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Abstract

Regulation is a major driver of housing supply, yet its impact is often difficult to observe

directly. This paper estimates frontier costs, which are the costs of producing housing in the

absence of regulation, and regulatory taxes, which quantify the monetary value of regulation.

Within the context of a densely populated urban environment, we focus on multi-floor, multi-

family housing. Using only apartment prices and building heights, we show that the frontier is

identified from the support of supply and demand shocks without recourse to instrumental vari-

ables. In an application to new Israeli residential construction, we find that regulation accounts

for an average of 43% of housing prices, with significant variation across locations. Higher

regulation is associated with proximity to city center, higher density, and higher prices. Our

analysis reveals economies of scale in frontier costs at low building heights. Estimation takes

into account random structural quality. Allowing for location-dependent structural quality, we

construct bounds assuming weak complementarity between structural and locational qualities.
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1 Introduction
Housing economics attributes a major role to regulation in determining housing prices and

residential development (e.g., Glaeser and Ward, 2009; Gyourko and Saiz, 2006; Molloy, 2020).

However, the diverse forms of regulation and its inconsistent enforcement make direct observa-

tion and quantification difficult (e.g., Cheung et al., 2009; Gyourko and Molloy, 2015). Hence,

conditional regression estimation of mean cost risks embedding unobserved regulatory conditions,

potentially biasing these estimates. Our solution is to estimate frontier cost, defined as the non-land

cost in the absence of regulation, and regulatory tax, defined as the money-equivalent extent of

regulation. Within the context of a densely populated urban environment with multi-floor, multi-

family housing, we use data on apartment prices per square meter and building heights to perform

our analysis.

Assuming homogeneous housing, we show that the lowest observed price identifies frontier

average cost (AC) below minimum efficient scale (MES) and frontier marginal cost (MC) above

MES. Accounting for idiosyncratic, heterogeneous housing leads to stochastic frontier estima-

tion. Our approach replaces standard identification assumptions of exogenous variation with an

assumption on the support of supply shocks (regulatory restrictions or fees) and demand shocks.

Simultaneous determination of price and height does not hinder identification.

Figure 1 provides intuition for identification of frontier costs. Each plotted point represents

an observed equilibrium price and height at the intersection of a supply curve that is shifted up

by regulatory constraints and a demand curve. The red curve, tracing the locus of equilibria in

unregulated markets as demand increases, is frontier marginal cost above MES (i.e., the firm’s

inverse supply in the absence of regulation). The blue curve, tracing out the locus of equilibria with

break-even demand as regulation is relaxed, is frontier average cost below MES. For illustrative

purposes these curves are drawn as continuous. As the figure suggests, identification of frontier

costs depends on the support of demand and supply shocks, requiring sufficient variation of

demand in unregulated markets in the region with diseconomies of scale and sufficient variation

in both demand and regulation in the region with economies of scale.

The regulatory tax (RT) quantifies the impact of regulation in money-equivalent form. This

is the tax that, in an unregulated environment but with the same demand, would induce firms to

1





(h1, p1){U


(h2, p2)

RT=U

Frontier inverse supply / MC

Frontier AC
RT

D
S

D′
S′

MES Height

min AC

Price

Figure 1: Each point represents an equilibrium price and height. At heights with decreasing economies of scale, the
red curve represents the firm’s frontier inverse supply. At heights with increasing economies of scale, the blue curve
represents the firm’s frontier average cost. The regulatory tax is RT. The deviation from the frontier is U .

choose a given building height (i.e., number of floors).1 Our analysis maintains neutrality on the

regulatory effects, whether positive (akin to a Pigouvian tax) or negative, and avoids specifying the

precise form of the regulations. Implicitly assuming diseconomies of scale, Glaeser et al. (2005)

define the regulatory tax at a given price and height as the price less frontier marginal cost (see

Figure 1). Because of the discreteness of building height, as number of floors, there is a range of

prices on the supply frontier at any given height (see Figure 2). To address this issue, we amend

the definition of regulatory tax to be the maximum of zero and price minus the frontier cost of

building an additional floor.

The regulatory tax definition needs modifying for heights below MES, where no tax in an

unregulated environment would induce firms to build. To account for such observed buildings, we

conceptualize the relevant land areas as covering multiple plots. Then, when demand at minimum

average cost falls short of MES, equilibrium absent regulation will consist of some plots developed

to MES and others left undeveloped, with average height over all plots equal to quantity demanded.

We thus define regulatory tax in the region with economies of scale equal to price less the frontier

minimum average cost (see Figures 1 and 3).

In the ideal scenario of Figure 1 the housing frontier is identified by minimum observed price at

each building height. However, this identification is complicated by various forms of measurement

1The precise definition for regulatory tax is provided in (3).
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errors, such as differences in structural quality and transcription errors. These errors, which can

obscure the frontier, can be addressed using stochastic frontier analysis (SFA) methods (e.g.,

Greene, 2008; Kumbhakar et al., 2020), provided they are independent of locational quality. The

key to identification with errors is the differences in the supports of regulation and measurement

error (see Schwarz and Van Bellegem, 2010). We further leverage observed variation in prices, both

within and across buildings, to avoid relying on skewness-based identification methods commonly

used in the SFA literature.

Our approach differs from the traditional SFA assumption that unobservables are independent

of inputs, an assumption recently challenged in the literature (Amsler et al., 2016). We instead

restrict only the minimum regulation to be independent of height, while allowing the rest of the

regulatory distribution to vary with height. This is crucial, as without this variation, the estimated

frontier would be merely a downward shift of the estimated mean regression, failing to capture the

nuanced relationship between regulation and housing prices.

Although we rely heavily on SFA estimation techniques, our analysis has some crucial differ-

ences. First, SFA assumes unregulated markets and uses deviations from the frontier to estimate

firm efficiency, while we assume firm efficiency and use deviations from the frontier to estimate

regulation. Second, we incorporate economies of scale. While unregulated markets, where per-

fectly competitive firms never produce at output levels with economies of scale, do not allow for

uncovering the production function in this region, regulation can induce firms to produce there, ne-

cessitating its consideration. Third, instead of obtaining the frontier by relating a cost, production,

or profit function to inputs, we obtain the frontier by estimating a supply function. We then infer

the corresponding relationship between costs and outputs.

The discussion so far assumes random housing structure quality, allowing it to be treated

as measurement error. However, in reality, structural quality may be systematically related to

locational amenities if consumers prefer higher-quality housing in areas with more desirable

amenities. In this case, the frontier represents the non-land costs of producing housing with

minimal, rather than average, structural quality. However, using only spatial variation in prices,

it is not possible to distinguish the effects of regulation from those of structural quality above

the minimum.2 To address this issue, we assume that, locally, structural quality and amenities

2The analogous difficulty for the SFA literature would be distinguishing product quality from firm inefficiency.
This issue has not received much attention in the SFA literature, although it is an important issue in the productivity
literature (and more generally) since Klette and Griliches (1996).
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are weak complements, meaning that higher-quality housing is located in areas with at least as

desirable amenities. This allows us to estimate the regulatory tax by comparing frontier costs and

prices for nearby buildings with similar locational quality but different levels of structural quality

in years of construction.

Our empirical application uses newly constructed residential buildings in Israel from 1998 to

2017 relying on variation in prices across both space and time. This market is particularly suitable

for our study due to the extensive variation in regulation. Even neighboring buildings may face

different effective regulation depending on builders’ success in securing permits, which they must

obtain from at least two different levels of local planning committees, each with considerable

discretion (see Czamanski and Roth, 2011; Rubin and Felsenstein, 2019).

Our study yields six main findings. First, the estimated frontier decreases at low heights,

indicating economies of scale, while a mean regression increases steeply. Second, estimates of the

frontier elasticity of substitution of land for capital defined as all non-land inputs in construction

at heights above MES is less than 0.5 at low and high heights but exceeds unity at medium heights,

where marginal costs are flat. This suggests that building upwards is easy at medium heights but

hard at low and high heights. Third, the mean regulatory tax estimates are about 43% of market

price, which aligns with the findings of Glaeser et al. (2005) for residential buildings in Manhattan,

and Cheshire and Hilber (2008) for UK office buildings, both of which rely on commercially

available cost estimates. This suggests that suppliers would build taller buildings in unregulated

markets, despite the difficulty in building upwards. Fourth, the estimated regulatory tax as a

percentage of price has a standard deviation of about 16%, indicating significant variation. Fifth,

areas that are higher priced, denser, and closer to city centers have higher regulatory tax. Finally,

when we allow for location-dependent structural quality and assume weak complementarity, we

are able to bound the mean regulatory tax. In 2016 and 2017, when prices were at their peak in

our sample - so that the lower bound is likely to be especially informative - , we estimate the lower

bound at at 44 percent (using a 3km radius) and an upper bound of 53 percent.

Estimation of the (mean) housing production function has enjoyed a recent renaissance (e.g.,

Albouy and Ehrlich, 2018; Brueckner et al., 2017; Cai et al., 2017; Combes et al., 2021; Epple et al.,

2010). However, most of this research deals with single family housing, with only a few papers

addressing building height. Ahlfeldt and McMillen (2018) measure the land price elasticity of

height, but disclaim any variation in regulatory conditions in their coverage area. Henderson et al.
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(2017) focus on uncertain property rights rather than regulation, and take a structural approach.

Tan et al. (2020) infer the bindingness of observed height restrictions from their effect on the land

price-housing price relationship.

A significant challenge in using housing data, as in many other economic applications, is the

difficulty of directly measuring costs and regulations, which are often at least partially unobserv-

able. Hence, quantitative assessment of housing regulation typically infers regulatory effects from

the partial correlation of housing market outcomes with observed measures of regulatory strictures,

such as the Wharton Index of Gyourko et al. (2008) or the new Wharton index of Gyourko et al.

(2021). Early studies were concerned with the capitalization of regulation into mean housing prices

(e.g., Katz and Rosen, 1987; Pollakowski and Wachter, 1990). More recent work has focused on

the effect of regulation on housing market response to demand shocks by considering housing

price variability (Paciorek, 2013), market supply elasticity (Saiz, 2010), or income pass-through

to prices (Hilber and Vermeulen, 2016).

Unlike these studies, the approach in the aforementioned Glaeser et al. (2005) and Cheshire

and Hilber (2008) directly measures the regulatory tax by comparing housing prices to an external

assessment of construction costs. Our analysis, sharing the goal of measuring the regulatory tax,

avoids relying on cost assessments. Such assessments are likely to underestimate full non-land

costs, are susceptible to measurement errors, and pose challenges in quality-level aggregation.

