
Potentials in Social Environments

Thomas Demuynck∗ P. Jean-Jacques Herings† Christian Seel‡

February 8, 2024

Abstract

We develop and extend notions of potentials for normal-form games (Monderer

and Shapley, 1996) to present a unified approach for the general class of social en-

vironments. The different potentials and corresponding social environments can be

ordered in terms of their permissiveness. We classify different methods to construct

potentials and we characterize potentials for specific examples such as matching prob-

lems, vote trading, multilateral trade, TU games, and various pillage games.
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1 Introduction

In a potential game, the incentives of all players can be represented by one single function,

called the potential. Since the introduction of potential games by Monderer and Shapley

(1996), the amount of literature on the topic has been enormous, both within economics

but also in related fields such as computer science (e.g., Yamamoto, 2015) and evolutionary

biology (e.g., Szabó and Fáth, 2007). Over time, different notions of the original poten-

tial have appeared (Voorneveld, 2000; Dubey, Haimanko, and Zapechelnyuk, 2006) and

convergence properties of different dynamics have been studied for sub-classes of potential

games such as aggregative games (Selten, 1970) and congestion games (Rosenthal, 1973);

see, e.g., Jensen (2010) and Chien and Sinclair (2011).

In this paper, we develop various notions of potential for the general class of social en-

vironments (Chwe, 1994). A social environment consists of four components: a set of

individuals, a set of states, preferences for each individual over the set of states, and an

effectivity correspondence that specifies which coalitions of individuals can switch from one

state to another.

Social environments provide a unified framework for many popular models in economics.

For instance, matching models, models of network formation, coalitional games, and normal-

form games can all be represented as a social environment (Demuynck et al., 2019). When

framing normal-form games as a particular kind of social environment, the notion of a

Nash equilibrium generalizes naturally to the notion of a core element. As we will show,

under mild conditions, potential social environments have a non-empty core as any state

that maximizes the potential function is a core element. Similarly, in terms of learning

dynamics, potential social environments tend to have attractive convergence properties

towards the core of the social environment.

Our paper serves several different additional purposes. First, we connect different strands

of literature to provide a common and general structure in which potentials are useful.

This structure facilitates the knowledge transfer across environments. Second, we provide

a classification which allows us to compare different applications in terms of their potentials

and thereby their convergence/stability levels. Third, we discuss two methods which can

help to find potentials in unexplored social environments. Finally, we explore novel social

environments by studying some variants of pillage games (Jordan, 2006).

We classify potentials along two dimensions: better reply versus coalitional best reply

versus individual best reply potentials and strong versus weak potentials. Better reply

potentials are the ones that increase when coalitions take better replies while best reply
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potentials only need to increase when taking best replies. We differentiate between strong

and weak potentials based on whether the potential is required to increase for every better

or best reply (strong) or only for some better or best replies (weak).

In normal-form games, best replies are naturally defined on the individual level. For

social environments, defining best replies is less straightforward, as coalitions consisting

of multiple individuals can deviate. To define best replies in such settings, we distinguish

between two types: coalitional and individual best replies. Coalitional best replies require

that a coalition makes a profitable deviation that is Pareto optimal among all deviations

feasible for this coalition. Here Pareto efficiency is restricted to hold only for the members

of the deviating coalition. For individual best replies, we require that the deviation is

optimal for some individual among all profitable deviations involving all coalitions that

contain this individual. Coalitional best replies could be thought of as the result of a

discussion in a fixed group, while individual best replies take the view of an individual who

initiates a group and proposes a move in her best interest.

Based on these dimensions, i.e., strong versus weak and better reply versus coalitional best

reply versus individual best reply, we obtain six types of potentials for social environments.

These different potentials can be ordered in terms of their permissiveness. The strong better

reply potential is most demanding, followed by the strong coalitional best reply, the strong

individual best reply, the weak individual best reply, the weak coalitional best reply and

finally, our most permissive concept, the weak better reply potential.

The nested structure allows to interpret social environments which admit a more demanding

potential as having nicer stability and convergence properties than social environments

which only admit a more permissive potential. Indeed, if a finite social environment admits

a strong better reply potential, every path of better replies will converge in finite time to

a core element, while a weak better reply potential only implies the existence of one such

better reply path. The latter property relates to the weak finite improvement property in

games as defined by Friedman and Mezzetti (2001), while the former relates to the finite

improvement property in games (Monderer and Shapley, 1996).

When we consider normal-form games as a special type of social environment, the concept

of a generalized ordinal potential game (Monderer and Shapley, 1996) coincides with our

notion of a strong better reply potential when applied to normal-form games. The notion

of a best reply potential in games (Voorneveld, 2000) is more demanding than our notion

of a strong best reply potential. Under some weak technical conditions, our strong best

reply potential is in turn more demanding than the pseudo-potential (Dubey, Haimanko,

and Zapelchelnyuk, 2006), which is more demanding than our weak best reply potential.
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We apply our notions to different examples of social environments. In a pure exchange

economy with multilateral trade, the additive social welfare function is a strong better

reply potential as any Pareto-improving trade increases that function. In a model of group

formation model with transferable utilities, the potential of the cooperative game (Hart

and Mas-Colell, 1989) is a strong better reply potential of the related social environment.

Even in the framework of normal-form games, there is no easy recipe how to find a po-

tential. For social environments, we provide possible approaches to finding potentials by

distilling and adapting two methods from the literatures on matching and vote trading.

The first method of a sequential potential splits up the state space and focuses on lo-

cal weak potential properties which can then, under some conditions, be combined into a

global potential. The second method finds several potentials and then prioritizes between

them based on a lexicographic order. We illustrate the usefulness of these two methods by

providing tight characterizations of potentials for the matching model by Gale and Shapley

(1962) and the model of vote trading by Casella and Palfrey (2019).

Finally, we analyze the potentials admitted by different types of pillage games. This

analysis covers both the original pillage game discussed in Jordan (2006) as well as two

new versions of the game. The variant with the strongest individual attachments (pillaging

by gangs) admits a more demanding potential than the other two versions.

We proceed as follows. In Section 2, we introduce social environments and develop different

potentials for that framework. The relations between our concepts and the convergence

properties of both better and best reply dynamics are studied in Section 3. Section 4

compares our potentials for social environments to the existing notions for normal-form

games. We then discuss two existing applications for which potentials are easy to find in

Section 5. Section 6 introduces two different techniques to construct potentials and shows

how to use them in applications to matching and vote trading. In Section 7, we study a

less explored environment in the form of pillage games, including some new versions of that

model. Section 8 provides a short conclusion. Proofs and some of the technical details are

relegated to appendices.

2 Potential Social Environments

This section provides an overview of the notions of social environment and core. We also

define and compare the various notions of a potential social environment. At the end of the

section, we discuss to which extend our notions deviate from existing notions of potential

in normal-form games.
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Let N be the finite set of all individuals. A coalition is a subset of N . The collection

of all non-empty coalitions is denoted by N . A social environment is determined by the

set of individuals N , a metric space (X, d) where X is a non-empty space of states and

d is a metric on X, an effectivity correspondence E that associates to each pair of states

(x, y) ∈ X ×X a, possibly empty, subset of N , and a tuple of utility functions u = (ui)i∈N

where, for each i ∈ N , ui : X → R. The notation S ∈ E(x, y) means that coalition S is

able to move from state x to state y whereas ui(x) gives the utility of individual i in state

x. We denote a social environment by Γ = (N, (X, d), E, u).

A social environment Γ = (N, (X, d), E, u) is said to be finite if the set of states X is finite.

We next develop a dominance relation between the states in X.

Definition 2.1. A state y ∈ X dominates a state x ∈ X via coalition S ∈ N if S ∈ E(x, y),

for every i ∈ S, ui(y) ≥ ui(x), and, for some j ∈ S, uj(y) > uj(x).

We say that y ∈ X dominates x ∈ X if y dominates x via some coalition. The subset of X

consisting of all states that dominate x ∈ X via coalition S ∈ N , together with the state

x itself, is denoted by fS(x), i.e., fS(x) = {x} ∪ {y ∈ X | y dominates x via coalition S}.
We denote by f(x) the set of all states that dominate x together with x itself, f(x) =⋃
S∈N fS(x).

Definition 2.2. Let Γ = (N, (X, d), E, u) be a social environment. The core of Γ is given

by all states x ∈ X such that f(x) = {x}.

Thus, a state belongs to the core if no coalition can move to another state which gives at

least the same utility to all and higher utility to some coalition members. It is well-known

that for some social environments the core is empty.1

2.1 Best Replies in Social Environments

A key choice in extending the concept of a best reply potential from normal-form games

to social environments lies in finding a suitable extension of the notion of a best reply

from a single player to a coalition. For this purpose, we define the set of feasible states

for coalition S ∈ N at state x ∈ X by FS(x) = {y ∈ X | S ∈ E(x, y)} . The following

1Our definition of the core generalizes the standard definition of the core as defined for coalitional
games to the setting of social environments. As explained in Osborne and Rubinstein (1994): “The core
is a solution concept for coalitional games that requires that no set of players be able to break away and
take a joint action that makes all of them better off.” Our concept of domination extends this reasoning to
social environments in a straightforward way. Our requirement that at least one player gets higher utility
rather than all players turns out to be technically more convenient.
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definition formalizes that a coalition of players has the option to change the state and

chooses to do so in an optimal way for its members. It thereby extends the corresponding

best reply notion for normal-form games.

Definition 2.3. Let Γ = (N, (X, d), E, u) be a social environment. A state y ∈ X is a

coalitional best reply to x ∈ X by coalition S ∈ N if y ∈ fS(x) and there is no state

z ∈ FS(x) such that, for every i ∈ S, ui(z) ≥ ui(y) and, for some j ∈ S, uj(z) > uj(y).

In case y is a coalitional best reply to x, we write y ∈ BRS(x). We also denote the collection

of all best replies to x by

BR(x) =
⋃
S∈N

BRS(x).

Under technical conditions on the correspondence FS and the utility functions, the set of

best replies by a coalition turns out to be non-empty.

Proposition 2.4. Let Γ = (N, (X, d), E, u) be a social environment. Let x ∈ X and S ∈ N
be such that FS(x) is compact and, for every i ∈ S, the utility function ui is continuous.

Then BRS(x) is non-empty.

As is typical for notions of coalitional domination, the set BRS(x) may fail to be closed.

The proof of Proposition 2.4 takes care of this subtlety by focusing on a relevant compact

subset of BRS(x).

An alternative, more individualistic, view on extending best replies is that one individual

takes the initiative to organize a coalition for a state change that is mutually beneficial,

but in her best interest. This leads to the following definition of an individual best reply.

Definition 2.5. Let Γ = (N, (X, d), E, u) be a social environment. A state y∗ ∈ X is an

individual best reply to x ∈ X for an individual i ∈ N if

y∗ ∈ argmax
y∈

⋃
{S∈N|i∈S}BRS(x)

ui(y).

In case y∗ is an individual best reply to x for individual i, we write y∗ ∈ IBRi(x). We also

denote the set of all individual best replies to x by IBR(x) =
⋃
i∈N IBRi(x). Note that for

all x ∈ X, IBR(x) ⊆ BR(x) ⊆ f(x).

The following result shows that the set of individual best replies is non-empty under an

appropriate strengthening of the conditions in Proposition 2.4.
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Proposition 2.6. Let Γ = (N, (X, d), E, u) be a social environment. Let i ∈ N and x ∈ X.

If for all S ∈ N such that i ∈ S, the set FS(x) is compact and, for every j ∈ N , the utility

function uj is continuous, then IBRi(x) is non-empty.

2.2 Strong and Weak Potentials

We start with the definition of a strong better reply potential. As we will see later on,

this generalizes the notion of a generalized ordinal potential (Monderer and Shapley, 1996)

from games to social environments.

Definition 2.7. Let Γ = (N, (X, d), E, u) be a social environment. A function P : X → R
is a strong better reply potential for Γ if for all states x, y ∈ X,

y ∈ f(x) \ {x} =⇒ P (y) > P (x).

The social environment Γ is a strong better reply potential social environment if it admits

a strong better reply potential.

We can also define natural analogues for strong best reply potentials.

Definition 2.8. Let Γ = (N, (X, d), E, u) be a social environment. A function P : X → R
is a strong coalitional best reply (strong individual best reply) potential for Γ if, for every

state x ∈ X,

y ∈ BR(x) \ {x} (y ∈ IBR(x) \ {x}) =⇒ P (y) > P (x).

The social environment Γ is a strong coalitional best reply (strong individual best reply)

potential social environment if it admits a strong coalitional best reply (strong individual

best reply) potential.

Note that the potential P might also increase if some members of a deviating coalition in-

crease their payoffs, whereas other coalition members decrease their payoffs. Yet, the latter

part of the coalition would not consent and hence the deviation should not be considered

a better (or best) reply. As such, using a two-sided implication in Definitions 2.7 and

2.8 would place an undesirable restriction on deviations, thereby motivating our modeling

choice of a one-sided implication.

