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Abstract

Empirical Bayes (EB) methods are widely utilized in economics for estimating in-

dividual and group-level fixed effects across diverse contexts, including teacher value-

added, hospital qualities, and neighborhood effects. While estimates generated by EB

are often incorporated into other statistical analyses like regression models, the econo-

metric properties of post-EB regression have not been thoroughly investigated. This

paper addresses this knowledge gap through two key contributions. First, we intro-

duce a unified framework for two-step EB methods that applies to both linear and

non-linear models, offering insights into their frequentist properties and assessing their

robustness against model mis-specification. Second, we undertake a critical evaluation

of commonly-used two-step EB methods in existing empirical research. Our analy-

sis demonstrates that naive implementations of post EB regression can introduce a

systematic bias, particularly in non-linear models.
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1 Introduction

Empirical Bayes (EB) methods are frequently employed for estimating fixed effects, partic-

ularly when the number of repeated observations per unit is limited. These methods offer

a remedy to the incidental parameter problem (Neyman and Scott, 1948) often encountered

in high-dimensional problems. Specifically, let θ̂i be the fixed effects estimates in a dummy

variable regression. The EB estimators θ̂EB
i , in its simplest form, shrink the raw fixed effects

θ̂i to the “grand mean” ¯̄θ:

θ̂EB
“ λθ̂i ` p1 ´ λq ¯̄θ,

where the shrinkage factor λ depends on the signal-to-noise ratio and the grand mean ¯̄θ is the

average of θ̂is. This approach has gained traction in empirical applications like teacher value-

added models (see, e.g., Kane and Staiger, 2008; Chetty et al., 2014a; Jackson et al., 2014;

Koedel et al., 2015), where the student-to-teacher ratio is often small. Other prominent

applications in economics include neighborhood effects (Chetty and Hendren, 2018) and

hospital qualities (Hull, 2018).

Beyond estimating the fixed effects per, EB estimates are frequently used as inputs for

further statistical analyses. For instance, in studies of teacher qualities, researchers may

regress students’ labor market outcomes on the EB estimates of teacher qualities to quantify

the long-term impact of teacher quality. The regression can be linear models that include

transformed EB estimates or nonlinear models like logistic regression for binary dependent

variable. We refer to the utilization of EB estimates in regression analyses as ”post empirical

Bayes regression”.

In this paper, we introduce a general class of post empirical Bayes regression methods that

enables researchers to consistently estimate both fixed effects and regression coefficients. Our

methodology starts with the estimation of fixed effects and their underlying distributions,

employing either nonparametric or parametric EB techniques. We then use the estimated
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distribution of fixed effects—not the EB estimates themselves—to construct an estimator for

the regression model. A key advantage of our method is its coherence and convenience, as it

allows for the simultaneous estimation of fixed effects, their distributions, and the relevant

regression coefficients. Additionally, our approach accommodates nonparametric EB and

nonlinear regression while also allowing for dependent measurement errors, thereby offering

a flexible and robust framework for empirical analysis.

Another key objective of this paper is to scrutinize empirical practices of post-EB regres-

sion. To this end, we formulate a general framework for two-step EB methods and employ

it to assess common practices observed in existing literature. We pay special attention to

cases where EB estimates serve as explanatory variables in linear regressions. Our findings

reveal that while the two-step EB method applied to ordinary least squares (OLS) yields

consistent estimators, the standard errors can be significantly downward-biased if corrections

for generated regressors are not made. Consequently, t-tests conducted without these correc-

tions may over-reject hypotheses, even with large sample sizes. In the context of non-linear

models, we demonstrate that directly using EB estimates as explanatory variables can result

in inconsistent estimators.

This paper will proceed as follows. In Section 2, we introduce use a simple example to

illustrate the main idea of the method. Section 3 describes the general setup and the pro-

posed method, and we present the theoretical results in 4. Simulation studies and empirical

applications of the method are in Section 5.

1.1 Literature Review

From a theoretical standpoint, this project closely aligns with the errors-in-variables litera-

ture in econometrics. Interestingly, EB procedures can consistently estimate linear regression

models with measurement errors, even though they were originally designed for different ap-

plications. This property was not first observed by us; the concept of using shrinkage to

address measurement errors dates back to Whittemore (1989). Subsequent work by Guo

3



and Ghosh (2012) formalized this insight and established its consistency, while Efron (2016)

also proposes an empirical Bayes approach for deconvolution problems. Our work also in-

tersects with the literature on Bayesian methods for handling measurement errors (see, e.g.,

Carroll et al., 2006), as we aim to develop a unified theory for two-step EB methods that

encompasses both linear and non-linear regression models.

Additionally, our project contributes to the growing body of literature on EB methods

in both econometrics and statistics (see, e.g., Hansen, 2017; Meager, 2019; Ignatiadis and

Wager, 2019; Azevedo et al., 2020; Armstrong et al., 2022; Bonhomme and Weidner, 2022).

Although the original idea can be traced back as early as to Robbins (1956) and James and

Stein (1961), there has been a resurgence in the application of EB methods, particularly

in high-dimensional problems (Efron, 2012) as well as its increasing popularity in empirical

studies (see, e.g., Chetty et al., 2014a,b; Chetty and Hendren, 2018; Hull, 2018; Angrist

et al., 2021). This paper seeks to rigorously examine the statistical properties of two-step

EB methods employed in these recent empirical works, thereby offering a comprehensive

econometric analysis.
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2 A Simple Case: OLS Regression with EB Estimates

One of the most common form of post-EB regression is a linear regression with EB estimates

as regressors. In this section, we will use it as an example to help illustrate the research

question and provide some theoretical results that will be further extended to the general

case later in this paper.