Another approach computes the regulatory tax by the excess of the intensive value of land, inferred

from housing prices, over the extensive value of land, observed from land transactions ((Gyourko

and Krimmel, 2021)). However, this method is likely appropriate only for single-family homes.

Measuring housing costs and regulation is important for several policy issues. Building up-

wards can mitigate urban sprawl by expanding cities through increased density instead (e.g.,

Brueckner and Helsley, 2011; Fu and Somerville, 2001; Nechyba and Walsh, 2004). Variation

in housing regulation across locations may reduce productivity by causing spatial mismatches

between labor and capital (Hsieh and Moretti, 2019). Additionally, housing deregulation is an

important policy tool for checking growing inequality of wealth, particularly if due to increasing

land scarcity (e.g., Rognlie, 2016). Understanding the effect of regulation on housing supply and

costs is crucial for designing effective policies to address these and other related policy issues.

The remainder of this paper is organized as follows. Section 2 identifies the frontier. Section 3

describes our estimators. Section 4 reviews the data. Section 5 presents the empirical results.
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2 Identification
This section presents a demand and supply framework for identifying frontier costs when ob-

serving only equilibrium prices and quantities - which, as we will discuss, are essentially heights

in our context. Section 2.1 analyzes frontier supply and Section 2.2 frontier average costs at low

heights with economies of scale. Section 2.3 incorporates nonhomogeneous housing based on

building height and apartment floor. Section 2.4 defines regulatory tax. Section 2.5 incorporates

building and apartment level measurement errors. Section 2.6 discusses the identification assump-

tions. Section 2.7 describes how to bound regulatory taxes when structural quality and amenities

are related.

2.1 Frontier supply

This section provides conditions under which frontier supply is identified by the joint distri-

bution of equilibrium prices and quantities, in an idealized environment of perfectly competitive

markets for a single homogeneous good produced by homogeneous firms, absent measurement

error. Since competitive firms supply only at quantities where there are no economies of scale, this

discussion concerns such quantities only. The identifying conditions place no restrictions on the

joint distribution of the unobserved and observed variables, other than their support. Simultaneity

will not be a concern.

Consider multi-floor housing built on parcels of one unit of land each. For simplicity, at most

one building can be built on each parcel, with the building covering the entire parcel. Buildings

consist of homogeneous housing. Define one unit of housing as a 1-floor building on one unit of

land. Then the quantity of housing in one building is its number of floors. We observe the price per

unit of housing, p ∈ (0,∞), and the number of floors, which we refer to as height, h ∈ {1,2, . . .},

for each newly constructed building.

Consider parcel-level supply (analogous to firm supply in basic theory), which includes any

regulatory restrictions. Since the quantity of housing is the number of floors, a supply curve can

take nonnegative integer values only, and so is fully characterized by the jump discontinuities at

p1, p2, . . ., where ph is the minimum price at which profit maximizing suppliers would build h

units of housing under the given regulation. In other words, ph is the marginal cost of the h-th floor.

A strict maximum height restriction at h floors would take the form of ph+ j = ∞ for j > 0. More

generally, builders may be able to overcome restrictions by sufficient expenditure (on lawyers
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and intermediaries legally and illegally); these additional costs explain the vertical gap between

non-frontier (regulated) and frontier (unregulated) supply. We derive conditions under which the

frontier marginal cost of building the h-th floor p f
h is identified by the minimum price at height h.

Next consider, for conceptual purposes only, an area with a collection of unit land parcels.

Consumers consider housing services provided on any parcel as identical to those provided on any

other parcel in a given area.3 Inverse demand for housing in the area, which is assumed continuous,

is therefore a function of the total housing consumed in the area. Define parcel-level demand as

market demand for the area divided by the total number of parcels in the area.

Figure 2 shows parcel-level supply and demand curves. The red curve is the inverse frontier

supply curve, the object of our estimation, while the green curve is some inverse non-frontier

supply curve. The blue curve is inverse demand for a low demand shock, while the orange curve

is inverse demand for a high demand shock (violet will be considered later).

Equilibria are at the intersections of inverse demand and inverse supply curves. The figure

shows the unique equilibrium for each combination of demand - low (DL) or high (DH) - and

supply - unregulated (SU ) or regulated (SR). The equilibrium with no regulation and low demand

is E1. At this equilibrium, price lies between the frontier marginal cost of constructing a 3-floor

building, p f
3 , and that of a 4-floor building, p f

4 , and so only 3-floor buildings are built.

The equilibrium with no regulation and high demand is E2. At this equilibrium, price equals

p f
4 with suppliers indifferent between building 3-floor and 4-floor buildings and the market clears

at the fraction of 3-floor buildings built.

The two remaining points show equilibria under supply with regulation. The equilibrium with

regulation and high demand is E3. Absent regulation, and at the associated equilibrium price

p3, suppliers would build 4-floor buildings. Regulation costs lead suppliers to build only 3-floor

buildings. Similarly, at E4, with low demand, 2-floor buildings are built, although suppliers prefer

to build an additional floor.

Our empirical analysis conditions on building height. Consider 3-floor buildings, which are

built at E1 (where suppliers want, and are permitted, to build 3-floor buildings), E2 (where suppliers

are indifferent between three and four floors, and some build three floors), and E3 (where suppliers

want to build four floors but permitted only three). The lowest price among these three equilibria

3In using area as a conceptual device, one need not imagine a contiguous expanse. See Piazzesi et al. (2020) for
evidence of buyers searching over noncontiguous areas.
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Figure 2: Parcel-level inverse supply and demand curves.

is at E1, which is greater than the minimal price p f
3 required to induce unregulated suppliers to

build 3-floor buildings.

Hence, if the pictured high and low demand curves were the extent of demand variation then

p f
3 would not be identified. Identification requires a positive probability of frontier supply and a

demand curve cutting it at p f
3 . The violet demand curve in Figure 2 is just one such curve that

would allow identification. Note that E2, where the high demand curve intersects the unregulated

supply curve, identifies the minimal price to build 4-floor buildings p f
4 . Identification of the frontier

supply curve as a whole, then, requires sufficient variation in demand in unregulated markets.

Formally, inverse demand Pd(h,ε), with random demand shock ε , is assumed continuous in

height h ≥ 0. Inverse supply is defined by the correspondence Ps(h,W ) = {p | pW
h ≤ p ≤ pW

h+1},

with random supply shock W and h ∈ N. The frontier inverse supply is defined by Ps(h, f ) =

{p | p f
h ≤ p≤ p f

h+1}, with p f
h = min

w∈Support(W )
pw

h , for each h. An equilibrium (P,h,α) is a price P≥ 0,

height h∈N, and fraction 0≤α < 1, such that the market clears: P= Pd(α(h−1)+(1−α)h,e)∈

Ps(h,w), for some (e,w) ∈ Support(ε,W ). Now define

P(h) = {P : (P,h,0) or (P,h+1,α),0 ≤ α < 1, is an equilibrium, for some (e,w) ∈ Support(ε,W )}.

If there exists e with (e, f ) ∈ Support(ε,W ) and 0 ≤ α < 1 such that Pd(α(h−1)+(1−α)h,e) =

p f
h , then p f

h is identified by min{P(h)}. In other words, we are assuming sufficient realizations of

frontier supply, and demand intersecting it at the frontier price. Note that issues of simultaneity

do not arise here. This identification result suggests the sample minimum price at height h as a

natural estimator for p f
h .
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2.2 Frontier average costs (heights below MES)

In perfectly competitive unregulated markets, buildings would never be observed at heights

where there are economies of scale as building at or beyond MES would always be more profitable.

However, under regulation, suppliers might build at heights below the frontier’s MES. Minimum

price at such heights could not correspond to frontier supply. Rather, the minimum price identifies

frontier average cost, under conditions shown below.

Figure 3 shows the textbook example of a U-shaped frontier average cost curve, along with its

associated marginal cost curve. For simplicity, we present continuous curves. The frontier supply

function maps prices below minimum AC to height equal zero (i.e., the land is left undeveloped)

and maps prices above the minimum AC to the inverse MC (the red curve in Figure 3). At

price equal to minimum AC, suppliers are indifferent between leaving the land undeveloped

and building at MES. Thus an equilibrium where the parcel-level housing quantity demanded at

minimum AC falls short of MES involves price equal to minimum AC, with some parcels left

undeveloped and the remainder developed to height MES, with their shares such that the market

clears. An equilibrium where the quantity demanded at minimum AC exceeds MES entails an

above minimum AC price and construction on every parcel at a common height above MES.

Inferring frontier costs at heights below MES thus requires the realization of non-frontier

supply. The equilibrium E5 must be generated by some such supply curve intersecting with a

demand curve (neither is shown). However, lower prices at the same height h5 could also be

observed, given appropriate demand and regulated supply shocks. The lowest possible observable

price is p6 = AC(h5), which would be generated by the joint realization of a demand and non-

frontier supply that intersect at E6.4 No lower price is possible at h5; otherwise, firms would suffer

losses.

Hence, whereas minimum price, conditional on height, converges to MC at heights for which

AC is increasing, it converges to AC where AC is decreasing. Minimum price thus identifies the

maximum of frontier AC and MC, denoted as G(h) = max{AC(h),MC(h)}, which in Figure 3 is

the blue curve min{P(h)}= AC(h) and the red curve min{P(h)}= MC(h). Whereas identification

at heights of increasing AC requires variation in demand in unregulated markets, identification at

heights of decreasing AC requires variation in both demand and regulation.

4Recall that firms are perfectly competitive and that the demand that passes through E5 or E6 are market demands
scaled down to the parcel, and so firm, level.
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Assuming a U-shaped frontier average cost curve is an important simplification. In principle,

the cost structure might differ. First, average costs might be declining for some region at high

heights. The maximum extent of the rate of decline decreases with height, however, since total

costs are weakly increasing (AC(h)−AC(h− 1))/AC(h− 1) ≥ −1/h. Second, there may be re-

gions where marginal frontier costs exceed average costs yet are decreasing, where firms would

ordinarily not operate, but might under regulation. This would be especially difficult to handle as

the minimum observable price would actually exceed frontier marginal costs. Furthermore, incor-

porating such irregular cost structures would involve multiple local turning points, as opposed to

the single one at MES that we have here. For these reasons, we impose the condition of a U-shaped

average cost curve.

2.3 Apartment floor and building height

We account for consumers valuing apartment floor or building height by “efficiency unit"

modeling of housing services, with log price

ln(price) = ln p+ lnm( f ,h), (1)

where m is an unknown function representing the premium that all households are assumed willing

to pay for an f th-floor apartment in an h-floor building, and p is the price net of this, reflecting

the value of the building’s location. Hence, per unit of land the quantity of housing in an h-floor
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building is the sum of the premiums, q(h) = ∑
h
f=1 m( f ,h).

