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Abstract

A model of dynamic game among heterogeneous agents in response to a pandemic is devel-

oped, in which the agents’communicable-activity decisions collectively affect the transmission

risk of the environment and individually affect each agent’s utility flows along with their probabil-

ity of exposure to the transmission risk. Agents’equilibrium actions exhibit (1) path-dependent

dynamics when their probability of asymptomatic infection is positive and (2) polarization when

the hazard rate of exposure probability exceeds their degree of risk aversion. Comparative statics

analyses show that the levels of agents’equilibrium communicable activity are nonincreasing in

their discount factor, their probability of showing symptoms upon infection, and their expecta-

tion of suffering upon showing symptoms. If the virus persists, then the model predicts that the

only long-run equilibrium outcome is herd immunity.

Keywords: heterogeneous agents; path-dependent equilibrium; hazard rate; asymptomatic

infection; equilibrium polarization.

JEL Classification: C73; D01; D82
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“It is not about the virus. It is about us.”

– EURONEWS.

1 Introduction

Understanding the collective behavior of the public regarding issues that impact the entire society

is a primary area of interest to social scientists. The COVID-19 pandemic is one such issue–

it has imposed on every economic agent a decision-making problem: To what extent should

one voluntarily take preventive measures, such as wearing a face mask in public places, social

distancing, avoiding unnecessary travels, and so on to reduce the risk of infection? Evidence from

the extensive YouGov survey, comprising 189,955 observations across 44 metropolitan areas in

23 countries, reveals a widespread puzzling phenomenon: most agents, whenever possible, either

take maximal measures or do not take any preventive measure at all. The polarized pattern has

been documented in various dimensions including social distancing, reduced social activities, and

avoidance of physical contact and crowded places. 1 ,2 Despite these empirical regularities, the

existing literature has been unable to offer a rational reason for the polarized public responses

to the pandemic.

To improve our understanding of the polarized behavior,3 in this study we take a serious

look at individuals’ rational choices against the backdrop of a pandemic. We develop a new

dynamic public response model that incorporates transmission uncertainty, multi-dimensional

heterogeneity in agents’types and preferences, and the possibility of asymptomatic infection.

We model the economic agents as playing a dynamic noncooperative game, optimally trading

off their levels of communicable activity (or actions) for reductions of the probability of being

1Empirically, we construe “polarization”as a phenomenon that the distribution of people’s preferences/actions
for disease prevention exhibits two peaks: one centered close to the lower end (maximal prevention) and the other
to the upper end (life as usual).

2Data from Citizens’Attitudes Under Covid-19 Project, a 4-wave tracking survey conducted in 11 countries,
reveals that, on average, approximately half of the population opted for the extreme ends of the preventive
measures spectrum. Over time, individual choices exhibit a discontinuous jump from strict protective measures
to minimum protection instead of gradual transition, as the transitional probabilities towards minimum protection
are significantly higher than those towards its adjacent choices (Han et al., 2023b). Counterfactual analysis also
supports the existence of polarized protective behaviors based on changes in face-to-face socializing time in the
U.S. (Han et al., 2023a).

3Formally, we say that a dynamic equilibrium exhibits polarization if in every period, the agents’optimal
actions belong to two disjoint sets connected to the lower and upper end of the feasible action set, respectively,
and no equilibrium action exists in the interval separating the two sets.
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exposed to the transmission risk of the environment– while updating information rationally and

anticipating other agents to do so as well. A key assumption in our theoretical investigation is

that the exposure probability, being a function of the levels of communicable activity, exhibits

memoryless dynamics in that the instantaneous probability of getting exposed to transmission

risk is the same regardless of the level of one’s past activities– conditional on them having not

been exposed to risk. This assumption marks a significant departure from the existing studies,

most of which assume that the infection probability is linear in agents’actions (see Section 2).

Our analysis reveals that the hazard rate and the shape of the agents’utility function jointly

affect equilibrium behavior. We find that whenever the hazard rate exceeds some agents’Arrow-

Pratt degree of absolute risk aversion, a polarized equilibrium arises (see Figure 2 in Section

4.2). The degree of polarization, when measured by the distance between the two disjoint

sets of optimal actions, increases as the hazard rate increases. These results do not rely on

behavioral biases or bounded rationality, nor require polarization of underlying preferences or

beliefs. Instead, we find that polarization can be rooted in individual rationality and occur under

any atomless distribution of agents’types.

In our dynamic model, engaging in more communicable activities today increases the prob-

ability of asymptomatic infection and subsequent immunity in the future. Technically, the pos-

sibility of being unknowingly infected in the past leads to a sequence of path-dependent beliefs

about one’s probability of being immune for the active agents, which significantly complicates

our analysis (see Theorem 1). By transforming the problem into a mathematically equivalent

one, we find a way to simplify the problem and obtain sharp characterizations of the dynamic

equilibrium (see Theorem 2). We show that each active agent’s marginal period-t expected

payoff can be expressed succinctly as

∂Vt
∂at

= v′(at)− g′(at)Mt (1)

where at ∈ [0, 1] denotes an agent’s action, v(at) the agent’s period-t utility, g(at) the agent’s

exposure probability to the transmission risk, and Mt (> 0) a function(al) whose value depends

on the underlying stochastic process and several endogenous state variables, such as the agent’s

type, continuation payoff, and equilibrium future actions. Thanks to the principle of optimality

for stochastic dynamic programming, a crucial property of Mt is that it can be analyzed as
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though it is independent of at. Thus the marginal cost and benefit of action today on the

continuation payoff is proportional to its marginal effect on the infection probability today; the

dynamic effects will not distort the shape of the overall expected payoff function.

An important insight emerges then, from (1), that the type of polarization as presented in

Theorem 2, and pictured in Figure 2 in Section 4.2, is a consequence of the ratio v′(a)/g′(a)

being increasing in a, and that this condition holds as long as the hazard rate λ is suffi ciently

large, i.e., λ = −g′′

g′ > −
v′′

v′ . When v′(a)/g′(a) is increasing, g′ declines faster than v′ as a

increases. Consequently, whenever ∂Vt
∂at
≥ 0 at some action c ∈ [0, 1), the marginal benefit of

increasing at at all action levels at > c exceeds the expected marginal cost and therefore no

equilibrium actions can be found in the interval [c, 1). In Corollary 2, we show that the above

insight does not rely on g being memoryless and v being DARA or CARA. The conclusions of

Theorem 2 hold as long as v′′

v′ −
g′′

g′ has a single-crossing property that it crosses 0 at c ∈ [0, 1)

from below. The type of problems involving marginal expected payoffs of the form in (1) need

not be confined to a pandemic context. The insight obtained from this study can be useful for

understanding polarization of equilibrium decisions in other situations.

Social polarization, in general, has been known to cause unrest and instability.4 Under-

standing the causes of such polarized behavior is important not only for comprehending the

far-reaching implications of the COVID-19 crisis in its aftermath, but also sheds light on other

observed polarized behavior. Our paper contributes to this line of discussion by offering an

explanation for polarized responses that does not rest on polarization of underlying preferences

or the action space.

In a nutshell, the present study has four novel aspects of contributions:

[enumerate]label*=

1. showing new insights into polarized public behavior by leveraging on the hazard rate of

the exposure probability in an epidemiological context;

2. offering a novel approach, a dynamic game with Bayesian updating of information, to the

analysis of epidemiological models;

4According to the Armed Conflict Location & Event Data Project (ACLED), as of March 4, 2022, there had
been 61,830 pandemic-fueled (violent) demonstrations, public protests, or riots around the globe.
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3. modelling explicitly path-dependent beliefs, with a tractable analysis of path-dependent

equilibria;

4. featuring three-dimensional heterogeneous agents together with novel comparative statics

results.

In Section 2, we discuss related literature along these dimensions. Section 3 presents the

pandemic-response model. Section 4 presents the main results of the analysis and Section 5

concludes. The Appendix contains all proofs.

2 Related Literature and New Results

Strategic individual responses. The pandemic literature mostly adopts the SIR (susceptible,

infected, recovered or removed) approach, building upon the seminal work by Kermack and

McKendrick (1927). Recent studies have extended this framework by incorporating individual

preventive behaviors (Carnehl et al., 2023; Dasaratha, 2022; Baril-Tremblay et al., 2021; Tox-

vaerd, 2020; McAdams et al., 2023; Farboodi et al., 2021; Egorov et al., 2021; Keppo et al.,

2021; Javadi et al., 2021). Their common theme is to study how endogenous preventive ac-

tions impact contagion dynamics, such as the trajectories of infection rate and prevalence, and

suggest different policy interventions.5 We instead aim to enrich our understanding of the vast

difference in public choices by relaxing various key assumptions in previous literature. A notable

distinction here is that our model may entail sharp polarization in public responses, regardless

of the population composition. This finding sets our study apart from previous research, which

predominantly focuses on interior solutions.6

Infection probability. In the behavioral SIR literature, the infection probability is often

modeled as a product of three components: a constant transmission rate, individual activity, and

5See also Alvarez et al. (2020); Atkeson (2020); Bethune and Korinek (2020); Kremer (1996); Boucekkine and
Laffargue (2010); Chakraborty et al. (2010); Chen (2012); Fenichel (2013); Toxvaerd (2019). Another strain of
literature studies the macroeconomic consequences of the social distancing incentive (Eichenbaum et al., 2021;
Jones et al., 2021; Bhattacharya et al., 2021; Forero-Alvarado et al., 2021).

