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ABSTRACT. Structural estimation in economics often makes use of models formulated in terms

of moment conditions. While these moment conditions are generally well-motivated, it is often

unknown whether the moment restrictions hold exactly. We consider a quasi-Bayesian approach

for performing inference on structural parameters while relaxing the restriction that moment

restrictions hold exactly. Within this context, we prove new Bernstein-von Mises (BvM) type theo-

rems for the quasi-posterior distributions, which can be used to obtain tractable approximations

in practical settings. We illustrate the approach through simulation and empirical applications.

Our applications illustrate that we can obtain informative inference for structural objects, even

allowing for substantial relaxations of the requirement that moment conditions hold exactly.

Keywords: sensitivity analysis, misspecification, generalized method of moment(GMM), quasi-

Bayes, BvM

1. INTRODUCTION

Moment restrictions are commonly used in the identification and estimation of structural or
causal parameters in empirical economics. Prominent examples include instrument exclusion
conditions, unconfoundedness assumptions, parallel trend assumptions, and nonlinear moment
restrictions imposed in nonlinear structural models. Economists typically use institutional
knowledge and economic reasoning to argue for the validity of these restrictions in settings
with observational data. Based on these arguments, classical estimation and inference, such as
estimation and inference based on the generalized method of moments (GMM), then proceed
under the maintained assumption that the posited moment restrictions hold exactly.

While the arguments employed to justify moment restrictions provide a basis for believing that
the moment conditions are plausible, they are also generally debatable. That is, it is hard to know
that there are no unmodeled sources of confounding or any sources of misspecification such that
moment conditions do indeed hold exactly in any given empirical setting. Unfortunately, it is
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well-known that estimation and inference results obtained under the assumption that moment
restrictions hold exactly can be substantially distorted in the sense of returning biased estimates
and delivering unreliable conclusions. See, for example, Hansen and Sargent (2001), Hall and
Inoue (2003), Hansen and Sargent (2008), Hansen and Sargent (2010), Cheng et al. (2015), and
Hansen and Lee (2021).

In this paper, we consider one approach to estimation and inference within a moment condi-
tion framework, allowing for the possibility that specified moment conditions do not hold exactly.
We consider a setting where a researcher specifies moment conditions g (θ) = T −1 ∑

t E[g (Zt ,θ)]
for observable data stream {Zt } and parameter of interest θ such that we would have g (θ0) =µ for
θ0 denoting the population value of the parameter of interest. Of course, informative inference
about θ0 is impossible without beliefs aboutµ. Classical estimation and inference results proceed
under the dogmatic prior µ≡ 0. Rather than adopt dogmatic prior beliefs, we conceptualize the
notion that the moment restrictions are plausible – but not known to hold exactly – by assuming
the researcher is able to place an informative, but not necessarily dogmatic, prior distribution
over µ. The use of a proper prior over µ allows informative inference to proceed while relaxing
the usual restriction that µ≡ 0.

Given that we choose to conceptualize the plausibility of moment conditions by using a proper
prior distribution over µ, it is natural to consider estimation and inference based on Quasi-Bayes
Laplace type estimators (LTEs) as proposed by Chernozhukov and Hong (2003). Chernozhukov
and Hong (2003) argue that LTEs are computationally attractive for moment condition models
and verify that they provide accurate frequentist coverage under correctly specified moment
conditions.

A technical contribution of our present work is extending the previous results on LTEs to a
setting with misspecified moment conditions while allowing for both the number of moments
and the number of parameters in the model to increase with the sample size. We provide new
large sample approximations for quasi-posterior distributions in this framework. These approxi-
mations can be regarded as new Bernstein–von Mises-type theorems for quasi-posterior distribu-
tions accounting for additional terms needed to handle potential misspecification. Specifically,
we show that the limit distribution for θ conditioning on the misspecification parameterµ follows
a Gaussian distribution. The joint distribution is thus a Gaussian mixture. We also verify that
the quasi-posterior support concentrates on the frequentist identified region in large samples.
This property mimics results for fully Bayesian procedures under partial identification; see, e.g.,
Gustafson (2010). Finally, we provide an approach to simulating from the Gaussian mixture
approximation that may be a useful alternative to simulating directly from the quasi-posterior.

We illustrate our proposed method through simulation exercises and empirical applications.
In simulations, we examine performance in practically relevant examples: linear IV, quantile
regression, and Difference-in-Difference (DID) models. Unsurprisingly, we find that allowing
for potential misspecification by incorporating non-dogmatic priors over µ reflecting potential
misspecification produces sets with improved (frequentist) coverage results in the event of model
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misspecification. A cost of allowing for potential misspecification by considering non-dogmatic
beliefs about µ is that inferential statements must be less precise than those obtained under
dogmatic beliefs. We demonstrate via empirical applications that one can still draw economically
meaningful conclusions using our approach in real applications under what we believe are
sensible beliefs about model misspecification, thus potentially enhancing the credibility of the
qualitative empirical results.

We believe our work complements several areas of existing literature. Our formal results
contribute to the large literature on posterior concentration results. Many such approximations
exist when models are correctly specified; see, for example, Doksum and Lo (1990), Barron et al.
(1999), Diaconis and Freedman (1986) and Cox (1993). Shen and Wasserman (2001) compute
the rate at which the posterior distribution concentrates around the true parameter value.
When there are identification challenges, Moon and Schorfheide (2012) derive a large-sample
approximation to the posterior distribution of partially identified structural parameters for
models indexed by an identifiable finite dimensional reduced-form parameter vector. See also
the review article Gustafson (2010), which provides an overview of results on Bayesian estimation
in partially identified settings. Andrews and Mikusheva (2022a) and Andrews and Mikusheva
(2022b) examine admissibility and optimality of estimators in the GMM setting under weak
identification and verify that quasi-Bayes posterior have desirable properties within this setting.

Our paper also complements a large existing literature on partial identification and sensitivity
analysis. See, for example, Bonhomme and Weidner (2022), Armstrong and Kolesár (2021),
Masten and Poirier (2020), Chen et al. (2018), Berkowitz et al. (2012), Conley et al. (2012), Chen
et al. (2011), Chernozhukov et al. (2007), Imbens and Manski (2004), and Rosenbaum (1987).
Within this literature, perhaps the two papers most closely related to our work are Chen et al.
(2018) and Armstrong and Kolesár (2021).

Chen et al. (2018) propose Monte Carlo confidence sets for identified sets of parameters using
likelihoods and moments in a partially identified model. One important result in Chen et al.
(2018) is that quasi-Bayes highest posterior density sets under flat priors over model parameters
have correct frequentist coverage in regular but partially identified models. The approach we
take is similar to that in Chen et al. (2018), though our assumptions are not entirely encompassed
by theirs. For instance, we incorporate the ancillary term µ to help identify θ, and our quasi-
posterior distribution is influenced by the specific prior placed upon µ.

Our approach also shares many similarities with Armstrong and Kolesár (2021). Armstrong
and Kolesár (2021) employ a frequentist minimax approach to obtaining valid confidence regions
for parameters of interest under specified bounds on a deterministic level of misspecification.
Their formal results show that their derived confidence regions are near-optimal within a local
misspecification framework, and they suggest an approach to performing sensitivity analysis
by considering different bounds for the misspecification level. We believe the quasi-Bayesian
approach we adopt in this paper complements the fully frequentist GMM approach as in Arm-
strong and Kolesár (2021). As noted previously, Chernozhukov and Hong (2003) argue that
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quasi-Bayesian approaches have desirable computational properties relative to more tradi-
tional GMM approaches in some settings. Quasi-Bayes approaches can also be motivated as
approximations within fully Bayesian settings as in, e.g., Kim (2002), Gallant (2016), Florens
and Simoni (2021), and Andrews and Mikusheva (2022b). Within this context, we believe some
researchers may wish to employ proper priors over the degree of misspecification rather than
support restrictions and may also wish to impose proper priors over structural parameters.

The remainder of the paper is organized as follows. In Section 2, we formally introduce our
setting and develop the main intuition for the formal results. We then provide specific motivating
examples and outline algorithms for sampling from the quasi-posterior or simulating from the
asymptotic mixture approximation in Section 3. Section 4 presents the main theoretical results.
Finally, we illustrate our approach with simulations and empirical applications in Sections 5 and
??.