Although building height maps one-to-one to the quantity of housing (and in our data they are

very close, with 0.05 < (q(h)− h)/h < 0.1), they are not identical. Since the discrete levels of

quantity will not be integers, it will usually be convenient to express cost as a function of height.

Yet, with price stated per unit quantity, we make this relationship explicit. Let h(q) denote the

inverse of q(h).5 Then C̃(q) =C(h(q)), where C̃(q) is the frontier cost of building quantity q and

C(h) the frontier cost of building to height h.

Break-even market price for an h-floor building is

AC(h) =
C(h)

∑
h
f=1 m( f ,h)

=
C̃(q(h))

q(h)
.

This is the lowest possible observed adjusted price in a region with economies of scale.

For diseconomies of scale, the lowest possible observed adjusted price at any given height

equals the marginal cost savings from building the next lowest feasible quantity,

MC(h) =
C(h)−C(h−1)

∑
h
f=1 m( f ,h)−∑

h−1
f=1 m( f ,h−1)

=
C̃(q(h))−C̃(q(h−1))

q(h)−q(h−1)
.

2.4 Deviation and regulatory tax

Define deviation U as the difference between price and average cost when suppliers build

below MES and the difference between price and marginal cost above MES,

U(h) = P(h)−G(h)≥ 0, (2)

G(h) = max{AC(h),MC(h)}.

When cost curves are continuous, and suppliers build above MES, as in Figures 1 and 3, then the

deviation is exactly the regulatory tax. To account for the discreteness of height as in Figure 2, as

well as below MES construction, we define the regulatory tax as

RT (h) =
{

P(h)−AC(MES), h < MES,

max{0,P(h)−MC(h+1)}, h ≥ MES,
(3)

where MES = argmin
h∈N

{AC(h)}.

Below MES, the only possible equilibrium price in an unregulated market is minimum average

cost AC(MES). In such an equilibrium, parcel-level height demanded is h and firms are indifferent

5This inverse exists as long as m( f ,h)> 0, for all 1 ≤ f ≤ h, which is the case empirically.
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between not building at all and building to MES. Some parcels are left undeveloped and others built

to MES, with the share such that demand equals supply. Hence, at E5 in Figure 3, the regulatory

tax is RT (h5) = p5 −AC(MES), which would raise average costs so that h5-floor buildings would

be built absent other regulation.

Above MES, for an unregulated competitive firm to choose height h, we must have MC(h)≤

p ≤ MC(h+1). Thus when price is below the marginal cost of adding another floor, the regulatory

tax is zero and when price exceeds the marginal cost of adding another floor, the regulatory tax

is equal to the difference. Hence, at E3 in Figure 2, the regulatory tax is RT (3) = max{0, p3 −

MC(4)}= p3 − p f
4 , which would raise marginal costs so that 3-floor buildings would be built in

the area absent other regulation.

2.5 Measurement errors

Our empirical analysis allows for building and apartment-level measurement errors. This

section discusses the identification of the frontier assuming that these errors are independent of

amenities, but allowing their distributions to depend on height. Under this assumption, the frontier

is obtained for mean structural quality buildings and the regulatory tax for error-free prices.

At the apartment level (the unit of transaction reported in our data) especially, these errors

may be actual transcription errors or misreports of apartment price or floor area. However, we

view measurement errors as also including price premia for structural quality differences, so

long as such differences are independent of location. At the apartment level, that might include

additional appliances, or unfinished wiring. At the building level, that might capture the quality

of construction or exterior aesthetic enhancements. In contrast, structural quality differences that

are systematically related to floor or building height are removed by the m function discussed in

Section 2.3. Finally, structural quality differences that are systematically related to amenities are

taken as absent. Allowing for them restricts us to the bounding argument in Section 2.7.

In principle, the frontier can be nonparametrically identified even with measurement errors,

based on results from Kotlarski (1967) and Schwarz and Van Bellegem (2010), who identify the

distribution of a mismeasured variable; the former by multiple measurements and the latter by

differences in the supports of the variable (assumed to equal zero on some interval) and the mea-

surement error (assumed to be nonzero on the reals). However as these approaches lead to slow

convergence rates and often complicated estimation techniques involving tuning parameters, for
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practical purposes we impose distributional restrictions (with estimation converging at the para-

metric root-n rate). The multilevel structure of our data does allow us to estimate the measurement

error variances independently of the distributional assumptions.

2.6 Further discussion of identification

Identification of the frontier only requires observable prices and quantities (i.e., heights), with

the distributions of deviations from the frontier allowed to depend on height, obviating the usual

need for exogenous variation. Also, no parametric or separable conditions need be imposed on the

structure of demand or (regulated or unregulated) supply. Other characteristics of the environment

become critical, though.

First, we have assumed a positive probability of observing unregulated markets at heights

for which there are diseconomies of scale and regulated markets at heights for which there are

economies scale. The frontier is not identified if these markets are not realized. Of course, there

can be no hope of uncovering costs in the absence of regulation that is always imposed, such

as nationwide safety regulations. Thus “unregulated" should really be interpreted as “minimally

regulated", and it is the “minimally regulated" frontier that is our estimation objective. The

problem arises rather when minimal regulation is realized at certain heights, but not at others.

However, that scenario might be detectable if one ends up estimating a nonsensible cost function.6

Second, we have assumed perfect competition and equally efficient firms with the same costs

over firms, space, and time. To account for cost changes over time, we adjust prices using the

Israeli Central Bureau of Statistics’ residential construction input-prices index.7 Non-land cost

differences over space are small according to industry participants.8 This is corroborated by similar

frontier estimates on samples that remove the areas known to face greater technical challenges

(see Figure 8).

Assuming a perfectly competitive residential construction industry with identical cost firms is

standard in the housing literature. To the extent this does not hold, identification additionally re-

6For an example of identification failure, consider the monocentric city model, where prices decrease from the city
center. A greenbelt, where construction is forbidden, surrounding the city, would leave no way to identify marginal
costs for heights that would have otherwise been built there. In this case, identification failure would be apparent from
the gap in the distribution of prices, unconditional on height.

7Estimates without adjusting for construction cost changes are similar (see Figure 15).
8Industry participants point out two variations, which are small relative to price differences: the cost of protecting

the underground portion of very tall buildings from water encroachment in Tel Aviv and potentially lower labor costs
in the Beer Sheva district. These interviews were conducted for Genesove et al. (2020).
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quires a positive probability of maximum competition and firm efficiency. The frontier would now

be the cost curve of the most efficient firm with the lowest markup in the least regulated market.9

However, equally efficient competitive firms reasonably approximates conditions in our applica-

tion: the Israeli construction industry is structurally competitive, with a 10-firm concentration ratio

of 0.15 and its larger firms operating throughout the country.10

Third, below-cost prices would undermine our frontier estimates. Below-cost prices can be due

either to government subsidization or expectation mistakes. Although there have been periods of

government subsidization, notably in response to the mass immigration from the ex-Soviet Union

of the early 1990s in the Mechir l’Mishtaken program (Genesove, 2021), these were absent during

our period of analysis.

If builders expect a higher apartment price than what materializes, price may not cover cost.

We do not think this is a major concern, however. Building specific expectation mistakes can

be included in measurement error: under rational expectations, the observed price is a random

deviation from the expected price, which is the relevant price for determining the cost frontier. As

modeled, however, measurement error fails to cover market-wide misperceptions. This should

not be an issue, however, as parsimonious models forecast prices over the sample period fairly

well. A yearly AR(1) specification with a trend and structural break in trend at 2009 yields a

root mean squared error of 0.018.11 Also, we do not see large variation in mean price differences

across transactions within buildings that take place the year before, the year of or the year after

construction, as we would expect to see if substantial surprises were common. Finally, when

repeating our estimates on the pre-2008 period only, a period with relatively stable prices, we get

similar results (see Figure 8).

2.7 Bounding regulatory tax when suppliers choose structural quality based on amenities

In Section 2.5, we considered measurement error, including random structural quality. How-

ever, higher structural quality may be positively linked to desirable locations if households with

9This approach is in the spirit of Sutton (1991), who in estimating the lower envelope of concentration ratios
across normalized market sizes assumes a positive probability of maximally competitive conditions. Note that the
spatial component of the lower bound for the regulatory tax discussed below can accomodate markups that are weakly
complementary with spatial amenities in the same manner as structural quality.

10Israel is about the size of New Jersey, with about half of it a semi-arid lightly populated desert.
11Housing prices rose steeply after the Bank of Israel drastically reduced interest rates at the beginning of 2009, as

part of the coordinated, worldwide central bank response to the financial crisis. Unanticipated price increases do not
threaten identification of the frontier.
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greater amenity preferences also prefer higher quality structures. In this case, the frontier is easily

reinterpreted as representing the non-land cost of a minimal quality building in an unregulated

market. However, deviations from the frontier are now the sum of regulatory effects and the excess

of structural quality above the minimum, requiring some method to separate the two. To begin,

assume total costs are C(h)+ zh, where C(h) is the frontier-quality cost of building to height h and

zh is the extra cost of building at structural quality z ≥ 0; with this specification, additional quality

adds the same amount to marginal as to average cost.12 Define the z-structural quality frontier as

G+ z, which is the marginal cost or average cost, as appropriate, for quality z. This leads us to

decompose the deviation U in (2) as

U = z+Ũ ,

where Ũ ≥ 0 is the deviation from the quality-adjusted cost curve. We bound Ũ , rather than U ,

which now, after removing quality costs, approximates the regulatory tax. For the analysis z and

Ũ are unknown, and so our bounds will be based only on prices and frontier costs G.

For any building i, its price Pi is the sum of frontier cost G(hi) = max{MC(hi),AC(hi)}, the

addition to marginal cost due to its structural quality zi ≥ 0, and quality-adjusted deviation Ũi ≥ 0

Pi = G(hi)+Ũi + zi. (4)

Given that the marginal cost of quality is non-negative, an upper bound for quality-adjusted

regulation is obtained when zi = 0 as follows:

Ũi ≤ Pi −G(hi). (5)

This bound assigns the entire deviation to regulatory tax, dismissing any contribution from quality.

Next for a lower bound on Ũi, consider a comparison building j. Taking the difference between

equation (4) for buildings i and j, rearranging, and using the non-negativity of the deviation for j

yields a bound for the focal building’s deviation:

Ũi ≥ Pi −Pj︸ ︷︷ ︸
(i)

−
(
G(hi)−G(h j)

)︸ ︷︷ ︸
(ii)

−
(
zi − z j

)︸ ︷︷ ︸
(iii)

. (6)

Of these three components, we now focus on the quality differential (iii), as it is not observed, and

must be inferred through additional structure. To that end, decompose zi − z j = (zi − z(a j, ti))+

12There is no loss of generality in writing zh instead of f (z)h, where f is any strictly increasing function.
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(z(a j, ti)− z j). Here, z(a j, ti) represents the quality that would arise at the comparison building’s

location but at the focal building’s transaction period. The spatial component, (zi − z(a j, ti)),

represents the quality difference due to different locations, at the focal building’s transaction

period. The temporal component, (z(a j, ti)− z j), represents the quality difference due to different

transaction periods, at the comparison building’s location.

