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Abstract

The least squares estimator can be cast to depend only on the precision matrix.
We show that a consistent estimator of the latter can be directly used to obtain
a consistent estimator of the former even in high-dimensional regression problems
where the number of covariates can be larger than the sample size. We call this
the precision least squares estimator. We show that it is asymptotically Gaussian
and delivers uniformly valid inference irrespective of the sparsity within the data
generating process. Since bias can still hinder the estimates when using consistent but
regularized precision matrix estimators, we show how to construct a nearly unbiased
least squares estimator. We illustrate the relevance of regularized precision matrix
on both simulated and real data. Contrary to the systemic risk literature based on
multivariate autoregressive models for stock returns, and more in line with the theory
of financial market fragility, we find evidence that returns connectedness of 88 global
banks drastically decreases during crisis periods.
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1 Introduction

We introduce the Precision Least Squares (PrLS) estimator by making use of the fact

that by only knowing the inverse covariance, i.e., the precision matrix, of a simple linear

combination of the data, the whole least squares solution can be easily obtained. This is a

well-known fact already in low-dimensional settings, and especially in finance, although it

is often overlooked in other fields. Here, we extend its use to the high-dimensional setting,

namely those frameworks where the number of covariates p is large and potentially larger

than the sample size T . The conveniences of passing through the precision matrix to obtain

the least squares solution are several. First and foremost, it is sufficient to substitute in

the PrLS estimator any (nearly) unbiased and consistent estimator of the precision matrix

in order to obtain a consistent estimator of the regression parameters. Also, the precision

matrix, as opposed to the covariance, carries important information with regard to the

conditional correlations among the covariates.1

When in high-dimensions, it still holds true that a simple plug-in of a (nearly) unbiased

and consistent estimate of the precision matrix in the PrLS is all that is needed to obtain

the least squares solution. However, and specifically whenever the concentration ratio p/T

is bounded away from zero, sample covariance matrices are singular with probability one

and thus the estimation of large precision matrices becomes more challenging.2 In fact, it

is nowadays well known how the estimation of high-dimensional linear regression models

with standard techniques such as ordinary least squares leads to overfitting, high-variance

and numerically unstable estimates (cf. the curse of dimensionality). Therefore, while in

low dimensions a simple plug-in for the PrLS is e.g., the inverse sample covariance, finding

an immediate plug-in in high dimensions is less straightforward. In fact, this requires

1The latter fact is something interesting in its own right. It can be used, among others, to build
undirected graphs under additional Gaussianity assumption.

2Besides the computational burden (or impossibility when p > T ) of inverting large matrices, it is well
known how small errors in the covariance gets amplified by the inversion to obtain the precision matrix.
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resorting to regularization techniques or “shrinkage-inducing estimators”, as commonly

done in the literature (see a.o., Pourahmadi, 2011; Fan et al., 2016b; Lam, 2020; Ledoit

and Wolf, 2019). Regularization acts by reducing the excess degrees of freedom (overfit) of

the precision matrix estimator.

Sparsity is the underlying assumption that justifies regularization in linear regression

models. Stepwise regression, best subset selection, and ℓq-norm penalization are all com-

monly used techniques which induce regularization or even perform variable selection when

setting some regression coefficient exactly equal to zero (e.g., the ℓ1-norm regularizers

such as lasso). By reducing p to something manageable via variable selection, usual low-

dimensional techniques such as a simple least squares become viable options again. How-

ever, the sparsity assumption can be a strong statement regarding the data generating

process (DGP). All the above mentioned techniques need to assume the vector of regres-

sion coefficients to have some of its entries exactly equal to zero (cf. exact sparsity) or close

enough to it (cf. approximate/weak sparsity).3 The recent literature has argued how spar-

sity, at least in fields such as economics and finance, might be just an “illusion” (Giannone

et al., 2021) and that the reality is actually more complex, or dense. However, should be

noted that the assumption of sparsity over the precision matrix entries is generally speaking

a more reasonable assumption than assuming it directly on the coefficient vector. In fact,

a regularized or shrunk estimate of the precision matrix might or might not imply sparsity

on the estimated parameter vector (but at least avoids assuming it upfront on the DGP,

see: Archakov and Hansen 2022; Bradic et al. 2022). It is easy to build examples where

even though the precision matrix is sparse, the linear regression vector of coefficients is

fully dense (Bradic et al., 2022). Likewise, it is easy to build examples where even though

the covariance is completely dense, the precision matrix is quite sparse.4 The reason for

3Approximate sparsity is discussed in Belloni et al. (2014) where the exact sparse model is assumed to
be a (good) approximation to the true DGP. Weak sparsity is discussed in Adamek et al. (2022), where
many non-zero but small coefficients are allowed.

4E.g.: A covariance matrix with a toeplitz structure.
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this latter fact is that even though two covariates might be marginally correlated, they

can be conditionally uncorrelated given the other variables in the information set. Then,

as PrLS depends only on the precision matrix, it inherits the advantage that assuming

sparsity on (a function of) the precision matrix entries, avoids assuming it a priori directly

on the coefficient vector.

However, it is also known how the direct use of these regularization techniques on the

precision matrix, still leads to biased parameter estimates (Janková and van de Geer, 2018).

In fact, the idea behind all these procedures is to purposely introduce bias (towards zero or

towards a structured matrix such as the identity matrix) in order to help reduce the variance

of the sample covariance/sample precision matrix. The consequence, though, is that a

direct application of any of such methods would also introduce bias in the PrLS estimator.

Recent literature that focuses on high-dimensional inference has proposed several solutions

to prevent regularization bias. In fact, such misspecification of the selected model makes

also statistical inference after model selection unreliable (see Leeb and Pötscher, 2005). In

particular, several works have introduced changes to various regularized methods to improve

the estimation accuracy of the parameter vector (a.o., Belloni et al., 2014, 2015; Javanmard

and Montanari, 2014; Nickl et al., 2013; Van de Geer et al., 2014; Zhang and Zhang, 2014).

These approaches always correctly de-bias the estimates for valid high-dimensional post-

selection inference. However, there are no guarantees of validity unless various sparsity

structures are directly assumed on the parameter vector. We show here that, in a similar

fashion to some existing debiasing methods for the precision matrix (Janková and van de

Geer, 2018) and for the regression parameters (Javanmard and Montanari, 2014; Bühlmann

et al., 2013), we can formulate a consistent PrLS estimator which delivers uniformly valid

inference.

On the topic of inference, another nontrivial task when in a high-dimensional settings

is how to set up hypothesis testing. First, we show under the physical dependence (Zhang
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et al., 2017) of the underlying stochastic process that the PrLS estimator has an asymp-

totically normal distribution and hence provides a simple way to use standard inferential

techniques. Second, by means of subseries (cf. “batch-mean method”, Zhang et al., 2017),

we are able to estimate the covariance matrix of the PrLS estimator and obtain standard

errors which are robust to moderate misspecification of the precision matrix. In addition,

the asymptotic distribution of the PrLS estimator is found to be normal irrespective of the

precision matrix estimator used. This provides a versatile tool for large-scale inference in

linear regression models. Our results are validated through a Monte Carlo exercise.

We also illustrate the effectiveness of our approach on real data. Using the PrLS estima-

tor, we obtain networks of predictive connectedness among daily asset returns of 88 global

banks between 2005-2020. We find evidence that such connections drastically decrease dur-

ing crisis periods. Network density (modularity) is then proposed as an empirical measure

of crisis proximity. Our empirical results reconcile the literature on measuring stock returns

systemic risk using the vector autoregressive (VAR) model with theories of financial market

fragility and reputation (Lagunoff and Schreft, 2001; Ordoñez, 2013).

The remainder of the paper is organized as follows: Section 2 defines an oracle estima-

tor for the high-dimensional coefficient vector and shows that the precision least squares

estimator is asymptotically equivalent to the oracle. Section 3 shows how a finite sample

bias could emerge if a poor estimate of the precision matrix is employed within the PrLS.

As a consequence, two high-dimensional debiasing strategies are presented. In Section 4

Monte Carlo simulations are reported, showing how the PrLS outperforms state-of-the-art

methods in terms of bias, size distortion, and power in finite samples. In Section 5 our

empirical application is presented. Finally, Section 6 concludes.

The Online Appendix is organized as follows: Appendix A1 gives more details about

our oracle approximation theory. Appendix A3 collects all the proofs. Appendix A4 re-

ports some details on the regression-based modified Cholesky decomposition which is the
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precision matrix estimator we used throughout for illustration purposes. Finally, in Ap-

pendix A5 data details and additional results about the empirical application are presented.

A few words on notation. For any vector v = (v1, . . . , vp)
⊤, let the ℓs-norm ||v||s =(∑p

j=1 |vj|
s
)1/s

, s ≥ 1. Also, ||v||∞ = max
j

|vj|. Similarly, for a matrix A = (aij) ∈ Rp×q,

the matrix ∞ norm ∥A∥∞ = max1≤i≤q

∑p
j=1 |aij|. For any two real numbers, x ∨ y =

max(x, y) and x ∧ y = min(x, y). Throughout, we write A ≳ B if there exists an absolute

constant c, independent of the model parameters, such that A ≥ cB and similarly for

A ≲ B. We use C,C1, c, c1, . . . to denote positive constants and
p−→ and

d−→ to denote

convergence in probability and distribution, respectively. The superscripts p and d are

omitted when the distinction is not relevant to the statement given. Throughout we use I

for the identity matrix and 1 for vectors of ones and we omit to write their dimension as

subscripts when there is no possible ambiguity.

2 Precision Least Squares

2.1 Estimation

Let yt, x1,t, . . . , xp,t be a set of covariance-stationary time series of interest for a sample

size T and dimension p, which is large, potentially larger than (and growing with) T . The

linear regression model is

yt =

p∑
j=1

βjxj,t + ϵt = x′
tβ + ϵt, t = 1, . . . , T, (1)

where xt is a p× 1 vector of observables, β is a p-dimensional vector of coefficients object

of the estimation and ϵt is a scalar realization of a stationary stochastic process with mean

zero, variance σ2 and at least four finite moments. For notational simplicity we assume the
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variables have zero mean; if not, they can be demeaned prior to the analysis, or equivalently

intercepts are added.5

Assumption 1 (Parameter space). Consider the distribution of the data being indexed

by the parameter ϑ := (β,Σx, σ
2), where Σx := E(xtx

′
t). Then, we employ the following

set

Ψ :=
{
ϑ : c−1

0 ≤ Λmin(Σx) ≤ Λmax(Σx) ≤ c0, 0 < σ < c1, ∥β∥q ≤ c2

}
,

where c0 > 1, c1, c2 are positive finite constants, Λmin(Σx) and Λmax(Σx) are the minimum

and maximum eigenvalues of Σx and q ∈ [1,∞]. We assume Ψ is a compact set.

The linear regression model (1) can be rewritten as a linear combination of the trans-

formed variable ft := (yt − x1,t, . . . , yt − xp,t, yt)
′ such that

f ′
tw0 = ϵt, (2)

where w0 := (β′, β0)
′ is a p+1-dimensional vector, β0 = 1−

∑p
j=1 βj and for which it holds∑p

j=0 w0,j = 1.

Assumption 2 (Modified Parameter space). Given the transformations in ft, the modified

parameter is ϑ̃ := (w0,Σ, σ2), where Σf := E(ftf
′
t) is the (p + 1) × (p + 1) full rank

population covariance matrix of ft. Then, for the same constants as in Assumption 1 the

parameter space is now

Ψ̃ :=
{
ϑ̃ : c−1

0 ≤ Λmin(Σf ) ≤ Λmax(Σf ) ≤ c0, 0 < σ < c1, ∥w0∥q ≤ c2

}
.

We assume Ψ̃ is a compact set.

5One can also allow the vector xt to contain the lags of yt as well as lags of other relevant covariates. In
fact, the linear regression framework encompasses both autoregressive and seemingly unrelated regression
(SUR) models.
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Assumption 1 and 2 are standard and draw a parallel between the usual regression

framework where the parameter space is compact to the transformed framework mapped

by ft. The compactness of the parameter space in turn implies the boundedness of w0.

Then, the standard least squares problem for (1) can be reformulated as

w0 = argmin∑p
j=0 w̄j=1,

w̄∈Rp+1

w̄′Σfw̄. (3)

The analytical solution of (3) is

w0 = Θ1 (1′Θ1)−1
, (4)

where 1 is a (p + 1) vector of ones and Θ := Σ−1 is the (population) precision matrix

of ft. The rewriting in (1)-(4) is well known, especially in the global minimum variance

portfolio literature.6 Note that if Θ is known, a simple plug-in within (4) and extraction

of the first p elements of w0 automatically gives β. As in practice Θ is unknown, it needs

to be estimated.

Let J be a (p+1)×p matrix such that J = [Ip,−1p]
′ with ej being the unit vector with

the one appearing in position j.7 Let also Θ̂ be an unbiased precision matrix estimator.

By plugging Θ̂ in (4), we get

ŵ := (1′Θ̂1)−1Θ̂1 = Jβ̂ + ep+1, (5)

and by extracting its first p elements we obtain β̂ which we refer to as the “Precision Least

6Since β0+
∑p

j=1 βj = 1 and
∑p

j=0 βjyt =
∑p

j=1 βjxj,t+ ϵt we deduce Eq. (2) from β0yt+
∑p

j=1 βj(yt−
xj,t) = ϵt. The least-square estimator of β follows from the minimization of the variance of ϵt under the
constraint

∑p
j=0 βj = 1 as in Eq. (3). Then, we obtain Eq. (4) by setting the first-order derivative of the

objective function to zero as usual. See also Kempf and Memmel (2006) for more details.

7E.g., let p = 2, J =

 1 0
0 1

−1 −1

. Then, Jβ + ep+1 =

 1 0
0 1

−1 −1

[
β1

β2

]
+

00
1

 =

 β1

β2

1− (β1 + β2)

 .
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Squares” (PrLS) estimator.

Remark 1. Let Q be a square matrix of order p + 1 such that Qp+1,i = 1, for all i and

Qi,i = −1 for i > 1. Let also zt := (x′
t, yt)

′. One has ft = Q′zt and denote Ω = Var(zt)

the joint covariance of zt. One also has that QQ = I and Q−1 = Q and the following

properties hold: (i) Σ = Q′ΩQ; (ii) Θ = QΩ−1Q′. Properties (i) and (ii) state that there

is a one-to-one mapping between the covariance and the precision matrix of both the vector

zt and the transformed vector ft. This is a convenient fact in light of the earlier discussion

on sparsity, given that the matrix Q might not preserve the structure of Ω or its inverse.

