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Abstract

We explore how the distribution of individual success probabilities in an

asymmetric contest varies with the perceived relationship between efforts

and success chances. Based on the empirically well-supported illusion of

proportionality, we propose a Proportional Play Equilibrium (PPE) as an

alternative behavioral theory to the traditional Nash Equilibrium (NE). Our

PPE predicts a more extreme dispersion of success chances compared to

NE. We test our theory in a laboratory experiment using a standard Tullock

contest and find substantial support for PPE, where PPE aligns more closely

with the empirical data and NE significantly deviates from it.
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1 Introduction

Many competitive situations in economics and politics can aptly be described as

contests, wherein involved parties engage in competition over scarce resources.

These contests manifest in various forms, encompassing scenarios ranging from

agents competing for monopoly franchises and political candidates striving for elec-

toral victory, to researchers vying for funding, athletes and teams battling in sports

tournaments, and firms competing for market share. Central to the nature of these

competitions is strategic decision-making, critically hinging on the anticipation of

opponents’ actions and a nuanced understanding of the probabilities of success in

relation to the efforts and costs involved. The study of contests therefore is essential

for decoding these complex interactions and predicting the related outcomes.

Traditionally, much of the focus in contest theory has been placed on study-

ing the efforts exerted by participants. However, an equally critical aspect, often

overlooked, is the analysis of success probabilities and market shares. In many

real-world scenarios, from corporate strategies to political campaigns, the primary

concern is not just the effort or resources expended but the actual chances of

achieving a desired outcome. For instance, in political elections, while campaign

efforts in terms of funding and rallies are important, what ultimately matters is

the probability of winning – the share of votes a candidate is likely to secure.

Similarly, in the business world, companies are deeply interested in their market

shares as a measure of success, which often dictates future strategy and investment

more than the mere calculation of resources spent. The human resource division

of a company might care about designing an assessment center as a contest that

maximizes the chance that the most able participant wins. In the realm of sports,

athletes and teams strategize not merely based on the effort they put in but also

on their perceived chances of victory. In reaction, designers of sports tournaments

are often concerned with ensuring unpredictability and competitiveness, striving

to create conditions that offer reasonably balanced chances of success among all

contestants.

The prevailing theoretical analysis in contest theory has predominantly focused

on modeling efforts. However, empirical evidence from various contest experiments
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robustly indicates that the effort levels predicted by traditional Nash Equilibrium

(NE) are lower than what is exerted by real players. This discrepancy suggests

that NE may not fully encapsulate the behavioral dynamics in contests.

In response, this paper proposes an alternative behavioral concept – Propor-

tional Play Equilibrium (PPE) – to study the distribution of success probabilities

in complete-information imperfectly discriminatory contests. PPE is rooted in the

empirically well-supported idea that participants often rely on proportional reason-

ing when making decisions. Essentially, in PPE, players base their strategies on

a presumed proportionate relationship between their efforts and success chances,

albeit overlooking the true, highly non-linear nature of this relationship. This

heuristic approach, intuitive yet simplistic, leads to predictions that markedly di-

verge from established theory: PPE inherently predicts larger efforts and a more

pronounced dispersion of success chances compared to NE, thereby holding promise

for better reconciling theoretical predictions with actual participant behavior.

By reconceptualizing the contest as a competition for market shares, our ap-

proach offers a direct method to analyze crucial yet often overlooked aspects in

contest theory: success probabilities and market shares. This novel methodologi-

cal framework, while maintaining equivalence with traditional equilibrium analysis,

significantly streamlines the formal examination of success chance dispersion. It

provides a clear, straightforward means to juxtapose the predictions of PPE with

those of NE and facilitates a broader study of the comparative-statics of success

probabilities. Furthermore, PPE not only introduces a novel behavioral perspective

but also finds alignment with principles exogenously assumed for large aggregative

games, particularly in how players perceive and react to aggregate actions. This

congruence subtly bridges behavioral insights with existing economic theories, en-

riching our understanding of strategic decision-making in contests.

As we delve deeper into the comparative study of PPE and NE, our analysis re-

veals that PPE and NE are continuously related in the degree to which contestants

account for the feedback effect of their choices; they are in fact homotopic to each

other. This tight formal relation is not only of theoretical interest, but provides a

valuable analytical path for systematically studying the relationship between the
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equilibrium success chances that these different equilibrium notions imply.

Our theoretical exploration reveals that proportional play not only leads to

higher equilibrium efforts but also engenders in a more extreme dispersion of suc-

cess chances compared to NE, a pattern that becomes increasingly pronounced in

contests with a smaller number of players. Our theoretical results underscore the

potential of PPE in offering a comprehensive, behaviorally grounded framework

for studying the dynamics of contests, regardless of their scale.

These insights motivate our empirical testing of PPE in a controlled laboratory

setting using a traditional Tullock contest with a small number of players. Our

findings provide clear evidence that PPE aligns more closely with empirical data:

While the distribution of success chances implied by NE significantly deviates from

the empirical distribution, the predictions of PPE demonstrate an almost perfect

alignment, thereby underscoring its effectiveness in capturing the nuanced dynam-

ics of success probabilities. This observation suggests that the behavioral patterns

often associated with large-scale aggregative games may be equally pertinent in

smaller contests.

Regarding efforts, we observe that PPE tends to over-predict effort levels com-

pared to the behavioral data. However, we propose that this deviation can be

reconciled by integrating a success-based notion of risk aversion: When players

exhibit risk aversion with respect to contest success, valuing the uncertainty of

rewards differently from the certainty of costs, a modified equilibrium emerges.

This equilibrium maintains the same dispersion of success chances as predicted by

PPE but implies globally lower efforts, in line with the observed behavior. These

insights highlight the intricate interplay between risk perceptions, effort allocation,

and success probabilities in contests, offering a more complete picture of strategic

decision-making and equilibrium outcome in such settings.

The remainder of this article is structured as follows. Section 2 reviews the

relevant literature. We present the formal model, the notion of Proportional Play

Equilibrium and the equilibrium analysis in Section 3. Section 4 explains our

experimental design and Section 5 contains the corrsponding empirical analysis.

Finally, Section 6 draws a conclusion.
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2 Related Literature

Experimental studies on Tullock contests (Tullock et al., 1980) consistently reveal

a compelling phenomenon: participants tend to expend more effort than predicted

by Nash equilibrium (NE). This trend of overbidding, first documented by (Millner

and Pratt, 1989), has been robustly observed across a diverse array of experimental

designs and conditions. Comprehensive literature reviews by (Sheremeta, 2013,

2015; Dechenaux et al., 2015) detail these findings, underscoring the persistence

of overbidding regardless of variations in experimental setups. Consistent with

the previous contest experiments, we also find significant overbidding in all of our

experimental conditions.

The consistent observation of overbidding invites closer examination of the un-

derlying behavioral causes. Research in behavioral economics has proposed several

explanations to rationalize overbidding, concentrating on the case of symmetric

contests. These include Joy of Winning (Parco et al., 2005; Sheremeta, 2010; Mago

et al., 2016; Boosey et al., 2017; Bruner et al., 2022), unsystematic evaluation errors

as conceptualized by the Quantal Response Equilibrium (QRE) Sheremeta (2011),

possibly combined with level-k depth of reasoning (Lim et al., 2014), asymmetric

probability-weighting aligned with Prospect Theory (Parco et al., 2005; Baharad

and Nitzan, 2008) risk preferences (Hillman and Katz, 1984; Millner and Pratt,

1991), loss and inequality aversion (Eisenkopf and Teyssier, 2013), competitive

maximization of relative payoff (Mago et al., 2016), impulsiveness (Sheremeta,

2018; Bruner et al., 2022), and demographic and religious differences (Price and

Sheremeta, 2015).1

While these behavioral studies mark significant strides in aligning theoretical

models with psychological realities, they remain anchored in the analysis of sym-

metric equilibria due to the commonly presumed homogeneity of all contestants.

This symmetry assumption, while simplifying the theoretical analysis, overlooks

the heterogeneity that typifies real-world contests. Whether in economics, politics,

sports or social settings, contest-like competitions commonly feature contestants

1The paper by Bruner et al. (2022) includes an incisive summary of what these different
behavioral approaches imply in terms of payoff functions or decision behavior.
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who differ in their abilities, resource endowments, risk appetites, information or

strategic acumen. Such heterogeneity inevitably leads to a non-trivial equilibrium

dispersion of success chances – a key aspect not captured by symmetric analy-

sis.2 Our approach aims to bridge this gap by adequately predicting the empirical

dispersion of winning chances among heterogeneous contestants. This focus is

particularly pertinent given that previous studies on heterogeneous contestants,

compactly survey by March and Sahm (2017), have primarily examined the dis-

couragement effect, where asymmetries reduce individual and aggregate efforts.