To bound the spatial component, write the price of housing with amenities a, transaction time t,

and structural quality z as P(a, t,z). We assume local weak complementarity between amenities and

structural quality, i.e., the returns to structural quality are nondecreasing with amenities: Pza ≥ 0.13

This allows for different trade-offs between amenities and structural quality in different geographic

areas; indeed, imposing global complementarity between amenities and structural quality would

contradict a constant structural quality frontier.

A profit-maximizing, price-taking supplier, unconstrained in choice of structural quality, will

choose structural quality z(a, t) to satisfy the first order condition Pz(a, t,z(a, t)) = 1. For the

spatial component, fix time t. Totally differentiating this first order condition and the definition of

price implies,14

dz =
1

1− (PzzPa/Pza)
×dP ≡ κS(a,z)×dP. (7)

Weak complementarity Paz ≥ 0, the second order condition Pzz ≤ 0, and Pa > 0 (by definition) imply

0 ≤ κS(a,z)≤ 1. Thus if a building’s location amenity is smooth in location, we can conclude that

z(a j, ti)− zi ≈ κSi × (Ti jPj −Pi) for all comparison buildings j sufficiently close to focal building

i, and for some κSi ∈ [0,1], where Ti jPj is defined as building j’s price deflated to building i’s

transaction period using a housing price index. Hence, for each building we choose κSi ∈ [0,1] to

minimize κSi × (Ti jPj −Pi).

Next, we bound the temporal component. Assume price increases proportionally with time

effects γ(t), so that the log price of newly constructed housing is lnP(a,z, t) = γ(t)+ lnP0(a,z).

Fix amenities a to be constant. Totally differentiating both the log transformed first order condition

for quality and log price itself,15

dz =
δ (a,z)

1+δ (a,z)
×dP ≡ κT ×dP (8)

13We use the standard notation fx to denote ∂ f/∂x.
14We solve Pzada+Pzzdz = 0 and Pada+Pzdz = dP, for dz and da unknown.
15We solve d lnP = dγ(t)+(Pz/P)dz and dγ(t)+(Pzz/Pz)dz = 0, for dz and dγ(t) unknown.
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using the first order condition Pz = 1, and δ ≡ −P2
z /(PPzz) ≥ 0 is an inverse measure of the

convexity of P as a function of z (a constant for P isoelastic in z). This allow us to write z(a j, ti)−

z j ≈ κT × (Ti jPj −Pj) for all comparison buildings j sufficiently close in time to focal building i.

In contrast to the coefficients κSi for the spatial component, κT can be estimated. Generalizing

our price specification above to accommodate existing homes, and noting that the choice of quality

for housing constructed at time t can be written as z(a,γ(t)), let the log price of housing constructed

in period s and sold in period t be lnP = γ(t)+ lnP0(a,z(a,γ(s))). Then a linear approximation of

the price around the quality of new construction at an arbitrary time period 0, z(a,γ(0)), yields16

lnP ≈ γ(t)+ lnP0(a,z(a,γ(0)))+δ (a,z(a,γ(0))) · γ(s). (9)

This motivates estimating δ by the proprotionality coefficient in a restricted log price regression

that conditions on the dates of transaction (‘period effect’) and construction (‘cohort effect’), with

the cohort effect constrained to be proportional to the period effect, and with parcel fixed effects

for lnP0(a,z(a,γ(0))).17

Returning to inequality (6), inserting the approximations for the spatial and temporal com-

ponents of the quality differentiations, accounting for discrete height and nonnegativity of the

focal building’s own quality-adjusted deviation, and noting that the inequality holds for all local

buildings, we choose the largest bound for the set Ωi(d) of buildings j within a radius d from

building i. The lower bound is now obtained by a minimax,

Ũi ⪆ min
κSi∈[0,1]

max
j∈Ωi(d)

{[G(h j)−G(hi +1)]− [(Pj −Pi)−κT (Pj −Ti jPj)−κSi(Ti jPj −Pi)]}. (10)

Thus, the regulatory tax is bounded from below by the difference between the frontier-quality

construction costs of any sufficiently close building j and those of the focal building, minus the

difference in their quality-adjusted prices. Choosing the radius d involves a tradeoff: a larger d

results in higher lower bounds but reduces the accuracy of the spatial component in the quality

approximation. Therefore, we consider how the lower bound changes with respect to d.

16This follows from ∂P0

∂γ(s) =
Pz
P · ∂ z

∂γ(s) =
Pz
P · (− Pz

Pzz
)≡ δ .

17In principle, δ can vary across locations. However, allowing δ to vary by city in the empirical analysis does not
change our results. That issue, along with depreciation and the relationship of the proportionality restriction to the
well known period-cohort-age problem are discussed further in Appendix A.1.
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3 Estimation

3.1 The model

Consider the log prices of apartments in buildings of height h,

yki j = g+uk +wki + vki j, k = 1, . . . ,K, i = 1, . . . ,nk, j = 1, . . . ,Jki, (11)

where yki j is the observed log price per square meter of apartment j in building i in bloc k, g

is the frontier, ui is the deviation from the frontier, wki is building-level measurement error, and

vki j is apartment-level measurement error.18 The distributions of ui ∈ [0,∞), wki ∈ (−∞,∞), and

vki j ∈ (−∞,∞) can depend on height.19

The first moment of (11) is,

E[y|h] = g(h)+E[u|h], (12)

as E[w|h] = E[v|h] = 0 by assumption. Equation (12) demonstrates the importance of having

the parameters of the distribution of u depend on h. Were these parameters, instead, the same

across heights, then frontier estimates would equal the height-specific means, up to a common

constant, making frontier analysis pointless. Further, in this case, any endogeneity bias present in

conditional mean analysis would also be present here. Hence, u (and v and w) will have separate

parameters for each height. However, the u’s distribution originates in the joint distribution of

demand and supply shocks through the equilibrium condition. Thus, unlike frontier costs g(h), the

parameters of u’s distribution will not be “deep parameters."

3.2 Variances

Without invoking any distributional assumptions, we identify and estimate the variances of u, v,

and w using the multilevel structure (see Appendix A.2 for formulas). Specifically, conditional on

height h, the variance of the apartment-level measurement error v is identified by within building

variation in apartment time-adjusted prices, the variance of the building-level measurement error

w is identified by within bloc variation in building time-adjusted prices, and the variance of the

deviations from the frontier u (≈ regulation) is identified by variation in prices (unadjusted for

time) across both bloc and time.

18The log price is y = ln(P) = ln(G+U) = ln[G(1+U/G)]≈ lnG+U/G ≡ g+u.
19Spatial dependence of u j is considered in the robustiness section.
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3.3 The frontier

We estimate the frontier by maximum likelihood.20 At height h, assume that vki j ∼ N(0,σ2
v (h))

and wki ∼ N(0,σ2
w(h)) are normal and that uk ∼ T N(µu(h),σ2

u (h)) is the normal distribution trun-

cated from below at zero.21 Using the multilevel structure to identify the variances allows us

to estimate the error distributions on the basis of second moments only. This is in contrast to a

cross-section of data, where skewness in the data is crucial to identification. As it turns out, at

many heights we estimate µu(h) to be large relative to σu(h) (see Figure 17 in Appendix C.3), so

that there is little skewness.

The global maximum of the log likelihood, constrained so that average cost decreases to MES

and marginal cost increases thereafter, is attained by grid search and Dijkstra’s algorithm,

{M̂ES, ĝ, µ̂u}= argmax
mes∈{1,...,H−1}

g∈RH ,νu∈RH

H

∑
h=1

Lh(gh,νuh, ·), (13)

s.t. gmes ≤ gmes−1 ≤ . . .≤ g1 and gmes ≤ gmes+1 ≤ . . .≤ gH , (14)

where Lh(gh,νuh, ·) is the log likelihood at height h (see Appendix A.3 for details and formulas).

The constraint allows for M̂ES = 1 and so no economies of scale.22

3.4 Regulatory tax rates

This section describes how to estimate and bound expected regulatory tax rates of error-free

prices. Using the distributions from Section 3.3 that u ∼ T N(µu,σ
2
u ) and η ∼ N(0,σ2

η), where

σ2
η = σ2

w +σ2
v /J for building price and σ2

η = σ2
w +σ2

v for apartment price, we get,23

u|u+η = y−g ∼ T N
(µuσ2

η +(y−g)σ2
u

σ2
u +σ2

η

,
σ2

u σ2
η

σ2
u +σ2

η

)
. (15)

20We have considered alternative estimators. The commonly used, and convenient, priors of Bayesian-based
estimators are not readily compatible with a frontier objective, while minimum-price-adjusted estimators converge
slowly (see, Goldenshluger and Tsybakov, 2004).

21If x ∼ N(µx,σ
2
x ) then x | a ≤ x < b is truncated normal. Although the truncated normal is not new to the SFA

literature, the half-normal distribution (i.e., µx = 0) is more commonly used (e.g., Cai et al., 2021). However, this
assumes deviations from the frontier are clustered near it, which we do not find in general. We consider the censored
normal in the robustness section.

22We also present estimates that maximize the log likelihood at each height without constraints and estimates that
maximize the log likelihood of a quartic cost function subject to a continuous version of the constraints.

23Appendix A derives the conditional density when u is truncated normal. Jondrow et al. (1982) derive the
conditional density for the half-normal, which is the truncated normal with µu = 0.

19



Assuming that deviations from the frontier are entirely due to regulatory restrictions (taking into

account the discreteness of height) the expected regulatory tax rate based on (3) is,

E
[RT(eg(hi)+u,hi)

eg(hi)+u

∣∣∣yi −g(hi)
]
. (16)

where u is drawn from (15), conditioned on yi −g(hi). However, if structural quality is systemat-

ically related to amenities then the deviations also include location-related structural quality. In

this case, the lower bound based on (10) is,

E
[

min
κSi∈[0,1]

max
j∈Ωi(d)

max{0,eg(h j)− eg(hi+1)− (eg(h j)+u j − eg(hi)+ui)+κT (1−Ti j)eg(h j)+u j

+κSi(Ti jeg(h j)+u j − eg(hi)+ui)}|yk −g(hk),k = i, j ∈ Ωi(d)
]
, (17)

where uk, for k = i, j ∈ Ωi(d), is drawn independently from (15), conditioned on yk −g(hk).