For instance, one can pass from a sparse structure for Ω or Ω−1 to a dense structure for

Σ or Θ. Therefore, in order to estimate (4), one only needs to estimate Ω, or its inverse.

The following theorem is our main result. It gives the asymptotic normality of a single

coordinate of the PrLS estimator. We state it here first, and then discuss the steps leading

to the result. As this follows from some propaedeutic Lemmas (Lemma A1.1, A1.2), we

just mention them here but discuss them in full in the Online Appendix.

Theorem 1. Given the results in Lemma A1.1, one has for all j = 1, . . . , p,

√
T (β̂j − βj)

d→ N(0,Vj,j) as T → ∞, (6)

where V =
∑∞

l=−∞ E(utu
′
t+l) with ut = Σ−1

x xtϵt.

We summarize here the oracle framework (also presented in the Online Appendix) that

leads to our Theorem 1. Let us denote Σ̌ an oracle estimator ofΣ and Θ̌ = Σ̌−1 its inverse.

By “oracle”, we refer to an infeasible estimator which is almost (see the estimation error

term ∆ below) as good as an ideal estimator which relies on perfect information supplied

by an oracle, but which can be unavailable in practice.8We define an oracle PrLS estimator

8See for instance Examples 1 and 2 fo an example of oracle estimator. See also Example 3 and the
Monte Carlo simulation in Section 4 were we use the OLS estimator with an artificially augmented sample
size to mimic an oracle estimator.
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such as wOracle = Σ̌−1v̌, for v̌ = 1(1′Θ̌1)−1. Applying the matrix inversion lemma to

Θ̂−1 = Σ̌ +∆, we obtain the following decomposition:

Θ̂ = (I −L)Θ̌, (7)

where L = Θ̌(Σ̌ +∆)−1Σ̌∆ and ∆ = Θ̂−1 − Σ̌. The key to this oracle framework is that

∆ gives the mistake between the estimated inverse precision matrix and its oracle version.

Hence, by plugging (7) into ŵ one gets:

ŵ = (I −L)Θ̌1
(
1′Θ̌1 − 1′LΘ̌1

)−1
. (8)

It follows from (8) that ŵ is an asymptotically unbiased estimator of w0 if ∆ → 0. In fact,

if ∆ → 0, we immediately get ŵ → Θ̌1(1′Θ̌1)−1 = wOracle. In the low-dimensional setting,

this condition can easily be satisfied if Θ̂ = Σ̂−1, where Σ̂−1 is the empirical counterpart

of Θ. This is true since Σ̂ is an (asymptotically) unbiased and consistent estimator of Σ

in low dimensions, implying E(∆) = 0 in (7). In high-dimensional settings, even though

complications arise for obtaining an estimator of Θ, it remains the case that if ∆ → 0,

Eq. (8) paired with an unbiased and consistent plug-in estimator of Θ is all that is needed

to recover the correct distribution of the PrLS estimator. For the rest of this section, we

assume that ∆ → 0 and relax this assumption in Section 3.

Thus, if Θ̂ is unbiased and consistent then Θ̂−1 → Σ̌, and ŵ behaves asymptotically like

wOracle. This is convenient since the desirable properties of an oracle estimator transfer in an

asymptotic sense to any plug-in estimator ŵ, provided that unbiasedness and consistency

of the precision matrix estimate are satisfied. Let µ̂ = 1
T

∑T
t=1 x

′
tyt. To emphasize the im-

portance of the convergence of Σ̂x, the empirical counterpart ofΣx := E[(xtx
′
t)], we employ

the following least-squares type oracle estimator: wOracle :=
(
βOracle′ , 1−

∑p
j=1 β

Oracle
j

)′
=
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JβOracle + ep+1, where

βOracle = Θxµ̂. (9)

Substituting yt in (9), we obtain the following rewriting

βOracle = β +Aβ + u, (10)

for A := ΘxΣ̂x − I, ut := Θxxtϵt, Θx = Σ−1
x and u := T−1

∑T
t=1 ut. We show in Lemma

A1.1 that ∥A∥∞ converges in probability to zero. As a consequence, the second term on

the right-hand side of (10) is controlled. Furthermore, in Lemma A1.2, we employ a high-

dimensional Gaussian approximation for time series processes as in Zhang et al. (2017)

on ut and obtain a coordinate-wise central limit theorem (CLT) for u. As a consequence

of these results, in Theorem 1 we are able to state the asymptotic normality of the PrLS

estimator, which follows immediately from the normality of the oracle. Note that Lemma

A1.2, which is adapted from Theorems 3.2 and 3.3 of Zhang et al. (2017), guarantees

uniform convergence of
√
T∥β̂∥∞ to the Gaussian distribution assuming that Θ̂ is unbiased.

As a consequence, the distribution of the maximum of the test statistics associated with

the joint null hypothesis H0 : βi = 0 for a large set of parameters, after some rescaling

and centering and under some regularity conditions, can be approximated with a Gumbel

distribution (James et al., 2007).9

Remark 2. Direct replacing of Θx in (9) with some sample estimate Θ̂x would make the

oracle estimator feasible as it would only depend on sample quantities. However, this way

as Θ̂x = Θx+error1 and µ̂ = µ+error2, the random errors of the two estimated components

would compound in the product and lead to an erratic behavior in high-dimensions (Bradic

9It is worth mentioning that Bradic et al. (2022) also analyse the properties of (9), restricting their
attention to a single coefficient, and assuming i.i.d. data. In this paper, we study the properties of the
whole vector (9), under the physical dependence framework of Zhang et al. (2017).
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et al., 2022). Note in fact that µ̂ is a likely non-sparse, p × 1 vector, where p is assumed

here to be large. Therefore, the product Θ̂xµ̂ would be highly unstable as it depends on

three sources of error: error1, error2 and their product.

In the following two examples, we illustrate the above theoretical properties of the PrLS

estimator using Monte Carlo simulations.

Example 1. (Sparse regression)

We consider the following data generating process (DGP) as in Eq. (1). We set T = 100,

while the number of variables is set to p = 1003. We let the p× 1 sparse coefficient vector

to be β = (2, 2, 2, 0, . . . , 0)′ and draw xt from a constant correlation model with covariance

Σx = dd′+Ip for d = (3, . . . , 3)′ and E(ϵ2t ) = 1. Also, we let zt = (x′
t, yt)

′ be i.i.d N(0,Ω),

where Ω =

 Σx Σxβ

β′Σx vy

, where vy denotes the variance of yt. To estimate β via PrLS

and to test its elementwise significance, we only need to estimate Var(zt) = Ω (see also

Remark 1). As clear from its composition, Ω is a block constant covariance matrix, and

β is also block constant. The best estimator of an entry of the covariance matrix Ω (or

Σx) in this setting is the average of the empirical counterpart of the constant block to

which the entry belongs.10 Table 1 reports both the estimated coefficient and the rejection

frequencies associated with the test of significance for the first ten coefficients in β.11 We

can see that the estimator bias is negligible and that significance tests based on the PrLS

estimator have power close to one under the alternative hypotheses and size equal to zero

under the null.

Insert Table 1 and Figure 1 approximately here

10It is immediate to see that Σx has constant covariances and variances and thus Ω has constant blocks.
Take p = 4 for instance, then Σx has 10s on the main diagonal and 9s everywhere else. The product with β
gives the first three entries equal to 56 and the last equal to 54. To estimate the elements of Ω is sufficient
to take the cross-sectional average of their empirical counterpart.

11In Table 1 p = 1003 and T = 100. The variance of βPrLS is estimated using a consistent estimator of
Σx. V ar(β̂PrLS) = Tσ2Θx, where σ2 = Var(ϵt). In the third column, the average of the random variable
βPrLS
j is reported for j = 1, . . . , 10. In the last column, the frequencies of significance tests at 5% are

computed over the 1000 replications.
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Example 2. (Dense regression)

Consider the same setting as in Example 1 with the following modifications: β = (2, . . . , 2),

i.e., β is now dense. In Figure 1, we report the simulated density of the first estimated

coefficient and compare it to a normal density centered around 2 with variance equal to

the variance of the PrLS estimator. Unreported boxplots of the distribution of the average

bias of the PrLS estimator over the 1003 estimated parameters show how the bias collapses

to zero. Likewise, the rejection frequencies of the test Hj
0 : βj = 0 computed over 1000

replications is equal to one for all j = 1, . . . , 1003.

In the above examples, a good estimation and inferential procedure are obtained by

accounting for the fact that Ω is a block constant matrix. Even though this assumption

is restrictive, a.o., Archakov and Hansen (2022) show that the block constant covariance

matrix assumption is realistic for several financial time series. In fact, Archakov and Hansen

(2022, 2021) introduced a new representation for estimating such a matrix and showed that

a plug-in approach based on the traditional OLS formula will lead to a consistent estimator

of β. This estimator is equivalent to the PrLS estimator whenever Ω is estimated using

their estimator.

In the examples above, the overall type I error of the individual tests is lower than the

significance level α, while the power of the test converges to 1 given a consistent estimator

of Ω. In Section 2.2 we shade more light on this property of the PrLS. In fact, we show

that unbiased estimation and uniformly valid inference on β can be obtained using the

PrLS estimator, regardless of the degree of sparsity of β, Σ, Ω, Σx, contrary to what has

been previously assumed in the literature (see among others: Javanmard and Montanari,

2014; Bühlmann et al., 2013; Belloni et al., 2014; Van de Geer et al., 2014) but provided a

consistent estimator of Ω or Σ or their inverses.
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2.2 Statistical Inference

We have seen that if Θ̂ is unbiased, i.e., if ∆ → 0, we immediately get ŵ → Θ̌1(1′Θ̌1)−1 =

wOracle = JβOracle + ep+1, even in high dimensions. Thus, we find that the asymptotic

property of βOracle is that of β̂. Recall our oracle estimator from (10) and its deviation

from the true coefficient vector β

√
T (βOracle − β) =

√
TAβ +

1√
T
u. (11)

As before in (10), the first term on the right-hand side of (11) represents the bias. We

showed in Lemma A1.1 how this bias is negligible, i.e., with high probability ∥A∥∞ =

op(1). The same tail bound as in (A1.1) can be applied on
√
TAβ = op(1) modulo a

proportionality constant of the order T−1/2.12 The second term is the noise, which by

Lemma A1.2, is shown to be approximately Gaussian and its covariance matrix is given by

V . Let V̂ be a consistent estimator of V . For instance, later in Section 3.2 we introduce

the “batch mean estimator” of V , see also Eq. (20). Then, for j ∈ [1 : p], the test statistics

for a given null hypothesis H0,j for each element of the oracle vector of coefficients is defined

as

Tj :=

√
TβOracle

j√
V̂jj

. (12)

Thus, we reject the null H0,j if |Tj| > th where th is a given quantile of the Gaussian

distribution. Denote R(th) :=
∑p

j=1 I(|Tj| ≥ th) the number of false discoveries obtained

after this thresholding process. Theorem 2, shows how as the sample size and the dimension

increase, control over the familywise error rate (FWER) remains guaranteed.

Theorem 2. Let R = {1 ≤ j ≤ p : βj ̸= 0} be the set of truly relevant covariates within

xt. Let R̂ be the set of estimated relevant features using PrLS. Then, there exist a > 0

12The factors Tα1+1 in the tail bound in (A1.1) become Tα1+1/2 while the rest is unchanged.
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such that if th ≥ T a then P (R(th) ≥ 1) = 0 as T, p → 0 and the rate of covergence is the

minimum between that of ∥A∥∞ and max
j

|V̂j,j − Vj,j|.

The familywise error control property of the PrLS estimator does not mean perfect

support recovery after p-value thresholding on a finite sample (see Figure 3a). It implies

that the probability of getting perfect support recovery with the PrLS should be almost

insensitive after p-value adjustment to control for FWER. We illustrate this in Figure 2.

Insert Figure 2 approximately here

Figure 2 compares the discrimination power between an OLS-based test of significance

for the coefficients and the one based on the PrLS. Figure 3a shows that in finite samples

identifying the relevant coefficients by simple thresholding of the p-values would yield an

accumulation of type I error for both estimators. The two estimators exhibit similar power

except for extreme values of the significance level where the PrLS outperforms. This already

suggests that the probability of getting perfect support recovery with the PrLS will likely

be insensitive to a Bonferroni type of correction. This is confirmed by Figure 3b. Indeed,

unlike the OLS estimator, the aforementioned power of the PrLS is (almost) not impacted

by the Bonferroni correction. The power is close to 1 for very small significant values, i.e.,

< 1%. It quickly reaches 1 above this threshold. This power is almost identical to Holm

(FWER error control) and Benjamini-Hochberg (FDR control) procedures which are known

to be uniformly more powerful than the Bonferroni correction. The OLS is outperformed

by the PrLS as its power is drastically reduced after p-value adjustment. We can observe

that this is not the case for the OLS. Such improvement of the PrLS in terms of efficiency

over the OLS comes from the fact that, unlike the latter, the former is adaptive to the

linear dependence structure of the data and also holds in high-dimension (see Table 1).

Thus, estimating –and testing the significance of– the entries of β in high-dimension

is only akin to a good structural and unbiased estimation of large covariance or precision
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matrices. That is, depending on the field of application, one can always justify the choice

of a given covariance or precision matrix estimator based on the literature. For instance,

in finance, approximate factor models, covariance thresholding estimators and lasso-based

graphical models are also state-of-the-art estimators commonly used for asset pricing and

portfolio optimization (see e.g., Gagliardini et al., 2016; Chang et al., 2018; Koike, 2020).

One may therefore want to rely on these estimators for estimation with PrLS. However,

such estimators can suffer from regularization bias and behave differently from an oracle.

In Section 3, we illustrate the adverse consequences of regularization bias on the estimated

PrLS and advocate two solutions to overcome them. We also show that regularized esti-

mators can be used for oracle approximation.

