively. Broadly, of course, IEX is rendered easier to use by the fact that one

need not check that SEω,m(Tn)=; at each step n. However, if at some step the researcher intuits that

ω will fail IEX , then they can check whether SEω,m(Tn)=;; if so, it follows that ω fails.

Why exclusion (and not elimination)?

Some equilibrium selection procedures studied in the literature consist in recursively eliminating ac-

tions from the game at each step; that is, when an action is considered “implausible”, the analysis

10If T X
ω,m=;, then ω passes IEX if there is a sequential equilibrium that assigns a positive probability to a single type and

such that no type wants to deviate; otherwise, ω fails IEX .

11



moves to a simpler game where this action and the histories following it are not present. The ad-

vantage of such procedures is that the plausibility of equilibria is easier to evaluate in the simpler

game. This is the case, for example, in the iterated elimination of weakly/strictly dominated strate-

gies (Bernheim, 1984, and Pearce, 1984), and in elimination through NWBR (Kohlberg and Mertens,

1986, and Dilmé, 2023b). We now briefly discuss the advantage of “excluding” types (i.e., keeping

them in the game, but looking for the receiver’s best responses to beliefs assigning them probability

zero) instead of “eliminating” them (removing them from the game).

In each step n of our recursive procedure, given the current set of non-excluded types Tn, two sets

determine procedure continuation: the set of the receiver’s best responses BRm(Tn) (which determines

Dt(Tn) and D0
t (Tn) for each t), and the set of sequential equilibria SEω,m(Tn) (which determines the

plausibility of the outcome). When types are excluded (and not eliminated), both sets decrease as n

increases; that is, BRm(Tn+1)⊂BRm(Tn) and SEω,m(Tn+1)⊂SEω,m(Tn). On the other hand, if types are

eliminated, then the set of receiver best responses still decreases at each step, but the set of sequential

equilibria may not.11 In that case, an outcome may pass a criterion thanks to a sequential equilibrium

that is supported through strategies that are not “reasonable” in the original game (see Example 3.4),

or the assessment of a criterion may depend on the order of elimination (see Example 3.5).

3.3 Examples

Example 3.1. We illustrate that IEIC has strictly more selection power than IC, by analyzing a simple

example. Consider the game in Table 1, with x=2 and y=−1.12 Let ωm′ indicate the outcome

where all types choose m′ for sure. Note that, after m, 1◦ r1 is a best response to 1◦ t1, and that

ut1
(m, 1◦ r1)=1>ut1

(ωm′), so ICt1
(T ) does not hold. Similarly, 1◦ r3 is a best response to 1◦ t3 and

we have ut2
(m, 1◦ r3)=1>ut2

(ωm′), so ICt2
(T ) does not hold. Since, for type t3, sending m is strictly

dominated by sending m′, ICt3
(T ) holds, so IC only prunes out t3. Note that ωm′ is the outcome of a

sequential equilibrium where ρm=1◦ r2 and µm=1◦ t2; therefore,ωm′ passes IC. But this equilibrium

is not intuitive: it is sustained by the belief that m is sent by t2, who strictly loses from sending m for

any best response of the receiver to beliefs assigning probability 0 to the pruned type t3.

11While there are fewer receiver best responses to beliefs in∆(Tn+1) than to beliefs in∆(Tn) (because Tn+1⊂Tn), a sequential
equilibrium needs to satisfy fewer incentive constraints in the game where only types in Tn+1 can send m than in the game
where only types in Tn can send m.

12The notation we use is common in the literature: Table 1 describes a game containing three types, T={t1, t2, t3}, and
two messages, M={m, m′}. The receiver has one reply to m′ (that is, Rm′={r0}) and three replies to m (that is, Rm=
{r1, r2, r3}). For each combination of type and response, the table gives the sender’s payoff (first number) and the receiver’s
payoff (second number).

12



m′ r0

t1 0,0
t2 0,0
t3 0,0

m r1 r2 r3

t1 1,1 −2,−x −1,−1
t2 −2,−1 y ,x 2,−2
t3 −1, 0 −1,1 −1,2

Table 1: Payoffs from the games in Examples 3.1 and and 3.5.

Next, continuing the IEIC process, observe that if the receiver’s belief assigns probability zero to

t3, then r3 is dominated by both r1 and r2, and when the receiver plays r3 with probability zero, type

t2 obtains a strictly lower payoff from playing m than from playing m′. Hence, ICt2
({t1, t2}) holds.

Also, ICt1
({t1, t2}) fails to hold, for the same reason as before. Therefore, t2 is excluded in the second

round. It is clear that there is no sequential equilibrium where the sender assigns probability zero to

{t2, t3}; hence, ωm′ fails IEIC.13

Example 3.2. We now illustrate that IENWBR has strictly more selection power than NWBR. Consider

a signaling game where T={1, ..., 10}, M={m, m′}, Rm′={0}, and Rm={1, ..., 10}. All types obtain

0 from choosing message m′ (necessarily followed by the receiver choosing r=0). Assume that if the

sender sends m, then the receiver wants to match the sender’s type, while each type t benefits from

choosing m only if the sender choice is close to t+1. More concretely, we assume

ur(m, r)=Ir=t and ut(m, r)=2−(t+1− r)2 .