4 Data
Apartment transaction data are obtained from CARMEN, the digitalized repository of buyer

reports to the Tax Revenue Authority. The data include the transaction date, price, square meters,

apartment floor, number of floors in the building, and year of construction. They also include a

unique identifying number for the land parcel on which the building sits. In general, the building

and parcel are coincident. However, for 300 buildings, or 1.6% of the observations, more than

one building sits on the same parcel. We exploit these cases to identify the hedonic height effects

presented in 2.3 and estimated below in Section 5.1, but drop them for the stochastic frontier

analysis. The parcel identifier also identifies the bloc, which is a higher level geographical division

that includes several parcels.24 The sample covers the period 1998 to 2017.

We limit the sample to transactions from CARMEN for which (1) the year of the transaction is

the year before, the year of or the year after the construction year, (2) the transaction is for 100%

of the asset, (3) the property type is not a single family home, (4) none of the variables listed above

is missing, and (5) there is at least one other transaction observed in the building. We adjust prices

for apartment floor-space area by expressing them in per-square meters. To account for inflation,

we convert prices to real 2017 values. These prices are adjusted for floor and height premia, as

described in Section 2.3. For estimating the frontier and the regulatory tax, we further adjust for

24See Figure 16 in Appendix C.2 for an example of a bloc and its division into parcels. We drop apartments with
nominal prices in the bottom one percent and top one percent of the distribution.
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changes in construction input prices (other than land) over time by dividing the real prices by the

Israeli Central Bureau of Statistics’ residential construction input prices index, expressed in 2017

values.

There are 7,429 blocs, 18,169 buildings, and 270,554 apartments in the sample.25 The median

bloc size is about 0.21km2. Unconditional on height, the mean number of buildings in a bloc is

about 7.5 in our transactions data. Conditional on height and the presence of at least one building,

the mean number of buildings in a bloc is 2.4, with about 55% of these bloc-height combinations

containing exactly one building.

Table 1 shows apartment-level summary statistics of price (per square meter in real 2017 NIS

and adjusted for cost) and the number of floors in the building (i.e., height), and building-level

summary statistics of price (average price within a building) and the number of floors in the

building. The mean real, input-price, height and floor-adjusted per square meter price is such that

a standard 100 square meter apartment would sell for about 1.25 million NIS in 2017 shekels

(about 350,000 USD at 2017 exchange rates).

Table 1: Summary statistics

Mean St. Dev. Min Med Max

Apartment
Log price 9.35 0.38 8.40 9.34 10.53
Price 12,369 5,056 4,457 11,423 37,371
Number of floors 9.36 5.87 1 8 40

Building
Log price 9.36 0.39 8.49 9.35 10.50
Price 12,529 5,205 4,852 11,461 36,329
Number of floors 6.65 4.51 1 6 40
Notes: Prices per square meter in real 2017 NIS.

The points in Figure 4 are building prices by height. There is a large dispersion in prices at

nearly all heights, with the average ratio of third to first quartile price equal to 1.6 and the 95% to

5% price ratio equal to 2.7.

25Table 7 in Appendix C.6 shows summary statistics for the number of observations by height.
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Figure 4: Frequency of building prices in NIS (rounded to nearest 100) by height.

5 Results

5.1 Apartment-floor, building-height adjusted price

Adjusting prices for observable attributes is especially important in our context. On the one

hand, consumers may be prepared to pay a premium, or demand a discount, for apartments on

high floors or in tall buildings. On the other hand, building height varies with location, with

taller buildings constructed in more attractive areas, as basic land use theory predicts. The chal-

lenge is to obtain an empirical counterpart to p of (1), the price after removing apartment-floor,

building-height effects. An insufficiently flexible specification could easily assign apartment floor

or building height effects to location effects, thus overstating the increase in the frontier at higher

heights; too much flexibility could lead to excessive noise in the estimates. Our solution is to

first estimate a fully saturated model of floor and height effects, and then, after inspecting the

estimates, choose a reasonable restricted model. The function m in (1) is identified using variation

in apartment floor within a building and variation in building height within a parcel, as some

parcels have more than one building on them.26 We then subtract the estimated floor and height

effects from the observed price and add back in the effects pertaining to a second-floor apartment

in a 4-floor building. This is the price used in the remainder of the analysis.
26See Appendix A.4 for details. We normalize m(2,4) = 1, so that the adjusted price represents a second-floor

apartment in a 4-floor building at the given location.
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5.2 Variances

Figure 5 shows the estimated standard deviations, by height, of apartment level measurement

error v (in blue), building level measurement error w (in red), and deviations from the frontier u (in

purple), using (18)-(20) in Appendix A.2. The measurement error variances are estimated using

residuals of a nonparametric regression of log price on transaction day. The deviations variance is

then estimated using log prices and the estimated measurement error variances. Thus the variance

of deviations(≈ regulations) is obtained from variation in prices (unadjusted for time) across both

bloc and time, while the variances of measurement errors partials out time effects. For some of

the higher heights, the degrees of freedom at the building level are small or zero (see Table 7 in

Appendix C.6) so that the estimated building-level measurement error variances do not exist or

are negative, and so are missing from the figure. To deal with these cases and to avoid excessively

noisy estimates, we smooth the measurement error variances using polynomial series estimates,

with the polynomial degrees chosen by cross validation. The resulting curves are relatively flat. We

do not smooth the standard deviations of u. Allowing these standard deviations to be unrestricted

functions of height avoids imposing any endogeneity bias, as we discussed underneath (12).
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Figure 5: The red, blue, and purple points are estimated standard deviations based on (18)-(20). The red and blue
curves smooth the estimates with series estimators.
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The figure shows that the estimated standard deviation of u is on average about 4 times the

estimated standard deviation of building error and about 2.5 times the estimated standard deviation

of apartment error. Thus the variance of regulation is an order of magnitude larger than the com-

bined measurement error variance. The standard deviations of the measurement errors, however,

are clearly nontrivial.

5.3 The frontier

Figure 6 shows our constrained ML frontier estimates from (13)-(14) (see also Appendix C.5).

The estimates decrease until MES at five stories, increase, and then remain constant before increas-

ing steeply. Although the upper confidence band admits marginal costs that are increasing beyond

MES, each parametric bootstrapped sample produced a frontier that had long stretches of constant

marginal costs.27 The figure also shows mean and minimum building prices. The differences

between mean prices and the ML estimates, along with the relative sizes of the variances estimated

in Section 5.2, show that multi-floor housing markets must be highly regulated, with some building

prices more than six times frontier prices. A striking difference between mean prices and the ML

estimates, is that the former increase sharply at low heights but the latter decrease. Minimum

prices are consistent estimators for the frontier absent measurement error (see Section 2.1) but

with measurement error, at low heights, where there are many buildings with just two apartments,

it is likely that some building has large negative measurement error and is relatively unregulated,

making minimum prices biased downwards as frontier estimates. At high heights, there are rel-

atively few buildings and so minimum prices will tend to be biased upwards as estimates of the

frontier.

Figure 7 shows alternative frontier estimates: a scatter plot of ML estimates of the frontier

obtained at each height separately by maximizing the log likelihood (13), and smooth AC and

MC estimates from the constrained maximum likelihood of a quartic cost function as in (24)-

(26) in Appendix A.3. The constrained ML estimates from Figure 6 are also shown. Across

all estimates, the average cost at MES is about 10% lower than the average cost of constructing

a one-floor building. The marginal cost initially increases, then remains flat, before increasing

steeply reflecting that building upwards becomes increasingly difficult at high heights. This is

27Let (ĝ(h), σ̂2
v (h), σ̂

2
w(h), σ̂

2
u (h), µ̂u(h)) be the ML estimates. The parametric bootstrap at height h randomly

draws v∗ki j from N(0, σ̂2
v (h)), w∗

ki from N(0, σ̂2
w(h)), and u∗k from T N(µ̂u(h), σ̂2

u (h)). The bootstrapped observation is
y∗ki j = ĝ(h)+u∗k +w∗

ki + v∗ki j.
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consistent with previous research (e.g., Glaeser et al., 2005) and discussions with industry experts

(see footnote 8).

Table 2 compares buildings near the frontier, defined as buildings with average apartment price

at most 5% greater than the frontier, to the full sample of newly constructed buildings.28 About

4% of the full sample is near the frontier. Relative to the full sample, housing near the frontier is

about twice as far from the city of Tel Aviv, the country’s commercial center. Depending on the

radius and whether we look at buildings or apartments, ‘Near Frontier’ housing is in areas with

average densities between 0.28 to 0.62 that of the full sample. The smaller standard deviations

for ‘Near Frontier’ indicate a greater homogeneity of this sub-sample relative to the full sample.

Although these buildings are further away from Tel Aviv, they are, perhaps surprisingly, closer to

their own city centers, but the standard deviation indicates a large degree of disparity.

Consistent with our general view of regulatory variation as extremely local, buildings near the

frontier are well represented throughout the country, with 59 of the 160 cities in Table 2 having at

least one building near the frontier. Seven districts contain over 99% of buildings near the frontier.

The remaining three districts are those closest to Tel Aviv.

Table 2: Comparison of full sample and near frontier

Full sample Near Frontier
Mean St. Dev. Mean St. Dev.

Apartment
Regulatory tax rate 0.45 0.16 0.12 0.04
Distance to city center 2.43 1.56 1.89 1.22
Density (1km radius) 5.01 4.98 3.13 2.71
Density (4km radius) 3.17 2.66 1.42 1.38
Distance to Tel Aviv city (km) 37.74 35.58 70.64 29.46

Building
Regulatory tax rate 0.47 0.17 0.09 0.04
Distance to city center 2.43 1.57 1.85 1.38
Density (1km radius) 6.24 5.68 2.56 2.17
Density (4km radius) 3.50 2.89 0.97 0.97
Distance to Tel Aviv city 37.89 38.50 80.05 28.63

Notes: We remove observations with missing geographical coordinates so that there are 13,102 buildings and
206,835 apartments in the full sample and 354 buildings and 7,339 apartments near the frontier. Distances are in
kilometers. Densities are in 1000’s per km2.

28Table 2 and the analysis in Section 5.7 use the subset of the data with geographical coordinates.
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Figure 6: The minimum and mean building prices and constrained ML estimates with 95% confidence bands using
200 parametric bootstrapped samples.
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Figure 7: The constrained ML estimates, the smooth ML estimates using a quartic cost function, and the ML
estimates for each height separately.
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5.4 Robustness of the Frontier

In our primary analysis, uk, representing deviations from the frontier, and approximating

regulatory taxes, follows a truncated normal distribution. To test the sensitivity of our results to

this assumption, we considered alternative distributions for uk, including a folded normal, a half-

normal, and a zero-censored normal. The latter two assume a prevalence of minimally regulated

buildings. However, this assumption seems inconsistent with our data, see Figure 4, and our

findings that the mean often is much larger than the variance. Nevertheless, as can be seen in

Figure 8, our estimates are robust to different distributional choices for the deviations.