3 Estimation and inference after regularization

3.1 Estimation with regularized precision matrices

In this section, we relax the unbiasedness assumption in Section 2 assuming that a regular-

ized estimator Θ̃ is used as an approximation of the oracle precision matrix Θ̌. Plugging Θ̃

in (4) we obtain what we call the “Naive” PrLS. Θ̃ can belong to one of the three main fam-

ilies of regularized precision matrix estimators. The first family contains non-parametric

methods. These apply regularization to the eigenvalues of the sample covariance matrix

(Lam et al., 2016; Ledoit and Wolf, 2019, and references therein). The second family in-

stead contains parametric methods. These provide parsimonious models for large precision

or covariance matrix estimation (Pourahmadi, 2011; Lam and Fan, 2009, and references

therein). The third family contains semi-parametric methods. These first extract the

common factors in the data and then apply one of the former two approaches to the id-

iosyncratic components (Fan et al., 2018; Caner et al., 2022, and references therein). A

reconstruction formula is then used to get the regularized precision matrix.
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Let us call β̃, a sub-vector of w̃ := Θ̃1/1Θ̃1 = Jβ̃ + ep+1 where Θ̃ is a regularized

precision matrix. Let us mention that the consistency and the rate of convergence of w̃ have

been extensively studied in the portfolio optimization literature, for various regularization

methods as well as their empirical risk minimization property (Ledoit and Wolf, 2003, 2004,

2017; Fan et al., 2015, 2016a; Huang et al., 2006; Cai et al., 2017; Callot et al., 2019). In this

section we show the negative effect of regularization bias and propose two bias correction

methods. To fix ideas, let us consider the following example.

Example 3. We consider the following regularized precision matrix estimators: (i) adap-

tive lasso based modified Cholesky decomposition13 (Cholesky); (ii) the linear shinkage

estimamtor of Σ (Ledoit and Wolf, 2004); (iii) the nonlinear shrinkage estimator of Σ

(Ledoit and Wolf, 2017); (iv) the covariance thresholding estimator (POET) (Fan et al.,

2018). In the case (ii)-(iv) the regularized covariance is then inverted to obtain the pre-

cision matrix. For each of these estimators we compare the maximum excess bias (×100)

with respect to an infeasible estimator of the PrLS. To obtain such infeasible estimator

we employ an OLS estimator where the sample size has been raised to 500 observations

against the T = 250 used in all other settings. For the number of variables we consider two

settings: p ∈ {100, 250}. We consider two level of sparsity s0 = {10, 60}, i.e. the number

of non-zero coefficients in β. In either cases we set the first s0 elements of βj to 2 while the

remaining elements in the vector are set to zero. We simulate xj,t and ϵt from a student

T distribution with 5 degrees of freedom and let Cov(xj,t, xi,t) = 0.8|i−j| for i, j = 1, . . . , p.

The results are reported in Table 2 under the column “Toeplitz”. The bias of the resulting

PrLS estimators (Naive) is shown to increase with the level of sparsity. The non-linear

shrinkage estimator is on average less biased than the linear-shrinkage estimator, suggest-

ing that the PrLS estimator is sensitive to the quality of the plugged-in precision matrix.

The POET estimator is the overall most biased estimator in this setting. The Chosleky

13See Online Appendix A4 for more details.
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estimator is instead up to 33 times less biased compared to the other estimators. Its bias

is the closest to 0. However, the bias increase as p increases when s0 is large. Since Θx is

sparse in this setting, we test the robustness of this results assuming that Θx is dense. To

do that, we add a single factor simulated from a standard normal distribution to the xj,t’s.

The results are qualitatively similar and reported under the column “Factor augmented”

of the same table.

Insert Table 2 approximately here

Table 2 shows that a naive plug-in of a regularized estimator into the PrLS in (4) can

lead to a poor estimator of β. We find the Cholesky estimator to give a good approximation

whenever Θx is sparse or when the dimension is not too large. As clear, the unbiasedness of

the PrLS based on any of the estimators mentioned above depends crucially on the level of

sparsity in β. To reduce this regularization bias of the estimated PrLS for a given precision

matrix estimator, we rely on the debiasing formula given below in (13). We find that it can

reduce up to 40% the bias of a Naive estimator when the latter is moderately biased (Table

2). Hereafter, we provide a theoretical justification of this debiasing procedure. Although

for simplicity and illustration purposes, only the Cholesky estimator will be used in the

subsequent examples or applications, the theoretical results below hold for any moderately

biased estimator.

Denote ∆̃ = Θ̃ −Θ the estimation error for the regularized precision matrix Θ̃. Since

Θ̃Σ = I + ∆̃Σ and Θ̃Σ = I +Σ∆̃, it follows from simple algebraic manipulations that

Θ̃ΣΘ̃ = Θ̃ + ∆̃ +∆Σ∆̃ and 2Θ̃ − Θ̃ΣΘ̃ −Θ = ∆̃Σ∆̃. Therefore, if Θ̃ is moderately

biased, i.e., ∆̃ ≈ 0 for a large sample size, then 2Θ̃ − Θ̃ΣΘ̃ is a bias-corrected estimator

of Θ̃. In other words, as the sample size increases, the quadratic form Θ̃ΣΘ̃ will converge

to Θ̃ only if the precision matrix is perfectly estimated. Otherwise, the bias will surge. A

simple subtraction of the bias from the regularized estimate of the precision matrix leads

asymptotically to an unbiased version of Θ̃. As 2Θ̃ − Θ̃ΣΘ̃ depends on the population
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covariance matrix Σ, we shall consider the plug-in estimator

Θ̂ = 2Θ̃ − Θ̃Σ̂Θ̃, (13)

where Σ̂ is the empirical counterpart of Σ. Theorem 3 establishes that Θ̂ is asymptotically

a consistent and unbiased estimator of Θ if Θ̃ is a moderately biased estimator of Θ. Let

us stress here that the theorem below is not specific to any particular estimator of the

precision matrix. Hence a specific rate is not given. However, a general error bound is

given for any regularized precision matrix estimator.

Theorem 3. Denote ∆̃ ≡ Θ̃ − Θ as the bias of Θ̃. Then, the following decomposition

and bound are in order:

Θ̂ −Θ = ∆̃Σ∆̃+ Θ̃(Σ − Σ̂)Θ̃, (14a)

||Θ̂ −Θ||∞ ≲ op
(
δ2T,p

)
||Σ||∞ + op (aT,p) (op (δT,p) + ||Θ||∞)2 , (14b)

where δT,p and aT,p are the rate of convergence of Θ̃ and Σ̂ with respect to an infinite norm

||.||∞.

Theorem 3 implies that the main requirement for Eq. (13) to be valid is that Σ̂ and Θ̃

should be consistent estimators of Σ and Θ, respectively. It is clear that ||Θ̂−Θ||∞ → 0 as

long as δT,p → 0 and aT,p → 0. However, Eq. (14a), given the term ∆̃Σ∆̃, shows that some

finite sample biases can emerge. Yet, it is easy to show that bias reduction indeed occurs,

i.e., ||Θ̂−Θ||∞ < op (δT,p) if aT,p <
op(δ2T,p)−op(δT,p)||Σ||∞

(op(δT,p)−||Θ||∞)2
and δT,p < 1/||Σ||∞. Furthermore,

one has ||Θ̂−Θ||∞ ≤ op
(
δ2T,p

)
if aT,p ≤

op(δ2T,p)(1−||Σ||∞)

(op(δT,p)−||Θ||∞)2
assuming wlog that 0 < ||Σ||∞ < 1.

Consequently, bias reduction is possible (using (13)) for the regularized. For instance, any

estimator that achieves the optimal rate in the class of sparse precision matrix of Cai and

Zhou (2012) leads to ||Θ̂ − Θ||∞ ≤ op
(
δ2T,p

)
. See for instance their ACLIME estimator.
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Similarly, the estimators in e.g., Fan et al. (2008); Lam and Fan (2009); Fan et al. (2008);

Cai and Zhou (2012); Cai et al. (2016) and the Cholesky one (see also Online Appendix

A4) also imply that ||Θ̂ −Θ||∞ ≤ op
(
δ2T,p

)
. Their exact rates of convergence depend on

their regularity conditions.

Remark 3. The bound in Theorem 3 can in principle be used as a tool to rank different

regularization estimators of the precision matrix in terms of their moderate biasedness, as

the bound in (14b) depends on the specific rates of convergence of Θ̃ and Σ̂. In this sense,

one could think of plugging rates of different estimators of the precision matrix and rank

them from the least to the most biased. However, as typically different estimators rely

on substantially different sets of assumptions, whose impact on the bias is not necessarily

clear, immediate comparisons via plugging rates of different estimators could be hard, if

not misleading. Still, this result could be of independent interest and be used to test the

effect of certain assumptions of a single estimator of the precision matrix on its moderate

bias. In practice, one would also need a test for goodness of fit in order to rank different

precision matrix estimators. Yet, the development of such a test is out the scope of this

paper and it is left for future research.

Remark 4. Eq. (13) has been derived by Janková and van de Geer (2018); Koike (2020) to

build confidence region around precision matrices of multivariate Gaussian data using the

graphical lasso estimator or the nodewise regression. Kashlak (2021) conjectures that it can

be used to correct the bias of other regularized estimators too. We show that Eq. (13) can

indeed be used to correct the bias of any moderately biased precision matrix estimator. Note

that we have derived this equation without making any specific distributional assumption

and we used it only in the context of linear models.

The following proposition shows how the proposed bias correction method helps in

safeguarding against the regularization effect in the estimation of w0.
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Proposition 1. Denote a =
1Θ1

1Θ̂1
and recall that k−1 =

1Θ̃1

1Θ̂1
, ŵ =

Θ̂1

1Θ̂1
. Then, one has:

ŵ = 2k−1w̃ − k−1Θ̃Σ̂w̃, (15)

w0 − ŵ = (1− a)w0 +∆Σ
[
k−1w̃ − aw0

]
+ k−1Θ̃(Σ − Σ̂)w̃. (16)

Eq. (15) shows how debiasing the precision matrix is equivalent to debiasing the naive

PrLS estimator. Eq. (16) is the bias expansion of the resulting PrLS estimator. The

quantities a and k−1 are expected to converge to one if the underlying parameters are

consistently estimated. In these cases, the bias is expected to vanish under regularity

conditions of Θ̃. See Example 3 for illustrations.

Note that, given the naive estimator w̃, one can also construct an unbiased estimator

β̂D defined below in Eq. (17). Recall that w̃ = (β̃′, 1− β̃1)′ and let

β̂D := β̃ + T−1K
T∑
t=1

x′
t

(
yt − x′

tβ̃
)
. (17)

Proposition 2.

β̂D − β = (KΣ̂x − I)(β̃ − β) + T−1K
T∑
t=1

x′
tϵt, (18)

||β̂D − β||∞ ≤ ||KΣ̂x − I||∞ ||β̃ − β||∞ + op(1), (19)

for c > 0 with Σ̂x the empirical covariance of xt.

Proposition 2 shows that β̂D is very similar to our estimator ŵ as one can see by

comparing Eq. (15) and (18). In fact, one can see from (19) that the validity of the bias

correction only depends on the accuracy of β̃ or that of KΣ̂x, while the op(1) term comes

from the exogeneity condition. A key role is played by the matrix K, whose function is

to “decorrelate” the columns of xt. The idea is to assume that K ≈ Ωx, the precision
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matrix of xt (Van de Geer et al., 2014).14 The interaction between the rate of convergence

of KΣ̂x to I and that of β̃ to β makes this bias correction appealing. In other words, as

long as the rate of convergence of one of the two elements in the product is fast enough,

consistency of β̂D is established, and β̂D behaves asymptotically like β̂: the procedure

compensates for the bias introduced by the estimation of Θ. Such a correction has been

extensively used in the literature to construct unbiased estimators for the lasso and ridge

estimators (Bühlmann et al., 2013; Javanmard and Montanari, 2014; Adamek et al., 2022,

and references therein). In this paper, we extend this to the naive PrLS estimator.

3.2 Variance estimation

Having obtained a nearly unbiased estimator of β, a consistent estimator of the variance –

that we denoted V – remains necessary for inference. In the different illustrations above, as

we simulated i.i.d data, we used the oracle least-square variance formula, which is also that

of the PrLS.15 However, in practice, estimation of V is not trivial when using a regularized

estimator of the precision matrix or when the error term ϵt is heteroskedastic or exhibits

autocorrelation. In that case, the i.i.d. formula is no longer valid. The traditional solution

would be to use kernel or bootstrap-based estimators. These, though, involve the selection

of a bandwidth or are usually computationally intensive. Here, we propose a heteroskedastic

and autocorrelation robust variance estimator based on the principle of “batch-mean” or

“subseries method”. This type of variance estimator is computationally cheap, kernel-free,

has good finite sample properties and it has been extensively studied in the literature

Carlstein et al. (1986); Flegal et al. (2010); Zhang et al. (2017). Assume that the sample is

split into Π folds and denote Iπ as the index set of the observations in the fold π = 1, . . . ,Π.

14K can also be estimated using some a priori knowledge about the linear dependencies among the xt.
E.g., xt is generated from a factor model or a sparse graphical model. Therefore K can be a consistent
regularized estimator of the precision matrix of xt which can be readily subtracted from Θ̃ for instance.

15See Footnote 11.
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A consistent estimator of V := Var(β̂) is given by

V̂ =
1

Π− 1

Π∑
π=1

(β̂π − β̄)(β̂π − β̄)′, (20)

where β̄ = 1
Π

∑Π
π=1 β̂

π and β̂π is the estimated coefficient (β̂ or β̂D) on the fold Iπ. The

consistency of V̂ is guaranteed by application of Zhang et al. (2017) Theorem 5.1 to the

process T−1/2ut, where ut = Θxxtϵt. However, as a direct application of (20) would involve

re-estimation of Θ̃ Π times, we propose equivalent variance estimators specific to β̂ and

β̂D that avoid re-estimation of Θ̃. The following propositions state the consistency of the

batch mean procedure in the case of the PrLS estimator ŵ and the bias-corrected estimator

βD, respectively.

Proposition 3. Let

Θ̂π := 2Θ̃ − Θ̂−1V̂ar(ft)Θ̃, ∀t ∈ Iπ. (21)

Then, V̂ar(ŵπ)− V = op(1) with V̂ar(ŵπ) being the empirical variance of ŵπ.

Proposition 4. Let

β̂D,π = β̃ + (|Iπ| − 1)−1K
∑
t∈Iπ

xt
′
(
yt − xtβ̃

)
, ∀π = 1, . . . ,Π, (22)

where |Iπ| denotes the carnality of Iπ. Then, V̂ar(β̂
D,π)−V = op(1) with V̂ar(β̂D,π) being

the empirical variance of β̂D,π.