In this game, the outcome ωm′ where all types choose m′ passes NWBR. Indeed, note that type t=10

can be pruned out: if she is indifferent between choosing m or m′, then type t=9 is strictly willing to

choose m. Note then that there are sequential equilibria (σ,ρ,µ)with outcomeωm′ where µm(10)=0

(for example, there is one where µm(t)=ρ(r)=1/9 for all t, r∈{1, ..., 9}). Hence,ωm′ passes NWBR.

Once the receiver considers type 10 implausible, the second iteration pf IENWBR becomes very

similar to the first. The previous reasoning can now be used to prune out type 9: If ρ is a best

response to a posterior µm with µm(10)=0, then ρ(10)=0, and so we have that if such ρ makes type

9 indifferent between m and m′, then type 8 is strictly willing to choose m. The same logic is applied

to prune out types 8, 7, ..., until only type 1 is left (type 1 cannot be further pruned out). Is then there

13Like Cho and Kreps (1987), we do not wish to rely too much on “speeches” to defend our selection criteria. Still, for this
example, one could think of a deviation by the sender as implicitly making the following speech: “I am sending message
m to convince you I am type t1. Indeed, I would never wish to send m if I were t3, as this would give me a lower payoff
than sending m′, independently of what you do. Hence, since r3 is a dominated strategy for you once you rule out t3, you
should deduce that I am not type t2 either, because if I were, both r1 and r2 would give me a payoff strictly lower than if
I had sent m′.”

13
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Figure 1: Figure corresponding to Example 3.3. Each ut is short for ut(m, ·).

a sequential equilibrium where µm(1)=1? The answer is no: the receiver best responds to µm(1)=1

by choosing r=1, but then type 1 has a strict incentive to choose m. Hence, ωm′ fails IENWBR.

Example 3.3. This example illustrates how the irrelevance of the exclusion order established in Propo-

sition 3.1 overcomes some criticism directed at D2 (and sometomes at NWBR). Consider a signaling

game where T={0, 1,2, 3}, M={m, m′}, Rm′={0}, and Rm is a finite but large set of actions belong-

ing to [0,3]. The receiver wants to match the type, ur(t, m, r)=−(t− r)2. As a result, if Rm is large

and spread enough within [0, 3], any best response to a posterior will consist of at most two close-

by responses, those closest to the expected type. Each type obtains 0 from choosing m′ (necessarily

followed by the receiver choosing r=0). We consider three possibilities for the payoffs of the sender

after sending m, depicted in the panels depicted in Figure 1, respectively (for visual clarity, we depict

them as functions from [0, 3] to R). We focus on an outcome ωm′ where all types send m′.

Because all types benefit from some best response in all panels, no type can be pruned out using

IC. Additionally, only in panel (c) can a type be pruned out using D1 (type 3). In panel (b), both

type 2 and type 3 can be pruned out using D2; yet, if one of them was not present, the other type

could not be pruned out. This fact draws some criticism by Cho and Kreps (1987), who say, “One can

construct examples in which [...] one type is eliminated by virtue of several others, one of which is

simultaneously eliminated because the first type is not yet eliminated. That is, each helps to eliminate

the other. We are, in consequence, happier with tests built up out of D1 than with those built up out

of D2” (p. 208). Nonetheless, note that if type 2 is excluded in the first iteration of IED2, then type 3

can be excluded in the second iteration: Since type 2 belongs to T\{3} independently of whether it

is pruned out or not, and since

D3(T
′)∪D0

3 (T
′)⊂∪t ′∈T\{3}Dt ′(T

′)

14



m′ r0

t1 0,0
t2 0,0

m r1 r2 r3

t1 −1, 3 1,2 −1,0
t2 1,0 1,2 −2,3

Table 2: Payoffs from the game in Example 3.4.

holds for T ′={0, 1,2, 3}, this condition also holds for T ′={0,1, 3}. Therefore, through the iterated

exclusion of types using IED2, it becomes natural that if two types help exclude the other in a given

iteration, each of these types will eventually be excluded at some iteration, even when the other is

already excluded. Indeed, while excluded types are not entertained by the receiver in each iteration,

they are still used to assess the implausibility of the remaining types, because their incentive not to

deviate has hold in the resulting sequential equilibria supporting the outcome. Finally, note that types

2 and 3 can be pruned out using NWBR in all panels, and that in panel (a), they help exclude the

other. Furthermore, in panel (c), if type 2 was not present, type 3 could not be eliminated using

NWBR. Still, even if type 2 is excluded in the first iteration of IENWBR, type 3 can be eliminated in

the second iteration.

Example 3.4. This example illustrates the advantages of exluding types instead of eliminating them.