6While many empirical studies have examined the differences in public responses to the pandemic, few dig
into the distribution of these behaviors. According to Han et al. (2023b) and Han et al. (2023a), the polarization
in public response distribution is observed in a good number of countries that vary dramatically in the level of
political polarization. As such, our explanation, based on natural conditions on the exposure-probability function,
could be more plausible than the alternative that polarization of responses is a mere reflection of polarization in
underlying preferences or beliefs (e.g., political views as in Allcott et al. (2020)).
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the aggregate activity of the infected population. As such, individual actions contribute linearly

to the infection probability. Keppo et al. (2021) and Javadi et al. (2021) propose a more general

filter function f(v) = (1+v)−γ to capture a nonlinear relationship between individual avoidance

effort v and the infection rate, in which γ represents a constant filter elasticity indicating that a

one percent increase in the avoidance effort reduces γ percent of the infection rate.7 Acemoglu

et al. (2023) also derives an infection probability function that is concave in the individual action

as a result of an endogenous contact network.8 However, both papers assume the agents are

myopic, which prevents them from considering aspects 1 and 4 as studied in our model. In

addition, different types of dynamic equilibrium are distinguished in our model based on a more

natural concept, the hazard rate of the exposure-probability function, rather than elasticity. Our

public-response model further generalizes the SIR model in two additional aspects. First, the

transmission rate follows a Markov process, which can fluctuate due to unknown factors such as

virus mutations while depending endogenously on the equilibrium actions of the active agents.

Second, we allow symptomatic and asymptomatic infections to affect the transmission risk of

the environment and the infection probability differently.

Asymptomatically infected agents. While the possibility of asymptomatic infections is well

recognized in the epidemiological-economic literature (Kremer, 1996; Gersovitz and Hammer,

2003; Brauer et al., 2008; Acemoglu et al., 2021; Farboodi et al., 2021; Baril-Tremblay et al.,

2021; Dasaratha, 2022; Keppo et al., 2021; Javadi et al., 2021), most studies do not track a path-

dependent belief over asymptomatic infection and subsequent immunity. A notable exception is

the work of Baril-Tremblay et al. (2021) where the population is divided into two types: a fixed

proportion of agents do not show symptoms after infection (asymptomatic type) while the rest

do (severe type). The authors explicitly characterize the evolution of agents’beliefs and examine

its role in determining the effectiveness of different policy interventions. But their paper does

not take aspects 1 and 4 into consideration as in our dynamic public response model. Hence,

the discussion is limited in terms of how heterogeneous agents interact and behave dynamically

in the presence of asymptomatic infection.

7These authors model the relationship in a way that each agent minimizes a convex objective function, leading
to a unique interior solution.

8There are other conceivable ways to extend the canonical SIR models in this dimension. For example,
Acemoglu et al. (2020) generalizes this “matching technology”by allowing for a more flexible degree of “increasing
returns to scale”in the last two components. Dasaratha (2022) adds group-specific transmission rate in a binary
group environment. Network properties are also at play in Bouveret and Mandel (2021) and Karaivanov (2020).
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Heterogeneous agents with private or partially observable types. Individual heterogeneity is

a fundamental premise of the emergence of a polarized equilibrium in our model. One way to

model heterogeneity is to partition the population into a finite number of groups based on certain

primitives, e.g., infection costs and the flow payoffs of social activities as in Dasaratha (2022), or

their observable traits, as in Acemoglu et al. (2021) and Gollier (2020). The latter two develop

a multi-group SIR model and demonstrate the superiority of targeting different groups with

different policies compared to a uniform lockdown policy. Our model differs in that each agent

is endowed with an atomlessly distributed type, which allows for a more nuanced representation

of individual differences. Javadi et al. (2021) makes a similar assumption of type distribution as

ours, except that agents only differ in their loss from infection. We consider a three-dimensional

type distribution allowing agents to differ in their discount factor, the probability of developing

symptoms after infection, and their expected suffering after symptomatic infection.9

Outside the pandemic literature, our paper also contributes to the dynamic modelling of

decisions under varying patterns of the hazard rate of success or failure probabilities. Previous

research by Khan and Stinchcombe (2015) highlights how the hazard rate pattern determines the

optimal timing to take a costly action in a semi-Markovian environment. Our model relates to

one scenario of this paper in which the delay in a precautionary measure towards future changes

has a sure benefit but a stochastic cost. In this case, a decreasing hazard rate of future changes

predicts either an immediate action or never taking action. While Khan and Stinchcombe (2015)

focuses on an individual decision problem, we look at a public response game and particularly

the effect of the hazard rate on the aggregate behavioral patterns in equilibrium. Different

hazard rate patterns have also been studied in the experimentation literature (Boyarchenko,

2020; Thomas, 2021), media economics (Oliver, 2022), and financial economics (Boyarchenko,

2021; Klishchuk, 2022). Most of the discussion, however, centers around the types of situations

leading to a unique interior solution.

9The type can be private information or imperfectly observable. We report some comparative statistics
results in Proposition 1 which highlights the influence of these personal characteristics on an agent’s equilibrium
response to the pandemic.
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3 Dynamic Public Response Model

Consider an environment with a countable number of periods t = 0, 1, 2, ... and a continuum of

agents with a population size (or measure) equal to 1. A pandemic occurs at t = 0 and evolves

over time t ∈ {1, 2, ..., T} with T ∈ N
⋃
{∞}.10 In any period t, agents can be partitioned into

three subpopulations: the infectious with size ϑt, the innocuous (including those who passed

away) with size ρt, and the susceptible with size 1− ϑt − ρt.
The infectious population consists of those who were infected in the previous period t − 1,

which can be further divided into two groups: the symptomatic and the asymptomatic. The

former has shown symptoms of the disease by the end of t − 1, and the latter will never show

symptoms. The symptomatic agents may either die or, like the asymptomatic agents, recover

and acquire immunity by the end of period t. To focus on the main behavioral issues, we sidestep

the possibilities of testing and vaccination and assume recovered agents are no longer infectious.11

Consequently, the innocuous population in period t consists of all those who had been infected

before the end of t − 2, including the symptomatic ones who know they are now immune and

the asymptomatic ones who do not know the fact with certainty. Regarding the susceptible

population, it consists of agents who have not been infected by the end of t − 1. Again, the

possibility of asymptomatic infection in the past prevents the apparently healthy agents from

telling with certainty whether they are infectious, innocuous, or susceptible.

We say that an agent is active in period t if so far they have not shown symptoms (see Figure

1). Thus, the susceptible and the asymptomatically infected agents are all active. The main

factors influencing the development of the pandemic are the levels of communicable activity (or

action for short) of the active agents. To ease exposition, we say that an agent is passive if they

are not active. Thus a passive agent can be passed away, recovered, or symptomatically infected

in period t− 1. By assumption, activities of the innocuous agents no longer matter. As for the

symptomatically infected agents in t−1, there are numerous possible consequences of being sick,

ranging from hospitalization, (self-) quarantine, through various degrees of observable symptoms.

Consequently, we model the overall infectiousness of this group, rather than individual activities,

10To ease exposition, we treat T as a finite number in the modelling and subsequent analyses. Owing to
uniformly bounded utility, marginal utility flows, and discounting, the definitions and results with a finite time
horizon T extend to T →∞ straightforwardly.
11Incorporating the possibility that some people may be infected several times, recovered people may still be

infectious, or that costly and imperfect antigen tests or vaccination are available, can be done but is not expected
to change any qualitative conclusions of this study.
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Symp. innocuous

Asymp. innocuous

Symp. infectious

Asymp. infectious

Susceptible

Passive agents

Active agents

(Density: it)

(Density: jt)

(Density: ft)

Figure 1: Partition of the population at the start of each period t. Infectious agents are those
infected in period t − 1. Innocuous agents are those infected in period t − 2 or earlier. (The
densities it, jt, and ft will be derived in Section 3.2.)

in each period in Section 3.2.

The state variable µt ∈ [0, 1] is the transmission-intensity rate of the pandemic. We will

model µt as a Markov process in Section 3.3 given the exogenous state µ0 ∈ (0, 1). The realization

of µt is publicly known at the start of each period t.

3.1 Heterogeneous agents and communicable activity

Each active agent is endowed with a three-dimensional type x ∈ X ⊂ R3
+, written as x =

(δx, γx, Dx). According to (δ, γ,D), without the pandemic, each type-x agent would live a

normal life and enjoy a utility flow of u ∈ (0,∞) per period. With δx ∈ (0, δ̄] (δ̄ < 1) being their

discount factor, a type-x agent would have a life-time discounted utility equal to

Ux =
∑

∞
t=0δ

t
xu =

u

1− δx
(2)

Agents observe– and start reacting to– the pandemic in period 1. When a type-x agent is

infected during any period t, they will show symptoms with probability γx ∈ (0, 1] by the end of

period t and no symptoms with probability 1− γx. If the agent is symptomatic of the disease,
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they have an expected utility of Dx ∈ [0, u0
1−δx ], where 0 < u0 < u.12 Initially, in period 0, the

types of population are distributed according to probability measure F on the Borel subsets of

X. To focus on pure strategies, we assume that the distribution F is atomless, with a measurable

associated density f .13

Starting from period 1, each active agent can choose a level of communicable activity (or

action) at ∈ [0, 1] in each period t ≥ 1 that restricts their normal way of living– as long as the

agent remains active. The risk of being infected increases in at, with at = 0 being a “safety

first”action and at = 1 being a “life as usual”action. We assume that there is a utility function

of communicable activity v : [0, 1] → [u0, u] that is twice differentiable on (0, 1), satisfying

v(0) = u0, v(1) = u, and v′ > 0. Thus, u0 indicates the agent’s utility in a period without

any communicable activity. The reduction of normal-life utility, u − v(at), can be seen as a

deadweight utility loss. We perceive communicable activity to be directly related to one’s utility

or wellbeing, not consumption. For instance, reducing communicable activity by wearing a mask,

frequently washing hands, or practicing social-distancing does not incur a high monetary cost.

Nonetheless, these protective measures can reduce people’s sense of freedom and wellbeing.

Now let µ0 be given and let µ
t := (µ1, ..., µt) ∈ [0, 1]t denote the history of the transmission-

intensity rates in periods 1 through t.

Definition 1 Given µ0 ∈ (0, 1), for all t ∈ {1, 2, ..., T} and µt ∈ [0, 1]t, a public-response

function in period-t is a measurable function αt(·, µt) : X → [0, 1]. Given information µt in

period t, αt(x, µt) is the level of action chosen by the type-x active agents, in period t.