According to Flegal et al. (2010), a fixed-width rule Π = [z], where [z] denotes the

integer part of z, can be used to choose the number of folds Π. Their analysis showed

that z can be set to 2/3, 1/2 or 1/3 in practice.16 Note that testing the significance of

a parameter G(β), where G(.) is a specific measurable function, can be done readily. In

16It is well known that the parameter Π makes a trade-off between size and power especially when the
time series serial dependence is high.
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fact, under some regularity condition (Carlstein et al., 1986), G(β̂) and G(β̂D) converge

to G(β) in probability. By replacing G(β̂π) with G(β) or G(β̂D,π) in the corresponding

formula, statistical inference can be conducted using Gaussian critical values. Note also

that the batch mean-variance estimator performs asymptotically similarly to the bootstrap

but it is computationally cheaper and is also robust to fat tails and skewed innovations ϵt

(Carlstein et al., 1986; Flegal et al., 2010; Zhang et al., 2017).17

4 Monte-Carlo

We give here an overview of the Monte-Carlo setting and its main results. Section A2 in

the Online Appendix contains all figures and additional details. Consider the linear model

(1). We simulate normal i.i.d data such that βj = 2, for j = 1, . . . , 50, Σx = (0.6)|i−j|,

p = 500, T = 250, and E(ϵ2t ) = 0.1. The number of replications is 500. Firstly, we compare

the naive PrLS β̂Naive with its two proposed debiased versions i.e., β̂PrLS, namely the

PrLS with debiasing as in Eq. (13) and β̂D as presented in Eq. (17). Refitted adaptive

lasso-based modified Cholesky decomposition (presented in Online Appendix A4) is used

as a plug-in estimator of the precision matrix to get β̂Naive, β̂PrLS and β̂D. Furthermore,

we add the comparisons with: the debiased lasso in Van de Geer et al. (2014) and Adamek

et al. (2022), the debiased ridge in Bühlmann et al. (2013). The variance of β̂PrLS and β̂D

is obtained via the subseries method presented in Section 3.2. The number of subseries

values is fixed to T 1/3 across the simulations. We also include as a benchmark the infeasible

OLS estimator to mimic the behavior of an oracle estimator. This estimator is obtained

by augmenting the simulated sample size of the data such that T = 750. Below, we report

the main findings.

17It is worth mentioning that Using the batch mean estimator (20) of V , joint hypothesis testing is
possible whenever the size of b is lower than the number of batches Π. In fact, given the result of Lemma
A1.1, the low-dimensional joint normality of any sub-vector of β̂ follows from a simple application of the
continuous mapping theorem.
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• (Fig A.1) βPrLS, βD, and βNaive behave similarly in terms of bias. This bias is

close to 0 and it is similar to that of the infeasible OLS. Instead, Van de Geer et al.

(2014), Bühlmann et al. (2013) and Adamek et al. (2022) debiased estimators exhibit

substantial bias.

• (Fig A.3a, A.3b) βPrLS, βD, and βNaive are shown to be uniformly unbiased over the

set of all coefficients. Conversely, the other estimators display some degree of bias

and even show erratic behaviors of some coefficients.

• (Fig A.5a) For the rejection frequencies of the tests of individual significance of the

irrelevant coefficients, the test based on the infeasible OLS and Van de Geer et al.

(2014) estimators have size around the nominal 5% level. The tests based on the

other estimators have size lower than 5%. This is expected, as a PrLS-based test

discriminates strongly between relevant and irrelevant variables.

• (Fig A.5b) for the rejection frequency of the tests of individual significance of the

relevant coefficient, a part from the test based on the Adamek et al. (2022) estimator,

all the other tests have power close to one.

Overall, our Monte Carlo simulation results illustrate the good performance of the PrLS

estimator. It compares favorably in terms of bias, size, and power to traditional state-of-

the-art estimators. Although the reported results are based on i.i.d. normal data, similar

results are obtained for ARMA-GARCH processes with skewed student innovations for the

covariates and error terms. These results are omitted for the sake of space and are available

upon request.
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5 Empirical Application

We examine the yearly financial connectedness of n = 88 banks from 28 countries around

the world using daily stock log-returns, spanning from 2005 to 2020. The list of these banks

is reported in Table A5.1 in the Online Appendix. Stock prices Pi,t are downloaded from

Datastream in local currency and their log-returns yi,t for i = 1, . . . , n are computed as

yi,t = logPi,t − logPi,t−1. Our analysis relies on networks based on conditional Granger

causality tests (Granger, 1969) as well as the concept of modularity (Clauset et al., 2004).

We briefly introduce both concepts hereafter and we give the full mathematical details in

Section A5.

Granger causality captures predictability given a particular information set. Condi-

tional on an information set containing the past returns of all institutions, if the past

values of the return of institution i′ improve the prediction of the return of institution i

at time t, then i′ is Granger causal for i. For each institution i = 1, . . . n, we estimate

a VAR(5) model for each year (T ≈ 250).18 Since βi ∈ R440, estimation and inference

via OLS is infeasible, and a natural solution is to use our PrLS estimator. The refitted

adaptive lasso-based modified Cholesky decomposition is used as a consistent estimator of

the precision matrices.19 The number of subseries values is also fixed to T 1/3. Furthermore,

to prevent the accumulation of type I errors due to multiple hypothesis testing, we apply a

Benjamini and Yekutieli (2001) false-discovery control procedure at each estimation step.

Thus, for each year from 2005 to 2020, we obtain an adjacency matrix A containing all the

information about the connectedness among the institutions, such that Ai,i′ = 1 if at least

one of the parameters βi,6, . . . , βi,10 has its associated adjusted p-value lower than 20% and

zero otherwise.

18For an overview of lag selection procedures, see Hecq et al. (2021). Following their approach, we find
that the optimal lag is lower than 5 in the different estimations, but we overspecified the number of optimal
lags to avoid potential lag truncation issues. We use 5 to account for the potential dynamic in a week.

19See Online Appendix A4 for its presentation and Remark A4.1 for the justification of this choice in
this context.
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The concept ofmodularity comes from graph theory. Its interpretation can be formalized

as follows. If the expected fraction of within-community edges for a randomized network

is not different from that observed in the estimated network, then the modularity will

be zero. Therefore, nonzero values represent deviations from randomness, where a large

value indicates significant community structure in a network. We employ the hierarchical

agglomeration algorithm of Clauset et al. (2004) to detect communities. The algorithm

uses a greedy optimization strategy that starts with each vertex as a unique member of a

community of one and repeatedly joins the two communities whose amalgamation produces

the largest increase in modularity.

5.1 Results

Insert Figure 4 approximately here

Figure 4 displays the Granger causality networks obtained with the precision least

squares estimator between 2006 and 2010. We focus on this period to observe the behavior

of the connections before, during, and after the 2008 financial crisis. The patterns observed

are very insightful. By looking at the causal networks, we observe how financial connect-

edness substantially decreases when approaching the financial crisis and peaks at its lowest

in the crisis year, to only slightly recover in 2009 and fully return to dense in 2010. Pre-

diction in the presence of a structural break as in 2008 (subprime crisis) is very difficult

and is reflected by the lack of connections in stock returns during 2008. Interestingly, 2008

does not look empty, meaning that a subset of series can still have predictive power over

an unprecedented crisis. Figure 5(a) reports the dynamic of the number of communities

(membership) and connections obtained using the greedy optimization algorithm of Clauset

et al. (2004) based on modularity. We can deduce that financial predictive connectedness is

useful for characterizing financial crises but fails to capture the relative importance of the
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crisis. Membership, on the other hand, can capture the magnitude of the crisis. In fact,

it peaks with large shocks, such as in 2008 (subprime), 2016 (downside macroeconomic

concerns), and 2020 (COVID-19), but it is less sensitive to small shocks, such as in 2011

(European Debt) and 2018 (Turkish currency and debt). In Figure 5(b), we show that

modularity summarizes the information contained in both the number of connections and

the number of communities.

Our analysis is therefore relevant for at least three reasons. First, we show that in

practice, the PrLS estimator is reliable and capable of handling high-dimensional systems

and producing sensible results. Second, the variation in the number of financial connec-

tions among stock returns, as measured in our predictive Granger causal sense, seems to

serve as an indicator of a financial crisis when the overall number of connections decreases

substantially. Third, in parallel to financial connectedness, modularity also serves as an

(early warning) indicator of financial crises.

Insert Figures 5 approximately here

6 Conclusion

In this paper we introduce the Precision Least Squares estimator (PrLS). PrLS spans a

class of least square estimators for both low and high-dimensional models. It is based on a

simple plug-in approach that only requires estimating an unbiased and consistent precision

matrix of a linear transformation of the data. Under covariance stationarity of the data the

PrLS is shown to be asymptotically Gaussian. Furthermore, using the subseries method the

covariance matrix of PrLS can be estimated with robustness to moderate misspecifications

of the plugged-in precision matrix. The power of tests of variables significance based on

the PrLS estimates are also shown to be almost insensitive to p-value adjustments in finite

samples. In fact, PrLS guarantees asymptotic control over the directional familywise error
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rate.

We also show that in high-dimension, any regularized estimator of the precision matrix

—with a rate of convergence at least as fast as that of the sample covariance matrix — can

be used to get a near-oracle PrLS estimator after a simple regularization bias correction.

We also show that for some state-of-the-art regularized methods, the sparsity assumption

on the regression coefficient is ineluctable. We introduce a subseries method for regularized

precision matrix-based estimators which avoids refitting and makes the proposed inferential

procedure as fast as a kernel-based estimator. We illustrate the benefits of using our

estimation and inferential procedure on simulated data. This shows how PrLS compares

favorably to states-of-the-arts methodologies.

Empirically, we employ PrLS to investigate financial connectedness by estimating high-

dimensional Granger causal networks of 88 banks worldwide, using daily asset returns from

2005 until 2020. Focusing on each specific year, we find evidence that predictive connections

among bank asset returns had a significant decrease in the year of a financial or an economic

crisis due to the unpredictability of such an economic or financial collapse. The network

density increases at financial or economic crisis proximity. Our empirical result reconciles

the empirical literature on measuring systemic risk using the VAR model with theories of

financial market fragility and reputation.

Overall, our precision least squares estimator provides a versatile and almost “off the

shelf” tool for large-scale inference in linear regression models with any moderately biased

precision matrix estimator.
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7 Figures and Tables
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Figure 1: Simulated vs theoretical density of
β̂PrLS when β is dense

β β̂PrLS RF

β1 2 1.9489 0.915

β2 2 1.9489 0.915

β3 2 1.9489 0.915

β4 − β1003 0 0 0

Table 1: Average estimates of β̂PrLS and the
rejection frequencies (RF) of significance tests
at 5% when β is sparse
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Figure 2: Insensitive power of the PrLS after p-value adjustment

Notes: We simulate xt ∈ R50, for t = 1, . . . , 100, from a single factor model. The factor follows a
standard normal distribution. The factor loadings are drawn from a normal distribution and set fixed
across the 1000 simulations. The error process is i.i.d zero-mean normal with covariance |0.8|i−j . We
randomly select 20 coefficients and set them to 2 while the other coefficients are set to 0. Θ is estimated
using a refitted adaptive lasso-based modified Cholesky decomposition estimator and obtained an initial
estimator Θ̃ (see Online Appendix A4 for details). Θ̂ is obtained after (13). The variance of the PrLS
estimator is given by the formula in footnote 11. FDRdir := E(FDP dir) ≥ FWERdir where FDP dir :=∣∣∣{j ∈ R̂ : ŝignj ̸= sign (βj)

}∣∣∣/max(|R̂|, 1). The significant level is on the x-axis.

Table 2: Maximum excess bias ×100 with respect to an infeasible estimator

Toeplitz Factor augmented

s0 = 10

p Type Cholesky Linear Shrinkage Non-linear Shrinkage POET Cholesky Linear Shrinkage Non-linear Shrinkage POET

100
Naive 3.10 132.87 128.88 205.30 3.61 108.87 71.71 201.00

PrLS 3.04 91.55 89.00 301.48 3.60 73.49 41.73 240.56

250
Naive 3.80 178.94 172.78 201.43 4.15 138.33 175.36 200.46

PrLS 3.70 154.08 148.71 256.45 4.12 115.33 150.82 236.52

s0 = 60

100
Naive 2.02 108.68 67.31 230.97 1.88 161.16 44.21 201.03

PrLS 1.99 73.09 45.38 430.32 1.88 130.74 29.09 257.80

250
Naive 8.63 170.03 170.18 221.84 27.28 174.36 167.66 201.07

PrLS 7.09 144.54 147.41 276.87 14.52 155.32 144.52 253.83
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Figure 4: Granger-causality networks via PrLS
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A1 A framework for oracle approximation

Section 2 shows that the consistency of the precision least square estimator, given an

unbiased and consistent estimator Θ̂ of Θ, depends on the rate of convergence of Σx. In

this section, we give more insights on the required rate of convergence of Σx and discuss

the asymptotic normality of the PrLS. First, we give the following lemma as the starting

point of our discussion.

Lemma A1.1. Given the decomposition of the oracle least squares provided in Eq. (10),

the term A converges to zero in probability i.e., ||A||∞ = ||ΘxΣ̂x − I||∞ = op(1).

Lemma A1.1 follows directly from the deviation bound given below in Proposition 1. Its

proof is given in Section A3. The statement of Lemma A1.1 has a one to one correspondence

with showing
∥∥∥Σ̂x −Σx

∥∥∥
∞

= op(1). Let χt := xtx
′
t−E(xtx′

t) and call ∆x,t := Σ̂x−Σx ≡

T−1
∑T

t=1χt the p× p matrix of differences between the population covariance for xt and

its empirical counterpart. It follows that the key ingredient to prove the claim of Lemma

A1.1 is obtaining a deviation bound for the p(p + 1)/2 process χ̄T := vech(∆x,t) where

vech stacks on top of one another the columns of the lower triangle part (including the

diagonal) of ∆x,t. Therefore, we shall bound the probability for the maximum element

of χ̄T being large.1 This means that the coordinates of χ̄T shall uniformly concentrates

around zero i.e., for a strictly positive sequence κT , P (∥χ̄T∥∞ ≥ κT ) ≤ QT,p,∗, where QT,p,∗

is a quantity which depends on the sample size T , the number of variables p and other

terms (indicated with a ∗) related to the type of dependence assumed over the stochastic

process. We rely on the physical dependence framework as introduced by Wei Biao Wu in

a sequence of papers (see e.g., Wu, 2005). As this is needed for the proofs, we formally

introduce it in Section A3. In broad terms, as the Wold decomposition applies to a vast

1To make matters clear we illustrate this with a toy-example. Let p = 2 such that ∆x,t =[
x1,tx1,t − E(x1,tx1,t)
x2,tx1,t − E(x2,tx1,t) x2,tx2,t − E(x2,tx2,t)

]
; χ̄T = T−1

∑T
t=1

(x1,tx1,t − E(x1,tx1,t))
(x2,tx1,t − E(x2,tx1,t))
(x2,tx2,t − E(x2,tx2,t))

 .
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variety of stationary processes, many time series processes can be casted in an MA(∞)

form as xt =
∑∞

ℓ=0 ψℓet−ℓ, for ψ0 = 1,
∑∞

ℓ=0 ψ
2
j < ∞ and et a white noise. As such, the

white noise elements et forming this linear process can be viewed as independent input

of a physical system where all the dependencies among the outputs xt result from the

underlying data generating mechanism G(·) such that xt = (x1,t,x2,t, . . . ,xp,t)
⊤ = G(F t)

for the infinite-past filtration F t = (. . . , et−1, et) and likewise xj,t = gj(F t), t ∈ Z, where

gj(·), 1 ≤ j ≤ p, is the j-th coordinate projection of G(·). The measure induced by the

functional dependence considers the dependence of xj,t on ek for some k < t, when ek is

replaced by an i.i.d. copy ek while “freezing” the rest of the innovations. The deviation

bound in the next proposition gives the probability rate of Lemma A1.1.