While these studies offer valuable insights, they leave the dispersion of success

probabilities unexplored, an aspect that March and Sahm (2018) began to address

in relation to risk attitudes and effort costs in two-player Tullock contests. As

articulated in the introduction, our emphasis on success probabilities is driven by

the recognition that understanding their equilibrium dispersion is key to achieving

a realistic comprehension of how contests unfold. Shifting the focus from quantify-

ing efforts to a nuanced analysis of success probabilities is not merely a theoretical

advancement but also carries significant practical implications for policymakers or

contest designers, who often have reasons to prioritize the dispersion of success

chances as the relevant contest outcome. Moreover, acknowledging heterogeneity

in context of the equilibrium success chances not only captures a relevant feature

in most real-world scenarios but also opens avenues for exploring more intricate

strategies and outcomes, thereby enriching our understanding of the equilibrium

forces at play and their impact on success chances or the dispersion of market

shares.3

In contests, players choose their actions to influence their probability of success,

which naturally makes the way how people process probabilistic information a key

concern. Despite the prevalence of cognitive biases in decision-making, existing

contest theories have not fully explored systematic biases in probability perception,

2Symmetric contests fall into a category of games that generally lack asymmetric equilibria
(Hefti, 2017).

3With risk-neutral players, Tullock contests are isomorphic to models where different players
(firms) can invest some form of resource to influence their market shares (Hefti and Teichgräber,
2022). The Nash predictions are analogous in both scenarios, the formalistic difference being that
firms deterministically earn a portion of the total market revenue in the latter model, while this
portion corresponds to a success probability in the conventional Tullock contest.
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a gap that our concept of Proportional Play Equilibrium (PPE) seeks to fill. It is

a well-documented fact that, when processing complex quantitative information,

people pervasively apply proportional reasoning, even in highly non-linear contexts.

The Illusion of Proportionality, a term going back to Freudenthal (1983), refers to a

common misconception where individuals incorrectly assume direct proportionality

in non-linear relationships.4 A simple example from elementary geometry is that

people tend to incorrectly generalize changes in linear dimensions to changes in

area and volume. Early studies established a strong prevalence of the bias in case

of students De Bock et al. (1998) that persists over time (Esteley et al., 2010) and

was found in many different fields (Christodoulou, 2022), in particular also in non-

scientific and routine-based tasks (Duma, 2021). Most crucial for our approach is

that the illusion of proportionality extends to the realm of probabilistic reasoning

(Van Dooren et al., 2003), demonstrating that inappropriate proportional thinking

significantly influences the understanding of probabilities, which is a key element

in strategic decision-making in contests.5

The evident inclination towards proportional reasoning suggests a pertinent and

systematic bias specifically in the type of probabilistic decision that is character-

istic for contests, and its integration in contest theory can offer a new perspective

about how contestants form perceptions about success probabilities in relation to

own actions. We conceptualize the paradigm of proportional thinking in our notion

of PPE. PPE predicts that players estimate success chances to vary in proportions

with their efforts. This systematic tendency to proportionally extrapolate proba-

bilities stands in a stark contrast to the probabilistic distortions implied by models

based on Prospect Theory Parco et al. (2005); Baharad and Nitzan (2008). While

probability-weighting affects how the obtained probabilities are weighted in the

expected utility framework utility, PPE directly affects the perceived likelihood of

success based on effort. This difference also means that PPE can offer novel predic-

tions that other models may not easily replicate. For example, PPE consistently

predicts aggregate over-bidding relative to conventional Nash equilibrium due to

4The terms “Illusion of Proportionality” and “Illusion of Linearity” are used interchangeably.
5Van Dooren et al. (2003) show that the illicit application of proportionality is the heuristic

that best explains the prevalent misconception of probability. Moreover, this bias remains a
persistent trait even after study participants obtained specific training in probability theory.
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its linear perception bias, while over- or under-bidding may occur with probability-

weighting depending on details of the assumed weighting function and the contest

itself (Baharad and Nitzan, 2008).6

Beyond its behavioral underpinning, PPE is notable for its exceptional tractabil-

ity, particularly when analyzing complex equilibrium properties like the dispersion

of success probabilities. This is most pertinent in contexts involving an arbitrary

number of heterogeneous players and non-linear effort costs, where traditional ap-

proaches often favored symmetric models or numerical simulations to overcome

the analytical challenges posed by such complexities. The methodology we em-

ploy in our paper not only masters these complexities but also yields direct and

clear insights into how the equilibrium success probability dispersion under PPE

qualitatively diverges from that predicted by conventional NE. More generally, the

tractability of our approach not only yields a powerful concept for studying equi-

librium properties in static contests as accomplished by this paper, but extends its

applicability to dynamic contests with heterogeneous players (Hefti et al., 2020) or

contests with agent entry (Hefti and Lareida, 2022).

In sum, while significant advancements have been made in aligning contest the-

ory with psychological insights, a conspicuous gap remains in addressing contes-

tants heterogeneity, the dispersion of their success chances and the intricacies of

probabilistic information processing by human players. Our introduction of PPE,

based on the concept of proportional reasoning, seeks to interconnect these aspects.

PPE provides a comprehensive and tractable framework for analyzing the distri-

bution of success with heterogeneous contestants. This approach delivers testable

predictions and promises to illuminate new aspects of strategic behavior, partic-

ularly how contestants strategize in pursuit of specific success chances, enriching

contest theory with theoretical depth and practical implications. To our knowledge,

we also are the first paper to empirically explore how well equilibrium theories, like

NE or PPE, are able to predict the empirical distribution of success probabilities

in contests.

6PPE also differs from models of noisy evaluations like QRE. The latter introduces distortions
as stochastic variations of the chosen actions due to unsystematic subject confusion, while PPE
posits a consistent, predictable manner in which contestants misjudge probabilities based on their
actions.
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3 The Model

Contest theory has been instrumental to encapsulate the strategic interactions

among contestants who can invest resources (“efforts”) to affect their chances of

achieving some objective of a given valuation V > 0. Such situations span a myriad

of applications, from political competition and R&D races to legal disputes and

competitive marketing strategies.7 The payoff function represents the expected net

gain of a contestant j and is commonly of the form:

Πj = pjV − Cj . (1)

Given a finite set of contestants Jn = {1, ..., n}, each pj is a probability such

that
∑

Jn
pj = 1 and Cj denotes the overall costs incurred by j.8 The traditional

interpretation of (1) is that n risk-neutral contestants compete for a prize worth V

that eventually is seized by a single agent, such that pj is the individual probability

of success. Political competition or patent races are standard examples for this. In

the former, the payoff function can be understood as the political power or prestige

gained by the winner (the prize V ) minus campaigning costs. Patent races are

common in high-technology industries where firms compete to innovate and patent

new technologies. The “race” aspect arises because being first to patent can confer

significant competitive advantages. In this case, the prize V quantifies the market

advantage or expected financial gain from securing a patent first, pj reflects a firm’s

likelihood of being the first to innovate and patent, while Cj summarizes the costs

(R&D investments, human capital expenditures,...) associated with the efforts.

The model with payoff (1) is isomorphic to a setting where the probability pj

represents the market share of a global revenue V that contestant j manages to se-

cure. The formalistic difference is that the revenue πjV is deterministically earned,

while πV amounted to the expected revenue in the former as the contest features

the “winner-takes-it-all” property.9 One example is that firms are engaged in some

7See Konrad (2009) for a textbook treatment.
8The model can be reformulated for a continuum of contestants Jn = [0, n], in which case

p : Jn → R+, j 7→ pj , is a density with support Jn (Hefti and Teichgräber, 2022).
9Surprisingly many models of agent competition can be subsumed within such a generalized

contest framework, including models of perfect or monopolistic price competition (Hefti and Te-
ichgräber, 2022), showing that the contest structure may be far more ubiquitous than traditionally
assumed.
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form of combative advertising. The effectiveness of these advertising campaigns is

often measured by the increase in market share or sales revenue they generate. In

this context, V represents the total potential revenue in the market that firms are

competing for and Cj correspond to the marketing expenses incurred by each firm.

The market share pj each firm achieves then is a direct result of how effective its

advertising strategy is relative to its competitors.

In the digital economy, online platforms (such as social media networks, e-

commerce marketplaces, or streaming services) compete for users or customers.

The value of these platforms typically increases as more users join, a phenomenon

known as network effects. Unlike traditional winner-takes-all contests, these mar-

kets often sustain multiple successful platforms, each with a significant share of the

market. Success in this context is defined by market share, aligning with the pj

interpretation as a share of common gross revenue V . Each platform’s goal is to

maximize its portion of the total market value. In this scenario, V represents the

total potential value generated by the market – for instance, the total advertising

revenue in social media or total sales in e-commerce marketplaces, and Cj pertains

to the costs associated with investments in technology, user experience, marketing,

and content aimed at attracting and retaining users. The market share pj for each

platform is a key metric for its relative success in attracting users compared to

its competitors. Another example again stems from political economics. In many

democratic systems, political parties or candidates compete in elections to win seats

in a legislative body, such as a parliament or congress. The total number of seats

available (V ) is fixed, and the objective of each competitor is to secure as many of

these seats as possible. The costs Cj captures the resources expended by parties

or candidates in their election campaigns, including financial spending, manpower,

and strategic planning. The market share pj for each party or candidate is then

the proportion of seats they win in the legislature.