Our final set of definitions of potentials for social environments reduces the requirements

on the potential. In particular, we now only require that whenever a state is dominated
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by another state, in terms of better reply, coalitional best reply, or individual best reply,

then there is at least one domination which increases the potential.

These weaker notions retain many appealing properties of its stronger counterparts. As

we shall see, if one of these weak potentials exist, the core is non-empty. Furthermore,

optima of a potential function correspond to core elements, which might facilitate its

computation. Moreover, the introduction of weak potentials allows us to draw a formal

connection between results on better-reply dynamics (e.g. Friedman and Mezzetti, 2001)

and the literature on potentials.

Definition 2.9. Let Γ = (N, (X, d), E, u) be a social environment. A function P : X → R
is a weak better reply (weak coalitional best reply) [weak individual best reply ] potential for Γ

if for every x ∈ X such that f(x)\{x} 6= ∅, there exists y ∈ f(x) (y ∈ BR(x)) [y ∈ IBR(x)]

such that P (y) > P (x).

The social environment is a weak better reply (weak coalitional best reply) [weak individual

best reply ] potential social environment if it admits a weak better reply (weak coalitional

best reply) [weak individual best reply] potential.

Under mild assumptions, we can order the various potentials.

Proposition 2.10. Let Γ = (N, (X, d), E, u) be a social environment such that, for every

x ∈ X, for every S ∈ N , BR(x) 6= ∅, and, for every i ∈ N, IBRi(x) 6= ∅. We have the

following implications for a potential P for Γ:

strong better reply ⇒ strong coalitional best reply,

strong coalitional best reply ⇒ strong individual best reply,

strong individual best reply ⇒ weak individual best reply,

weak individual best reply ⇒ weak coalitional best reply,

weak coalitional best reply ⇒ weak better reply.

Given the nestedness of the concepts, we say that a social environment admits a potential

if and only if it has a weak better reply potential.

3 Potentials: Basic Properties and Relations

Under weak conditions, every potential social environment has a non-empty core.

Proposition 3.1. Let Γ = (N, (X, d), E, u) be a social environment. If Γ admits a poten-

tial that reaches a maximum on X, then its core is non-empty. In particular, sufficient

conditions are that X is compact and that the potential is continuous.
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Thus, all finite potential social environments have a non-empty core. Yet, they differ in

the way different dynamic processes converge to the core. We now present one possible

dynamic foundation which will facilitate the proofs. Our approach is similar in spirit to the

dynamics obtained from analyzing acyclic best-reply graphs in games (Young, 1993, p.64)

but we also look at better reply dynamics and extend the framework to social environments.

A different, non-determistic foundation via Markov chains is discussed in Appendix B.

For our characterization in terms of paths, we need some additional notation. Let N =

{1, 2, . . .} denote the set of positive integers and let K = {{1}, {1, 2}, 1, 2, 3, . . .} ∪ {N} be

the collection of index sets. For K ∈ K, if K = N, then we define K− = K, and if there is

m ∈ N such that K = {1, . . . ,m}, then define K− = K \ {m} as the set that results from

K by leaving out its highest element.

Definition 3.2. Let Γ = (N, (X, d), u) be a social environment and K ∈ K. The path

(xk)k∈K ∈ XK is

a better reply path if for all k ∈ K−, xk+1 ∈ f(xk) \ {xk},
a coalitional best reply path if for all k ∈ K−, xk+1 ∈ BR(xk) \ {xk},
an individual best reply path if for all k ∈ K−, xk+1 ∈ IBR(xk) \ {xk}.

We have the following characterization of the various finite potential social environments.

Proposition 3.3. Let Γ = (N, (X, d), u) be a finite social environment. Then,

• Γ has a strong better reply (coalitional best reply) [individual best reply] potential if

and only if every better reply (coalitional best reply) [individual best reply] path is

finite.

• Γ has a weak better reply (coalitional best reply) [individual best reply] potential if and

only if from every state x ∈ X there is a finite better reply (coalitional best reply)

[individual best reply] path that starts at x and ends at a core element.

In addition to being helpful in the characterization of potentials, Proposition 3.3 sheds light

on the properties of dynamic processes within a finite social environment. In the presence

of a strong better reply potential, better reply dynamics is guaranteed to converge to a core

element in a finite number of iterations without visiting any state outside the core more

than once. Analogous properties hold for coalitional (individual) best reply dynamics in the

presence of a strong coalitional (individual) best reply potential. For social environments

with a weak potential, the convergence properties become probabilistic: the various types
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Game 1

A B C

A (4,4) (0,0) (0,0)

B (0,0) (2,2) (0,0)

C (0,0) (0,0) (2,2)

Game 2

A B C

A (4,4) (4,0) (4,0)

B (0,4) (2,2) (3,1)

C (0,4) (3,1) (2,2)

Game 3

A B C

A (4,4) (0,0) (0,0)

B (0,0) (2,2) (3,1)

C (0,0) (3,1) (2,2)

Game 4

A B C

A (4,4) (0,0) (0,0)

B (0,0) (3,1) (5,0)

C (0,0) (5,2) (2,3)

Game 5

A B C

A (3,2) (0,0) (0,0)

B (0,0) (1,1) (4,0)

C (0,0) (4,0) (2,4)

Game 6

A B C

A (2,2) (3,0) (0,0)

B (0,0) (0,3) (4,0)

C (0,0) (4,0) (0,3)

Figure 1: Coalitional normal-form games to illustrate Proposition 3.3.

of dynamics converge to a core element in finite time with probability one and it is possible

to return to a previously visited state outside the core; see Appendix B for details.

We illustrate Proposition 3.3 by the six social environments that are induced by the two-

player coalitional normal-form games in Figure 1. We add the adjective coalitional to

emphasize that also non-singleton coalitions are allowed to deviate.2 More precisely, for

every x, y ∈ X, it holds that {1} ∈ E(x, y) if and only if x2 = y2, {2} ∈ E(x, y) if and only

if x1 = y1, and {1, 2} ∈ E(x, y). The core of the induced social environment corresponds

to the set of strong Nash equilibria (Aumann, 1959).

The function P = u1 + u2 is a strong better reply potential for Game 1. It follows that

Game 1 has a strong Nash equilibrium and that better reply dynamics converges to it in

a finite number of iterations.

Game 2 has a better reply cycle (B,B), (C,B), (C,C), (B,C), (B,B), so it cannot have a

strong better reply potential by Proposition 3.3. Best replies of the singleton coalition {1}
always lead to states where player 1 chooses A and best replies of the singleton coalition

{2} always lead to states where player 2 chooses A. From any state different from (A,A),

the unique best reply of coalition {1, 2} is state (A,A). State (A,A) itself is not dominated.

Every coalitional best reply path is therefore finite. By virtue of Proposition 3.3, Game 2

has a strong coalitional best reply potential.

In Game 3, best replies by singleton coalitions lead to a coalitional best reply cycle (B,B),

(C,B), (C,C), (B,C), (B,B). By Proposition 3.3, Game 3 does not admit a strong coalitional

2If we restrict the effectivity correspondence to singleton deviations, Games 3, 4, and 5 do not admit a
potential.
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best reply potential. At any state different from (A,A), both players 1 and 2 have a unique

individual best reply, which is to establish coalition {1, 2} and deviate to state (A,A). As

state (A,A) is not dominated, every individual best reply path is finite, so Game 3 possesses

a strong individual best reply potential.

Game 4 has an individual best reply cycle (B,B), (C,B), (C,C), (B,C), (B,B) with singleton

moving coalitions. Thus, this game has no strong individual best reply potential. Never-

theless, it is an individual best reply for player 2 to form a coalition {1, 2} and deviate

from any state different from (B,C), (C,B) and (A,A) to (A,A). As the state (A,A) is in

the core, Game 4 has a weak individual best reply potential.

The path (B,B), (C,B), (C,C), (B,C), (B,B) is an individual best reply cycle in Game 5.

Unlike in Game 4, (A,A) is no longer an individual best reply of player 2 to (B,B) and (C,C).

Thus, the game has no finite individual best reply path that ends at a core element from

any of the states (B,B), (C,B), (C,C), and (B,C), thereby ruling out a weak individual best

reply potential. For any state outside (A,A), (B,C), (C,B), and (C,C), i.e., in particular

for state (B,B), it is a coalitional best reply for {1, 2} to deviate to (A,A). Since moreover

state (A,A) is in the core, Game 5 admits a weak coalitional best reply potential.

Finally, in Game 6, there is no finite coalitional best reply path that ends at a core element

(A,A) from any of the states in the cycle (B,B), (C,B), (C,C), (B,C), (B,B). Since (A,B)

is a better reply to (B,B) for player 1 and (A,A) is a better reply (A,B) for player 2, it

is possible to construct a finite better reply path that ends at a core element from any of

the states (B,B), (C,B), (C,C), and (B,C). From the other states (A,B), (A,C), (B,A), and

(C,A), the core element can be reached by means of a single better reply. Thus, Game 6

has a weak better reply potential.

If we only change the payoff associated to (A,B) from (0,3) to (0,0) in Game 6, there is no

finite better reply path to (A,A) from any of the states (B,B), (C,B), (C,C), and (B,C).

Thus, the non-vacuity of the core is not a sufficient condition for the existence of a weak

better reply potential.

4 Potential Normal-form Games

This section covers the relation of our concepts to the previous literature in the specific

social environment of normal-form games. For that purpose, we first provide a formal

introduction of normal-form games and how they fit into the social environment framework.

Let G = (N, (X i)i∈N , (u
i)i∈N) be a normal-form game, where N is the set of players,
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X i is the strategy space of player i, and ui :
∏

j∈N X
j → R is the utility function of

player i. This game induces the social environment ΓG = (N, (X, d), E, (ui)i∈N) in the

following way. The set of players N coincides with the set of individuals in the social

environment. The state space X =
∏

i∈N X
i is the set of all strategy profiles, and d

is a suitable metric on X. We denote by X−i the set of strategy profiles for the set

of individuals in N \ {i} and we write elements of X−i accordingly as x−i. The utility

functions in the social environment coincide with those in the normal-form game. The

effectivity correspondence E is defined by S ∈ E(x, y) if and only if there is i ∈ S such

that S = {i} and x−i = y−i, where x and y are two arbitrary strategy profiles in X. In

particular, it holds that E(x, y) = {{i} : i ∈ N, x−i = y−i}. The restriction to single-player

deviations ensures that the core coincides with the set of all pure-strategy Nash equilibria.

We distinguish between the game G and its social environment representation by writing

the latter as ΓG.

The starting point from the literature on potential games is the definition of a generalized

ordinal potential game by Monderer and Shapley (1996).

Definition 4.1. Let G = (N, (X i)i∈N , (u
i)i∈N) be a normal-form game. A function P :

X → R is a generalized ordinal potential for G if, for every i ∈ N , for every x−i ∈ X−i and

for every yi, zi ∈ X i, we have

ui(yi, x−i) > ui(zi, x−i) =⇒ P (yi, x−i) > P (zi, x−i).

The game G is a generalized ordinal potential game if it admits a generalized ordinal

potential.

The literature on potential games has provided several variations of potential games based

on best replies. Based on their prominence in the literature and closeness to our concepts,

we will focus on the notions of a best reply potential (Voorneveld, 2000) and a pseudo-

potential (Dubey, Haimanko, and Zapelchelnyuk, 2006). We call a function P : X → R
regular if for all i ∈ N and x−i ∈ X−i, we have argmaxxi∈Xi P (xi, x−i) 6= ∅.

Definition 4.2. Let G = (N, (X i)i∈N , (u
i)i∈N) be a normal-form game.

• A function P : X → R is a best reply potential for G if it is regular and, for every

i ∈ N, for every x−i ∈ X−i, we have

argmax
xi∈Xi

ui(xi, x−i) = argmax
xi∈Xi

P (xi, x−i).

The game G is a best reply potential game if it admits a best reply potential.

12



• The function P : X → R is a pseudo-potential for the game G if it is regular and, for

every i ∈ N, for every x−i ∈ X−i, we have

argmax
xi∈Xi

ui(xi, x−i) ⊃ argmax
xi∈Xi

P (xi, x−i).

The game G is a pseudo-potential game if it admits a pseudo-potential.

Normal-form games restrict attention to single-player deviations. Thus, the notions of

individual best reply and coalitional best reply coincide and we simply we refer to best

reply when analyzing normal-form games through the lens of social environments. The

following proposition derives implications between the different concepts.

Proposition 4.3. Let G = (N, (X i)i∈N , (u
i)i∈N) be a normal-form game.

• The game G is a generalized ordinal potential game if and only if ΓG is a strong better

reply potential social environment.

