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Abstract

In this paper, we examine the regional trade-off between inflation and unemployment using a

state-level dataset. Our analysis delves into both the reduced-form correlation and the struc-

tural Phillips curve with a state-level panel dataset. By applying a data-driven classification

method, we account for potential nonlinearities influenced by distinct features of the economy

and explore unobserved heterogeneity in group patterns across states. Our findings under-

score the presence of these nonlinearities and group patterns, highlighting that the flattening

and return of the Phillips curve are regional and sporadical.
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1 Introduction

There has been substantial evidence of disconnectedness between inflation and unemployment in

the last decades. Concurrently, debates have intensified regarding whether the Phillips curve is

dead. This has sparked heightened interest in deciphering its pattern, as seen in works such as

Gagnon and Collins (2019), Del Negro et al. (2020), Ball et al. (2022), Hazell et al. (2022), among

others. The primary challenge researchers face in estimating the structural Phillips curve is the

issue of endogeneity. A large strand of literature employs aggregate-level time series data and esti-

mates the Phillips curve as part of a structural macroeconomic model or by relying on instrumental

variables. Both methods have further difficulties. Potential misspecification in any other part of

the structural model might contaminate the Phillips curve estimate. The weak instruments prob-

lem exists pervasively in the aggregate level time series data – Mavroeidis, Plagborg-Møller and

Stock (2014) claimed that “there simply isn’t enough variation available in the aggregate data to

separately identify the coefficients on unemployment and expected inflation.” Given the difficulties

associated with identifying the Phillips curve at an aggregate level, another strand of literature

estimates the Phillips curve at a more disaggregated level. By focusing on deviations of regional

inflation and unemployment, variation due to common factors determined at the aggregate level

(e.g., aggregate level supply shocks, monetary policy) can be removed. We focus on this latter

strand to use the disaggregate level data. By exploring the cross-sectional state-level information,

we can further uncover potential heterogeneity pattern in the Phillips curve across space and time.

This paper investigates the trade-off between inflation and unemployment at a regional (state)

level and tackles the following research questions: (1) Considering the unobserved heterogeneity

across states in the U.S., is there still evidence of disconnectedness between inflation and unem-

ployment? (2) How does the Phillips curve behave across different states? Is there a particular

pattern? (3) Does the Phillips curve pattern alter significantly with features of the economy, and

how? To answer these questions, we employ a state-level dataset of inflation and unemployment,

constructed by Hazell et al. (2022), to look into both the reduced-form correlation and the struc-

tural Phillips curve, considering potential nonlinearities, in forms of state-dependence, governed by
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various features of the economy, as well as unobserved group pattern heterogeneity across states.

Our main findings follow the research questions posed above. Our analysis starts by examining

the (reduced-form) state-level Phillips correlation and inflation forecasting relations, as defined

in Stock and Watson (2020), and then moves on to estimating the structural Phillips curve, as

discussed in Mavroeidis et al. (2014). Our finding reveals that, using various measures of slack

economic and regional data, there has been a diminishing Phillips correlation over time, a marked

instability in forecasting inflation using these candidate slack measures, and a notable flattening

of the Phillips curve. These findings align with the prevalence of time variation in the existing

literature.

Secondly, considering the potential disparities in the trade-off between inflation and unemploy-

ment across various states, we explore the unobserved heterogeneity across states in the Phillips

curve. We find evidence of the existence of group patterns. The Phillips curve parameters remain

the same within each group but vary between distinct groups. Importantly, we find the evolu-

tions of the group-specific behaviors differ. We conclude that the flattening curve is a national

phenomenon, while the disappearance of the Phillips curve is a regional phenomenon.