3.1 Determining Contest Success

We suppose that the different contestants can invest resources to influence their

chance of success pj. The resources invested by j ∈ Jn generate a certain impact

9



ej ∈ R+. The profile of impacts e = (e1, ..., en) determines the distribution of

success chances p = (p1, ..., pn) ∈ ∆n−1, where ∆n−1 is the (n − 1)-dimensional

simplex. In what follows we assume that each pj is determined by the own impact

ej relative to total impact
∑

i ei, i.e.,

pj = P (ej ,
∑
i

ei). (2)

The function P : R+ × R+ → [0, 1] in (2) is called a Contest Success Function

(CSF). We discipline the CSF by assuming that it is zero homogeneous in (e,Σ),

assuring scale-invariance of the impacts for shaping success probabilities. A highly

convenient implication of zero homogeneity is that it uniquely pins down the func-

tional form of the CSF: Given that P is differentiable and integrates to one for any

non-zero impact profile (e1, ..., en) ∈ R++ with Σ =
∑

i ei > 0, the function P is

determined as

pj = P (ej ,
∑
i

ei) =
ej∑
i ei

. (3)

if and only if P is zero homogeneous in (ej,Σ).
10

A key property of (3) is that it satisfies the principle of replicability. Two con-

testants i, j obtain exactly the same success chances, pi = pj, if and only if ei = ej.

Likewise, p1 = ... = pn = 1/n if and only if all contestants obtain the same impact

e ≥ 0.11 In essence, this property states that a Buridanic outcome of competition,

where all contestants split the pie in equal proportions, is always a theoretical pos-

sibility and occurs if and only if all impacts are identical.12 This property can be

illustrated, e.g., in case of a two-candidate election: If one candidate manages to

fully replicate the impact of the other, this equates success chances as voters are

completely undecided between them.

While we regard the property of replicability as a highly natural theoretical

benchmark to impose on the nature of competition, this property does not imply

that it is similarly feasible for both candidates to obtain the same impact. For

10See Hefti and Lareida (2022).
11For the case where e1 = ...en = 0 we extend (3) by defining P (0, 0) = 1/n.
12Buridan’s competition refers to a philosophical paradox known as “Buridan’s Donkey”, at-

tributed to the 14th-century philosopher Jean Buridan. The paradox illustrates a situation where
a donkey, placed exactly midway between two identical bales of hay, dies of starvation because it
is perfectly undecided between the two bales.
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example, one candidate could have access to more funding, allowing for more effi-

cient or voluminous campaigning, or voters may be differentially receptive towards

the two candidates. We capture this key notion of possible agent heterogeneity by

distinguishing between impact and investment, where impact ej is a consequence

of investment expenditures worth fj ≥ 0 and determined by a non-negative, (pro-

duction) function

ej = hj(fj). (4)

Thus, the extent to which a contestant j may replicate or exceed a given impact

of its competitors is governed by her hj-function, and the functions hj, j ∈ Jn

generally accommodate the ex-ante heterogeneity of the contestants in producing

a desired impact. To illustrate, if fj amounts to campaigning expenditures, a

political candidate j would need to expend comparably more to possibly replicate

competitor i’s impact if voters ex-ante are more inclined towards candidate i, as

captured by hj(f) < hi(f).
13

Replacing impacts with investment, the expected contest payoff (1) is Πj =

hj(fj)∑
i hi(fi)

V − fj. It is analytically more convenient, however, to restate Πj in terms

of impacts rather than investments. This can always be accomplished if each hj

is strictly increasing, which we assume. Then, hj(f) has a well-defined inverse

fj = h−1
j (ej) ≡ Cj(ej), where we interpret Cj(ej) as the investment costs of j

associated with achieving impact ej. Restating the payoff in terms of impacts we

obtain

Πj =
ej∑
i ei

V − Cj(ej), (5)

where the cost functions Cj(ej) encode all information about the ex-ante agent

heterogeneity.

Leading Example: Power Function Costs. The case hj(f) = θjf
µ has re-

ceived most attention in the applied literature.14 The corresponding impact costs

13For example, if hj(fj) = θfj and hi(fi) = 2θfi, then j needs to incur twice the expenditure
of i to replicate impact ei. Whether replication is among the feasible options depends on the
hj-function. For instance, one could assume that hj(fj) is bounded from above, such that a
certain impact is not achievable even at infinite investment. Similarly, one could include a budget
constraint fj ∈ {0 ≤ fj ≤ kj}.

14The symmetric ratio form fµ
j /

∑
i f

µ
i was first employed by Tullock et al. (1980) in the

context of rent seeking, and axiomatic and probabilistic foundations have been identified by the
literature for this particular form; see Jia et al. (2013) for an overview.
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then also adopt the power function property: Cj(ej) = cje
η
j , with η = 1

µ
and

cj = θ−1
j . The elasticity parameter µ quantifies how sensitive the success prob-

abilities are to relative investments fj/fi or, equivalently, how sensitively invest-

ment expenditures respond to changes in impacts.15 It is fairly straightforward to

show that the ratio hj(fj)/
∑

i hi(fi) is zero homogeneous in the investment pro-

file (f1, ..., fn) if and only if hj has the power function property. Thus, the power

function form of hj implies that the CSF is zero homogeneous also in investments,

not only in impacts.

Beyond the foundation based on transformed investments, the case of power

function costs bears further content. Suppose that Cj(e) is a non-negative twice

continuously differentiable function. The cost function C(e) allows for a power

function representation C(e) = ceη if and only if it is homogeneous of some degree

k ∈ R. Homogeneity encapsulates an intrinsic invariance to scale in relation to

the sensitivity of (marginal) costs. In particular, it implies that the responses of

(marginal) costs to proportional changes in e are proportionally consistent across

all levels of e > 0. Thus, despite that costs can be subject to increasing returns

to scale (which happens for η > 1) there are no scale effects in the sensitivity

of (marginal) costs to proportional increases in e. Consequently, contestants, re-

gardless of their impact level e, are equally susceptible to proportional changes in

e. This property makes power function costs a relevant benchmark for analyzing

contest equilibria, as it reflects a commonality in cost responsiveness irrespective

of the scale of contestant involvement.

3.2 Proportional Play

Each contestant can influence her payoff Πj (5) by choosing her impact ej ≥ 0.

The set of players Jn, the joint strategy space Rn
+ and payoff functions {Πi}i∈Jn in

(5) define a complete information game. A Nash Equilibrium (NE) then is a joint

impact profile e∗ = (e∗1, ..., e
∗
n), where each e∗j maximizes Πj given the opponent

15If µ → 0, then relative differences become irrelevant or, equivalently, impact costs become
perfectly elastic. If µ → ∞, then the contest approximates a perfectly discriminatory all-pay
auction or, equivalently, impact costs become perfectly inelastic. Generally, smaller values of µ
(larger values of η) embody contests, where it becomes more difficult for contestants to influence
their success probabilities.
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impact profile e∗−j. NE imposes that each contestant j can correctly anticipate

the equilibrium impact profile of her opponents e∗−j and can also identify her best

response e∗j to these impacts.

Nash play requires that each contestant correctly accounts for how own impact

ej affects the probability of success pj. The main behavioral hypothesis of this

paper, based on the Illusion of Proportionality outlined in Section 2, is that actual

human players evaluate their influence on their success probability in a proportional

way. That is, they misconceptually perceive their success probability p̃j to scale

with their impact according to p̃j(λej) = λp̃j(ej), λ > 0. This implies that their

perceived success probability must be of the form p̃j(ej) = ej/Σ, where Σ > 0 is a

constant.16

3.2.1 Main Conjectures

In this paper we are primarily interested in the distribution p = (p1, ..., pn) ∈ ∆n−1

of the equilibrium success chances. Drawing on the distinctive characteristics of

proportional thinking, we put forward two main conjectures to guide our analysis.

Conjecture 1: Overinvestment with Proportional Play. Proportionally

thinking contestants tend to overestimate their impact on contest success compared

to Nash behavior. Specifically, such contestants overlook the diminishing returns of

their marginal success chances, making them prone to exert more effort than what

Nash behavior would dictate. Consequently, we conjecture that proportional play

encourages contestants to exert more effort on average compared to Nash play.

Conjecture 2: Proportional Play unbalances the Success Distribution

Our second conjecture addresses the uneven impact of the probabilistic misjudg-

ment induced by proportional thinking across contestants with varying cost struc-

tures. We anticipate that this effect will be most significant for low-cost players, as

these tend to exert most effort and achieve the highest success chances; high-cost

16Proportional thinking suggests that the estimated probability p̃j(ej) might extrapolate be-
yond 1. This aligns with empirical findings from Support Theory, where human subjects’ per-
ceived probabilities can extend to more than one (Rottenstreich and Tversky, 1997). However, it
is essential to remark that this is a pure extrapolation property in our case only; in equilibrium,
chosen probabilities will invariably fall within the 0 to 1 range.
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players, contributing minimally, are less affected. Given that only Nash players

adjust their behavior to the diminishing marginal success chance, we conjecture

that Nash behavior results in a more balanced success distribution compared to

proportional play.

