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Abstract

Distributional effects provide interesting insight into how a given treatment impacts in-
equality. This paper extends this notion in two ways. First, it recognizes that inequality spans
multiple dimensions, for example, within and between groups, with treatments potentially
influencing both. Second, the paper addresses the nontrivial challenge of ranking heteroge-
neous groups, which heavily depends on the social welfare function of the policymaker. To
this end, I introduce a model to simultaneously study distributional effects within and be-
tween groups while remaining agnostic about this social welfare function. The model consists
of a quantile function with two indices, the first capturing heterogeneity within groups and
the second addressing the between-group dimension. I propose a two-step quantile regression
estimator involving within-group regressions in the first stage and between-group regressions
in the second stage. I show that the estimator is consistent and asymptotically normal when
the number of observations per group and the number of groups diverge to infinity. In an
empirical application, I study the effect of training on the distribution of firms’ performance
within and between markets in Kenya. The results show large positive effects among the suc-
cessful firms in the best-performing markets, suggesting potential complementarities between
firms and market performance.

1 Introduction

Consider an educational policy designed to improve grades, which, for simplicity, is assumed

to be randomized. Distributional effects are particularly interesting in this setting as they offer

insights into how the treatment impacts the grade distribution. A policy increasing average

grades could have opposite effects on inequality depending on whether the effect is more pro-

nounced in the lower or upper tail. Traditional quantile regression of grades on a treatment

dummy, as in Koenker and Bassett (1978), identifies treatment effects at different points of

the unconditional grade distribution. More precisely, it provides the effect for high-achieving

students and low-achieving students in the sample distribution of grades.1 Yet, a median stu-

dent in the unconditional grade distribution could be in the right tail of the distribution in a
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1In contrast to least squares regression, the definition of quantile treatment effects depends on the included
covariates. For example, a quantile regression of grades on the treatment and a gender dummy identifies the
effects of the treatment on the distribution of grades within each gender category.
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poor-performing school or a weak student in a highly competitive school, and the treatment

likely has different effects on these two hypothetical individuals. First, despite being in the

same percentile of the unconditional distribution, these two students experience substantially

different environments. Second, the treatment effect could be lower in poor-performing schools,

which may have to deal with additional challenges, or in high-performing schools, where su-

perior teaching practices and infrastructure may already be in place. Another perspective is

that there might be complementarities between individual abilities and school quality, which a

traditional quantile regression model fails to capture. Hence, while allowing for heterogeneous

effects based on an individual-level rank in the sample distribution provides interesting insights,

it is important to recognize that inequality (or heterogeneity) has multiple layers.

This paper aims to study these complementarities by simultaneously analyzing treatment

effect heterogeneities within and between groups. Geographical regions, firms, or industries

could define such groups. In the example above, schools define the groups, and the model allows

the treatment effect to flexibly vary over the distribution of grades within schools and over the

distribution of schools. To this end, I introduce a quantile model with two quantile indices: one

capturing heterogeneity within groups and the other addressing heterogeneity between groups.

The conditional quantile function of each group models the within-group heterogeneity. Then,

to aggregate the results over the distribution of groups, I model the conditional quantile function

of these group-level quantile functions. This yields a quantile function of group-level quantile

functions, offering insights, for instance, into the quantile function of median grades across

schools.

The estimation is performed in two stages. The first stage consists of group-by-group quantile

regression of the outcome on the variables that vary within groups. Similar first-stage regressions

are used, for example, in Chetverikov et al. (2016) and Galvao and Wang (2015). In the second

step, for each group and quantile, the first-stage fitted values are saved and regressed on all

variables using quantile regression. This estimator is flexible, allowing coefficients to vary with-

out restriction along both dimensions and permitting the groups’ ranks to evolve freely within

the distribution. To establish the asymptotic results of the estimator, I have to deal with the

non-smoothness of the objective function, a generated dependent variable in the second stage,

and the different rates of convergence of the first-stage estimator. The first stage, which uses

only observations for one group at a time, converges at a rate proportional to the square root

of the number of observations per group n. In comparison, the second stage, which identifies

the heterogeneity between groups, converges at a rate proportional to the square root of the

number of groups m. Chen, Linton, and Van Keilegom (2003) study consistency and asymp-

totic normality of estimators with non-smooth and non-differentiable objective functions that

depend on a non-parametric first step estimator, while Volgushev, Chao, and Cheng (2019) and

Galvao, Gu, and Volgushev (2020) provide a thorough analysis of the remainder of the Bahadur
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representation for quantile regression.2 Building on these results, I show that the estimator is

asymptotically normally distributed in a framework where the number of observations per group

n and the number of groups m diverge to infinity satisfying
√
m logn
n → 0.

The model provides a flexible tool for analyzing how policies impact the outcome distribution

over multiple dimensions. As a byproduct, the method yields valuable insights for descriptive

analyses of inequalities within- and between groups – a matter of considerable policy signifi-

cance.3 Compared to variance decomposition and comparison of median (or mean) outcomes

over groups, the two-level quantile function provides a more comprehensive picture of the two-

dimensional inequality. For instance, it gives insights into which parts of the within distribution

drive inequality between groups. Further, I show that the framework considered in the paper

is useful for optimal policy targeting when the policymaker maximizes a rank-dependent social

welfare function, and no baseline outcomes are available (see, e.g., Manski, 2004; Kitagawa and

Tetenov, 2018, 2021). Instead, the treatment assignment exploits treatment effect heterogeneity

over the distribution of the outcome both, within and between groups. This model can be useful

when the treatment is assigned at the group or individual levels. Group-level treatment assign-

ments are common in economics; for example, place-based policies and infrastructure projects

(highway, railways, sanitation) affect all people nearby, and educational policies are often im-

plemented at the school level.

In an empirical application, I extend the findings of McKenzie and Puerto (2021) by assessing

the impact of business training on firm performance in Kenya, considering distributional effects

within and between markets. The results indicate larger effects for firms that perform well

within their successful markets. More precisely, the effects increase both in the firm rank within

a market and in the market rank. This suggests the existence of complementarities between

individual and group ranks.

Distributional effects and inequalities within groups are studied both in the applied and

theoretical literature. For example, Chetverikov et al. (2016), Galvao and Wang (2015), and

Melly and Pons (2022) suggest methods to model heterogeneity in treatment responses on the

within-group distribution.4 In the applied literature, Autor et al. (2021) and Friedrich (2022)

investigate the impact of import competition and trade shocks on the wage distribution within

local labor markets and within firms, respectively. Additionally, Autor et al. (2016) and Engbom

and Moser (2022) explore the effect of minimum wages on within-state inequality in the US

and Brazil. In contrast, papers studying the effectiveness of place-based policies in supporting

laggard or underdeveloped regions provide examples focusing on disparities between groups

2Consistency and asymptotic normality of quantile regression with generated regressors and/or dependent
variables have also been studied in Ma and Koenker (2006); Chen, Galvao, and Song (2021) and Bhattacharya
(2020). However, compared to these papers, I consider a case where the dimension of the first stage increases with
the number of groups, and the first-stage estimator converges at a different rate than the second-step estimator.

3For instance, one of the United Nations’ sustainable development goals is to reduce inequalities within and
among countries.

4Galvao and Wang (2015), focus on a traditional panel data setting, where the groups are their individuals
and the individuals are their time periods.
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(see, e.g., Busso et al., 2013; Ehrlich and Seidel, 2018; Ehrlich and Overman, 2020).5 Only

a few papers focus on both within- and between-group inequality, mostly using a descriptive

approach. For example, Bourguignon and Morrisson (2002) analyze the historical evolution of

within and between countries income inequality, and Akerman et al. (2013) study wage inequality

between and within different groups, including firms, sectors, and occupations. To this end, they

decompose the variance into a within and a between components and, therefore, do not examine

both dimensions simultaneously.

This paper also contributes to the theoretical literature focusing on multidimensional unob-

served heterogeneity where the coefficients can vary along multiple dimensions. For example,

Fernández-Val, Gao, Liao, and Vella (2022) introduce a model that allows for within and between

group heterogeneity. The within-group heterogeneity is modeled by allowing the coefficient to

vary over the outcome levels in a distribution regression framework, and group-specific coef-

ficients capture the between-group heterogeneity. However, this model requires within-group

variation in the variable of interest to identify heterogeneities in both dimensions.6 Arellano

and Bonhomme (2016) study a fixed effects model where the group effects are modeled as latent

variables using a correlated random effects approach. The treatment effects can be heterogeneous

through dependence on an individual rank variable and the latent group effects. Differently, the

model in Frumento, Bottai, and Fernández-Val (2021) allows studying the effect of individual-

level variables on the within distribution and the effect of group-level variables on the between

distribution, and Liu (2021) considers a panel data model where the effect of the individual-level

variables depends on a group-level rank variable, and the individual-level error enters additively.

Hence, this last model identifies the effects of individual-level variables on the outcome distribu-

tion between groups. Instead, the model in this paper allows the effect of both individual-level

and group-level variables to vary along both dimensions.

The remainder of the paper is structured as follows. Section 2 introduces the model and

Section 3 explains how this model can be used for optimal treatment assignment. Section 4

presents the estimator and section 5 the asymptotic properties of the estimator. Section 6

analyzes the finite sample performance of the estimator in a Monte Carlo study. Section 7

presents the empirical application, and Section 8 concludes.

2 Model

Consider a dataset with two dimensions where j = 1, . . . ,m indexes the groups and i =

1, . . . , n denote the individuals. I start by considering a simplified version of the model imposing

strong assumptions. Later, I relax these assumptions and present the more general model

considered in this paper. I specify the following structural function for the outcome variable yij

5See Neumark and Simpson (2015) for an overview of the literature on place-based policies.
6Coefficients on variables that vary only between groups are identified using projections of the individual-level

coefficient. Therefore, this model does not identify both dimensions of the heterogeneity for regressors that vary
only between groups.
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given the individual-level variables x1ij , and the group-level variables x2j :

yij = q(x1ij , x2j , vj , uij), i = 1, . . . , n, j = 1, . . . ,m, (1)

where q(·) is strictly increasing in the third and fourth arguments. Further, I assume that

uij |x1ij , x2j , vj ∼ U(0, 1),

vj |x1ij , x2j ∼ U(0, 1).

Since vj varies only between groups and uij is standard uniform distributed within each group,

uij and vj are independent conditional on the covariates:

uij ⊥⊥ vj |x1ij , x2j .

The individual-level rank variable uij is responsible for differences in outcomes between individ-

uals with the same observable characteristics, including group membership. Conversely, vj is

responsible for differences across groups.

Conditional on xij = (x′1ij , x
′
2j)

′ and vj , q(x1ij , x2j , vj , uij) is strictly monotonic with respect

to uij so that

Q(τ1, yij |x1ij , x2j , vj) = q(x1ij , x2j , vj , τ1) (2)

is the τ1-conditional quantile function of the outcome yij conditional on x1ij , x2j , and vj . If there

are no x1ij variables, the τ1-conditional quantile function of yij reduces to the unconditional

percentiles of the outcome in group j. Further, as q(·) is strictly monotonic with respect to vj

we obtain the τ2–conditional quantile function of Q(τ1, yij |x1ij , x2j , vj),

Q(τ2, Q(τ1, yij |x1ij , x2j , vj)|x1ij , x2j) = q(x1ij , x2j , τ2, τ1). (3)

The outer quantile function in equation (3) is the conditional quantile function of the condi-

tional quantile function of the outcome within each group. Thus, τ2 ranks the groups (conditional

on the covariates) according to their conditional quantile functions. A caveat of this model is

that it imposes strong restrictions on the evolution of the group ranks at different values of τ1.

More precisely, the ranks are assumed to be constant over τ1. Assume for a moment that there

are no covariates. Take groups h and l with vh and vl such that vh > vl. Strict monotonicity of

q(τ1, vj) with respect to vj implies

q(τ1, vh) > q(τ1, vl)

for all τ1. Hence, if a group has a higher first decile, it must also have a higher ninth decile. This

would be satisfied, for example, if the outcome would be generated by yij = h(x1ij , x2j , uij) +

f(x1ij , x2j , vj).
7 That is, if conditional on the covariates, all groups share the same distribution

7This assumption could also be satisfied if there was no overlap between groups. I preclude this possibility
since this is not satisfied in most economic applications.
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of the outcome up to a location parameter. This requires that, conditional on the covariates

(x1ij , x2j), vj enter as a pure location shifter.