To assess spatial robustness, we allowed our model to include spatial dependencies with the

relationship uk = ρ ∑
K
l=1 ωklul +ζk. This extension allows us to account for spatial correlations in

the deviations. We obtain estimates and bootstrapped confidence intervals (see, e.g., Jin and Lee,

2015) and the results, depicted in Figure 8, affirm that our frontier estimates are robust to spatially

correlated regulations.

We also considered building-level regulations, modifying the model to yki j = g+uki+wki+vki j.

Identification now depends on the skewness of the distribution of uki and the symmetry of the

distribution of wki. The practical application of this model requires σ2
u to be sufficiently larger

than µu for the distinction between a truncated normal distribution and normal distribution to be

discernible. Figure 8 shows similar estimates using building-level regulations.

To assess the robustness of differences in cost over space, we estimated the frontier excluding

the Beer-Sheva district, potentially having lower labor costs. The results, also shown in Figure

8, further confirm the robustness of our frontier estimation across different spatial contexts. Next

we examined the robustness of differences in cost over time by estimating the frontier without

adjusting for temporal cost differences and separately by restricting our dataset to pre-2008 data,

a period marked by significant housing price increases. The results, presented in Figures 8 and 15,

demonstrate the stability of our estimates over time.

Additionally, we employed the best linear unbiased estimator (BLUE) and the best linear

unbiased predictor (BLUP), with uninformative and normal priors on g+uk, respectively. These

approaches are conventionally used for mean estimation, but in our case less suitable since g+

uk represents a minimum. These estimates shown in Figure 15 are similar to our ML frontier

estimates.

Lastly, we estimated the frontier by a sample size adjustment to the minimum price, as
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proposed by Goldenshluger and Tsybakov (2004). This involved estimating the frontier as

ĝGTm = mink,i{ 1
m ∑

m
j=1 yki j}+ σ̂GT m

√
2ln(n). The results, are illustrated in Figure 15, with shape

similar to our estimates but substantially higher perhaps due to slow convergence rates.

The comprehensive nature of these robustness checks, encompassing distributional assump-

tions, spatial and temporal variations, and alternative estimation techniques, underscores the relia-

bility and validity of our frontier estimation approach.
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Figure 8: Robustness of ML estimate to ML estimate with censored normal regulations, ML estimate using
pre-2008 data, ML estimates without the Beer Sheva district, and ML estimate that allows for spatial correlation in
regulations.

5.5 The frontier elasticity of substitution of land for capital

The elasticity of substitution of land for capital is typically used to summarize housing produc-

tion functions. Appendix B shows that it is equal to the elasticity of average to marginal non-land

costs σ = d lnAC/d lnMC. The elasticity and isoquant curves implied by the smooth MC and AC

estimates are shown in Figures 9a and 9b respectively. The elasticity is equal to zero at MES (AC

is at its unique minimum here so dAC = 0 and the elasticity is zero), increases sharply because

dMC ≈ 0 (this region corresponds to the near linear - i.e., perfect substitutability - segment of
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Figure 9: (a) Elasticity of substitution of land for capital (b) Isoquant curve.

the frontier isoquant), then decreases sharply, and remains well below 0.5 thereafter. Most of the

literature estimates the elasticity of substitution for small residential structures to be about unity

(e.g., Ahlfeldt and McMillen, 2014) and the few elasticity estimates for tall residential buildings

are about 0.5 (e.g., Ahlfeldt and McMillen, 2018). Our estimates of the elasticity suggest that

substituting capital for land is difficult at low and high heights and easy at medium heights.

5.6 Regulatory tax rates

For each building we estimate the upper bound (based on (16)) and lower bounds (based on

(17)) for the mean regulatory tax rate . The lower bounds use nearby buildings within distance

d ∈ {0.25km,0.5km,1km}. The mean number of buildings within 0.25km, 0.5km, and 1km is 10,

29, and 80 respectively. The existing home price regression yields an estimate of 0.0016 for κT , as

reported in Appendix A.1. The estimated mean value of κSi is 0.65, with standard deviation 0.35.

Across all apartments (buildings), the upper bound is 43% (44%), with a standard deviation

of 16% (18%). Across all apartments (buildings) with height above MES (five floors), the upper

bound is 45% (47%), with a standard deviation of 16% (18%). Restricting to buildings with

geographical coordinates, and using buildings within 0.25km, 0.5km, and 1km respectively, the

lower bounds are 10%, 15%, and 19% with standard deviations 12%, 14%, and 16%. Restricting

29



to buildings with geographical coordinates and height above MES, and using buildings within

0.25km, 0.5km, and 1km respectively, the lower bounds are 13%, 18%, and 23% with standard

deviations 13%, 15%, and 17%.

Figure 10 shows the upper and lower bounds over time for buildings with heights above MES

to 30. The bound tightens substantially with time as housing prices increased, post-2008. In 2016

the bounds were: 0.34 0.44 and 0.48. With a small estimate for κT , this demonstrates the greater

usefulness of bounds in periods that follow high price growth.
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Figure 10: The upper and lower bounds for mean regulatory tax rates for buildings with heights above MES to 30.

5.7 Characterizing regulatory tax rates

We characterize the estimated regulatory tax rate using (16) by the covariates distance to city

center, density, and geographical location (summary statistics for these variables are shown in

Table 2). The relationships between the regulatory tax and the covariates are shown graphically

and through regression estimates below. These estimates are to be understood as descriptive only,

and not causal.

We define the city center as the location within the city with the highest predicted price
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according to a nonparametric regression of observed building prices on buildings’ geographical

coordinates (using cross-validation for choice of bandwidth). This definition is consistent with

monocentric city models, while obviating the need for non-price data and choosing between

employment and consumption as the dominant agglomeration force.

Figure 11a shows the estimated quartic fit of a regression of estimated regulatory tax rates on

distance, in kilometers, to the city center for the three largest cities: Jerusalem, Tel Aviv, and Haifa.

The figure shows that in general, and where the relationship is precisely measured, the estimated

regulatory tax rate decreases with distance to city center. The negative relationship between the

regulatory tax and distance to city center is supported by the regression estimates in Columns (3)

and (6) in Table 3. The negative relationship is consistent with Tan et al. (2020), where the city

center is defined as the location with the brightest lights at night.

We measure population density at a building’s location as the number of people residing in

1995 (three years before the start of our sample period), in thousands, within a 1 km or 4 km

radius.29 Figures 11c and 11d contain scatter plots of estimated regulatory tax rates versus density,

with an overlaid quartic fit and 95% pointwise confidence bands. Measuring the density with a 1

km radius, Figure 11c shows that the mean tax rate, starting at 0.39 in unpopulated areas, increases

until a maximum of 0.58 at about a density of 16,571 people (the 94th quantile of the density).

Measuring the density with a 4 km radius, Figure 11d shows that the mean tax rate, starting at

0.32 in unpopulated areas, increases to about 0.73. On average, as seen in Columns (1) and (2)

of Table 3, for every additional thousand people per square kilometer, the tax rate is one percent

higher measured with a 1 km radius and three percent higher with a 4 km radius. The goodness

of fit in the regressions, measured by R2, improves as the radius increases from 0.075km to 4km.

This suggests that the density immediately surrounding a building is less predictive of the tax rate

compared to the density of a broader area. A positive relationship between the tax rate and density

is reminiscent of Hilber and Robert-Nicoud (2013), who show a positive relationship between

the developed share of developable land and the Wharton Index, consistent with their theoretical

model of incumbent landowners protecting their asset value. In contrast to the Wharton Index, our

measure of regulation is cardinal.

The large increases in R2 when city fixed effects are added in the latter columns of Table 3

29To be precise, the density is the weighted average of 1995 population densities of census statistical areas within
a 1 km or 4 km radius of the building, where the weight is the statistical area’s contribution in area to the intersection
of the circle of radius 1 km and Israel’s land mass.
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show that the jurisdiction itself, and not just its overall density, is important. Figure 11b shows the

kernel density of the estimated regulatory tax rate for the three largest cities: Jerusalem, Tel Aviv,

and Haifa. Tel Aviv, which boasts the highest housing prices in the country, has the highest tax

rates among the three. This is just an example of a more general relationship in the data, that higher

priced cities are characterized by higher regulatory taxes. As the scatter plot in Figure 12 shows,

the relationship is tight. This is not surprising given the relative flatness of the frontier. However,

it is not inevitable - a scenario in which multi-unit housing is restricted in low demand areas only,

say the suburbs, would yield a negative relationship. The positive relationship is consistent with

predictions in of greater regulation in high amenity cities (Hilber and Robert-Nicoud, 2013).

Table 3: Regressions

Estimated regulatory tax rate
(1) (2) (3) (4) (5) (6)

Apartment
Distance to
city center

- -
-0.0031
(0.0002)

- -
-0.0034
(0.0002)

Density -
1km radius

0.0092
(0.0001)

- -
0.0011
(0.0001)

- -

Density -
4km radius

-
0.0283
(0.0001)

- -
0.0063
(0.0003)

0.0067
(0.0003)

City fixed effects No No Yes Yes Yes Yes
R2 0.0858 0.2296 0.5540 0.5523 0.5531 0.5555

Building
Distance to
city center

- -
-0.0042
(0.0006)

- -
-0.0046
(0.0006)

Density -
1km radius

0.0107
(0.0002)

- -
0.0016
(0.0002)

- -

Density -
4km radius

-
0.0324
(0.0004)

- -
0.0088
(0.0009)

0.0090
(0.0010)

City fixed effects No No Yes Yes Yes Yes
R2 0.1309 0.3099 0.6713 0.6675 0.6688 0.6735

Notes: Standard errors are in parentheses underneath the coefficients. Distance to city center is in kilometers.
Densities are 1000’s per square kilometer.
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Figure 11: (a) The quartic fit and 95% confidence bands of regressions of the estimated regulatory tax rates on
distance to city center for Jerusalem, Tel Aviv, and Haifa, (b) The kernel densities of the estimated regulatory tax
rates in these cities, (c) The estimated regulatory tax rate by density (in thousands) per km2 for radius 1km, the
quartic fit, and 95% pointwise confidence bands, (d) The estimated regulatory tax rate by density (in thousands) per
km2 for radius 4km, the quartic fit, and 95% pointwise confidence bands.
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Figure 12: The city mean regulatory tax rate against the city mean apartment price.