EB models, which are derived from Bayesian methods, have two components: (1) the

prior distribution for the latent variables and (2) the likelihood function of the observed

variables given the latent ones. Formally, we can write

θi
i.i.d.
„ πp¨q, (1)

xij|θi
i.i.d.
„ fx|θp¨q, (2)

in which πp¨q is the prior distribution of θi and fx|θp¨q is the likelihood function. The fixed

effects are unobserved and are only noisily measured by the measurements xij, j “ 1, 2, ...,m.1

In applications of teacher value-added models, θi are the teachers’ (indexed by i) effects and

xij are the students’ (indexed by j) test scores.

Depending on the context, various modeling assumptions are made on the conditional

distribution fx|θp¨q. In empirical studies, the most frequently encountered set of assump-

tions—either explicitly stated or implicitly applied—pertains to the imposition that

θi
i.i.d.
„ Npµθ, τ

2
q, (3)

xij|θi
i.i.d.
„ Npθi, γ

2
q, (4)

i.e., a normal conjugate model. Since it is a conjugate model, the posterior distribution of θ

given x1, x2, ..., xm is also normal.

EB estimator are essentially Bayes rules except that the prior is “estimated” from the

1For the ease of exposition, we assume the panel is balanced.
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data. In the normal conjugate model, the EB estimator is

θ̂EB
i “

τ̂ 2

γ̂2 ` τ̂ 2
¨ x̄i `

γ̂2

γ̂2 ` τ̂ 2
¨ µ̂θ, (5)

where

x̄i “
1

m

m
ÿ

j“1

xij (6)

µ̂θ “
1

nm

n
ÿ

i“1

m
ÿ

j“1

xij, (7)

τ̂ 2 “
1

n

n
ÿ

i“1

px̄i ´ µ̂θq
2

´
1

m
γ̂2, (8)

and

γ̂2
“

1

n

n
ÿ

i“1

1

m ´ 1

m
ÿ

j“1

pxij ´ x̄iq
2. (9)

Notice that θ̂EB
i is the EB estimator as it is the posterior mean of θ given xi1, xi2, ..., xim

with the parameters pµθ, τ
2, γ2q estimated by their empirical analogues. That is, θ̂EB

i is the

Bayes rule with an estimated prior. 2

In a typical application of EB in economics, researchers are often interested in the prior

distribution πp¨q, the fixed effects θi as well as the impact of θi on some other variables, say

yij. More formally, the researcher is interested the coefficient β in the regression

yij “ α ` θiβ ` uij. (10)

In the context of teacher value-added, yij may be some measures of the students’ long-

term outcome such as college attendance or earnings in the labor market, and the researcher’s

2Strictly speaking, while EB methods are inspired by the Bayesian methodology, EB estimators do not
perfectly fit into Bayesian paradigm. In this paper, we view the EB as frequentist methods and examine its
frequentist properties such as consistency and asymptotic normality.
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goal is to estimate the impact of θi on yij given that θi is unobserved and is only noisily

measured by xi1, xi2, ..., xim.
3

One approach that is commonly seen in empirical practice is to regress the outcome

variable yij on the EB estimates θ̂EB
i

β̂OLS,EB
“

řn
i“1pθ̂EB

i ´
¯̂
θEBqpyij ´ ¯̄yq

řn
i“1pθ̂

EB
i ´

¯̂
θEBq2

, (11)

where ¯̄y and
¯̂
θEB are averages of ȳi and θ̂EB

i respectively. The idea of regression on θ̂EB
i as

if they were the true unobserved θi is quite popular, and it goes beyond linear regression

to nonlinear models such as the logistic regression. While this approach does have intuitive

appeal and is convenient once we have the EB estimates, the statistical properties of it

remain unclear. In this paper, we aim to fill this gap.

We start our analysis by inspecting the asymptotic properties of
¯̂
θEB. Lemma 1 provides

a useful observation to understand β̂OLS,EB as well as the more general form of post-EB

regression. Note that since xij, j “ 1, ...,m are independent, unbiased measurements of θi,

we can write

xij “ θi ` vij, (12)

where Ervij|θis “ 0 and vij K vij1 for j ‰ j1. If we invert the role between xij and θi and

3While the example shares similarities with configurations often seen in the measurement error literature,
this paper diverges in two key respects. First, our scope goes beyond the simple estimation of model
parameters to include a critical examination of current empirical practices. As noted earlier, EB methods
are commonly used to address measurement errors across various applications, even though there is a relative
lack of theoretical substantiation for their effectiveness. Second, our concerns are not limited to estimating the
regression coefficient β; we are also interested in estimating the latent fixed effects θi as well its distribution
πp¨q.
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consider the population regression of θi on x̄i, we can write

θi “ a ` bx̄i ` ṽi, (13)

Erṽis “ Erṽix̄is “ 0. (14)

Then Lemma 1 implies that the fitted value from the inverted regression is in fact, θ̂EB
i .

Lemma 1. Let µθ “ Erθis be the grand mean and λ “
V arpθiq

V arpvijq{m`V arpθiq
be the signal-to-noise

ratio. Then the regression coefficients a “ p1 ´ λq ¨ Erθis and b “ λ.