The restriction on the evolution of the ranks over the distribution of τ1 is a consequence of

the strict monotonicity assumption on q(·) with respect to the scalar rank variable vj . Given

that this assumption is not satisfied in most real-world scenarios, in this paper, I allow for the

possibility that conditional on covariates, groups can differ in more moments than their mean.

In this way, groups can be at different ranks at different values of τ1.

A straightforward extension would be to consider a case with a bivariate vj where one element

determines the mean and the other the variance. This corresponds to yij = h(uij , v
(1)
j , x1ij , x2j)+

f(v
(2)
j , x1ij , x2j). Hence, conditional on the covariates x1ij and x2ij , the outcome has the same

distribution but different locations and variances. The heterogeneity in the variances arises

due to the interaction between the individual rank variable uij and the group rank variable

v
(1)
j . In this example, vj is two-dimensional, and as it is not feasible to completely separate

uij and vj , the group rank varies over τ1. The τ1-conditional quantile function in each group

is q(x1ij , x2j , vj , τ1) = h(x1ij , x2j , v
(1)
j , τ1) + f(x1ij , x2j , v

(2)
j ). Yet, we can still construct a τ2-

conditional quantile function by noting that for each τ1, there exist a scalar-valued function vj(τ1)

such that q(x1ij , x2j , vj , τ1) = q(x1ij , x2j , vj(τ1), τ1). With proper normalization and imposing

monotonicity with respect to this scalar rank variable, we can construct the τ2-conditional

quantile function. To give an illustration, let yij = uij(v
(1)
j + ϵ) + v

(2)
j for some scalar ϵ, so that

q(vj , τ1) = τ1(v
(1)
j +ϵ)+v

(2)
j = τ1ϵ+τ1v

(1)
j +v

(2)
j is the τ1-conditional quantile function. It follows

directly that vj(τ1) = τ1v
(1)
j + v

(2)
j is the scalar valued function that ranks group at τ1. Clearly,

the model can be further generalized. For instance, with a trivariate vj , we could allow groups

to be heterogeneous with respect to their skewness. Similarly, with an infinitely dimensional vj ,

it would be possible to allow for unrestricted heterogeneity between groups.

In this paper, I do not restrict the heterogeneity between groups and allow vj to be a possibly

infinite-dimensional term. In this way, I allow the group-level conditional quantile functions to

vary unrestricted with respect to τ1. This enables groups to be at different ranks for different

values of τ1 as well as for different values of the covariates. For instance, the groups in the upper

tail for τ1 = 0.1 might differ from groups in the upper tail of the distribution for τ1 = 0.9. At

the same time, I maintain the assumptions on the scalar uij . Thus, the τ1-conditional quantile

function remains unchanged.

To make the problem concrete, I consider the following linear specification:

yij = x′1ijβ(uij , vj) + x′2jγ(uij , vj) + α(uij , vj), (4)

where α(uij , vj) is the intercept. Equation (2) can be equivalently written as

Q(τ1, yij |x1ij , x2j , vj) = x′1ijβ(τ1, vj) + x′2jγ(τ1, vj) + α(τ1, vj), (5)

where only the sum of the last two terms is identified since x2j does not exhibit variation within

groups.
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Modeling the heterogeneity between groups still requires restricting the relationship be-

tween the τ1-conditional quantile function and the possibly infinite dimensional vector vj =

(v
(1)
j , v

(2)
j , . . . ). As in the bivariate example, I assume that for each τ1 ∈ (0, 1), there exists a

scalar-valued function vj(τ1) such that

q(x1ij , x2j , vj , τ1) = q(x1ij , x2j , vj(τ1), τ1).

If I impose strict monotonicity of q(x1ij , x2j , vj(τ1), τ1) with respect to vj(τ1), we obtain the

τ2–conditional quantile function of Q(τ1, yij |x1ij , x2j , vj),

Q(τ2, Q(τ1, yij |x1ij , x2j , vj)|x1ij , x2j) = x′1ijβ(τ1, τ2) + x′2jγ(τ1, τ2) + α(τ1, τ2), (6)

which I refer to as the (τ1, τ2)-conditional quantile function. Model (6) allows for substantial

heterogeneity as all coefficients have two quantile indices: one for the heterogeneity across

groups (τ2) and one for the heterogeneity within groups (τ1). The outer quantile function is the

conditional quantile function of the conditional quantile function of the outcome within each

group, Q(τ1, yij |x1ij , x2j , vj). Thus, τ2 ranks the groups (conditional on the covariates) according

to their τ1-conditional quantile function, and ranks over groups are allowed to be different at

different points of the within distribution.

The main advantage of this way of ordering group is that it remains agnostic with respect to

the social welfare function of the policymaker. When groups contain non-homogenous agents,

ranking them is a non-trivial task without specifying a social welfare function. A utilitarian

policymaker would rank the groups according to their mean. However, using the mean (or

median) outcome to rank groups is unsatisfactory for at least two reasons. First, an equality-

minded policymaker is not indifferent over two allocations with the same mean but different

variances. On the contrary, it is possible to find an allocation with a smaller mean that is

strictly preferred to an alternative assignment with a higher variance. Second, this ranking does

not provide information about which part of the within distribution is driving the differences

between groups, and a few outlying observations could have a large effect on this measure of

between-group inequality. Later, I provide an example where comparing averages across regions

shows substantial income differences across regions. However, a large part of these differences

are driven by high top wages in a few regions. While comparing regional medians does not suffer

the former problem, it compares regions at a single point of the within distribution and might

fail to capture differential labor market situations for a large portion of the workers. I show that

this is the case mostly for low-income workers. These weaknesses also extend to other methods

used to assess within and between heterogeneity, such as variance decomposition. Instead, with

the two-dimensional quantile function, I can provide information about which part of the within

distribution is driving the between heterogeneity. Specifically, if groups were heterogenous only

due to different locations in their conditional distribution, then the group ranks would remain

stable over the distribution of τ1. By contrast, if the shape of the conditional distribution
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varies over groups, we expect group ranks to change over τ1. This requires that the between

heterogeneity depends on the within dimension τ1 in an unrestricted way, which also implies

that a decomposition is no longer possible. Clearly, a unified notion of group rank can also be

constructed. For instance, in Section 3, I show that a social welfare function can be used to

assign welfare weights to each group, enabling the construction of a unified measure of group

order.

The price to pay for this flexibility is that the interpretation of the coefficients becomes more

complicated as the groups’ ranks vary over τ1. Further, with individual-level covariates, the

ranks may vary even within the groups.8 Yet, this last point is common with quantile models.

The coefficient vectors β(τ1, τ2) and γ(τ1, τ2) tell how the (τ1, τ2)-conditional quantile function

responds to a change in x1ij or x2j by one unit. To facilitate the interpretation, it is helpful to fix

τ1. For example, β(0.5, τ2) gives the effect of x1ij on the τ2-conditional quantile function of the

group (conditional) medians. Hence, it allows us to assess the effect of x1ij on the distribution

of group medians, with groups with the highest medians positioned at the top and those with

the lowest medians at the bottom of the distribution.

Interpreting these coefficients as the effects for individuals at a specific point of the distri-

bution requires rank invariance over treatment states.9 Given the multi-dimensionality of the

model, rank invariance must hold both within groups and between groups at a given within rank.

Rank invariance within groups requires that within-group ranks do not change over treatment

states. Instead, rank invariance between groups requires that for each τ1, the ranks between

groups remain stable over treatment states. While this is a strong assumption, there are cases

where rank invariance in the population is violated but still holds within and between groups.

For example, effect heterogeneity over the distribution of groups could violate rank invariance in

the population. With rank invariance, the coefficients can be interpreted as individual effects,

and β(τ1, τ2) (or γ(τ1, τ2)) gives the quantile effects for individuals at the τ1 percentile of their

groups, belonging to a group at the τ2 percentile, where this second distribution is viewed from

their perspective. Clearly, if an individual is in the lower tail of the within-group distribution,

she will prefer groups with relatively high low wages and compressed wage distribution. Differ-

ently, individuals at the top of the within-group wage distribution will favor groups with high

top wages.

Since no information is lost when modeling the two-level conditional quantile function, it is

always possible to present the results with a different and/or unified rank variable. For example,

one might be interested in looking at treatment effect heterogeneity over two dimensions, where

the second dimension ranks groups according to their median (or any other percentile). This

requires estimating the ranks of each individual so as to construct individualized treatment

8For example, a group (e.g., region) might have a different rank for highly educated individuals and low-
educated individuals.

9A rank invariance (or rank preservation) assumption is used, for example, in Chernozhukov and Hansen
(2005); Firpo (2007).
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effects. Then, the groups can be sorted by their median rank, and the treatment effect at

different values of τ1 can be plotted against their group rank.

Example 1. Without covariates

I now consider a special case of model (6) where there are no regressors, and the model provides

a quantile function of the outcome over two dimensions. The τ1-conditional quantile function in

group j simplifies to

Q(τ1, yij |vj) = α(τ1, vj),

where Q(τ1, yij |vj) is τ1th-percentile of the outcome yij in group j. It follows directly that

Q(τ2, Q(τ1, yij |vj)) = α(τ1, τ2)

is the τ2th percentile, over all groups, of the τ1th group percentiles.

This model sheds light on the variation of the within percentiles of the outcome over groups.

Imagine a scenario where groups are defined by geographical regions, and the outcome yij rep-

resents the income earned by individual i in region j. This model enhances our understanding

of inequality within and between these regions. For example, if differences are predominantly

within regions, we would observe significant variations along the τ1 dimension and relatively

smaller differences along the τ2 dimension. Additionally, this model enables us to determine

whether heterogeneity between regions becomes more pronounced for higher values of τ1, pro-

viding insights into how the lower end of the wage distribution varies across groups. It thus

offers a nuanced perspective on the dynamics of inequality within and between geographical

regions.

To identify these heterogeneous coefficients, I suggest a two-step quantile regression estima-

tor. (i) The conditional quantile function in each group is identified by τ1 quantile regressions

of yij on x1ij for each group separately. (ii) The second dimension is identified by τ2 quantile

regressions of the fitted values from the first-stage on x1ij and x2j .

Remark 1 (Within versus between distributions). The model discussed in this paper

focuses on simultaneously estimating the effect on the distribution of the outcome within and

between groups. Melly and Pons (2022) consider a similar model where the heterogeneity arises

from the individual rank variable uij and the focus is on the within distribution.10 Starting

from equation (6) and assuming that (x1ij , x2j) ⊥⊥ vj , it is possible to obtain their model by

integrating over vj :

E [Q (τ1, yij |x1ij , x2j , vi) |x1ij , x2j ] =x′1ij

∫
β(τ1, v)dFV (v) + x′2j

∫
γ(τ1, v)dFV (v)

+

∫
α(τ1, v)dFV (v)

=x′1ij β̄(τ1) + x′2j γ̄(τ1) + ᾱ(τ1).

10Note that Melly and Pons (2022) include the intercept in x2j .
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Hence, when model (6) holds, they identify the average effects over groups at the τ1 quantile

of the within distribution. In the social case that there is no group-level heterogeneity at a given

τ1, they identify the coefficients α(τ1, τ2), β(τ1, τ2) and γ(τ1, τ2). The parameters of this model

are identified by a first-stage group-by-group quantile regression followed by a least squares (or

GMM) second stage. The first step estimator models the within distribution, and the second

step averages the results over groups.

If only the heterogeneity of average outcomes between groups is of interest, one could consider

the conditional quantile function of the conditional expectation function in each group. Starting

from equation (4) assuming that (x1ij , x2j) ⊥⊥ uij we attain

Q(τ2,Ei|j [yij |x1ij , x2j ]|x1ij , x2j) = x′1ij β̄(τ2) + x′2j γ̄(τ2) + ᾱ(τ2),

with

Ei|j [yij |x1ij , x2j ] =x′1ijEi|j [β(uij , vj)|x1ij , x2j ] + x′2jEi|j [γ(uij , vj)|x1ij , x2j ] + Ei|j [α(uij , vj)|x1ij , x2j ]

=x′1ij β̄(vj) + x′2j γ̄(vj) + ᾱ(vj),

where the notation Ei|j stresses that the expectation is taken conditional on the group. This

setting is common in empirical research where only aggregated data is available.

If the primary focus is on heterogeneity between groups, one may prefer to study heterogeneities

in the median outcome rather than the average. This choice aligns with the framework suggested

in this paper, where the specific quantile of τ1 = 0.5 is considered.