Thirdly, we investigate whether there are nonlinearities in the Phillips curve by considering its

interaction with various feathers of the economy. We find evidence of nonlinearities resulting from

the conventional and unconventional monetary policy, the expansionary and contractionary mon-

etary policy, and the expansion and recession. (i) Comparing the regional Phillips curve patterns

in conventional and unconventional times, we find substantial heterogeneity in the group-specific

slopes during the latter. Some states (Alaska, Arkansas, California, Hawaii, Indiana, Louisiana,

Maryland, Mississippi, New Jersey, North Carolina, Oklahoma, Oregon, Tennessee, Utah, and Vir-

ginia) have a steeper slope. In contrast, other states (Alabama, Colorado, Connecticut, District of

Columbia, Florida, Georgia, Illinois, Kansas, Massachusetts, Michigan, Minnesota, Missouri, New

York, Ohio, Pennsylvania, South Carolina, Texas, Washington, and Wisconsin) have an unusual

positive slope estimate. Thus, we conclude that the unconventional monetary policy is more ef-

fective in these states. (ii) Comparing the regional Phillips curve patterns in expansionary and
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contractionary monetary policy regimes, we find evidence of lost information when ignoring the

cross-sectional heterogeneity. Specifically, in the ‘Contractionary’ monetary policy regime, some

states (Alabama, Alaska, Arkansas, Colorado, Connecticut, Florida, Georgia, Hawaii, Illinois,

Indiana, Kansas, Louisiana, Maryland, Michigan, Missouri, North Carolina, Oklahoma, Oregon,

Tennessee, Texas, Utah, Virginia, Washington) have a dead Phillips curve. In contrast, some other

states (California, District of Columbia, Massachusetts, Minnesota, Mississippi, New Jersey, New

York, Ohio, Pennsylvania, South Carolina, and Wisconsin) have a well and alive Phillips curve.

(iii) Comparing the regional Phillips curve patterns during recession and expansion, we find that

some states exhibit similar behavior during different times while other states exhibit very different

patterns. Specifically, all the states examined have a flattening Phillips curve during the expan-

sion. In contrast, some states (Alabama, Alaska, Arkansas, California, Colorado, Connecticut,

District of Columbia, Illinois, Indiana, Kansas, Louisiana, Massachusetts, Minnesota, New Jersey,

Oklahoma, Oregon, Tennessee, Utah, Virginia, and Wisconsin) have a dead Phillips curve during

the expansion but a much steeper Phillips curve during a recession. This finding that the Phillips

curve is well and alive during a recession is consistent with the conclusion in Blanchard (2016) as

well as the findings that the Phillips curve is coming back in the recent pandemic recession periods

in Inoue et al. (2023).

Compared with the literature, the main contribution of this paper is to introduce both nonlin-

earities and unobserved regional heterogeneity in the Phillips curve. To the best of our knowledge,

the existing work in unobserved regional heterogeneity is at its early stage. A closely related paper

is Smith et al. (2023), which applies a Bayesian panel method to estimate both the number and

timing of breaks in the Phillips curve while determining the existence of disaggregate level clus-

ters. We differ in the following perspectives. Regarding the form of time-variation, Smith et al.

(2023) consider discrete shifts across time, while we consider time-variation that may depend on

different features of the economy, which provides insights on what could be behind the change in

the Phillips curve. Regarding the methodology, Smith et al. (2023) adopt a Bayesian method in

detecting breaks in the group pattern of heterogeneity, while our break detection method, pro-
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posed in Huang, Sun and Wang (2023), is frequentist, which does not require priors for estimation.

Besides, we further introduce a state-dependent group pattern, considering the potential interac-

tion of the nonlinearities and the unobserved pattern of heterogeneity. Additionally, we consider

instruments in identifying the Phillips curve and results across alternative specifications confirm

the robustness of our findings, while Smith et al. (2023) do not use instruments and focus on the

reduced-form estimation results. This paper is also closely related to Hazell et al. (2022), who

estimate the slope of the Phillips curve in the cross-section of U.S. states. They find that the slope

was small during the early 1980s and that there was no missing disinflation or reinflation over

the past few business cycles. Compared with Hazell et al. (2022), we consider different forms of

nonlinearities (state-dependence) that depend on features of the economy and allow for regional

group patterns of heterogeneity. In addition, compared to the threshold panel Phillips curve in

Doser et al. (2023), we allow for non-linearity in all Phillips curve’s parameters instead of allowing

for time variation in only the slope parameter.

The remainder of the paper is organized as follows. Section 2 examines the Phillips corre-

lation, inflation forecasting relation, and structural Phillips curve using state-level inflation and

unemployment data. Section 3 studies the group pattern of heterogeneity in the state-level Phillips

curve. Section 4 looks into the Phillips curve in various states of the economy. Section 5 concludes.