Proposition 1. Let xj,. = {xj,t}t∈Z and x. = {xj,t}t∈Z,j=1,...,p. Assume finite L∞ depen-

dence adjusted norm ∥||x.||∞∥2,α <∞ for q > 2, α ≥ 0 and finite q = 2 uniform dependence

adjusted norm Ψq,α = max
1≤j≤p

∥xj,.∥2,α < ∞ for α ≥ 0.2 Let ℓ = ℓ(p) = 1 ∨ log p then3 for

some α ≥ 0, there exists a strictly positive sequence κT and a constant α1 such that the

following (polynomial) Nagaev-type deviation bound holds:

P (∥χ̄T∥∞ ≥ κT ) ≲
Cq,αT

α1+1ℓq/2∥||x.||∞∥qq,α
κqT

+ Cq,α exp

(
− Cq,ακ

2
T

Tα1+1Ψ2
2,α

)
, (A1.1)

where Cq,α is a constant that depends only on q, α.

Both a “weaker” and a “stronger” dependence can be accounted for in the bound

in (A1.1). To elaborate, the strength of the dependence is dictated by how slowly the

cumulative functional dependence measures decays (see Section A3); therefore, for smaller

α > 0 the higher the dependence. In the “weaker” dependence case i.e., if α > 1/2− 1/q,

2See Section A3, Remark A3.1 for the formal definition of the dependence adjusted norms.
3The condition ℓ = ℓ(p) = 1 ∨ log p is just to remark that the bound also holds for the univariate case.

However, as we are in high dimensions, henceforth this should interpreted as ℓ = log p.
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then for α1 = 1, ℓ = log p, we have

∥χ̄T∥∞ = OP

(
T (α1+1)/q

√
log p∥||x.||∞∥q,α + T (α1+1)/2Ψ2,α

)
,

and for κT ≳ T (α1+1)/qlog p3/2∥||x.||∞∥q,α+
√
pT (α1+1)Ψ2,α then ∥χ̄T∥∞ = op(1) for p→ ∞.

For the “stronger” dependence case: 0 < α < 1/2− 1/q, then the same expression for the

rates can be obtained, now for α1 = q/2− αq, ℓ = log p. Note how as (A1.1) is a Nagaev-

type of inequality, two bounds for the tail probability are displayed, namely a polynomial

tail bound and a sub-Gaussian type one. For large κT , the polynomial one dominates,

while for small κT the sub-Gaussian type does.

In the proof in Section A3 we follow closely Zhang et al. (2017). However, we give partly

a different proof strategy, where instead of using a Rosnethal-Burkholder type bound on

moments of Banach-spaced martingales, we obtain the same result with a simple, albeit

more lengthy, chain of inequalities. Given Lemma A1.1, the claim ∥Aβ∥∞ = op(1) follows

from assumption of compact parameter space for β.

Remark A1.1. Note that we stated the deviation bound (A1.1) assuming finiteness of

both the L∞ dependence adjusted norm and the uniform dependence adjusted norm for

the process xt instead of χ̄T = T−1
∑T

t=1 vech(∆x,L,t). The reason is that the former can

be shown to imply the latters. The functional dependence measure for the process χ̄T can

be shown to be upper bounded by twice the functional dependence measure of xt. As such,

similarly, both the L∞ dependence adjusted norm and the uniform dependence adjusted

norm of χ̄T are upper bounded by twice the corresponding norms of xt. We show this in

Section A3, Lemma A3.1. However, one needs to account the averaging factor T−1 in the

bound but this follows by simple substitution of variable from Theorem 6.1 of Zhang et al.

(2017). In fact, to account for this the sequence κT is inflated by a
√
T in the first term if

compared to Theorem 6.2 of Zhang et al. (2017). This is also justified by majorating the
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right hand side inequality of Lemma 8 in Chernozhukov et al. (2015).

Remark A1.2. Let us mention that in a more recent paper Zhang and Wu (2021) derived

a similar Nagaev-type tail bound for (locally) stationary processes, directly on the deviation

of the autocovariance from its true counterpart. This could analogously be used here too,

without changing any conclusion. While the rates are similar –albeit in their case depending

on some bandwidth– their Proposition 3.3 requires at least five finite moments while here

we only need three.

Remark A1.3. The bound in (A1.1) is polynomial and can be strengthened to exponential

by means of stronger assumptions on the moments for xt. Note that to get (A1.1) only a

bit more than two finite moments are needed for xt to exist.4 Strengthening the moment

requirement can lead to faster rates. For instance, by assuming finiteness of the sub-

exponential (Orlicz) dependence adjusted norm i.e., ∥||x.||∞∥ψℓ,α
:= sup

q≥2
q−ℓ∥||x.||∞∥q,α <

∞ one can obtain exponentially fast rates (see Section C.2 Zhang et al., 2017, for the

univariate case). For even stronger assumption on xt being a random matrix directly

drawn from the Σ−Gaussian ensemble (i.e., i.i.d. Gaussian rows) one can obtain similar

polynomial bounds of the order log p/T directly on A; likewise, assuming the rows of xt to

be zero mean i.i.d. sub-Gaussian, then exponentially fast Chernoff-like bounds for A can

be derived. We show these in Section A3.

The next Lemma shows how the term u in (10), namely the term that gives the asymp-

totic distribution of the oracle least square and as such of the precision least squares as

well, is approximately Gaussian.

Lemma A1.2. Consider the p-dimensional zero-mean stationary process under physical

dependence ut = Θxxtϵt and the p-dimensional sample mean vector u = T−1
∑T

t=1 ut.

4This is implied by q > 2 in the adjusted norm.

A5



Then, for T, p→ ∞, the following Gaussian approximation applies as

sup
κ3≥0

∣∣∣P(√T∥u∥∞ ≥ κ3

)
− P (∥η∥∞ ≥ κ3)

∣∣∣→ 0, (A1.2)

where η ∼ N(0,V ) for V =
∑∞

l=−∞ E(utu′
t+l) being the long-run covariance matrix.

Proof of Lemma A1.2 follows directly from the main result in Zhang et al. (2017); hence,

we refer to this work for a full treatment of the Gaussian approximation.

Remark A1.4. While the details of the Gaussian approximation are given in Theorem

3.2 of Zhang et al. (2017) a couple of remarks are in order. First, like for the deviation

bound in (A1.1) this Gaussian approximation only requires finite polynomial moments.

In fact, letting Γ u
q,α =

(∑p
j=1 ∥ut∥

q
q,α

)1/q
be the overall dependence adjusted norm and

Ξu
q,α = Γ u

q,α ∧
(∥∥||ut||q,α(log p)3/2∥∥), the requirement for the Gaussian approximation to

hold in both the weaker dependence case where α > 1/2 − 1/q and for the stronger de-

pendence case 0 < α < 1/2 − 1/q is that Ξu
q,α < ∞ for q ≥ 4.5 Furthermore, for stronger

assumptions on the finiteness of the sub-exponential (Orlicz) dependence adjusted norm,

the Gaussian approximation is valid for ultra high-dimension p. Second, (A1.2) is stated in

the nonnormalized form i.e., both u and η are not pre-multiplied by the reciprocal of the

square root of the diagonal matrix of V . This implicitly assumes boundedness from above

of the maximal long-run variance. Finally, an error bound for the Gaussian approximation

is provided in Theorem 7.4 of Zhang et al. (2017).

A2 Monte-Carlo - Details

Consider the linear model (1). We simulate normal i.i.d data such that βj = 2, for

j = 1, . . . , 50, Σx = (0.6)|i−j|, p = 500, T = 250, and E(ϵ2t ) = 0.1. The number of repli-

5Other technical conditions on the rate of shrinking of both the uniform and overall dependence adjusted
norms are reported in (Assumption 3.1 of Zhang et al., 2017).
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cations is 500. Firstly, we compare the naive PrLS β̂Naive with its two proposed debiased

versions i.e., β̂PrLS, namely the PrLS with debiasing as in Eq. (13) and β̂D as presented

in Eq. (17). Refitted adaptive lasso-based modified Cholesky decomposition (presented in

Online Appendix A4) is used as a plug-in estimator of the precision matrix in all these.

Furthermore we add the comparisons with: the debiased lasso in Van de Geer et al. (2014)

(Lasso) and Adamek et al. (2022) (Lasso2), the debiased ridge in Bühlmann et al. (2013)

(Ridge). The variance of β̂PrLS and β̂D is obtained via the subseries method presented in

Section 3.2. The number of subseries values is fixed to T 1/3 across the simulations. We also

include as a benchmark the infeasible OLS estimator to mimic the behavior of an oracle

estimator. This estimator is obtained by augmenting the simulated sample size of the data

such that T = 750.
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1.0 1.5 2.0
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OLS(T=750)

Naive

DB

DB2

Ridge

Lasso

Lasso2

Figure A.1: Comparison of the densities of the estimated βj of different estimators

Notes: Naive, DB and DB2 correspond to βNaive, βPrLS and βD, respectively. Lasso refers to Van de Geer
et al. (2014), ridge refers to Bühlmann et al. (2013) debiased version and Lasso2 refer to the Adamek et al.
(2022) debiased lasso for time series. OLS(T = 750) refers to the OLS estimator computed on T = 750
observations from which the first T = 250 are drawn to compare it to the other estimators. p = 500.

Figure A.1 displays the densities of an estimated regression coefficient using the different

methods under comparison. One can observe how βPrLS, βD, and βNaive behave similarly

in terms of bias. This bias is close to 0 and it is similar to that of the infeasible OLS
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obtained by artificially augmenting the data. This is not the case for the Van de Geer

et al. (2014), Bühlmann et al. (2013) and Adamek et al. (2022) debiased estimators. These

estimators exhibit substantial bias and the Adamek et al. (2022) one is also left skewed.

(a) Comparison of the boxplot of the bias of
the relevant coefficients of different estimators
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(b) Comparison of the boxplot of the bias of the
irrelevant coefficients of different estimators
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Figure A.2: Comparison of the biases

Notes: Bias=E(β̂j − βj). See Figure A.1 Notes for details about the data generating process.

Figure A.3a and Figure A.3b display the boxplots for the bias of the estimated coef-

ficients obtained using the different methods. The βPrLS, βD, and βNaive are shown to

be uniformly unbiased over the set of all coefficients. This, again, is not the case for all

the other estimators considered, some of which show erratic behaviors on some coefficients.

It is worth mentioning that βNaive is subject to regularization bias, as predicted by our

theory. This is mainly visible when one looks at Figure A.3b. The bias of the irrelevant

coefficients for this estimator is the smallest, meaning that the truly zero coefficients are

very shrunken toward zero. On the other hand –as it is visible from Figure A.3a– this too

much shrinkage towards zero also affects the relevant coefficients, whose bias is then farther

from zero.

Figure A.5a reports the boxplots of the rejection frequencies of the tests for individual

significance of the irrelevant coefficient. As one can expect, the test based on the infeasible
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(a) Comparison of the boxplot of the sizes of
the irrelevant coefficients of different estima-
tors
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(b) Comparison of the boxplot of the power of
the relevant coefficients of different estimators
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Figure A.4: Rejection frequency of tests of significance

Notes: See Figure A.1 Notes for details about the data generating process. We expect Size=
P (test rejects H0 | H0 is true) ≤ α for H0 : βj = 0 α = 5% to be the significance level.

OLS6 and Van de Geer et al. (2014) estimators have size around the nominal 5% level.

The tests based on the other estimators have size lower than 5%. This is expected, as a

PrLS-based test discriminates strongly between relevant and irrelevant variables. In Figure

A.5b, we report the boxplot of the rejection frequency of the tests for individual significance

of the relevant coefficient. This corresponds to the power of the different tests. One can

see that unlike the tests based on the Adamek et al. (2022) estimator, all the tests have

power close to one.

Overall, our Monte Carlo simulation result illustrates the good performance of the PrLS

estimator. It compares favorably in terms of bias, size, and power to traditional state-of-

the-art estimators. Although the reported results are based on i.i.d. normal data, similar

results are obtained for ARMA-GARCH processes with skewed student innovations for the

covariates and error terms. These results are omitted for the sake of space and are available

upon request.

6We use a standard formula for i.i.d. data to estimate the variance of the OLS.
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A3 Proofs

First, in Remark A3.1 we introduce the concept of physical dependence. This is the key

ingredient for the proofs that follow.

Remark A3.1. (Physical Dependence) We use the framework of physical dependence from

Zhang et al. (2017). Let et, t ∈ Z be i.i.d. random elements and F t = (. . . , et−1, et) be

the infinite collection of its past values. Furthermore, given a stationary process {xt}, let

xt = (x1,t,x2,t, . . . ,xp,t)
′ = G(F t), where G(·) is a measurable function taking values in Rp.

Any linear process xt =
∑∞

l=0Alet−l for et
iid∼ (0,E(e′

tet) < ∞) and
∑∞

t=0 tr(A
′
tAt) < ∞

is of this form. The terms et can then be seen as the independent inputs of a system, and

the outputs are the xt causally generated by et through G(·). As for the notation: for any

random variables xt and q > 0, we write xt ∈ Lq if ∥xt∥E,q := (E |xt|q)1/q < ∞ where Lq

is the set of Lebesgue-integrable functions of order q. We can then define the functional

dependence measure as

δq,j,t =
∥∥xj,t − xj,t,{0}

∥∥
E,q

=
∥∥xj,t − gj(F t,{0})

∥∥
E,q

=
∥∥gj(F t)− gj(F t,{0})

∥∥
E,q

where F t is as defined above and F t,{0} = (. . . , et−1, e
′
0, e1, . . . , et) represents the values

of a coupled process xj,t,{0} = gj(F t,{0}), where gj(·), 1 ≤ j ≤ p, is the j-th coordinate

projection of G(·). Intuitively, what δq,j,t measures is the dependency of xj,t on e0, i.e.,

how replacing e0 by an i.i.d. copy e′
0 (while keeping all the other e’s fixed) affects the

output xj,t, in the same form as a (nonlinear) impulse-response function.