• If G is a best reply potential game, then ΓG is a strong best reply potential social

environment.

• If ΓG is a strong best reply potential social environment, it has a regular potential,

and, for every i ∈ N, for every x ∈ X, BR{i}(x) 6= ∅, then G is a pseudo-potential

game.

• If G is a pseudo-potential game, then ΓG is a weak best reply potential social envi-

ronment.

Our least permissive concept of a strong better social environment directly extends the

notion of a generalized ordinal potential game. Voorneveld (2000) shows that a generalized

ordinal potential game might not be a best reply potential game and vice versa. As such, we

cannot rank these two concepts. The remaining three implications show that, under some

technical assumptions, the other concepts have a nested structure: a best reply potential

game imposes more demanding restrictions than our strong best reply notions for social

environments, while the pseudo-potential game is in between our strong and weak best

reply notions for social environments in terms of permissiveness.

The following examples illustrate that the second, third and fourth implication of Propo-

sition 4.3 are not equivalences. To show this for the second implication of Proposition

4.3, consider the normal-form game G in Figure 2. The environment ΓG is a strong best

reply potential social environment with the best reply potential P defined by P (A,A) =

13



P (A,B) = P (B,B) = 0 and P (B,A) = 1. If G admitted a best reply potential, then

P (A,A) = P (A,B), P (A,A) = P (B,A), and P (A,B) = P (B,B) by the conditions re-

sulting from the best replies, i.e., the best reply potential would have to be constant over

all strategy profiles. However, A is a the unique best reply of the column player if the row

player chooses B, which implies P (B,A) > P (B,B), leading to a contradiction.

A B

A (0,0) (0,0)

B (0,1) (0,0)

Figure 2: A game that is not a best reply potential game, but induces a strong best reply
potential social environment.

To show that the third implication is not an equivalence, consider Game G in Figure 3.

This game has a pseudo-potential P defined by P (A,A) = 2, P (A,B) = 1, P (A,C) = 1,

P (B,A) = 3, P (B,B) = 2, and P (B,C) = 0. Suppose there is a strong best reply potential

for ΓG. From the conditions on the individual best replies, we have P (A,B) > P (A,C) >

P (B,C) > P (B,B) > P (A,B), a contradiction.

A B C

A (0,1) (0,1) (1, 0)

B (1,1) (1,0) (0, 1)

Figure 3: A pseudo-potential game which does not induce a strong best reply potential
social environment.

Finally, to show that the last implication of Proposition 4.3 is not an equivalence, consider

the three-player game G in Figure 4.3 Note that ΓG is a weak best reply social environment

with potential P defined by P (B,A,A) = 1, P (B,B,A) = 2, P (A,B,A) = 3, P (A,A,A) =

4, P (A,A,B) = 5, P (A,B,B) = P (B,A,B) = P (B,B,B) = 0. Any pseudo-potential for

G would require that P (B,A,A) > P (A,A,A) > P (A,B,A) > P (B,B,A) > P (B,A,A),

i.e., G does not admit a pseudo-potential.

Intuitively, the pseudo-potential requires that every player has a best reply which increases

the potential, whereas the weak best reply potential allows flexibility in choosing the player.

According to the following proposition, the two notions coincide for finite two-player games.

3Player 1 is the row player, player 2 is the column player, and player 3 chooses the payoff matrix.
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A

A B

A (0,1,0) (1,0,0)

B (1,0,0) (0,1,0)

B

A B

A (1,1,1) (0,0,0)

B (0,0,0) (0,0,0)

Figure 4: A game that is not a pseudo-potential game, but induces a weak best reply
potential social environment.

Proposition 4.4. Let G = (N, (X i)i∈N , (u
i)i∈N) be a finite normal-form game with two

players. If ΓG is a weak best reply potential social environment, then G is a pseudo-potential

game.

5 Two Simple Applications

This section characterizes potentials for two prominent social environments in the litera-

ture, multilateral trade and transferable utility games.

5.1 Multilateral Trade

Consider an exchange economy E = (N,ω, ũ) consisting of a set of individuals N , aggregate

initial endowments ω = (ω1, ω2, . . . , ωL) ≥ 0 of the L goods in the economy, and, for every

i ∈ N, a utility function ũi : RL
+ → R. A state is given by an allocation x = (xi)i∈N , where,

for every iinN, xi ∈ RL
+, and, for every ` = 1, . . . , L,

∑
i∈N x

i
` = ω`. The state space X

consists of all such allocations.

The utility function ui : X → R of an individual i ∈ N in the social environment is

defined by ui(x) = ũi(xi), so it depends only on xi. Individuals repeatedly meet in groups

and have the possibility to exchange their current consumption bundles. The effectivity

correspondence only allows for redistribution inside the trading coalition, i.e., for every

x, y ∈ X it holds that S ∈ E(x, y) if and only if
∑

i∈S x
i =

∑
i∈S y

i and, for every

j ∈ N \ S, xj = yj. The resulting social environment is denoted by ΓE .

Proposition 5.1. Let E = (N,ω, u) be an exchange economy. The additive social welfare

function P : X → R defined by P (x) =
∑

i∈Nu
i(xi), x ∈ X, is a strong better reply

potential for the social environment ΓE .

Any domination increases the sum of utilities of the members of the moving coalition, while

keeping the utility of the remaining individuals constant. Thus, the sum of all individual
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utilities increases when moving from a state to another state that dominates it. A better

reply dynamics leads to an increase in the potential in every iteration. The corresponding

non-tâtonnement process therefore exhibits attractive dynamic behavior where utilities

of individuals are monotonically increasing until a core element is reached. Note that

the resulting core element is not necessarily the maximum of the additive social welfare

function. However, as long as the social planner is purely interested in Pareto efficiency

and individual rationality, there is no reason to intervene in an exchange economy.

5.2 Shapley Value

In the next setting, we analyze group formation where the surplus of the group is split

according to the Shapley value. Each non-member can decide to join and each member

can decide to leave the group. More formally, we have a transferable utility game (N, v),

where v(∅) = 0 and, for every S ∈ N , v(S) ∈ R is the worth of coalition S. For S ∈ N , we

denote the subgame of (N, v) restricted to coalition S by (S, v|S) and the subgame payoffs

as determined by the Shapley value by ϕ(S, v|S) ∈ RS. The symmetric difference between

two sets is denoted by ∆, so if S, T ∈ N , then S∆T = (S \ T ) ∪ (T \ S).

The social environment Γ(N,v) = (N, (X, d), E, u) is obtained by taking the state space

equal to the collection of subsets of N , so X = N ∪ {∅}. Given two states x, y ∈ X, it

holds that S ∈ E(x, y) if and only if |S| = 1 and x∆y = S, so only single players are

effective and they can either leave or join an existing coalition. Finally, for every x ∈ X,

for every i ∈ N , ui(x) = 0 if i /∈ x and ui(x) = ϕi(x, v|x) if i ∈ x.

Proposition 5.2. Let (N, v) be a transferable utility game. The function P : X → R
defined by

P (x) =
∑
T⊂x

(|T | − 1)!(|x| − |T |)!
|x|!

v(T ), x ∈ X,

is a strong better reply potential for the social environment Γ(N,v).

The expression for P (x) in Proposition 5.2 is equal to the potential of the cooperative

game (x, v|x) as defined in Hart and Mas-Colell (1989). Proposition 5.2 thereby illustrates

how our definition of potential for social environments naturally incorporates the Hart and

Mas-Colell (1989) potential as defined in cooperative game theory. Monderer and Shapley

(1996) obtain a similar relation between the Hart and Mas-Colell (1989) potential and the

potential of a non-cooperative participation game.

As a consequence of Proposition 5.2, better reply dynamics converges quickly to a stable

coalition when the revenues of the team are allocated via the Shapley value.
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6 Methods to Find Weak Potentials

For some applications, finding a potential might be difficult. In this section, we provide a

toolkit by conceptualizing two methods to find potentials.

6.1 Sequential Potentials

The next definition constructs potential functions locally that lead “step-by-step” towards

a core element.

Definition 6.1. Let Γ = (N, (X, d), E, u) be a social environment. The profile of sets and

functions AP = ((A1, P1), . . . , (A`, P`)), where

X = A1 ⊇ · · · ⊇ A`−1 ⊇ A` ⊇ A`+1 = ∅

and, for every k ∈ {1, . . . , `}, Pk : X → R, is a sequential weak better reply (sequential

weak coalitional best reply) [sequential weak individual best reply] potential system for Γ if,

for every k ∈ {1, . . . , `}, for every x ∈ Ak \ Ak+1, f(x) = {x} or

there exists y ∈ f(x) ∩ Ak (y ∈ BR(x) ∩ Ak) [y ∈ IBR(x) ∩ Ak] such that Pk(y) > Pk(x).

This definition states that if x ∈ Ak \ Ak+1 does not belong to the core, then there must

always be a dominating state in Ak that increases the potential Pk. In the definition, we

employ weak rather than strict set inclusions to account for subcases where, for example

due to a particular preference profile, two adjacent sets might coincide.

For finite X, either x belongs to the core, or there is an improving path to a core element

in Ak \ Ak+1, or there is an improving path to an element in Ak+1. This observation is

useful in proving the following result.

Proposition 6.2. Let Γ be a finite social environment. If AP is a sequential weak better

reply (coalitional best reply) [individual best reply] potential system for Γ, then Γ has a weak

better reply (coalitional best reply) [individual best reply] potential.

The converse of Proposition 6.2 holds as well: if Γ has a weak better reply (coalitional

best reply) [individual best reply] potential, then there is a profile of sets and functions

AP which is a sequential weak better reply (sequential coalitional best reply) [sequential

individual best reply] potential system for Γ. Indeed, it suffices to take ` = 1 and choose

P1 to be the potential.
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Definition 6.1 and Proposition 6.2 can be extended to strong potentials. It suffices to

replace there exists y ∈ f(x) ∩ Ak (y ∈ BR(x) ∩ Ak) [y ∈ IBR(x) ∩ Ak] by for every

y ∈ f(x) (y ∈ BR(x)) [y ∈ IBR(x)] and to require that y ∈ Ak.

We illustrate the usefulness of sequential potential systems in a matching application.

Gale-Shapley Matching Consider a matching problem M = (M,W, u) with a set M

of men and a disjoint set W of women. The set of individuals equals N = M ∪W. The

state space X consists of the set of all possible matchings, which are functions x : N → N

such that, for every m ∈ M, x(m) ∈ W ∪ {m}, for every w ∈ W, x(w) ∈ M ∪ {w}, and

for every i ∈ N, x(x(i)) = i. The effectivity correspondence E allows only for pairwise

and singleton deviations of the following type: Every (m,w) ∈ M ×W can deviate from

a matching x to a matching y = x + (m,w) where they form a couple and their possible

previous partners become single. Other individuals are not affected by such a deviation.

Every m ∈M and every w ∈ W who is part of a couple (m,w) in x can unilaterally deviate

to a matching y = x − (m,w) where both members of the previous couple become single

and other individuals are not affected. The utilities um : X → R and uw : X → R depend

only on the own partner. Without loss of generality, the range of the utility functions is

contained in (0, 1). All preferences are strict. The resulting social environment is denoted

by ΓM.

A matching x ∈ X is individually rational if no matched individual prefers to be single.

The pair (m,w) ∈M×W is a blocking pair in x if the matching y = x+(m,w) is such that

um(y) > um(x) and uw(y) > uw(x). The matching x is stable if it is individual rational and

has no blocking pair, which is equivalent to f(x) = {x}. Using Definition 2.2, a matching

is stable if and only if it belongs to the core of the social environment.

We borrow the following example from the proof of Theorem 4.1 in Ackermann, Goldberg,

Mirrokni, Röglin, and Vöcking (2011) to show that there are matching problems M for

which the associated social environment ΓM has no strong individual best reply potential.

Example 6.3. Let M = {m1,m2,m3} and W = {w1, w2, w3} and let utility functions be

in accordance with the following preferences:

m1 m2 m3

w1 w2 w1

w3 w1 w2

w2 w3 w3

m1 m2 m3

w1 w2 w3

m2 m1 m3

m3 m2 m1

m1 m3 m2

w1 w2 w3.
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Let x1 be the matching where m1 is single, m2 is matched to w2, and m3 to w3, see

Figure 5 for an illustration. Let x2 = x1 +(m3, w1), x3 = x2 +(m1, w2), x4 = x3 +(m1, w3),

x5 = x4 + (m2, w1), x6 = x5 + (m2, w2), and x1 = x7 = x6 + (m3, w3).

m3

m2

m1

w3

w2

w1

m3

m2

m1

w3

w2

w1

m3

m2

m1

w3

w2

w1

m3

m2

m1

w3

w2

w1

m3

m2

m1

w3

w2

w1

m3

m2

m1

w3

w2

w1

m3

m2

m1

w3

w2

w1

x1 x2 x3 x4 x5 x6 x7

Figure 5: Infinite individual best reply path.