2 Disconnectedness between inflation and unemployment

There is substantial empirical evidence of disconnectedness between inflation and unemployment

in the recent US data, see Stock and Watson (2020). This section examines the Phillips corre-

lation, inflation forecasting relation, and structural Phillips curve using state-level inflation and

unemployment data, constructed in Hazell et al. (2022). Given the substantial evidence of the

evident reduction in the cyclical correlation between inflation and real activity since the 1990s,

see, e.g., Atkeson et al. (2001), Stock and Watson (2007), Stock and Watson (2008), and Stock and

Watson (2020), we look into both the full sample and the pre/post-1990 subsamples throughout

this section.
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Our finding reveals that, using various measures of slack economic and regional data, there

has been a diminishing Phillips correlation over time, a marked instability in forecasting inflation

using these candidate slack measures, and a notable flattening of the Phillips curve.

2.1 State Level Phillip Correlation

We start by investigating the reduced-form relationship between inflation and the economic activity

over time. We extend the Stock and Watson’s (2020) time-series model into a panel version with

state fixed effects, and focus on the estimated slope (β1) in the following panel Phillips relation:

Et∆4πi,t = β0 + β1x
4
i,t + µi, (1)

where i refers to each state, x4
i,t is the four quarter moving average x4

i,t = (
∑3

i=0 xi,t−l)/4, ∆4 =

(1 − L4) with L denoting the lag operator such that Lxi,t = xi,t−1, πi,t is the quarter-to-quarter

CPI-inflation and xi,t is a measure of slack. The measure of slack is computed as the difference

between an activity variable and the unobserved full utilization level of that variable. We choose

the state-level unemployment rate and employment-population ratio as the activity variable. The

slack is measured using five ex-post gaps and one real-time gap. The ex-post gaps are constructed

as detrended unemployment and employment-population ratio with the underlying trend estimated

from a linear or quadratic polynomial, a Hodrick–Prescott (HP) filter with a smoothing parameter

of 1600 as Mavroeidis et al. (2014), a Baxter–King (BK) filter retaining cycles of duration between

6 and 32 quarters as Mavroeidis et al. (2014), or a Bi-weight filter with a bandwidth of 60 quarters

as Stock and Watson (2020). The real-time gaps are computed through a one-sided exponentially-

weighted moving average, with a weight of a half-life of 15 years, as Stock and Watson (2020). All

the slack measures are standardized for comparison purposes.

Table 1 reports the correlation between Et∆4π.,t and x4
.,t and the estimate of the slope β1 in

eq.(1) for various slack measures, based on the full sample and the pre-and post-1990 subsamples,

respectively. Columns 2-5 display the average state-level Phillips correlation and the slope β1, with

clustered standard errors in the parentheses. Compared to the pre-1990 and post-1990 estimates,
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the state-level Phillips relation has dramatically flattened over time.

Additionally, we report the aggregate level time series estimation results in columns 6-9. Since

the state level inflation is measured by core CPI excluding shelter, we use the aggregate level CPI

for urban consumers excluding food, energy, and shelter (CPIU-xFES)1 from Federal Reserve Eco-

nomic Data (FRED). These aggregate level slack measures are similarly constructed as described

above. We also consider the CBO unemployment gap and GDP gap as a supplement.

Overall, our results in Table 1 indicate that the US Phillips correlation, at both the aggregate

and state levels, has been getting weaker. The results are robust across various slack measures.

To complete this, we provide the results for the state-level Phillips relation assuming complete

heterogeneity in Table A2 in the online Appendix. Similarly, the Phillips correlation of each state

is decreasing over time.