Consider the example in Table 2, which corresponds to the game in Figure IV in Cho and Kreps (1987).

Letωm′ indicate the outcome where both types choose m′ for sure. Cho and Kreps note that, while no

type can be pruned out under ωm′ using D1, t2 can be pruned out using NWBR.14 Since there is no

sequential equilibrium where the receiver assigns probability 1 to type t1 after m,ωm′ fails NWBR (as

well as IENWBR). However, if t2 is eliminated (instead of excluded), the game where t2 is not present

has a sequential equilibrium. In this equilibrium, the receiver plays r1 after m, which is reasonable

within the smaller game but which induces t2 to deviate in the original game.

Cho and Kreps find the fact that ωm′ fails NWBR—because t2 strictly benefits from deviating in

any best response of the sender excluding t2—“downright unintuitive”. We, however, see NWBR (or,

more generally, IEX for any X ) as a systematic method for evaluating the internal consistency of an

equilibrium outcome. In the game in Table 2, ωm′ is inconsistent according to NWBR because the

sender should rule out type t2 after m, but there is no sequential equilibrium where she does so.

Example 3.5. In this example, we again illustrate the convenience of excluding instead of eliminating

types, now showing that the assessment of the procedure may depend on the order of elimination if

14Note that the set of sequential equilibria is (µ(t1),σ(r1),σ(r2))∈((2/3,1]×{0}×{0})∪({2/3}×{0}×[0,1/2]). In all
sequential equilibria, r1 is strictly dominated, and m is dominated for type t2.

15



one does not verify in each step that the set of sequential equilibria with support on non-eliminated

types is nonempty. Consider again the game in Table 1, now with x=−2 and y=−1. It is easy to see

that ωm′ (the outcome where all types choose m′ for sure) has a sequential equilibrium where ρm=
1
2 ◦ r1+

1
2 ◦ r3 and µm=

1
2 ◦ t1+

1
2 ◦ t3. We note that, under this equilibrium, m is a weak best response

for both t1 and t2, and that (for the same reason as in Example 3.1) NWBRt3
(T ) holds.15

Now consider the game where t3 cannot send m. Then m is a strictly dominant action for t1, while

it is a strictly dominated action for t2. Hence, in this smaller game, D0
t1
({t1, t2})=D0

t2
({t1, t2})=;

(recall (3.1)), so both NWBRt1
(T ) and NWBRt2

(T ) hold. If t1 is eliminated first, then the game

where only t2 can send m has a sequential equilibrium, so it “passes” iterated elimination through

NWBR. If instead t2 is eliminated first, then the game where only t1 can send m has no sequential

equilibrium, so it “fails” iterated elimination through NWBR. Note that if we use exclusion instead

of elimination, then the set of sequential equilibria before the last excluded type is empty under

both orders of exclusion; that is, SEω,m({t1})=SEω,m({t2})=;. Hence the assessment of IENWBR is

independent of the order of exclusion, as established in the proof of Proposition 3.1.

4 Sequential stability in signaling games

The concept of strategically stable sets of equilibria (Kohlberg and Mertens, 1986) has been very

influential in the literature aiming to refine the set of Nash equilibria, because of its many desirable

properties (such as existence, forward induction, iterated dominance, invariance, and robustness to

small trembles). Cho and Kreps (1987) argue that part of the value of their selection criteria stems

from their partial characterization of strategically stable equilibria, which are often difficult to obtain.

In an earlier paper (Dilmé, 2023b), we defined the related concept of sequentially stable outcomes

and showed that they have similar properties to strategically stable equilibria, while being easier to

use. In this section, we briefly review strategic stability and sequential stability, then use IEX to

partially characterize each of them.

4.1 Strategically and sequentially stable outcomes

Here we review the concepts of strategic stability and sequential stability, and we recall a simple

characterization of the latter for signaling games.

15It is easy to see that, under IENWBR, t2 is excluded next, and since there is no sequential equilibrium where the receiver
assigns probability zero to {t2, t3}, it follows that ωm′ fails IENWBR.
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Strategic stability was introduced by Kohlberg and Mertens (1986) as an equilibrium concept for

extensive-form games. Their idea was to perturb the reduced normal form of the game through trem-

bles and look for behavior that was stable to any perturbation. They defined a strategically stable set of

equilibria as a set of Nash equilibria of the reduced normal form of the game with the property that, for

any vanishing sequence of fully mixed trembles, there is a corresponding sequence of Nash equilibria

converging to some element of the stable set. They then defined a strategically stable component as a

minimal (by set inclusion) stable set of equilibria. They showed that, in games with generic payoffs,

all elements of a stable component have the same outcome; such outcomes are called strategically

stable outcomes.