Lemma 1 implies that the EB estimators θ̂EB
i are the best linear predictors of θi given

x̄i, and we can use θ̂EB
i as consistent estimators of the fitted values of θi even though we

do not observe θi. Viewing θ̂EB
i as fitted values of θi suggests that the post-EB regression

estimator β̂OLS,EB resembles a two-stage least square (2SLS) estimator, which is consistent

provided that x̄i is a valid instrument for θi.
4 We formalize this observation in Proposition

1 by showing that β̂OLS,EB can be framed as a generalized method of moments (GMM)

estimator (Hansen, 1982).

Proposition 1. β̂OLS,EB is consistent and asymptotically normal.

Proof. Consider the population linear projection of θi on x̄i

θi “ a ` bx̄i ` ṽi,

in which the coefficients are given by

a “ p1 ´ λqµθ “ p1 ´ λqErθis,

4Chetty, Friedman Rockoff (2014) made a similar observation, in which they refer to the instrument
validity as the “forecast unbiasedness”. Our formulation emphasizes that EB estimates are the ”fitted
value” in the first stage and that correction for generated regressors is needed when calculating the standard
errors.
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and

b “
V arpθiq

V arpθiq ` 1
m
V arpvijq

“ λ.

Replace θi with its fitted value a ` bx̄i in the regression model yij “ α ` θiβ ` uij, we get

ȳi “ α ` βrp1 ´ λqµθ ` λx̄i ` ṽis ` ūi

“ α ` βrp1 ´ λqµθ ` λx̄is
looooooooomooooooooon

xEB
i

` pβṽi ` ūiq.

Therefore, together with the orthogonality condition, we can reformulate β̂OLS,EB as an exact-

identified GMM estimator with the following moment conditions for parameters pα, β, µθ, λq:

Erx̄i ´ µθs “ 0,

Er
1

mpm ´ 1q
pxij ´ x̄iq

1
pxi ´ x̄iq ´ px̄i ´ µθq

2λs “ 0,

Eryij ´ α ´ θiβs “ 0,

Erpyij ´ α ´ θiβqθis “ 0.

Under regularity conditions, the standard (non-linear) GMM Hansen (1982) theory implies

that β̂OLS,EB is consistent and asymptotically normal.

We are not the first to notice the consistency of β̂OLS,EB. The idea of using James-Stein’s

estimator to correct measurement error can be traced back as early to Whittemore (1989).

Guo and Ghosh (2012) calculates the mean-squared error of the two-step estimator proposed

by Whittemore (1989), implying that the estimator is consistent as a side result.5 Our result

further establishes that β̂OLS,EB is also asymptotically normal.

5Another way to see the consistency of β̂OLS,EB is to notice that the shrinkage factor λ is exactly the
attenuation bias if one regresses y on the noisy measurement x. Direct calculation of the probability limit
of β̂OLS,EB shows that the shrinkage factor turns out to cancel out the attenuation bias, making β̂OLS,EB

consistent.
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2.1 Beyond Linear Models

The example in Proposition 1 is simple and restrictive in several ways. First, the EB esti-

mator θ̂EB
i is derived from the normal conjugate model. While the normal conjugate model

is popular among empirical applications, other models, such as a beta-binomial model to

accommodate binary x, may also be of interest. Second, the regression model considered

in Proposition 1 is a simple linear regression, which contains only one independent variable

and excludes nonlinear regression models.

In this paper, our goal is to develop a general method of post-EB regression that allows for

flexible specifications of EB estimators and encompasses both linear and nonlinear regression.

However, as we can see from the proof of Proposition 1, the post-EB regression for simple

linear regression is consistent since

Eryij|x̄is “ α ` Erθi|x̄is ¨ β (15)

“ α ` θEB
i ¨ β. (16)

So in the regression, in which we regress yij on θEB
i , is correctly specified. In nonlinear

regression models, the above equality would amount to require that

Ergpθi, βq|x̄is “ gpErθi|x̄is, βq,

where gp¨q is the conditional mean function of y conditional on θ. That is, the posterior mean

of the transformation has to be the transformation of the posterior mean. The equality does

not hold in general. Consequently, post-EB regression, if done naively (i.e., EB estimates

θ̂EB
i are directly used as regressors as if they were the unobserved θi), can lead to biased

estimates. For example, one can show that, if gp¨q is the logit link function and pxij, θiq

follows normal-normal, then the equality is violated, leading to an inconsistent estimator of

β.6 Hence, the empirical practice currently observed in the literature may lead to erroneous

6However, for probit models, in which gp¨q is the cumulative distribution function of the normal distribu-
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results.

Nevertheless, the shortcomings of the “naive” post-EB regression should not be inter-

preted as a general inadequacy of EB methods for correcting measurement errors in nonlin-

ear models. In the following section, we outline the “proper” post-EB regression that are

applicable to nonlinear models. Additionally, our generalized approach extends beyond the

normal conjugate model for EB estimators, permitting the distribution πp¨q to be identified

in nonparametrically.