INSERT TABLE 1 HERE

2.2 Inflation forecasting regression

Apart from the aforementioned contemporaneous Phillips relation, whether lagged values of eco-

nomic slack can predict inflation is also essential to forecasters and reflects the Granger causality

between inflation and economic slack. Stock and Watson (2020) investigate the aggregate level

inflation forecasting regression using various gaps. They find that most gap measures worsen out-

of-sample inflation forecasting performance, and there is substantial instability in this forecasting

relation. In this section, we consider the panel version of Stock and Watson’s (2020) prototypical

Phillips curve forecasting regression:

∆4πi,t = β0 + β1xi,t−4 + β2∆4πi,t−4 + µi + ei,t. (2)

1Table A3 in the online appendix shows that the aggregate level result using different inflation measures have
similar decreasing patterns. In particular, we consider CPI excluding food and energy (CPI-xFE), PCE excluding
food and energy (PCE-xFE), CPI for urban consumers excluding food and energy (CPIU-xFE) or excluding shelters
(CPIU-xS). Since food, energy, and shelter are all cyclically sensitive price components, the estimated slope of CPI-
xFE, CPIU-xFE, and CPIU-xS are larger in absolute value as expected.
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We investigate this panel forecasting relation instead of relying solely on time series data, as it

has several advantages, including (i) exploiting information both across the state and across time,

which may lead to more efficient and accurate estimates and help identify relationships that might

not be apparent with purely time series inflation and slack data; (ii) incorporating individual

heterogeneity and considering unobserved effects that remain constant over time.

Table 2 summarizes the results of the forecasting exercises for three forecasting models using

various slack variables. We exclude the ex-post gaps for forecasting purposes and rely on the

real-time gaps. The three blocks display the results using a panel data model with homogenous

parameters, a panel data model with heterogenous parameters, and a time series model with

aggregate-level data. The column labeled ‘Sup-Wald test’ reports the Sup-Wald test (Andrews

(1993) and Hansen (1997)) results for testing instability in the parameter β1 in eq.(2) based on

the full sample estimates. The null hypothesis of stable coefficients in the forecasting regression

is rejected at the 1% The column labeled ‘Pseudo RMSFE ratio’ reports the relative forecasting

performances, measured by the ratio of the pseudo-out-of-sample root mean squared forecast errors

(RMSFE) of the direct forecasting models discussed above, to the RMSFE for the corresponding

restricted version without the slack variable. We consider the fixed, rolling, and recursive forecast-

ing schemes. In line with Stock and Watson (2020), the first in-sample window is 1984Q1-2007Q1,

and the out-of-sample four-quarter ahead forecasts range from 2008Q1 to 2018Q1, spanning the

recession and recovery periods. Our results confirm that (i) there is evidence of instability in the

forecasting relations and (ii) using gaps worsens out-of-sample performance in inflation forecasting,

even when exploiting cross-sectional information. These findings are in line with the prevalence

of time variation in the existing literature. The RMSFE ratio for each state when considering

a complete heterogeneous panel model is provided in Table A4 in the online Appendix, which

indicates similar results in most scenarios.

INSERT TABLE 2 HERE

To account for model instability in forecasting, we apply the Giacomini and Rossi (2010)’s

Fluctuation test as a robustness check. This method compares the out-of-sample forecasting
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performance of our inflation-forecasting regression with and without the slack variable, in the

presence of possible instabilities. It formally tests the null hypothesis of (1) the two models are

equivalent; (2) the model with the slack variable outperforms the another; (3) the model without

the slack variable outperforms the another. Similar to the previous setting, the in-sample window

is 1984Q1-2007Q1, and the out-of-sample forecasts rang from 2008Q1 to 2018Q1. Table A5 in the

online appendix reports the full result of Fluctuation test. The result indicates that either the

adding slack variable as one of the predictor significantly worsen the forecasting performance, or the

two models have no significant difference in performance. Therefore, this exercise further confirm

that the forecasting relationship between the economic slack and the inflation rate experiences

some nonlinearity around the Great Recession.

In addition, the time-series Fluctuation test of each state also points to the similar result. Take

the recursive forecasting result as an example, the forecasting performance is significantly worse

after adding the slack variable for around 30% of the states , while none of the states obtains

significantly better performance. The remaining states have no significant difference within the

two models. To save space, the full result is not shown in the text or appendix.