Notation. For a vector v = (v1, . . . , vd ) ∈ Rd and q > 0, we denote |v |q = (
∑d

i=1 |vi |q )1/q ,|v |∞ =
max1≤i≤d |vi |, and ∥v∥ = |v |2. For a matrix A = (ai , j )1≤i≤m,1≤ j≤n , we denote the minimum and
the maximum singular value of A by λmin(A) and λmax(A) respectively, the max norm by |A|max =
maxi , j |ai , j |, the spectral norm by ∥A∥ =

√
λmax(AT A), and the determinant of a square matrix

A when m = n by det(A). For a vector µ and non-negative definite matrix A, define ∥µ∥A :=√
µ⊤Aµ≥ 0. For positive semi-definite matrices A,B , we write A ≥ B if A −B is positive semi-

definite. For two positive number sequences (an) and (bn), we say an =O(bn) or an ≲ bn (resp.
an ≍ bn) if there exists C > 0 such that an/bn ≤ C (resp. 1/C ≤ an/bn ≤ C ) for all large n, say
an = o(bn) if an/bn → 0 as n → ∞, and write an ≫ bn if an/bn → ∞ as n diverges. Denote
the total variation of moments norm of α for a real-valued measurable function g on Θ by∥∥g

∥∥
T V M(α) =

∫
h∈Θ(1+∥h∥α)|g (h)|dh. We use ∝ to denote “proportional to”.

For s > 0 and a random vector X , we say X ∈ L s if ∥X ∥s = [E(|X |s)]1/s <∞. We set (Xn) and
(Yn) as two sequences of random variables. Write Xn = Op (Yn) if for ∀ϵ> 0, there exists C > 0
such that P (|Xn/Yn | ≤C ) > 1−ϵ for all large n, and say Xn = op (Yn) if Xn/Yn → 0 in probability
as n →∞. We use the subscript p to denote statements with respect to the outer probability P∗

of a given probability P. We use →d to denote convergence in distribution.

2. THE APPROACH: MAIN IDEAS

Suppose that we have data stream {Zt } indexed by t ⊆ 1,2, · · · ,T , which can be time, person,
or other unit index. The distribution of each datum Zt can change with t . We also have an
economic model indexed by the parameter θ ∈ Θ. We judge the plausibility of this model by
taking the unit average over expected scores g (Zt ,θ):

g (θ) = T −1
∑

t
E[g (Zt ,θ)].

We are interested in pairs {θ,µ} such that,

g (θ) =µ,
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where parameter µ is drawn from the distribution Fµ. We call µ the plausibility characteristic.
E.g., In various contexts, µ represents the degree of violation of exogeneity or other exclusion
restrictions as well as errors of structural models in explaining the moments of the data encoded
by g .

The case µ= 0 with Fµ probability 1 corresponds to the standard GMM case, and θ is plausible
if and only if g (θ) = 0. The standard GMM assumes that there is a true parameter value θ0 such
that g (θ0) = 0. So, the true parameter value is trivially plausible in this context. Under point
identification, it is the only plausible value. We depart from this story and allow µ to have a more
general distribution. We will denote by θµ any root of the equation:

g (θµ) =µ.

The case of µ= 0 is not special anymore. In fact, if Fµ is absolutely continuous, then Fµ assigns
zero mass to µ= 0.

We can be equally interested in "most" of plausible θ’s that correspond to "most" typical values
of µ according to Fµ. For example, we can be interested in the set:

PS = {θµ :µ ∈ Γ},

for Γ containing a big, say 1−a, fraction of plausibility characteristics µ, under Fµ.

We pursue an (approximate) Bayesian approach to inferring these values using the empirical
analogs of the scores as data. We also examine the problem from the angle of making decisions,
where we want to make good, optimal (in a certain sense) decisions.

To take the previous reasoning to data, we consider the empirical analog of the average score
as:

ĝ (θ) := 1

T

∑
t

g (Zt ,θ).

In some problems, the empirical analogs ĝ (θ) may involve preliminary estimation of nuisance
parameters, which we explicitly allow for, as long as the normal key approximation (1) applies to
such version. Thus, we use empirical moments as data to input into a Bayesian procedure.

We assume that for any matching pair (θ,µ) such that g (θ) = µ, we have that the empirical
deviation ĝ (θ)−µ is approximately normal:

p
T (ĝ (θ)−µ) ≈d N (0,Ωθ). (1)

This is a mild condition, and a wide variety of central limit theorems provide sufficient conditions.

We can, therefore, use this result to judge the plausibility of pairs (θ,µ). Then

cθexp

(
−T ∥ĝ (θ)−µ∥2

Ω−1
θ

/2

)
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is the (approximate) likelihood for the data ĝ (θ) under the hypothesis that g (θ) =µ. Given this
likelihood the Bayesian posterior on pair (g (θ),µ) is:

pT (θ,µ) ∝ cθexp

(
−T ∥ĝ (θ)−µ∥2

Ω−1
θ

/2

)
fT (µ)p0(θ), (2)

where fT (µ) is the prior density function for plausibility characteristics µ induced by Fµ, and
p0(θ) is the prior density over θ, with "flat" (constant) prior being an example. In this the joint
prior π(θ,µ) = fT (µ)p0(θ). Integrating out µ’s then gives the posterior distribution for θ’s:

pT (θ) =
∫
Γ

pT (θ,µ)dµ. (3)

Integrating out θ’s gives the posterior distribution

pT (µ) =
∫
Θ

pT (θ,µ)dθ. (4)

of plausibility characteristics µ. This posterior is useful to judge the degree of misspecification of
the model.

The highest posterior density region PRT for θ’s containing high mass, say 1−α, then is a
credible region that contains plausible values of θ given the data. That is,

PRT = {θ ∈Θ : pT (θ) > k}, such that
∫

C
pT (θ)dθ = 1−α.

The limit case PR∞, occurring when Vθ/T → 0 due to T →∞, is the set of plausible parameter
values, reflecting both the plausibility model Fµ and the prior information p0.

For the case of the flat prior, the PR∞ region coincides with the theoretical plausibility set PS
for α= a. Otherwise, it can differ in general due to prior giving more or less weight to certain
parameter values. For this reason, PR∞ is our principal target and not the set PS. Of course,
under the strong identification scenario discussed below, the prior would play no role when
T =∞ due to the localization of inference at a particular point.

The optimal decision in this framework is obtained by minimizing the posterior expected risk,
with expectation taken over the parameter values: Given a loss function ℓ(θ,d) that depends on
the parameter θ and a decision d ∈D (regarding the parameter value or some derived quantity
such as sufficient welfare statistics), the optimal decision then takes the form:

min
d∈D

∫
ℓ(θ,d)pT (θ)dθ. (5)

This is the general framework. In what follows below, we analyze leading cases that admit
some further analytical simplification.

Analytical Case. We elaborate on a lead setting, which admits closed-form or near-closed-form
solutions. This, in turn, allows us to perform Plausible GMM inference by a simple adaptation of
algorithms for standard GMM inference.
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Suppose that plausibility characteristic µ ∈Rd follows a standard normal distribution,

Fµ = N (0,Λ/T ),

where varianceΛ/T scales with T . This captures the idea the variance of the plausibility charac-
teristics is comparable in size to the variance of empirical moments. We can refer to this setting
of implausibility being local.

A simple form of Λ is a diagonal matrix with λk s on the diagonal, where small values of λk

indicate that there is little uncertainty about the plausibility of the k-th moment, and the larger
value indicates high uncertainty.

We show that this implausibility model results in the following form of the posterior,

pT (θ) ∝ cθ exp(−T ∥ĝ (θ)∥2
Aθ

/2)p0(θ),

where

Aθ =Ω−1
θ −Ω−1

θ [Λ−1 +Ω−1
θ ]−1Ω−1

θ .

We note that the weighting matrix Aθ is different from the weighting matrixΩ−1
θ

we have in
the standard GMM: The former reflects additional uncertainty brought by variation of µ, that is,
plausibility uncertainty. Of course, the extreme case of the standard GMM without plausibility
uncertainty is recovered by lettingΛ→ 0 in the formula above.

We next consider the strongly identified case maintaining the local plausibility condition
above. The key regularity condition, is that g (θ) =µ has the unique solution θµ for each µ, and
that the following linearization around the pseudo-true value θ0 holds:

g (θ) =G(θ−θ0)+o(∥θ−θ0)∥),

with G⊤G having minimal eigenvalue bounded away from zero. Another condition is the smooth-
ness of the prior around the true value.

Under these conditions, we show that

pT (θ) ≈ p̄T (θ) ∝ exp(−T ∥ĝ (θ̂)+G(θ− θ̂)∥2
Aθ

/2),

where θ̂ is the posterior mode, which is the GMM estimator with the weighting matrix Aθ. Thus,
the approximating posterior has the representation:

N (θ̂,V /T ), V = (G Aθ0G⊤)−1.