3.2.2 Proportional Play Equilibrium

In order to systematically assess the above conjectures about the influence of pro-

portional play, we need to define an equilibrium notion with proportionally thinking

players. Our equilibrium definition of a Proportional Play Equilibrium (PPE) seeks

to reconcile the behavioral notion that individual contestants aim at maximizing

their expected profits, while being subjected to the Illusion of Proportionality, with

the consistency requirement that people hold consistent beliefs about the average

choice of impact ē =
∑

i ei/n.

Definition 1 (PPE) A PPE is a an impact profile e = (e∗1, ..., e
∗
n) such that each

e∗j maximizes Πj =
ej
nē∗

V − Cj(ej) for given average effort ē∗ =
∑

i e
∗
i /n.

Note that our consistency assumption about beliefs assures that each contestant

holds a correct anticipation of her success probability p∗j in equilibrium. Beyond

assuring that the essential bias, relative to NE, is due to the Illusion of Propor-

tionality,17 requiring that players merely hold correct estimates about average play

may align more closely with how people process information. Human cognition

is more attuned to recognizing average patterns, trends or “market sentiments”,

rather than fully processing complex matrices of individual strategies and pay-

offs. For example, psychological research has documented evidence in favor of a

cognitive process, called “perceptual averaging” (Albrecht and Scholl, 2010), ac-

cording to which complex information is mentally summarized by obtaining an

average representation of a set of objects or features. For example, when looking

at a flock of birds, instead of noting the size and position of each bird, the brain

computes an average size and direction of motion.18 In behavioral finance, it is

17The difference to the fully rational probability perception imputed by NE is that propor-
tionally thinking contestants do not account for the feedback effect their choice of impact causes
on pj via

∑
i ei.

18Perceptual averaging is part of what researchers have called “Statistical Summary Repre-
sentations”; see Haberman and Whitney (2011) for an overview. This notion refers to the brain’s
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a well-acknowledged notion that individual traders often respond to a common

market sentiment, rather than to individual actions or motivations of other market

participants.19

Beyond being more reflective of the cognitive processes involved in real-world

decision-making processes than NE, as evidenced by the human tendency to col-

lapse complex information into typical or representative quantities, PPE also offers

a simpler representation of important equilibrium objects. Due to the Illusion of

Proportionality, the marginal success probability remains constant irrespective of

the own impact ej, and diminishes monotonically with an increase in average effort.

This intuitive property captures that influencing one’s success probability becomes

increasingly challenging as the collective efforts of all contestants escalate. As indi-

vidual players essentially best-respond to the average behavior, it follows that best

replies are monotonically decreasing in average impact, a stark contrast to the

complex and non-monotonic nature of best reply functions under Nash behavior.

Furthermore, the simple, monotonic structure of best replies in PPE has positive

implications for the strategic stability of the equilibrium.20

3.3 Equilibrium Analysis

In this study we examine the distribution of the success probabilities (or market

shares) p ∈ ∆n−1 across the n contestants in Jn. Note that p can be represented by

a probability density function p : Jn → [0, 1], assigning each contestant j a success

probability pj = p(j) = πj(p), where πj(p) is the j-th component of p. The main

challenge in analyzing both PPE and NE arises from the model’s lack of closed-form

solutions, complicating the comparison of equilibrium success distributions without

assuming specific numeric details about the number of players or their costs. To

general ability to abstract statistical information from groups of similar objects, often without
explicit awareness, allowing for a quick understanding of the aggregate or average properties of
the group.

19This sentiment represents the average mood or the typical market behavior prevailing in
the market. Market sentiments generally align with the concept of the Representative Heuristic
(Kahneman and Tversky, 1974). This heuristic suggests that in complex situations, people may
use simple proxies to encapsulate the ’typical’ or average scenario they face.

20As established in Hefti (2016), response behavior targeted at averages, as opposed to indi-
vidual strategies, exhibits stronger stability properties with respect to standard dynamics based
on best-reply functions or gradients associated with optimality conditions.
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address most these analytical difficulties, we explore an equivalent representation

of the model, where contestants are engaged in a competition for market shares.

This approach reveals a single framework that includes PPE and NE as boundary

cases, enabling a unified examination of their equilibrium success distributions.

For our equilibrium analysis we assume in what follows that Cj(e) = cjC(e)

with cj > 0 for each j ∈ J , where C(e) is C2-function that satisfies the following

standard assumptions. 1) Zero (marginal) cost at zero impact: C(0) = C ′(0) =

0. This assumption embodies the standard economic notion that inactivity (e =

0) should not lead to any choice-relevant costs. 2) Positive, increasing marginal

costs: C ′(e), C ′′(e) > 0 for all e > 0. Conditions 1) and 2) assure that the first-

order conditions are sufficient for characterizing optimal behavior. More generally,

they are not only fundamental in ensuring mathematical tractability but also in

guaranteeing existence of a unique interior equilibrium (NE and PPE), which is

pivotal for comparative statics analysis.

3.3.1 Representation as Market Share Game

Consider the CSF pj =
ej

Σj+αej
, where the quantity Σj > 0 is exogenous to contes-

tant j. The corresponding payoff function then is

Πj(ej ; Σj) =
ej

Σj + αej
V − cjC(ej), (6)

We interpret the parameter α ∈ [0, 1] as a measure of the extent to which contes-

tants recognize the feedback effect of their own efforts relative to a presumed joint

impact Σj of the rivals. An equilibrium is defined as a situation, where each con-

testant chooses ej to maximize (6), correctly anticipating the average equilibrium

impact ē∗.

Definition 2 An equilibrium is an impact profile (e∗1, ..., e
∗
n) ∈ Rn

+ such that each

e∗j maximizes (6) for given Σ∗
j , where Σ∗

j = nē∗ − αe∗j and ē∗ =
∑

i e
∗
i /n.

It is straightforward to verify that this equilibrium notion encapsulates PPE and

NE as special cases at α = 0 and α = 1, respectively.21

21Formulation (6) illustrates a nuanced view on how contestants perceive their impact versus
the combined impacts of their rivals. At the one extreme, they perfectly distinguish between total
impact and others’ aggregate contributions under NE, while this distinction is entirely obscured
under PPE, indicating a stark contrast in strategic awareness between the two equilibrium notions.
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For studying the equilibrium distribution of success chances (p∗1, ..., p
∗
n) asso-

ciated with an equilibrium impact profile, formulation (6) is far from practical.

Therefore, we introduce an equivalent representation of the game, where contes-

tants directly choose their success probabilities, rather than indirectly via their

choices of impacts. The essence of this approach is to note that, for any given

Σj > 0, the CSF pj =
ej

Σj+αej
implies a bijective relation between pj and ej, where

ej =
pj

1−αpj
Σj. Writing the payoff as a function of pj then yields

Πj(pj ; Σj) = pjV − cjC

(
pj

1− αpj
Σj

)
(7)

We now consider the game, referred to as a Market Share Game by Hefti and

Teichgräber (2022), where each player j ∈ Jn chooses an aspired success chance

pj ∈ [0, 1
α
) to maximize payoff (7), treating Σj > 0 as an exogenous parameter.

An equilibrium of the Market Share Game is as a success distribution (p1, ..., pn) ∈

∆n−1 and an average impact ē such that each pj maximizes (7) taking the quantity

Σj = (1− αpj)nē as given.

Definition 3 An equilibrium in the Market Share Game is a density p̂α : Jn →

[0, 1] and an average impact ēα such that each pj ≡ p̂α(j) maximizes (7) for given

Σj ∈ R+, and the number Σj is determined as Σj = (1− αpj)nē.

In Appendix A.1, we rigorously establish three pivotal results. First, we show that

the equilibrium set of the Market Share Game aligns with that of the original con-

test model. A similar equivalence has been demonstrated by Hefti and Teichgräber

(2022) in context of other equilibrium models, and essentially reflects that there

is a one-to-one relation between market shares pj and the “action” variable ej.

The central implication is that we can rely entirely on the equilibrium notion in

Definition 3 to study the equilibrium success distribution in PPE and NE of the

contest model. Second, we prove that the Market Share Game invariably leads to

a unique equilibrium (p̂α, ēα) under the assumptions we imposed on the cost func-

tion. Moreover, this equilibrium satisfies ēα > 0 and p̂α(j) > 0 for every j ∈ Jn.

These findings are crucial for our comparative analysis of the success distributions

induced by NE and PPE.22 Third, we show that that the equilibrium success dis-

22Equilibrium existence and uniqueness is fundamentally ensured by the strictly monotonic
nature of players’ optimal responses to the assumed quantity Σj .
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tribution of NE and PPE can be continuously deformed into each other – they are

homotopic form a mathematical viewpoint – despite the distinct behaviors under-

lying PPE and NE. In terms of Definition 3, the equilibrium success densities of

PPE and NE, respectively, are the two boundary cases α ∈ {0, 1}, where pPPE = p̂0

and pNE = p̂1. We extensively leverage this tight analytical relationship between

PPE and NE in the next section to derive the majority of our formal results.