As a consequence, to account for the dependence in the process xj,. = {xj,t}t∈Z, the

dependence adjusted q-norm for q ≥ 2 is defined as

∥xj,.∥q,α = sup
m≥0

(m+ 1)α∆q,j,m,
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where α ≥ 0 and ∆q,j,m =
∑∞

t=m δq,j,t measure the cumulative effect of e0 on xj,t, t ≥

m. Also, as we are working in a high-dimensional setting, let the uniform and overall

dependence adjusted norms of xt be defined respectively as

Ψq,α = max
1≤j≤p

∥xj,.∥q,α, Γq,α =

(
p∑
j=1

∥xj,.∥qq,α

)1/q

.

Finally, it is also convenient to introduce the L∞ physical dependence measure and its

adjusted norm i.e., ωt,q :=
∥∥∥∥xt − xt,{0}

∥∥
∞

∥∥
q
and ∥∥x.∥∞∥q,α = sup

m≥0
(m+ 1)α

∑∞
t=m ωt,q.

Lemma A3.1. Within the framework of physical dependence introduced in Remark A3.1,

we are interested in deriving the functional dependence measure of the vector χt = vech(xtx
′
t−

E(xtx′
t)).

7 Following Zhang et al. (2017) Eq.(3.13-3.15), by letting a = (j, k), j, k ≤ p such

that χt,a = (xj,tx
′
k,t − E(xj,tx′

k,t)). The functional dependence measure for the process

(χt,a)t∈Z is obtained from the following chain of inequalities:

τq/2,a,t :=
∥∥xj,txk,t − E(xj,txk,t)− xj,t,{0}xk,t,{0} + E

(
xj,t,{0}xk,t,{0}

)∥∥
E,q/2

≤ 2
∥∥xj,txk,t − xj,t,{0}xk,t,{0}

∥∥
E,q/2

≤ 2
∥∥xj,t(xk,t − xk,t,{0})

∥∥
E,q/2

+ 2
∥∥(xj,t − xj,t,{0})xk,t,{0}

∥∥
E,q/2

≤ 2∥xj,t∥E,qδq,k,t + 2∥xk,t∥E,qδq,j,t,

(A3.1)

where the last step follows from Hölder’s inequality. An upper bound on the dependence

adjusted norm of χt,a follows as

∥χa,.∥q/2,α := sup
m≥0

(m+ 1)α
∞∑
t=m

τq/2,j,k,t

≤ 2∥xj,.∥q,0∥xk,.∥q,α + 2∥xk,.∥q,0∥xj,.∥q,α,

(A3.2)

7Note that we now write χt = vech(xtx
′
t − E(xtx

′
t)) in place of χ̄T = T−1

∑T
t=1 vech(xtx

′
t −

E(xtx
′
t)). The reason is that by stationarity one has

∥∥∥T−1
∑T

t=1 vech(xtx
′
t − E(xtx

′
t))
∥∥∥
E,q

≤
∥vech(xtx

′
t − E(xtx

′
t))∥E,q.
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and consequently for the uniform and overall dependence adjusted norms of χt:

max
a

∥χa,.∥q/2,α ≤ 4Ψq,0Ψq,α, (A3.3)

(∑
a

∥χa,.∥q/2q/2,α

)2/q

≤ 4

(
p∑
j=1

∥xj,.∥q/2q,0

)2/q( p∑
j=1

∥xj,.∥q/2q,α

)2/q

.

Then, the L∞ dependence adjusted norm of χt is as follows:

4Ψq,0Ψq,α ≤ ∥||χ.||∞∥q/2,α ≤ 4 ∥||x.||∞∥q,0 ∥||x.||∞∥q,α . (A3.4)

Note that to prove the statement in Lemma A1.1 it suffices to prove the deviation bound

in Proposition 1 which is what we are going to do now.

Proof of Proposition 1. Given χ̄T = T−1
∑T

t=1χt, for s ≥ 0 let χ̄s,T = T−1
∑T

t=1 χs,t

for χs,t = E(χt|et−s, . . . , et) being the s-dependence approximation of χt. Note that χ̄T,s =

T−1
∑T

t=1 E(vec(xtx′
t−E(xtx′

t))|et−s, . . . , et). Let F−s := (et−s, . . . , et). Then, by linearity

of the expectation and the vec operator, we obtain that

χ̄T,s = T−1

T∑
t=1

vec(E(xtx
′
t|F−s)− T−1

T∑
t=1

vec(E(E(xtx
′
t|F−s)))

= T−1

T∑
t=1

vec(E(xtx
′
t|F−s)− T−1

T∑
t=1

vec(E(xtx
′
t)),

(A3.5)

by law of iterated expectation on the second term. Now, noting that χ̄T can also be split

by the linearity of the vec operator as

χ̄T = T−1

T∑
t=1

vec(xtx
′
t)− T−1

T∑
t=1

vec(E(xtx
′
t)) (A3.6)
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it follows that

χ̄T − χ̄s,T = T−1

T∑
t=1

vec(xtx
′
t)︸ ︷︷ ︸

:=Γ̄x
T

−T−1

T∑
t=1

vec(E(xtx
⊤
t |F−s)︸ ︷︷ ︸

:=Γ̄x
s,T

.
(A3.7)

A tail bound on (A3.7) is obtained through Theorem 6.1 of Zhang et al. (2017) by a simple

change of variable. Let s = 1 ∨ log p. Then, by standard norm properties, we have

P
(
||Γ̄ x

T − Γ̄ x
s,T ||∞ ≥ y

)
≤ P

(
||Γ̄ x

T − Γ̄ x
s,T ||s ≥ y

)
.

Let L = ⌊(log T − log s)/(log 2)⌋, ωl = 2l if 1 ≤ l ≤ L, ωL = ⌊T/s⌋, τl = sωl for 1 ≤ l < L,

τ0 = s, and τL = T and define MT,l := Γ̄ x
τl,T

− Γ̄ x
τl−1,T

for 1 ≤ l ≤ L. Then, one can rewrite

(A3.7) as

Γ̄ x
T − Γ̄ x

s,T = Γ̄ x
T − Γ̄ x

T,T︸ ︷︷ ︸
(i)

+
L∑
l=1

Ml,T︸ ︷︷ ︸
(ii)

.

Note, we can further rewrite (i) as
∑∞

j=T Γ̄
x
j+1,T − Γ̄ x

j,T . Hence, by union bound

∥∥||Γ̄ x
T − Γ̄ x

T,T ||s
∥∥
q
≤

∞∑
j=T

∥∥||Γ̄ x
j+1,T − Γ̄ x

j,T ||s
∥∥
q
. (A3.8)

Let us use the notation EsΓ̄ x
T := E

[
Γ̄ x
T |es, . . . , et

]
. Then, by standard norm properties and

stationarity

∥∥||Γ̄ x
j+1,T − Γ̄ x

j,T ||s
∥∥
q
≤ c
∥∥||Γ̄ x

j+1,T − Γ̄ x
j,T ||∞

∥∥
q

≤ c
∥∥||Et−j−1Γ̄

x
T − Et−jΓ̄

x
T ||∞

∥∥
q

≤ c
∥∥||E0Γ̄

x
j+1 − E1Γ̄

x
j+1||∞

∥∥
q
.
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Then, note that the second term can be rewritten in terms of a coupled version of Γ̄ x
j+1:

E1Γ̄
x
j+1 = E

[
Γ̄ x
j+1|e1, . . . , ej+1

]
= E [gj(. . . , e0, e1, . . . , ej+1)|e1, . . . , ej+1]

= E [gj(. . . , e
′
0, e1, . . . , ej+1)|e1, . . . , ej+1] = E

[
Γ̄ x
j+1,{0}|e0, e1, . . . , ej+1

]
.

where, in the last equality, we can include e0 in the conditioning set as it does not alter

the conditional expectation of Γ̄ x
j+1,{0}. Then, by first collecting the E0 terms and then by

Jensen’s inequality and law of iterated expectation

c
∥∥||E0Γ̄

x
j+1 − E1Γ̄

x
j+1||∞

∥∥
q
≤ c
∥∥∥∣∣∣∣E0

(
Γ̄ x
j+1 − Γ̄ x

j+1,{0}
)∣∣∣∣

∞

∥∥∥
q
≤ c
∥∥E0||Γ̄ x

j+1 − Γ̄ x
j+1,{0}||∞

∥∥
q

≤ c
{

E
[
E0||Γ̄ x

j+1 − Γ̄ x
j+1,{0}||q∞

]1/q} ≤ c
[
E||Γ̄ x

j+1 − Γ̄ x
j+1,{0}||q∞

]1/q
≤ c

∥∥∥∥∥∥(j + 1)−1

(j+1)∑
t=1

vec(xtx
⊤
t xtx

⊤
t )− (j + 1)−1

(j+1)∑
t=1

vec(xtx
⊤
t,{0}xtx

⊤
t,{0})

∥∥∥∥∥∥
q

.

Now, in the same pretence as the functional dependence measure in (A3.1), we have:

c

∥∥∥∥∥∥(j + 1)−1

(j+1)∑
t=1

vec(xj,tx
⊤
k,t)− (j + 1)−1

(j+1)∑
t=1

vec(xj,t,{0}x
⊤
k,t,{0})

∥∥∥∥∥∥
q/2

≤c

∥∥∥∥∥∥(j + 1)−1

(j+1)∑
t=1

xj,t(xk,t − xk,t,{0})

∥∥∥∥∥∥
q/2

+ c

∥∥∥∥∥∥(j + 1)−1

(j+1)∑
t=1

(xj,t − xj,t,{0})xk,t,{0}

∥∥∥∥∥∥
q/2

≤c

∥∥∥∥∥∥(j + 1)−1

(j+1)∑
t=1

xj,t

∥∥∥∥∥∥
q

δq,k,t + c

∥∥∥∥∥∥(j + 1)−1

(j+1)∑
t=1

xk,t

∥∥∥∥∥∥
q

δq,j,t =: c
∥∥∥x̄[j+1]

j,t

∥∥∥
q
δq,k,t + c

∥∥∥x̄[j+1]
k,t

∥∥∥
q
δq,j,t.
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Now,

∥∥∥∥∥∥
[

T∑
t=1

E
[
||Γ̄ x

j+1,T − Γ̄ x
j,T ||2s|F i

]]1/2∥∥∥∥∥∥
q

=


E

{
T∑
t=1

E
[
||Γ̄ x

j+1,T − Γ̄ x
j,T ||2s|F i

]}q/2
2/q


1/2

(1)

≤

[
T∑
t=1

∥∥E
[
||Γ̄ x

j+1,T − Γ̄ x
j,T ||2s|F i

]∥∥
q/2

]1/2
(2)

≤

[
T∑
t=1

∥∥||Γ̄ x
j+1,T − Γ̄ x

j,T ||2s
∥∥
q/2

]1/2
(3)

≤ c

[
T∑
t=1

∥∥||Γ̄ x
j+1,T − Γ̄ x

j,T ||2∞
∥∥
q/2

]1/2
,

where (1), (2), and (3) follow the Minkovski inequality, law of iterated expectations and

the fact that ∥·∥s ≤ T 1/s∥·∥∞ = T 1/ log T∥·∥∞ = c∥·∥∞, respectively. Then,

c

[
T∑
t=1

∥∥||Γ̄ x
j+1,T − Γ̄ x

j,T ||2∞
∥∥
q/2

]1/2
= c

[
T∑
t=1

(
E
[
||Γ̄ x

j+1,T − Γ̄ x
j,T ||2∞

]q)2/q]1/2

= c

[
T∑
t=1

(
E
{∣∣∣∣E [Γ̄ x

T − Γ̄ x
T,{t−j−1}|et−j−1, . . . , ei

]∣∣∣∣
∞

}q)2/q]1/2
,

hence,

(4)

≤ c

[
T∑
t=1

(
E
{

E
[
||Γ̄ x

T − Γ̄ x
T,{t−j−1}||∞|et−j−1, . . . , et

]}q)2/q]1/2
(5)

≤ c

[
T∑
t=1

(
E
{

E
[
||Γ̄ x

T − Γ̄ x
T,{t−j−1}||q∞|et−j−1, . . . , ei

]})2/q]1/2
(6)

≤ c

[
T∑
t=1

∥∥||Γ̄ x
T − Γ̄ x

T,{t−j−1}||∞
∥∥2
q

]1/2
(7)

≤ c

[
T∑
t=1

∥∥||Γ̄ x
t+1 − Γ̄ x

t+1,{0}||∞
∥∥2
q

]1/2

≤ c

[
T∑
t=1

(∥∥∥x̄[j+1]
j,t

∥∥∥
q
δq,k,t +

∥∥∥x̄[j+1]
k,t

∥∥∥
q
δq,j,t

)2
]1/2

≤ cT 1/2

(∥∥∥x̄[j+1]
j,t

∥∥∥
q
δq,k,t +

∥∥∥x̄[j+1]
k,t

∥∥∥
q
δq,j,t

)
.

where (4), (5), (6), and (7) follow Jensen’s inequality, law of iterated expectations and sta-
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tionarity, respectively. Then, by Markov’s inequality, we obtain from (A3.8) and (A3.2),(A3.3),(A3.4)

for χ̄t:

P
(
||Γ̄ x

T − Γ̄ x
T,T ||s ≥ x

)
≤

∥∥||Γ̄ x
T − Γ̄ x

T,T ||s
∥∥q
q

xq

≤
cT q/2

(
2
∥∥∥x̄[j+1]

.j

∥∥∥
q,0

∥∥∥x̄[j+1]
.k

∥∥∥
q,α

+ 2
∥∥∥x̄[j+1]

.k

∥∥∥
q,0

∥∥∥x̄[j+1]
.j

∥∥∥
q,α

)
xq

≤ cT q/24Ψq,0Ψq,α

xq
≤
cT q/2 ∥||χ̄.||∞∥q/2,α

xq
.

(A3.9)

The bound on (ii) follows Zhang et al. (2017), Theorem 6.1. Putting the bounds on (i)

and (ii) together gives the claimed bound.