3 Potential Application: Empirical Welfare Maximization

Two-dimensional quantile treatment effects can be used to optimally assign groups or indi-

viduals to treatment. Consider a policymaker who observes data from a sample population with

a given group structure and has to decide whom to treat in a given target population (subject

to some capacity/budget constraint) by maximizing a rank-dependent social welfare function:

W ≡
∫

Yij · w(Rank(Yij))di dj, (7)

where Rank(Yij) is the rank of Yij in the population and w(·) ≥ 0 is a weight associated

to a given rank. I consider a static setting where the policy-maker chooses whom to treat out

of a pool of individuals or groups based on their unobserved ranks. This is in contrast to a

dynamic setting (e.g., Adusumilli et al., 2019), where the policymaker has to make sequential

decisions, as well as to the one in Kitagawa and Tetenov (2021), where the goal is to assign

optimally individuals to treatment based on observable covariates. Baseline outcomes can be

in the set of covariates; however, these are not always available (see, e.g., Tarozzi et al., 2015).

Further, this setting also differs from the one considered in Kaji and Cao (2023), which allows

for heterogeneity only across one dimension. Instead, with grouped data, one might want to
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exploit treatment effect heterogeneity between groups to more efficiently allocate the treatment.

At the same time, the rank-dependent social welfare function implies that we are also interested

in the heterogeneities within the groups.

In this section, I use the conventional potential outcome framework with a treatment variable

D. Let yd for d ∈ {0, 1} denote the potential outcome under treatment state d. The object of

interest in this paper is the two-level quantile function of the potential outcomes under treatment

d, conditional on observed characteristics x = (x′1, x
′
2)

′:

q(d, x, τ1, τ2)

as well as the conditional quantile treatment effects over both dimensions:11

q(1, x, τ1, τ2)− q(0, x, τ1, τ2).

The two-dimensional quantile function of the outcome is directly related to the conditional

cdf of the outcome y by the following transformation:

FY |X(y|x) =
∫ 1

0

∫ 1

0
1{q(y, x, τ1, τ2) ≤ y}dτ2dτ1, (8)

where FQ(τ1,y|x)|X =
∫ 1
0 1{q(y, x, τ1, τ2) ≤ y}dτ2, and FY |X(y|x) =

∫ 1
0 FQ(τ1,y|x)|Xdτ1. Invert-

ing the cdf yields the one-dimensional quantile function. Hence, the one-dimensional quantile

function is a function of the two-dimensional one, and no information is lost when modeling

both dimensions.

For simplicity, I consider the case where there are no covariates; however, the framework can

be easily extended to include other variables.12 The goal is to select a treatment rule that assigns

individuals to treatment depending on their ranks (uij , vj).
13 If these ranks were observed, the

problem would coincide with the setting considered in Kitagawa and Tetenov (2021).

When a treatment rule G is applied to the target population, the social welfare is proportional

to:14

WΛ(FG) =

∫ ∞

0
Λ(FG(y))dy (9)

where Λ(·) : [0, 1] → [0, 1] is a nonincreasing, nonnegative convex function with Λ(0) = 1 and

Λ(1) = 0, while FG(Y ) is the distribution of the outcome under treatment rule G:

Yij = 1{(uij , vj) ∈ G}Yij(1) + 1{(uij , vj) /∈ G}Yij(0).
11Integrating the conditional quantile treatment effects over both τ1 and τ2 yields average treatment effects:

ATE =

∫ 1

0

∫ 1

0

[q(1, x, τ1, τ2)− q(0, x, τ1, τ2)] dτ2dτ1.

12If the inclusion of additional variables is necessary to identify the distribution of potential outcomes, it is
straightforward to recover the unconditional distribution by integrating out the covariates.

13I write vj for ease of notation. However, vj should be regarded as the rank variable ranking groups at a
specific point of the within distribution.

14This social welfare function comprises, for example, the extended Gini family.
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Given that Λ(·) is convex, we can equivalently write the social welfare function in equation

(9) as a weighted average of the outcomes:

WΛ(FG) =

∫ 1

0
F−1
G (θ)w(θ)dθ, (10)

where the weights w(θ) ≡ d(1−Λ(θ))
dθ depend on the population quantiles.

We want to maximize the social welfare over a class of feasible policies G ∈ {uij , vj(uij) ∈
(0, 1)× (0, 1)}. Hence, the optimal treatment rule solves15

G∗ = argmax
G∈G

W (G). (11)

To make the problem operational, we need to identify individual treatment effects and assign

welfare weights to each observation under each policy rule. With rank invariance, q(1, τ1, τ2)−
q(0, τ1, τ2) is the treatment effect for an individual at quantiles (τ1, τ2).

16 Further, using equation

(8), we can identify the conditional quantile function of the potential outcomes in the population.

These objects can then be used to assign a rank and welfare weights wij to each observation.

Notably, individuals at different τ1 percentiles may share the same welfare weight due to their

placement in different groups. However, individuals with the same y0 share identical welfare

weights. Summing the welfare weights within groups provides the weights assigned to group j:17

wj =

n∑
i=1

wij .

While the rank of a group changes over τ1, these groups’ weights are constant over the entire

within distribution. Consequently, these weights can offer a welfare-based measure of a group’s

rank or priority.

To find the optimal treatment assignment rules that maximize the social welfare function

in the target population, we need to impose some assumptions on the individual treatment

effects in the sample and target populations.18 I will assume that the joint distribution of

(Yij(1), Yij(0), vj , uij) is the same in both populations. Since the ranks are normalized, uij , vj

follow the same distribution in both populations by construction. Therefore, one can equivalently

assume that for all uij , vj , the joint distribution of Yij(1), Yij(0)|uij , vj is the same in the sample

and target populations. Hence, if the quantile function of the potential outcomes is identified,

we can identify individual treatment effects that depend on two different rank variables. These

15Solving problem (11) is nontrivial as it lacks a closed-form solution even if we knew the distribution of the
potential outcomes (Kitagawa and Tetenov, 2021). One difficulty arises because the welfare weights assigned to
an individual might depend on the treatment assignment of other agents. Intuitively, the welfare weight assigned
to an individual is weakly increasing in the outcomes of the other individuals.

16Without a rank stability assumption, individual treatment effects are not identified. Chernozhukov et al.
(2023) suggests conditional prediction intervals that can be obtained with a relaxation of this assumption.

17In the case of unbalanced groups, larger groups are more likely to have a higher welfare weight. This feature
is desirable if the cost of assigning a group to the treatment does not depend on the number of observations in
this group. Alternatively, it is possible to compute the average weights.

18Kitagawa and Tetenov (2018) assume that the joint distribution of the potential outcome and covariates is
the same in both populations.
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can be viewed as counterparts to conditional average treatment effects, so the setting considered

in this paper fits the equality-minded treatment choice framework in Kitagawa and Tetenov

(2021).

In summary, the two-level conditional quantile function of potential outcomes in the sample

population enables the estimation of treatment effects for an individual at a given rank as

well as individual ranks. Utilizing this information, we can estimate Yij(1) for all i and j.

Subsequently, for each G ∈ G, we compute the counterfactual outcome Yij = 1{(uij , vj) ∈
G}Yij(1) + 1{(uij , vj) /∈ G}Yij(0) along with the corresponding welfare.

4 Estimator

Let T be the set of quantiles of interest. For simplicity of notation, I consider the same set

of quantiles to model both dimensions, although this is not a requirement. I propose a two-step

quantile regression estimator to estimate model (6). The first stage consists of group-by-group

quantile regressions. For each group j and quantile τ1 ∈ T , the outcome is regressed on the

individual level variables x1ij using quantile regression. Then, for each group and each τ1 ∈ T ,

the fitted values are saved. In the second stage, for each τ1 ∈ T , the first-stage fitted values

ŷij(τ1) are regressed on all variables using all observations. This is again done with quantile

regression for each τ2 ∈ T . Thus, if T = {0.1, 0.2, . . . , 0.9} there are 9×m first stage regression

and 9 × 9 = 81 second stages. Formally, the first-stage quantile regression solves the following

minimization problem for each group j and quantile τ1 ∈ T separately:

β̂j(τ) ≡
(
β̂1,j(τ1), β̂2,j(τ1)

′
)′

= argmin
(b1,b2)∈Rdim(x1)+1

1

n

n∑
i=1

ρτ1(yij − b1 − x′1ijb2), (12)

where ρτ (x) = (τ − 1{x < 0})x for x ∈ R is the check function. For group, the true vector of

first stage coefficients is given by βj(τ1) = β(τ1, vj) = (α(τ1, vi) + x′2jγ(τ1, vj), β(τ1, vj)
′)′ and

the fitted values ŷij(τ1) = β̂1,j(τ1) + x′1ij β̂2,j(τ1) are estimators of the τ1 conditional quantile

function Q(τ1, yij |xij , vj).
The second stage quantile regression then solves for all (τ1, τ2) ∈ T × T :

δ̂(β̂(τ1), τ2) = argmin
(a,b,g)∈Rdim(x)+1

1

mn

m∑
j=1

n∑
i=1

ρτ2(ŷij(τ1)− x′2jg − x′1ijb− a), (13)

where the notation makes the dependency on the first step explicit and δ = (α, β′, γ′)′.

Implementing the estimator is straightforward, requiring only programs for quantile regres-

sion. The lack of a closed-form solution for quantile regression might increase computing time,

but recent algorithms enable simultaneous estimation of numerous quantiles, significantly im-

proving computational speed. Moreover, the first stage is embarrassingly parallelizable, as all

first-stage quantile regressions run independently across the groups.

Ensuring the monotonicity of the estimated two-level quantile functions across both dimen-

sions might require a rearrangement operation, as suggested in Chernozhukov et al. (2009, 2010).
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Due to the nested structure of the problem, rearrangement along the τ1 dimension should be

performed after the first stage. Monotonicity of the first stage in all groups guarantees that

the second stage quantile regression remains monotonic along the τ1 dimension. Rearrangement

along the τ2 dimension can be implemented subsequent to the second stage.

Remark 2 (Alternative estimators - instrumental variables). Model (6) assumes that

the variation of both the x1ij and x2j is exogenous so that quantile regression in both stages

yields consistent estimates. It this is not the case, the estimator suggested here can be easily

extended to accommodate instrumental variables. Depending on which variables are assumed to

be endogenous, either the second stage or both stages could be estimated using an instrumental

variable quantile regression estimator (see, e.g., Chernozhukov and Hansen, 2005).

Remark 3 (Alternative estimators - distribution regression). As an alternative to quan-

tile regression, one might specify a model for the distribution function and perform estimation

using distribution regression. This, however, has some complications. First, the first stage is

well defined only for outcome values that are on the support of the outcome of every j (see

Fernández-Val et al., 2022). Second, a similar procedure applied using distribution regression

would yield a cdf of a cdf, making the interpretation of the results more complicated.

Example 2 (Continuation of example 1). Consider the setting of Example 1 where the goal

is to analyze income heterogeneity between and within geographical regions, and there are no

covariates. One possibility to analyze income heterogeneity across regions is to consider differ-

ences in median or average wages. Using administrative data from the Federal Statistical office

of Switzerland I show that these two measures fail to capture important features of income

heterogeneity between regions. Groups are defined by 2-digit ZIP codes. These groups are on a

smaller grid than Swiss cantons and offer a more precise measure of labor markets. The dataset

comprises information on 4.2 million individuals aged between 30 and 63, divided into 83 groups

in the year 2021. Since there are no covariates, estimation consists in regressing the outcome

on a constant separately for each group and quantile τ1 in the first stage. Subsequently, in

the second stage, first-stage fitted values are also regressed on a constant. I consider the set of

quantile T = {0.01, 0.02, . . . , 0.99} in both stages.

Figure 1 shows the regional averages and medians of yearly income on the left and the two-

dimensional quantile function of the same variable on the right. Both regional averages and

medians are arranged from low to high. The darker dots in Figure 1a reveal substantial differ-

ences in average income across regions. However, figure 1b shows that a large portion of these

differences in mean income can be attributed to high top incomes in a few regions. Across most

of the distribution τ1, the differences across regions are substantially smaller compared to the

right tail of the within distribution. Thus, the differences in average wages, as shown in Figure

1a, not only mask substantial within-region income heterogeneity but are predominantly driven

by differences in top incomes.
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Notes: Figure 1a show the heterogeneity in average (dark blue) and median (light blue) yearly income across regions defined

by 2-digit ZIP codes. Figure 1b shows the two-dimensional quantile function of yearly income within and between regions.