Definition 2 A public-response plan is a sequence of public-response functions α = (α1, ..., αT )

with αt : X × [0, 1]t → [0, 1], given µ0 ∈ (0, 1) and α0 ≡ 1. Therefore, for every x ∈ X, the

type-x active agents will choose action α1(x, µ1) in period 1 and plan to choose αt(x, µt) for

every future period t ∈ {2, 3, ..., T}, contingent on µt ∈ [0, 1]t, as long as they are active until

T . As soon as an agent shows symptoms, they will drop out and no longer take action in the

subsequent periods.

12Our analysis focuses on agents’expected utility Dx in the state of being symptomatically sick, which includes
the possibility of death, without specifying how Dx is calculated.
13A probability measure F over X is atomless if every B ⊆ X with F (B) > 0 has a subset C ⊂ B for which

F (B) > F (C) > 0. Milgrom and Weber (1985). In special cases, F may have an associated density function.
In general, since X is multi-dimensional, an atomless F also permits some of the variables, δ, γ, or D to have
discrete marginal distributions.
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Remark. We find no need to consider each agent’s private state of being “active”or “passive”

in a period t. As the population has a continuum of agents, every point of density x ∈ X involves

a continuum of agents even when the set of type-x has a zero measure. A plan can be viewed as

invariably feasible because after some type-x agents drop out when they are symptomatic, there

are other active type-x agents to execute the remainder of the plan.

3.2 Endogenous state variables

We now define and characterize several endogenous state variables in a pandemic, assuming

that (almost) all active agents follow the public-response plan α in choosing their actions. Since

different types may be exposed to different probabilities of disease, we define the type densities

of the following population groups as follows (see Figure 1): for t ∈ {1, 2, ..., T},

it : density of symptomatically infectious types over X in period t

jt : density of asymptomatically infectious types over X in period t

ft : density of susceptible types over X in period t

For t = 0, we define f0 = f as all agents were susceptible at the start of period 0. We assume

that the initial outbreak of the pandemic in period 0 was due to an exogenous shock by Nature,

causing I0 of the agents infected. For t ≥ 1, we will derive it, jt, and ft jointly with other

endogenous state variables.

To model the quantitative effects of communicable activity, observe that an active agent

increasing action at in a period t has dual effects: it increases the probability that they may get

infected and the probability that they may infect the others. Although each agent may neglect

the effect of their action on others, the collective actions do matter for the overall transmission

environment. We now introduce an important variable, considered as a numerical representation

of the transmission risk of the environment in period t.

Definition 3 Under a public-response plan α, the transmission risk of the environment in period
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t ∈ {1, 2, ..., T} is defined by

χt : =

∫
X

θ(x)it(x)dx+

∫
X

h(αt(x, µ
t))jt(x)dx, (3)

t ∈ {1, ..., T}

where the function θ : X → [0, 1] is measurable, and h : [0, 1] → [0, 1] is continuously differen-

tiable such that h(0) = 0, h(1) = 1, and h′ > 0 on (0, 1).

The first term on the right side of (3) captures the infectiousness of the symptomatic agents

in the preceding period, where θ ≡ 0 corresponds to the case in which all sick agents were

immediately (self-) quarantined and no infected agent would deliberately infect others. As θ

increases, sick agents play an increasing role in transmitting the disease. The last term in

(3) captures the infectiousness from the asymptomatically infected agents. Without symptoms,

these agents continue to follow the public-response plan in choosing their actions in period t. The

function h measures the contribution of different levels of actions to the overall infectiousness

of this group. For the special case where θ ≡ 1 and h ≡ 1, the transmission risk χt reaches its

upper bound ϑt, the size of the infectious population in period t. We do not assume specific

functional forms for the primitives θ and h so as to keep the model more amenable to empirical

studies.

Given µt, we assume that when a susceptible agent is exposed to the transmission risk of the

environment in period t, they will be infected with probability µtχt. Associated with χt are a

pair of related functions, the infection probability pt, and the disease probability qt.

Definition 4 The exposure function is a cumulative probability function g : [0,∞) → [0, 1)

satisfying g(0) = 0, lima→∞ g(a) = 1, and g′ > 0 on (0, 1) such that in any period t, a suscep-

tible agent choosing activity at will be exposed to the transmission risk of the environment with

probability g(at).

Since there is no reason to assume that taking action 1 will expose the agent to the transmis-

sion risk with certainty, we allow g(1) ≤ 1.14 We will be interested in the behavior of the hazard

rate of the exposure function λ := g′

1−g . The hazard rate λ(at) indicates the marginal probability

14Since at ∈ [0, 1] is merely a normalization, defining g on [0,∞) maintains model generality and allows g to
be taken from a larger family of distribution functions.
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of an agent being exposed to the transmission risk by a marginal increase of at, conditional on

them not being exposed to such a risk at action level at.

Given the exposure function g, the infection probability pt is given by

pt(at, µt, χt) = g(at)µtχt (4)

for any susceptible agent choosing activity at in period t.

Our modeling is complicated by the consideration that the active agents do not know with

certainty whether they are susceptible, infectious, or immune in any given period. They may

have been unknowingly infected in the past without showing symptoms. Thus, we allow rational

agents to infer their disease probability, given their past actions. Consider an active agent with

type x who has chosen activities a0, a1..., at−1 in periods 0 through t−1. Suppose these activities

have exposed the agent to infection probabilities ps, with the associated disease probabilities qs,

over periods s = 0, 1, ..t− 1. Let Pr(susceptiblet|activet) denote the conditional probability that
the agent is susceptible in period t. Since being susceptible is equivalent to being uninfected in

the past, and since being active implies that the agent has not been sick, we obtain

Pr(susceptiblet|activet) =
(1− p0)(1− p1)...(1− pt−1)

(1− q0)(1− q1)...(1− qt−1)
:= St−1 (5)

Thus, when (almost) all other agents follow the plan α, an active type-x agent with a history of

actions a0 = 1 and at := (a1, ..., at) has an expected disease probability in any period t = 0, 1, ...

equal to (defining S−1 = 1)

qt(x, St−1, pt) = γxSt−1pt (6)

Summarizing, we may perceive the sequence of events that leads to sickness of an agent so

far without symptoms at the start of period t as follows.

Being susceptible & exposed to risk → Infected → Symptomatic

Prob = St−1g(at) Prob = µtχt Prob = γx
(7)

The sequence has the following interpretation. At the start of period t, the agent commits to

action at ∈ [0, 1]. Through this period, the agent runs the risk of being susceptible and exposed

to the transmission risk with probability St−1g(at). Conditional on being susceptible and exposed
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to the risk, the agent will be infected with probability µtχt. If the agent is infected, they will

show symptoms with conditional probability γx.

The infection rate of the population in a period t, which we denote by It, can be now

calculated by integration, using density ft(x) of the susceptible types:

It = µtφtχt where φt =

∫
X

g(αt(x, µ
t))ft(x)dx (8)

Thus, It can be seen as µt multiplied by a generalized matching function Mt = φtχt where

the first part φt is directly related to the density and actions of the susceptible population, and

the second part χt the density and actions of the infectious population. The formula includes the

basic SIR model of infection rate as a special case when there is no asymptomatic transmission

(γ ≡ 1), full symptomatic infectiousness (θ ≡ 1), and no prevention measures (g ≡ 1 and

h ≡ 1). Then, φt reduces to the size of the susceptible population and χt the size of the

infectious population, as is assumed in the basic SIR models.15

Lemma 1 Let µ0 ∈ (0, 1) and I0 ∈ (0, 1) be given in t = 0. Suppose (almost) all active agents

follow public-response plan (αt)
T
t=1 with α0 ≡ 1. The law of motion for (it, jt, ft, χt, pt, qt) is

jointly given by16

it(x) = γxpt−1(x, µt−1)ft−1(x) (9)

jt(x) = (1− γx)pt−1(x, µt−1)ft−1(x) (10)

ft(x) = (1− pt−1(x, µt−1))ft−1(x) (11)

χt(µ
t) =

∫
X

θ(x)it(x)dx+

∫
X

h(αt(x, µ
t))jt(x)dx (12)

pt(x, µ
t) = g(αt(x, µ

t))µtχt(µ
t) (13)

qt(x, µ
t) = γxSt−1(x, µt−1)pt(x, µ

t) where St−1 = St−2
1− pt−1(x, µt−1)

1− qt−1(x, µt−1)
(14)

with f0 = f , p0 = I0 and q0(x, µ0) = γxI0.

From the above analysis it follows that the sizes of the infectious and innocuous populations

15Since time is continuous in the SIR models, the infected agents are simultaneously infectious.
16To ease exposition, pt(x, µt) denotes pt(αt(x, µt), µt, χt), etc.
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in period t are given by

ϑt(µ
t) =

∫
X

pt−1(x, µt−1)ft−1(x)dx

ρt(µ
t) =

t−1∑
s=0

ϑs(µ
s)

3.3 Dynamic game and equilibrium

We assume that in any period t ∈ {0, 1, 2, ..., T}, the distribution of µt+1 is governed by transition

probability measure Φ̂t : [0, 1]× [0, ϑt] → ∆([0, 1]), such that given (µt, χt) ∈ [0, 1]× [0, ϑt], the

state µt+1 is a random variable distributed according to Φ̂t (µt, χt) ∈ ∆([0, 1]) (with Φ̂T (µT , χT )

assigning probability 1 to the event {µT+1 = 0} for T <∞).17 ,18

Given Φ̂ (= (Φ̂0, Φ̂1, ..., Φ̂T )), and the initial states µ0 ∈ (0, 1) and χ0 = 1, by the Tulcea

Extension Theorem each public-response plan α (= (α1, ..., αT )) uniquely defines a probability

measure over the sequence of states (µt)
T
t=1 ∈ [0, 1]T for T ≤ ∞. Therefore, a unique stochastic

process is defined for T ≤ ∞. Subsequently, we fix Φ̂ and let Eαt [·|µt, χt] denote the conditional
expectation operator for µt+1 under the public-response plan α, given (µt, χt). The expected

payoff V ∗t of each active type-x agent in period t, given µ
t, can be described recursively:19

V ∗t (x, µt) = v(αt(x, µ
t)) + δx

{
(1− qt(x, µt))Eαt

[
V ∗t+1(x, µt+1)|µt, χt

]
+ qt(x, µ

t)Dx

}
(15)

for t ∈ {1, 2, ..., T}, with V ∗T+1(x, 0) = Ux if T <∞.
The interpretation of (15) is as follows. At the start of period t given µt, for all x ∈ X, the

active type-x agents choose action αt(x, µt) and enjoy utility equal to v(αt(x, µ
t)) over period t.