2.3 State Level Phillip Curve

Although we find the absence of a Phillips relation in Section 2, it doesn’t mean that the structural

Phillips curve has disappeared. The Phillips relation measures the (reduced-form) correlation

between inflation and unemployment, while the Phillips curve measures the trade-off between

inflation and unemployment due to supply shocks. A classic version of the Phillips curve is the

hybrid New-Keynesian Phillips Curve (NKPC) by Gaĺı and Gertler (1999):

πt = γfEt(πt+1) + γbπt−1 + λxt + et, (3)

where πt denotes inflation, xt measures the real marginal cost, Et(·) denotes conditional expecta-

tions at time t, and ut is an unobserved shock. This specification is also considered in Gaĺı et al.

(2005), Mavroeidis et al. (2014), and Barnichon and Mesters (2020), among others. As known in
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the literature, one of the main challenges in estimating the structural Phillips curve is the pres-

ence of endogeneity. Thus, the traditional ordinary least squares cannot consistently estimate the

structural parameters, and instrument variables are required. Besides, as pointed out in the aggre-

gate level Phillips curve literature, another challenge is the presence of weak instruments, which

might cause high sampling and specification uncertainty; a minor change in the sample choice and

specification might point to diverse results. Mavroeidis et al. (2014) conclude that “the literature

has reached a limit on how much can be learned about the New Keynesian Phillips curve from

aggregate macroeconomic time series. New identification approaches and new datasets are needed

to reach an empirical consensus.” Considering there is not enough variation in the aggregate level

time series data to identify the structural Phillips curve parameter, recent papers have introduced

regional data to help overcome these challenges (McLeay and Tenreyro (2020), Kiley (2015), Babb

and Detmeister (2017), Hooper et al. (2020), and Fitzgerald et al. (2020), Beraja et al. (2019)).

In what follows, we consider the state-level version of eq.(3) as follows:

πi,t = γfπi,t+1 + γbπi,t−1 + λx̂i,t + µi + ui,t, (4)

where πi,t is the quarter-to-quarter inflation, x̂i,t is an observable proxy for the forcing variable,

and ui,t = ei,t−γi,f (πi,t+1−Et(πi,t+1))−λ(x̂i,t−xi,t) is the error term including unobserved shocks,

µi is the state fixed effect, and ei,t is the measurement error. We estimate eq.(4) using instrumental

variables. Our targets are the slope of the Phillips curve λ, which measures the degree to which real

activity influences inflation dynamics, as well as the forward- and backward-looking parameters

γf and γb, which concern the relative importance of forward- and backward-looking price setting

behavior.

We focus on the specification where xi,t is computed through the one-sided exponentially-

weighted moving average, following Stock and Watson (2020). The instruments considered are

four lags of inflation and two lags of the slack variable. We focus on the specification where xi,t

is computed through the one-sided exponentially-weighted moving average, following Stock and

Watson (2020). The instruments considered are four lags of inflation and two lags of the slack
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variable.

Table A6 in the online Appendix presents estimates of the first-stage regression for our IV

estimates, indicating that the instruments are strong and that the panel instruments are stronger

than those in the time-series setting.

We use the two-sample two-stage least squares (TS2SLS) estimation method, inspired by Hazell

et al. (2022), to alleviate the effect of missing data during 1987-1988 as well as missing observations

when using lags as instruments. Although both generalized instrumental variables (GIV) and two-

stage least squares (2SLS) have been considered in the aggregate level Phillips curve literature,

in this context, we mainly rely on TS2SLS instead of two-sample instrumental variables (TSIV),

as the TS2SLS estimator is more asymptotically efficient than the TSIV estimator, see Inoue and

Solon (2010). Additionally, the standard errors are clustered at the state level for panel data and

adjusted to a TS2SLS version following Chodorow-Reich and Wieland (2020).

Table 3 reports the estimates of λ and γf in eq.(4) with a restriction γf +γb = 1, which is often

imposed in empirical studies and is consistent with the existence of a vertical long-run Phillips

curve, see Mavroeidis et al. (2014) and Barnichon and Mesters (2020). Considering potential time

variation, we report the estimates based on the full sample (1979-2017), as well as the pre-and

post-1990 subsamples, respectively. For comparison purposes, the estimates obtained from the

corresponding time series regression in eq.(3) using aggregate level data are also reported. Figure

1 further compares the pre- and post-1990 state-level estimates. Panels (a) presents the point

estimates of (λ, γf ) together with the 68%, 90%, and 95% confidence regions. The pre-1990 results

are presented in blue, and the post-1990 results in orange. Panels (b) presents the point estimates

of various measures of slack, indicating that our results are robust.