It clearly holds that x2 ∈ IBRm3(x1) and x3 ∈ IBRw2(x2). As w1 prefers her match m3 at

x3 to m1, it holds that w3 is the best possible partner in a blocking pair for m1, so x4 ∈
IBRm1(x3). It clearly holds that x5 ∈ IBRw1(x4), x6 ∈ IBRm2(x5), and x7 ∈ IBRw3(x6). This

example therefore admits an infinite individual best reply path. We use Proposition 3.3 to

conclude that ΓM does not have a strong individual best reply potential. It follows that

ΓM does not admit a strong coalitional or a strong better reply potential. Note, however,

that this argument does not rule out the existence of a weak individual best reply potential.

For the example, let x̃3 = x2 + (m1, w3) and note that x̃3 ∈ IBRw3(x2) and that x̃3 is a

stable matching. Thus, the social environment might admit a weak individual best reply

potential. �

To show that matching problems indeed admit a weak individual best reply potential, we

construct a sequential weak individual best reply potential system.

Let M = (M,W, u) be a matching problem. For a matching x ∈ X, we denote by SM(x)

the set of single men and by SW(x) the set of single women. We define A1 as the set of all

matchings, A2 as the set of all matchings where no matched man prefers to be single, A3

as the set of all individually rational matchings without blocking pairs involving married

women, and A4 as the empty set. Notice that X = A1 ⊇ A2 ⊇ A3 ⊇ A4 = ∅.

For every x ∈ X, let

P1(x) =
∑

m∈M\SM(x)(u
m(x)− 1),

P2(x) =
∑

w∈W\SW(x)(u
w(x)− 1),

P3(x) =
∑

m∈M um(x).

(1)

The function P1 increases in the payoff of the matched men, but also increases if more men

become single. The function P2 increases in the payoffs of the matched women, but also
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increases if more women become single. The function P3 corresponds to the total payoffs

of the men.

Our next result verifies that the above sets and potentials form a sequential weak individual

best reply potential system. To get an intuition, start with a matching x which is not

stable. The matching can be in A1 \ A2, A2 \ A3, or A3\A4. Let k ∈ {1, 2, 3} be such

that x ∈ Ak \Ak+1. We construct an individual best reply which belongs to the set Ak and

increases the corresponding potential. For example, if x ∈ A1 \A2, some men prefer to be

single. A best reply of such a man increases P1 and remains in A1. We provide a similar

argument for each set and the corresponding potential which implies the following result.

Proposition 6.4. Let M = (M,W, u) be a matching problem with associated social

environment ΓM. Then ΓM admits a weak individual best reply potential.

The result is an extension of known results the literature on better/best-reply paths in

matching. Roth and Vande Vate (1990) show that from every matching there is a better

reply path to a stable matching. In our language, every one-to-one matching model has

a weak better reply potential. Our result strengthens Theorem 4.2 in Ackerman et al.

(2011) who also consider individual best replies, but they restrict preferences such that

each individual prefers any partner over being unmatched.

We conclude that there is an individual best reply path to a stable matching, or, using Ap-

pendix B, that the individual best reply dynamics is guaranteed to reach a stable matching

in finite time with probability one.

6.2 Lexicographic Potentials

A lexicographic potential system consists of a set of potentials with a certain priority. Let

Γ = (N, (X, d), E, u) be a social environment and let P = (P1, . . . , P`) be a finite profile of

functions, where, for every k ∈ {1, . . . , `}, Pk : X → R. Consider the strict partial order

on X derived from the lexicographic relationship between the functions in P ,

x �P y ⇐⇒ ∃k′ ∈ {1, . . . , `}, ∀k < k′, Pk(x) = Pk(y) and Pk′(x) > Pk′(y).

Definition 6.5 (Lexicographic potential system). The profile of functions P = (P1, . . . , P`),

where, for every k ∈ {1, . . . , `}, Pk : X → R is a lexicographic weak better reply (weak coali-

tional best reply) [weak individual best reply] potential system for the social environment
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Γ = (N, (X, d), E, u) if, for every x ∈ X,

f(x) = {x} or there exists y ∈ f(x) (y ∈ BR(x)) [y ∈ IBR(x)] such that y �P x.

Proposition 6.6. Let Γ be a finite social environment. If P is a lexicographic weak better

reply (weak coalitional best reply) [weak individual best reply] potential system for Γ, then

Γ has a weak better reply (weak coalitional best reply) [weak individual best reply] potential.

It is straightforward to extend Definition 6.5 and Proposition 6.6 to strong potentials.

Vote Trading To illustrate the usefulness of lexicographic potential systems, we consider

the vote trading model of Casella and Palfrey (2019). In their model, N is a finite set of

voters, who have to vote on a finite set of binary proposals R. For every i ∈ N , for every

r ∈ R, x0ir ∈ N0 is the number of votes that i can initially cast on proposal r.4 However, it

is possible to change x0 by trading votes. A distribution of votes belongs to the finite set

X =
{
x ∈ NNR

0

∣∣for every r ∈ R,
∑

i∈Nx
i
r =

∑
i∈Nx

0i
r

}
.

For each proposal r, the total number of votes
∑

i∈N x
0i
r is odd in order to avoid ties.

Let r ∈ R be a proposal. Voter i has a non-zero intensity zir ∈ R for proposal r, where zir > 0

if i is in favor of r and zir < 0 if i is against proposal r. We define N+
r = {i ∈ N | zir > 0}

and N−r = {i ∈ N | zir < 0} as the voters that are in favor, respectively against, the

implementation of proposal r. Voter i ∈ N casts all votes xir in favor of r if zir > 0 and all

votes xir against r if zir < 0. Let x ∈ X.We obtain v+r (x) =
∑

i∈N+
r
xir and v−r (x) =

∑
i∈N−r x

i
r

as the number of votes in favor, respectively against, proposal r. Let A(x) ⊂ R be the set

of all proposals that are accepted in state x, which are the proposals that obtain a majority

of votes in favor in state x, so A(x) = {r ∈ R | v+r (x) > v−r (x)}. We call A(x) the outcome

of the vote.

The utility of voter i ∈ N at state x ∈ X is given by ui(x) =
∑

r∈A(x) z
i
r. Preferences

are assumed to be strict, i.e., for every x, y ∈ X such that A(x) 6= A(y), for every i ∈ N,
it holds that ui(x) 6= ui(y). The score si(x) of voter i ∈ N at state x ∈ X is given by

si(x) =
∑

r∈R x
i
r|zir|.

The proposals that are decided by a minimal majority are collected in the set M(x) defined

by M(x) = {r ∈ R | |v+r (x)− v−r (x)| = 1}. If a proposal r belongs to M(x), then moving

one vote from the majority to the minority changes the outcome on proposal r.

4We use the notation N0 = {0, 1, 2, . . .}.
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A coalition can move from one state to another by redistributing the votes within the coali-

tion. More formally, let x, y ∈ X. It holds that S ∈ E(x, y) if and only if y−S = x−S. Due to

the assumptions on utility functions, it makes no difference whether we define domination

as in Definition 2.1 or we require improvements to be strict. The social environment for

the vote trading model is denoted by Γvt.

Casella and Palfrey (2019) show that the vote trading model admits a sequence of payoff-

improving trades leading to a core allocation, i.e., a finite better reply path in our language.

By Proposition 3.3, the social environment Γvt admits a weak better reply potential. In

their Example 4, they construct a cycle for another path of better replies, thereby showing

that the game admits no strong better reply potential. In the rest of this section, we

tighten their characterization to include our remaining potentials.

Our next example shows that there are social environments Γvt for which no strong in-

dividual best reply potential exists. This example is a small variation on Example 4 in

Casella and Palfrey (2019).5

Example 6.7. Consider the vote trading situation displayed in Table 1.

Table 1: Each cell shows the preference intensity zir.

Proposal

Individual

1 2 3 4 5 6 7

A 2.3 -1 -1.1 -1.1 1 1 1

B -1 2.3 -1.1 -1.1 1 1 1

C -1.1 -1.1 2.3 -1 1 1 1

D -1.1 -1.1 -1 2.3 1 1 1

In the initial distribution of votes, denoted by x1, each voter is assumed to have one vote

on each proposal. Thus, each proposal passes with minimal majority, so A(x1) = M(x1) =

{A,B,C,D}. In terms of utilities, we have u1(x1) = u2(x1) = u3(x1) = u4(x1) = −0.9 and

u5(x1) = u6(x1) = u7(x1) = 4.

Voters 5, 6, and 7 cannot be part of a deviating coalition as they want all proposals to pass

and they obtain the maximum possible utility at x1. Any domination changes the outcome

5As in Casella and Palfrey (2019), the preferences in Example 6.7 are not strict for expositional clarity;
the example can be easily modified to one with strict preferences.
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of at least one proposal, so any domination requires that at least one of the voters 1, 2,

3, or 4 gives up a vote on his preferred proposal, which is then rejected. The utility of

such a voter can only be increased if all proposals are rejected. Any domination therefore

results in the outcome where all proposals are rejected. One such domination is achieved as

follows: voter 1 trades one vote on A for one vote on B with voter 2 and voter 3 trades his

vote on C for one vote on D with voter 4. The resulting distribution of votes is denoted by

x2. Note that x2 ∈ IBR1(x1). All proposals are rejected in x2 and all proposals are decided

by minimal majorities, so A(x2) = ∅ and M(x2) = {A,B,C,D}. In terms of utilities, we

have that u1(x2) = · · · = u7(x2) = 0.

Any individual best reply to x2 by voter 1 has to lead to a majority for proposal A. At the

same time, a trade needs to change the majority on one of the other proposals, where B is

least painful to 1. Thus, 1 and 2 trading one vote back leads to distribution of votes x3. It

holds that x3 ∈ IBR1(x2), the only proposals that pass are A and B, and both do so with

minimal majority. Utilities are equal to u1(x3) = u2(x3) = 1.3, u3(x3) = u4(x3) = −2.2,

and u5(x3) = u6(x3) = u7(x3) = 2.

From x3, individuals 1 and 2 cannot be involved in any trade which leads to a majority

in favor of proposal C or D. Any best reply to x3 by individual 3 needs to reestablish a

majority for C. Note that 5, 6, 7 vote in favor of C anyway, so 3 needs to get at least one

vote on C from 4. Thus, given the incentives of voter 4, any individual best reply by voter

3 leads to an acceptance of proposals C and D. Let voters 3 and 4 exchange one vote on

proposals C and D. The resulting distribution of votes is given by x4 ∈ IBR3(x3). Notice

that x4 = x1. Thus, we have a cycle of individual best replies, i.e., the social environment

has no strong individual best reply potential by Proposition 3.3. �

The more difficult part of our characterization is to construct a lexicographic weak in-

dividual best reply potential system. For that purpose, let the profile of functions P =

(P1, . . . , Pn+1) be defined by

P1(x) = |M(x)|, x ∈ X,
Pk(x) = sk−1(x), k ∈ {2, . . . , n+ 1}, x ∈ X.

(2)

We need to show that whenever there is a domination, at least one such domination is an

individual best reply and increases the potential in (2). We construct such a domination

by either increasing the number of proposals which are decided by minimal majority to

increase P1 or by shifting votes to increase the score of the deviating coalition member

with the lowest index k to increase Pk.
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Proposition 6.8. The profile of functions P as defined in (2) is a lexicographic weak

individual best reply potential system for Γvt.

Thus, individual best reply dynamics converges to a core element in finite time with prob-

ability one in the vote trading social environment. Yet, particular distributions of votes

might show up multiple times before a stable distribution of votes is reached.

7 Pillage Games

To show some novel applications of potentials, this section considers modifications of the

wealth-equals-power pillage game. We first discuss the basic setup of Jordan (2006) and

the potential properties under the original assumptions. The remainder of the section

analyzes potentials in new variants of the game. The comparison between the different

results shows that more coalitional attachment when pillaging leads to the admission of

more demanding potentials.

7.1 Basic Setup

Consider a game with a finite set of players N = {1, . . . , n}, where n ≥ 2. The set of

allocations of wealth is denoted by Ω = {ω ∈ RN
+ |
∑

i∈N ω
i = 1}. The power of a coalition

S ∈ N at allocation ω ∈ Ω is denoted by α(ω, S) and serves as an input for the effectivity

correspondence, which in turn specifies which pillages, i.e., reallocations of wealth, are

possible.

Intuitively, richer and larger coalitions are more powerful than poorer and smaller ones.