It is easily checked that Πj(pj; Σj) in (7) is strictly concave in pj ∈ [0, 1
α
) for any

given Σj > 0, such that the FOC

V (1− αpj) = cjC
′(pjΣ)Σ, Σ ≡ nē (8)

characterizes the optimal choice of the aspired market share pj > 0 for every

contestant j, given the requirement that Σj = (1− αpj)Σ.

Let p(α) ∈ ∆n−1, where πj(p(α)) = p̂α(j), denote the vector of equilibrium

success probabilities. In the equilibrium (p̂α, ēα), the quantity Σα = nēα > 0 and

the vector p(α) > 0 must jointly solve the system of n equations as specified by

(8). The major advantage of working with the above Market Share representation

is that powerful analytical tools, developed in Hefti and Teichgräber (2022), can be

used to study the comparative statics of the distribution of success chances. This

approach only relies on straightforward properties of the representative equilibrium

equation (8), circumventing the need to analyze the entire system of n equations.

Crucially, we can leverage this comparative static analysis across the line α ∈ [0, 1]

to uncover the relation between pPPE and pNE.

3.3.2 Comparative Analysis

In the following we use the Market Share Game with general payoff (7) to assess

our main two intuitive conjectures about how the PPE (pPPE, ēPPE) relates to the

NE (pNE, ēNE).

Comparing Average Impacts Our first finding confirms that PPE results in

a higher average impact compared to NE.

Proposition 1 In any contest, it holds that ēPPE > ēNE.
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We prove this claim by showing that the aggregate equilibrium impact Σ(α) is

strictly decreasing. The underlying intuition is that contestants are inclined to

increase their investments the more they overlook the reduced sensitivity of the

CSF to the own impact brought about by the feedback effect.

Comparing Success Distributions To address our second conjecture, we need

to compare the entire success distributions pPPE and pNE, which is a challenging

task in view of the complexity of the equilibrium objects. As first step, we identify

key similarities of PPE and NE. These commonalities highlight the core elements

that define contest outcome, independent of the specific equilibrium concept. Fur-

thermore, they also set the stage for discerning the differences between the success

distributions of PPE and NE.

In our analysis, we assume, without loss of generality, that contestants are ex-

ante sorted in ascending order of their cost functions, meaning c1 ≤ c2 ≤ ... ≤ cn.

Our first result shows that PPE and NE have identical success distributions if and

only if all contestants have identical cost functions, where ci = cj = c ∀i, j ∈ Jn.

Proposition 2 For any α ∈ [0, 1], p̂α(i) = p̂α(j) iff ci = cj. Thus pPPE = pNE iff

all contestants have identical cost functions. Conversely, pPPE(j) and pNE(j) are

non-constant, decreasing densities iff at least two contestants have different cost

functions.

If all contestants have identical costs, a symmetric game results, implying that the

unique equilibrium must be symmetric, i.e., given by the uniform density p(j) =

1/n, j ∈ Jn.
23 By contrast, the equilibrium success distribution cannot be uniform

whenever there is agent heterogeneity, indicacted by c1 < cn. The non-constant,

decreasing nature of the equilibrium densities show that PPE and NE both satisfy

a common “No-Leap-Frogging” property: Contestants with lower cost coefficients

invariably secure higher equilibrium success probabilities. This intuitive result

essentially reflects individual rationality. A low-cost contestant has the potential

to match the success probability of a higher-cost rival at lower expenses, yet pursues

a greater success chance as a consequence of optimal marginal reasoning.

23Symmetric games with a differentiable payoff function commonly possess symmetric equilib-
ria (Hefti, 2017).
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To deepen our understanding how the equilibrium success distributions of PPE

and NE compare, we focus on scenarios where C(e) = eη, η > 1, is given by an

arbitrary power function. As elucidated earlier, this specification entails the key

property of a proportionally sensitive cost function, and it encapsulates the “Tul-

lock” contest framework, a benchmark in the field due to its extensive application

across theoretical and empirical studies. We consider the case of an arbitrary cost

function in the Appendix.

The formal challenges remain significant with the power function specification as

the equilibrium equations (8) do not admit closed form solutions for α > 0.Despite

this challenge, our main result below shows that with heterogeneous contestants,

pPPE must be a monotonic clockwise rotation of pNE. By a monotonic clockwise

Figure 1: Monotonic Rotations

1

1

𝑝𝑝𝑗𝑗

2 3 4 𝑗𝑗

Notes. The black distribution is a clockwise rotation of the gray distribution. The rotation is monotonic as
indicated by the blue arrows, which increase in length towards the extremes.

rotation, we mean that
pPPE(i)

pPPE(j)
>

pNE(i)

pNE(j)
(9)

for any two contestants i, j with ci < cj.

Theorem 1 Let c1 < cn. Then pPPE is a monotonic clockwise rotation of pNE.

Therefore, PPE entails a greater disparity than NE according to any Lorenz-consistent

inequality measure.

The principle of a clockwise rotation is illustrated in Figure 1, where PPE’s rotation

of NE signifies that contestants towards either end of the advantage spectrum –
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most advantaged or most disadvantaged – experience an amplification of their suc-

cess probabilities in PPE relative to NE. A monotonic rotation is an even stronger

property, in that the absolute gap between any two contestants i, j that obtain

different success probabilities in a NE must widen in a PPE, indicated by the

lengthening arrows in Figure 1. That is, even if the success chances of, say, the

second strongest contestant increases in a PPE relative to NE, then the success

chances of the strongest contestant must increase by even more.

Theorem 1 rosutly supports our second conjecture, demonstrating that the in-

herent bias of proportional thinking unbalances contestants’ success probabilities

relative to the Nash benchmark. More generally, the fact that PPE is a clock-

wise rotation of NE implies that the inequality of the success chances embedded

in pPPE must strictly exceed the inequality entailed in pNE according to higher in-

equality measure, e.g., of the (S-)Gini coefficients, Theil indexes or the Coefficient

of Variations. In the Appendix, we show that this key property is not specific to

Power Functions, but necessarily holds for all cost functions C(·) that feature a

non-increasing elasticity of marginal costs.

Unified Comparative Statics The intrinsic connection between PPE and NE

exemplified by our previous results suggests a natural expectation for these equi-

libria to exhibit similar comparative statics behaviors. Specifically, with Power

Function Costs C(e) = eη, the contest model (7) has two key parameters: the

value of the prize V and η, capturing how sensitive costs (or equivalently the CSF)

respond to changes in individual behavior. The ensuing analysis confirms that

the qualitative impacts of these central parameters on contest outcomes are not

sensitive to the equilibrium concept.

Proposition 3 For every α ∈ [0, 1], the equilibrium density p̂α is invariant to

V > 0 and ∂VΣ(α) > 0. Further, an increase in contest sensitivity dη < 0 induces

a clockwise rotation of p̂α.

The first result implies that contest designers cannot levearge the prize incentive

as a means to re-balance the success distribution, independent of the equilibrium

notion. The sole effect of increasing V is to escalate each contestant’s impact (and
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hence total impact) while relative impacts ei/ej remain constant. The underlying

rationale is that an increase in V affects all contestants by the same proportion,

which is counterbalanced by the proportional sensitivity inherent in Power Function

costs.24

Our second result highlights the CSF’s critical role in shaping the competitive

outcome. By “inducing a clockwise rotation”, we mean the existence of a δ > 0

such that p̂α(i; η
′) is a clockwise rotation of p̂α(i; η) for any η′ ∈ (η − δ, η). Our

result thus indicates that, regardless of the equilibrium concept, contestants with

cost advantages are increasingly capable of converting these advantages into higher

success probabilities as the CSF becomes more sensitive to their efforts.

4 Experimental Design and Procedures

We test our predictions for a standard Tullock contest (Tullock et al., 1980) as

follows. Subjects compete for a prize in a contest by choosing their effort level x,

which can be any number between 0 and 100. Within a contest, only one subject

could win the prize. The winning probability of each subject is determined by

the ratio of his/her effort relative to the total effort made by all subjects in that

contest. Regardless of their winning outcome, each subject is presented with an

effort cost associated with a quadratic function. Specifically, for a certain level of

effort x, the associated cost is αx2, where α is a randomly assigned cost coefficient.

We implement contests with group sizes N=2 and N=3. In each contest, subjects

receive different cost coefficients with equal probabilities. For a contest with group

size N=2, one subject receives a cost coefficient of 1, while the other receives a

cost coefficient of 3. For contests with group size N=3, we adopt two different sets

of cost coefficients, i.e., (1, 3, 6) and (1, 2, 3). The design allows us to not only

test the theoretical predictions in different group sizes but also to compare them

in different relative cost-competitive environments.

To ensure no negative payment for experimental participation, each subject

is endowed with 60,000 experimental points at the beginning of a contest, and

the prize size is set at 30,000 experimental points. The group compositions and

24We expand on this result in Appendix A.1.
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theoretical predictions are shown in Table 1.