Our results indicate a decrease in the slope of the structural Phillips curve λ, comparing

the pre-1990 and post-1990 subsample estimates, which complies with the aggregate level time

series estimates as well as the existing literature. The absolute value of the slope has decreased

substantially from 0.218 to 0.015, which is statistically insignificantly different from zero. Also,

in line with the regional Phillips curve literature, our state-level estimates are steeper than the
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slope estimated for the aggregate Phillips curve, no matter whether we look at the full sample or

subsamples. Besides, our state-level estimation results reveal that the Phillips curve has become

much more forward-looking after 1990, as the forward-looking component (γf ) has increased from

0.133 to 0.531, implying that the importance of the backward-looking component in the Phillips

curve has decreased.

INSERT TABLE 3 HERE

INSERT FIGURE 1 HERE

To complement this, we provide some robustness checks in the online Appendix. Table A7 re-

ports the estimates obtained using an alternative estimation method, including the two-step GMM

and continuously updated estimator (CUE) GMM with clustered error and the heteroscedastic and

auto-correlated (HAC) robust error. Tables A9, A16 and Figure A5 report the results obtained

without the restriction γf + γb = 1.

3 Group Pattern in State Level Phillips Curve

We have heretofore assumed homogeneity in the coefficients in eq.(4). Considering the potential

disparities in the trade-off between inflation and unemployment across various states, we now

assume the existence of a grouped pattern of heterogeneity. That is, the Phillips curve parameters

remain the same within each group but vary between distinct groups. Identifying clusters that

exhibit common patterns within Phillips curves can illuminate the underlying sources of these

patterns. This phenomenon helps facilitate the analysis of factors affecting the trade-off between

inflation and unemployment, exhibiting potential regional variations. Uncovering the underlying

group patterns further assists in pinpointing the origins of the patterns of the Phillips curves.

Let βi include the Phillips curve parameters in eq.(4) for state i, such that βi = (λi, γf,i, γb,i),

and it follows the group pattern:

βi =
K∑

k=1

θk1{i ∈ Gk} (5)
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where θj #= θk for any j #= k, ∪K
k=1Gk = {1, 2, · · · , N}, and Gj ∩ Gk = ∅ for any j #= k. Both the

number of groups K and group membership Gk (i.e., the states assigned to group k) are unknown

and to be determined by the data. Using the information criterion in Su et al. (2016), we find

evidence of group patterns. The information criterion suggests the number of groups K̂ = 2 across

various choices of tuning parameters considering either full sample or subsamples; see detailed

results in Table 4 and Figure A1 in the online Appendix.

INSERT TABLE 4 HERE

Table 5 presents the group-specific estimates of θk in eq.(5), using the Classifier-Lasso method

proposed in Su et al. (2016) and considering two groups.2 Given the evidence of time variation

in the previous exercise, we report results for both the full sample and the pre-and post-1990

subsamples. The break date (1990Q4) is detected using the algorithm in Huang, Sun and Wang

(2023). Figure 2 further compares the pre- and post-1990 group-specific state-level estimates.

Panels (a) presents the group-specific point estimates of (λ, γf ) together with the 68%, 90%, and

95% confidence regions. The pre-1990 results are presented in blue, and the post-1990 results

in orange, with the hollow and filled circles denoting the two groups, respectively. Panels (b)

presents the group-specific point estimates of various measures of slack, indicating that our results

are robust.

Figure A2 and A3 in the online Appendix provide the group membership results using the real-

time unemployment gap and averaged across twelve distinct slack measures, implying robustness

in the group classification.