By the end of the period, with probability qt(x, µt), each type-x agent will be symptomatically ill

and drop out, in which case the agent expects a life-time utility Dx (< Ux); and with probability

1 − qt(x, µ
t), each type-x agent will remain active and choose αt+1(x, µt+1) over period t + 1,

according to the then realized history µt+1. This leads to the continuation payoff Vt+1(x, µt+1).

17∆([0, 1]) denotes the set of probability measures over [0, 1].
18To focus on individual behaviors, we choose this Markov formulation solely for simplicity. There is also no

need to assume any knowledge of how the state variables are serially correlated, except a condition proposed
in Assumption 1 and Proposition 1. Extension to the more general processes could follow the treatment and
discussion in Pavan et al. (2014) and Athey and Segal (2013).
19The existence of an optimal plan (αt)

T
t=1 for each type of active agents is guaranteed because Vt is a continuous

function of actions defined on the closed interval [0, 1] (see (16)).
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For T <∞, from period T + 1 onwards, all the then active agents will enjoy life-time utility Ux,

according to their type x ∈ X.
The active agents play a dynamic noncooperative game in choosing their actions, each at-

tempting to maximize their expected payoff. The game will end after T , if T is finite.

Definition 5 The public-response plan α = (α1, ..., αT ) forms a sequential public-response equi-

librium (SPRE) if and only if the following conditions hold:

(i) Sequential rationality. Given µ0 ∈ (0, 1) and any realized history µt ∈ [0, 1]t, t ∈
{1, 2, ...T}, for almost all x ∈ X, if the agent of type x is active and has followed the plan

α in the past, they will optimally choose action αt(x, µt) in the current period and plan to follow

αt+1(x, ·), αt+2(x, ·)...until T. Supporting this plan is the agent’s belief that almost all other active
agents have followed the plan in the past, and will continue to follow the plan in the current and

future periods.

(ii) Consistent updating of information. All active agents who have followed the plan up to

t update their beliefs using Bayes rule regarding the density of susceptible types ft, infection-

probability function pt, and disease-probability function qt, according to Lemma 1.

In an SPRE, active agents are not affected by any other individual agent’s type or action,

and the information set regarding other active agents’types remains the same X for all periods.

However, agents are affected by the transmission risk χt of the environment, which is important

for their assessment of the infection and disease probabilities pt and qt, respectively. The equa-

tions (9)—(14) for updating (it, jt, ft, χt, pt, qt) over time can be seen as related to the Bayesian

updating of beliefs in a Perfect Bayesian Equilibrium for games with incomplete information.

Since the agents’disease probabilities depend on their past actions, as in (6), agents who deviate

from the plan α may find it optimal to continue deviating from it. However, under an SPRE,

the set of deviating agents has a zero measure across all periods so that the law of motion for

(it, jt, ft, χt, pt, qt) is unaffected.

4 Equilibrium Analysis

This section contains the main theoretical results. We first establish the existence of SPRE in

Theorem 1 under general conditions. We then characterize polarized equilibrium in Theorem
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2 for DARA or CARA agents under constant hazard rate of the exposure function, and show

that the obtained SPRE is unique. The equilibrium behavior and comparative statics results

are then presented in Proposition 1. Finally, we present in Proposition 2 the long term behavior

of SPRE as t tends to infinity.

4.1 Path dependent equilibrium

We start with a public-response plan α and consider the individual decisions of an arbitrary

active agent in period t ≥ 1. To ease notation, we suppress the expression of variables unless it

is needed for clarity.

Let at−1 = (a1, ..., at−1) denote the agent’s past actions, such that at = (at−1, at). By the

principle of optimality for stochastic dynamic programming,20 the agent’s optimal expected

payoff V ∗t in any period t can be described as (suppressing variables x, µ
t, χt), recalling that

qt = γxSt−1pt where pt = g(at)µtχt,

V ∗t (at−1) = max
at∈[0,1]

{
v(at) + δ(1− qt(at))Eαt

[
V ∗t+1(at)|µt, χt

]
+ δqt(a

t)D
}

(16)

t ∈ {1, 2, ..., T}

with V ∗T+1 = U if T < ∞. Let Vt (= Vt(x, at, a
t−1, µt, χt)) denote the term in curly brackets in

(16):

Vt = v(at) + δ
{

(1− qt)Eαt
[
V ∗t+1|µt, χt

]
+ qtD

}
(17)

To establish equilibrium existence, we invoke the following assumption.

Assumption 1 The cumulative distribution function Φt (·|µt, χt) that corresponds to the tran-
sition probability measure Φ̂t (µt, χt) is twice differentiable in all arguments, with the density

function ϕt (= Φ′t
(
µt+1|µt, χt

)
) satisfying, for any t ∈ {1, ..., T},

∂ϕt/∂χt
ϕt

≥ −1 (18)

at all points where ϕt > 0.

20See, e.g., Chapter 9, Stokey et al. (1989). Although our model is different from those treated in their book,
the analysis follows similar lines.
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Roughly, Assumption 1 requires that a marginal change in χt should not change the den-

sity function of µt+1 “by too much” in the sense of (18). This technical assumption implies

the following behavioral assumption: in every period t, each active agent’s expected payoff is

submodular in (at, χt), i.e.,
∂2Vt
∂at∂χt

≤ 0 (see Lemma 4). According to this behavioral assumption,

agents play a submodular game by responding to a marginal increase in χt with a marginal

decrease in their action in any period t. The reason is that a higher level of χt increases the

probability of infection to all susceptible agents, and thus decreases each agent’s incentive to

choose a higher at. Therefore, the role of Assumption 1 is to provide a suffi cient condition for

agents to play a submodular game that is based only on the primitives ϕt in the model.

Theorem 1 Consider the dynamic public response model of Section 3. Suppose Assumption 1

holds. Then there exists a sequential public-response equilibrium (SPRE) α = (αt)
T
t=1 character-

ized by (i)

∂Vt
∂at

= v′(at)− δ
∂qt
∂at
Eαt
[
V ∗t+1 −D|µt, χt

]
+ δ(1− qt)Eαt

[
∂V ∗t+1

∂at

∣∣∣∣µt, χt] = 0 (19)

at at = αt(x, µ
t) for which (16) has an interior solution, otherwise αt(x, µt) = 0 or 1, depending

on whether Vt(x, at, αt−1(x, µt−1), µt, χt) is the greatest at at = 0 or 1 through the entire interval

[0, 1], for all x ∈ X and t ∈ {1, 2, ..., T}, where ∂qt
∂at

= g′(at)γxSt−1µtχt and
∂V ∗t+1
∂at

is recursively

defined via

Eαt
[
∂V ∗t+s
∂at

∣∣∣∣µt, χt]
= −δEαt

[(
V ∗t+s+1 −D

) ∂qt+s
∂at

− (1− qt+s)
∂V ∗t+s+1

∂at

∣∣∣∣µt, χt]
s = 1, ..., T − t

and (ii)

χt =

∫
X

θ(y)it(y)dy +

∫
X

h(αt(y, µ
t))jt(y)dy (20)

Here, (19) is the first-order condition and (20) is an additional equilibrium condition. In

(19), we interpret v′(at) as a direct marginal benefit and the term involving V ∗t+1 − D as the

marginal cost, of increasing action at at. This cost is related to the risk of being symptomatically

ill, in which case the agent drops out by the end of the period and suffers an expected loss of
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payoff V ∗t+1 − D. Thus, if the third term involving
∂V ∗t+1
∂at

doesn’t exist, an interior solution will

be characterized by equating the marginal cost with the marginal benefit. However, this third

term is a result of asymptomatic infection and can play an important role in influencing agents’

optimal actions. By backward induction, it can be easily shown (with the proof omitted) that

increasing at has a positive marginal effect on the continuation payoff V ∗t+1, as given in Corollary

1.

The proof of Theorem 1 is lengthy, complicated by path dependency of Vt. In Appendix 1,

we prove Theorem 1 by transforming the problem into a mathematically equivalent one that

removes the path dependency of the expected continuation payoffs. Note that the equilibrium

in Theorem 1 may not be unique under the general structure of the problem.

Corollary 1 Suppose Theorem 1 holds. Then, in an SPRE,
∂V ∗t+1
∂at

≥ 0 for all x ∈ X and

t ∈ {1, 2, , ..., T}.

This corollary suggests that if the agent remains active by the end of the period, having

taken a higher level of action would be more desirable.

4.2 Equilibrium polarization

In this subsection, we are interested in an SPRE that exhibits polarization of the following

property: there exists an interval (c, 1) with c ∈ [0, 1) that partitions the agents into two camps:

in equilibrium, in any period t ∈ {1, 2, ..., T}, part of the agents choose actions in [0, c] and

the rest of agents choose actions in {1}. The extreme case is where c = 0, in which a sharply

polarized equilibrium arises, with the entire active population either preferring action 0 or 1.

To ease the analysis and sharpen the equilibrium characterization, we invoke two more as-

sumptions.

Assumption 2 Agents’periodic utility function v satisfies v′′ < 021 and exhibits decreasing or

constant absolute risk aversion (DARA or CARA), i.e., −v′′(a)
v′(a)

is nonincreasing in action a on

[0, 1].