Table 1: Contest conditions and equilibrium predictions

Gorup size

N=2 N=3 N=3

Cost coefficient (1, 3) (1, 3, 6) (1 ,2, 3)
No. of groups /round 15 10 5
No. of round 20 20 18

Equilibrium predictions

Winning probability
NE (0.63, 0.37) (0.55, 0.29, 0.17) (0.47, 0.31, 0.23)
PPE (0.75, 0.25) (0.67, 0.22, 0.11) (0.55, 0.27, 0.18)
Aggregate effort
NE 93.1 111.6 130.6
PPE 141 150 165.8
Individual effort
NE (59, 34.06) (60.97, 31.97, 18.66) (61.11, 39.89, 29.61)
PPE (106.06, 35.56) (100, 33.3, 16.67) (90.45, 45.23, 30.15)

Notes. Parameters of cost coefficient, equilibrium predictions of winning probability,
and individual effort in a group are shown in tuples in parentheses.

In every session, subjects played the contest in 20 or 18 rounds. In each round,

subjects were randomly matched into a new group, therefore, the composition of

groups and the cost coefficients may change across rounds. Subjects were informed

of the number of competitors, their own cost coefficient, the structure of the cost

coefficients of their competitors, and how the winner is determined randomly ac-

cording to their winning probabilities before selecting their effort level. At the end

of each round, they were also informed of the total effort of that contest, their own

winning probability, winning outcome, cost expenditure of their selected effort, and

their earnings (in points) in that contest round.

The experiment was conducted at the Wuhan University Center for Behavior

and Economic Research Laboratory. At the beginning of each session, the instruc-

tions were distributed to subjects (available upon request) and were read aloud by

an experimenter. Subjects first completed a set of comprehension questions online

and then started the actual experiment when all subjects correctly answered the

questions. The experiment was programmed and conducted in oTree (Chen et al.,

2016). A total of 75 subjects participated in three sessions. No subjects partic-

ipated in more than one session. Each subject’s final payoff was one randomly
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selected round-payoff in addition to 15 CNY show-up fee. The experimental earn-

ings were converted to Chinese Yuan at the rate of 1,800 points to 1 CNY. On

average, subjects earned 65 CNY each, and each session lasted about one hour.

5 Empirical Results

5.1 Main Findings

We begin by analyzing the winning probabilities under each contest situation and

examining which theoretical prediction is more accurate in capturing the actual

observation of winning probabilities. According to Table 1, both the NE and

PPE predict that the low-cost subjects should have the highest winning probabil-

ity, while the high-cost subjects have the lowest winning probability in a contest.

Nevertheless, the PPE predicts a more extreme dispersion of individual winning

probabilities, where the low-cost (high-cost) subjects across all the contest condi-

tions are predicted to have consistently higher (lower) winning probabilities than

the corresponding NE predictions.

Figure 2 displays the average winning probability for each type of subject, where

observations for the same type of cost coefficient in different rounds are pooled, and

95% confidence intervals are based on standard errors clustered at the individual

level. For comparison, we also plot the NE and the PPE predictions for each

subject type. While our theories are static, learning experience may influence

subjects’ behaviour. Therefore, we also explore the dynamic process of winning

probability per round for each subject type in Figure 3.

Winning probabilities. Figure 2 shows point estimates of the average winning

probability across subject types and contest situations. Comparing the empirical

winning probabilities to the equilibrium predictions, we observe a striking differ-

ence in predictability between the NE and PPE. Among all the low-cost types (in

red), the PPE predictions are always closer to the actual means and reside in the

corresponding confidence intervals. In contrast, the NE predictions are never close

to the actual means or their confidence intervals. The plots for all the high-cost

types (in green with N=3, in blue with N=2) show similar differences between the
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Figure 2: Average Winning Probabilities by Contest Conditions

(a) N=3, (1, 3, 6) (b) N=3, (1, 2, 3)

(c) N=2, (1, 3)

Notes. Each figure plots the means of winning probabilities for each type of cost coefficient over the whole
session, while standard errors are clustered at the individual level. The vertical solid lines indicate the PPE
predictions, and the vertical dashed lines indicate the NE predictions.
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Figure 3: Average Winning Probabilities Over Rounds

(a) N=3, (1, 3, 6) (b) N=3, (1, 2, 3)

(c) N=2, (1, 3)

Notes. Each figure plots the average winning probabilities per round for each type of cost coefficient. The
horizontal solid lines indicate the PPE predictions, and the horizontal dashed lines indicate the NE predictions.
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PPE and the NE predictions. For the middle-cost types (blue in Figure 2a, 2b),

although the actual means seem to be closer to the PPE predictions, both the PPE

and NE predictions are within the confidence intervals. The effectiveness of PPE

prediction is also persistently shown in Figure 3. Although the winning probabil-

ities of the middle-cost types in group size N=3 fluctuate above and below both

the NE and PPE predictions (in blue in Figure 3a, 3b), the average winning prob-

ability of the high-cost and low-cost types remain closer to the PPE predictions in

all rounds.

To measure the accuracy of the theoretical predictions, we first regress the in-

dividual winning probability on cost dummies while clustering standard errors at

the individual level. We then test the equality of estimated coefficients with their

corresponding NE and PPE predictions. In the upper panel of Table 2, the co-

efficient estimate of each cost variable reports the average winning probability of

each cost type under each contest situation. The result is consistent with the pre-

diction that low-cost subjects, for example, cost coefficient=1 in all contests, have

the highest winning probability, and vice versa. The F -tests for the equality of

estimated coefficients and the theoretical predictions reported at the lower panel

of Table 2 show that, on average, the observed winning probability of both the

high and low-cost types are significantly different from the NE predictions in all

contest situations, while no significant difference is observed for the comparisons

with the PPE predictions.

5.2 Average Efforts

Figure 4 shows the average aggregate level of impact per round for the different

settings we studied. The analysis of the figure indicates that contestant efforts

frequently surpass the Nash equilibrium predictions, aligning with findings from

previous research. However, it is also notable that these efforts consistently fall

short of the levels predicted by PPE. In light of the preceding section, we deduce

that while PPE, under our assumption of risk neutrality, accurately predicts the

relative efforts among contestants, it tends to overestimate the absolute levels of

effort.
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Table 2: Winning probability of asymmetric contests

N=3, (1, 3, 6) N=3, (1, 2, 3) N=2, (1, 3)
(1) (2) (3)

Cost coeff=1 0.67 0.58 0.74
(0.033) (0.024) (0.017)

Cost coeff=2 0.27
(0.031)

Cost coeff=3 0.24 0.157 0.26
(0.031) (0.019) (0.031)

Cost coeff=6 0.09
(0.018)

R2 0.798 0.866 0.826
Observ. 600 270 600

Winning probability = NE?
Cost coeff=1 F=12.46*** F=20.52*** F=39.05***
Cost coeff=2 F=1.89
Cost coeff=3 F=2.05 F=14.67*** F=11.58***
Cost coeff=6 F=21.63***

Winning probability = PPE?
Cost coeff=1 F=0.00 F=1.27 F=0.75
Cost coeff=2 F=0.01
Cost coeff=3 F=0.63 F=1.47 F=0.22
Cost coeff=6 F=1.67

Notes. OLS regressions of individual winning probability on all three (two) different
cost coefficient variables for asymmetric contests with group size N=3 (N=2). Each
cell reports the mean of the winning probability. Standard errors in parentheses are
clustered at the individual level. The lower part of the table shows the F-tests of equal-
ity of coefficients and the corresponding NE and PPE predictions. We have repeated
all the regression analyses by including either a round variable or round fixed effects
and found similar results.
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Figure 4: Average Aggregate Effort Over Rounds

(a) N=3, (1, 3, 6) (b) N=3, (1, 2, 3)

(c) N=2, (1, 3)

Notes. Each figure plots the average of group’s total efforts per round. The horizontal solid lines indicate the
PPE predictions, and the horizontal dashed lines indicate the NE predictions. The F -test p-value rejects equality
of the estimated average aggregate effort with the corresponding NE and PPE prediction across all contests with
one exception. The F -test cannot reject the equality of NE and average aggregate effort in the contest of N=3,
(1, 3, 6).

To reconcile this disparity, we propose an explanation grounded in a behavioral

model of risk aversion. We consider the payoff function maximized by contestants,

which comprises two distinct components: the ’revenue part,’ characterized by

uncertainty (as contestants either win V or nothing), and the ’cost part,’ which

remains certain due to the contest’s ’All-Pay’ structure. Our forthcoming result

posits that if contestants exhibit risk aversion solely with respect to the uncertain

revenue part of their payoff, while maintaining risk neutrality towards the certain

cost part, the resultant PPE framework would yield an identical success distribu-

tion as previously derived, but with a notably lower aggregate level of effort.