The variance matrix V = (G Aθ0G⊤)−1 here is different than the GMM variance matrix (GΩ−1
θ0

G⊤)−1,

and since V ≥ (GΩ−1
θ0

G⊤)−1, the variance matrix V characterizes the additional uncertainty
brought by the plausibility considerations. Moreover, the posterior is not centered around the
conventional GMM estimator; it is centered around the GMM estimator that uses the weighting
matrix Aθ instead ofΩθ. The latter estimator obeys

θ̂ ≈d N (θ0,V̄ /T ), V̄ = (G Aθ0G⊤)−1G Aθ0Ωθ0 Aθ0G⊤(G Aθ0G⊤)−1.
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It is very interesting to note V̄ ≤V because Aθ0Ωθ0 Aθ0 ≤Ω−1
θ0

. That is, variance of the posterior
is greater than the variance of the Aθ0 -weighted GMM estimator. This means that even though
the posterior is centered at the Aθ0 weighted GMM, the posterior assigns probability distribution
over plausible values of θ, with posterior variance reflecting the variance of plausible values θ
that are compatible with data. While these differences may appear to be surprising, this makes
sense because the variance of Aθ0 - weighted GMM quantifies the uncertainty about θ0, which is
not what the Bayesian posterior does.

For the assessment of the quasi-posterior in the absence of an explicit closed-form solution,
we incorporate the Metropolis-Hastings algorithm. This enables the generation of randomized
instances of pairs (θ(i ),µ(i )) drawn from the quasi-posterior, with consideration of potential
model inaccuracies. Algorithm 1 delineates the methodology in pseudocode form. This algo-
rithm bears resemblance to the Markov Chain Monte Carlo (MCMC) algorithm investigated by
Chernozhukov and Hong (2003). The ease of implementation is complemented by its capacity
to accommodate the misspecification term. To minimize the impact of initial value selections,
we consider burning periods n′ < n, and subsequently retain a sequence of generated draws
(θ(n′),µ(n′)), · · · , (θ(n),µ(n)).

3. EXAMPLES

In this section, we visit two motivating examples. The first example involves linear moments,
while the second example deals with a non-linear and non-smooth quantile moment function.

Example I (Linear IV model). Conley et al. (2012) and Armstrong and Kolesár (2021) discuss the
linear IV model with potential model misspecifications.

Conley et al. (2012) alleviate the exclusion restriction and contemplate plausible exogenous
instrumental variables. To this end, they present a parameter γ within the first stage regression
as a quantifiable gauge of the validity of the exclusion restriction, as illustrated in the following
set of equations:

Y = Xθ+Zγ+ε; X = ZΠ+V ; (6)

where Y represents an N ×1 vector of outcomes; X refers to an N × s matrix of endogenous
variables, with E [X ε] ̸= 0, and treatment parameter of interest θ; Z corresponds to an N×r matrix
of instruments where r ≥ s with E

[
Z ′ε

]= 0;Π symbolizes a matrix of first-stage coefficients; and
γ is the parameter that measures the plausibility of the exclusion restriction.

The sample moments tied to the Ordinary Least Squares (OLS) and Two-Stage Least Squares
(2SLS) are expressed as ĝ (θ) = 1

T

∑T
i=1 Xi (yi −X ⊤

i θ) and ĝ (θ) = 1
T

∑T
i=1 Zi (yi −X ⊤

i θ) respectively.
Therefore, the conventional OLS/IV-2SLS estimator maximizes the following objective function
for a given misspecification term µ= 0:

Q(θ,µ) =−T
(
ĝ (θ)−µ)⊤WT (θ(µ))

(
ĝ (θ)−µ)

, (7)
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Input:

• pT (θ,µ): target distribution that is proportional to π(θ,µ)exp
{−1

2QT (θ,µ)
}
;

• q(θ′,µ′|θ,µ): proposal distribution which is a prescribed conditional density;
• (θ0,µ0): initial values;
• n: number of iterations.

E.g., our simulations use the estimated pseudo-true value for θ(0), the prior mode for µ(0),
and q(θ′,µ′|θ,µ) ∝ qθ(θ′|θ)c(µ) with qθ(θ′|θ) being the distribution.

Output:

• Samples {(θ(i ),µ(i ))} drawn from the target distribution pT (θ,µ).

for i ← 1 to n do

i. Sample (θ′,µ′) from q(θ′,µ′|θ(i−1),µ(i−1));
ii. Calculate acceptance ratio

α(i ) = min

(
1,

p(θ′,µ′)q(θ(i−1),µ(i−1)|θ′,µ′)
p(θ(i−1),µ(i−1))q(θ′,µ′|θ(i−1),µ(i−1))

)
;

iii. Sample u(i ) from Uniform(0, 1);
if u(i ) ≤α(i ) then

Set (θ(i ),µ(i )) ← (θ′,µ′);
end

else if u(i ) >α(i ) then
Set (θ(i ),µ(i )) ← (θ(i−1),µ(i−1));

end

end

Algorithm 1: Metropolis-Hastings Algorithm (MCMC)

where the weighting matrix WT (θ(µ)) is given by the identity matrix. Additional choices of
the weighting matrix could potentially lead to other estimators, e.g., the Instrumental Variable
Generalized Method of Moments (IV-GMM) or the Continuously Updated Estimator (CUE).

When we consider a local Gaussian prior for the misspecification term µ, i.e., fT (µ) ∝
exp

(−µ⊤(Λ/T )−1µ/2
)
, and flat priors for θ, then the quasi-posterior for the θ is easy to compute

as pT (θ,µ) ∝ exp
(
Q(θ,µ)/2

)
fT (µ). Thus, if we assume W (θ(µ)) =W integrate out µ, we would

have

pT (θ) ∝ exp(−T ∥ĝ (θ)∥2
W −W [Λ−1+W ]−1W /2)

Example II (Nonlinear instrumental variable quantile regression (IVQR)). Chernozhukov and
Hansen (2004, 2005, 2006) propose the IVQR, which effectively estimates the treatment effects at
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various quantiles via instrumental variable regressions. This approach is empirically appealing
and has been used in many recent studies, e.g., Glaeser et al. (2015).

Chernozhukov and Hong (2003) discuss one IVQR example for the τth quantile, where they
maximize a standard nonlinear GMM objective function (with µ= 0):

Q(θ,µ) =−T
(
ĝ (θ)−µ)⊤WT (θ(µ))

(
ĝ (θ)−µ)

. (8)

In this instance,

ĝ (θ) = 1

T

T∑
i=1

mi (θ), mi (θ) = (
τ−1

(
Yi ⩽ q (Di , Xi ,θ)

))
Zi , (9)

where Yi represents the scalar dependent variable, Di is a d ×1 vector of potential endogenous
variables, Xi is a k ×1 vector of regressors, Zi is a r ×1 vector of instruments, and Wn(θ) is a
positive definite weighting matrix, for instance, one specified in Chernozhukov and Hong (2003):

Wn(θ) = 1
τ(1−τ)

[ 1
n

∑n
i=1 Zi Z ′

i

]−1
.

The IVQR methodology (see, e.g., Chernozhukov and Hansen (2004)) requests the validity of
the IVs but also has an assumption of rank invariance (or rank similarity); these conditions are
sensitive to the correct specification of the model. The allowance of model misspecification
would robustify the procedure, and the quasi-posterior is easy to implement via the algorithm
above.

Remark: The examples mentioned above resort to the conventional models when the misspeci-
fication term is held constant at zero. Our interest, however, lies in the outcomes achieved when
the values of µ are adjusted to permit a degree of model misspecification.

4. THEORETICAL RESULTS

This section provides theoretical results related to the procedure. We present in Section 4.1 a
simple version of the posterior distribution which integrates out µ. Following that, in Section 4.2,
we show the main theorem.

4.1. Simple Proof. Let us start with a simple proof following Chernozhukov and Hong (2003).

Since we assume a Gaussian prior on µ in this section, we integrate out µ, and then obtain
a posterior density pT (θ) which will be solely a density function of θ. It shall be noted that Λ
plays a vital role in the density of pT (θ). We shall regard W (θ) as a fixed weight matrix. Recall
that µ takes value on a compact set Γ. The method of moment estimators involves maximizing
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an objective function like the following QT (θ,µ),

ĝ (.) = 1
T

∑T
i=1 g (Zt , ·) , (10)

QT (θ,µ) =−T
(
ĝ (θ)−µ)⊤WT (θ(µ))

(
ĝ (θ)−µ)

, (11)

WT (θ) =W (θ)+op (1) uniformly in θ ∈Θ, (12)

W (θ) > 0 and continuous uniformly in θ ∈Θ,µ∈ Γ. (13)

We denote pT (θ,µ) = π(θ,µ)exp
{ 1

2 QT (θ,µ)
}∫

Γ

∫
Θπ(θ,µ)exp

{ 1
2 QT (θ,µ)

}
dθdµ

, and let pT (θ) =
∫
Γπ(θ,µ)exp

{ 1
2 QT (θ,µ)

}
dµ∫

Γ

∫
Θπ(θ,µ)exp

{ 1
2 QT (θ,µ)

}
dθdµ

.

The case whereΛ−1 → 0 as T →∞ implies that the prior has little information, while the case
whereΛ−1 →∞ suggest that µ should be fixed at µ0. The set containing (µ,θ(µ)) boils down to a
singleton.