3 General Setup

Below, we describe the general setup we consider in this paper. As in most EB applications,

we assume the data ttyij,xij, ziju
m
j“1, θiu

n
i“1 has a panel structure. The latent variable θi P

Rdimpθq is drawn from an unknown distribution π

θi
i.i.d.
„ π, (17)

and is noisily measured by xi P Rmˆdim pxq

xi|θi
i.i.d.
„ µθpx;γq, (18)

where µθpx;γq is the conditional distribution of x given θ. The parameter γ P Rdimpγq can

be seen as a nuissance parameter that adds flexibility to model. For example, in the teacher

quality context, the parameter γ may include the variance of within-class test score or the

effect of control variables on the test score.7 Note that, while we allow the prior π to be

nonparametrically specified, we assume that the likelihood µθ belongs to a parametric family

of distributions indexed by γ.

tion, it is not hard to see that the equality would hold if pxij , θiq follows normal-normal.
7Consider the example xij |θi, zij „ Npθi ` zijγ1, γ2q, where xij is the test score and zij is a control

variable such as family income. Define x̃ij “ xij ´ zijγ1. We can write x̃ij |θi „ Npθi, γ2q, and γ “ pγ1, γ2q

is the nuisance parameter.
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We consider the regression of the following form:

yij “ gpθi, zijq ` ϵij (19)

“

K
ÿ

k“1

gkpθi;βq `

L
ÿ

l“1

hlpzij; δq ` ϵij, (20)

where gp¨q is the conditional expectation function, gkp¨q and hlp¨q are functions of θi and zij

that comprise gp¨q, and pβo, δq P Rdim pβq ˆRdim pδq is the vector of unknown parameters. We

assume that the functional form of the functions tgkp¨quKk“1, and thlp¨quLl“1 are known.

Central to our estimation strategy is to project the regression model onto the variable

xi so that we can identify the regression coefficients from a model that only consists of the

observed variables. Specifically, in absence of functions thlp¨quLl“1, our method amounts to

estimating the parameter β by

β̃ “ argmin
β

1

nm

n
ÿ

i“1

m
ÿ

j“1

˜

yij ´

K
ÿ

k“1

Epgkpθi;βq|xiq

¸2

, (21)

provided that the posterior distribution of θi given xi is known.

Note that the estimator β̃ is infeasible because it requires specifying a prior on the

distribution of θ for its implementation. In line with the empirical Bayes approach, we

estimate the prior from data rather than specifying it. Denote this empirically derived prior

as π̂. Then, using the estimated prior π̂, we can calculate the corresponding posterior and

plug it into the regression model. Suppose the posterior admits a density p̂p¨|xq, we can

estimate (20) by

β̂ “ argmin
β

1

nm

n
ÿ

i“1

m
ÿ

j“1

#

yij ´

K
ÿ

k“1

ż

gkpθ;βqp̂pθ|xiqdθ

+2

which is the feasible counterpart of β̃. In our proof, we will initially discuss the theoretical

properties of β̃ and subsequently extend the result to β̂.
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When thlp¨quLl“1 are present in the regression model, we have to first subtract
řL

l“1 hlpzij; δq

from yij before applying the procedure described above. In our setup, this can be done easily

since we can view
K
ÿ

k“1

gkpθi;βq

as fixed effects θ̃i “
řK

k“1 gkpθi;βq, and we can estimate δ by a fixed effect regression

yij “

L
ÿ

l“1

hlpzij; δq ` θ̃i ` ϵij.

Subtracting
řL

l“1 hlpzij; δ̂q from yij, we can then proceed to the estimation of β.

Below, we outline the steps to implement our method.

• Step 1: estimate the nuisance parameter γ and δ. In most setup, this can be easily

done by either method of moments or a fixed effect regression. Denote the estimators

as γ̂ and δ̂.

• Step 2: estimate the prior πp¨q by the nonparametric maximum likelihood estimator

(NPMLE):

π̂ “ argmax
π

1

n

ÿ

i

ln

„
ż

µθpxi; γ̂qdπpθq

ȷ

that maximizes the likelihood over all possible distribution.

• Step 3: given the estimated prior π̂pθq and the likelihood µθpx; γ̂q, use the posterior

distribution of θ given x to calculate the posterior mean of the conditional mean

functions

Êrgkpθ;βq|xs, k “ 1, 2, ..., K.

Finally, estimate β with the regression

β̂ “ argmin
β

1

nm

n
ÿ

i“1

m
ÿ

j“1

#

yij ´

L
ÿ

l“1

hlpzij; δ̂q ´

K
ÿ

k“1

Êrgkpθ;βq|xisdθ

+2

.
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Remark 1. Equation (18) is a different framework from classical measurement error, which

assumes the error is an additive independent random variable. Suppose θi „ Betapa, bq and

xi|θi „ Binp2, θiq. Then, the error

ei “ 0.5xi ´ θi

is mean-independent of θi, but not independet from θi (Erei|θis “ 0 but Ppei ą 0|θi “

0.5q ‰ Ppei ą 0|θi “ 1q “ 0.) Thus, deconvolution, which relies on the decomposition of

characteristic functions, is not useful.

4 Theoretical Results

In this section, we derive the statistical properties of the proposed estimator. The structure

of our argument will closely follow the three steps that we lay down earlier in the last

section. We will show that, if consistent estimators γ̂ and δ̂ for the nuisance parameters are

available, then π̂, the prior estimated by NPMLE, also converges to the true distribution

when the sample size goes to infinity. The convergence of the posterior regression function

Êrgkpθ;βq|xs can then be established, which further implies the regression estimator β̂ is

consistent and asymptotically normal.