Suppose that contestants evaluate the possible revenues (“V ” or “0”) according

to a CRRA Bernoulli utility function u(x) = xγ, γ ∈ (0, 1], such that the maximize
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the payoff function

Πj(pj ; Σj) = pjV
γ − cjC

(
pj

1− pj
Σj

)
(10)

Proposition 4 The success distribution of the PPE and NE associated with (10)

are invariant to the degree of risk aversion γ ∈ (0, 1], while the average equilibrium

efforts increases strictly in γ.

We can further use the insight in Proposition 4 to obtain the level of γ that aligns

the PPE prediction of the aggregate effort with the observed averages by using a

back-of-the-envelope calculation. This calculation allows us to deduce the corre-

sponding relative risk aversion parameter, which is 1 − γ. Table 3 indicates that,

across all the contest cases, the level of CRRA is close to zero, which implies a close

to risk neutral behavior. This finding is broadly consistent with a literature that

Table 3: Back-of-the-envelope calculation of CRRA

Cost coefficients K Aggregate effort V γ 1− γ

(1,3) 1.33 99.76 14927.19 0.07
(1,3,6) 1.5 113.29 17112.83 0.05
(1,2,3) 1.83 139.24 21150.30 0.03

estimates the degree of risk aversion for varying stake sizes, which find evidence

that subjects are close to risk neutral in low-stake choice experiments (Fehr-Duda

et al., 2010; Rabin, 2013; Bombardini and Trebbi, 2012) to which our experiment

clearly belongs. Moreover, we remark that NE could not be amended in this way,

as aggregate efforts also were to decline while Nash efforts already are too low, and

NE success chances are not matching well with the data.25

6 Conclusion

Proportional Play Equilibrium (PPE), grounded in the empirically supported illu-

sion of proportionality, provides a novel behavioral perspective that enriches our

25Including standard risk aversion, i.e., applying the Bernoulli utility uniformly to the payoff
function, may lead to lower predicted efforts as well, but would also change the dispersion of
success chances, possibly breaking the strong empirical tie to PPE we find otherwise.
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theoretical toolkit. While it clearly presents an advancement in terms of effort

prediction, its potential in dissecting and explaining the distribution of success

chances represents an exciting and empirically relevant frontier. Our study delves

into both these aspects – not only theoretically establishing PPE as a robust model

but also empirically testing its predictions against those of NE, especially in the

context of success chance dispersion.

In conclusion, our investigation into PPE reveals significant insights into the dy-

namics of contest theory. PPE’s alignment with empirical data, especially in terms

of predicting success probabilities, underscores its potential as a more accurate and

comprehensive framework compared to traditional Nash Equilibrium.

We observe that while PPE tends to over-predict effort levels, integrating a

success-based notion of risk aversion provides a meaningful resolution, aligning

theoretical predictions about efforts more closely with observed behavior. These

findings highlight the complex interplay between risk perceptions, effort alloca-

tion, and success probabilities in contests, challenging and expanding our current

understanding of strategic interactions.

Ultimately, this paper contributes to a deeper and more nuanced comprehension

of contest theory, emphasizing the significance of considering both efforts and suc-

cess probabilities for a holistic view of strategic behavior in economic and political

arenas.
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APPENDIX

A Additional Results

A.1 Equilibrium: Existence, Uniqueness, Representation

In this section, we detail the formal results outlined with intuitive explanations in

the main text. To maintain readability, all proofs are deferred to Section A.3.

We refer the game with equilibrium concept described in Definition 2 as to the

Original Game. We first establish that, for any given α ∈ [0, 1], the equilibrium

sets of the Original Game and the Market Share Game coincide.

Theorem 2 If (e, ē) is an equilibrium in the Original Game, then the success

distribution p̂ determined by pj =
ej

Σj+αej
for each j ∈ Jn, along with ē, constitutes

an equilibrium in the Market Share Game. Conversely, if (p̂, ē) is an equilibrium in

the in the Market Share Game, then the effort profile e derived from ej =
pj

1−αpj
Σj,

pj = p̂(j), for each j ∈ Jn, alongside ē, is an equilibrium in the Original Game.

We next show that for every given α ∈ [0, 1] the Market Share Game with pay-

off function (7) has a unique and strictly positive equilibrium (p̂α, ēα) under the

assumptions imposed on the cost function C(·). By Theorem 2, the success dis-

tribution p̂α must correspond to the one implied by the unique equilibrium of the

Original Game.

Theorem 3 For any α ∈ [0, 1], the Market Share Game has a unique equilibrium

(p̂α, ēα), where p̂α(j), ēα > 0 for each j ∈ Jn.

By Theorem 3, the Market Share Game with payoff (7) has a unique equilibrium

(p̂α, ēα) for every α ∈ [0, 1]. Define the functions p : [0, 1] → ∆n−1, πj(p(α)) ≡

p̂α(j), ē : [0, 1] → R+, ē(α) ≡ ēα. These mappings are well-defined by Theorem 3,

and the following result establishes that these are continuously differentiable in α.

Corollary 1 p(α) and ē(α) are C1-functions of α.

The equilibrium density for each α is represented by the bivariate function p :

Jn × [0, 1] → [0, 1], defined as p(j, α) ≡ πj(p(α)). Because p(α) is continuous

1



in α, p(j, α) is continuous.26 As the endpoints satisfy p(j, 0) = pPPE(j) and

p(j, 1) = pNE(j), the functions pPPE(j) and pNE(j) are homotopic, showing that

the equilibrium distributions of PPE and NE can be continuously transformed into

each other.

A.2 Comparative Statics

This analysis extends the comparative statics of pPPE and pNE beyond the sce-

nario where C(·) is represented by a power function. We find that the impact

of a marginal increase of V on these equilibrium success probabilities is similarly

influenced by the characteristics of the cost function in both cases. This is most

evident in the case where the elasticity of marginal costs, ε(e) ≡ C′′(e)e
C′(e)

, adopts a

monotonic pattern.

Proposition 5 Let V > 0. If ε(e) is strictly decreasing, then ∃δ > 0 such that

pPPE
V ′ and pNE

V ′ are clockwise rotations of pPPE
V and pNE

V , respectively for any V ′ ∈

(V, V + δ). If ε(e) is strictly increasing, then ∃γ > 0 such that pPPE
V ′ and pNE

V ′ are

counter-clockwise rotations of pPPE
V and pNE

V , respectively for any V ′ ∈ (V, V + γ).

A.3 Proofs

Proof Theorem 2 Fix α ∈ [0, 1]. For given Σj > 0, define the function

h(ej; Σj) =
ej

Σj+αej
. Note that h(·; Σj) : R+ → [0, 1/α), 1

α
≥ 1 is bijective and

pj = h(ej; Σj), with inverse h−1(pj; Σj) =
pj

1−αpj
Σj = ej. That is, to every given

pj ∈ [0, 1
α
) we can assign a unique ej ∈ [0,∞) and vice-versa. Define the function

Π̂(pj; Σj) ≡ Π(h−1(pj; Σj); Σj) = Π(ej(pj); Σj). Note that Π̂(pj; Σj) amounts to

the payoff function (7) in the Market Share Game.

Let (e∗, ē∗) be equilibrium in the Original Game. Let Σ∗ = nē∗ and note that

Σ∗
j = Σ∗−αe∗j . The implied success probabilities are p∗j =

e∗j
Σ∗

j+αe∗j
. By contradiction,

suppose that (p∗1, ..., p
∗
n) formed in this way and ē∗ do not form an equilibrium of

the Market Share Game. Then Π̂j(pj; Σ
∗
j) > Πj(p

∗
j ; Σ

∗
j) for some pj ∈ [0, 1

α
). But

26Continuity of p(j, α) follows from continuity of p(j, ·) because Jn is a discrete set. Here, Jn

is a discrete metric space, [0, 1] is equipped with the natural metric and X × [0, 1] is equipped
with the metric defined by the sum of the two metrics.
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as ej = h−1(pj; Σ
∗
j) we have

Π̂j(pj; Σ
∗
j) = Πj(ej(pj); Σ

∗
j) > Π̂(p∗j ; Σ

∗
j) = Πj(e

∗
j ; Σ

∗
j)

as e∗j = ej(p
∗
j). That is, there is ej such that Πj(ej; Σ

∗
j) > Πj(e

∗
j ; Σ

∗
j) which contra-

dicts that (e∗, ē∗) is an equilibrium in the Original Game.

For the converse, let (p̂, ē) be equilibrium in the Market Share Game, with

p∗j = p̂(j), Σ∗ = nē∗ and Σ∗
j = (1− αpj)Σ

∗. For every p∗j there is a unique impact

e∗j = ej(p
∗
j). Suppose that the corresponding impact profile (e∗1, ..., e

∗
n) together

with average effort ē and Σ∗
j as determined above do not constitute an equilibrium

in the Original Game. Then Π(ej; Σ
∗
j) > Π(e∗j ; Σ

∗
j) for at least one contestant j

and some effort ej ̸= e∗j . Hence also

Π(ej; Σ
∗
j) = Π̂(pj(ej); Σ

∗
j) > Π(e∗j ; Σ

∗
j) = Π̂(p∗j ; Σ

∗
j)

as p∗j = ej(p
∗
j). Thus there is pj ̸= p∗j such that = Π̂(pj; Σ

∗
j) > Π̂(p∗j ; Σ

∗
j), contra-

dicting that (p̂, ē) is an equilibrium in the Market Share Game. ■

Proof Theorem 3 Fix an arbitrary α ∈ [0, 1]. Note that for any given Σj ≥ 0,

pj = 0 cannot maximize (7) because V > 0 and C ′(·) is continuous with C ′(0) = 0.