Assumption 3 The exposure function g has the memoryless property such that g(a) = 1 −
exp(−λa) for some λ > 0.

21For v′′ ≥ 0, the conclusion of Case (i) in Theorem 2 holds as a straightforward corollary.
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The intuition behind Assumption 2 is similar to that of the DARA assumption on utility

functions for money. For instance, consider the choice between a small increase of communicable

activity ∆a and an uncertain increase of activity ∆ã. If an agent currently enjoying activity

level a prefers the sure increase of ∆a, then it seems reasonable to posit that the agent would

also prefer the sure increase of ∆a when their current activity level is lower than a.

In Assumption 3, the memoryless hazard rate assumption may be construed as follows. The

hazard rate λ(at) indicates the marginal probability of an agent being exposed to the transmission

risk by a marginal increase of at to at + ∆a, conditional on them not being exposed to such a

risk at action level at. Now let us consider a thought experiment. Suppose there are some people

shopping in a grocery store without wearing a mask. Let ∆a denote their shopping activities and

ask this question: Take any two of these people who have not been exposed to the transmission

risk when they entered the store, should their probability of risk exposure, due to shopping at

the store, differ? Although the two may have taken very different levels of communicable activity

before shopping, we have no reason to surmise that their probabilities of risk exposure differ in

the same shop. Therefore, it seems a reasonable starting point to assume that under a given

transmissible environment, the hazard rate of risk exposure is a constant.

Theorem 2 (Part 1) Under Assumption 1, the SPRE α = (αt)
T
t=1 characterized in Theorem 1

can be equivalently characterized by a positive function Ht defined by

Ht = v(αt)− (1− δ)D + δ(1− pt)Ht+1 (21)

for t ∈ {1, 2, ..., T}, with HT+1 = U −D if T <∞, replacing (19) with

∂Vt
∂at

= v′(at)− δ
∂qt
∂at
Eαt [Ht+1|µt, χt] = 0. (22)

(Part 2) Under Assumptions 1-3, there exists a threshold point c such that

c =

 min{a ∈ [0, 1] : −v′′(a)
v′(a)
≤ λ} if − v′′(1)

v′(1)
< λ

1 if − v′′(1)
v′(1)
≥ λ

(23)

Given µ0 ∈ (0, 1) and α0 ≡ 1, the SPRE α = (αt)
T
t=1 is uniquely

22 characterized by:

22In the present context, uniqueness of equilibrium α means that any other equilibrium may differ from α, only
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(i) if c = 0, then αt(x, µt) ∈ {0, 1} for all x ∈ X;

(ii) if c ∈ (0, 1), then αt(x, µt) ∈ [0, c) ∪ {1}, satisfying (22) for αt(x, µt) ∈ (0, c) or else

αt(x, µ
t) ∈ {0, 1};

(iii) if c = 1, then αt(x, µt) ∈ [0, 1], satisfying (22) for αt(x, µt) ∈ (0, 1) or else αt(x, µt) ∈
{0, 1}.

Here, Ht serves as an auxiliary function: the expected value of Ht+1 in (22), when multiplied

with ∂qt
∂at
, captures the overall marginal cost given in square brackets in (19). The most useful

property of Ht+1 is that it does not depend anymore on the path-dependent disease probabilities

qt, qt+1, ... We see from Theorem 2 that the equilibrium behavior critically depends on the level

of the hazard rate λ of the exposure function g. For λ suffi ciently high such that λ > −v′′

v′ on

[0, 1], Case (i) holds as c = 0. And the theorem predicts a sharply polarized equilibrium that

partitions the agents into those who choose “safety first (αt = 0)”and those who choose “life as

usual (α = 1).”In Case (ii) where λ > −v′′(a)
v′(a)

on (c, 1] ⊂ [0, 1], a milder polarized equilibrium

holds in which some agents maximize by choosing actions in [0, c) and the others choose 1. A

common feature of Cases (i) and (ii) is that the equilibrium exhibits polarization: a threshold c

partitions the agents’equilibrium actions into two disjoint sets, with no one choosing actions in

(c, 1).

The key insight into the polarized behavior derives from the fact that

−g
′′(a)

g′(a)
> −v

′′(a)

v′(a)
if and only if

v′(a)

g′(a)
increases in a

The ratio v′(a)
g′(a)

being an increasing function suggests that g′ declines faster than v′ as a

goes up. In the present context, v′(a) is the marginal benefit of increasing action a and g′(a)

the marginal probability of getting exposed to the transmission risk of the environment– both

measured at level a. In other words, when the marginal benefit of increasing a equals the

expected marginal cost due to increased probability of exposure at level c, then the marginal

benefit of increasing a exceeds the expected marginal cost at all action levels a > c. To be more

precise, let Mt denote the expected cost conditional on being exposed to the transmission risk

so that ∂Vt
∂at

= v′(at) − g′(at)Mt. Since −g′′(a)
g′(a)

= λ, for Cases (i)-(ii) of Theorem 2 we have v′(a)
g′(a)

in a set of types with a zero Ft-measure in each period t ∈ {1, 2, ..., T}.
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increasing in a on (c, 1] for c ∈ [0, 1). Thus ∂Vt
∂at
≥ 0 (or equivalently, v′(a)

g′(a)
≥ Mt) at any level

a ≥ c implies ∂Vt
∂at

> 0 at all levels at > a. Consequently, all actions at ∈ (c, 1) are inferior

to at = 1. It follows then, for Cases (i)-(ii), that the equilibrium actions must be equal to

max{arg maxa∈[0,c] Vt(a), 1}, for all types of agents and all periods.
What seems to be counter intuitive is that polarization is more likely to occur when the

hazard rate of the exposure function g is high. It is true that given any a > 0, the probability

g(a) is higher and therefore equilibrium actions lower for a higher λ. But the conclusions of

Theorem 2 does not rely on the absolute values of g. Instead, polarization is a consequence of

the relative marginal values of v and g.

A Two-period Example

To gain some visual insights into polarized behavior, consider a two-period example. In

period 0, a pandemic took place and infected I0 agents. Agents react by choosing communicable

activities in period 1 knowing that effective vaccinations will be available for everyone by the end

of the period. Assume v(a) = u0 + aθ(u− u0) (0 < θ < 1) and g(a) = 1− exp(−λa). Then, we

have c = 1−θ
λ
and polarization will occur for λ > 1− θ. Further assume that the agents’type set

is of single dimension such that δx ≡ δ, γx ≡ γ, so that agents differ only in their expected utility

upon symptomatic illness, Dx. Thus, for type x we have Eα1 [H2|µ1, χ1] = U −Dx. Suppressing

the subscripts, an active type-D agent maximizes expected payoff

V = v(a) + δU − δq(a)(U −D)

= u0 + aθ(u− u0) + δU − δ (1− exp(−λa)) γµχ(U −D)

Figure 2 depicts the function V (a) for different types D, and for λ = 1 and 2. Here, the

computation assumes θ = 0.5 so that c = 0.5 for λ = 1 and c = 0.25 for λ = 2. Other parameter

values are u = 1, u0 = 0.5, δ = 0.9, γ = 0.5, µ = 0.6. It is assumed that in equilibrium, χ = 0.33

for λ = 1 and χ = 0.3 for λ = 2, taking into account that equilibrium actions are (weakly)

decreasing in λ. (These equilibrium values of χ can be justified given our degrees of freedom

in choosing parameter I0 and functions θ, h, and F ). We find that D = 2.82 (resp. 3.83) is

the type that is indifferent between the optimal action from [0, c) and the maximal action 1 for

λ = 1 (resp. 2). The figures illustrate that V is concave on (0, c) and convex on (c, 1) , so that

no agent would choose actions from the set [c, 1). Polarization is more prominent for the higher
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Figure 2: Illustration of equilibrium polarization. Actions maximizing V are either in the lower
shaded set or in {1}. The types D = 3.2 and D = 3.83 are indifferent between the two choice
sets for λ = 1 and λ = 2, respectively. Polarization is more prominent in that the lower action
set shrinks to the left as λ increases.

λ (= 2) case, as the two sets of equilibrium actions are more separated apart.

We conclude this subsection by a corollary of Theorem 2, the proof of which follows the proof

of Theorem 2 straightforwardly and is hence omitted.

Corollary 2 Suppose Theorem 1 holds. Further assume that functions v and g satisfy the

following single-crossing property: there exists c ∈ [0, 1) such that

v′′(a)

v′(a)
− g′′(a)

g′(a)

 ≤ 0 for a ≤ c

> 0 for a > c

Then the conclusions of Theorem 2 hold.

This corollary shows that Assumptions 2 and 3 are suffi cient, but not necessary, for Theorem

2 and the equilibrium polarization can arise under more general circumstances.

4.3 Comparative statics and long-run equilibrium behavior

We now consider the comparative equilibrium behavior among agents endowed with different

types. As the types are three-dimensional, it is impossible to have a complete ranking of the
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preferences and behavior based on agents’types. Nevertheless, each dimension of the types, δ, γ,

and D has unambiguous implications for the equilibrium behavior.

Proposition 1 The equilibrium public-response functions αt has the following properties: for

all t ∈ {1, 2, ..., T},
(i) αt is nonincreasing in δ;

(ii) αt is nonincreasing in γ;

(iii) αt is nondecreasing in D.

Prediction (i) of this proposition might appear controversial. On one hand, it seems rea-

sonable to predict higher levels of communicable activity among people who subscribe to carpe

diem (pluck the day), or yolo (you live only once), as something close to their philosophy of life.