Assumption 1. The pseudo true parameter θ(µ) belongs to the interior of a compact convex subset
Θ of the Euclidean space Rd . The misspecification parameter µ ∈ Rq belongs to the interior of
a compact convex subset of Γ. For each µ, there exist a pseudo true parameter θ(µ) such that
g (θ(µ)) =µ.

Let θ(µ0) = θ0.

Assumption 2. (Penalty function). θ̂ is the GMM estimator using the weight W (θ(µ)) which has the
expansion θ̂ = θ(µ0)+ JT

(
θ(µ0)

)−1
∆T

(
θ(µ0)

)+op (1/
p

T ). (iv) the prior function π :Θ,Γ→R+is
a continuous, uniformly positive density function. π(θ,µ) is continuous Θ,Γ, and π(θ,µ) has
positive mass on µ ∈ Γ for any θ ∈ Θ. Let π(µ,θ) = π(µ)π(θ|µ), where π(µ) is a Gaussian prior
centered at µ0. It shall be noted that we can assume that π(θ|µ) is bounded and continuous
differentiable around a compact support of θ0. So it hold that for any positive constant c0 we have
that

∫ c0
−c0

π(θ|µ)dθ ≈ c0. and without loss of generality, for example π(θ|µ) can be a flat prior.

Remark 1. We shall note that we can switch π(θ|µ) to some continuous prior on a compact.

Assumption 3. i) JT
(
θ(µ)

)
/T > 0 (uniformly over θ ∈ Θ and > 0 means positive definiteness)

and is continuous, G(θ) =∇θ Eg (Zt ,θ)|θ=θ(µ0) is continuous and full rank, (ii) ∆T
(
θ(µ),µ

)
/
p

T =
−pT (ĝ

(
θ(µ)

)−µ)W (θ(µ))G
(
θ(µ)

)→d N
(
0,Ω

(
θ(µ)

))
,Ω

(
θ(µ)

)≡G
(
θ(µ)

)⊤W (θ(µ))G
(
θ(µ)

)
.

Assumption 4. rT (g ,θ) =p
T

∣∣(ĝ (θ)− ĝ (θ0)
)− (

Eĝ (θ)−Eĝ (θ0)
)∣∣. We have that

supθ:∥θ−θ0∥≤δrT (g ,θ)/
(
[1∨

p
T ∥θ−θ0∥]

)
= r (δ),

and r (δ) →p 0 if δ→ 0. MT /logT → 0 for a slow varying constant MT .

Remark 2. The above Assumption is a type of modulus of continuity Assumption.

Denote

NT (θ,µ0) = exp

{
−1

2
[VT (θ,µ0)]

}
/
∫
Θ

exp

{
−1

2
[VT (θ,µ0)]

}
dθ,
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where

VT (θ,µ) =−2T h⊤
θ(µ)G(θ(µ))⊤W (θ(µ))(ĝ (θ(µ))−µ)+T h⊤

θ(µ)G(θ(µ))⊤(W (θ(µ))+Λ−1)G(θ(µ))hθ(µ),

and hθ(µ) = θ−θ(µ).

Then, we have the main theorem, which shows that the density function pT (θ) converges in
the TVM norm. With slightly abuse of notation, we denote p̃T (ĝ (θ)) = pT (θ).

Theorem 1. (Convergence in total variation of moments norm). Under Assumptions 1−4, for
any 0⩽α<∞,∥∥pT (θ)−NT (θ,µ0)

∥∥
T V M(α) ≡

∫
θ∈Θ

(
1+∥θ−θ(µ0)∥α)∣∣pT (θ)−NT (θ,µ0)

∣∣dθ→p 0,

∫
θ∈Θ

(
1+∥θ−θ(µ0)∥α)∣∣NT (θ,µ0)− p̃T (ĝ (θ̂)−G(θ)(θ̂−θ))

∣∣dθ→p 0.

Proof. See Appendix 7.1. □

Remark 3. We shall note that whenµ0 = 0, andΛ→∞, it boils down to the case of Chernozhukov
and Hansen (2006). Theorem 1 shows that pT (θ) is concentrated at a 1/

p
T neighborhood of

θ0 as measured by the total variation of moments norm. For large T, pT (θ) is approximately a
random normal density with random mean parameter θ0 + JT (θ0)−1∆T (θ0)/T , and constant
variance parameter JT (θ0)−1 /T .

Theorem 1, in particular, implies the Bernstein-Von Mises theorems by setting α = 0 and
Λ→∞, which state the convergence of the likelihood posterior to the limit random density in
the total variation norm. Different from Chernozhukov and Hansen (2006), using a Gaussian
prior, the integrated posterior function pT (θ) is affected by the magnitude of Λ and the prior
location µ0. This indicates that the prior information has an influence on the posterior.

4.2. Proof of Main Theorems. Let θ ∈Rp and g (θ) ∈Rq . In this section, we shall allow p and q to
grow concerning n. In the previous section, we consider the µ has a Gaussian prior, and therefore
we can integrate out µ. In this section, we discuss an extension of the results. The key insight
is that, in the limit, we do not have a Gaussian distribution anymore, but instead, we have a
Gaussian mixture distribution. It means that conditional on µ, the limit distribution is Gaussian.
Also, the prior distribution of µ is allowed to be approximately Gaussian, and it intervenes in
the limit distribution. Recall the relevant estimation framework as the method of moment
estimators involves maximizing an objective function of the form in (10). For convenience, we
assume that there exists a true point µ0. Let G(θ(µ0)) = G be an q × p matrix. Let Bε = {θ,µ :p

T ∥h(θ,µ)∥ ≤ ε} with ε≲
p

p logT . Without loss of generality, W = V (θ(µ0))−1/2 and is fixed
at µ0 throughout the proof. Let µ ∈ Γ and θ ∈ Θ be two compact support. Let V (h(.),θ,µ) =
2T h(θ,µ)⊤W (ĝ (θ(µ0))−µ0)+T [h(θ,µ)]⊤W [h(θ,µ)] = 2h⊤Av +h⊤Bv h, where we brief h(θ,µ) by
h and let Av = T W (ĝ (θ(µ0))−µ0), and Bv = T W . Throughout the section, we keep W to be fixed.
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Define

NT (θ,µ) = exp

{
−1

2
[V (h(.),θ,µ)]

}
c(µ)/

∫
µ∈Γ

∫
θ∈Θ

exp

{
−1

2
[V (h(.),θ,µ)]

}
c(µ)dθdµ,

where c(µ) = exp(−2−1(µ−µ0)⊤Λ−1T (µ−µ0)).

Let h(θ,µ) =G(θ−θ(µ0))−µ+µ0 . Without loss of generality we can let µ0 = 0 and θ(µ0) = θ0.
The ε> 0 set is defined by

Bε = {θ,µ :
p

T ∥h(θ,µ)∥ ≤ ε,∥µ−µ0∥Λ/T ≤ ε,θ ∈Θ,µ ∈ Γ}.

g (θ(µ0))−µ0−g (θ(µ))+µ= 0 by definition. We shall assume that, G(θ(µ0))θ(µ0)−G(θ(µ))θ(µ)−
µ0 +µ≈ 0. Define the ε set expansion as h(θ,µ) =G(θ−θ(µ0))−µ+µ0 =G(θ−θ(µ0))−µ+µ0 =
Gθ−Gθ(µ0)−µ+µ0 ≈Gθ−G(θ(µ))θ(µ), so ∥h(θ,µ)∥ ≤ εmeans that ∥Gθ−G(θ(µ))θ(µ)∥ ≤ εwith
ε> 0. ε≈ c

p
p logT for a positive constant c. It shall be noted that it automatically includes θ(µ)

and µ if we assume that for each µ ∈ Γ there exist a θ(µ) ∈Θ.

Remark 4. Since the misspecification of the moment is translated into a lack of identification
due to overdramatized (θ,µ). First of all, ifΛ is a constant matrix with both bounded minimum
and maximum eigenvalue. The prior of π(µ) plays a role in the posterior distribution. Thus
the set Bε corresponds to a “local" misspecification case. IfΛ−1 → 0, then it corresponds to the
case where there is not so much information from the prior of µ. Then Bε becomes a ε− set
around the Γ×Θ, and the parameter (θ,µ) shall jointly concentrated around the pseudo true
value (µ,θ(µ)) with µ ∈ Γ. IfΛ−1 →∞, then it corresponds to the case of strong information on µ
with µ=µ0. Then we have the usual case as in Chernozhukov and Hong (2003).

Remark 5. In the high dimensional p and q regime, our theorem shall include both of the two
cases. In one case corresponding to severe overidentification, we have q ≫ p. For example, we
have p as a fixed value and q to be of a growing dimension, then it make more sense to assume
that ∥G∥≲C ,C > 0. Moreover, if we have both p and q growing in the same order, say p ≤ q , but
p ≈ q , this will be a different story.