4.1 Consistency of NPMLE π̂

The idea of NPMLE can be traced as early back to the seminal paper of Kiefer and Wolfowitz

(1956). Since then, a variety of theoretical extension of the baseline method as well as

progresses in the computation of NPMLE has been done. In this paper, we apply and

generalize NPMLE to mixture models with nuisance parameters. Noteworthily, we derive an

equivalent formulation of NPMLE that could be of independent interest. Our formulation

allows the utilization of the recent advancement in the optimal transport problem, which

makes solving NPMLE in mixture models with multi-dimensional latent variables possible.
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Given the distribution πpθq, we can write the marginal likelihood of x as

fpx; π,γq “

ż

Θ

µθpx;γqdπpθq,

that is, we can view the distribution of x as a mixture with mixing distribution πpθq. The

idea of NPMLE is to search for the mixing distribution πp¨q over Π, the space of all possible

distribution on the support of θ. Formally, the NPMLE estimator π̂ is given by:

π̂ “ max
πPΠ

n
ÿ

i“1

ln fpxi; π, γ̂q.

To discuss the consistency of π̂, we equip Π with the metric DKW :

DKW pπ1, π2q “

ż

Θ

|π1pθq ´ π2pθq| expp´||θ||1qdθ.

Notice that this metric is bounded on the space of c.d.f, and convergence inDKW is equivalent

to convergence in distribution, i.e., DKW pπn, πq Ñ 0 if and only if

πnpθq Ñ πpθq

for all continuity point θ P Θ.

The following assumptions guarantees that π̂ is strongly consistent. Assumption 1 and 2

are standard in the literature except that we include nuisance parameter γ in the statement.

Assumptions 3 and 4 are needed to assure that estimation error in γ̂ does not affect the

consistency of π̂ when the sample size n is large enough.

Assumption 1 (Identification). Let F px; π,γq be the cumulative distribution function of

fpx; π,γq. For all γ, if F px; π,γq “ F px; π1,γq for all x, then DKW pπ, π1q “ 0.

Assumption 2 (Contintuity). For all γ, the function fpx; πq is continuous in π P Π.

Assumption 3. γ̂ is a consistent estimator of γ.
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Assumption 4. Let Qpπ,γq “ Exr
ş

Θ
µθpx;γqdπpθqs. There exists a neighborhood Nγo of

γo s.t. supγPNγo
supπPΠ |

BQpπ,γq

Bγ
| ď M for some M ą 0.

Proposition 2. Under Assumption 1 - 4, when n Ñ 8,

DKW pπ̂, πoq Ñ 0 a.s.,

i.e., π̂pθq
a.s.
Ñ πopθq @ θ P Θ.

Proof. The main part of the proof is to show that the sample criterion function

Qnpβq “
1

n

ÿ

i

ln

„
ż

µθpxi; γ̂qdπpθq

ȷ

converges uniformly to the population criterion function

Qpβq “ E
„
ż

µθpxi;γoqdπpθq

ȷ

.

Consider the following functions:

Q̃npβ,γq “
1

n

ÿ

i

ln

„
ż

µθpxi;γqdπpθq

ȷ

and

Q̃pβ,γq “ E
„
ż

µθpxi;γqdπpθq

ȷ

.

Then

|Qnpβq ´ Qpβq| “ |Q̃npβ, γ̂q ´ Q̃pβ,γoq|

ď |Q̃npβ, γ̂q ´ Q̃pβ, γ̂q| ` |Q̃pβ, γ̂q ´ Q̃pβ,γoq|.

Note that the first term converges uniformly over β by as the standard NPMLE Chen (2017).
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Using Taylor expansion, we can see that the second term is uniformly bounded by

M ¨ }pγ̂ ´ γoq},

which converges to zero as γ̂ Ñ γo

We propose an algorithm to approximate the NPMLE solution when the latent variable

θ P Rd is a multi-dimensional vector. Suppose the likelihood of the observation vector xi

given the latent θi has a density (or probability mass function) φnpxi;θiq.
8 The NPMLE

estimator for the distribution of θi is defined as

π̂ “ argmax
π

n´1
n
ÿ

i“1

log

ż

φnpxi;θqdπpθq,

where the maximum is taken over the space of all probability distributions on Rd. It can be

shown that, after some assumptions, π̂ can be identified as

π̂ “ argmin
π

inf
γPΠpπ,Uq

„
ż

´ logφnpx;θqdγpθ,xq ` Ipγq

ȷ

, (22)

where Πpµ, νq denotes the set of couplings between probabilities µ and ν, U is the uniform

on tx1, . . . ,xnu, and Ip¨q is the mutual information. In other words, π̂ is the minimizer of

the regularized optimal transport cost between π and U , with the cost measured by minus

log likelihood.

With the identification (22), we can employ a gradient descent method to approximate

π̂. Let us pre-fix a grid points tθ1,θ2, . . . ,θknu in Θ Ă Rd, and initialize the probabilities

tp1, . . . , pknu associated with the grid points. Consider the following regularized optimal

8We ignore γ as it does not affect the formulation.
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transport problem, which is a smooth constrained optimization problem.

min
γ

n
ÿ

i“1

kn
ÿ

j“1

´γij logφnpxi;θjq ` Ipγq

s.t.
ÿ

i

γij “ pj, j “ 1, 2, . . . , kn (23)

ÿ

j

γij “
1

n
, i “ 1, 2, . . . , n.