Dilmé (2023b) introduced the concept of a sequentially stable outcome, which also applies to

extensive-form games. An outcome ω is defined as sequentially stable if, for all vanishing sequences

of fully mixed behavioral trembles, there is a corresponding sequence of perfect εn-equilibria with

outcomes converging toω, for some εn→0.16 Dilmé (2023b) shows that all games have a sequentially

stable outcome. For signaling games, strategically stable outcomes are sequentially stable, and if there

is a unique sequentially stable outcome, then it is the unique strategically stable outcome. For signaling

games with generic payoffs, the two concepts coincide.

We now present a simple characterization of sequential stability for signaling games.

Proposition 4.1 (Proposition 5.1 in Dilmé, 2023b). An outcome ω is sequentially stable if and only

if it is sequential and, for any off-path m∈M and µm∈∆(T ), there are some α∈[0, 1], µ′m∈∆(T ),

and ρm∈BRm(αµm+(1−α)µ′m) such that ut(m,ρm)≤ut(ω) for all t, and such that if α 6=1, then

ut(m,ρm)=ut(ω) for all t with µ′m(t)>0.

Remarkably, Proposition 4.1 implies that in a signaling game, one can check sequential stability

message by message, even though sequential stability requires stability to trembles across all mes-

sages.17 The characterization makes it much easier to analyze sequential stability in signaling games,

as our discussion below illustrates (see, in particular, the proofs of Propositions 4.2–4.4).

16In a perfect εn-equilibria, all players εn-optimize at all information sets conditionally on their being reached.

17The possibility of analyzing each off-path message independently greatly simplifies the arguments for sequential stability
(in comparison to those for strategic stability). The situation is similar to that of sequential equilibria, which have a
message-by-message characterization (recall Lemma 2.1), in comparison to trembling-hand perfect equilibria (Selten,
1975).
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4.2 Sequential stability and IEX

In this section, we state several results which establish connections between sequential stability and

IEX .

Sequentially stable outcomes pass IEX

The first result in this section establishes that sequential stability is stronger than IEX .

Proposition 4.2. For all X , sequentially stable outcomes pass IEX .

Given that sequentially stable outcomes always exist, Proposition 4.2 implies that every signaling

game has an outcome that passes IEX . This is a valuable result, because often it is easy to prove

that an outcome fails a selection criterion, but considerably harder to prove that an outcome passes.

Hence, Proposition 4.2 allows us to prove that a given outcome passes IEX by checking that all other

candidates (e.g., sequential outcomes) fail. It also lets us prove that a given outcome is not sequentially

stable by proving it does not pass IEX . This is helpful because the characterization of sequential

stability in Proposition 4.1 is sometimes difficult to apply. Furthermore, the fact that every signaling

game has an outcome passing IEX permits us to compare predictions across applications. Finally,

given that each IEX is stronger than X , it is more likely that there is only one outcome passing IEX .

If this is the case, such an outcome is not only guaranteed to be the only sequentially stable outcome

of the signaling game but also its only strategically stable outcome.

The proof of Proposition 4.2 illustrates how Proposition 4.1 helps in proving results. The key

insight is that, since SEω,m(Tn+1)⊂SEω,m(Tn), if a type t is excluded at some step n, then NWBRt(Tn′)

holds for all n′≥n. Assume then that ω is sequentially stable and that SEω,m(Tn) 6=; (which holds

for at least n=1). Let tn be the type excluded in step n; then X tn
(Tn) holds, so NWBRtn

(Tn) holds as

well (recall the expression (3.2)). Take some µm∈∆(Tn+1). Because m is never a best response for

an equilibrium in SEω,m(Tn+1) for any of the types excluded in the previous steps, it must be that µ′′m

(defined in Proposition 4.1) assigns probability zero to T\Tn+1, which implies that SEω,m(Tn+1) 6=;.18

Example 4.1. This example shows that the converse to Proposition 4.2 is not true: There may be

outcomes that are not sequentially stable, but that pass IENWBR (and therefore pass IEX for all X ).

To see this, consider Table 3, which corresponds to Figure 3 in Banks and Sobel (1987). Let ωm′

18From Proposition 4.1 it is easy to see that if ω is sequentially stable, then for any µm∈∆(T ), there are some α∈[0,1],
µ′m∈∆(T ), and (σ,ρ,µ′′)∈SEω such that µ′′m=αµm+(1−α)µ′m, and such that if α 6=1 and µ′m(t)>0, then m is a weak
best response for t under (σ,ρ,µ′′).
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m′ r0

t1 0,0
t2 0,0

m r1 r2 r3 r4

t1 −1, 3 −1,2 1, 0 −1,−2
t2 −1,−2 1, 0 1, 2 −2,3

Table 3: Payoffs from the game in Example 4.1.

indicate the outcome where both types choose m′ for sure. It is easy to see that, for each type,

there is a sequential equilibrium with outcome ωm′ where m is a weak best response. In the first

of these equilibria, denoted by (σ, ρ̂, µ̂), we have ρ̂m := 1
2 ◦ r3+

1
2 ◦ r4 and µ̂m := 1

3 ◦ t1+
2
3 ◦ t2 (in this

case, ut1
(m, ρ̂m)=0 and ut2

(m, ρ̂m)=−1/2). In the second, denoted by (σ, ρ̌, µ̌), we have ρ̌m :=
1
2 ◦ r1+

1
2 ◦ r2 and µ̌m := 2

3 ◦ t1+
1
3 ◦ t2 (in this case, ut1

(m, ρ̌m)=−1 and ut2
(m, ρ̌m)=0). Hence, ωm′

passes IENWBR.