5.8 Case studies: Regulation over time in newly established cities

The newly established cities of Modiin (situated about halfway between Tel Aviv and Jerusalem)

and Elad (about 25 kilometers east of Tel Aviv) offer useful case studies. Modiin and Elad were

planned in the 1990s. Modiin’s first residents arrived in 1996 and Elad’s in 1998. By 2019, Modiin

had about 90,000 residents, most of high socioeconomic status, while Elad had about 50,000

residents, most religious and of low socioeconomic status. Since many political economy models

of housing regulation locate the source of regulation in home owners’ attempts to increase, or at

least protect, the asset value of their home, it is interesting to document the degree of regulation in

newly established cities, before homeowners become politically influential. Figure 13a shows the

mean estimated regulatory tax rates for the full sample (in red), in Elad (in purple) from its year of

establishment, and in Modiin (in blue) from two years after its establishment (the first year in our

data). Elad’s first residents moved in about two years after Modiin’s, and Elad’s curve shifted three

years to the left, and a few points up, basically overlaps Modiin’s curve. The figure shows that in

their nascent years the regulatory tax rates were, although not zero, much lower than the national

average, and relatively stable. Then about six to eight years after their first residents moved in, the

regulatory tax rates essentially doubled. Modiin’s rate settled above the national average, while
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Elad’s at the national average. Thereafter, their rates continue to increase at the national rate.

Figures 13b and 13c show that the increase in regulation is coincident with a jump up in prices

yet relatively stable building heights, suggesting that the sudden increase in the regulatory tax was

driven by restrictions that were relatively fixed over time, and became more binding with the price

increase.
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Figure 13: The mean estimated regulatory tax rates, prices, and building heights over time.

6 Conclusion
Housing regulation can take many different forms that are often difficult to measure and

aggregate, may be arbitrarily enforced, and is endogenous to building location, market conditions

and price. Hence, estimating non-land costs by mean regression embeds unobserved regulatory

conditions and introduces bias to these estimates. In this paper, we show how to identify and

estimate frontier costs in multi-floor housing using just observed prices and heights, identifying

frontier marginal costs for heights above MES from variation in demand in unregulated markets

and identifying frontier average costs for heights below MES from variation in demand and

regulation. We allow for nonhomogeneous housing units based on observed apartment floor and

building height, and for apartment and building level measurement errors (including structural

quality that is independent of amenities).

Using data for newly constructed buildings in the Israeli housing market from 1998-2017,

we estimate regulatory tax rates, findin a mean rate of 43%, with a standard deviation of 16%.
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Regulatory tax rates are higher in areas that are higher priced, denser, and closer to city centers.

Measurement errors are small compared to regulation. When allowing for location-related struc-

tural quality, we assume that structural quality and amenities are, locally, weak complements and

bound the mean regulatory tax rate from below by 19%, using buildings within a 1km radius. Most

of that bound derives from the availability in the data of nearby buildings constructed at lower

priced time periods and at heights without substantially lower frontier costs. This is contingent

on our estimates of a near-zero relationship between temporal demand shocks (period effects)

and structural quality (cohort effects). The precise form of regulations are left unspecified, and

thus there is no presumption that regulation is either welfare-enhancing or welfare-detracting–a

determination that would require additional sources of information.

Our analysis of regulation is price-based, defining a regulatory tax that relies on vertical

deviations from the frontier (i.e., the difference between a building and frontier price at the building

height). A quantity-based alternative would rely on horizontal deviations from the frontier (i.e.,

the difference between a building and frontier height at the building price). For example, in a

counterfactual world where there is no regulation, and holding prices constant, our point estimates

indicate that suppliers would build about 4.6 times higher, constructing about 3,400 buildings

instead of the 18,000 or so in our sample, and so freeing up about 80% of the building footprint.

Assessing the resource savings in this counterfactual world would require values for land and

consideration of general equilibrium effects, as well as externalities such as congestion effects.

One simple exercise, however, is to consider building all apartments in buildings of heights 11

to 24, where marginal costs are constant according to our constrained ML estimates, in 24-story

buildings instead. This would require 35% less land, but cost an additional 1% of non-land costs.

Likewise, removing regulation so that apartments in shorter than MES-story buildings are built

in MES buildings would also require 35% less land, along with saving 1% of non-land costs. We

leave further analysis along these lines for future work.
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Online Appendix

A Additional estimation details

A.1 Estimating κT

Our aim is to estimate κT through the relationship between period effects (transaction time)

and cohort effects (construction time) in a regression of existing home prices on period, cohort,

and age (transaction time less construction time, capturing depreciation), where the cohort effects

are restricted to be a function of the period effects. In its most general form, this entails estimating

yits = γ(t)+δ (γ(s))+α(t − s),

where s is construction period, t is transaction period (so that t − s is age), γ(t) (which corresponds

to its namesake in Subsection 2.7) are period effects, δ (γ(s)) are cohort effects, and α(t) are age

effects. This restriction on the cohort effects is implied by the model outlined in Subsection 2.7,

where cohort effects capture variations in structural quality over time. So long as γ is nonlinear,

the restriction provides one solution to the well-known problem of decomposing a variable into

age, period, and cohort effect, as period is the sum of cohort and age (e.g., Hall et al., 2007; Hall,

1971). A number of different approaches have been taken in the hedonic pricing literature (e.g.,

Coulson and McMillen, 2008). Our approach is dictated by our goal of estimating κT and the

theoretical framework in Subsection 2.7 which motivates that objective.

We set γ and α to be linear-quadratic functions, and, as we are after only a single number

for κT , set δ as a constant. Nonlinearity is essential, as δ is unidentified if γ is linear. Thus we

estimate,

yits = γ1t + γ2t2 +δ (γ1s+ γ2s2)+α1(t − s)+α2(t − s)2.

A consistent estimate for δ can be obtained by regressing log price on the period of transaction

and its square, the square of the period of construction, age (or period of construction) and age-

squared. The estimate δ̂ is the ratio of the coefficient on the square of the period of construction to

the coefficient on the square of the period of transaction. Column (1) in Table 4 shows the results

of the regression, with parcel fixed effects and the same set of building and apartment attributes

as in Table 5 of Appendix A.4, and using the data described elsewhere in the paper but for all

transactions with construction years the year after or up to 40 years before the transaction year.

41



We estimate δ̂ = 0.0005/0.311 = 0.0016 (s.e. = 0.0018), and so κ̂T = δ̂/(1+ δ̂ ) = 0.0016

(s.e. = 0.0018), indicating that structural quality barely varies with price over time. We obtain

similar results for γ and α quartic functions.

Column (2) in Table 4 drops the squared year of construction, substituting instead its interaction

with indicator functions for the twenty largest (by number of transactions) cities and an indicator

for all other cities. This allows the relationship between period effects and cohort effects to vary

across locations. The results are very similar. No city shows an absolute ratio exceeding 0.0460,

while the ratio of the weighted mean of the interaction coefficients to the square of the transaction

year (with weights equal to the frequency of the cities and the residual category in the regression

sample) is −0.0037 (s.e. = 0.0019).

Table 4: Existing Homes Price Regression

Variable (1) (2)

Year of Transaction -0.034 -0.033
(0.001) (0.001)

Year of Transaction Squared/100 0.311 0.310
(0.002) (0.002)

Year of Construction Squared/100 0.0005 -
(0.001) (-)

Age 0.0012 0.0012
(0.0002) (0.0002)

Age-Squared/100 -0.0036 -0.0033
(0.0007) (0.0007)

Notes: The dependent variable is in prices per square meter in real 2017 NIS. Year is calendar year minus 1997. The
number of observations is 776,709.

A.2 Variances

Conditioning on height, we estimate the variances of u, v, and w using apartment, building,

and bloc multilevel modeling,

V̂ar(v) =
1

∑
K
k=1 ∑

nk
i=1(Jki −1)

K

∑
k=1

nk

∑
i=1

Jki

∑
j=1

(y0
ki j − ȳ0

ki)
2, (18)

V̂ar(w) =
1

∑
K
k=1(nk −1)

( K

∑
k=1

nk

∑
i=1

(ȳ0
ki − ȳ0

k)
2 − V̂ar(v)

K

∑
k=1

nk

∑
i=1

nk −1
nkJki

)
, (19)

V̂ar(u) =
1

K −1

K

∑
k=1

(
ȳk − ȳ

)2
− V̂ar(w)

K

K

∑
k=1

1
nk

− V̂ar(v)
K

K

∑
k=1

nk

∑
i=1

1
n2

kJki
, (20)
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where y0
ki j is the residual of a nonparametric series regression of log price on transaction date

(in days), and where the estimated building prices are ȳ0
ki =

1
Jki

∑
Jki
j=1 y0

ki j, ȳki =
1

Jki
∑

Jki
j=1 yki j, the

estimated bloc prices are ȳ0
k =

1
nk

∑
nk
i=1 ȳ0

ki and ȳk =
1
nk

∑
nk
i=1 ȳki, and the overall average prices are

ȳ0 = 1
K ∑

K
k=1 ȳ0

k and ȳ = 1
K ∑

K
k=1 ȳk.

A.3 The frontier

Fix height h. To simplify notation, drop the height index h. Since u ∼ T N(µu,σ
2
u ),

Var(u) = σ
2
u

[
1− µu

σu
·λ

(
µu

σu

)
−
(

λ

(
µu

σu

))2]
, (21)

where λ (x) = φ(x)/Φ(x), and φ(.) and Φ(.) are the standard normal probability and cumulative

density functions. Combining (20) with (21) we obtain,

σ̂
2
u

[
1− µ̂u
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(
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(
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1
n2

kJki
. (22)

So that given the data and parameters µ̂u, σ̂2
v , and σ̂2

w, we obtain σ̂2
u using (22).

For each of M parameter values for (g,µu) and the estimates for σ2
v and σ2

w from (18)-(20) we

obtain an estimate for σ2
u and calculate the log likelihood (ignoring constants),

Lh(g,µu,σ
2
u ,σ

2
v ,σ

2
w; ·) = 1

2
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2
w)+(Jki −1) lnσ

2
v

)
+2lnΦ

(µk
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µu(σ
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2
w

)−1
,

where µk is a weighted average of µu and the average distance of log price to the frontier.