Then the gradient of the (minimized) transport cost with respect to p “ pp1, . . . , pknqJ is

exactly the vector of Lagrange multipliers, λ, associated with the set of constraints (23).

Note that we can, without loss of generality, normalize λ so that
řkn

j λj “ 0. Therefore, the

gradient update p ` ηλ remains a valid probability on the grid points for any learning rate

η P p0, 1q. The following algorithm summarizes the above discussions.

Algorithm 1: Multi-dimensional NPMLE

Initialization: Probabilities pp0q “ pp1, . . . , pknq, maximum number of iteration M ,
learning rate η

1 for m “ 1, 2, . . . ,M do
2 Compute the Lagrange multiplier vector λ associated with (23) for p “ ppm´1q.
3 If necessary, normalize λ such that λ sums up to zero.

4 Update ppmq “ ppm´1q ` ηλ.
5 Early stopping if convergence.

6 end

4.2 Asymptotics of the infeasible estimator β̃

We begin our analysis of the proposed estimator β̂ by inspecting the properties of its oracle

counterpart β̃

β̃ “ argmin
β

1

nm

n
ÿ

i“1

m
ÿ

j“1

#

yij ´

L
ÿ

l“1

hlpzij; δq ´

K
ÿ

k“1

Ergkpθ;βq|xisdθ

+2

, (24)
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in which the nuisance parameters πp¨q and γ in Ergkpθ;βq|xis and δ are assumed to be

known. Then, we will show that the β̂ is asymptotically equivalent to β̃. Throughout the

paper, we assume the parameter β belongs to a compact convex parameter space B Ď Rd.

Moreover, the regression function hp¨q is Lipschitz in β uniformly over Θ. That is, there

exists Lh ă 8 such that

sup
θPΘ

|hpθ;βq ´ hpθ;β1
q| ď Lh}β ´ β1

}

for all β, β1 in B.

Proposition 3. Assume

E tErhpθi;βoq ´ hpθi;βq|xisu
2

“ 0 (25)

if and only if β “ βo. In addition, assume

E sup
βPB

phpθi;βqq
2

ă 8

and the moments E ϵ2ij exists. Then β̃ is consistent.

Proof. W.L.O.G., we can assume
řL

l“1 hlpzij; δoq “ 0 as we can redefine the outcome as

ỹij “ yij ´ 1
nm

řn
i“1

řm
j“1 yij ´

řL
l“1 hlpzij; δoq in the following proof. Write Qnpβq “

1
nm

řn
i“1

řm
j“1pyij´Eθphpθi;βq|xiqq2. We first show that Qnpβq converges to a non-stochastic

Qp¨q in probability uniformly, which is uniquely minimized at βo. Write

Qnpβq “
1

nm

n
ÿ

i“1

m
ÿ

j“1

ϵ2ij ` n´1
n
ÿ

i“1

m
ÿ

j“1

phpθi;βoq ´ Ephpθi;βq|xiqq
2

`
2

n

m
ÿ

j“1

n
ÿ

i“1

ϵiphpθi;βoq ´ Ephpθi;βq|xiqq

:“A1,n ` A2,n ` A3,n.
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Clearly A1,n Ñ Epϵ2ijq in probability. Since B is compact, for each ϵ ą 0 we can choose a

finite collection tβ1, . . . ,βku in B such that for each β P B there exists some βi such that

}β ´ βi} ă ϵ. Note that

A2,n “n´1
n
ÿ

i“1

phpθi;βoqq
2

´
2

n

n
ÿ

i“1

hpθi;βoqEphpθi;βq|xiq ` n´1
n
ÿ

i“1

pEphpθi;βq|xiqq
2

:“B1,n ` B2,n ` B3,n.

Clearly B1,n Ñ Ephpθi;βoqq2 in probability. To each β choose β: P tβ1, . . . ,βku such that

}β: ´ βi} ă ϵ. We have

B2,n “ ´
2

n

n
ÿ

i“1

hpθi;βoqEphpθi;β
:
q|xiq ´

2

n

n
ÿ

i“1

hpθi;βoqEphpθi;βq ´ hpθi;β
:
q|xiq,

so

ˇ

ˇ

ˇ

ˇ

ˇ

B2,n `
2

n

n
ÿ

i“1

hpθi;βoqEphpθi;β
:
q|xiq

ˇ

ˇ

ˇ

ˇ

ˇ

ď
2Lhϵ

n

n
ÿ

i“1

hpθi;βoq,

implying

lim sup
nÑ8

|B2,n ` 2Ephpθi;βoqEphpθi;β
:
|xiq| ď 2LhϵE sup

βPB
|hpθi;βq|

with probability tending to one. Since ϵ is arbitrary, standard arguments yield

B2,n Ñ ´2Ephpθi;βoqEphpθi;βq|xiq

in probability uniformly in β P B. By a similar argument,

B3,n Ñ EpEphpθi;βq|xiqq
2

in probability uniformly in β. Thus A2,n Ñ Ephpθi;βoq ´ Ephpθi;βq|xiqq2 in probability

20



uniformly in β. Similarly, A3,n Ñ 0 in probability uniformly in β. We have shown

Qnpβq ÑEpϵ2i q ` Ephpθi;βoq ´ Ephpθi;βq|xiqq
2

“Epϵ2i q ` Ephpθi;βoq ´ Ephpθi;βoq|xiqq
2

` EpEphpθi;βoq ´ hpθi;βq|xiqq
2,

which is uniquely minimized at β “ βo by our assumption. The desired result follows from

standard results, e.g. Theorem 4.2.1 of Amemiya (1985).