Figure 1: Income Heterogeneity within and between regions

The lighter dots in Figure 1a show that the heterogeneity in median wages across regions is

substantially smaller than the heterogeneity in average income. However, this measure solely

reflects the heterogeneity at one point of the within distribution, potentially overlooking the

labor market situation of a considerable portion of workers. More specifically, median wages

within a region might poorly relate to the labor market situation of low earners. To see this, we

need to understand how group ranks evolve over the distribution of τ1. Figure 2 plots the ranks

at τ1 = 0.5 against the ranks at other values of τ1. As expected, the group ranks at the median

are highly correlated with the ranks at τ1 = {0.4, 0, 6}. However, this correlation substantially

declines as we move towards the tails, particularly in the lower tail.

5 Asymptotic Theory

Notation - Let τ = (τ1, τ2) and denote the true parameter vectors βj,0(τ1) and δ0(β0, τ) :=

δ0(τ2, β0(τ1)). To simplify notation, I suppress the notational dependency of δ and βj on τ1 and

τ2, unless necessary. For a random variable hij , Ei|j [hij ] is the expectation over i in group j.

Let K1 be the dimension of x1ij and K2 be the number of regressors in x2. Furthermore, let

K = K1 +K2 + 1 be the total number of regressors. Finally, denote the (K1 + 1)-dimensional

vector of first stage regressors as x̃ij = (1, x′1ij)
′.

5.1 Consistency and asymptotic normality

The derivation of asymptotic results faces two primary challenges: the non-smoothness of

the quantile regression objective function and the increasing dimension of the first stage as the
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Figure 2: Evolution of Group Ranks over τ1

number of groups diverges to infinity. Several studies have addressed the asymptotic properties

of estimators with non-smooth objective functions, leveraging the smoothness of the limiting

objective function (see, for example, Newey and McFadden, 1994). Notably, Pakes and Pol-

lar (1989) study the properties of Z-estimators without imposing smoothness conditions on the

sample equations. Building on this work, Chen et al. (2003) broadens the scope to two-step

estimators, where the parameter of interest depends on an infinite-dimensional preliminary pa-

rameter.

To derive the asymptotic results, I rely on results of Chen et al. (2003) and work within the

framework of Z-estimators. Similarly to their paper, my second stage parameter vector depends

on a preliminary first stage whose dimension increases with the sample size. I start by making

the assumptions necessary to ensure that the first-stage quantile regression is well-behaved. For

this first analysis, I build on the work of Volgushev et al. (2019) and Galvao et al. (2020) and

make the following assumptions:

Assumption 1 (Sampling). The observations (yij , xij)i=1,...,n, j=1,...,m are i.i.d across i and j.

Assumption 2 (Covariates). (i) For all j = 1, . . . ,m and all i = 1, . . . , n, ∥xij∥ ≤ C almost

surely. (ii) The eigenvalues of Ei|j [x̃ij x̃
′
ij ] and E[xijx′ij ] are bounded away from zero and infinity
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uniformly across j. (iii) As m → ∞,

lim
m→∞

1

m

m∑
j=1

Ei|j

[
fQ(τ1,yij |νj)|xij

(x′ijδ0|x)xij x̃′ij
]
= E[fQ(τ1,yij |νj)|xij

(x′ijδ0|x)xij x̃′ij ]

where the eigenvalues of E[fQ(τ1,yij |νj)|xij
(x′ijδ0|x)xijx′ij ] are bounded from below and above.

Assumption 3 (Conditional distribution I). The conditional distribution Fyij |x1ij
(y|x) is

twice differentiable w.r.t. y, with the corresponding derivatives fyij |x1ij
(y|x) and f ′

yij |x1ij
(y|x).

Further, assume that

fmax
y := sup

j
sup

y∈R,x∈X
|fyij |x1ij

(y|x)| < ∞,

and

f̄ ′
y := sup

j
sup

y∈R,x∈X1

|f ′
yij |x1ij

(y|x)| < ∞.

where X1 is the support of x1ij

Assumption 4 (Bounded density I). There exists a constant fmin
y < fmax

y such that

0 < fmin ≤ inf
j

inf
τ∈T

inf
x∈X1

fyij |x1ij
(Q(τ, yij |x)|x).

These are quite standard assumptions in the quantile regression literature. Assumption 1,

assumes that the observations are i.i.d. within and between groups. Assumption 2 requires

that the regressors are bounded and that both matrices Ei|j [x̃ij x̃
′
ij ] and E[xijx′ij ] are invertible.

Assumptions 3 and 4 require smoothness and boundedness of the conditional distribution of the

outcome variable yij given (xij , vj), the density, and its derivatives. This first set of assumptions

focuses primarily on establishing the behavior of the first-stage estimator and allows to apply

Lemma 3 in Galvao et al. (2020).

Further, to ensure that the second-step quantile regression is well-behaved, I make the fol-

lowing assumptions:

Assumption 5 (Conditional distribution II). The conditional distribution FQ(τ1,yij |xij ,vj)|xij
(q|x)

is twice continuously differentiable w.r.t. q, with the corresponding derivatives fQ(τ1,yij |xij ,vj)|xij
(q|x)

and f ′
Q(τ1,yij |xij ,vj)|xij

(q|x). Further, assume that

fmax
Q := sup

q∈R,x∈X
|fQ(τ1,yij |xij ,vj)|xij

(q|x)| < ∞

and

f̄ ′
Q := sup

q∈R,x∈X
|f ′

Q(τ1,yij |xij ,vj)|xij
(q|x)| < ∞.

where X is the support of xij
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Assumption 6 (Bounded density II). There exists a constant fmin
Q < fmax

Q such that

0 < fmin ≤ inf
τ2∈T

inf
x∈X

fQ(τ1,yij |xij ,vj)|xij
(x′ijδ0(τ)|x).

Assumption 7 (Compact parameter space). For all τ , βj,0(τ1) ∈ int(Bj) and δ0(β0, τ) ∈
int(D), where Bj and D are compact subsets of RK1 and RK , respectively.

Assumptions 5-6 are the second stage counterpart of of assumptions 3-4, with the difference

that the conditional distribution FQ(τ1,yij |xij ,vj)|xij
(q|x) is required to be continously differen-

tiable. This additional assumption on the distribution of the second stage dependent variable is

sufficient to ensure that its second derivative is Lipschitz continous. Assumption 7 requires the

parameter spaces to be compact. Compactness of the parameter space is a common assumption

in the quantile regression literature, see e.g., Honoré et al. (2002); Chernozhukov and Hansen

(2006); Zhang et al. (2019). Compactness of D is necessary to use the results in Chen et al.

(2003). Whereas compactness of Bj is useful as it directly implies that the covering integral is

finite but could easily be relaxed.

Since quantile regression is consistent but not unbiased, we need the number of observations

per group to diverge to infinity. At the same time, the second-stage quantile regression exploits

the heterogeneity between groups, which is determined by the heterogeneity of the group-level

quantile functions, a group-specific term. Thus, also the number of groups must diverge. The

following assumption states two different growth rates of the number of observations per group

relative to the number of groups:

Assumption 8 (Growth rates). As m → ∞, we have

(a) logm
n → 0,

(b)
√
m logn
n → 0.

I show that the relative growth rate in Assumption 8(a) is sufficient for consistency of the

estimator. While asymptotic normality requires the stronger assumption 8(b). The first result

of this paper states consistency of the two-step estimator.

Theorem 1 (Consistency). Let assumptions 1-7 and 8(a) be satisfied. Then, δ̂(β̂, τ)−δ0(β0, τ)
p−→

0.

To establish asymptotic normality, I start by showing that δ̂(β̂, τ)−δ0(β0, τ) can be approxi-

mated by the sum of two terms that account for estimation error arising at different steps of the

estimation. If the first stage parameter vector β0(τ1) = (β0,1(τ1)
′, . . . , β0,m(τ1)

′)′ were known,

the true second-stage parameter vector δ0(β0, τ) uniquely
19 satisfies:

E[m(δ0, β0, τ)] = 0 (14)

19Under weak regularity conditions.
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with

m(δ, β, τ) = x′ij [τ2 − 1(x̃′ijβj(τ1) ≤ x′ijδ(β, τ))]. (15)

LetM(δ, β, τ) = E[m(δ, β, τ)] and denote the sample counterpartMmn(δ, β, τ) =
1

mn

∑m
j=1

∑n
i=1m(δ, β, τ).

While M(δ, β, τ) is a smooth function, this property does not extend to Mmn(δ, β, τ).

Two expressions are central to establish asymptotic normality. (i) The sample moment

evaluated at the true parameters:

Mmn(δ0, β0, τ) =
1

mn

m∑
j=1

n∑
i=1

m(δ0, β0, τ), (16)

(ii) and the pathwise derivative of M(δ, β0, τ) in the direction (β − β0):

Γ2(δ, β0, τ)[β − β0] =
1

m

m∑
j=1

Γ̄2j(δ, β0, τ)[βj − βj,0], (17)

where Γ2(δ, β0, τ) is K × ((K1 + 1) · m), Γ2j(τ, δ, β0) is the jth K × (K1 + 1) submatrix of

Γ2(δ, β0, τ) and
1
m Γ̄2j(τ, δ, β0) ≡ Γ2j(τ, δ, β0) with

Γ2j(δ, β0, τ) =
∂

∂βj
M(δ, β0, τ) = − 1

m
Ei|j

[
fQ(τ1,yij |xij ,vj)|xij

(x′ijδ(β0, τ)|xi)xij x̃′ij
]
. (18)

The expression in equation (16) is directly related to the leading term of a Bahadur expansion

of the unfeasible estimator δ̂(β0, τ):

δ̂(β0, τ)− δ(β0, τ) = Γ1(δ0, β0, τ)
−1 · 1

mn

m∑
j=1

n∑
i=1

m(δ0, β0, τ) + op(1) (19)

where Γ1(δ0, β0, τ) := ∂M(δ,β0,τ2)
∂δ = E[fQ(τ1,yij |xij ,vj)|xij

(x′ijδ0(β0, τ)|xij)xijx′ij ]. Thus, equation

(16) captures the estimation error that would arise due to random variation in the second stage

if we knew the true first stage and equation (17) captures the effect of the first estimation error

on the second-step estimates δ̂(β̂, τ).

Heuristically, the idea is to approximate the asymptotic distribution of
√
m(δ̂(β̂, τ)− δ0(β0, τ))

with the asymptotic distribution of Γ1(δ0, β0, τ)
−1√m

(∑m
j=1 Γ2j(δ, β0, τ) [β̂j(τ1) − βj,0(τ1)] +

Mmn(δ0, β0, τ)
)
. To this end, I show that the two expressions are asymptotically equivalent up

to a term converging to zero fast enough. Then, if we can show that

√
m

 1

m

m∑
j=1

Γ̄2j(δ, β0, τ)[β̂j(τ1)− βj,0(τ1)] +Mmn(δ0, β0, τ)

 d−→ N(0,Ω(τ)),

for some Ω(τ), asymptotic normality follows.

The following Lemma establishes the asymptotic properties of equations (17) and (16).

Lemma 1. Let the model in equation (6) and assumptions 1-7 hold. Then
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(i) Under assumptions 8(b):

√
m

1

m

m∑
j=1

Γ̄2,j(δ0, β0, τ)
(
β̂j(τ1)− βj,0(τ1)

)
d−→ N (0,Ω1(τ)/n) ,

with Ω1(τ) = Ej

[
Γ̄2j(δ0, β0, τ)Vj(τ1)Γ̄2j(δ0, β0, τ)

′], where Vj(τ1) is the asymptotic covariance

matrix of β̂j(τ1) and Γ̄2j(δ0, β0, τ) = Ei|j

[
fQ(τ1,yij |xij ,vj)|xij

(x′ijδ0(τ)|xij)xij x̃′ij
]
.

(ii) Assume that Pr(x̃′ijβj,0(τ1) ≤ x′ijδ0(β0, τ))− τ2 > ϵ > 0 for all (τ1, τ2), then

√
m (Mmn(δ0, β0, τ))

d−→ N (0,Ω2(τ)) , (20)

where Ω2(τ) = E
[
[τ2 − 1(x̃′ijβj,0(τ1) ≤ x′ijδ0(β0, τ)]

2xijx
′
ij

]
= τ2(1− τ2)E[xijx′ij ].

(iii) Under assumption 8(b):

Cov

Mmn(δ0, β0, τ),
1

m

m∑
j=1

Γ̄2,j(β0, τ)
(
β̂j(τ1)− βj,0(τ1)

) = op

(
1√
mn

)
.