For each set of results, we report in a row ‘Chow test’ the Chow test statistics with the signif-

icance levels testing whether the group-specific estimates differ across groups, providing evidence

of a significant difference in group-specific estimates. Our results indicate the following: (i) Com-

paring pre- and post-1990 results, a common pattern across two groups is a weakening of the

slope of the Phillips curve across time. (ii) States in Group 1 have experienced a larger change

2Due to data limitation, there are 21 and 34 states before and after the year 1990, respectively. We refer to
readers to Hazell et al. (2022) for a detailed discussion.
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in the slope λ than those in Group 2. Although the Phillips curves of both groups become flatter

after 1990, only the curve of Group 2 vanishes, which points to -0.002 and is indistinguishable

from zero. Therefore, we conclude that the flattening curve is a national phenomenon, while the

disappearance of the Phillips curve is only a regional phenomenon. (iii) Besides, in both pre-and

post-1990 subsamples, Group 1 has a larger γf and thus smaller γb, indicating that states in Group

1 are more forward-looking and less backward-looking than those in Group 2.

INSERT TABLE 5 HERE

INSERT FIGURE 2 HERE

4 Does Phillips curve shift with features of the economy?

There is substantial evidence that features of the economy affect macroeconomic modeling and

forecasting (Ng and Wright (2013)), the effectiveness of public policies (Tenreyro and Thwaites

(2016), Ramey and Zubairy (2018), and Barnichon et al. (2022)), etc. Considering the potential

interaction, the Phillips curve might also exhibit different patterns according to the features of the

economy, and it would be essential for policymakers to uncover how different economic features

shift the Phillips curve. In this section, we tackle this question by looking into the following

state-dependent Phillips curve:

πi,t = It−1(λAxi,t + γf,Aπi,t+1 + γb,Aπi,t−1 + αA)

+ (1− It−1)(λBxi,t + γf,Bπi,t+1 + γb,Bπi,t−1 + αB) + µi + ui,t,
(6)

where It−1 is a dummy variable that indicates the state of the economy, depending on the value of

the state variable z at period t− 1. It−1 = 1 if a certain state variable is above a threshold z̄ (i.e.,

if zt−1 > z̄). Following Ramey and Zubairy (2018), all the state variables we use are lags. The

subscripts A,B refer to different states. Following Ramey and Zubairy (2018), the instruments

are the intersection of the state variables It−1 and (1 − It−1), and the four inflation lags and two

slack lags.
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We investigate whether the Phillips curve parameters exhibit different patterns according to

important features of the economy, including (1) whether interest rates are near ZLB, (2) monetary

policy shocks of different kinds (contractionary or expansionary), and (3) whether the economy

is in recession.3 In each scenario, we further allow for unobserved group pattern of heterogeneity

by letting βi include the state-dependent Phillips curve parameters in eq.(6) for state i, such that

βi = (λA,i, γf,A,i, γb,A,i,λB,i, γf,B,i, γb,B,i) = θk, which investigates whether and how the unobserved

heterogeneity exhibits different patterns according to the aforementioned features of the economy.

4.1 Phillips curve during times of unconventional monetary policy

Researchers and policy makers have made multiple explanations for the apparent flattening of

the Phillips curve, among which endogenous monetary policy actions could be an essential factor,

see Haldane and Quah (1999), Roberts (2006), Williams (2006), Mishkin (2007), Carlstrom et al.

(2009), and McLeay and Tenreyro (2020). When inflation rises, the Fed tightens monetary policy

to stabilize inflation and anchor inflation expectations, causing unemployment to rise. This creates

a positive link between inflation and the unemployment gap that biases the Phillips curve slope

towards zero. However, in unconventional times (at the ZLB), the short-term interest rate cannot

be lowered further to stimulate the economy, and the monetary policy transmission mechanism

may also change.

In this subsection, we investigate whether the Phillips curve pattern changes in unconventional

times when the interest rates are near the zero lower bound. Following Ramey and Zubairy (2018),

we consider the 3-month t-bill treasury rate as the state variable. The ‘ZLB state’ is defined to be

2008Q4–2016Q4, during which the 3-month t-bill treasury rate is lower than 0.5%.