Assumption 5. Assume that π(µ) corresponding to the prior density is uni-modal and symmetric
around µ0. Assume the expansion holds uniformly over µ, supµ:∥µ−µ0∥Λ/T ≤ε | log(π(µ))+2−1(µ−
µ0)⊤Λ−1T (µ−µ0))|/(∥µ−µ0∥2

Λ/T ∨ p) ≲
p

p(logT )/
p

T . It shall be noted that we can assume
that π(θ|µ) is bounded and continuously differentiable around a compact support of θ0. So
it hold that for any positive constant c0 we have that

∫ c0
−c0

π(θ|µ)dθ ≈ c0 uniformly over µ ∈ Γ.

supµ∈Γ |π(θ(µ)|µ)−π(θ(µ)|µ0)|≲ ε/
p

T . Without loss of generality, for example, π(θ|µ) can be a
flat prior.

log(π(µ)) = log(π(µ0))+∇µπ(µ0)π(µ0)−1(µ−µ0)−2−1(µ−µ0)⊤Λ−1T (µ−µ0)+op (∥µ−µ0∥Λ/T ∨p)

=−2−1(µ−µ0)⊤Λ−1T (µ−µ0)+op (∥µ−µ0∥2
Λ/T ∨p),

where the linear term ∇µπ(µ0)π(µ0)−1(µ−µ0) ≈ 0.
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Assumption 6. tr {TG⊤(ĝ (θ(µ0))−µ0)⊤W (ĝ (θ(µ0))−µ0)G} =Op (p), and λmax(W G⊤GW ) =O(1).
t r {G⊤W 2G} = O(p). For each θ exist a pseudo true value θ(µ) ∈ Bε such that ∥θ−θ(µ)∥ ≤ ε and
∥G(θ(µ)−θ(µ0))−µ+µ0∥ = o(ε2).

This presumption establishes an identification Assumption through the imposition of restric-
tions on G . Hansen et al. (2010) elaborate on nonlinear instrumental variables estimators (NLIV)
and impose a rank condition on G , thereby precluding instances of weak identification.

Define RT (θ,µ) =−1
2QT (θ,µ)+ 1

2QT (θ(µ0),µ0)+V (h(.),θ,µ)/2−log(c(µ)). Assume the following
uniform rate regarding RT (θ,µ). There exists a positive constant ε0, such that,

Assumption 7. supθ,µ∈Bε T |RT (θ,µ)|/(∥pT h(θ,µ)∥2 +p)≲
p

p(logT )2/
p

T → 0 with probability

1. And (logT )((logT )p)α+1/T → 0 for α ≥ 2. In addition outside the ball Bε, we have the with
probability approaching 1,

sup
θ,µ∈B c

ε

T RT (θ,µ) ≤−ε3/
p

T .

Remark 6. supθ,µ∈Bε T RT (θ,µ)/(∥pT h(θ,µ)∥2 +p) → 0 is due to the modulus of continuity and
locally small oscillation behavior of the empirical process. Note that this Assumption is stronger
than Chernozhukov and Hong (2003) but can be verified for differentiable moment functions.

sup
θ,µ∈B c

ε

T RT (θ,µ) ≤−ε2

is due to the identification of the likelihood function.

From now on, we choose W (θ) =W . Let pT (θ,µ) = π(θ,µ)exp
{− 1

2 QT (θ,µ)
}∫

Γ

∫
Θπ(θ,µ)exp

{− 1
2 QT (θ,µ)

}
dθdµ

.

Theorem 2. Under Assumptions 5-7, we have,

∥∥pT (θ,µ)−NT (θ,µ)
∥∥

T V M(α) ≡
∫
µ∈Γ

∫
θ∈Θ

(
1+∥θ−θ(µ)∥α)∣∣pT (θ,µ)−NT (θ,µ)

∣∣dθdµ→p 0. (14)

Proof. See Appendix 7.2 □

Remark 7. In contrast to Theorem 1, we generalize the prior assumption over µ and do not
assume thatµ follows a Gaussian prior. But we still allow the variance ofµ to be small in the sense
that it has enough information to influence the posterior. The limit distribution corresponding
to NT (θ,µ) is not a Gaussian density. However, conditioning on µ, the density is Gaussian. Hence,
the above Theorem has confidence interval interpretations for any given value of µ. In practice,
we can also consider a subset of values of µ and take the union of the confidence intervals with
respect to different µ. This corresponds to the procedure in Conley et al. (2012). The coverage
would always be larger than those with a fixed µ.
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5. SIMULATION EXERCISES AND EMPIRICAL APPLICATIONS

5.1. Simulation exercises. This section continues with the examples described in Section 3 to
provide simulation results illustrating the performance in linear and nonlinear moment setups.

5.1.1. Linear cases.

Example I continued. The confidence interval constructed based on results from Armstrong
and Kolesár (2021), denoted as [AK]-CI in later discussions, and the confidence interval from
a Quasi-Bayes approach using a simulation exercise. For simplicity, we consider the case with
s = 1, r = 1, and the sample moments for the IV estimator is

ĝ (β) = Z⊤(Y −Xβ)/T, (15)

where for a given γ, g (β) = Eγĝ (β) = γEZ⊤Z /T . In the simulation exercises, we calibrate to the
401(K) data employed in Conley et al. (2012). We maintain the same outcome of interest, the net
financial assets (1991 dollars, denoted by Y ). We consider one endogenous variable, an indicator
for 401(k) participation (X ), and one instrument variable, an indicator for 401(k) plan eligibility
(Z ), by first demeaning and projecting out all the other exogenous variables. We compare the
coverage rate of the confidence intervals resulting from the following two cases via simulation
exercises:

(1) (Quasi-)Bayes approach with the local to zero approximation prior:

γ|β∼ N (0,δ2),

β̂∼a N (β,V2SLS + Aδ2 A),

where δ=O(1/
p

T ) should be comparable to the order of V2SLS .
(2) [AK]-CI with the set of the misspecification term to be

C = {c : ∥c∥ ≤ 2δEZ 2
i },

where we choose such a set to be roughly comparable with the local to zero approximation
design.

In the simulation exercises, we select a subsample of size N from the data X , Z 1, and keep
them fixed for each simulated sample, draw ε̃ from N (0, σ̂2IN ), and generate Ỹ with a given value
of γ: Ỹ = X β̂0 +Zγ+ ε̃, where β̂0 and σ̂2 are calibrated to the 401(K) data by 2SLS regressing Y
over X with instrument Z 2. We consider a sequence of misspecification levels δ, and for each
value of δ, we simulate data choosing γ = δ along with other fixed parameters. For a given
choice of the misspecification δ (or equivalently in our simulation design, γ), we compute the
average rate of the confidence sets not including β0 resulting from the two procedures above

1Figures 1 and 2 use the total sample of Xp , Zp (the sample variance of Xp , Zp are 0.1733708 and 0.2007974

respectively, andΠ= 0.1399858).
2Throughout the simulation exercises, σ̂ and β̂0 are fixed at the estimated values 1881.464 and 15009.6612,

respectively.
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with the confidence level α= 95%. Therefore, the ideal rejection rate should be 5%. All results
are calculated over M = 500 simulations.

FIGURE 1. Simulated data sample size is 9951 (N=9951, same as the 401(K) sample size
used in [CHR]). The red curve is the rejection rate of β0 using the 95% [AK]-CI, and the
blue curve is the rejection rate corresponding to the 95% confidence interval via the Bayes
procedure.

Figure 1 presents the rejection rate curve as a function of δ. The range of δ, though large, is
comparably reasonable given the value of σ̂ or V2SLS . It can be observed that for smaller values
of δ, both methods exhibit satisfactory performance. However, as the level of misspecification
increases, the [AK]-CI tends to over-reject, while the Bayes procedure maintains the correct
coverage, albeit with a tendency to under-reject.

FIGURE 2. Simulated data sample size is 9951 (N=9951, same as the 401(K) sample size
used in [CHR]). The red curve is the rejection rate of β0 using the 95% [AK]-CIm and the
blue curve is the rejection rate corresponding to the 95% confidence interval via the Bayes
procedure.

Figure 2 plots under the same setting as figure 1 but a more extensive range of δ. The obser-
vations above concerning the [AK]-CI, which displays size distortion, may imply that certain
asymptotically negligible terms could adversely affect the finite sample performances of the
proposed [AK]-method.

5.1.2. Nonlinear moments.
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Example II continued. We first revisit one Monte Carlo simulation example from Chernozhukov
and Hong (2003) with slight modifications to consider our specifications concerning the priors
and the potential model misspecification. The Monte Carlo Simulation Example II set up by
Chernozhukov and Hong (2003) is:

Yi =α0 +X ′
iβ0 +ui , ui =σ(Xi )εi , σ(Xi ) =

(
1+

3∑
j=1

Xi , j

)
/5, (16)

where Xi ∼i.i.d expN (0, I3) and εi ∼i.i.d N (0,1). β’s are parameters of interest. They consider
the following instrumental moment conditions for the median quantile,

gn(θ) = 1

n

n∑
i=1

(
1

2
−1

(
Yi ⩽α+X ′

iβ
))

Zi , Zi = (1, X ⊤
i )⊤,

Wn(θ) =
[

1

n

n∑
i=1

(
1

2
−1

(
Yi ⩽α+X ′

iβ
))2

Zi Z ′
i

]−1

.