Jordan (2006) formalizes this idea by imposing the following three properties on the power

function. Let x, y ∈ Ω and S, T ∈ N . (1) If S ⊂ T , then α(x, S) ≤ α(x, T ). (2) If,

for every i ∈ S, xi ≤ yi, then α(x, S) ≤ α(y, S). (3) If, for every i ∈ S, xi < yi, then

α(x, S) < α(y, S). For the rest of this section, we impose the more specific assumption that

the power of a coalition S ∈ N at allocation ω ∈ Ω is equal to its wealth α(ω, S) =
∑

i∈S ω
i

as discussed in Section 3 of Jordan (2006).

7.2 Pillaging with no Coalitional Attachment

A pillage game with no coalitional attachment is denoted by PN = (N,Ω, u) and follows

Jordan (2006), who assumes that endowment changes by a pillage are permanent, but

24



coalitions are temporary, i.e., the state is determined only by the distribution of wealth.

In particular, former partners-in-crime are not bound together and can freely pillage each

other in the future. The state space equals X = Ω.

Let x ∈ X. We assume that individuals maximize their wealth, so, for every i ∈ N , we

have ui(x) = xi. We define Z(x) = {i ∈ N |xi = 0} as the set of players with zero wealth

at x. The total wealth of a coalition S ∈ N at x is denoted by x(S) =
∑

i∈S xi.

Let x, y ∈ X. We set S ∈ E(x, y) if and only if there exists a coalition T ∈ N with

S ∩ T = ∅ such that

1. x(S) > x(T ),

2. for all i /∈ S ∪ T, yi = xi.

We call T the pillaged coalition. The first condition requires the power of the pillaging

coalition S to be bigger than the power of the pillaged coalition T . The second condition

restricts a redistribution of resources to S ∪ T . Note that we allow coalition S to refrain

from pillaging all resources of coalition T.

The social environment induced by a pillage game PN with no coalitional attachment is

denoted by ΓPN . We obtain the following result.

Proposition 7.1. Let PN = (N,Ω, u) be a pillage game with no coalitional attachment.

The function P1 : X → R defined by

P1(x) = |Z(x)|, x ∈ X,

is a weak individual best reply potential for the social environment ΓPN . For n = 2, the

function P2 : X → R defined by

P2(x) = |x1 − x2|, x ∈ X,

is a strong better reply potential for ΓPN . For n ≥ 3, ΓPN has no strong individual best

reply potential.

7.3 Partners-in-Crime

A pillage game with partners-in-crime is denoted by PP = (N,Ω, u). Unlike in the case

with no coalitional attachment, one-time partners-in-crime form a bond and are, be it
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morally or by a group-specific contract, not able to pillage each other henceforth. For

example, one might think of settlers who suppress inhabitants or of gang membership. In

the former example, which we will analyze in this section, it seems natural to restrict the

bond to the relation between pillagers. In the latter example, which we address in the next

section, gangs also offer protection to their members when being pillaged.

In this section, a state is described by a profile of wealth levels ω together with a profile of

coalitions C = (Ci)i∈N . Here Ci ⊂ N gives for each individual i the players with whom i

has pillaged in the past. Clearly, j ∈ Ci if and only if i ∈ Cj and we impose the convention

i ∈ Ci for all i ∈ N . We let C be the set of all such possible profiles.

A state x ∈ X = Ω × C consists of a profile of wealth levels ω(x) ∈ Ω and a profile of

coalitions C(x) ∈ C. As before, the power of a coalition is equal to the aggregate wealth of

the members in the coalition. A coalition S ∈ N can move from a state x ∈ X to a state

y ∈ X, i.e., S ∈ E(x, y), if and only if there exists a coalition T ∈ N such that, for every

i ∈ S, Ci(x) ∩ T = ∅ and

1. ω(x)(S) > ω(x)(T ),

2. for all i /∈ S ∪ T, ωi(y) = ωi(x),

3. for all i ∈ S, Ci(y) = Ci(x) ∪ S and for all i /∈ S, Ci(y) = Ci(x).

There are two crucial modifications compared to the previous model. First, the members

of the pillaging coalition may no longer pillage former partners-in-crime. Second, by Con-

dition 3, current partners-in-crime become attached to each other. The social environment

induced by a pillage game PP with partners-in-crime networks is denoted by ΓPP .

Proposition 7.2. Let PP = (N,Ω, u) be a pillage game with partners-in-crime. The

function P1 : X → R defined by

P1(x) = |Z(ω(x))|, x ∈ X,

is a weak individual best reply potential for the social environment ΓPP . For n = 2, the

function P2 : X → R defined by

P2(x) = |ω1(x)− ω2(x)|, x ∈ X,

is a strong better reply potential for ΓPP . For n = 3, the function P3 : X → R defined by

P3(x) = |Z(ω(x))|+
∑
j∈N

∑
i∈Cj(x)

ωi(x), x ∈ X,
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is a strong coalitional best reply potential for ΓPP , but ΓPP has no strong better reply

potential. For n ≥ 4, ΓPP has no strong individual best reply potential.

7.4 Pillaging by Gangs

A pillage game with gang formation is denoted by PG = (N,Ω, u). In such a game, a

pillage with a gang member leads to gang membership. A state consists of the distribution

of wealth and a partition of the set of players into gangs. More formally, if we denote by

Π the collection of partitions of N , we define a state x ∈ X = Ω×Π to consist of a profile

of wealth levels ω(x) ∈ Ω and a partition π(x) ∈ Π. As before, the power of a coalition

S ∈ N is equal to the aggregate wealth ω(x)(S) of the members in the coalition.

The pillaging coalition S may contain members of different gangs. If so, then all the gangs

involved merge into a new gang. If coalition S attacks coalition T, the gang members

G(x, T ) =
⋃
{C∈π(x)|C∩T 6=∅}C of T offer protection to the individuals in T. A coalition

S ∈ N can therefore move from a state x ∈ X to a state y ∈ X, i.e., S ∈ E(x, y), if and

only if there exists a coalition T ∈ N with S ∩G(x, T ) = ∅ such that

1. ω(x)(S) > ω(x)(G(x, T )),

2. ∀i /∈ S ∪ T, ωi(y) = ωi(x),

3. G(x, S) ∈ π(y) and π(y) \ {G(x, S)} ⊂ π(x).

The requirement S ∩ G(x, T ) = ∅ states that the pillaged coalition cannot contain any

gang members of the pillagers. By the modified third condition, all gang members of the

pillaging coalition become part of the new coalitional structure in y and other gangs stay

intact. We denote the social environment induced by a pillage game with gang formation

by ΓPG.

Proposition 7.3. Let PG = (N,Ω, u) be a pillage game with gang formation. For n = 2,

the function P1 : X → R defined by

P1(x) = |ω1(x)− ω2(x)|, x ∈ X,

is a strong better reply potential for ΓPG. For n ≥ 3, the function P2 : X → R defined by

P2(x) = −|π(x)|+
∑

C∈π(x)

(ω(x)(C))2, x ∈ X,
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is a strong coalitional best reply potential for the social environment ΓPG. For n ≥ 3, ΓPG

has no strong better reply potential.

When we compare the three variants of pillage games, the version with no coalitional

attachment admits less demanding types of potential than the variant with partners-in-

crime, which in turn admits less demanding types of potential than the one with pillaging

by gangs. In line with intuition, more coalitional attachment after joint pillages makes it

easier to reach a stable state. For the most general case of n ≥ 3, the jump from partners-

in-crime to gangs is substantial, thereby illustrating the appeal of a stronger coalitional

attachment for stability.

8 Conclusion

We have provided several notions of potential which are suitable for the general class of

social environments. The general ordinal potential function from the literature on normal-

form games (Monderer and Shapley, 1996) has a direct analogue for social environments.

Other concepts in games such as the best reply potential (Voorneveld, 2000) and the

pseudo-potential (Dubey, Haimanko, and Zapelchelnyuk, 2006) are nested with our notions

when we consider the social environment induced by normal-form games.

The notions of better and best reply are straightforward to define for single-player devia-

tions in the context of normal-form games. A key contribution of our paper is to provide

notions of potential when we allow for deviations of coalitions consisting of multiple indi-

viduals and a more general framework of social environments. The nested structure of the

different potentials allows us to compare different environments in terms of their permis-

siveness to different types of potential. Furthermore, we provide a toolkit in the form of

two different methods to construct such potentials.

Our characterizations of potentials for the different social environments such as multilat-

eral trade, group formation, matching, vote trading, and pillage games are tight. On the

one hand, these findings have closed some gaps in the individual literatures. On the other

hand, we can conclude that the studied environments in multilateral trade and coalition

formation have stronger stability properties than the matching and vote trading environ-

ments. We can also compare the stability across different pillage games and conclude

that the variant with gang formation is particularly conducive to stability due to stronger

coalitional attachments.

We see several avenues for future research. For instance, one might construct potentials

in other unexplored environments, address the tightness of such potentials in these en-
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vironments, and analyze the comparative statics of potentials for different environments

under restrictions on the preferences or the effectivity correspondence. A necessary con-

dition for the existence of a potential is the non-emptiness of the core. As such, Knuth

matching problems (Knuth, 1976 and Tamura, 1993) and roommate problems do not admit

such a potential without restrictions on preferences, but may well do so under appropriate

conditions on the primitives.

A Proofs

A.1 Proofs of Section 2

Proof of Proposition 2.4 If fS(x) = {x}, then x ∈ BRS(x), so we are done. Consider

now the case where there is z ∈ fS(x) \ {x}. Then
∑

i∈S u
i(z) >

∑
i∈S u

i(x), so we can find

an ε > 0 such that
∑

i∈S u
i(z) ≥

∑
i∈S u

i(x) + ε. We define

A =

{
y ∈ fS(x)

∣∣∣∣∣∑
i∈S

ui(y) ≥
∑
i∈S

ui(x) + ε

}
.

Note that z ∈ A, so A is non-empty. Let us show next that A is closed. Let (yk)k∈N be

a sequence in A and assume that yk → y. Then as FS(x) = {y ∈ X | S ∈ E(x, y)} is

compact, it follows that S ∈ E(x, y). Next, for every k ∈ N,
∑

i∈S u
i(yk) ≥

∑
i∈S u

i(x) + ε.

By continuity of the function
∑

i∈S u
i, it follows that

∑
i∈S u

i(y) ≥
∑

i∈S u
i(x)+ε. Finally,

for every i ∈ S, for every k ∈ N, we have ui(yk) ≥ ui(x) as yk ∈ fS(x). By continuity of ui,

it follows that ui(y) ≥ ui(x). As such, y ∈ A, as we wanted to show.

As A is a closed subset of the compact set FS(x), the set A is compact.

Let

y∗ ∈ argmax
y∈A

∑
i∈S

ui(y).

As A is non-empty and compact and the function
∑

i∈S u
i is continuous, such a y∗ exists.

Let us show that y∗ ∈ BRS(x). First, we have y∗ ∈ fS(x). As y∗ maximizes the sum of

utilities on A, there is no z ∈ fS(x) such that, for every i ∈ S, ui(z) ≥ ui(y∗), and, for

some j ∈ S, uj(z) > uj(y). This completes the proof.

Proof of Proposition 2.6 From Proposition 2.4, for all S ∈ N such that i ∈ S, the set

BRS(x) is non-empty.

If for all coalitions S ∈ N that contain i and for all states y ∈ BRS(x) it holds that ui(y) =
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ui(x), then we immediately have that IBRi(x) =
⋃
{S∈N|i∈S} BRS(x). Non-emptiness of

IBRi(x) follows as every set BRS(x) is non-empty.

Otherwise, there is at least one coalition S ∈ N that contains i and there is at least one

state z ∈ BRS(x) such that ui(z) > ui(x). In particular, we can find ε > 0 such that

ui(z) ≥ ui(x) + ε.

Consider the set

A =

y ∈ ⋃
{S∈N|i∈S}

fS(x)

∣∣∣∣∣∣ui(y) ≥ ui(x) + ε

 .

The set A is non-empty as it contains z.

We show next that A is closed. Let (yk)k∈N be a sequence in A that converges to y ∈ X.
As N is finite, we can assume without loss of generality that the coalition S is fixed along

the sequence. Then, for every j ∈ S, for every k ∈ N, we have uj(yk) ≥ uj(x). As uj is

continuous, we obtain uj(y) ≥ uj(x). Also ui(yk) ≥ ui(x) + ε, so taking the limit we find

ui(y) ≥ ui(x) + ε. The compactness of FS(x) implies y ∈ FS(x). It follows that y ∈ A.

For every S ∈ N such that i ∈ S it holds that FS(x)∪{x} is compact, so ∪{S∈N|i∈S}FS(x)∪
{x} is compact as well. Since A is a closed subset of the compact set ∪{S∈N|i∈S}FS(x)∪{x},
it follows that A is compact.

Let

yi ∈ argmax
y∈A

ui(y).

As A is non-empty and compact and ui is continuous, such a yi exists. The state yi may

fail to be in IBRi(x) as it may not be in
⋃
{S∈N|i∈S} BRS(x). We use yi to find a state y∗

with ui(y∗) = ui(yi) that belongs to the latter set.