Hence, the asymptotic distribution of the estimator can be approximated by a linear function

of the sum of two terms converging at a different rate, and the asymptotic behavior will be

determined by the term converging at the slower rate.

Theorem 2. Let assumptions 1-7 and 8(b) be satisfied. Assume that for all τ1, τ2, Pr(x̃′ijβj,0(τ1) ≤
x′ijδ0(τ))− τ2 > ϵ > 0. Then

√
m
(
δ̂(β̂, τ)− δ0(β0, τ)

)
d−→ N(0,Γ−1

1 Ω(τ)Γ′−1
1 ) (21)

with Γ1 = Γ1(δ0, β0, τ) and Ω = Ω1
n +Ω2, where Ω1 and Ω2 are defined in Lemma 1.

The variance of the component capturing the first-stage error shrinks to zero at a rate of 1/n

and, therefore, does not show up in the first-order asymptotic distribution. To improve finite

sample inference, I suggest below a covariance matrix estimator that takes the first stage error

into account.

The requirement that Pr(x̃′ijβj,0(τ1) ≤ x′ijδ0(τ)) − τ2 > ϵ > 0 for all (τ1, τ2) ensures that

there is heterogeneity between groups. In the follwoing Remark 4, I discuss a special case where

Pr(x̃′ijβj,0(τ1) ≤ x′ijδ0(τ)) = τ2 for all j.

Remark 4 (Degree of heterogeneity and growth condition). If there is no heterogeneity between

group – that is, if Pr(x̃′ijβj,0(τ1) ≤ x′ijδ0(τ)) = τ2 for a given (τ1, τ2)– it should be possible

to show that
√
nm 1

m

∑m
j=1 Γ̄2,j(δ0, β0, τ)

(
β̂j(τ1)− βj,0(τ1)

)
d−→ N (0,Ω1(τ)) under the stronger

requirement that log(n)2m
n → 0. Since in this case Mmn(δ0, β0, τ) = 0, the first stage error

dominates the asymptotic distribution and the estimator converges at the
√
mn-rate. This

stronger growth condition is used, for example, in Galvao et al. (2020) quantile regression fixed

effect estimators, and is required in Melly and Pons (2022) for the adaptive results in the degree

of heterogeneity and convergence rates. In this paper, given the central interest in analyzing the

heterogeneity between groups, I do not explore this possibility.
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5.2 Inference

To perform inference, I suggest a clustered bootstrap procedure where entire groups are

resampled with replacement. Since entire groups are resampled, the first stage is unaffected

and does not need to be recomputed. Consequently, the procedure is equivalent to resam-

pling the first-stage fitted values. More precisely, for each bootstrap replication b = 1, . . . , B,

draw a random sample with replacement {(ŷ∗1j , . . . , y∗nj), (x∗1j , . . . , x∗nj) : j = 1, . . . ,m} from

{(ŷ1j , . . . , ŷnj), (x1j , . . . , xnj) : j = 1, . . . ,m}, and run the second step estimator using the re-

sampled data. I show that the asymptotic distribution of δ̂(β̂, τ)−δ0(β0, τ) can be approximated

with the distribution of δ̂∗(β̂, τ) − δ̂(β̂, τ) and that this procedure also takes into account the

first-stage error.

Theorem 3. Assume that the condition for Theorem 2 are satisfied. Then,

√
m
(
δ̂∗(β̂, τ)− δ̂(β̂, τ)

)
d∗−→ N

(
0,Γ−1

1 Ω(τ)Γ−1
1

)
.

Remark 4 discusses the impact of heterogeneity on the rate of convergence of the estimator.

In similar situations, Liao and Yang (2018); Lu and Su (2022); Fernández-Val et al. (2022) show

that the clustered bootstrap is uniformly valid in the rate of convergence of the estimator.20

Simulations show similar results for the estimator in this paper, hence providing some anecdotal

evidence that the bootstrap standard errors might also be adaptive in this case. In a similar

setting, Melly and Pons (2022), use a clustered covariance matrix estimator in the second stage.

However, based on simulations, the bootstrap method appears to outperform the clustered

covariance matrix estimator with this estimator. Consequently, I recommend using the bootstrap

in this paper.

6 Simulations

To analyze the small sample performance of the estimator, I perform a Monte Carlo simula-

tion with the following data generating process where all variables are scalars:

yij = 1 + β · x1ij + γ · x2j + ηj(1− 0.1 · x1ij − 0.1 · x2j) + νij(1 + 0.1 · x1ij + 0.1 · x2j)

with x1ij = 1+hj+wij , where hj ∼ U [0, 1], wij , x2j , ηj , νij areN(0, 1). This is a location-scale-

shift model over both quantile indices. Let β = γ = 1. The true coefficients on the individual-

level variable take the form β(τ1, τ2) = 1+0.1 ·F−1(τ1)+0.1 ·F−1(τ2) and the true coefficients on

the group-level regressor equals γ(τ1, τ2) = 1−0.1·F−1(τ1)−0.1·F−1(τ2) where F is the standard

normal cdf. I consider the sample sizes (m,n) = {(25, 25), (200, 25), (25, 200), (200, 200)} and

focus on the set of quantiles T ∈ {0.25, 0.5, 0.75} using 2’000 Monte Carlo simulations.

20These papers refer to this bootstrap procedure as cross-sectional bootstrap since the focus is on panel data
models. See Melly and Pons (2022) for a similar result using clustered standard errors.
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β γ

τ1 \ τ2 0.25 0.5 0.75 0.25 0.5 0.75

(m, n) = (25,25)
0.25 -0.026 0.001 0.031 -0.019 0.004 0.028

(0.114) (0.109) (0.118) (0.237) (0.223) (0.243)
0.5 -0.027 -0.004 0.023 -0.020 0.000 0.023

(0.112) (0.104) (0.109) (0.241) (0.219) (0.240)
0.75 -0.034 -0.006 0.022 -0.020 -0.002 0.026

(0.116) (0.109) (0.114) (0.239) (0.220) (0.241)

(m, n) = (25,200)
0.25 -0.010 -0.001 0.007 -0.008 0.000 0.007

(0.074) (0.066) (0.072) (0.234) (0.219) (0.230)
0.5 -0.008 -0.002 0.004 -0.008 -0.001 0.004

(0.072) (0.065) (0.069) (0.234) (0.221) (0.231)
0.75 -0.012 -0.003 0.005 -0.010 -0.002 0.004

(0.074) (0.067) (0.070) (0.235) (0.219) (0.231)

(m, n) = (200,25)
0.25 -0.022 0.006 0.031 -0.022 -0.001 0.021

(0.042) (0.038) (0.042) (0.079) (0.073) (0.079)
0.5 -0.025 -0.001 0.023 -0.020 -0.002 0.017

(0.041) (0.037) (0.039) (0.078) (0.073) (0.078)
0.75 -0.033 -0.007 0.020 -0.023 -0.003 0.018

(0.042) (0.038) (0.041) (0.079) (0.074) (0.081)

(m, n) = (200,200)
0.25 -0.005 0.002 0.007 -0.004 0.000 0.006

(0.028) (0.026) (0.028) (0.076) (0.070) (0.078)
0.5 -0.004 0.001 0.005 -0.003 0.000 0.006

(0.027) (0.025) (0.028) (0.075) (0.070) (0.079)
0.75 -0.006 0.000 0.006 -0.004 0.000 0.006

(0.027) (0.026) (0.028) (0.076) (0.070) (0.078)

Note:
Results based on 2000 Monte Carlo simulations. The table pro-
vides standard errors relative to standard deviation.

Table 1: Bias and Standard Deviation

Table 1 shows the bias and standard deviation. Table 2 shows the bootstrap standard

errors relative to the standard deviation, and Table 3 shows the coverage probability of the 95%

confidence interval. Bootstrap standard errors are computed using 200 repetitions.

While β and γ have the same asymptotic behavior, we see differences in their finite sample

properties. The simulations show that the bias of β decreases both as n or m increases, while the

bias of γ decreases only when m increases. Similarly, the variance of γ is only minimally affected

by an increase in the number of observations per group. On the other hand, the variance of β

shows a larger improvement when the n increases. Still, an increase in the number of groups

yields the largest improvement in the variance.21

Table 2 shows the bootstrap standard errors relative to the standard deviation. The sim-

ulation shows that the bootstrap standard errors are conservative. The standard errors are

21As n becomes larger, further increases n will not improve the variance of either β nor γ. More precisely, the
relatively large decrease in the variance β here quickly converges to zero as n increases.
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β γ

τ1 \ τ2 0.25 0.5 0.75 0.25 0.5 0.75

(m, n) = (25,25)
0.25 1.203 1.114 1.204 1.114 1.088 1.264
0.5 1.207 1.140 1.202 1.138 1.085 1.295
0.75 1.184 1.115 1.229 1.127 1.077 1.267

(m, n) = (25,200)
0.25 1.249 1.206 1.350 1.251 1.122 1.553
0.5 1.314 1.216 1.439 1.292 1.126 1.651
0.75 1.330 1.172 1.386 1.324 1.119 1.593

(m, n) = (200,25)
0.25 1.054 1.025 1.019 1.035 1.029 1.019
0.5 1.036 1.022 1.015 1.003 1.017 1.025
0.75 1.018 1.012 1.033 1.005 0.998 1.021

(m, n) = (200,200)
0.25 1.075 1.033 1.059 1.033 1.078 1.053
0.5 1.069 1.065 1.062 1.022 1.078 1.052
0.75 1.067 1.070 1.046 1.030 1.068 1.059

Note:
Results based on 2000 Monte Carlo simulations. The
table provides standard errors relative to standard de-
viation.

Table 2: Bootstrap Standard Errors relative to Standard Deviation

particularly large when the number of groups m is small, and the ratio converges to 1 as m

increases. The coverage probabilities of the 95% confidence bands in Table 3 are close to 95%.

There are some minor discrepancies which, however, disappear as the number of groups and

observations per group increase. In some instances with (m,n) = (200, 25), the confidence in-

terval tends to undercover, but this is likely driven by the larger bias. In the appendix C, I

include simulation results for the standard errors and coverage probability computed using clus-

tered standard errors in the second stage. The clustered standard errors are smaller than the

bootstrap standard errors, and consequently, the confidence intervals have lower coverage.

7 Empirical Application

In an empirical application, I complement the findings of McKenzie and Puerto (2021) by

offering new insights into distributional effects. Their study aims to analyze the impact of

business training on the outcomes of female-owned businesses and the spillover effects of such

training. The sample comprises 3,537 female-owned businesses operating in 157 different rural

markets in Kenya. The training program is randomly assigned to firms through a two-stage

randomization process. The first stage involves market-level randomization, where 93 markets

are designated as treatment markets, and the remaining 64 serve as control markets. In the

second stage, individual-level randomization assigns firms in the treatment markets to training

randomly. Randomization is stratified by geographical region, market size, and quartiles of
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β γ

τ1 \ τ2 0.25 0.5 0.75 0.25 0.5 0.75

(m, n) = (25,25)
0.25 0.972 0.968 0.963 0.933 0.950 0.938
0.5 0.976 0.973 0.966 0.931 0.947 0.947
0.75 0.969 0.967 0.969 0.939 0.943 0.935

(m, n) = (25,200)
0.25 0.987 0.986 0.985 0.946 0.954 0.960
0.5 0.984 0.982 0.986 0.951 0.953 0.959
0.75 0.986 0.986 0.982 0.949 0.952 0.954

(m, n) = (200,25)
0.25 0.925 0.950 0.888 0.940 0.935 0.926
0.5 0.912 0.949 0.904 0.929 0.941 0.936
0.75 0.881 0.944 0.921 0.924 0.929 0.925

(m, n) = (200,200)
0.25 0.956 0.953 0.947 0.939 0.949 0.943
0.5 0.952 0.962 0.953 0.944 0.945 0.942
0.75 0.946 0.960 0.956 0.945 0.952 0.950

Note:
Results based on 2000 Monte Carlo simulations. The
table provides the coverage probability of the 95 confi-
dence invervals.

Table 3: Coverage Probability of Bootstrap Confidence Interval
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Figure 3: Effect of training Assignment on Weekly Sales

weekly profits to ensure a balanced sample. This results in 1,172 individual firms assigned to

training and 988 firms assigned to the control group.

The training program spans five days and covers topics such as bookkeeping, recordkeeping,

marketing, financial concepts, costing and pricing, and the development of new business ideas.