In the simulation exercise laid out in Table 1, the parameters (α0,β0) are equal to the null vector,
following the practice in Chernozhukov and Hong (2003). In generating Yi , ui is replaced by ũi =
σ(Di )εi +γD2

i ,3 to incorporate some model inaccuracies, with γ assessing the credibility of the
instruments Zi . The mean coverage rate for the true β value within the 2.5% to 97.5% quantiles
is displayed in Table 1, as derived from the quasi-Bayesian method without assuming model
misspecification (marked as CH, see the quasi-Bayesian approach described in Chernozhukov
and Hong (2003)) and the approach we suggest (marked as PGMM). In Table 1, when γ= 0, both
techniques produce comparable outcomes. However, when γ= 1, CH sometimes results in a
strikingly low coverage rate for the actualβ3 value (for example, when τ= 0.2) while incorporating
a local implausibility term enhances the coverage rate.

Another critical assumption is the rank invariance (or similarity) utilized in the IVQR with
discrete (or bounded continuous) treatment variables, where treatment status should not affect
the underlying conditional distribution. We consider the following DGP with potentially missing
variables Xi :

Yi =α0 +D⊤
i β0 +γDi Xi +εi , (17)

where Di ∼i .i .d . Bern( 1
2 ), Xi ∼i.i.d expN (0,0) and (α0,β0) = (0,1). β is a scalar parameter of

interest, interpreted as the treatment effect. Suppose the following potentially misspecified
instrumental conditions are utilized for estimation of the τ-th quantile,

gn(θτ) = 1

n

n∑
i=1

(
τ−1

(
Yi ⩽ατ+D ′

iβτ
))

Zi , Zi = (1,D⊤
i )⊤,

Wn(θ) =
[

1

n

n∑
i=1

(
1

2
−1

(
Yi ⩽α+X ′

iβ
))2

Zi Z ′
i

]−1

.
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γ n τ Methods β1 β2 β3 γ n τ Methods β1 β2 β3

0 100 0.2 0 0.941 0.947 0.941 0 100 0.2 1 0.995 0.994 0.997
0 100 0.5 0 0.903 0.917 0.901 0 100 0.5 1 0.959 0.969 0.971
0 300 0.2 0 0.917 0.935 0.914 0 300 0.2 1 0.994 0.996 0.993
0 300 0.5 0 0.925 0.919 0.916 0 300 0.5 1 0.965 0.96 0.969
0 700 0.2 0 0.872 0.86 0.873 0 700 0.2 1 0.97 0.975 0.973
0 700 0.5 0 0.922 0.944 0.923 0 700 0.5 1 0.969 0.958 0.959
0 1100 0.2 0 0.875 0.884 0.885 0 1100 0.2 1 0.992 0.981 0.985
0 1100 0.5 0 0.93 0.935 0.933 0 1100 0.5 1 0.962 0.969 0.966
1 100 0.2 0 0.781 0.725 0.273 1 100 0.2 1 0.928 0.929 0.664
1 100 0.5 0 0.554 0.549 0.454 1 100 0.5 1 0.796 0.768 0.74
1 300 0.2 0 0.946 0.941 0.029 1 300 0.2 1 0.985 0.981 0.624
1 300 0.5 0 0.675 0.676 0.34 1 300 0.5 1 0.688 0.67 0.721
1 700 0.2 0 0.974 0.964 0.007 1 700 0.2 1 0.967 0.953 0.628
1 700 0.5 0 0.718 0.723 0.231 1 700 0.5 1 0.65 0.686 0.577
1 1100 0.2 0 0.89 0.907 0.004 1 1100 0.2 1 0.894 0.902 0.617
1 1100 0.5 0 0.773 0.763 0.193 1 1100 0.5 1 0.602 0.604 0.479

10 100 0.2 0 0.518 0.514 0.51 10 100 0.2 1 0.749 0.704 0.75
10 100 0.5 0 0.512 0.498 0.723 10 100 0.5 1 0.774 0.805 0.754
10 300 0.2 0 0.615 0.564 0.385 10 300 0.2 1 0.909 0.879 0.713
10 300 0.5 0 0.45 0.435 0.66 10 300 0.5 1 0.687 0.693 0.713
10 700 0.2 0 0.489 0.498 0.674 10 700 0.2 1 0.671 0.676 0.642
10 700 0.5 0 0.53 0.548 0.678 10 700 0.5 1 0.631 0.666 0.66
10 1100 0.2 0 0.711 0.724 0.321 10 1100 0.2 1 0.883 0.89 0.764
10 1100 0.5 0 0.458 0.413 0.674 10 1100 0.5 1 0.63 0.594 0.45

TABLE 1. The table illustrates the average coverage rate for the true coefficients, symbol-
ized by β, encompassed within the range of the 2.5% and 97.5% quantiles resulted from
CH with flat priors over θ’s and PGMM with flat priors for θ’s and local Gaussian priors
N (0, I ) for the implausibility term. These mean rates are simulated using the Monte Carlo
method, in accordance with the model delineated by (16), involving ũi and a total of 1000
repetitions. The table includes a column marked with n to show the number of simulated
samples for each repetition. The character γ symbolizes the extent of misspecification in
the model, while the variable τ relates to the specific quantile in the realm of the quan-
tile regressions being examined. The column labeled methods outlines the estimation
process, with the value of 0 equating to the CH and the value of 1 signifying the PGMM
method.

Then, the missing variable Xi violates the rank invariance (or similarity) as the treatment status
after conditioning disturbs the underlying ranks when γ ̸= 0. Table 2 reports similar patterns as
observed in Table 1. Additionally, Table 2 shows one column relates to the implausibility level,
which shifts away from zero as the misspecification level increases.
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γ n τ Methods β minc γ n τ Methods β minc

0 100 0.5 -1 0.9666 1 100 0.5 -1 0.0439
0 100 0.5 0 0.9653 1 100 0.5 0 0.1112
0 100 0.5 1 0.9807 0.000 1 100 0.5 1 0.4587 0.0000
0 100 0.8 -1 0.9529 1 100 0.8 -1 0.0063
0 100 0.8 0 0.9455 1 100 0.8 0 0.4694
0 100 0.8 1 0.9754 0.000 1 100 0.8 1 0.7659 0.0009
0 300 0.5 -1 0.9629 1 300 0.5 -1 0
0 300 0.5 0 0.9572 1 300 0.5 0 0.0009
0 300 0.5 1 0.9780 0.000 1 300 0.5 1 0.3555 0.0034
0 300 0.8 -1 0.9573 1 300 0.8 -1 0
0 300 0.8 0 0.9574 1 300 0.8 0 0.0893
0 300 0.8 1 0.9796 0.000 1 300 0.8 1 0.7009 0.0003
0 700 0.5 -1 0.9581 1 700 0.5 -1 0
0 700 0.5 0 0.9505 1 700 0.5 0 0.0002
0 700 0.5 1 0.9722 0.000 1 700 0.5 1 0.2289 0.18247
0 700 0.8 -1 0.9548 1 700 0.8 -1 0
0 700 0.8 0 0.9612 1 700 0.8 0 0.0374
0 700 0.8 1 0.9556 0.0105 1 700 0.8 1 0.7769 0.9083

TABLE 2. The table displays the average coverage rate for the actual coefficients, symbol-
ized by β, within the range of the union of the 2.5% and 97.5% quantiles of the conditional
draws given each value of c near their individual quantiles from 2.5% to 97.5% quantiles,
resulted from CH with flat priors over θ’s and PGMM with flat priors for θ’s and local
Gaussian priors N (0, I /

p
n) for the implausibility term. This mean rate is based on the

Monte Carlo Simulation by the model depicted by (17), conducted over 1000 iterations. In
the table, the column marked with n states the magnitude of the sample simulated for
each cycle, the symbol γ signifies the extent of mismatch in the model, the parameter
τ relates to the intended quantile in the quantile regressions being evaluated, and the
column titled methods outlines the method of estimation. The value of −1 equates to
the IVQR method, 0 corresponds to the CH, and 1 is linked to the PGMM method. There
are two moment equations utilized in this simulation exercise, and the column labeled
minc reports the mean value for a specific indicator that is set to 1 if the range between
the 2.5% and 97.5% quantiles for the PGMM posteriors for at least one of the two entries
of the implausibility term does not include zero.