Let T ∈ N with i ∈ T be such that yi ∈ fT (x). We now define the set of states B as those

in fT (x) such that individual i attains the utility level corresponding to yi, so

B = {y ∈ fT (x) | ui(y) = ui(yi)}.

The setB can be written as the intersection of the compact set fT (x), the set (ui)−1({ui(yi)}),
and, for j ∈ S \ {i}, the sets (uj)−1([uj(x),∞)), where the latter sets are closed as the

preimage by a continuous function of a closed set. As an intersection of a compact set and

closed sets, the set B is compact. It is non-empty as it contains yi.

Let

y∗ ∈ argmax
y∈B

∑
j∈T

uj(y).
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As B is non-empty and compact and the function
∑

j∈T u
j is continuous, such a y∗ exists.

Let us show that y∗ ∈ BRT (x). First, we have y∗ ∈ fT (x). Second, as y∗ maximizes the

sum of utilities on B, there is no z ∈ fT (x) such that, for every j ∈ T , uj(z) ≥ uj(y∗), and,

for some j ∈ T , uj(z) > uj(y∗).

Since y∗ maximizes ui on the set A, there cannot be a coalition S ∈ N containing i and a

y ∈ BRS(x) such that ui(y) > ui(y∗). We have shown that y∗ ∈ IBRi(x).

Proof of Proposition 2.10 Let P be a strong individual best reply potential for Γ. Let

x ∈ X be such that f(x) \ {x} 6= ∅. Then there is S ∈ N such that fS(x) \ {x} 6= ∅. By

assumption, BRS(x) 6= ∅. Let y ∈ BRS(x). Since fS(x) \ {x} 6= ∅, there is j ∈ S such that

uj(y) > uj(x). By assumption, IBRj(x) 6= ∅. Let z ∈ IBRj(x). Then uj(z) ≥ uj(y) > uj(x),

so z ∈ IBR(x) \ {x}. Definition 2.8 implies P (z) > P (x). It follows that P is a weak

individual best reply potential for Γ.

Since every individual best reply is also a coalitional best reply and every coalitional best

reply is also a better reply, the other implications in the proposition follow immediately

from the definitions.

A.2 Proofs of Section 3

Proof of Proposition 3.1 Let P be a weak better reply potential for Γ that reaches a

maximum on X. Let x∗ ∈ argmaxx∈X P (x).

Suppose x∗ is not in the core. Then we have f(x∗) \ {x∗} 6= ∅. By the definition of a weak

better reply potential, there exists y ∈ f(x∗) such that P (y) > P (x∗), a contradiction to

the definition of x∗. Consequently x∗ is in the core.

Proof of Proposition 3.3 We give the proof for the strong better reply and the weak

better reply potentials. The other cases are similar and those proofs are hence omitted.

Let P be a strong better reply potential for Γ and let (xk)k∈K with K ∈ K be a better

reply path. We need to show that K is finite. Towards a contradiction assume that it is

not, so K = N. For all k ∈ K−, we have xk+1 ∈ f(xk) \ {xk}, so as P is a strong better

reply potential it follows that P (xk+1) > P (xk). As X is finite, there must be k1, k2 ∈ N
with k1 < k2 such that xk1 = xk2 , but this contradicts P (xk1) < P (xk2). Consequently, K

is finite.

For the reverse, assume that every better reply path is finite. Define the binary relation �
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on X by y � x if and only if y ∈ f(x) \ {x}. We show that � is an acyclic relation.

To obtain a contradiction, suppose that there is a sequence (xk)
m
k=1 such that

x1 � xm � xm−1 � · · · � x2 � x1.

But then, the infinite path (xk)k∈N with xk = xj whenever k mod m = j is an infinite

better reply path, which gives the desired contradiction. Consequently, � is an acyclic

relation.

As � is acyclic, we can use Szpilrajn’s theorem (Szpilrajn, 1930) to extend it to a total

linear order, say �∗, i.e., x � y implies x �∗ y and �∗ is transitive, asymmetric, and total.

We define the function P : X → R by

P (x) = |{y ∈ X|x �∗ y}|, x ∈ X,

so P (x) corresponds to the number of states domined by x under �∗ . Let us show that

P is a strong better reply potential. Let y ∈ f(x) \ {x}. Then y � x, so y �∗ x and, for

every z ∈ X, if x �∗ z then by transitivity of �∗ also y �∗ z. As such, P (y) > P (x) as we

wanted to show.

Let us now prove the second part. Let P be a weak better reply potential for Γ and let

x ∈ X. We want to construct a finite better reply path that starts at x and ends at a core

element. Let x1 = x. If x1 is in the core, the path (x1) has the desired properties. If x1

does not belong to the core, then there is x2 ∈ f(x1) \ {x1} such that P (x2) > P (x1). If x2

is in the core, then (x1, x2) is the desired path. Else, there is x3 ∈ f(x2) \ {x2} such that

P (x3) > P (x2). Continue this procedure to obtain a path (xk)k∈K with K ∈ K such that

for all k ∈ K−, xk+1 ∈ f(xk) \ {xk} and P (xk+1) > P (xk). This path cannot be longer

than |X| − 1, the number of states minus one, which is finite. The last state on the path

must therefore be in the core.

For the reverse, assume that from every state x ∈ X there is a finite better reply path that

starts at x and ends at a core element. For every x ∈ X, define the potential of x by the

length of the shortest better reply path from x to a core element of Γ times −1.

Let x ∈ X be such that f(x)\{x} 6= ∅. Let (x1, . . . , xm) with x1 = x and xm a core element

be such a shortest better reply path. Since x is not a core element, it holds that m ≥ 2 and

that x2 ∈ f(x1). It holds that P (x2) = P (x1) + 1. We have shown that there is y ∈ f(x)

such that P (y) > P (x). It follows that P is a weak better potential for Γ.
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A.3 Proofs of Section 4

Proof of Proposition 4.3 The first equivalence follows directly from the definitions.

For the second implication, let G be a best reply potential game with potential P . Towards

a contradiction, assume ΓG is not a strong best reply potential social environment. This

means that there exists i ∈ N, a strategy profile x = (xi, x−i) ∈ X and a strategy profile

z = (zi, x−i) ∈ BRi(x) \ {x} for which P (z) ≤ P (x). From the definition of BRi(x) it

follows that:

zi ∈ argmax
yi∈Xi

ui(yi, x−i).

and ui(zi, x−i) > ui(xi, x−i). As G is a best reply potential game, we have

zi ∈ argmax
yi∈Xi

P (yi, x−i).

In particular, it holds that P (z) ≥ P (x). We conclude that P (z) = P (x), so

xi ∈ argmax
yi∈Xi

P (yi, x−i).

Again, using the fact that G is a best reply potential game, this implies that xi ∈
argmaxyi∈Xi ui(yi, x−i), contradicting ui(zi, x−i) > ui(xi, x−i).

We now show the third implication. Let ΓG be a strong best reply social environment

with a regular potential P. Towards a contradiction, suppose that P is not a pseudo-

potential for G. Then there is an i ∈ N, x−i ∈ X−i, and yi ∈ argmaxxi∈Xi P (xi, x−i) such

that yi /∈ argmaxxi∈Xi ui(xi, x−i). Next, since by assumption BRi(x) 6= ∅, we can take

zi ∈ argmaxxi∈Xi ui(xi, x−i). It follows that (zi, x−i) 6= (yi, x−i). In particular, (zi, x−i) ∈
BRi(y

i, x−i)\{(yi, x−i)}. As P is a strong best reply potential for ΓG we can conclude that

P (zi, x−i) > P (yi, x−i). This contradicts yi ∈ argmaxxi∈Xi P (xi, x−i).

For the last implication, let G be a pseudo-potential game and let P be a pseudo-potential

for G. We show that P is a weak best reply potential for the social environment ΓG. Let

x ∈ X be such that f(x) \ {x} 6= ∅. Then there is i ∈ N such that BRi(x) \ {x} 6= ∅.
Let Z = argmaxyi∈Xi P (yi, x−i), which is a non-empty set by the regularity of P. Then as

G is a pseudo-potential game, Z ⊂ argmaxyi∈Xi u(yi, x−i). This implies that xi /∈ Z. For

zi ∈ Z, we have that P (zi, x−i) > P (x) and (zi, x−i) ∈ BR{i}(x) ⊂ BR(x), which concludes

the proof.
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Proof of Proposition 4.4 Let ΓG be a weak best reply potential social environment with

potential P. Without loss of generality, we can assume that, for every x ∈ X, P (x) > 0.

Let Z be the set of all strategies x ∈ X such that x ∈ BR{1}(x) or x ∈ BR{2}(x). Define

the function P̃ : X → R by

P̃ (x) =

P (x) if x ∈ Z

0 if x /∈ Z.

Let us show that P̃ is a pseudo-potential for the game G. Because G is a finite game,

P̃ is regular. It remains to be shown that, for every i ∈ {1, 2}, for every x−i ∈ X−i,

argmaxyi∈Xi P̃ (yi, x−i) ⊂ argmaxyi∈Xi ui(yi, x−i). We prove this for i = 1. The proof for

i = 2 is analogous.

Let x1 ∈ argmaxy1∈X1 P̃ (y1, x2). We have that Z ∩ {(y1, x2)|y1 ∈ X1} is non-empty,

so (x1, x2) ∈ Z. Towards a contradiction, assume that x1 /∈ argmaxy1∈X1 u1(y1, x2).

As (x1, x2) ∈ Z it must therefore be that (x1, x2) ∈ BR{2}(x
1, x2), which implies that

x2 ∈ argmaxy2∈X2 u2(x1, y2). As ΓG is a weak best reply potential social environment and

BR(x1, x2) \ {(x1, x2)} 6= ∅ we must have that there is (z1, z2) ∈ BR(x1, x2) for which

P (z1, z2) > P (x1, x2). Notice that this also implies that (z1, z2) ∈ Z, so P̃ (z1, z2) =

P (z1, z2) > P (x1, x2) = P̃ (x1, x2).

Given that (x1, x2) ∈ BR{2}(x
1, x2) it follows that (z1, z2) ∈ BR{1}(x

1, x2) so z2 = x2

and therefore P̃ (z1, x2) > P̃ (x1, x2). This, however, contradicts the assumption that x1 ∈
argmaxy1∈X1 P̃ (y1, x2).

A.4 Proofs of Section 5

Proof of Proposition 5.1 Let x, y ∈ X be such that y ∈ f(x) \ {x}. Then there is

S ∈ E(x, y) such that, for every i ∈ S, ui(y) ≥ ui(x), and, for some j ∈ S, uj(y) > uj(x).

In addition, for every i ∈ N \ S, we have xi = yi. It follows that

P (x) =
∑
i∈N

ui(xi) =
∑
i∈S

ui(xi) +
∑
i∈N\S

ui(yi) <
∑
i∈S

ui(yi) +
∑
i∈N\S

ui(yi) = P (y).

Hence P is a strong better reply potential.

Proof of Proposition 5.2 Let x, y ∈ X be such that y ∈ f(x) \ {x}.

First, consider the case where there is i ∈ N such that y = x ∪ {i}, so y is a larger
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coalition. Since y ∈ f(x) \ {x}, it holds that ui(y) > ui(x) = 0, where the equality holds

since i /∈ x. It follows that ϕi(y, v|y) = ui(y) > 0. By Hart and Mas-Colell (1989), it holds

that ϕi(y, v|y) = P (y)− P (x), so P (y)− P (x) > 0 as was to be shown.

Second, consider the case where there is i ∈ N such that y = x \ {i}, so y is a smaller

coalition. Since y ∈ f(x) \ {x}, it holds that 0 = ui(y) > ui(x), where the equality holds

since i /∈ y. It follows that ϕi(x, v|x) = ui(x) < 0. By Hart and Mas-Colell (1989), it holds

that ϕi(x, v|x) = P (x)− P (y), so P (y)− P (x) > 0 as was to be shown.

A.5 Proofs of Section 6

Proof of Proposition 6.2 We give the proof for the sequential weak better reply po-

tential system. The proofs for the other cases are similar and hence omitted.

Let AP = ((A1, P1), . . . , (A`, P`)) be a sequential weak better reply potential system. We

construct from any initial state a finite better reply path to a core element. The proof then

follows from Proposition 3.3.

Let x ∈ Ak 6= ∅. We show that we can reach a state inside the core or a state in Ak+1

in at most finitely many iterations. If x ∈ Ak+1, we are done. If x ∈ Ak \ Ak+1, either

f(x) = {x} and we are done or f(x)\{x} 6= ∅ and there is y ∈ Ak such that Pk(y) > Pk(x).

After a finite number of iterations, we find a state z such that f(z) = {z}, in which case

z is in the core, or f(z) \ {z} 6= ∅ and z ∈ Ak+1. Since the number of sets Ak is finite, we

reach a state z′ such that f(z′) = {z′} after at most finitely many iterations. Thus, from

every initial state there is a finite better reply path to a core element.