Banks and Sobel show that an equilibrium with outcome ωm′ is not part of a strategically stable

set of equilibria. We use an argument similar to (but simpler than) theirs to show that ωm′ is not

sequentially stable. For the sake of contradiction, we assume thatωm′ is sequentially stable, then apply

Proposition 4.1. Fix the belief µm :=0.51◦ t1+0.49◦ t2. We have that BRm(µm)={1◦ r2}, and note that

ut2
(m, 1◦ r2)=2. Then, since m is never simultaneously chosen by both types for any best response

of the receiver, there are only two possibilities. The first is that µ′m=1◦ t1 and µ′′m=µ̌m (where µ′m

and µ′′m are as in the statement of Proposition 4.1), but this cannot hold, because ut1
(m, ρ̌m)<0. The

second possibility is that µ′m=1◦ t2 and µ′′m=µ̂m, but this cannot hold either, because ut2
(m, ρ̂m)<0.

Ruling out that an outcome is sequentially stable

As shown by Example 4.1, although all sequentially stable outcomes pass IEX , an outcome may pass

IEX yet fail to be sequentially stable. The next proposition shows that even if an outcome passes IEX ,

the process of iterated exclusion can be used to prove that it is not sequentially stable.

Proposition 4.3. Let Tn 6=; be the set of non-excluded types remaining after (not necessarily exhaustively)

applying IEX , and assume SEω,m(Tn) 6=;. Then, for any µm∈∆(Tn), if there is some µ′m∈∆(T ) satisfying

the conditions in Proposition 4.1, then µ′m∈∆(Tn).

Proposition 4.3 indicates that to prove an outcome is not sequentially stable, one can apply IEX to

exclude some types for some message m∈M . Then, fixing a posterior on the set of non-excluded types

Tn, one only needs to check that there is no posterior in ∆(Tn) satisfying the property in Proposition

4.1; that is, one need not check all of ∆(T ).
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Establishing that an outcome is sequentially stable

We now show that IEX can be used not only to rule out sequential stability, but also to prove it.

Proposition 4.4. Fix a sequential outcomeω and an off-path message m. Assume that there are T ′⊂Tm

and ρm∈BRm(T ′) such that ut(m,ρm)=ut(ω) for all t∈T ′, and ut(m,ρm)≤ut(ω) for all t 6∈T ′. Then

(i) ω is sequentially stable if and only if it is sequentially stable in the game where m is not available,

and (ii) T ′⊂T X
ω,m for all X .

Proposition 4.4 provides a tool for proving that a given message is not an impediment to the

sequential stability of a given outcome.19 The first part of the proposition is a corollary of Proposition

4.1. Indeed, if T ′ and ρm satisfy the hypotheses of Proposition 4.4, then we can fulfill the condition

in Proposition 4.1 by setting α:=1 and choosing µ′m∈∆(T
′) so that ρm∈BRm(µ′). The second part

of Proposition 4.4 establishes that if some T ′ with the properties in the statement exists, it is a subset

of T X
ω,m. Hence, the iterated exclusion process makes it easier for a researcher to identify a suitable

T ′ in order to prove that ω passes IEX for m.

Example 4.2. We illustrate the use of Proposition 4.4 using the game in Table 1, now with x=2 and

y=4. Consider the outcome ωm′ where the sender chooses m′ for sure. It is clear that since m is

strictly dominated for type t3, this type can be eliminated in the first round of IEX for all X . Then, it

is not difficult to see that there is a sequential equilibrium where both t1 and t2 obtain payoff 0 when

playing m (in this equilibrium, ρm=
2
3 ◦ r1+

1
3 ◦ r2 and µm=

1
2 ◦ t1+

1
2 ◦ t2), so T̂ :={t1, t2} satisfies the

conditions in Proposition 4.4. Therefore, ωm′ is sequentially stable.

19Note that, from Proposition 4.1, if ω is sequentially stable and m is off-path, then ω is sequentially stable in the game
where m is not available.
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A Proofs

Proof of Lemma 2.1

Proof. Let (σ,ρ,µ) be an assessment. If it is consistent, it is clear that it satisfies the on-path Bayes

rule. Assume then that (σ,ρ,µ) satisfies the on-path Bayes rule, and we will show it is consistent.