Finally, we only need to verify from (A3.7) that by means of simple manipulation

Γ̄ x
T − Γ̄ x

s,T − T−1

T∑
t=1

vec(E(xtx
′
t)) + T−1

T∑
t=1

vec(E(xtx
′
t)) =

= χ̄T −

(
T−1

T∑
t=1

vec(E(xtx
′
t|F−s)− T−1

T∑
t=1

vec(E(xtx
′
t))

)
=: (b)

(A3.10)

∥(b)∥2 ≤ ∥χ̄T∥1 +

∥∥∥∥∥T−1

T∑
t=1

vec(E(xtx
′
t|F−s)− T−1

T∑
t=1

vec(E(xtx
′
t))

∥∥∥∥∥
∞

≥ ∥χ̄T∥1.

Therefore, the claim of Lemma A1.1 on (only) χ̄T follows by this last argument and this

concludes the proof.

Remark A3.2. If one would allow for much stronger conditions than in Lemma A1.1, then

||A||∞ ≡ || var(xt)−1x′
txt/T − I||∞ ≤ C

√
(log p)/T .

(I) Let xt be a random matrix directly drawn from the Σ-Gaussian ensemble (i.e., Gaus-

sian rows) and hence Σ̂ is a Wishart matrix. Then, by letting V ∼ N (0, I) and
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x = V
√
Σ

∥∥∥ΘΣ̂ − I
∥∥∥
2
≡
∥∥∥Θ(Σ̂ −Σ)

∥∥∥
2
≤ ∥Θ∥2

∥∥∥Σ̂ −Σ
∥∥∥
2∥∥∥Σ̂ −Σ

∥∥∥
2
=
∥∥∥√Σ

(
T−1V ⊤V − I

)√
Σ
∥∥∥
2
≤ ∥Σ∥2

∥∥T−1V ⊤V − I
∥∥
2︸ ︷︷ ︸

:=G

with probability 1− 2e−Tδ
2/2

G ≤ 2

√
log p

T
+

log p

T
+ δ

which follows from the upper deviation inequality over the maximum singular value

of xt (see Wainwright (2019), Theorem 6.1) Therefore, with probability 1− 2e−Tδ
2/2

for all δ > 0 ∥∥∥Σ̂ −Σ
∥∥∥
2

∥Σ∥2
≤ 2

√
log p

T
+ 2δ +

log p

T
+ δ2

i.e. the relative error converges to zero as long as log p/T → 0.

(II) Let the rows of xt be zero-mean i.i.d. sub-Gaussian with parameter at most σ, i.e.

E [eγxi ] ≤ e
γ2σ2

2 , ∀γ ∈ R. Then, a bound on the moment generating function of

|||Σ̂ −Σ|||2 and a consequent tail bound are in order:

E
[
eλ|||Σ̂−Σ|||2

]
≤ ec0

γ2σ4

T
+4p, ∀|γ| ≤ T

64e2σ2

P

[
|||Σ̂ −Σ|||2

σ2
≥

{√
log p

T

log p

T

}
+ δ

]
≤ c2e

−c3T min{δ,δ2}, ∀δ ≥ 0

where {cj}3j=0 are universal constants. The proof follows immediately by application

of the Chernoff bound; see, e.g., Theorem 6.5 of Wainwright (2019).
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Proof of Theorem 1. Assuming that Θ̂ is a consistent estimator ofΘ, proof of Theorem

1 follows directly from the results in Lemma A1.1, Lemma A1.2 and by direct application

of central limit theorm to the coordinate of βOracle.

Proof of Theorem 2. Recalling Eq. (10), the test statistics can be rewritten for Z̃i ∼

N(0,Λ0)

Ti =

√
Tβi√
V̂ii

+
Ai,.β√

V̂ii

+ Z̃i

where Z̃i =
1√
V̂ii

N(0,Vii) → N(0, I). Let S≥0 ≡ {i ∈ [p] : βi ≥ 0} and S≤0 ≡ {i ∈ [p] : βi ≤ 0}.

Momentarily consider a fixed t = t̃p, where we clarify the dependence of t̃p on p. In addition,

let ŝigni = sign (Ti) be the estimate of sign (βi); then, for c > 0

P

(∑
i

I
(
ŝigni ̸= sign (βi)

)
≥ 1

)
≤ P

∑
i∈S≤0

I
(
Ti ≥ t̃p

)
≥ 1


︸ ︷︷ ︸

:=A

+ P

∑
i∈S≥0

I
(
Ti ≤ −t̃p

)
≥ 1


︸ ︷︷ ︸

:=B

Let us assume that V̂jj−Vj,j = op(1). For instance, V̂jj can be the batch mean estimator

presented in Section 3. Recall that lim
p→∞

pbe−p
a
= 0 ∀ b ∈ R and a > 0. First, we consider

the term A, then B follows in a symmetric way:

A ≤ P

∑
i∈S≤0

I

Ai,.β√
V̂ii

+ Z̃i ≥ t̃p

 ≥ 1


≤ P

∑
i∈S≤0

I

Z̃i ≥ t̃p −
∥Aβ∥∞√

V̂ii

 ≥ 1


≤ p max

i∈[p]
P
(
Z̃i ≥ (1− c)t̃p − c

)
+max

i∈[p]
P

(
∥Aβ∥∞ ≥

√
V̂iic

)
≤ p max

i∈[p]
P
(
Z̃i ≥ (1− c)t̃p − c

)
+max

i∈[p]
P

(
∥A∥∞ ≥

√
V̂iic

∥β∥1

)
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= p max
i∈[p]

P
(
Z̃i ≥ (1− c)t̃p − c

)
+max

i∈[p]
P

(
∥A∥∞ ≥

√
Vii

∥β∥1
c−

√
Vii −

√
V̂ii

∥β∥1
c

)

≤ p max
i∈[p]

P
(
Z̃i ≥ (1− c)t̃p − c

)
+max

i∈[p]
P

(
∥A∥∞ ≥

√
Vii

∥β∥1
(1− c2)c− c2

)
+max

i∈[p]
P

((√
V̂ii√
Vii

− 1

)
≥ c2∥β∥1

Viic

)

≤ p max
i∈[p]

P
(
Z̃i ≥ (1− c)t̃p − c

)
+max

i∈[p]
P

(
∥A∥∞ ≥

√
Vii

∥β∥1
(1− c2)c− c2

)

+max
i∈[p]

P

∣∣∣∣∣∣
√

V̂ii
Vii

− 1

∣∣∣∣∣∣ ≥ c2∥β∥1
c


≤ p exp

[
−((1− c)t̃p − c)2

2

]
+ op(1) = op(1).

Proof of Theorem 3. The results of Theorem 3 follow from the following chain of equal-

ities.

Θ̂ = 2Θ̃ − Θ̃Σ̂Θ̃,

Θ̂ = 2Θ̃ − Θ̃ΣΘ̃ + Θ̃(Σ − Σ̂)Θ̃,

Θ̂ = 2Θ̃ − (I +∆Σ)Θ̃ + Θ̃(Σ − Σ̂)Θ̃,

Θ̂ = 2Θ̃ − Θ̃ −∆ΣΘ̃ + Θ̃(Σ − Σ̂)Θ̃,

Θ̂ = Θ̃ −∆ΣΘ̃ + Θ̃(Σ − Σ̂)Θ̃,

Θ̂ = Θ̃ −∆(I +Σ∆) + Θ̃(Σ − Σ̂)Θ̃,

Θ̂ = Θ +∆−∆(I +Σ∆) + Θ̃(Σ − Σ̂)Θ̃,

Θ̂ = Θ −∆Σ∆+ Θ̃(Σ − Σ̂)Θ̃,

Θ − Θ̂ = ∆Σ∆+ Θ̃(Σ − Σ̂)Θ̃.
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A4 The regression-based modified Cholesky decom-

position

In this section, we present the regression-based modified Cholesky decomposition (RBMCD)

which is a class of precision matrix estimators based on sequential estimation of linear re-

gression models. The history of the RBMCD originates from Summerfield and Lubin

(1951); Dempster (1969) and Hawkins and Eplett (1982) with recent application in Pourah-

madi (1999); Boudt et al. (2017); Darolles et al. (2018). Proposition 2 gives the algorithm

of RBMCD.

Proposition 2. Recall the definition of Ω in Remark 1. If Ω is positive definite then

it admits a unique modified Cholesky decomposition. Therefore, it exists a sequence of

orthogonal random variables ε1,t, . . . , εp,t with Var(εj,t) = σ2
j <∞, such that

z1,t = ε1,t,

zj,t = bj,1z1,t + bj,2z2,t + · · ·+ bj,j−1zj−1,t + εj,t, for each j = 2, . . . , p+ 1

(A4.1)

and E(zi,tϵj,t) = 0 for 1 ≤ i < j ≤ p.

Proposition 2 implies that Ω−1 = B′G−1B with
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B =



1 0 0 · · · 0

−b2,1 1 0 · · · 0

−b3,1 −b3,2 1 · · · 0

...
...

...
. . .

...

−bp+1,1 −bp+1,2 −bp+1,3 · · · 1


and G =



σ1
2 0 0 · · · 0

0 σ2
2 0 · · · 0

0 0 σ3
2 · · · 0

...
...

...
. . .

...

0 0 0 · · · σp+1
2


,

can be estimated via a sequence of p independent linear regression models. B is called the

Cholesky factor of Ω−1. Proposition 3 below shows how either dense or sparse assumption

over the coefficient vector β is compatible with a sparsity assumption of the Cholesky factor

for the precision matrix of a given permutation of the coordinates of zt = (z1,t, . . . , zp,t)
′.

Such a feature is appealing for estimating β in high-dimension via PrLS as estimating B

via OLS is not feasible when p ≥ T .

Proposition 3. Denote zN
t a vector containing a permutation N of zt and BN the

Cholesky factor of its precision matrix. βN is defined accordingly as a permuted ver-

sion of β. Note that BN ̸= B if zN
t ̸= zt and for a given 1 ≤ l ≤ p + 1, zN

l,t = yt.

From Lemma 1 in Peng et al. (2009) we have βN
j ∝

∑p+1
k=l B

N
k,lB

N
k,j and if βN

j ̸= 0 then,

∃ k : l ≤ k ≤ p+ 1 and BN
k,lB

N
k,j ̸= 0.

Proposition 3 implies that if zN
t = zt then βj = 0 ⇐⇒ Bp+1,j = 0 or equivalently

βj ̸= 0 ⇐⇒ Bp+1,j ̸= 0 such that both β and B can be sparse. The statement also implies

that β can be dense while BN is sparse. For instance, if zN
t = (yt, x5,t, x4,t, x3,t, x2,t, x1,t)

′,
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G = I, and

BN =



1 0 0 0 0

2 1 0 0 0

2 0 1 0 0

2 0 0 1 0

2 0 0 0 1


, then B =



2056.7902 0 0 0 0

−257.2197 0.1289 0 0 0

32.031 −0.0089 0.1282 0 0

−4.121 0.0124 −0.0058 0.1315 0

0.484 −0.0307 −0.0271 −0.0395 0.1118


,

and β = (−0.1,−0.1,−0.1,−0.1)′. In fact, such a sparse/dense structure holds whenever

zN
1,t = yt, B1,j ̸= 0 and Bi,j = 0 for all i ̸= j and 1 ≤ j ≤ p. By allowing zN

l,t = yt for a given

1 ≤ l ≤ p and a given N , many other types of sparse/dense structures can be obtained for

β when BN is sparse.

Remark A4.1. Choosing N for estimating sparse BN is tantamount to imposing some

identification conditions. However, in some cases, its choice is straightforward. For in-

stance, if yt ∼ AR(p) and zN
t = (yt−p′ , . . . , yt−1, yt)

′ for any p′ ≥ p then coefficients in

BN = B are the partial autocorrelation coefficients of yt and B is (approximately) sparse

whenever p′ ≫ p.8 Likewise, if yt ∼ VAR(p), with yt ∈ RN then for i = 1, . . . , N one can

let zN
t := (y′

t−p, . . . ,y
′
t−1, yi,t)

′ and estimate the model parameters equation-by-equation,

assuming (approximately) sparse BN at each step.

For simplicity, let us consider the problem of estimating an approximately sparse BN .

Without loss of generality let zN
t = zt. Recall that the RBMCD is a sequential procedure.

At each step, one needs to fit a linear regression model. These models can progressively

be of higher dimension. Hereafter, we introduce the refitted adaptive lasso estimator to

perform this task as a means of hedging against the curse of dimensionality associated with

the use of the OLS estimator. The refitted adaptive lasso estimator is an OLS estimator

8A vector β is said to be approximately sparse if a small set of coefficients are different from zero and
the others are close to it. For a formal definition, see (Belloni et al., 2014).
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based on the variables selected by an adaptive lasso procedure. For instance, at step p+1,

the adaptive lasso takes the following form

b̃p+1 = argmin
T∑
t=1

(zp+1,t − bp+1
′z1:p,t)

2
+ λp+1

p∑
i=1

ωp+1,i |bp+1,i|

⇐⇒ β̃ = argmin
T∑
t=1

(yt − β′xt)
2
+ λp+1

p∑
i=1

ωp+1,i |βi| . (A4.2)

Denote the active set M, i.e., the set of relevant variables among the regressors and M̂

its estimate via the adaptive lasso. Let bj,M̂ be the sub-vector of bj of the estimated relevant

coefficient and define zM̂,t consequently. The post-OLS estimator is the OLS estimator of

the regression:

zj,t = b′
j,M̂zM̂,t + εj,t. (A4.3)

Recall that, when ωj,i = 1, we obtain the traditional lasso estimator (Tibshirani, 1996).

The lasso performs model selection by shrinking the coefficient toward zero and leading

to a sparse estimate of bj. It is consistent under standard conditions (Wong et al., 2020;

Adamek et al., 2022), but further refinements can be obtained by considering its weighted

version called the adaptive lasso (Zou, 2006). There, ωj,i is equal to the inverse of the OLS

estimate of bj,i. As the OLS estimator cannot be used when p/T ̸→ 0, one can instead use

a lasso estimate as in Medeiros and Mendes (2017). Namely,

ωj,i = 1/
∣∣∣b̂Ij,i + κ̃

∣∣∣−1

(A4.4)

where b̂Ij is the lasso estimator of bj and κ̃ ≊ 0. In fact, Medeiros and Mendes (2017) show

that if the weights are data-dependent and appropriately chosen, then the adaptive lasso

enjoys the oracle properties. For an overview, see Fan and Lv (2010). Also, see Fan et al.

(2014) for the relationship between the adaptive lasso and the family of folded concave
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penalized least-squares of Fan and Li (2001). The choice of the regularization parameters

λ is usually achieved via cross-validation (Zhang and Yang, 2015) or information criteria

(Zhang et al., 2010; Tibshirani et al., 2012). In this paper we use a corrected Akaike

information criterion (Hurvich and Tsai, 1993) to select λ.