Proof of Proposition 6.4 To establish the proposition, we show that AP as defined in

(1) is a sequential weak individual best reply potential system.

Let x ∈ A1 \ A2. Then there is a man m who is matched in x but prefers to be single.

Either m matches with his most preferred women among all blocking pairs that involve

m or m becomes single, in case he prefers this. Let y be the new matching. Notice that

y ∈ IBRm(x) ∩ A2.

If m forms a blocking pair, the potential increases by um(y) − um(x) > 0. If due to the

formation of a blocking pair another man m′ becomes single, the potential further increases

by 1− um′(x) > 0. If m becomes single, the potential increases by 1− um(x) > 0.

Let x ∈ A2 \ A3. Thus, no man who is matched in x prefers to be single and there is a

married woman w that does not satisfy the individual rationality condition or can form
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a blocking pair. Pick such a woman w. Either w matches with her most preferred man

among all blocking pairs that involve w or w becomes single, in case she prefers this. Let

y be the new matching. Notice that y ∈ IBRw(x).

If w decides to become single and was previously married, the potential increases by 1 −
uw(x) > 0. Instead, if w forms a blocking pair with m, then the potential increases by

uw(y)− uw(x) > 0. If due to the formation of the blocking pair (m,w) some other women

w′ becomes single, the potential further increases by 1− uw′(x) > 0.

We need to show that y ∈ A2, so it is individually rational for all men. The only potential

new match that was formed was (m,w). As m weakly prefers his situation in x over being

single, and as he prefers to be married to w compared to his situation in x, he prefers to

be married in y, i.e., the matching y is individually rational for men.

Let x ∈ A3\A4 = A3 and assume that x is not stable. This means that x satisfies individual

rationality and has no blocking pairs that involve a married woman. As x is not stable,

there should be a blocking pair (m,w) for which w is single.

Let m′ be the most preferred man for w among all blocking pairs that involve w. Let

y = x+ (m′, w).

Notice that y ∈ IBRw(x). As w is single in x, the only man whose utility changes is m′.

His utility um
′
(y)− um′(x) > 0 increases, thereby increasing the potential.

We need to show that y ∈ A3. First, as the matching x satisfies individual rationality and

only one new blocking pair is formed, individual rationality is also satisfied in y. Next, we

need to show that there is no blocking pair in y involving a married women. Suppose there

is one and recall that um(y) ≥ um(x) for all men m.

If the blocking pair is (m̃, w̃), where w̃ 6= w is married in x, then (m̃, w̃) is also a blocking

pair in x, contradicting the assumption that x ∈ A3.

If the blocking pair involves w, say (m̃, w), man m′ cannot have been the most preferred

partner for w among all blocking pairs, a contradiction.

Proof of Proposition 6.6 We give the proof for the weak better reply potential. The

other cases are similar and hence omitted. Let P be a lexicographic weak better reply

potential system for Γ. We construct, from any initial state, a finite better reply path to a

core element. The proof then follows from Proposition 3.3.

Let x ∈ X. If x is in the core, there is nothing to prove. If not, then there is a y ∈ f(x)\{x}
such that y �P x. If y is in the core, we are done. If not, then there is z ∈ f(y) \ {y} such

36



that z �P y. Iterating this argument, as �P is acyclic and X is finite, we arrive at a core

element in a finite number of steps.

Proof of Proposition 6.8 We show that P as defined in (2) is a lexicographic weak

individual best reply potential system for Γvt. The proof consists of three steps. The first

step shows that if a state is dominated by another state and there is a proposal which was

not decided by a minimal majority for which the outcome changes, then we can also find

a domination with the same set of accepted proposals as in the earlier domination and a

higher number of proposals which are decided by a minimal majority. The second step

demonstrates that if a state is dominated by another state such that the outcome only

changes for proposals which are decided by a minimal majority, then for every voter in the

deviating coalition there is a domination with the same set of accepted proposals as in the

earlier domination, the same set of proposals which are decided by a minimal majority as

in the original state, and such that the score of the given voter increases. The third step

establishes the statement of the proposition.

Step 1. If there is S ∈ N and x′ ∈ fS(x) such that (A(x)∆A(x′)) \M(x) 6= ∅, then there

is y ∈ f(x) such that A(y) = A(x′) and P1(y) > P1(x).

Let S ∈ N , x ∈ X, and x′ ∈ fS(x) be such that (A(x)∆A(x′)) \ M(x) 6= ∅. Since

(A(x)∆A(x′)) \M(x) 6= ∅, there is at least one proposal in A(x)∆A(x′) which involves a

non-minimal majority at x. We show that there is y ∈ fS(x) such that A(y) = A(x′) and

M(x) ( M(y), i.e., coalition S has a deviation that results in the same set of accepted

proposals as x′ and increases the number of proposals which are decided by a minimal

majority.

For every proposal r ∈ R \ (A(x)∆A(x′)), the outcome does not change, so we define

yr = xr, thereby guaranteeing that if r ∈ M(x), then r ∈ M(y), and if r ∈ A(x′), then

r ∈ A(y).

Next consider the case where A(x) \A(x′) 6= ∅ and r ∈ A(x) \A(x′). It holds that v+r (x) >

v−r (x) and v+r (x′) < v−r (x′). For every i ∈ N \ S, we define yir = xir = x′ir . For every i ∈ S,
we take yir ∈ N0 to be such that

∑
j∈N+

r
yjr =

∑
j∈N−r y

j
r − 1. This can always be achieved

by transferring less votes from voters in S ∩N+
r to voters in S ∩N−r if necessary. We have

that r /∈ A(y) and r ∈M(y).

Finally consider the case where A(x′) \ A(x) 6= ∅ and r ∈ A(x′) \ A(x). It holds that

v+r (x) < v−r (x) and v+r (x′) > v−r (x′). For every i ∈ N \S, we define yir = xir = x′ir . For every

i ∈ S, we take yir ∈ N0 to be such that
∑

j∈N+
r
yjr =

∑
j∈N−r y

j
r + 1. This can always be
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achieved by transferring less votes from voters in S ∩N−r to voters in S ∩N+
r if necessary.

We have that r ∈ A(y) and r ∈M(y).

Our construction ensures that A(y) = A(x′).

It holds that S ∈ E(x, y) and, for every i ∈ S, ui(y) = ui(x′) > ui(x), so y ∈ fS(x).

Moreover, it holds that M(x) ⊂M(y) and ∅ 6= (A(x)∆A(x′)) \M(x) ⊂M(y), so M(x) (
M(y) and P1(y) > P1(x).

Step 2. If there is S ∈ N and x′ ∈ fS(x) \ {x} such that (A(x)∆A(x′)) ⊂ M(x),

then, for every i ∈ S, there is y ∈ fS(x) such that A(y) = A(x′), M(y) = M(x), and

Pi+1(y) > Pi+1(x).

Let S ∈ N , x ∈ X, and x′ ∈ fS(x) \ {x} be such that (A(x)∆A(x′)) ⊂ M(x), so the

proposals for which the outcome changes are decided by a minimal majority in x. For

every i ∈ S, let Rb(i) be the set of proposals where i benefits from changing state x to

state x′ and R`(i) be the set of proposals where i loses from changing state x to state x′,

so

Rb(i) = {r ∈ R | [zir > 0 and r ∈ A(x′) \ A(x)] or [zir < 0 and r ∈ A(x) \ A(x′)]},
R`(i) = {r ∈ R | [zir > 0 and r ∈ A(x) \ A(x′)] or [zir < 0 and r ∈ A(x′) \ A(x)]}.

For every i ∈ S, since ui(x′) > ui(x), it holds that Rb(i) 6= ∅. Moreover, for every r ∈
A(x)∆A(x′), there is i ∈ S such that r ∈ Rb(i) and there is i ∈ S such that r ∈ R`(i) and

xir > 0 as otherwise it would not be possible that the outcome on proposal r changes when

going from state x to state x′.

Let i ∈ S. We now construct the state y with the desired properties as stated in Step 2.

For proposals r outside A(x)∆A(x′), we define yr = xr. For voters j outside S, we define

yj = xj = x′j. For every proposal r ∈ Rb(i), let yir = xir + 1, choose a voter j ∈ S such that

r ∈ R`(j) and xjr > 0, define yjr = xjr − 1, and keep the votes on proposal r unchanged for

other coalition members. For every proposal r ∈ R`(i) such that xir > 0, define yir = xir−1,

choose a voter j ∈ S such that r ∈ Rb(j), define yjr = xjr + 1, and keep the number of votes

on proposal r unchanged for the other coalition members. For every proposal r ∈ R`(i)

such that xir = 0, define yir = xir and transfer one vote from a voter i1 ∈ S such that

r ∈ R`(i1) and xi
1

r > 0 to a voter i2 ∈ S such that r ∈ Rb(i2) and keep the number of votes

on proposal r unchanged for the other coalition members. Since (A(x)∆A(x′)) ⊂M(x), an

appropriate transfer of a single vote is sufficient to guarantee that A(y) = A(x′). It holds
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that
si(y)− si(x) =

∑
r∈Rb(i)(y

i
r − xir)|zi|+

∑
r∈R`(i)(y

i
r − xir)|zi|

≥
∑

r∈Rb(i) |zi| −
∑

r∈R`(i) |zi|
= ui(y)− ui(x) > 0.

Step 3. P is a lexicographic weak individual best reply potential system.

Let x ∈ X. If f(x) = {x}, then we are done, so consider the case where f(x) \ {x} 6= ∅.

Let i ∈ N be the voter with the lowest index for which there is S ∈ N with i ∈ S

such that fS(x) \ {x} 6= ∅. Since the state space is finite, it holds that IBRi(x) 6= ∅. Let

x′ ∈ IBRi(x) and S ∈ N be such that x′ ∈ fS(x). From the choice of i we have that x′ 6= x.

If (A(x)∆A(x′)) \M(x) 6= ∅, then we use the construction in Step 1 to find y ∈ fS(x) such

that A(y) = A(x′) and P1(y) > P1(x). This implies y ∈ IBRi(x) and y �P x. Otherwise, it

holds that (A(x)∆A(x′)) ⊂M(x). Following the construction in Step 2, we find y ∈ fS(x)

such that A(y) = A(x′), M(y) = M(x), and si(y) > si(x). For every j ∈ {1, . . . , i− 1}, it

holds that j /∈ S and yj = xj, so sj(y) = sj(x). It follows that y ∈ IBRi(x) and y �P x.

A.6 Proofs of Section 7

Proof of Proposition 7.1 We first show that P1 is a weak individual best reply poten-

tial. Let x ∈ X be such that f(x)\{x} 6= ∅. Then there is S ∈ N such that fS(x)\{x} 6= ∅.
Let i ∈ S be such that xi > 0. Such an individual exists, since otherwise coalition S cannot

pillage another coalition. It holds that y ∈ IBRi(x) if and only if there is T ∗ ⊂ N \ {i}
which attains the maximum value of x(T ) among all coalitions T ⊂ N \ {i} such that

x(T ∗) < x(N\T ∗), yi = xi+x(T ∗), for every j ∈ T ∗, yj = 0, and for every j ∈ N\(T ∗∪{i}),
yj = xj. Notice that the finiteness of the collection of subsets of N \ {i} ensures the exis-

tence of T ∗ and the non-emptiness of IBRi(x). Since fS(x) \ {x} 6= ∅ and i ∈ S, there is

j ∈ T ∗ such that xj > 0, as otherwise i would not improve from the pillage. It holds that

yj = 0, so we conclude that P1(y) = |Z(y)| > |Z(x)| = P1(x). We have shown that P1 is a

weak individual best reply potential.

We show next that for n = 2, the function P2 is a strong better reply potential. Let x ∈ X
and y ∈ f(x) \ {x}, so x 6= (1/2, 1/2). Without loss of generality, we can assume that

x1 > x2. It holds that y1 > x1 > x2 > y2, so

P2(y) = |y1 − y2| > |x1 − x2| = P2(x).

We have shown that P2 is a strong better reply potential.
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Finally, let n ≥ 3. We construct an individual best reply path which cycles, at odds with

the existence of a strong individual best reply potential by Proposition 3.3. Let x1 ∈ X be

such that x11 = 2/3, x21 = 1/3, and, for every i ∈ N \ {1, 2}, xi1 = 0. The unique individual

best reply for individual 3 is to form a coalition with individual 1 and pillage individual

2, resulting in the state x2 ∈ X where x12 = 2/3, x32 = 1/3, and, for every i ∈ N \ {1, 3},
xi2 = 0. Next, the unique individual best reply for individual 2 is to form a coalition with

individual 1 and pillage individual 3, resulting in the state x3 = x1.