Consider the sequence of fully-mixed sender’s strategies (σn)n≥n defined by

σt,n(m):=























µm(t)/µ0(t)n−1 if σt(m)=0 and µm(t)>0,

n−2 if σt(m)=0 and µm(t)=0,

Kt,nσt(m) if σt(m)>0,

for all t∈T and m∈Mt , where Kt,n is such that
∑

m∈Mt
σt,n(m)=1, and where n is the minimum

such that Kt,n>0 for all n≥n. Consider also the sequence of fully-mixed receiver’s strategies (ρn)n≥n̂

defined by

ρm,n(r):=







n−1 if ρm(r)=0,

K̂m,nρm(r) if ρm(r)>0,

for all m∈M and r∈Rm, where K̂m,n is such that
∑

r∈Rm
ρm,n(r)=1, and where n̂ is the minimum

such that K̂m,n>0 for all n≥ n̂. It is easy to see that, because (σ,ρ,µ) satisfies on-path Bayes rule, the

sequence of strategy profiles (σn,ρn)n≥max{n,n̂} supports (σ,ρ,µ), hence (σ,ρ,µ) is consistent.

Proof of Lemma 3.1

Proof. “Only if” part. Assume NWBRt(T ′) holds. Assume also, for the sake of contradiction, that

m is a best response for t in some sequential equilibrium (σ,ρ,µ)∈SEω,m(T ′). This implies that

ρm∈BRm(T ′) is such that ut(m,ρm)=ut(ω). By the assumption that NWBRt(T ′) holds, there is a

type t ′∈T such that ut ′(m,ρm)>ut ′(ω), but this contradicts that (σ,ρ,µ) is a sequential equilibrium

and that m is off path.

“If” part. Assume there is no sequential equilibrium in SEω,m(T ′) where m is a best response for

t. For the sake of contradiction, assume that NWBRt(T ′) does not hold. This implies that there is

some belief µ̂m∈∆(T ′) and ρ̂m∈BRm(µ̂m) such that ut(m, ρ̂m)=ut(ω) and there is no type t ′∈T

such that ut ′(m, ρ̂m)>ut ′(ω). Let (σ,ρ,µ) be a sequential equilibrium with outcome ω (recall that
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ω is assumed to be a sequential outcome). Consider the assessment

(σ′,ρ′,µ′):=
�

σ, (ρ̂m,ρ−m), (µ̂m,µ−m)
�

.

It is easy to see that (σ′,ρ′,µ′) is in SEω,m(T ′) and is such that m is a best response for t, contradicting

our initial assumption.

Proof of Proposition 3.1

Proof. We begin the proof with a useful result.

Lemma A.1. For all X , all sets T ′, T ′′⊂T with T ′⊃T ′′, and all t∈T, if X t(T ′) holds then X t(T ′′) holds.

Proof. Take some T ′, T ′′⊂T with T ′⊃T ′′, and assume that X t(T ′) holds. Observe that Dt(T ′)=

BRm(T ′)∩Dt(T ) and D0
t (T

′)=BRm(T ′)∩D0
t (T ). Note that, if X 6=D1, then X t(T ′) holds if and only if

BRm(T
′)∩(Dt(T )∪D0

t (T ))⊂BRm(T
′)∩RX

t , (A.1)

where RIC
t =;, R

D2
t =∪t ′∈T\{t}Dt ′(T ), and RNWBR

t =∪t ′∈T Dt ′(T ). It is then clear that, since BRm(T ′)⊃

BRm(T ′′), equation (A.1) implies

BRm(T
′′)∩(Dt(T )∪D0

t (T ))⊂BRm(T
′′)∩RX

t .

Hence, X t(T ′′) holds. The argument for X=D1 is analogous. Intuitively, even though shrinking T ′ to

T ′′ typically shrinks each side of the “⊂” in the requirements of each of the conditions for a type to be

excludable according to each criterion X provided in Section 3.1, the inclusion persists because when

a receiver’s best response is eliminated on one side, it is eliminated from the other side as well.

(End of proof of Lemma A.1. Proof of Proposition 3.1 continues.)

Let (Tn)n∈N and (T ′n)n∈N be the sequences of non-excluded types under two implementations of

IEX . Assume also, for the sake of contradiction, that T∞ 6=T ′∞. Without loss of generality, assume that

T ′∞\T∞ 6=;.
20 For each t∈T ′∞\T∞, let n(t) satisfy that t∈Tn(t) and t /∈Tn(t)+1, so X t(Tn(t)) holds.

Let t̂ be such that n( t̂) is the minimum of {n(t)|t∈T ′∞\T∞}, so it must be that Tn( t̂)⊃T ′∞.21 Then,

20Note that both (Tn)n∈N and (T ′n)n∈N are constant for n≥|T |, so T∞ and T ′∞ are well defined.

21Indeed, note that by the definition of n( t̂), Tn( t̂)⊃T∞∪(T ′∞\T∞)⊃T ′∞.
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since Tn( t̂)⊃T ′∞ and X t(Tn( t̂)) holds, Lemma A.1 implies that X t(T ′∞) holds, but this is a contradiction

because, by the definition of T ′∞, we have that X t(T ′∞) does not hold for all t∈T ′∞, and t̂∈T ′∞ by

assumption.