A lower discount factor would be then consistent with their penchant to make the most of the

present time and give little thought to the future. On the other hand, it would be misleading to

predict higher levels of communicable activity among older people, as they might exhibit lower

δ but at the same time higher γ and lower D– given that they are more likely to be sick or

die upon infection. Therefore, it is worth emphasizing that all personal traits jointly influence

agents’behavior. The main intuition why part (i) of the proposition holds, can be seen from the

fact that once infected symptomatically, an agent’s loss of utility (U−D = u
1−δ−D) is positively

related to their δ. Therefore, given two agents with the same γ and D, the agent with a higher δ

has less incentive to take risks. Likewise, the disease probability when infected, γ, has a similar

effect as δ because a higher γ means that the agent is more likely to suffer illness than agents

with lower γ. The level of expected utility when diseased, D, is positively related to an agent’s

action because a higher D means a lower loss of utility (U −D).
By Proposition 1, we may call agents choosing actions below c in Theorem 2 “the more

vulnerable”and the agents choosing action 1 “the less vulnerable.”Notably, the prediction that

active agents may choose polarized actions amidst a pandemic is based on the primitives v and

g only, and is derived under common information and beliefs. For instance, the equilibrium

predictions in Cases (i) and (ii) do not require agents to have polarized distribution for types

or personal characteristics. Under any atomless distribution of the individual characteristics

(δ, γ,D), Theorem 2(i)-(ii) hold for suffi ciently high λ, even if the agents have infinitesimal type

differences and are observationally “nearly”homogeneous.
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Our second proposition shows the long-run behavior of the equilibrium and infection trends

under an SPRE.

Proposition 2 Then the following holds for any SPRE.

(i) If µτϑτ = 0 for some τ ∈ {1, 2, ..., T}, then αt ≡ 1 and ϑt = 0 for all t ≥ τ .

(ii) Suppose T = ∞. Then, the sequence of probabilities Pr(αt(x, µ
t) = 1) → 1 uniformly

over X, and ϑt → 0, as t→∞.

Based on the COVID-19 experience, the random behavior of the coronavirus is highly unpre-

dictable. We therefore focus on two broad scenarios, making no assumption about the dynamic

behavior of the state variable µt. In scenario (i), either the transmission-intensity rate hits

zero by a fluke or the infectious population shrinks to zero. While µτ = 0 is a chancy event,

ϑτ = 0 can occur for various reasons. For instance, consider the extreme case when γ ≡ 1, i.e.,

all infected agents will be sick so that the last term in (12) equals zero, and θ ≡ 0, i.e., the

infected agents will be so sick as to have no capacity to transmit the disease to others. Then,

the transmission risk defined in (12) vanishes, implying no new infection in the current period

and therefore no infectious agents in the subsequent period. The severe Ebola virus disease,

which could cause up to 90% of death but never became a pandemic, might be considered an

example for this case. Another possibility for scenario (i) is that an extremely high rate of

infection occurred in a period, causing a large population of infectious agents, or a large trans-

mission risk in the subsequent period such that all the remaining active agents find it optimal

to choose action 0. If a strict lockdown policy were feasible for the whole population, then, by

Proposition 2(i), the population would be able to get rid of the virus quickly. (Of course, this is

a big ‘if’given the virtual impossibility of a worldwide, coordinated lockdown.) In scenario (ii)

of the proposition, the virus persists. Then, the proposition predicts herd immunity as the only

long-run equilibrium outcome.

5 Concluding Remarks

We have studied a dynamic game model with heterogeneous agents responding to the transmis-

sion risks of a widespread disease, and obtained three main results. The first result provides

a rational explanation for the puzzling phenomenon of polarization in people’s views and be-

haviors during a pandemic. We show that polarization crucially depends on the hazard rate
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of the exposure probability function: the higher is the hazard rate the more prominent will be

the polarization of actions in equilibrium. This result improves our understanding of human

behavior in times of a pandemic, highlighting that the polarization phenomenon is a combined

consequence of individual rationality, personal conditions, and the nature of disease transmission.

The second result stems from the fact that infected people can be asymptomatic and acquire

immunity without noticing. With this possibility in mind, the agents in our model are enabled

to rationally update their probability of disease based on their past actions, using the Bayes rule.

The result, therefore, predicts an effect of past actions: the higher levels of the past actions,

the more incentives an active agent has to take further high-risk actions. As time goes by, the

result predicts that people will increasingly neglect the risk of disease and live their life as usual

during a pandemic so that the long-run equilibrium moves toward herd immunity.

The third result shows that in equilibrium, the agents’actions are intimately related to their

personal traits. Specifically, an agent’s communicable activity is inversely related to their (1)

discount factor, (2) probability of contracting the disease upon infection, and (3) expected loss

of utility in the event of disease. These personal characteristics may be used as indications of

an agent’s vulnerability to transmission risk and help us better understand individual reactions

to the pandemic.

In terms of policy considerations, our results corroborate the view of Acemoglu et al. (2021)

and Gollier (2020) regarding the validity of targeting different types of agents with different

policies. For instance, instead of full-fledged lockdowns, a government can consider playing a

more constructive role by facilitating more vulnerable people to choose safety-first while allowing

the less vulnerable to conduct life as usual. Since the lesser vulnerable population would not

be a heavy social healthcare burden and will mostly acquire immunity through (asymptomatic)

infections among themselves, the potential cost of facilitating such a policy could be conceivably

much lesser than implementing a (partial) lockdown for everyone. The general framework and

analysis presented here could be useful for policy-makers, organizations, and individuals to

mitigate the potential damages in the future if such a crisis arises again.
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6 Appendix 1: Proofs of Theorems

Consider a mathematically equivalent problem to (16) of maximizing

Vt −D = v(at)− (1− δ)D + δ(1− qt)Eαt
[
V ∗t+1 −D|µt, χt

]
∀t ∈ {1, ..., T}

Thus, Vt −D can be expanded as though it was the expected sum of a sequence of discounted

payoffs, with an associated probability of receiving the payoff in each period:∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Period Probability Discounting Payoff flow

t 1 1 v(at)− (1− δ)D
t+ 1 1− qt δ v(αt+1)− (1− δ)D
· · · · · · · · · · · ·
t+ s (1− qt) ...(1− qt+s−1) δs v(αt+s)− (1− δ)D
· · · · · · · · · · · ·
T + 1 (1− qt)...(1− qT ) δT−t+1 U −D

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(24)
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where the last row vanishes as T →∞. Defining Π0
r=1 (1− qt+r) = 1 and taking expectation of

the sum, we can write

Vt −D = Êαt



v(at)− (1− δ)D

+

T−t∑
s=1

δs

[(
s∏
r=1

(1− qt+r−1)

)
(v(αt+s)− (1− δ)D)

]

+δT−t+1

(
T−t+1∏
r=1

(1− qt+r−1)

)
(U −D)


(25)

where Êαt denotes the expectation operator over the random variables (µt+1, ..., µT ), conditional

on the information at t. Again, due to discounting and bounded payoff, the last term in (25)

vanishes as T → ∞. The expression of Vt − D in the above sequence effectively simplifies the

problem, as shown in the following lemma.

Lemma 2 The partial derivative in (19) satisfies, for all t ∈ {1, 2, ..., T},

∂Vt
∂at

= v′(at)− δ
∂qt
∂at
Eαt [Ht+1|µt, χt] (26)

where Ht+1 is a positive function defined recursively by

Ht+s = v(αt+s)− (1− δ)D + δ(1− pt+s)Ht+s+1

for s ∈ {1, ..., T − t}, with HT+1 = U −D if T <∞.

The proof of Theorems 1 and 2, and the subsequent propositions, also rely on a number of

general properties of the cross-partial derivatives of Vt, as presented in Lemmas 3-5.

Lemma 3 The function Vt as defined in (17) has the cross-partial derivative ∂2Vt
∂at∂as

≥ 0 for all

x ∈ X, and all s, t ∈ {1, 2, ..., T} such that s < t.

This lemma shows that Vt is supermodular in (as, at) for each active agent and for all s < t.

This property implies a “risk-taking fosters risk-taking”effect in that higher levels of commu-

nicable activity in the past encourage the active agents to take higher levels of activity today.

This result will be also useful for the analysis of comparative statics and equilibrium trends in

Section 4.3.
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Lemma 4 Suppose Assumption 1 holds. The function Vt as defined in (17) has the cross-partial

derivative ∂2Vt
∂at∂χt

≤ 0 for all t ∈ {1, 2, ..., T}.

Lemma 5 For all t ∈ {1, 2, ..., T}, given any (at−1, µt, χt), the function Vt as defined in (17)

has the following properties:

(i) ∂2Vt
∂at∂δ

< 0

(ii) ∂2Vt
∂at∂γ

< 0

(iii) ∂2Vt
∂at∂D

> 0

The above two lemmas show that Vt is submodular in (at, χt), (at, δ), (at, γ), and supermod-

ular in (at, D). These properties have monotone comparative statics implications (Topkis, 1978;

Milgrom and Shannon, 1994; Athey, 2002), as will be presented in the next section.

We are ready now to complete the proofs of Theorems 1 and 2.

Proof of Theorem 1. Step 1 (individual optimality). By Lemma 2, the problem of maximizing

Vt as defined in (17) can be expressed by the program (suppressing other variables):

max
at∈[0,1]

Vt(at) = v(at)− δqt(at)Eαt [Ht+1|µt, χt] + Vt(0)

Since Vt is continuous in at and this decision variable is chosen in each period from a closed

interval, the existence of an individual plan (a∗t )
T
t=0 for each type of the active agents, taking a

public plan α and the process of the transmission risk (χt)
T
t=0 (yet to be established) as given,

is guaranteed.