Remark 2. The identification condition (25) is commonly adopted in the measurement error

literature. In the linear regression model where hpθ;βq “ θJβ, (25) is equivalent to

E
␣

Epθi|xiqEpθi|xiq
J
(

being positive definite.

Proposition 4. Let Hipβq “ Eθphpθ;βq|xiq. Assuming regularity conditions for WLLN and

CLT to hold. Assume also Hipβq “ Ephpθ;βq|xiq is twice continuously differentiable in β,

and the following matrices exist:

M “E
“

∇βHipβoq∇J
βHipβoq

‰

,

V “E
“

pyi ´ Hipβoqq
2∇βHipβoq∇J

βHipβoq
‰

.

Then

?
npβ̃ ´ βoq ñ Np0,M´1VM´1

q. (26)

Proof. The result follows from the proof of Proposition 3 and Delta method.

Remark 3. Proposition 3 and 4 can be applied to situations when researchers uses Bayesian

(rather than empirical Bayes) procedure to generate regressors. For example, researchers

may use Bayesian topic models to generate the topic of article for a regression analysis.
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Example 1. Consider the linear model hpθ;βq “ θJβ. Let zi “ Epθ|xiq. Then

M “ Epziz
J
i q,V “ Erpyi ´ zJ

i βoq
2ziz

J
i s,

and
?
npβ̃ ´ βoq ñ Np0,M´1VM´1q. When βo “ 0, M´1VM´1 “ σ2

ϵM
´1. In this case,

naive EB coincides with this formula. Such equivalence when the true regression coefficient

is zero is also seen in the instrumental variable regression.

Example 2. For the nonlinear model hpθ; βq “ θ2β, we have M “ Epw2
i q and V “ Erpyi ´

wiβoq
2w2

i s, where wi “ Epθ2|xiq. In this case, ignoring the generated regressor can lead to

biased standard error even when βo “ 0.

4.3 Asymptotic results for the feasible estimator

In this subsection, we assume the likelihood measure µθp¨q has a density fθp¨q with respect

to some common dominating measure λ (i.e. µθ ! λ for each θ P Θ, where Θ Ď Rp). Let

G “

"

θ ÞÑ
hpθ;βqfθpxq
ş

fθpxqdπpθq
: x P Rq,β P B, π P P

*

be the collection of conditional expectation kernels for the conditional mean regression func-

tion, where B Ď Rd is our parameter space. Observe that

Êθ rhpθ;βq|xi “ xs “

ż

hpθ;βqfθpxq
ş

fθpxqdπnpθq
dπnpθq,

and

Eθ rhpθ;βq|xi “ xs “

ż

hpθ;βqfθpxq
ş

fθpxqdπ˚pθq
dπ˚pθq.

The following lemma gives a uniform convergence result of the empirical-Bayes posterior

mean regression function to the infeasible Bayes posterior mean regression function.
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Lemma 2. Consider a sequence of prior distributions πn P P such that πn ñ π˚. Assume

that

(1) there exists some M ă 8 such that

sup
xPRq ,βPB,πPP,θPΘ

ˇ

ˇ

ˇ

ˇ

hpθ;βqfθpxq
ş

fθpxqdπpθq

ˇ

ˇ

ˇ

ˇ

ď M ;

(2) each element in G is continuous in θ;

(3) for each ϵ ą 0 there exist a compact Kϵ Ď Θ and a finite subset Cϵ Ď G such that to

each x P Rq and β P B corresponds an g P Cϵ with

sup
θPKϵ,πPP

ˇ

ˇ

ˇ

ˇ

hpθ;βqfθpxq
ş

fθpxqdπpθq
´ gpθq

ˇ

ˇ

ˇ

ˇ

ă ϵ,

and π˚pKϵq ě 1 ´ ϵ and πnpKϵq ě 1 ´ ϵ for all n.

Then,

sup
xPRq ,βPB

ˇ

ˇ

ˇ
Êθ rhpθ;βq|xi “ xs ´ Eθ rhpθ;βq|xi “ xs

ˇ

ˇ

ˇ
Ñ 0.

Proof. Fixing x and β, we can write

ˇ

ˇ

ˇ
Êθ rhpθ;βq|xi “ xs ´ Eθ rhpθ;βq|xi “ xs

ˇ

ˇ

ˇ
ď R1 ` R2 ` R3 ` R4,
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where

R1 “

ˇ

ˇ

ˇ

ˇ

ż

Kc
ϵ

hpθ;βqfθpxq
ş

fθpxqdπnpθq
dπnpθq ´

ż

Kc
ϵ

hpθ;βqfθpxq
ş

fθpxqdπ˚pθq
dπ˚pθq

ˇ

ˇ

ˇ

ˇ

R2 “

ˇ

ˇ

ˇ

ˇ

ż

Kϵ

hpθ;βqfθpxq
ş

fθpxqdπnpθq
dπnpθq ´

ż

Kϵ

gpθqdπnpθq

ˇ

ˇ

ˇ

ˇ

R3 “

ˇ

ˇ

ˇ

ˇ

ż

Kϵ

hpθ;βqfθpxq
ş

fθpxqdπ˚pθq
dπ˚pθq ´

ż

Kϵ

gpθqdπ˚pθq

ˇ

ˇ

ˇ

ˇ

R4 “ sup
gPCϵ

ˇ

ˇ

ˇ

ˇ

ż

Kϵ

gpθqdπnpθq ´

ż

Kϵ

gpθqdπ˚pθq

ˇ

ˇ

ˇ

ˇ

.