Note that the adaptive lasso as the lasso estimator can suffer from regularization bias,

and to mitigate the effect of this bias, refitting strategies are usually applied, see e.g.,

Belloni et al. (2014); Chzhen et al. (2019). Namely, one can apply a regularized regression

procedure to estimate the set of relevant coefficients and then estimate the corresponding

unbiased coefficients by OLS. The resulting estimator is also called “post-OLS”.

Proposition 4. The RBMCD estimator is consistent when the sample covariance of zt

converges with high probability to the population covariance matrix and the estimator of

the regression coefficients at each step is consistently estimated.

Proposition 4 states that the resulting RBMCD is consistent under two conditions.

Section 2 shows that the first condition holds for any stationary data with positive definite

(population) covariance matrix. The second condition is met under standard assumption

for the adaptive lasso (Medeiros and Mendes, 2017; Chzhen et al., 2019). In fact, the bias

expansion of any regression-based modified Cholesky decomposition estimator Θ̃ is given

by

B̃′G̃−1B̃ = (B̃ −B +B)′(G̃−1 −G−1 +G−1)(B̃ −B +B)

= (B̃ −B)′(G̃−1 −G−1)(B̃ −B) + (B̃ −B)′(G̃−1 −G−1)B

+ (B̃ −B)′G−1(B̃ −B) + (B̃ −B)′G−1B +B′(G̃−1 −G−1)(B̃ −B)

+B′(G̃−1 −G−1)B +B′G−1(B̃ −B) +B′G−1B.
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One also has,

G̃− 1

T

T∑
t=1

Diag(Bztz
′
tB) =

1

T

T∑
t=1

Diag
(
(B̃ −B)ztz

′
t(B̃ −B)′ +Bztz

′
t(B̃ −B)′ + (B̃ −B)ztz

′
tB

′
)
,

with Diag(A) a diagonal matrix made up of the diagonal element of A.

A5 Details about the empirical application

A5.1 Conditional Granger causality

Granger causality captures predictability given a particular information set. Therefore, the

relevant null hypothesis to test for conditional Granger causality from unit i′ to i can be

expressed as: H0,i′→i : E (yi,t | Ft−1) = E (yi,t | F−i′,t−1) , where Ft−1 := {(yi,s, yi′,s, yk,s)′ , s ≤

t − 1,∀k ̸∈ {i, i′}} and F−i′,t−1 := {(yi,s, yk,s)′ , s ≤ t − 1,∀k ̸∈ {i, i′}}. In other words,

conditional on an information set containing the past returns of all institutions, if the past

values of the return of institution i′ improve the prediction of the return of institution

i at time t, then i′ is Granger causal for i. Assuming that E (yi,t | Ft−1) = x′
i,tβi with

xt = (yi,t−1, . . . , yi,t−L, yi′,t−1, . . . , yi′,t−L, . . . , yk,t−1, . . . , yk,t−L, . . .)
′ for L being the model

lag length, we test H0,i′→i by testing the significance of the linear regression coefficients

βi,L+1, . . . , βi,2L. E (yi,t | Ft−1) is a single equation of a VAR(L). For each institution

i = 1, . . . n, we estimate the model each year (T ≈ 250) with L = 5 lags.9 Since βi ∈ R440,

estimation and inference via OLS is infeasible, and a natural solution is to use our PrLS

estimator. The refitted adaptive lasso-based modified Cholesky decomposition is used

as a consistent estimator of the precision matrices.10 The number of subseries values is

also fixed to T 1/3. Furthermore, to prevent the accumulation of type I errors due to

9For an overview of lag selection procedures, see Hecq et al. (2021). Following their approach, we find
that the optimal lag is lower than 5 in the different estimations, but we overspecified the number of optimal
lags to avoid potential lag truncation issues. We use 5 to account for the potential dynamic in a week.

10See Online Appendix A4 for its presentation and Remark A4.1 for the justification of this choice in
this context.
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multiple hypothesis testing, we apply a Benjamini and Yekutieli (2001) false-discovery

control procedure at each estimation step. Thus, for each year from 2005 to 2020, we

obtain an adjacency matrix A containing all the information about the connectedness

among the institutions, such that Ai,i′ = 1 if at least one of the parameters βi,6, . . . , βi,10

has its associated adjusted p-value lower than 20% and zero otherwise.

A5.2 Measuring global systemic risk via modularity

We now introduce the concept of modularity from graph theory. In doing so, we closely

follow Clauset et al. (2004). Let Ai,i′ be an element of the adjacency matrix A of the

estimated network at a given year, such that Ai,i′ = 1 if vertices i and i′ are connected and

Ai,i′ = 0 otherwise. Vertices are divided into communities in such a way that they form a

partition. Let m = 1/2
∑

i,i′ Ai,i′ be the number of edges in the graph and call ki =
∑

i′ Ai,i′

the degree of a vertex i, i.e., the number of edges incident upon such a vertex. We can then

define modularity (M) as M := 1
2m

∑
i,i′

[
Ai,i′ − kiki′

2m

]
δ (ci, ci′) , for δ (ci, ci′) = 1 if i = i′

and 0 otherwise. The interpretation of the modularity is straightforward as kiki′/2m is

the expected fraction of within-community edges for a randomized network. If the number

kiki′/2m is no different from that observed in the estimated network, then the modularity

will be zero. Therefore, nonzero values represent deviations from randomness, where a

large value of M indicates significant community structure in a network. We employ the

hierarchical agglomeration algorithm of Clauset et al. (2004) to detect communities. The

algorithm uses a greedy optimization strategy that starts with each vertex as a unique mem-

ber of a community of one and repeatedly joins the two communities whose amalgamation

produces the largest increase in modularity.
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A5.3 Additional figures

Recall Figure 4 in the main paper, which displays the Granger causality networks obtained

with the precision least squares estimator between 2006 and 2010. By looking at the causal

networks, we observed how financial connectedness substantially decreases when approach-

ing the financial crisis and peaks at its lowest in the crisis year, to only slightly recover in

2009 and fully return to dense in 2010. Prediction in the presence of a structural break

as in 2008 (subprime crisis) is very difficult and is reflected by the lack of connections in

stock returns during 2008. Interestingly, 2008 does not look empty, meaning that a subset

of series can still have predictive power over an unprecedented crisis. In Figures A.7 and

A.8, similar patterns can be observed around 2011 (European debt crisis), 2016 (down-

side macroeconomic concerns), 2018 (Turkish currency and debt crisis), 2020 (COVID-19

pandemic). Along with the connections, Figures A.6, A.7 and A.8 display the commu-

nities obtained throughout the different considered years using the greedy optimization

algorithm of Clauset et al. (2004) based on modularity. We observe that the number of

predictive relationships (communities) decreases (increases) substantially during crisis pe-

riods (2007-2009, 2011, 2016, 2018, 2020) and increases (decreases) during the expansion

period (2005-2006, 2014). The years between these periods are characterized by a market

recovery i.e., a re-connection of the system and a decrease in the number of communities.

We can consider such years as “breathing years”.
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Figure A.6: Network Communities via Modularity (1/3)
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2014: Expansion 2015: Breathing 2016: European Debt

Figure A.7: Network Communities via Modularity (2/3)
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Figure A.8: Network Communities via Modularity (3/3)

A5.4 Discussion

Our analysis suggests that crises correspond to a collapse of financial linkages. This finding

is consistent with the literature on financial market fragility. “ An economy exhibits finan-

cial fragility if it possesses a propagation mechanism that allows small exogenous shocks

at the initial date to generate financial crises that have large-scale effects on the financial

structure and thus on real activity” (Lagunoff and Schreft, 2001). Lagunoff and Schreft

(2001) built a model in which agents have portfolios whose returns depend on the portfolio

allocations of others. Some agents are subject to shocks that lead them to reallocate their

portfolios and consequently cause networks links to break. Two types of crises were pro-

posed. The first type happens gradually as agents do not anticipate possible losses and thus

do not instantaneously break links. Losses spread across the network and break more links.

The second type of crisis happens instantly, as agents foresee losses and pre-emptively break
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links to prevent such losses from spreading. We associate this behavior with the fragility

of the reputation of international and large financial institutions. According to Ordoñez

(2013), reputation concerns are fragile and may suddenly disappear, leading to important

changes in aggregate risk-taking, and well-known and reputable firms shift their behavior

in response to small and unobvious changes in fundamentals. This translates into a lack of

predictability in the sense of Granger, reflecting panic in the global market.

Interestingly, the existing empirical literature suggests the opposite, namely that fi-

nancial crises correspond to an increase in financial linkages (Billio et al., 2012). If this

argument were valid, it would imply that during a crisis, one could better predict the re-

turns of a given financial institution one week ahead using the past returns of the others

(along with its own). Such results would be hard to defend. In fact, this result is justified

as follows. As the correlation among stock returns increases during a crisis and decreases

thereafter, international financial institutions are expected to be more connected during

crises. However, this argument does not necessarily imply more predictability during fi-

nancial crises. Indeed, it is easy to check that if the returns follow a VAR(1) model where

each regression equation is an AR(1) and the covariance of the innovation has a Toeplitz

structure, one can end up with a system of highly correlated returns but an empty condi-

tional Granger-causal network for a suitable choice of the values of the parameters of the

model.

The past literature presents important methodological limits for which the PrLS-based

VAR estimator and hypothesis testing framework are robust against. For instance, Billio

et al. (2012) used pairwise Granger causality testing, which is known to lead to spurious

connections in the presence of indirect links. Following the same framework of Billio et al.

(2012), Basu et al. (2019) used a GARCH(1,1) model on the returns to remove GARCH

effects. Then, they used a lasso to estimate the network using a VAR model. Basu et al.

(2019) assumed i.i.d innovations but tested for conditional Granger causalities on the ad-
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justed returns. Nevertheless, this approach is subject to model risk if the filtering step

is based on a misspecified model. Our approach avoids the filtering step by allowing sta-

tionary innovations. Another work that could be related to ours is Hué et al. (2019).

Nevertheless, this work does not test Granger’s conditional causality in high dimensions

but only provides a measure of the systemic importance of financial institutions using a

computationally expensive leave-one approach.

To the best of our knowledge, our paper is unique in the literature on network analysis

using conditional Granger causality among stock returns. The test is valid under the

general framework of physical dependence and allows for estimating large systems. It

is worth emphasizing that the application success depends on the practitioner ability to

estimate the potentially large precision matrix. In our case, we use the regression-based

modified Cholesky decomposition as discussed in Online Appendix A4, Remark A4.1 and

obtain results in line with different theories in financial economics.
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A5.5 Global banking market

Table A5.1: Sample of banks analyzed

Label Bank name Label Bank name

U:JPM JP MORGAN CHASE & CO. J:MITF MITSUBISHI UFJ FINL.GP.
U:BAC BANK OF AMERICA J:MIZH MIZUHO FINL.GP.
U:c CITIGROUP J:SMFI SUMITOMO MITSUI FINL.GP.

U:WFC WELLS FARGO & CO J:DBHI RESONA HOLDINGS
U:GS GOLDMAN SACHS GP. J:NM@N NOMURA HDG.
U:MS MORGAN STANLEY J:SMTH SUMITOMO MITSUI TST.HDG.
U:bk BANK OF NEW YORK MELLON J:FUKU FUKUOKA FINANCIAL GP.
u:usb US BANCORP J:CHBK CHIBA BANK
u:pnc PNC FINL.SVS.GP. J:HFIN HOKUHOKU FINL. GP.
u:cof CAPITAL ONE FINL. J:ZB@N SHIZUOKA BANK
u:stt STATE STREET J:YMCB YAMAGUCHI FINL.GP.
u:tfc TRUIST FINANCIAL C:TD TORONTO-DOMINION BANK
u:axp AMERICAN EXPRESS C:RY ROYAL BANK OF CANADA
@FITB FIFTH THIRD BANCORP C:BNS BK.OF NOVA SCOTIA
u:rf REGIONS FINL.NEW C:bmo BANK OF MONTREAL

CN:CMB CHINA MINSHENG BANKING ’A’ fr:bnp BNP PARIBAS
CN:DEV PING AN BANK ’A’ fr:aca CREDIT AGRICOLE
CN:HXB HUAXIA BANK ’A’ fr:gle SOCIETE GENERALE
K:HSBC HSBC HOLDINGS KO:SHB SHINHAN FINL.GROUP
BARC BARCLAYS KO:IBK INDUSTRIAL BANK OF KOREA
NWG NATWEST GROUP S:UBSG UBS GROUP
LLOY LLOYDS BANKING GROUP s:csgn CREDIT SUISSE GROUP
STAN STANDARD CHARTERED B:KB KBC GROUP
es:san BANCO SANTANDER BR:IU4 ITAU UNIBANCO HOLDING PN
es:bbva BBV.ARGENTARIA BR:DC4 BANCO BRADESCO PN
es:sab BANCO DE SABADELL D:DBK DEUTSCHE BANK
M:NBH NORDEA BANK d:cbk COMMERZBANK
W:SVK SVENSKA HANDELSBANKEN A BIRG BANK OF IRELAND (LON)
W:SEA SKANDINAVISKA ENSKILDA BANKEN A IE:A5G AIB GROUP

W:SWED SWEDBANK A IN:SBK STATE BANK OF INDIA
c:cm CANADIAN IMP.BK.COM. a:mqg MACQUARIE GROUP
c:na NATIONAL BANK OF CANADA CN:MER CHINA MERCHANTS BANK ’A’
it:ucg UNICREDIT CN:SPU SHAI.PUDONG DEV.BK. ’A’
it:isp INTESA SANPAOLO IN:BBR BANK OF BARODA

it:bmps BANCA MONTE DEI PASCHI L:MALY MALAYAN BANKING
I:BP BANCO BPM P:BCP BANCO COMR.PORTUGUES ’R’
it:uni UNIPOL GRUPPO FINANZIARI T:DBSS DBS GROUP HOLDINGS
it:mb MEDIOBANCA BC.FIN T:UOBS UNITED OVERSEAS BANK

A:NABX NATIONAL AUS.BANK O:ERS ERSTE GROUP BANK
A:cba COMMONWEALTH BK.OF AUS. DK:DAB DANSKE BANK
a:anz AUS.AND NZ.BANKING GP. G:ETE NATIONAL BK.OF GREECE
a:wbc WESTPAC BANKING TK:ISC TURKIYE IS BANKASI ’C’

H:INGA ING GROEP R:SBKJ STANDARD BANK GROUP
N:DNB DNB RS:SBE SBERBANK OF RUSSIA
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