Next, note that Π(pj; Σj) is strictly quasi-concave in pj ∈ (0, 1
α
) for any given

Σj ≥ 0. Thus, the FOC pertaining to maximizing (7) are sufficient, and given by

V = cjC
′
(

pj
1− αpj

Σj

)
Σj

(1− αpj)2
. (11)

Thus, if p∗j solves (11), then p∗j is the global maximizer of Πj(pj; Σj) on [0, 1
α
). In

equilibrium, the quantity Σj by definition is determined by Σj = (1−αpj)Σ, where

Σ ≡ nē is defined as the aggregate impact. Plugging this value in (11) yields the

equilibrium condition (8). The remainder of the proof is organized in the following

three steps. We first establish that this equation has a unique solution pj(Σ) > 0

for each j ∈ J and any given Σ ≥ 0. This solution is a C1-function that verifies

p′j(Σ) < 0. Next, we will show that there is a unique value Σ∗ > 0 such that∑
i pi(Σ

∗) = 1. Finally, we will establish that pj(Σ
∗) = p∗j , i.e., pj(Σ

∗) indeed

maximizes Π(pj; Σj) at Σj = (1− αp∗j)Σ
∗.
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Let Σ ≥ 0, and note that pj = 0 cannot solve (8). Hence, any solution to

(8) must verify pj > 0. Next, note that, for any given pj > 0, the RHS of (8)

is continuous in Σ, equal to zero for Σ = 0, strictly increasing in Σ and grows

arbitrarily large as Σ → ∞. The LHS of (8) is continuous and non-increasing in pj.

If Σ = 0 there either is no solution of (8) (if α = 0) or the solution is pj(0) =
1
α
≥ 1

(if 0 < α ≤ 1). For any Σ > 0, the above arguments assure the existence of a

unique solution pj(Σ) > 0. Moreover, the Implicit Function Theorem assures that

this solution is a C1-function of Σ and satisfies p′j(Σ) < 0. Finally, we have that

limΣ→0 pj(Σ) ≥ 1 and limΣ→∞ pj(Σ) = 0. For the solutions p1(Σ), ..., pn(Σ) to be

an equilibrium, they must integrate to one. Define G(Σ) =
∑n

i=1 pj(Σ) and note

that G′(Σ) < 0 for any Σ > 0. The previous arguments about pj(Σ) imply that

limΣ→0G(Σ) > 1 and limΣ→∞G(Σ) = 0. The existence of a unique Σ∗ > 0 that

solves G(Σ) = 1 follows from these facts. By construction, p1(Σ
∗), ..., pn(Σ

∗) must

maximize each Πj(pj; Σ
∗
j) if the value of Σ∗

j is given by Σ∗
j = (1 − αpj(Σ

∗)). This

concludes the proof. ■

Proof Corollary 1 For any α ∈ [0, 1] define the aggregate impact by Σ(α) ≡

nē(α). Thus ē(α) is C1 in α iff Σ(α) is C1 in α. Lemma 1 in Appendix B establishes

that the solution function Σ(α) must be C1 with Σ′(α) < 0. For each j ∈ Jn, define

the function

Fj(pj;α) ≡ V (1− αpj)− cjC
′(pjΣ(α))Σ(α).

Thus, Fj(pjα) = 0 amounts to equilibrium equation (8), and it is easy to check

that Fj(pj;α) is C
1 on R++ × [0, 1] with

∂pjFj(pj(α);α) = −αV − cjC
′′(pj(α)Σ(α))Σ(α)

2 < 0. (12)

The solution p(α) = (p1(α), ..., pn(α)) solves the system of equations

F (p;α) ≡


F1 (p1;α)

...

F1 (pn;α)

 =


0
...

0

 .
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Because

DpF (p(α);α) =


∂p1F1 (p1(α);α) 0 0 0

0 ∂p2F2 (p2(α);α)
...

...
...

...
...

...

0 0 0 ∂pnFn (pn(α);α)

 ,

condition (12) implies |DpF (p(α);α) | ≠ 0 for every α ∈ [0, 1], and the Implicit

Function Theorem therefore assures that the solution p(α) must be continuously

differentiable at each given α ∈ [0, 1]. ■

Proof Proposition 5 We prove the claim by showing its validity for arbitrary

α ∈ [0, 1] in the general Market Share Game. First, note that V is a level variable

for any α ∈ [0, 1], and Σ′
α(V ) >, which implies that the equilibrium behavior of

p̂α is entirely governed by the properties of the marginal cost function C ′(·). By

Theorem 2 of Hefti and Teichgräber (2022), to establish the existence of the claimed

(counter-)clockwise rotation of p̂α(j), we need to show that the direct-aggregative

effect induced by dV > 0 verifies Rij > (<)0 for any two players i, j with ci < cj.

Specifically we have

sign(Rij) = sign

(
C ′′(pjΣ)pjΣ

C ′(pjΣ)
− C ′′(piΣ)piΣ

C ′(piΣ)

)

B Proofs

Proof Proposition 1 The proof relies on the following Lemma.

Lemma 1 The equilibrium aggregate Σ(α) is a C1-function of α ∈ [0, 1] and

Σ′(α) < 0.

Proof: We follow the general procedure outlined in Hefti and Teichgräber (2022)

for how to derive the comparative-statics of the aggregate quantity in a Market

Share Game. For any j ∈ J the optimality condition is (8). Treating Σ > 0 and

α ∈ [0, 1] as parameters, this equation has a unique solution pj(Σ, α) > 0, and the

Implicit Function Theorem assures that this solution is continuously differentiable

5



in α and Σ, where ∂Σpj(Σ, α) < 0 and ∂αpj(Σ, α) < 0 again by the Implicit

Function Theorem. Define G(Σ, α) =
∑

i pi(Σ, α), and note that the equilibrium

Σ(α) is determined by G(Σ, α) = 1 for any given α ∈ [0, 1]. Applying the Implicit

Function Theorem to this equation yields Σ′(α) < 0. □

Proposition 1 follows from Lemma 1 as ē(α) = Σ(α)/n and Σ(0) = ΣPPE and

Σ(1) = ΣNE. ■

Proof Proposition 2 The claim is a direct consequence of the broader analysis

provided in Hefti and Teichgräber (2022), because the equilibrium equation (8) is

consistent with the general equilibrium equation of their Proposition A.1, assuring

that the equilibrium sorting of success chances (or market shares) must align with

the ex-ante sorting of the agents. That result directly implies that p̂α(i) = p̂α(j)

iff ci = cj, which, by extension, implies that p̂α(i) = 1/n ∀i ∈ Jn iff c1 = ... = cn.

Conversely, if ci < cj for two agents i < j, then Proposition A.1 in Hefti and

Teichgräber (2022) further assures that p̂α(i) > p̂α(j) across the entire range α ∈

[0, 1]. As contestants are ex-ante sorted by increasing costs, the previous result

necessitates that the equilibrium density p̂α(j) is decreasing in j, and non-constant

whenever c1 < cn. ■

Proof Theorem 1 Let i, j be such that ci < cj. Then, by Proposition 2, p̂α(i) >

p̂α(j) for any α ∈ [0, 1]. Note that to establish that pPPE is a monotonic clockwise

rotation of pNE, it suffices to show that p̂0(i)
p̂0(j)

> p̂1(i)
p̂1(j)

.27 Now, for C(e) = eη, (8)

implies that

p̂0(i)

p̂1(i)
=

(
Σ(1)

Σ(0)

) η
η−1

(
1

1− p̂1(i)

) 1
η−1

. (13)

Because p̂1(i) > p̂1(j), (13) implies that p̂0(i)
p̂1(i)

> p̂0(j)
p̂1(j)

, which yields the requested

condition. For the remaining assertion it is straightforward to verify that the

Lorenz curve associated with pNE must Lorenz-dominate the one implied by pPPE,

from which the claim follows. ■

Proof Proposition 3 The first claim directly follows from Proposition 5 in Hefti

and Teichgräber (2022) as costs are neutral and V is a level variable for any given

27See Definition 4 of Hefti and Teichgräber (2022).
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α ∈ [0, 1]. For the second claim, we need to derive the direct-aggregative effect Rij

associated with a changing value of η. We obtain that

sign(A(i)− A(j)) = sign

(
∂ηφ(j)

φ(j)
− ∂ηφ(i)

φ(i)

)
= sign (Ln(p(j;α)− Ln(p(i;α))

As p(j, α) < p(i, α) whenever ci < cj, we obtain Rij < 0, and the claim follows

from Theorem 2 in Hefti and Teichgräber (2022). ■

Proof Proposition 4 Follows directly from Proposition 3. ■.
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