Independence of the order in Definition 3.1. We now prove the claim in the paragraph after Defini-

tion 3.1 that, if T X
ω,m=;, and t̂, t̂ ′∈T are the last excluded types under two implementations of IEX ,

then SEω,m({ t̂})=; if and only if SEω,m({ t̂ ′})=;. Hence, if ω fails IEX under some implementation

of IEX , then ω fails IEX under all implementations of IEX .

Assume T X
ω,m=;. We use SET(X )⊂T |T | to denote all (ordered) |T |-long sequences of excluded types

excluded through some implementation of IEX . Assume, for the sake of contradiction, that there are

two sequences (tn)
|T |
n=1, (t ′n)

|T |
n=1∈SET(X ) satisfying that SEω,m({t|T |})=; and SEω,m({t ′|T |}) 6=;. For

each n, let Tn and T ′n denote T\{tn′}n−1
n′=1 and T\{t ′n′}

n−1
n′=1, respectively. Let n̄ be such that tn= t ′n for all

n< n̄, and such that t n̄ 6= t ′n̄ (hence Tn̄−1=T ′n̄−1 but Tn̄ 6=T ′n̄), so we have that X t n̄
(Tn̄−1) and X t ′n̄

(Tn̄−1)

hold. Assume n̄ is maximal, that is, there is no pair of implementations ( t̂n)
|T |
n=1, ( t̂ ′n)

|T |
n=1∈SET(X )

satisfying that (i) SEω,m({ t̂|T |})=;, (ii) SEω,m({ t̂ ′|T |}) 6=;, and (iii) t̂n= t̂ ′n for all n< n̄+1. Let n̄′> n̄

be such that t ′n̄′= t n̄. There are three cases:

1. Assume first n̄= |T |−1. For each α∈[0, 1], let µ̂αm :=α◦ t n̄+(1−α)◦ t ′n̄. Note that there is no

sequential equilibrium (σ,ρ,µ)∈SEω,m({t ′n̄})with µm=µ̂1
m, that there is at least one sequential

equilibrium (σ′,ρ′,µ′)∈SEω,m({t n̄}) with µ′m=µ̂
0
m, and that there is no sequential equilibrium

(σ′′,ρ′′,µ′′)∈SEω,m({t n̄, t ′n̄}) with µ′′m=µ̂
α
m for any α∈[0,1] where m is a best response for

some t∈T .22 We now show this leads to a contradiction. Let α− be the supremum α for which

there is a sequential equilibrium (σ′′′,ρ′′′,µ′′′)∈SEω,m({t n̄, t ′n̄})with µ′′′m =µ̂
α
m for all α∈[0,α−).

It is then easy to see that there must be some ρ−∈BRm(µ̂α
−

m ) such that ut(m,ρ−)≤ut(ω) for all

t∈T and ut(m,ρ−)=ut(ω) for at least one t∈T .23

2. Assume now that n̄< |T |−1 and that n̄′< |T |. Note that the sequence ( ťn)
|T |
n=1 defined as

( ťn)
|T |
n=1 :=(t ′1, ..., t ′n̄′−2, t ′n̄′ , t ′n̄′−1, ..., , t ′|T |)

is such that ( ťn)
|T |
n=1∈SET(X ). Indeed, we have that (i) t ′n̄′= t n̄, (ii) X t n̄

(T ′n̄) holds, (iii) X t ′
n̄′
(T ′n̄′)

22Indeed, if such an equilibrium would exist, then the indifferent type t could not have been excluded (if t /∈{t n̄, t ′n̄}) or
would be such that X t({t n̄, t ′n̄}) does not hold (if t∈{t n̄, t ′n̄}).

23This follows from the continuity of ut(m, ·) for all t and the closedness, non-emptyness, upper-hemicontinuity, and con-
vexity of the best response correspondence µm 7→BRm(µm).
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holds, and, (iv) by Lemma 3.1, X t ′n̄
(T ′n̄) holds. Proceeding iteratively, we have that the sequence

(t ′′n )
|T |
n=1 :=(t ′1, ..., t ′n̄−1, t ′n̄′ , t ′n̄, ..., t ′n̄′−1, t ′n̄′+1, ..., t ′|T |)

is such that (t ′′n )
|T |
n=1∈SET(X ). This contradicts our assumption that n̄ is maximal (in the sense

described above), since now n̄+1 satisfies the same properties for the sequences (t ′n)
|T |
n=1 and

(t ′′n )
|T |
n=1.

3. Assume finally that n̄< |T |−1 and that n̄′= |T |. If SEω,m({t ′|T |−1}) 6=;, then the same argument

as in the second case can be applied. If, instead, SEω,m({t ′|T |−1})=;, then we define

(t ′′n )
|T |
n=1 :=(t ′1, ..., t ′|T |−2, t ′|T |, t ′|T |−1) ,

which satisfies that (t ′′n )
|T |
n=1∈SET(X ) and that SEω,m({t ′′|T |}) 6=;. This again violates the assump-

tion that n̄ is maximal.