Moreover, it specifically addresses challenges faced by women in business. For more detailed

information about the program’s structure or the experimental setting, refer to McKenzie and
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Figure 4: Effect of Training Assignment on Weekly Profits
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Figure 5: Effect of Training Assignment on Income from Work

Puerto (2021) and their appendix.

McKenzie and Puerto (2021) find a positive effect of training on the business survival after

three years. Further, the training increases weekly average sales and profits by 18 and 15

percent, respectively, and firm owners assigned to the training report better mental health and

a higher subjective standard of living. However, the spillover effects on businesses in treatment

markets not assigned to the program remain unclear, with point estimates being small and not

statistically significant. In the original paper, they estimate the distributional effects of training

on profits and sales. This analysis uses data collected in two waves three years after the training

program. Their findings indicate larger effects in the upper tail of the outcome distribution.

In my analysis, I use data from the same two waves and define groups based on markets.

To ensure that I have enough observations for the estimation, I drop markets with fewer than
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Figure 6: Effect of Training Assignment on Sales

25 businesses.22 The final dataset includes 5,773 observations, corresponding to 3,032 firms

operating in 124 markets. On average, there are 52 observations per market. I consider three

different outcome variables: weekly sales, weekly profits, and income from work with averages

of 6,100, 1,500, and 2,300 Kenyan shillings.23

All three variables have mass points at zero. One reason is that these variables are recorded

to zero for firms that exit the market. More precisely, around 11% of the firms in the final

dataset did not survive after three years, and profits and sales are zero in around 18% of the

observations. Further, 14% of people report having no income. Due to this censoring issue, I

refrain from computing quantile regression too far in the lower tail. Since these mass points could

invalidate inference, I do not report confidence intervals for quantiles affected by the problem.24

Further away from the lower tail, this problem does not affect the results.

22The results remain similar when using a different cutoff.
23In April 2023, 1,000 Kenyan Shillings are around 7.5 USD
24If the second stage fitted values for at least one observation equals zero, I will consider the cell affected by

the mass point. Fitted values of zero suggest a perfect fit, at least for some observations.
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Figure 7: Effect of Training Assignment on Profits

I estimate the following model:

Q(τ2, Q(τ1, yijt|dij , sij , w5,ij , vj)|dij , sij , w5,ijt) = β1(τ)·dij+β2(τ)·sij+β3(τ)·w5,ijt+α(τ), (22)

where yijt is the outcome of firm i operating in market j in wave t, dij is the treatment

dummy, sij is a binary variable that accounts for potential spillover effects and takes value 1 for

firms in the treatment markets that are assigned to the control group, and w5,ijt is an indicator

variable for the last wave.

Figures 3-5 show the treatment effects estimates for sales, profits, and income from work

over the two dimensions for the quantiles indices {0.2, 0.3, . . . , 0.9}. Figure Figures 6-8 plot

the point estimates and confidence intervals over the distribution of markets τ2 when fixing the

within-market rank τ1. The results for all three variables show a similar pattern, where both

within-group and between-group inequalities play essential roles, resulting in larger positive

treatment effects in the upper tail of their respective distributions. For instance, at τ1 = 0.5,

the effect on profits increases from 100 in the lower tail of the distribution to over 600 in the

upper tail. Simultaneously, the within-market rank plays a major role, even for firms operating

in the most prosperous markets, where the effect on profit goes from 400 at τ1 = 0.3 to 800 at
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Figure 8: Effect of Training Assignment on Income From Work

τ1 = 0.7.
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0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.2 1
0.3 0.81 1
0.4 0.67 0.81 1
0.5 0.61 0.76 0.87 1
0.6 0.53 0.64 0.78 0.86 1

0.7 0.45 0.54 0.69 0.72 0.82 1
0.8 0.35 0.44 0.58 0.62 0.69 0.8 1
0.9 0.22 0.32 0.48 0.5 0.56 0.6 0.73 1

Note:
The table shows the correlation matrix of the ranks at
different values of τ1.

Table 4: Correlation of Ranks over τ1
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To assess the extent to which groups in the upper tail of the between distribution at low

values of τ1 are also in the upper tail for high values of τ1, Table 4 presents the rank correlation

across the τ1 dimension. The table provides the correlation of the ranks at any two points of the

within distribution. If heterogeneity between groups is solely due to a location shift, the ranks

do not change over τ1, and we would observe a correlation of 1. A lower correlation suggests

that we would rank groups differently at different points of the within distribution, indicating a

variation in the notion of poor-performing market vs. good-performing market across τ1. The

correlation matrix shows that the ranks vary across the τ1, however, the rank at τ1 = 0.5 is still

highly predictive of the ranks at different points in the distribution.

8 Conclusion

Distributional effects are particularly interesting in analyzing treatment effect heterogeneity.

In economics, heterogeneity manifests itself across various dimensions, encompassing within and

between groups. This paper aims to provide a method to analyze heterogeneity and distribu-

tional effects within and between groups simultaneously. To this end, I introduce a quantile

model with two quantile indices: one capturing heterogeneity within groups and the other ad-

dressing heterogeneity between groups. The conditional quantile function of each group models

the within-group heterogeneity. Then, to aggregate the results over the distribution of groups,

I model the conditional quantile function of these group-level quantile functions. I show that

constructing the two-level quantile function involves a tradeoff between a simple model with a

unique group rank and a more flexible model that allows for unrestricted heterogeneity between

groups but requires that group ranks can change over the within distribution. This paper follows

the second approach as it offers a more realistic model.

I suggest a two-step quantile regression estimator with within-group by-group regressions in

the first stage and between-group regressions in the second stage. I show that the estimator

is consistent and asymptotically normal when the number of observations per group and the

number of groups grows to infinity. I show that the estimator can provide new insights about

two-dimensional heterogeneity in grouped data. In a descriptive illustration, I study income het-

erogeneity within and between the labor market in Switzerland. The results show that a large

portion of the group-level heterogeneities are driven by high top wages in a few regions, whereas

for most of the within distribution, differences between regions are less marked. Furthermore,

the data show that group ranks change substantially over the within distribution, suggesting that

comparing differences in median wage between regions does not provide a meaningful picture

of the labor market situation of low-income individuals. Finally, in an empirical application, I

extend the findings of McKenzie and Puerto (2021) by assessing the impact of business training

on firm performance in Kenya. I find stronger effects for good-performing firms (in their mar-

kets) operating in thriving markets, indicating that there might be complementarities between

individual and group ranks.
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A Preliminary Lemmas

Let B is a vector space endowed with a pseudo-metric || · ||B, which is a sup-norm metric in

the sense that ||β − β′||B = supj ||βj − β′
j ||.

Lemma 2 (Uniform consistency of β̂j(τ)). Under Assumptions 1-4, 7 and 8(a), we have

max
1≤j≤m

∥β̂j(τ)− βj∥ = op(1).

Proof. The proof follows directly by the proof of Lemma 1 in Galvao and Wang (2015). ■

Lemma 3 (Bahadur representation of the first stage estimator). Let assumption 1-4 be satisfied.

Then,

β̂j(τ1)− βj(τ1) =
1

n

n∑
i=1

ϕj,τ1(x̃ij , yij) +R
(1)
nj (τ1) +R

(2)
nj (τ1), (23)

where

ϕj,τ1(x̃ij , yij) = −B−1
j,τ1

x̃ij(1(yij ≤ x̃ijβj(τ1))− τ1), (24)

with Bj,τ1 = Ei|j [fy|x(Qy|x(τ1|x̃′ijβj)|x̃ij)x̃ij x̃′ij ] and

sup
j

sup
τ1∈T

∥∥∥R(2)
nj (τ1)

∥∥∥ = Op

(
log n

n

)
(25)

sup
j

sup
τ1∈T

∥∥∥Ei|j

[
R

(1)
nj (τ1)

]∥∥∥ = O

(
log n

n

)
(26)

sup
j

sup
τ∈T

∥∥∥∥E [(R(1)
nj (τ1)− Ei|j [R

(1)
nj (τ1)]

)(
R

(1)
nj (τ)− Ei|j [R

(1)
nj (τ1)]

)′]∥∥∥∥ = O

((
log n

n

)3/2
)
. (27)

Proof. See Lemma 3 in Galvao et al. (2020). ■

Lemma 4. Under assumptions 1-2 and 7 ,

sup
||β−β0||B≤ζm, ||δ−δ0||≤ζm

||Mmn(δ, β, τ)−M(δ, β, τ)−Mmn(δ0, β0, τ)|| = op(m
−1/2), (28)

for all positive sequences ζm = o(1).

Proof. This result is implied by Theorem 3 in Chen et al. (2003). Hence, I show now that the

conditions to apply the theorem are satisfied. First, recall that E[m(δ0, β0, τ)] = 0 and that by

Assumption 1 the data is i.i.d. To check condition (3.1), note that m(δ, β, τ2) = ρτ2(x̃ijβj−xijδ).

By the properties of the check function ρτ2(y + z)− ρτ2(y) ≤ 2 · ||z||. Hence,

m(δ′,β′, τ)−m(δ′′, β′′, τ)

=ρτ2(x̃ijβ
′
j − xijδ

′)− ρτ2(x̃ijβ
′′
j − xijδ

′) + ρτ2(x̃ijβ
′′
j − xijδ

′)− ρτ2(x̃ijβ
′′
j − xijδ

′′)

≤2||x̃ij(β′
j − β′′

j )||B + 2||xij(δ′ − δ′′)||. (29)
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It follows that mmn(δ, β, τ2) is stochastic equicontinous because

|mmn(δ
′, β′, τ)−mmn(δ

′′, β′′, τ)| ≤ C1||β′
j − β′′

j ||B + C2||δ′ − δ′′||

with C1 = 2 · ||x̃ij || and C2 = 2 · ||xij ||. Which implies that condition (3.1) in Chen et al. (2003)

is satisfied.

Condition (3.2) is satisfied as, for k = 1, 2, . . . ,K,

E
[

sup
||β′

j−βj ||≤ζ, ||δ′−δ||≤ζ

|mk(δ, β, τ)−mk(δ
′, β′, τ)|2

]
≤E
[
||xijk||2|1(x̃′ijβj(τ1) ≤ x′ijδ)− 1(x̃′ijβj(τ1) ≤ x′ij(δ + ζ))|

+ ||xijk||2|1(x̃′ijβj(τ1) ≤ x′ij(δ + ζ))− 1(x̃′ij(βj(τ1) + ζ) ≤ x′ij(δ + ζ))|
]

≤E
[
||xijk||2|FQ(τ1,y|x,ν)|x(x

′
ijδ)− FQ(τ1,y|x,ν)|x(x

′
ij(δ + ζ)))|

+ ||xijk||2|FQ(τ1,y|x,ν)|x(x
′
ijδ)− FQ(τ1,y|x,ν)|x(x

′
ij(δ + ζ)− x̃′ijζ))|

]
≤K · ζ

for some K < ∞, since xij is bounded by assumption 2.

To check condition (3.3), I start by noting that by assumption 7, D is a compact subset of RK .

Further βj ∈ Bj for all j where Bj is a compact set of RK1 . It follows by Tychonoff’s Theorem

that β ∈ B where B =
∏m

j=1 Bj is also compact. Since both sets are compact, the covering

numbers of B and D are known, and the condition is satisfied.

■

B Proofs of Asymptotic Resutls

B.1 Consistency and Asymptotic Normality

Proof of Theorem 1. To prove the results, I apply Theorem 1 in Chen et al. (2003) and start by

showing that the conditions to apply the theorem are satisfied. First, by definitionM(δ0, β0, τ) =

0 and ||Mmn(δ̂, β̂, τ)|| ≤ infδ∈Dζ
||Mmn(δ, β̂, τ)||+ op(1) so that condition (1.1) is satisfied. Con-

dition (1.4) is implied by Lemma 2 and (1.5) is implied by Lemma 4. Condition (1.3) is satisfied

since M(δ, β, τ) is Lipschitz-continous over βj at βj = βj,0 with respect to the metric || · ||B.
Condition (1.2) is satisfied as M(δ, β0) is uniquely minimized at M(δ0, β0), since E[xijx′ij ] is full
rank (Assumption 2) and by Assumption 6. Since all the conditions are satisfied, the result

follows by Theorem 1 in Chen et al. (2003).