By condition (1) and (3), R1 ď 2Mϵ. By condition (3), R2 ` R3 ď 2ϵ. Since g P Cϵ Ď G,

it is bounded and continuous by conditions (1) and (2). Thus it follows from πn ñ π˚,

R4 ď 2ϵ ` op1q. This concludes the proof.

4.4 Equivalence to Bayes with oracle prior

Let

Lnpβq “ n´1
n
ÿ

i“1

pyi ´ Eθphpθ;βq|xiqq
2

and

L̂npβq “ n´1
n
ÿ

i“1

pyi ´ Êθphpθ;βq|xiqq
2.

Recall that β̃ “ argminβPB Lnpβq and β̂ “ argminβPB L̂npβq.

Lemma 3. Assume (1) for each δ ą 0 there exists an ϵ ą 0 such that

P

ˆ

min
βRBδpβ̃q

Lnpβq ´ Lnpβ̃q ą ϵ

˙

Ñ 1;
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(2) B is compact, and (3)

sup
βPB

|L̂npβq ´ Lnpβq| Ñ 0

in probability. Then,

}β̂ ´ β̃} Ñ 0

in probability.

Proof. Fix δ ą 0 and let ϵ ą 0 satisfy condition (1). Then

1 “P pL̂npβ̂q ď L̂npβ̃qq

ďP

ˆ

Lnpβ̂q ď Lnpβ̃q ` 2 sup
βPB

|L̂npβq ´ Lnpβq|

˙

ďP pLnpβ̂q ď Lnpβ̃q ` ϵq ` P

ˆ

sup
βPB

|L̂npβq ´ Lnpβq| ą ϵ{2

˙

ďP pβ̂ P Bδpβ̃qq ` op1q.

The desired result follows.

In Proposition 1, we have shown that β̃ is consistent for βo. Therefore, a direct conse-

quence of Lemma 3 is that β̂ Ñ βo in probability.

Proposition 5. Assume WLLN and CLT. If β̂ is the feasible EB estimator computed using

prior πn with πn ñ π˚, then

?
npβ̂ ´ βoq ñ Np0,M´1VM´1

q,

where M and V are the same as those in (26).
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Proof. The proof is standard delta method. By F.O.C. and mean value theorem,

0 “ ´
2

n

n
ÿ

i“1

pyi ´ Êθphpθ; β̂|xiqq∇βÊθphpθ; β̂q|xiq

“
2

n

«

n
ÿ

i“1

∇βÊθphpθ; β̌|xiqq∇J
βÊθphpθ; β̌|xiqq ´

n
ÿ

i“1

pyi ´ Êθphpθ; β̌|xiqq∇2
βÊθphpθ; β̌q|xiq

ff

pβ̂ ´ βoq

´
2

n

n
ÿ

i“1

pyi ´ Êθphpθ;βo|xiqqq∇βÊθphpθ;βoq|xiq.

Then apply CLT and WLLN.

Proposition 3 implies at least under quite general assumptions, using the empirical Bayes

as denoiser is equivalent to using Bayes denoiser with oracle prior.

5 Simulation

5.1 Biased Nonlinear Second Stage

5.1.1 Log Model

θi „ Betapa, bq

10Xi | θi „ Binomp10, θiq

Yi “ β0 ` β1 ln θi ` ei, ei „ N p0, η2q

i “ 1 . . . n,

For this simulation, m “ 10, a “ 2, b “ 7, η “ 1.5 β0 “ 1, β1 “ 5. Data are repeatedly

generated B “ 500 times, and below we present the distribution of the estimators and

their mean square error performances for different values of n. The result show that the

our proposed method is consistent and asymptotically normal, whereas the naive estimator

(replacing the unobserved θi directly by θ̂EB in the regression) can lead to bias.
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5.1.2 Logit Model

θi „ N pµ, τ 2q

Xij | θi „ N pθi, σ
2
q

P pYij “ 1q “ Λpβ0 ` β1θiq; P pYij “ 0q “ 1 ´ Λpβ0 ` β1θiq,

where Λpxq “ 1
1`e´x a logistic function. i “ 1 . . . n, j “ 1 . . .m.

For this simulation, m “ 10, µ “ 0, τ “ 4, β0 “ ´2, β1 “ 2.4. Data are repeatedly

generated B “ 500 times, and below we present the distribution of the estimators and their

mean square error performances for different values of n. Similar to the previous result, the
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simulation shows that the our proposed method is consistent and asymptotically normal,

whereas the naive estimator can lead to bias.
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5.2 Nonparametric Priors

θi „ G

Xij | θi „ N p0, σ2
q

Yij “ β0 ` β1θi ` β2θ
2
i ` αZij ` eij, eij „ N p0, η2q

σ “ 3, η “ 2, β0 “ 1, β1 “ 5, β2 “ 2, α “ 1.2 m “ 15, B “ 500
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In this simulation exercise, we show that our method can nonparametrically identify the

prior and generate consistent estimates of the regression parameter. By contrast, parametric

methods with misspecified prior can lead to bias.
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