Starting with an arbitrary T < ∞. By backward induction on t, it is easily seen that given
any past actions at−1, history µt, and current transmission risk χt of the environment, for each

type x there exists an optimal solution

a∗t (x, a
t−1, µt, χt) = max{arg max

at∈[0,1]
Vt(x, at, a

t−1, µt, χt)}

where, for multiple solutions, we choose the highest action for equilibrium. Equation (19) with

the described corner solutions are therefore both necessary and suffi cient for an individual op-

timal plan. Because δx ≤ δ̄ < 1 and Ux − Dx ≤ u
1−δ̄ < ∞ for all x ∈ X, the last term in (25)

converges uniformly to 0 as T →∞. Thus, the characterization of a∗t in (19) with the described
corner solutions extends to the infinite horizon case as T →∞.
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Step 2 (equilibrium). Now we pick any t ∈ {1, 2, ..., T−1} and define a mapping Γt : [θt, ϑt]→
[θt, ϑt] by

Γt(χ) = θt +

∫
X

h(a∗t (x, a
t−1, µt, χ))jt(x)dx, ∀χ ∈ [θt, ϑt]

where θt :=
∫
X
θ(x)it(x)dx. By Lemma 4, a∗t (x, a

t−1, µt, χ) is nonincreasing in χ. This implies,

given that h(a∗t (·)) is bounded between 0 and 1, that the mapping Γt is continuous. We now show

that Γt is also continuous. Brouwer’s fixed point theorem, combined with Γt being nonincreasing,

implies a unique fixed point χt = Γt(χt) that satisfies (20). The proof of the proposition is thus

completed by (forward) induction on t ∈ {1, 2, ..., T} for arbitrary T ≤ ∞.
Proof of Theorem 2. Part 1 of the theorem is a straightforward corollary of Theorem 1 and

Lemma 2. For Part 2, Case (iii) is covered by Theorem 1 and the proof of Case (i) follows the

same lines of the proof of Case (ii). We therefore focus on proving Case (ii) with c ∈ (0, 1). It

is easily seen that if v exhibits CARA, then c = 0 or 1 by definition, implying Case (i) or Case

(iii). So we assume that v exhibits DARA so that c is uniquely defined by −v′′(c)
v′(c) = λ (≡ −g′′

g′ )

such that

− v′′(at)

v′(at)

 > λ if at ∈ [0, c)

< λ if at ∈ (c, 1]
(27)

−v′′

v′ > (<)λ on [0, c) ((c, 1]). Then, for the characterizations of equilibrium, it suffi ces to show

that no action at in [c, 1) can be optimal.

As given in the proof of Theorem 1, the mathematical program of concern is

max
at∈[0,1]

Vt(at) = v(at)− δqt(at)Eαt [Ht+1|µt, χt] + Vt(0) (28)

Since qt(at) = g(at)γxSt−1µtχt, differentiating Vt yields

V ′t (at) = v′(at)− g′(at)Mt

and V ′′t (at) = v′′(at)− g′′(at)Mt
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with Mt := δγxSt−1µtχtEαt [Ht+1|µt, χt] > 0. If at some point at ∈ [0, 1] the derivative V ′t (at) = 0

so that v′(at) = g′(at)Mt, then by (27) and v′ > 0

V ′′t (at) = v′(at)

(
v′′(at)

v′(at)
+ λ

)
< 0 if at ∈ [0, c)

= 0 if at = c

> 0 if at ∈ (c, 1]

Consequently, any interior solution to the program in (28) must lie in the interval (0, c) and

characterized by (22);23 otherwise αt(x, µt) = 0 or 1. We have thus completed the proof of

equilibrium characterization for Case (ii).

What remains is to show that the equilibrium is unique. This amounts to showing that

almost all types of active agents should find their equilibrium action αt(x, µt) uniquely optimal

in all period t. From the above analysis, the equilibrium actions αt(x, µt) ∈ [0, c) ∪ {1} are
unique unless

max
at∈[0,c)

Vt(at, x) = Vt(1, x). (29)

Let Bt denote the set of types x = (δ, γ,D) satisfying the condition in (29). We show that the

type distribution being atomless implies that Bt has a zero measure in any period t ≥ 1.

First, consider types that differ only in one dimension of the type vector, e.g., D. Denote by

at = (a1, ..., at) and ât = (â1, ..., ât) the optimal history of actions up to t for the types (δ, γ,D)

and (δ, γ, D̂), respectively, such that (29) holds and w.l.o.g. suppose D̂ > D. Then, by Lemmas

3 and 5, ât ≥ at, and Vt is strictly supermodular in (at, D). Thus, we have

Vt(â
t−1, 1, D̂)− Vt(ât−1, ât, D̂) > Vt(a

t−1, 1, D)− Vt(at−1, ât, D)

But at being optimal for type D in period t implies that the right side of the inequality is greater

than Vt(at−1, 1, D)− Vt(at−1, at, D) = 0. It follows that when any type D is indifferent between

an interior optimal action at and 1, no other type D̂ 6= D can be indifferent between an interior

optimal action ât and 1.

Extending the above arguments, it can be shown by Lemma 5 that for any two types x, y ∈ X
such that δy ≤ δx, γy ≤ γx, Dy ≥ Dx with at least one inequality strict, if type x is indifferent

23Note that at = c cannot be optimal because V ′t (c) = 0 implies Vt(at) > Vt(c) for all at ∈ (c, 1].
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between an interior optimal action αt(x, µt) and 1, then type y will strictly prefer action 1.

Now, by contradiction, suppose Ft(Bt) > 0. Then, given X ⊂ R3, we can partition Bt into

23 subsets with positive measures and find out two of these:

B+
t = {x ∈ Bt : δx ≤ δ0, γx ≤ γ0, Dx ≥ D0)}

B−t = {x ∈ Bt : δx ≥ δ0, γx ≥ γ0, Dx ≤ D0)}

by properly choosing the vector x0 = (δ0, γ0, D0) ∈ X. Since x0 has a zero measure, removing

x0 from these sets preserves the measures of these subsets while causing at least one of the

inequalities to hold strictly for B+
t \{x0} and B−t \{x0}. This contradicts the definition of Bt so

that we must have Ft(Bt) = 0.

7 Appendix 2: Proofs of Lemmas 2-5

Proof of Lemma 1. We derive (it, jt, ft, χt, pt, qt) by induction. For t = 0, we are given

µ0 ∈ (0, 1) and I0 ∈ (0, 1). Define f0 = f , p0 ≡ I0 and S−1 ≡ 1, so that q0(x, µ0) = γxI0.

Subsequently, for t = 1 and given any µ1 ∈ (0, 1], we derive

f1(x) = (1− I0)f0(x)

i1(x) = γxI0f0(x)

j1(x) = (1− γx)I0f0(x)

χ1(µ1) =

∫
X

θ(x)i1(x)dx+

∫
X

h(α1(x, µ1))j1(x)dx,

p1(x, µ1) = µ1g(α1(x, µ1))χ1(µ1)

q1(x, µ1) = γxS0p1(x, µ1) where S0 = S−1
1− p0

1− q0

By induction, suppose for t ∈ {1, 2, ...T − 1}, the states (is, js, fs, χs, ps, qs) are well defined for

s = 0, 1, ..., t − 1. Consider now period t. Since for each type x ∈ X, a fraction pt−1(x, µt−1) of

the agents were infected in period t− 1, we have

it(x) = γxpt−1(x, µt−1)ft−1(x)

jt(x) = (1− γx)pt−1(x, µt−1)ft−1(x)
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and the density of susceptible types shrinks to

ft(x) = (1− pt−1(x, µt−1))ft−1(x)

It follows that

χt(µ
t) =

∫
X

θ(x)it(x)dx+

∫
X

h(αt(x, µ
t))jt(x)dx

and for all x ∈ X,

pt(x, µ
t) = µtg(αt(x, µ

t))χt(µ
t)

qt(x, µ
t) = γxSt−1(x, µt−1)pt(x, µ

t) where St−1 = St−2
1− pt−1(x, µt−1)

1− qt−1(x, µt−1)

Note that since f and αt are measurable functions of x, so are (it, jt, ft, χt, pt, qt) for all t ∈
{1, 2, ..., T}.
Proof of Lemma 2. Fix any t ∈ {1, 2, ..., T}. We show by induction on s = 1, ..., T − t that
the product term in (24) has a derivative

∂

∂at

s∏
r=1

(1− qt+r−1) = −γSt−1p
′
t(at)

s−1∏
r=1

(1− pt+r) (30)

where Π0
r=1 (1− pt+r) is defined as unity. For s = 1, from (6) we have

1− qt = 1− γSt−1pt(at) (31)

so that ∂(1−qt)
∂at

= −γSt−1p
′
t(at), conforming (30). Now, supposing (30) holds for arbitrary s ≥ 1,

let us consider the case with s+ 1. Noting from (5) and (6) that

qt+s = γSt+s−1pt+s = γSt−1pt+s ×

s∏
r=1

(1− pt+r−1)

s∏
r=1

(1− qt+r−1)
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Therefore

s+1∏
r=1

(1− qt+r−1) =
s∏
r=1

(1− qt+r−1)− qt+s
s∏
r=1

(1− qt+r−1)

=
s∏
r=1

(1− qt+r−1)− γSt−1pt+s

s∏
r=1

(1− pt+r−1)

=

s∏
r=1

(1− qt+r−1)− γSt−1pt+s(1− pt)
s−1∏
r=1

(1− pt+r)

Differentiating w.r.t. at and invoking the induction hypothesis, the first term on the right side

of the third equation satisfies (30). The second term depends on at only through pt. Thus,

∂

∂at

s+1∏
r=1

(1− qt+r−1)

= −γSt−1p
′
t(at)

s−1∏
r=1

(1− pt+r) + γSt−1p
′
t(at)

s−1∏
r=1

(1− pt+r)pt+s

= −γSt−1p
′
t(at)

s∏
r=1

(1− pt+r)

This shows that (30) holds for all s ≥ 1. Now, differentiating (25) with respect to at using (30),

and defining Ht+1 by

Ht+1 =
T−t∑
s=1

s−1∏
r=1

(1− pt+r)δs (v(αt+s)− (1− δ)D) (32)

+

(
T−t+1∏
r=1

(1− pt+r−1)

)
δT−t (U −D) (33)

one can readily verify that (22) holds, where the equivalent recursive expression of Ht+1 derives

from (32)—(33).