Proof of Proposition 3.2

Proof. Assume that Tn 6=; and SEω,m(Tn)=; at some step n of an implementation of IEX . Assume

also, for the sake of contradiction, that ω passes IEX ; hence, it must be that n< |T |. Then, since

Tn′⊂Tn for all n′>n, we have that SEω,m(Tn′)=; for all n′>n. By Definition 3.1, this implies that ω

fails IEX , a contradiction.

Proof of Proposition 4.2

Proof. Let ω be a sequentially stable outcome and m an off-path message. We will proceed by induc-

tion, showing that if T ′⊂T is such that SEω,m(T ′) 6=; and t∈T ′ is such that X t(T ′) holds, then either

T ′={t} (in which case ω passes IEX ) or SEω,m(T ′\{t}) 6=;.

Let T ′⊂T be such that SEω,m(T ′) 6=; and t∈T ′ be such that X t(T ′) holds. Since that X t(T ′) holds

implies that NWBRt(T ′) holds (recall expression (3.2)), we have that m is never a best response

for t in any element of SEω,m(T ′). If T ′={t} then the result holds. Assume then that T ′\{t} 6=;.

Pick an arbitrary µm∈∆(T ′). By Proposition 4.1, there are some α∈[0, 1], µ′m∈∆(T ), and ρm∈

BRm(αµm+(1−α)µ′m) satisfying that ut(m,ρ)≤ut(ω) for all t, and if α 6=1, then ut(m,ρm)=ut(ω)

for all t with µ′m(t)>0. Since m is never a best response for t in any element of SEω,m(T ′), it must be

that µ′m∈∆(T
′\{t}), and hence µ′′m∈∆(T

′\{t}). Letting (σ̂, ρ̂, µ̂) be an element of SEω,m(T ′) (which
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exists since SEω,m(T ′) 6=;), it is easy to see that

(σ̂, (ρm, ρ̂−m), (µ
′′
m, µ̂−m))∈SEω,m(T

′\{t})

This proves that SEω,m(T ′\{t}) is non empty; hence, the proof is concluded.

Proof of Proposition 4.3

Proof. Let Tn 6=; be the set of non-excluded types remaining after (not-necessarily-exhaustively) ap-

plying IEX . Fix some µm∈∆(Tn). Assume, that there are some α∈[0,1], µ′m∈∆(T ), and ρm∈

BRm(αµm+(1−α)µ′m), satisfying the condition in Proposition 4.1. Assume also, for the sake of con-

tradiction, that µ′m(t)>0 for some t 6∈Tn. This implies that ρm∈D0
t (Tn) and ρm /∈Dt ′(Tn) for all t ′∈T ,

so

D0
t (Tn) 6⊂∪t ′∈T\{t}Dt ′(Tn) .

Nevertheless, we claim that NWBRt(Tn) holds, hence we reach a contradiction. To see why NWBRt(Tn)

holds, let Tn′ denot ethe step in IEX where t was excluded. By expression 3.2, we have that NWBRt(Tn′)

holds, and since Tn⊂Tn′ , Lemma A.1 implies that NWBRt(Tn) holds.

Proof of Proposition 4.4

Proof. Fix a sequential outcome ω and an off-path message m. We separate the proof into two parts.

Throughout, we assume that there are T ′⊂T and ρ̌m∈BRm(T ′) such that ut(m, ρ̌m)=ut(ω) for all

t∈T ′ and ut(m, ρ̌m)≤ut(ω) for all t /∈T ′. We let µ̌m∈∆(T ′) be such that ρ̌m∈BRm(µ̌m).

Part (i). We first prove that if ω is sequentially stable then it is sequentially stable in the game where

m is not available. The result is trivial since the property in Proposition 4.1 holds for all m′ 6=m, both

in the game where m is available and in the game it is not available.

We now prove that if ω is sequentially stable in the game where m is not available, then it is

sequentially stable. Since ω is sequentially stable in the game where m is not available, the property

in Proposition 4.1 holds for all m′ 6=m. Also, we note that the condition in Proposition 4.1 is satisfied

for m by choosing, for all µm∈∆(T ), α:=0, µ′m :=µ̌m, and ρ̌m :=ρ̌m.

Part (ii). We now prove that T ′⊂T X
ω,m. Assume, for the sake of contradiction, that T ′ 6⊂T X

ω,m, so

there is some t∈T ′ such that t /∈T X
ω,m. Fix some IEX procedure and let n be the first step where a type
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t̂∈T ′ was eliminated, that is, T ′⊂Tn and X t̂(Tn) holds. By expression (3.2), we have that NWBRt̂(Tn)

holds. This is a contradiction, since ρ̌m∈BRm(T ′)⊂BRm(Tn), so ρ̌m∈D0
t̂
(Tn), but ρ̌m /∈Dt ′(Tn) for any

t ′∈T .
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