Now, the global maximum of the likelihood at height h is obtained by maximizing (23). The

global maximum of the likelihood, constrained so that average costs decrease to MES and marginal

costs increase thereafter, is attained by a grid search and Dijkstra’s algorithm,

{M̂ES, ĝ, µ̂u}= argmax
mes∈{1,...,H−1}

g∈RH ,νu∈RH

H

∑
h=1

Lh(gh,νuh, ·),

s.t. gmes ≤ gmes−1 ≤ . . .≤ g1 and gmes ≤ gmes+1 ≤ . . .≤ gH .
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Now we describe how to obtain a smooth ML estimator for a fourth order polynomial cost

function, defined on a domain of continuous quantities, which we write as

C(h(q)) = β0 +β1q+β2q2 +β3q3 +β4q4,

implying marginal and average cost functions

MC(h(q)) = β1 +2β2q+3β3q2 +4β4q3 and AC(h(q)) =
1
q

β0 +β1 +β2q+β3q2 +β4q3.

So G(h) = max{AC(h),MC(h)}. The smooth estimator maximizes the likelihood,

{M̂ES, β̂ , µ̂u}= argmax
mes∈{1,...,H−1}

b∈R5,νu∈RH

H

∑
h=1

Lh(·) (24)

s.t. MC(mes−1)≤ AC(mes−1)≤ . . .≤ AC(1), (25)

AC(mes)≤ MC(mes)≤ . . .≤ MC(H). (26)

We now derive the likelihood in (23). Assume vki j ∼ N(0,σ2
v ), wki ∼ N(0,σ2

w), and uk ∼
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u ). So,
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We show u|u+η is truncated normal in (15). Assume u ∼ T N(µu,σ
2
u ) and η ∼ N(0,σ2

η).

fu,u+η(u,s) =
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η

.

A.4 Apartment-floor, building-height adjusted prices

To obtain the adjusted prices, we begin by regressing the real, cost adjusted, per square meter

log price on a full set of floor and building height interactions, dummy variables for transaction year

before and transaction year after the year of construction, a nine-degree polynomial in the calendar

day of transaction, eight dummies for the legal status of the property, and dummy variables for the

building. Identification of the floor effects is possible because of cases in which there are multiple

apartments in the same building, but on different floors. Identification of the height effects is

possible because of cases in which there are multiple buildings on the same land parcel.30

A selected set of the estimates for the floor × height interactions in buildings with 5 to 10

floors are shown in Figure 14a. For given building height, the relationship between price and floor

is J-shaped and right-leaning, with price falling initially, reflecting an initial preference for the

ground floor and then more or less linearly increasing, until a penthouse effect at the penultimate

and top floor. There is also a building height effect, with shorter buildings preferred to taller ones,

especially at higher floors. Figure 14b covers a wider range of heights, grouping each 5 floor range

of heights, and shows similar results.

On the basis of these estimates, we choose to model the conditioning on floor and height by a

linear term in floor, dummy variables for each of the ground, first, second, and third floors, a linear

term in building height, and dummies for the penultimate and top floors, as well as interaction

with the sum of those two dummies and the building height. There are also interactions between

a dummy for above four floors with the first, second, and third floor dummies, and interactions

30These are a small fraction of the data, but of sufficient number that the height effects can be measured.
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Figure 14: Floor and building height effects

between heights above 10 floors and the linear term in floor.31 Table 5 presents the coefficients

and standard errors of the main variables.

Table 5: Preliminary stage regression

Log price

Floor
0.0088
(0.0003)

Building height
-0.0006
(0.0001)

Penthouse
0.0361
(0.0016)

Penthouse - 1
0.0058
(0.0017)

Penthouse × Building height
0.0027
(0.0002)

Year before construction year
-0.0037
(0.0009)

Year after construction year
0.0030
(0.0007)

Notes: Standard errors are in parentheses. Additional controls: polynomial in calendar time, ground, first, second,
and third floor dummies and their interactions with dummies for building heights above 4 and 10 floors, eight legal
status dummies, and parcel fixed effects.

31These two cutoffs originate in the minimal regulatory requirements for a first and a second elevator.
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B The frontier elasticity of substitution of land for capital
The elasticity of substitution of the housing production function is the rate at which the cost-

minimizing capital to land ratio varies with the marginal rate of technical substitution. This is

commonly used to summarize the degree of substitution of one input for the other in housing

production. With price-taking firms in input markets, and normalizing the price of capital to 1,

the elasticity of substitution is σ =
d lnk
d lnR

, where k is capital per unit of land, and R is the price of

a unit of land (i.e., land rent).

Given price taking firms in the input market, and normalizing the price of capital to 1, the

elasticity of substitution is,

σ =
d lnk
d lnR

=
R
k
× dk

dR
,

where k = K/L is the capital to land ratio (or the capital per unit of land), K is capital, L is a given

fixed amount of land, and R is the price of one unit of land, i.e., land rent.

With the constant returns to scale production function in land and capital f0(K,L), per unit of

land housing output, equivalently height h, satisfies h = f0(K,L)/L = f0(K/L,1) = f (k). Noting

that k = C(h), h = C−1(k) = f (k), C′(h) = 1/ f ′(k), and C′′(h) = − f ′′(k)/( f ′(k))3, the elasticity

of substitution is,

σ =
f ′(k)(k f ′(k)− f (k))

k f (k) f ′′(k)
=

C′(h)(hC′(h)−C(h))
hC(h)C′′(h)

=

R︷ ︸︸ ︷
(MC−AC)×h

h×AC︸ ︷︷ ︸
k

×

dk︷ ︸︸ ︷
MC×dh
h×dMC︸ ︷︷ ︸

dR

=
d lnAC
d lnMC

,

where the first equality follows from Arrow et al. (1961).

Since in an unregulated market, housing price equals marginal non-land cost, this is also the

elasticity of average non-land cost to market price. Furthermore, since price equals total average

cost (the long run, zero profit condition) the elasticity of substitution relates the growth of land

rent to the growth of non-land costs as height increases.
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C Additional figures and tables

C.1 Robustness of the ML estimates
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Figure 15: Robustness of ML estimate to ML estimate without adjusting for changes in costs over time, ML
estimate that uses building-level regulations, the minimum price at each height adjusted for sample size, and BLUE.

C.2 An example of a bloc and its division into parcels

Figure 16: A bloc of parcels. With few exceptions each parcel contains one building.
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C.3 Estimates of µu and σu

Figure 17 shows the estimates of µu and σu. The estimates of µu are on average 1.9 as large as

the estimates of σu.
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Figure 17: Estimates of the parameters of the distribution of u

C.4 Prices in cities by geographical coordinates

Figures 18a-18c show the heat maps of the estimated prices (using nonparametric local constant

regression with bandwidth chosen by cross validation) for the three largest cities - Jerusalem, Tel

Aviv, and Haifa.
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Figure 18: Heat map of prices in the cities Jerusalem, Tel Aviv, and Haifa.

C.5 Maximum likelihood estimates

The following table shows heights, estimated quantities, the constrained ML estimates, ML

estimates by height, and the minimum and mean building prices. The equation for the smooth ML
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estimates appears below the table.

Table 6: Maximum likelihood estimates

Height Quantity MLE MLE by height Minimum Mean

1 1.05 7359 7359 5666 10544
2 2.07 6822 6822 5052 11541
3 3.09 6814 6814 5354 12466
4 4.09 6696 6696 5385 12757
5 5.03 6660 6660 5374 14288
6 6.05 6660 6660 5256 14684
7 7.07 6744 6786 5842 14347
8 8.1 6744 6866 5319 14069
9 9.14 6744 6714 5705 14007
10 10.19 6744 6660 5605 14282
11 11.18 7013 7405 6576 15555
12 12.23 7013 7010 6777 15839
13 13.28 7013 7316 6560 15455
14 14.35 7013 6660 6078 14000
15 15.42 7013 7829 6503 14568
16 16.5 7013 6660 6410 15252
17 17.58 7013 6966 7103 15491
18 18.68 7013 6660 5943 15074
19 19.78 7013 6777 6940 15228
20 20.89 7013 6789 7156 15221
21 22.00 7013 8891 8901 16847
22 23.13 7013 7686 8753 16515
23 24.26 7013 9214 8919 15569
24 25.4 7013 6708 7433 18155
25 26.54 8264 9621 9591 16903
26 27.69 8264 10418 11015 14778
27 28.86 8264 10742 12820 19637
28 30.03 8264 7942 8479 18088
29 31.2 9239 9716 10157 19635
30 32.39 9239 8878 9637 21399
31 33.58 9757 9757 10742 24481
32 34.78 9972 9972 11033 21124
33 35.99 10695 10695 11792 21729
34 37.21 14307 14307 14865 23078
35 38.41 17950 17950 17805 23500

The estimated quartic cost function is,

Ĉ(q) = 900+6472q+78.43q2 −4.1q3 +0.0823q4.

C.6 Number of observations by height

Table 7 shows summary statistics for the number of observations by height. The second, fifth,

and sixth columns show the number of blocs, buildings, and apartments respectively. The number

of observations in each of these column trends downward with height. The third column is the

percentage of blocs from column two that contain exactly one building (of a given height) and the
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fourth column is the mean number of buildings of the same height in these bloc. Given height, in

these blocs the median number of buildings is one and the average is about 2.4.

Table 7: Number of observations

Height Blocs
% of blocs
with one
building

Mean # of
buildings
per bloc

Buildings Apartments

1 182 0.74 1.8 319 1453
2 629 0.53 2.6 1661 8068
3 606 0.57 2.3 1394 10310
4 874 0.45 3.4 2968 28266
5 866 0.47 3.0 2562 27642
6 826 0.49 2.8 2315 27336
7 663 0.51 2.5 1639 24725
8 572 0.53 2.3 1340 24086
9 472 0.52 2.4 1137 24384
10 341 0.55 2.0 674 15682
11 202 0.68 1.6 331 9214
12 155 0.64 1.6 253 7517
13 154 0.76 1.3 207 7303
14 121 0.69 1.7 202 6369
15 112 0.66 1.7 185 7434
16 93 0.68 1.5 142 6024
17 80 0.62 1.8 145 6825
18 76 0.71 1.6 122 4060
19 61 0.66 1.6 97 3407
20 62 0.73 1.5 90 3744
21 49 0.71 1.4 67 3894
22 42 0.69 1.6 69 2373
23 25 0.68 1.6 40 1623
24 36 0.78 1.2 45 1930
25 21 0.95 1.0 22 1252
26 18 0.78 1.4 26 902
27 12 0.83 1.2 14 766
28 15 0.67 1.4 21 925
29 14 0.71 1.4 19 730
30 14 0.86 1.1 16 659
31 7 0.71 1.3 9 309
32 7 1.00 1.0 7 205
33 5 0.80 1.2 6 267
34 6 0.83 1.3 8 267
35 11 0.64 1.5 17 603

Notes: The columns from left to right are the number of floors in the building, number of blocs, percentage of these
blocs that contain exactly one building, mean number of buildings in these bloc, number of buildings, and number of
apartments.
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