Proof of Proposition 7.2 We first show that P1 is a weak individual best reply potential

for ΓPP . Let x ∈ X be such that f(x) \ {x} 6= ∅. Then there is S ∈ N such that

fS(x) \ {x} 6= ∅. Let i ∈ S be such that xi > 0. Such an individual exists, since otherwise

coalition S cannot pillage another coalition. The neighborhood of a coalition T ∈ N in

C ∈ C is denoted by NT (C) = ∪i∈TCi. It holds that y ∈ IBRi(x) if and only if there is

T ∗ ∈ N which attains the maximum value of ω(x)(T ) among all coalitions T ∈ N such

that i /∈ NT (C(x)) and x(T ) < x(N \NT (C(x))) and, moreover, yi = xi +x(T ∗), for every

j ∈ T ∗, yj = 0, and for every j ∈ N \ (T ∗ ∪ {i}), yj = xj. The finiteness of N together

with the fact that fS(x) \ {x} 6= ∅ and i ∈ S ensures the existence of a non-empty T ∗ and

the non-emptiness of IBRi(x). Since fS(x) \ {x} 6= ∅, there is j ∈ T ∗ such that xj > 0. We

use that yi > xi > 0 and yj = 0 < xj to derive that Z(ω(x)) ( Z(ω(y)). We conclude that

P1(y) = |Z(ω(y))| > |Z(ω(x))| = P1(x), so P1 is a weak individual best reply potential for

ΓPP .

We show next that for n = 2, the function P2 is a strong better reply potential for ΓPP .

Let x ∈ X and y ∈ f(x) \ {x}, so ω(x) 6= (1/2, 1/2), C1(x) = {1}, and C2(x) = {2}.
Without loss of generality, we can assume that ω1(x) > ω2(x). It holds that ω1(y) >

ω1(x) > ω2(x) > ω2(y), so

P2(y) = |ω1(y)− ω2(y)| > |ω1(x)− ω2(x)| = P2(x),

so P2 is a strong better reply potential for ΓPP .

Let n = 3. We show that P3 is a strong coalitional best reply potential for ΓPP .

Let x ∈ X be such that C1(x) = {1}, C2(x) = {2}, and C3(x) = {3}. Consider a

coalition S ∈ N consisting of a single player. Let y ∈ BRS(x) \ {x}. The individual in S

must have positive wealth, whereas the wealth of any pillaged individual becomes zero, so

40



|Z(ω(y))| ≥ |Z(ω(x))|+ 1. Since C1(y) = {1}, C2(y) = {2}, and C3(y) = {3}, we have∑
j∈N

∑
i∈Cj(y)

ωi(y) =
∑
i∈N

ωi(y) =
∑
i∈N

ωi(x) =
∑
j∈N

∑
i∈Cj(x)

ωi(x),

so P3(y) > P3(x). Consider a coalition S ∈ N with at least two players. Let y ∈ BRS(x) \
{x}. We use n = 3 to conclude that coalition S must have exactly two members. At

most one member of S can have zero wealth, as otherwise coalition S is not able to pillage

another coalition. The wealth of the pillaged individual goes from positive to zero, so

|Z(ω(y))| ≥ |Z(ω(x))|. The total wealth of coalition S increases, so

∑
j∈N

∑
i∈Cj(y) ω

i(y) = 2
∑

i∈S ω
i(y) +

∑
i∈N\S ω

i(y) = 2
∑

i∈S ω
i(y) = 2

∑
i∈N ω

i(x)

>
∑

i∈N ω
i(x) =

∑
j∈N

∑
i∈Cj(x) ω

i(x).

It follows that P3(y) > P3(x).

Let x ∈ X be such that, for some i ∈ N, |Ci(x)| ≥ 2. Let y ∈ BR(x) \ {x}. It follows that

two of the coalitions in C(x) contain two elements and one coalition in C(x) is a singleton.

Without loss of generality assume that C1(x) = C2(x) = {1, 2} and C3(x) = {3}. It now

holds that, for every i ∈ N, Ci(y) = Ci(x). Let S ∈ N be such that y ∈ BRS(x). It

holds that S either consists of a single player or S = {1, 2}. If S = {1} or S = {2}, then

individual 3 is pillaged, |Z(ω(y))| = |Z(ω(x))|+ 1 and

∑
j∈N

∑
i∈Cj(y) ω

i(y) = 2(ω1(y) + ω2(y)) + ω3(y) > 2(ω1(y) + ω2(y)) = 2
∑

i∈N ω
i(x)

> 2(ω1(x) + ω2(x)) + ω3(x) =
∑

j∈N
∑

i∈Cj(x) ω
i(x),

so P3(y) > P3(x). If S = {3}, then |Z(ω(y))| ≥ |Z(ω(x))|+ 1, whereas ω1(x) + ω2(x) < 1,

so
P3(y) = |Z(ω(y))|+ 2(ω1(y) + ω2(y)) + ω3(y)

≥ |Z(ω(x))|+ 1 + 2(ω1(y) + ω2(y)) + ω3(y)

≥ |Z(ω(x))|+ 1 +
∑

i∈N ω
i(x)

> |Z(ω(x))|+ 2(ω1(x) + ω2(x)) + ω3(x)

= P3(x).

Finally, if S = {1, 2}, then ω3(y) = 0, so |Z(ω(y))| ≥ |Z(ω(x))|, and

∑
j∈N

∑
i∈Cj(y) ω

i(y) = 2
∑

i∈S ω
i(y) +

∑
i∈N\S ω

i(y) = 2
∑

i∈S ω
i(y) = 2

∑
i∈N ω

i(x)

>
∑

i∈N ω
i(x) =

∑
j∈N

∑
i∈Cj(x) ω

i(x),

and therefore P3(y) > P3(x).
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We now construct a better reply path with cycles, which rules out the existence of a

strong better reply potential by Proposition 3.3. Let x1 ∈ X be such that C1(x1) =

C2(x1) = {1, 2}, C3(x1) = {3}, and ω(x1) = (4/7, 1/7, 2/7). It holds that x2 defined by

C1(x2) = C2(x2) = {1, 2}, C3(x2) = {3}, and ω(x2) = (4/7, 0, 3/7) belongs to f{3}(x1). In

fact, x2 is an individual best reply for individual 3. Since x3 = x1 ∈ f{1,2}(x2), we have

found the desired better reply path with cycles.

Let n ≥ 4. We construct an individual best reply path with cycles, which rules out the

existence of a strong individual best reply potential by Proposition 3.3. Let x1 be such

that C1(x1) = C2(x1) = {1, 2}, C3(x1) = C4(x1) = {3, 4}, for every i ∈ N \ {1, 2, 3, 4},
Ci(x1) = {i}, ω1(x1) = 2/5, ω2(x1) = 1/5, and ω3(x1) = 2/5. Since ω(x) ∈ Ω, the wealth

levels of all other individuals are equal to zero. The only possibility for individual 4 is

to form a coalition with individual 3 and pillage individual 2. From the perspective of

individual 4, the best option is to transfer all the wealth of individual 2 to individual 4,

resulting in x2 such that C(x2) = C(x1), ω
1(x2) = 2/5, ω3(x2) = 2/5, and ω4(x2) = 1/5.

By an analogous argument, we find that x3 = x1 ∈ IBR2(x2) which yields the individual

best reply path with cycles.

Proof of Proposition 7.3 For n = 2, apart from the notation for gang membership,

there is no difference between the social environments ΓPP and ΓPG. The result therefore

follows from Proposition 7.2.

Let n ≥ 3. We show that P2 is a strong coalitional best reply potential. For every x ∈ X,
it holds that

1
n
≤
∑

C∈π(x)

(ω(x)(C))2 ≤ 1,

where the minimum value 1/n is attained for the partition of the players into singletons

and a uniform wealth distribution and the maximum value 1 is obtained when a single

coalition has wealth 1. Let x, y ∈ X be such that y ∈ BR(x) \ {x}. From the definition of

the effectivity correspondence, it follows that |π(y)| ≤ |π(x)|.

Consider the case where |π(y)| < |π(x)| which implies |π(y)| ≤ |π(x)| − 1. We have that

P (x) = −|π(x)|+
∑

C∈π(x)(ω(x)(C))2

≤ −|π(x)|+ 1

< −|π(y)|+ 1
n

≤ −|π(y)|+
∑

C∈π(y)(ω(y)(C))2

= P (y).
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Next consider the case where |π(y)| = |π(x)|. Let S ∈ N be such that y ∈ BRS(x). Let

T ∈ N be the pillaged coalition. Since ω(x)(S) > ω(x)(G(x, T )), we can assume that

T = G(x, T ). Let C ∈ π(x) be such that S ⊂ C. Let D1, . . . , D` ∈ π(x) be such that

G(x, T ) = ∪`k=1Dk. We define a = ω(x)(C) > 0 and, for k = 1, . . . , `, bk = ω(x)(Dk).

It follows that ω(y)(C) = a +
∑`

k=1 bk and, for every k = 1, . . . , `, ω(y)(Dk) = 0. Since

y ∈ BR(x) \ {x}, there is k ∈ {1, . . . , `} such that bk > 0. We have that

P (y)− P (x) = −|π(y)|+
∑

C∈π(y)(ω(y)(C))2 + |π(x)| −
∑

C∈π(x)(ω(x)(C))2

= (a+
∑`

k=1 bk)
2 − a2 −

∑`
k=1 b

2
k > 0.

We finally show that when n ≥ 3, a strong better reply potential does not exist.

Suppose P : X → R is a strong better reply potential. Fix an arbitrary partition π ∈ Π

for which {1}, {2}, {3} ∈ π. We define

X = {x ∈ X | π(x) = π and, for every i ∈ N \ {1, 2, 3}, ωi(x) = 0}.

Let x ∈ X be such that ω1(x) > 1/2 and ω2(x) > ω3(x). For every y ∈ X such that

ω1(y) = ω1(x) and ω2(y) > ω2(x), it holds that y ∈ f(x) \ {x}, so P (y) > P (x), as

coalition {2} can pillage coalition {3}. For every y ∈ X such that ω1(y) > ω1(x), it holds

that y ∈ f(x) \ {x}, so P (y) > P (x), as coalition {1} can pillage coalition {2, 3}.

For every a ∈ (1/2, 1), we define

Q(a) = {P (x) ∈ R | x ∈ X, ω1(x) = a, ω2(x) > ω3(x)}.

It holds that Q(a) has infinitely many elements, so there is a rational number q(a) ∈ Q
for which there is p ∈ Q(a) with p ≤ q(a) and there is p ∈ Q(a) with p ≥ q(a). If a1 < a2,

then q(a1) < q(a2), so the set

Q̃ = {q(a) ∈ Q | 1/2 < a < 1}

contains uncountably many rational numbers, a contradiction. Consequently, ΓPG has no

strong better reply potential.
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B Markov Chains

Instead of deterministic paths, we can also use a stochastic framework to enable transfers

of results from literatures like evolutionary game theory. Let X be a finite set of states. A

Markov chain M on X associates with every pair of states (x, y) ∈ X ×X a non-negative

number M(x, y) such that, for all x ∈ X, we have
∑

y∈XM(x, y) = 1, where M(x, y) gives

the probability of going from state x to state y in one step.

Definition B.1. Let Γ = (N, (X, d), E, u) be a social environment with a finite state space.

A Markov chain M on X is a better reply Markov chain for Γ if for all x ∈ X the following

two statements hold:

• If f(x) = {x} then M(x, x) = 1.

• If f(x)\{x} 6= ∅ then for all y ∈ f(x)\{x}, M(x, y) > 0 and
∑

y∈f(x)\{x}M(x, y) = 1.

To define a coalitional best reply Markov chain (individual best reply Markov chain), we

replace f(x) by BR(x) (IBR(x)) in the definition of a better reply Markov chain.

A better reply Markov chain which starts at a state x induces a better reply path as defined

in Definition 3.2. As such, if the social environment has a strong better reply potential, any

strong better reply path is finite and it takes at most |X|−1 steps to reach a core element.

If x is in the core then it will stay there forever as M(x, x) = 1. A similar observation can

be made for the best reply potentials.

For a weak potential, there is a positive probability to reach a core element in a finite

number of steps from every state. As such, the process gets absorbed at a core element

with probability one. We formalize the previous statements in the following proposition.

Proposition B.2. Let Γ = (N, (X, d), E, u) be a social environment with a finite state

space.

• If M is a better reply (coalitional best reply) [individual best reply] Markov chain

for Γ and if Γ has a strong better reply (coalitional best reply) [individual best reply]

potential, then any path of the Markov chain will reach a core element in at most

|X| − 1 steps.

• If M is a better reply Markov chain and if Γ admits a potential, then the Markov

chain will reach a core element with probability 1.

Proof. The first statement follows from Proposition 3.3 and the second one follows as there

is a finite path from every state to an (absorbing) state in the core.
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