Figures 3-4 show simulated results from two specific iterations as presented in Table 2. These
figures demonstrate similar patterns in the posterior probabilities of the βs for CH and PGMM
when γ = 0, but they exhibit differences when γ = 1. Furthermore, it is noticeable that when
γ= 0, the posteriors of the implausibility term tend to converge towards zero, which is not the
case when γ= 1. Another intriguing observation can be seen in Figure 4-(a.3)(b.3), where we
notice that the posterior masses tend to gather around the true value of β while also exhibiting
non-zero values for the implausibility terms.
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FIGURE 3. (a.1)(a.2) create histograms to display the distribution of simulated values for
β from the posterior distributions obtained using CH and PGMM methods, respectively.
(a.2)(b.2) construct a histogram to show the distribution of simulated values for the
implausibility terms from the PGMM posterior. (a.3)(b.3) generate joint contour plots to
illustrate the relationship between the implausibility terms and β values. (a.4)(b.4) plot
the QQ-plots of selected β draws corresponding to near-zero/near-median draws of the
two misspecification terms. The model used is identical to the one described in Table 2
with n = 700,γ= 0,τ= 0.5.
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FIGURE 4. Like Figure 3, but with n equal to 700, γ equal to 1, and τ equal to 0.5.
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5.2. Empirical applications. In this section, we consider similar models as described in Section
5.1 and show that our proposed procedures are of empirical relevance.

5.2.1. Choice of prior and misspecification level. In empirical applications, we opt for ad hoc
priors for the implausibility term. We employ a local Gaussian prior to simulation exercises. The
Gaussian priors are common choices in the literature (e.g., Conley et al. (2012),Spokoiny (2017)).

In the application of the linear IV model, we calculate based on priors with variances propor-
tional to the misspecification level. In the non-linear IVQR setting, we start with the N (0, I /n)
prior that does not depend on the moment conditions. Then, we also consider priors that
depend on the moment conditions, considering the scale of instrument variables; for ex-
ample, we consider the following prior to the misspecification level, whose variance would
be proportional to the product of the variances of the sample errors at the true value, i.e.,
Var(ĝi (θ)) = Var

(
τ−1

(
Yi ⩽ατ+D ′

iβτ
))=ϖ−ϖ2 with ϖ= E

(
τ−1

(
Yi ⩽ατ+D ′

iβτ
))

, pretending
as if there was no misspecification, and of the instrument variables employed in the moment
conditions, i.e., Var(Zi ).

5.2.2. Linear moments application and comparison with [AK].

Example I continued. As indicated by the simulation exercises, the [AK] method takes into ac-
count local violations and may exhibit poorer performance when the prior information suggests
significantly larger misspecification levels or in the context of relatively small samples.

Figure 5 displays the confidence intervals generated based on the 401(K) data, along with
various misspecification levels (δ’s). The length of [AK]-CI exhibits a slower rate of change with
increasing δ’s.3 Moreover, these findings may imply that FLCI could over-reject when misspecifi-
cation levels are relatively larger in finite samples.

5.2.3. Nonlinear moments application.

Example II continued. This part contemplates the empirical implementations derived from
Autor et al. (2017). This evaluation mirrors Table 4 from Autor et al. (2017), albeit with a simpler
version presented in Figure 7-(a.2)(a.3)(b.1) that all the other additional control covariates are
excluded during the estimation procedure.

3The Bayes procedure can also generate confidence intervals comparable to those of [AK] by carefully choosing

data-driven priors. As implied by Figure 5, the associated priors must remain approximately constant as δ increases

to obtain similar results using the quasi-Bayes approach.
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FIGURE 5. Black solid line (Bayes confidence interval), blue dashed line ([AK] confidence

interval), red dashed lines (the corresponding µ∗(δ) and
√

W ∗
µ (δ) such that Bayes proce-

dure with the prior γ|β∼ N (µ∗(δ),W ∗
µ (δ)) would deliver similar confidence intervals as

[AK]), orange curve plots the curve f (δ) = δ.

Figure 7 estimates the relationship across various points between any form of employment
(temporary help or direct hire) during the Work First tenure and earnings through the quan-
tile regression, in which participants job placements instrumented by the average excess job
placement probabilities of Work First contractors in the year in which the participant entered
the Work First program. Comparative analysis is conducted among the estimates derived from
the IVQR (see, e.g., Chernozhukov and Hansen (2006), Chernozhukov and Hansen (2005)), CH
(incorporating flat priors without assuming model misspecification), and then our proposed
method, denoted by PGMM (utilizing flat priors from parameters and a local Gaussian prior for
the implausibility term).

By specifications, the models being studied in Figures 6,7-(a.2)-(b.1) may be mischaracterized
due to the removal of extra control variables when compared to the model in Figures 6,7-(a.1). It
can be observed that the grey sections in (a.2)-(a.3) differ from the pale grey regions, yet when a
local implausibility term is applied, the grey regions appear to encompass the pale grey regions,
though with a significantly larger bandwidth. The grey sections do not exactly match the pale
grey sections in (b.1), particularly around the 50th quantile in Figure 6, and consequently, the
associated posterior of the implausibility term c shifts away from the zeros at these specific
locations, as depicted, for example, in Figure 6-(b.3).

These observations are consistent with the simulation outcomes mentioned in Section 5.1.
Our suggested approach might result in a wider scope if the outcomes are susceptible to minor
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FIGURE 6. Confidence interval/2.5th and 97.5th quantiles concerning the constant
parameter along various earnings quantiles. Other explanations pertain to the caption of
Figure 7

disturbances, due to which considering the possibility of incorrect model specifications might
be a more rational approach, and it can still be informative and insightful.

6. CONCLUSION

We suggest using a quasi-Bayesian method to ease the moment conditions in the GMM
framework. This approach is useful when there is a potential model misrepresentation and a
violation of null moment conditions. Through simulation exercises and real-world examples, we
showcase the characteristics of our proposed techniques and compare them to other established
methodologies.
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FIGURE 7. Confidence interval/2.5th and 97.5th quantiles of the slope coefficient con-
cerning the variable any job placement along various quantiles of earnings. (a.1): A black
solid line represents the calculated values from the full model application of the instru-
mental variable quantile regression method (IVQR), incorporating all control variables
as detailed in Table 4 from the cited work by Autor et al. (2017). Surrounding this line, a
gray shadowed region highlights the associated 95% confidence intervals, determined
through conventional standard errors. (a.2): This representation is similar to (a.1), but in
this instance, the IVQR method’s full model estimates exclude all control variables other
than the endogenous variable Any job placement. The gray shadowed region once again
denotes the 95% confidence intervals, and the pale grey regions correspond to the shad-
owed area outlined in (a.1). (a.3) and (b.1): These portions follow the pattern of (a.2), but
the gray area here indicates the range between the 2.5th and 97.5th quantiles. These are
calculated based on CH with flat priors over the parameters and the proposed PGMM with
a prior N (0,1/

p
n) over the implausibility term c and flat priors for the other parameters.

Additionally, the black solid line designates the median that comes from the associated
posterior, and the light red shadowed area in (b.1) corresponds to the grey shadowed area
in (a.2). Regarding (b.1), two moment condition equations are employed, meaning that
the term c includes two entries. In (b.2) and (b.3), the gray shadowed areas pinpoint the
corresponding 2.5th and 97.5th quantiles of these two entries from the posterior, and
the dashed line designates the median, along with the 2.5th and 97.5th quantiles of their
priors.
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FIGURE 8. Confidence interval/2.5th and 97.5th quantiles concerning the constant
parameter along various earnings quantiles. The variance of the prior Other explanations
pertain to the caption of Figure 7
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FIGURE 9. Confidence interval/2.5th and 97.5th quantiles concerning the constant
parameter along various earnings quantiles. The variance of the prior of the implau-
sibility term is set to be proportional to the product of the variances of the sam-
ple errors at the true value, i.e., Var(ĝi (θ)) = Var

(
τ−1

(
Yi ⩽ατ+D ′

iβτ
)) = ϖ−ϖ2 with

ϖ= E
(
τ−1

(
Yi ⩽ατ+D ′

iβτ
))

, pretending as if there was no misspecification, and of the
instrument variables employed in the moment conditions, i.e., Var(Zi ). Other explana-
tions pertain to the caption of Figure 7





29

7. APPENDIX A

7.1. Proof of Theorem 1. The first result is a direct conclusion following Chernozhukov and
Hong (2003), Proposition 1, it shall be noted that the pT (θ) differs slightly by a different scale

p
T .

Now, we show the second statement.

To prove the second result, we define a function r (θ̂−θ) such that, ĝ (θ̂)− ĝ (θ)−G(θ)(θ̂−θ) =
r es(θ̂−θ). It suffice to prove r es(θ̂−θ) is small on {θ : ∥θ−θ0∥ ≤ MT /

p
T }.

So on {θ : ∥θ−θ0∥ ≤ MT /
p

T },

ĝ (θ) = ĝ (θ̂)−G(θ)(θ̂−θ)− r es(θ̂−θ).