■

Proof of Lemma 1. Part (i) Inserting equation (23) from Lemma 3 in equation (17) gives:
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1

m

m∑
j=1

Γ̄2j(δ, β0, τ)(β̂j − βj,0) (30)

=
1

m

m∑
j=1

Ei|j

[
fQ(τ1,yij |xij ,vj)|xij

(x′ijδ0|xij)xij x̃′ij
]( 1

n

n∑
i=1

ϕj,τ1(x̃ij , yij)

)
(31)

+
1

m

m∑
j=1

Ei|j

[
fQ(τ1,yij |xij ,vj)|xij

(x′ijδ0|xij)xij x̃′ij
]
R

(1)
nj (τ1) (32)

+
1

m

m∑
j=1

Ei|j

[
fQ(τ1,yij |xij ,vj)|xij

(x′ijδ0|xij)xij x̃′ij
]
R

(2)
nj (τ1) (33)

First, note that by Assumption 2, xij is bounded by a constant C such that xij x̃
′
ij is also

bounded. Further, by Assumption 5, fQ(τ1,yij |xij ,vj)|xij
(x′ijδ0|xij) is also bounded. It follows

directly that the conditional expectation Ei|j

[
fQ(τ1,yij |xij ,vj)|xij

(x′ijδ|xij)xij x̃′ij
]
is bounded.

Next, consider the third term (33). Together with equation (25), it implies that

sup
τ1∈T

1

m

m∑
j=1

Ei|j

[
fQ(τ1,yij |xij ,vj)|xij

(x′ijδ0|xij)xij x̃′ij
]
R

(2)
nj (τ1) = Op

(
log n

n

)
. (34)

For the second term (32), Since Var
(
R

(1)
nj (τ)

)
= o

(
1
n

)
by (27), the conditional expectation is

bounded and since the observations are independent across groups, we have that

Var

 1

m

m∑
j=1

Ei|j

[
fQ(τ1,yij |xij ,vj)|xij

(x′ijδ0|xij)xij x̃′ij
]
R

(1)
nj (τ1)

 = op

(
1

mn

)
.

In addition, by (26), sup
j

sup
τ1∈T

Ei|j

[
R

(1)
nj (τ1)

]
= O

(
logn
n

)
such that

sup
τ1∈T

Ei|j

 1

m

m∑
j=1

Ei|j

[
fQ(τ1,yij |xij ,vj)|xij

(x′ijδ0|xij)xij x̃′ij
]
R

(1)
nj (τ1)

 = O

(
log n

n

)
.

Putting this together, by the Chebyshev inequality and under Assumption 8(b), we have that

sup
τ1∈T

1

m

m∑
j=1

Ei|j

[
fQ(τ1,yij |xij ,vj)|xij

(x′ijδ0|xij)xij x̃′ij
]
R

(1)
nj (τ1) = op

(
1√
m

)
. (35)

It follows that both (32) and (33) are op

(
1√
m

)
.

Consider now the first term (31):

1

m

m∑
j=1

Ei|j

[
fQ(τ1,yij |xij ,vj)|xij

(x′ijδ0|xij)xij x̃′ij
]( 1

n

n∑
i=1

ϕj,τ1(x̃ij , yij)

)

=
1

m

m∑
j=1

Ei|j

[
fQ(τ1,yij |xij ,vj)|xij

(x′ijδ0|xij)xij x̃′ij
](B−1

j,τ1

n

n∑
i=1

x̃ij(1(yij ≤ x̃ijβj(τ1))− τ1)

)

:=
1

mn

m∑
j=1

n∑
i=1

sij(τ).
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This is a sample mean over mn i.i.d. observations denoted by sij(τ). The model in equation

(2) implies that E [1(yij ≤ x̃ijβj(τ))|x̃ij , vj ] = τ1, which together with Assumption 2(iii) gives

E[sij(τ)] = 0. In addition,

Var(sij(τ1)) =Ej

[
Γ̄2j(δ0, β0, τ)Var(ϕj,τ1)Γ̄2j(δ0, β0, τ)

′]
=Ej [Γ̄2j(δ0, β0, τ)B

−1
j,τ τ(1− τ)Ei|j [x̃ij x̃

′
ij ]B

−1
j,τ Γ̄2j(τ, δ0, β0)

′], (36)

where Γ̄2j(δ0, β0, τ) = Ei|j

[
fQ(τ1,yij |xij ,vj)|xij

(x′ijδ0|xij)xij x̃′ij
]
.

It follows by the Lindeberg-Lévy Central Limit Theorem that

√
m

1

m

m∑
j=1

Γ̄2j(δ0, β0, τ)(β̂j − βj,0)
d−→ N

(
0,

Ω1

n

)
, (37)

where Ω1 = Ej

[
Γ̄2j(δ0, β0, τ)Var(ϕj,τ )Γ̄2j(δ0, β0, τ)

′]
Part (ii)

Mmn(δ0, β0, τ) =
1

mn

m∑
j=1

n∑
i=1

x′ij [τ2 − 1(x̃′ijβj,0(τ1) ≤ x′ijδ0(β0, τ)]

It follows directly that

√
m (Mmn(δ0, β0, τ))

d−→ N (0,Ω2(τ)) (38)

where Ω2(τ) = E
[
[τ2 − 1(x̃′ijβj,0(τ1) ≤ x′ijδ0(β0, τ)]

2xijx
′
ij

]
= τ2(1 − τ2)E[xijx′ij ] where the last

equality follows by correct specification.

Part (iii) Note that
∑m

j=1
1
m Γ̄2,j(β0, τ)

(
β̂j − βj,0

)
is asymptotically equivelent to (up to a

op

(
1√
mn

)
term)

1

m

m∑
j=1

Ei|j

[
fQ(τ1,yij |xij ,vj)|xij

(x′ijδ0|xij)xij x̃′ij
](B−1

j,τ1

n

n∑
i=1

x̃ij(1(yij ≤ x̃ijβj(τ1))− τ1)

)
Since the observations are independent over j and i (Assumption 1) we only need to analyze the

covariance for a given i and j:

Cov
(
x̃ij(1(yij ≤ x̃ijβj(τ1))− τ1), x

′
ij1(x̃

′
ijβj,0(τ1) ≤ x′ijδ0(β0, τ2)− τ2)

)
=Cov

(
x̃ij(1(yij ≤ x̃ijβj,0(τ1))− τ1), x

′
ij1(x

′
ij [δ(τ1, vj)− δ0(β0, τ2)] + α(τ1, vj) ≤ 0)− τ2)

)
=E

[
x̃ij(1(yij ≤ x̃ijβj,0(τ1))− τ1)x

′
ij1(x

′
ij [δ(τ1, vj)− δ0(β0, τ2)] + α(τ1, vj) ≤ 0)− τ2]

]
=Ej

[
Ei|j [x̃ij(1(yij ≤ x̃ijβj,0(τ1))− τ1)|xij ]x′ij1(x′ij [δ(τ1, vj)− δ0(β0, τ2)] + α(τ1, vj) ≤ 0)− τ2]

]
= 0.

Where the second line follows since both terms have mean zero.

This implies that

Cov

Mmn(z, δ0, β0, τ2),
1

m

m∑
j=1

Γ̄2,j(β0, τ)
(
β̂j − βj,0

) = op

(
1√
mn

)
■
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Proof of Theorem 2. To prove the results, I apply Theorem 2 in Chen et al. (2003) and start by

showing that the conditions to apply the theorem are satisfied. First, assumption 8(b) implies

8(a) so that by Theorem 1, δ̂(β̂, τ) − δ0(β0, τ)
p−→ 0. Therefore, following Chen et al. (2003), I

can replace the parameter space with a small or shrinking ball around the true parameter. Let

Dζ,τ := {δ ∈ D : ||δ − δ0(τ)|| ≤ ζ} and Bζ,τ1 := {β ∈ B : ||β − β0(τ1)|| ≤ ζ}.

Next, by definition

||Mmn(δ̂, β̂, τ)|| ≤ inf
δ∈Dζ

||Mmn(δ, β̂, τ)||+ op(m
−1/2)

so that condition (2.1) is trivially satisfied.

Recall the matrix

Γ1(δ, β0, τ2) :=
∂M(δ, β0, τ2)

∂δ
= E[fQ(τ1,yij |xij ,vj)|xij

(x′ijδ|xij , β)xijx′ij ]. (39)

By assumption 5, Γ1(δ, β0, τ2) exist, is continous at δ = δ0. Further, Γ1(δ0, β0, τ2) is full rank by

assumptions assumptions 2 and 6. Hence, condition (2.2) is satisfied.

Denote Γ2(δ, β0)[β − β0] =
∑m

j=1 Γ2j(δ, β0)[βj − βj,0] the pathwise derivative of M(δ, β0) in

the direction (β − β0), where

Γ2j(δ, β0, τ) =
∂

∂βj

[
E[τ2 − FQ(τ1,yij |xij ,vj)|xij

(x′ijδ(β0, τ)|xij)xij ]
]

=
∂

∂βj

[
Ej

[
Ei|j

[
τ2 − FQ(τ1,yij |xij ,vj)|xij

(x′ijδ(β0, τ)|xij)xij
]]]

=− 1

m
Ei|j

[
fQ(τ1,yij |xij ,vj)|xij

(x′ijδ(β0, τ)|xi)xij x̃′ij
]
.

By assumption 5 the pathwise derivative will exist in all directions (βj − βj,0) ∈ Bj .

Condition (2.3) requires that for all (βj , δ) ∈ Bζm ×Dζm with a positive sequence ζm = op(1),

(i) ||M(δ, β, τ)−M(δ, β0)−
∑m

j=1 Γ2j(δ, β0, τ)[βj−βj,0]|| ≤ c ·supj ||βj−βj,0||2B for some constant

c ≥ 0; and (ii) ||
∑m

j=1 Γ2j(δ, β0, τ)[βj − βj,0]−
∑m

j=1 Γ2j(δ0, β0, τ)[βj − βj,0]|| ≤ o(1)ζm.

The sequence ζm is also defined in terms of the radius of the ball around β0 and δ0. Hence, we

need this sequence converge to zero at a rate weakly slower than β − β0 and δ − δ0.

Using a Taylor approximation and since Assumption 5 implies that M(δ, β, τ) is twice continu-

ously differentiable we have that

M(δ, β, τ)−M(δ, β0, τ) =
m∑
j=1

Γ2j(δ, β0, τ)[βj − βj,0] +Op(||β − β0||2B) (40)

which implies (i). Condition (2.3ii) is trivially satisfied by Assumption 5.

Condition (2.4), is satisfied if ||β̂j − βj,0||B = op(m
−1/4). The proof of Lemma 1 in Galvao

and Wang (2015) implies that

P

{
max

1≤j≤m
∥β̂j(τ)− βj,0(τ)∥ > ζ

}
≤ O(m exp (−n)).
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If
√
m logn
n → 0 (Assumption 8(b)), supj ||β̂j−βj,0|| = op(m

−1/4), so that condition (2.4) in Chen

et al. (2003) is satisfied.

Condition (2.5) is implied by Lemma 4 and Condition (2.6) follows directly by Lemma 1,

with

√
m

Mmn(δ0, β0, τ2) +
1

m

m∑
j=1

Γ̄2,j(β0, τ)
(
β̂j − βj,0

) d−→ N(0,Ω(τ)) (41)

where Ω(τ) = Ω1(τ)
n +Ω2(τ).

The final result follows by Theorem 2 in Chen et al. (2003). ■

Proof of Theorem 3. This proof uses a similar strategy to the proof of Theorem 5.4 in Fernández-

Val et al. (2022) The idea is to prove the result in two steps. First, show that δ̂∗ − δ0 can be

approximated by a linear function with an error of order o∗p(m
−1/2). Then, show that the δ̂∗− δ̂

follow the same distribution as δ̂ − δ0.

Part 1 - Linearization In this part of the proof, I start by showing that δ̂∗(β̂, τ)−δ̂(β̂, τ) =

O∗
p(m

−1/2). Since the bootstrap algorithm that I consider samples entire groups, the first stage

is the same in all bootstrap replications. Instead, the source of randomness is which groups are

sampled.

It can be shown that

δ̂∗(β̂, τ)− δ̂(β̂, τ) = O∗
p

(
m−1/2

)
which together with Theorem 2 implies

δ̂∗(β̂, τ)− δ0(β0, τ) = O∗
p

(
m−1/2

)
. (42)

Second, the idea is to approximate the asymptotic distribution of
√
m(δ̂∗(β̂∗, τ)− δ0(β0, τ))

with the asymptotic distribution of a linear function.