Finally, to determine whether Ht+1 is positive, we have HT+1 = U −D > 0. Since 0 ≤ pt+s ≤
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1− ρt+s < 1 and v(a) ≥ u0 ≥ (1− δ)D For all a ∈ [0, 1], by backward induction, we derive

Ht+s = v(αt+s)− (1− δ)D + δ(1− pt+s)Ht+s+1

≥ δ(1− pt+s)Ht+s+1 > 0

for all t ∈ {1, 2, ..., T}, s ∈ {1, ..., T − t}

Proof of Lemma 3. Pick any t ∈ {2, ..., T} and s ∈ {1, ..., t − 1}. Recall that qt = γSt−1pt,

so that the cross-partial derivative

∂2qt
∂at∂St−1

= γp′t > 0

Notice further that St−1 can be written as (define
0∏
r=1

(1− ps+r) = 1)

St−1 = A
(1− ps)

t−s∏
r=1

(1− qs+r−1)

where A := Ss−1

t−s−1∏
r=1

(1− ps+r) > 0 is independent of as. Therefore,

∂St−1

∂as
= A

∂

∂as

(1− ps)
t−s∏
r=1

(1− qs+r−1)

= A

−p′s
t−s∏
r=1

(1− qs+r−1)− (1− ps) ∂
∂as

t−s∏
r=1

(1− qs+r−1)(
t−s∏
r=1

(1− qs+r−1)

)2 (34)

By (30) in the proof of Lemma 2, we derive

∂

∂as

t−s∏
r=1

(1− qs+r−1) = −p′sSs−1γ
t−s−1∏
r=1

(1− ps+r)
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It follows that

−p′s
t−s∏
r=1

(1− qs+r−1)− (1− ps)
∂

∂as

t−s∏
r=1

(1− qs+r−1)

= −p′s
t−s∏
r=1

(1− qs+r−1) + (1− ps)p′sSs−1γ

t−s−1∏
r=1

(1− ps+r)

=

−p′s + (1− ps)p′sSs−1γ

t−s−1∏
r=1

(1− ps+r)

t−s∏
r=1

(1− qs+r−1)


t−s∏
r=1

(1− qs+r−1)

= − (1− γSt−1) p′s

t−s∏
r=1

(1− qs+r−1) (35)

Now, substituting A and (35) into (34) yields

∂St−1

∂as
= −St−1

(1− γSt−1) p′s
(1− ps)

< 0

because 0 < γ, St−1, ps < 1. Thus, from (26) we derive

∂2Vt
∂at∂as

= −δ ∂2qt
∂at∂St−1

∂St−1

∂as

∫ 1

0

Ht+1dΦt > 0

Proof of Lemma 4. For any t ∈ {1, ..., T}, we can write

∂Vt
∂at

= v′(at)− γSt−1µtg
′(at)χt

∫
Ht+1ϕt(µt+1|µt, χt)dµt+1

= v′(at)− γSt−1µtg
′(at)χt

∫
ϕt>0

Ht+1ϕt(µt+1|µt, χt)dµt+1

It follows that

∂2Vt
∂at∂χt

= −γSt−1µtg
′(at)

∫
ϕt>0

Ht+1ϕtdµt+1 − γSt−1µtg
′(at)χt

∫
ϕt>0

Ht+1
∂ϕ

∂χt
dµt+1

= −γSt−1µtg
′(at)

∫
ϕt>0

(
Ht+1ϕt ×

(
1 + χt

∂ϕ/∂χt
ϕ

))
dµt+1
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BecauseHt+1 > 0 and 0 < χt < 1, Assumption 1 implies 1+χt
∂ϕ/∂χt

ϕ
> 0 and therefore ∂2Vt

∂at∂χt
≤ 0

for all t ∈ {1, 2, ..., T} and T ≤ ∞.

Proof of Lemma 5. We fix the equilibrium response functions α1, ..., αT and check the sign

of the partial derivatives of ∂Vt
∂at

w.r.t. (δ, γ,D) by backward induction. Write ∂Vt
∂at

as

∂Vt
∂at

= v′(at)− δ
∂qt
∂at

∫ 1

0

Ht+1dΦt.

(i) Differentiating ∂Vt
∂at

w.r.t. δ yields

∂2Vt
∂at∂δ

= −∂qt
∂at

∫ 1

0

Ht+1dΦt − δ
∂qt
∂at

∫ 1

0

∂

∂δ
Ht+1dΦt

Because Ht+1 > 0 by Lemma 2, it suffi ces to show ∂Ht+1
∂δ
≥ 0. As shown in Lemma 2, the

functions Ht+s are recursively defined by, for s = 1, ..., T − t,

Ht+s = v(αt+s)− (1− δ)D + δ(1− pt+s)Ht+s+1

Differentiating w.r.t. δ yields

∂

∂δ
Ht+s = D + (1− pt+s)Ht+s+1 + δ(1− pt+s)

∂

∂δ
Ht+s+1

Since D ≥ 0 and ∂HT+1
∂δ

= 0, backward induction implies

∂2Vt
∂at∂δ

< 0, t ∈ {1, 2, ..., T}

(ii) Differentiating ∂Vt
∂at

w.r.t. γ yields

∂2Vt
∂at∂γ

= −δ ∂2qt
∂at∂γ

∫ 1

0

Ht+1dΦt

From qt = γSt−1pt, we derive

∂2qt
∂at∂γ

=

(
St−1 + γ

∂

∂γ
St−1

)
p′t
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Because ps is independent of γ and qs increasing in γ,

∂St−1

∂γ
=

∂

∂γ

(1− p0)(1− p1)...(1− pt−1)

(1− q0)(1− q1)...(1− qt−1)
> 0

Consequently, we have
∂2Vt
∂at∂γ

< 0, t ∈ {1, 2, ..., T}

(iii) Differentiating ∂Vt
∂at

w.r.t. D yields

∂2Vt
∂at∂D

= −δ ∂qt
∂at

∫ 1

0

∂

∂D
Ht+1dΦt.

We have ∂HT+1
∂D

= ∂(U−D)
∂D

= −1, implying

∂

∂D
Ht+s = − (1− δ) + δ(1− pt+s)

∂

∂D
Ht+s+1 < 0

and therefore
∂2Vt
∂at∂D

> 0, t ∈ {1, 2, ..., T}

8 Appendix 3: Proofs of the Propositions

Proof of Proposition 1. We prove the proposition by induction, using the results of Lemma

5.

(i) Starting from t = 1. Suppose the two types x and y differ only in δx > δy. Notice that y

can always choose to mimic the plan of x. However, y can be better. For instance, by Lemma

5, ∂2V1
∂at∂δ

< 0 implies that y would be better off by switching from the plan of x to a plan that

differs in period 1, with α1(y, µ1) ≥ α1(x, µ1). Therefore, we let y choose α1(y, µ1).

According to Lemma 3, in period t = 2, the type-y agents who remain active have even less

incentives to mimic the plan of x because α1(y, µ1) ≥ α1(x, µ1) implies S1(y) ≤ S1(x). This

advantage is reflected in q2(y, a2, µ
2) ≤ q2(y, a2, µ

2), which, together with ∂2V1
∂a1∂δ

< 0, suggests

that y can, again, do better by switching from the plan of x in period 2 to a higher level of

action α2(y, µ1) ≥ α2(x, µ1).
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Repeating the same argument for t = 3, ..., T, we can show that in all periods, y can do

better by choosing a (weakly ) higher action level than x. Note that the derived actions for y

are not necessarily equilibrium actions. These are used only to indicate the direction of change

as a result of increasing δ.

For conclusions (ii) and (iii), similar arguments apply, and hence, they are omitted.

Proof of Proposition 2. (i) Suppose µτϑτ = 0 for some 0 < τ < ∞. Then from (3)

χτ (µ
τ ) = 0, which implies ατ ≡ 1 and no new infection in period τ and therefore ϑτ+1 = 0. The

conclusion thus holds by induction.

(ii) By contradiction, suppose ϑt → 0 were false. Then, ∃ε > 0 such that for all τ > 0, there

exists t(τ) ≥ τ such that ϑt(τ) > ε.

Consider now the process (ρt)
∞
t=0 of the size of the innocuous population. It is nondecreasing

and bounded from above by 1. So the process has a limit ρ̄ ≤ 1 as t → ∞. It implies that
∀ε̂ > 0, there exists τ̂ > 0 such that

ρ̄− ε̂ ≤ ρt ≤ ρ̄ for all t ≥ τ̂ .

But, choosing ε̂ < ε and τ > τ̂ , we derive

ρt(τ) ≥ ρτ + ε ≥ ρ̄− ε̂+ ε > ρ̄

This contradiction shows that ϑt → 0 as t→∞.
Now to show Pr(αt(x, µ

t) = 1) → 1, we need to show that ∀ε > 0, ∃τ > 0 such that for

all t ≥ τ and µt ∈ (0, 1]t, Pr(αt(x, µ
t) = 1) > 1 − ε, or, equivalently, 1 − Pr(αt(x, µ

t) = 1) =

Pr(αt(x, µ
t) < 1) < ε.
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∂Vt
∂at

= v′(at)− δ
∂qt
∂at
Eαt [Ht+1|µt, χt]

Integrating over (a, 1) yields

Vt(1)− Vt(a)

= v(1)− v(a)− [g(1)− g(a)] δγSt−1µtχt(µ
t)Eαt [Ht+1|µt, χt]

≥ v(1)− v(a)− ϑt [g(1)− g(a)] δγSt−1µtEαt [Ht+1|µt, χt] (χt(µ
t) ≤ ϑt)

≥ v(1)− v(a)− ϑt [g(1)− g(a)] sup
x∈X

(Ux −Dx)

> 0 for t suffi ciently large, because ϑt → 0

Consequently, for all ε such that

v(1)− v(at)

[g(1)− g(a)] supx∈X(Ux −Dx)
> ε > 0,

there exists τ > 0 such that for all t ≥ τ , ϑt < ε and therefore Vt(1)− Vt(a) > 0 for all x ∈ X.
Since a can be chosen arbitrarily close to 1, we conclude that Pr(αt(x, µ

t) < 1) converges to 0

uniformly on X as t→∞.
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