By Assumption 3 i), on {θ : ∥θ−θ0∥ ≤ MT /
p

T },

Eĝ (θ̂)−Eĝ (θ) =G(θ)(θ̂−θ)+o(∥θ̂−θ∥).

By Assumption 3 i), ∥θ̂ − θ0∥ ≲p
p

T
−1

. Denote |.|a as the elementwise absolute value. By
Assumption 3 iii),

|ĝ (θ̂)−ĝ (θ)−Eĝ (θ̂)+Eĝ (θ)|a/(1+
p

T ∥θ̂−θ∥) ≤ sup
{θ:∥θ−θ0∥≤MT /

p
T }

|rT (g ,θ)|a/[
p

T (1+
p

T ∥θ̂−θ∥)] →p 0,

since MT /
p

T → 0, where MT is a slow varying term denoted by logT .

So on the ball {θ : ∥θ−θ0∥ ≤ logT /
p

T }, it holds uniformly over θ,

∥r es(θ̂−θ)∥ ≤ sup{θ:∥θ−θ0∥≤MT /
p

T } ∥rT (g ,θ)∥pT
−1

(1+pT ∥θ̂−θ∥)+∥G(θ)(θ̂−θ)∥+∥Eĝ (θ̂)−Eĝ (θ)∥ =
Op (

p
T

−1
(1+p

T ∥θ̂− θ∥))+Op (∥θ̂− θ0∥) = op (1). Thus together with the argument in Cher-
nozhukov and Hong (2003), we have∫

θ∈Θ

(
1+∥θ−θ(µ0)∥α)∣∣pT (θ)−pT (ĝ (θ̂)−G(θ)(θ̂−θ))

∣∣dθ→p 0.

Then, the second conclusion holds.

7.2. Proof of Theorem 2. Define A =G⊤W (ĝ (θ(µ0))−µ0), B =G⊤W G and C = 2−1(µ−µ0)⊤(Λ−1)T (µ−
µ0)−2log(π(θ(µ)|µ)).

Then let us analyse V (h(.),θ,µ). By Assumption 6, we have, we can replace, θ(µ0)⊤G⊤−µ+µ0

with θ(µ)⊤G⊤(θ(µ)). Then we have

V (h(.),θ,µ)−2logπ(θ(µ),µ) = 2T [(θ−θ(µ))⊤G⊤]W (ĝ (θ(µ0))−µ0)

+T [(θ−θ(µ))⊤G⊤]W [G(θ−θ(µ))]−2logπ(µ)−2log(π(θ(µ)|µ)). (18)
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Thus, we reformulate the equation as,

V (h(.),θ,µ)−2logπ(θ(µ),µ)

= 2T [(θ−θ(µ0))⊤G⊤−µ⊤+µ⊤
0 ]W (ĝ (θ(µ0))−µ0)

+T [(θ−θ(µ0))⊤G⊤−µ⊤+µ⊤
0 ]W [(θ−θ(µ0))⊤G⊤−µ⊤+µ⊤

0 ]⊤−2logπ(µ)−2log(π(θ0|µ))

= 2T [(θ−θ(µ))⊤G⊤]W (ĝ (θ(µ0))−µ0)

+T [(θ−θ(µ))⊤G⊤]W [(θ−θ(µ))⊤G⊤]⊤−2logπ(µ)−2log(π(θ(µ)|µ))

= 2T (θ−θ(µ))⊤A+T (θ−θ(µ))⊤B(θ−θ(µ))+2C +op (∥µ−µ0∥2
Λ/T ∨p ∨ε).

We know that this is proportional to the log-likelihood of the density function of N (B−1 A, (T B2)−1).

By Assumption 5,

tr (A A⊤) = tr ((ĝ (θ(µ))−µ)⊤W GG⊤W (ĝ (θ(µ))−µ))

= tr (G⊤W E[(ĝ (θ(µ))−µ)(ĝ (θ(µ))−µ)⊤]W G)

=Op (T −1p).

We shall assume that there exists a constant C > 0 such that on the ball Γ, the radius is
bounded. By Assumption 6, we shall focus on the ball, ∥µ−µ0∥Λ/T ≲λmax(Λ)(logT )

p
p/

p
T ∧C ,

and λmax(GG⊤) =λmax(G⊤G)≲p 1. One remark is that ifΛ−1 → 0 the density of the prior of µ is
flat. Then, we should restrict at compact support of µ to integrate. exp(−V (h(.),θ,µ)/2)c(µ) for
any fixed µ is proportion to multivariate normal with mean B−1 A and variance B−1.

To derive the conclusion, we shall divide the proof into the following steps:

∫
Γ

∫
Θ

(
1+∥θ−θ(µ)∥α)∣∣pT (θ,µ)−NT (θ,µ)

∣∣dθdµ

=
∫

Bε

(
1+∥θ−θ(µ)∥α)∣∣pT (θ,µ)−NT (θ,µ)

∣∣dθdµ

+
∫

B c
ε

(
1+∥θ−θ(µ)∥α)∣∣pT (θ,µ)−NT (θ,µ)

∣∣dθdµ= I1 + I2.

To look at I1, we let
∫

Bε

(
1+∥θ−θ(µ)∥α)

NT (θ,µ)
∣∣pT (θ,µ)/NT (θ,µ)−1

∣∣dθdµ. Let the integral
ratio be

c(θ0,µ0) =
∫
µ,θ∈Bε

exp(−V (h(.),θ,µ)/2+ logπ(µ,θ(µ)))dθdµ∫
µ,θ∈Bε

exp(−1
2QT (θ,µ)+ 1

2QT (θ(µ0),µ0)+ logπ(µ,θ))dθdµ
.

We see that,

pT (θ,µ)

NT (θ,µ)
= exp

(−1
2QT (θ,µ)+ 1

2QT (θ(µ0),µ0)+V (h(.),θ,µ)/2− log(c(µ))
)

c(θ0,µ0)
.
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Let γ be an p− dimensional standard Gaussian distribution. Recall that π(µ) be a function
proportional to the density of Gaussian distribution with variance (Λ−1T )−1/2 and mean µ0. It
is not hard to see that condition on µ, the density function NT (θ|µ) is a density function of a
multivariate Gaussian random variable with mean B−1 A and variance B .
Following fact about Gaussian Integral, with x ∈Rn , we have

∫ ∞
−∞ exp

(−1
2 xT B x + AT x

)
d x1d x2 . . .d xn =

(2π)n/2

|B |1/2 exp
[1

2 AT B−1 A
]
, with |B | denoted as the determinant of a matrix B .

We define NT (θ|µ)
def= NT (θ,µ)/π(µ). And we define ENT (θ|µ)(.) as taking expectation under

NT (θ|µ). Let a(θ,µ) = exp(RT (θ,µ))/c(θ0,µ0)−1 and δ> 0, then

I1 =
∫

Bε

(
1+∥θ−θ(µ)∥α)

NT (θ,µ)
∣∣exp(RT (θ,µ))/c(θ0,µ0)−1

∣∣dθdµ

=
∫

Bε

(
1+∥θ−θ(µ)∥α)

NT (θ,µ)
∣∣a(θ,µ)

∣∣dθdµ

=
∫

Bε

(
1+∥θ−θ(µ)∥α)

NT (θ|µ)
∣∣a(θ,µ)

∣∣dθπ(µ)dµ

≤ δ(logT )3
√

p3/
p

T
∫

Bε
NT (θ|µ)

∣∣(1+∥θ−θ(µ)∥α)∣∣dθπ(µ)dµ

≤ δ(logT )3
√

p3/
p

T
∫
µ∈Γε

ENT (θ|µ)(∥
p

T
−1

B−1/2γ−
p

T B−1/2 A∥α

1(∥
p

T
−1

B−1/2γ−
p

T B−1/2 A)∥ ≤ ε))π(µ)dµ

≲ (logT )3δ(
p

p)α+3/
p

T .

Denote PNT (.|.) as the conditional distribution function of θ−θ(µ) conditioning on a fixed
value of µ. Γε = {µ : ∥µ−µ0∥Λ/T ≤ ε}.

I2 =
∫

B c
ε

(
1+∥θ−θ(µ)∥α)

NT (θ,µ)
∣∣exp(RT (θ,µ))/c(θ0,µ0)−1

∣∣dθdµ

≤ c
∫

B c
ε

NT (θ|µ)
∣∣(1+∥θ−θ(µ)∥α)∣∣dθπ(µ)dµ

≤
∫
µ∈Γ

PNT (θ|µ)(∥θ−θ(µ)∥α > ε|µ)π(µ)dµ

≤
∫
µ∈Γ

Pγ(∥
p

T
−1

B−1/2γ−
p

T B−1/2 A∥α > ε|µ)π(µ)dµ

≤p
pα

∫
Γε

exp(−ε−p
p)π(µ)dµ→ 0,

where Γε is a set that µ take maximum range in Bε(µ).
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