Hence, I want to show that

√
m(δ̂∗(β̂∗, τ)− δ0(β0, τ))

=Γ1(δ0, β0, τ)
−1√m

 1

m

m∑
j=1

Γ̄∗
2j(δ, β0, τ)[β̂

∗
j (τ1)− βj,0(τ1)] +M∗

mn(δ0, β0, τ)

+ o∗p(m
−1/2)

Where M∗
mn(δ0, β0) = 1

m

∑m
j=1 m̄

∗
j (δ0, β0) and m̄j(δ, β, τ) = 1

n

∑n
i=1 x

′
ij [τ2 − 1(x̃′ijβj(τ1) ≤

x′ijδ(β), τ)].

For this second part, I rely on the results on Chen et al. (2003).

Define the linearization where the dependencies on τ are suppressed for ease of notation:

L∗
mn(δ) = M∗

mn(δ0, β0) + Γ1(δ0, β0)(δ − δ0) +
1

m

∑
j

Γ̄∗
2,j(δ̂

∗, β0)(β̂
∗
j − βj,0) (43)
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Similarly to the proof theorem 2 in Chen et al. (2003), the goal is to show that we can

approximate M∗
mn(δ̂

∗, β̂∗) by L∗
mn(δ̂

∗) with an error of order o∗p(m
−1/2) within a Op(m

−1/2)

neighborhood of δ0.

Hence, we want to show that

||M∗
mn(δ̂

∗, β̂∗, τ)− L∗
mn(δ̂

∗)|| = o∗p(m
−1/2).

By the triangle inequality:

||M∗
mn(δ̂

∗, β̂∗, τ)− Lmn(δ̂
∗)|| ≤||M(δ̂∗, β̂∗, τ)−M(δ̂∗, β∗

0 , τ)−
1

m

m∑
j=1

Γ̄∗
2,j(δ̂

∗, β∗)(β̂∗
j − β∗

j,0)||

+ ||M(δ̂∗, β∗
0 , τ)− Γ1(δ0, β0)(δ̂

∗ − δ0)||

+ ||M∗
mn(δ̂

∗, β̂∗, τ)−M(δ̂∗, β̂∗, τ)−M∗
mn(δ0, β0)||

Where for the first term we have:

||M(δ̂∗, β̂∗, τ)−M(δ̂∗, β∗
0 , τ)−

1

m

m∑
j=1

Γ̄∗
2,j(δ̂

∗, β∗)(β̂∗
j − β∗

j,0)|| = O∗
p(||β̂∗ − β0||2B) = o∗p(m

−1/2).

since supj ||β̂j − βj,0|| = op(m
−1/4) as shown in the proof of Theorem 2.

For the second term, a Taylor approximation combined with (δ̂∗ − δ0) = O∗
p(m

−1/2) implies:

||M(δ̂∗, β∗
0 , τ)− Γ1(δ0, β0)(δ̂

∗ − δ0)|| = o∗p(m
−1/2).

For the third term, we have:

||M∗
mn(δ̂

∗, β̂, τ)−M(δ̂∗, β̂, τ)−M∗
mn(δ0, β0)|| = o∗p(m

−1/2)

by condition 2.5 in Chen et al. (2003).

Hence,

||M∗
mn(δ̂

∗, β̂, τ)− L∗
mn(δ̂

∗)|| = o∗p(m
−1/2)

Similarly, I now shown that ||M∗
mn(δ̄

∗, β̂)− L∗
mn(δ̄

∗)|| = o∗p(m
−1/2), where δ̄∗ is the value of

δ that minimizes L∗
mn(δ).

First, for δ̄∗ to be the value of δ that minimizes L∗(δ) it must be equal to:

δ̄∗ − δ0 = Γ1(δ0, β0, τ)
−1

 1

m

m∑
j=1

Γ̄∗
2j(δ, β0, τ)[β̂

∗
j (τ1)− βj,0(τ1)] +

1

m

m∑
j=1

m̄∗
j (δ0, β0, τ)

 .

Note that by the proof of Theorem 2

δ̄∗ − δ0 =Γ1(δ0, β0)
−1

 1

m

m∑
j=1

Γ̄∗
2j(δ, β0)[β̂

∗
j − βj,0] +

1

m

m∑
j=1

m̄∗
j (δ0, β0)


=Γ1(δ0, β0)

−1

 1

m

m∑
j=1

Γ̄2j(δ, β0)[β̂j − βj,0] +
1

m

m∑
j=1

m̄j(δ0, β0)

+O∗
p(m

−1/2)

=δ̂ − δ0 +O∗
p(m

−1/2)

=O∗
p(m

−1/2) (44)
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By the triangle inequality

||M∗
mn(δ̄

∗, β̂∗)− L∗
mn(δ̄

∗)|| ≤||M(δ̄∗, β̂∗)−M(δ̄∗, β∗
0)−

m∑
j=1

Γ∗
2,j(δ̄

∗, β∗)(β̂∗ − β∗)||

+ ||M(δ̄∗, β0)− Γ1(δ0, β0)(δ̄
∗ − δ0)||

+ ||M∗
mn(δ̄

∗, β̂∗)−M(δ̄∗, β̂∗)−M∗
mn(δ0, β0)||.

For the first term, we have:

||M(δ̄∗, β̂, )−M(δ̄∗, β0)|| ≤ ||
m∑
j=1

Γ2j(δ̄
∗, β0)[βj − βj,0]||+Op(||βj − βj,0||2B) = o∗p(m

−1/2)

For the second term, by differentiability of M(δ, β0, τ) and using equation (44) yields

||M(δ̄∗, β0, τ)|| ≤ ||Γ1(δ̄
∗(β0)− δ0)||+ ||o(δ̄∗(β∗

0)− δ0)|| = o∗p(m
−1/2).

For the third term, by condition 2.5’ in Chen et al. (2003), we have

||M∗
mn(δ̄

∗, β̂, τ)−M(δ̄∗, β̂, τ)−M∗
mn(δ0, β0, τ)|| = op(m

−1/2).

Hence, it follows that

||M∗
mn(δ̄

∗, β̂, τ)− L∗
mn(δ̄

∗)|| = o∗p(m
−1/2).

Following Chen et al. (2003), if I can show that δ̄∗ − δ̂∗ = o∗p(m
−1/2), it implies that:

δ̂∗(β̂∗, τ)− δ0(β0, τ)

= Γ1(δ0, β0, τ)
−1

 m∑
j=1

Γ∗
2j(δ, β0, τ)[β̂

∗
j (τ1)− βj,0(τ1)] +M∗

mn(δ0, β
∗
0 , τ)

+ o∗p

(
m−1/2

)
(45)

Now I show δ̄∗−δ̂∗ = op(m
−1/2). Following Pakes and Pollar (1989), we know thatM∗

mn(δ, β
∗
0)

and L∗(δ) are close at both δ̂∗(β̂∗) which almost minimizes ||M∗
mn(δ, β̂

∗)|| and at δ̄∗ which

minimizes L∗(δ). This means that δ̂∗ has to be close to minimizing L∗(δ):

||L(δ̂∗)|| − o∗p(m
−1/2) ≤||Mmn(δ̂

∗, β̂∗)||

≤||Mmn(δ̄
∗, β̂∗)||+ o∗p(m

−1/2)

≤||L(δ̄∗)||+ o∗p(m
−1/2).

This implies

||L(δ̂∗)|| = ||L(δ̄∗)||+ o∗p(m
−1/2)
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and squaring both sides

||L(δ̂∗)||2 = ||L(δ̄∗)||2 + o∗p(m
−1) (46)

where the cross product is also op(m
−1) because ||L(δ̄∗)|| is of order O∗

p(m
−1/2).

The term ||L(δ)||2 has the simple expansion

||L(δ)||2 = ||L(δ̄∗(β̂∗)||2 + ||Γ1(δ − δ(β̂∗))||2 (47)

around its global minimum. The cross-product term vanished because the residual vector

L(δ̄∗), must be orthogonal to the columns of Γ1. Let δ = δ̄∗, and equations (46) and (47) give

that

||Γ1(δ̂
∗ − δ̄∗)|| = o∗p(m

−1/2).

which implies

||(δ̂∗ − δ̄∗)|| = o∗p(m
−1/2).

as Γ1 is full rank. Hence, equation (45) holds.

Part 2 - Distribution of δ̂∗ − δ̂0

For this part of the proof, I borrow from the proof of Proposition H.1. in Fernández-Val

et al. (2022). First, let

θ∗j (τ) = Γ1(δ0, β0)
−1 1

m

m∑
j=1

(
Γ̄∗
2j(δ, β0, τ)[β̂

∗
j (τ1)− βj,0(τ1)] + m̄∗

j (δ0, β
∗
0 , τ)

)
.

Since the bootstrap algorithm samples entire groups, we can write:

E∗ [θ∗j (τ)] = Γ1(δ0, β0)
−1 1

m

m∑
j=1

Γ̄2j(δ, β0, τ)[β̂j(τ1)− βj,0(τ1)] + Γ1(δ0, β0)
−1Mmn(δ0, β0, τ).

The goal is to show that for a nonrandom vector η > 0,

η′(θ∗j − E∗[θ∗j ])√
η′Γ−1

1 ΩΓ′−1
1 η

d−→ N(0, 1).

Combining the expressions for δ̂∗(β̂∗, τ) and δ̂(β̂∗, τ) yields:

δ̂∗(β̂∗, τ)− δ̂(β̂∗, τ) =
(
θ∗j (τ)− E∗[θ∗j (τ)]

)
+ o∗p(m

−1/2)

Then note that, Var∗(η′θ∗j )
p−→ η′Γ−1

1 ΩΓ′−1
1 η. Which implies that Var∗(η′θ∗j ) = η′Γ−1

1 ΩΓ−1
1

′η+

op(η
′Γ1ΩΓ1η) since Λmin(Ω) > c > 0. Then by the central limit theorem for i.i.d. data:

η′θ∗j√
η′Γ1ΩΓ′

1η
=

η′θ∗j√
Var∗(η′θ∗j )

+ o∗p(1)
d∗−→ N(0, 1).

Hence, δ̂∗(β̂)− δ̂(β̂) has the same asymptotic distribution as δ̂(β̂)− δ0(β0).

■
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C Additional Simulation Results

β γ

τ1 \ τ2 0.25 0.5 0.75 0.25 0.5 0.75

(m, n) = (25,25)
0.25 1.083 1.117 1.046 0.943 1.015 0.920
0.5 1.064 1.124 1.091 0.910 1.026 0.931
0.75 1.057 1.121 1.104 0.924 1.030 0.932

(m, n) = (25,200)
0.25 1.074 1.126 1.093 0.860 0.873 0.845
0.5 1.088 1.137 1.116 0.849 0.855 0.843
0.75 1.079 1.127 1.124 0.849 0.871 0.847

(m, n) = (200,25)
0.25 1.036 1.067 1.025 1.019 1.039 1.006
0.5 1.022 1.057 1.070 1.019 1.031 1.007
0.75 1.027 1.074 1.056 1.007 1.025 0.986

(m, n) = (200,200)
0.25 1.035 1.026 1.039 0.981 1.004 0.965
0.5 1.045 1.035 1.039 0.994 1.002 0.960
0.75 1.056 1.034 1.025 0.996 1.005 0.967

Note:
Results based on 2000 Monte Carlo simulations. The
table provides standard errors relative to standard de-
viation.

Table 5: Standard Errors relative to Standard Deviation

β γ

τ1 \ τ2 0.25 0.5 0.75 0.25 0.5 0.75

(m, n) = (25,25)
0.25 0.960 0.967 0.947 0.909 0.935 0.893
0.5 0.947 0.965 0.958 0.897 0.934 0.898
0.75 0.944 0.965 0.967 0.899 0.942 0.900

(m, n) = (25,200)
0.25 0.946 0.967 0.953 0.831 0.871 0.828
0.5 0.944 0.965 0.955 0.826 0.861 0.829
0.75 0.945 0.962 0.962 0.828 0.865 0.830

(m, n) = (200,25)
0.25 0.918 0.964 0.889 0.933 0.949 0.925
0.5 0.908 0.955 0.926 0.929 0.954 0.934
0.75 0.875 0.960 0.926 0.932 0.945 0.923

(m, n) = (200,200)
0.25 0.943 0.947 0.941 0.924 0.932 0.920
0.5 0.946 0.949 0.950 0.922 0.929 0.921
0.75 0.944 0.946 0.936 0.921 0.932 0.920

Note:
Results based on 2000 Monte Carlo simulations. The
table provides the coverage probability of the 95 confi-
dence invervals.

Table 6: Coverage Probability
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