Table 6 presents the pool estimates as well as the group-specific estimates of the parameters in

eq.(6). The column ‘Pooled’ in Table 6 reports the ZLB-dependent pool estimates when assuming

cross-sectional homogeneity, with Figure 4 comparing the ZLB-dependent pool estimates with

confidence sets. We also implement a Chow test testing whether the estimates differ across two

3See Figure 3 for all the state variables.
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states. The test statistic is 114.701, which is significant at 1% level, providing evidence of the

difference in the pattern of the Phillips curve during conventional and unconventional times. The

estimates of the slope (λ) indicate that, in both non-ZLB and ZLB times, the slope is small but

significant and that the slope in non-ZLB is steeper than that in ZLB, which to some degree, implies

that the unconventional monetary policy is effective in stabilize inflation and anchor inflation

expectations, causing the unemployment to rise. Besides, the estimates of the forward-looking

component (γf ) indicate that the forward-looking component is more important in the ZLB time

than the non-ZLB.

The column ‘C-Lasso’ in Table 6 reports the ZLB-dependent group-specific estimates when as-

suming an unobserved group pattern of heterogeneity. We implement a Chow test to test whether

the parameters are distinct across two groups. The test statistic is 17.798, which is significant

at 1% significance level, providing evidence of a significant difference in group-specific estimates.

Figure 5 further compares the ZLB-dependent group-specific estimates. Panels (a) presents the

group-specific point estimates of (λ, γf ) together with the 68%, 90%, and 95% confidence regions.

The non-ZLB estimates are presented in blue and the ZLB estimates in orange, with the hollow and

filled circles denoting the two groups, respectively. Panels (b) presents the point estimates of var-

ious measures of slack for robustness check. Figure 6 presents the group membership, identifying

states with similar or differing patterns. Our results indicate the following: During the conven-

tional time (non-ZLB), both groups have small but significant slopes (λ), and the group-specific

estimates of λ are close in value, not exhibiting much heterogeneity. In contrast, the group-specific

slopes (λ) exhibit more heterogeneity in unconventional times (ZLB). States in Group 2 (Alaska,

Arkansas, California, Hawaii, Indiana, Louisiana, Maryland, Mississippi, New Jersey, North Car-

olina, Oklahoma, Oregon, Tennessee, Utah, Virginia) have a steeper slope, while states in Group

1 (Alabama, Colorado, Connecticut, District of Columbia, Florida, Georgia, Illinois, Kansas, Mas-

sachusetts, Michigan, Minnesota, Missouri, New York, Ohio, Pennsylvania, South Carolina, Texas,

Washington, Wisconsin) have an unusual positive slope estimate. This might imply that the un-

conventional monetary policy is more effective in states in Group 1. Besides, the forward-looking
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component for states in both groups during ZLB is more important than during non-ZLB.

In addition, we report in Figure A4a in the online Appendix the group membership averaged

across twelve distinct slack measures.

INSERT TABLE 6 HERE

INSERT FIGURE 4 HERE

INSERT FIGURE 5 HERE

INSERT FIGURE 6 HERE

4.2 Phillips curve in different monetary policy regimes

As is shown in the literature, see Tenreyro and Thwaites (2016), the response of the economy

to monetary policy shocks may be nonlinear. Monetary policy shocks of different kinds (positive

and negative shocks) may have different effects on the economy, which could lead to different

patterns of the Phillips curve as responses of inflation and unemployment to a contractionary and

an expansionary monetary policy shock may be different.

Considering this potential interaction, we investigate whether the Phillips curve pattern changes

during different monetary policy regimes. Specifically, we define the ‘Expansionary’ state and the

‘Contractionary’ state according to the sign of the monetary policy shock. We use the monetary

policy shock constructed by Romer and Romer (2004) and extended to 2007Q4 by Wieland and

Yang (2020).

Table 7 presents the pool estimates as well as the group-specific estimates of parameters during

different monetary policy regimes. The column ‘Pooled’ in Table 7 reports the (monetary policy)

sign-dependent estimates when assuming across-sectional homogeneity, with Figure 7 comparing

the sign-dependent pool estimates. We also implement a Chow test to test whether the estimates

differ across the two regimes. The test statistic is 1.135, which is insignificant at 10% significance

level, suggesting no significant difference in the estimates of the Phillips curve across the two

regimes. The estimates indicate that, in both contractionary and expansionary monetary policy
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regimes, the slopes are small but significant and that the slopes in the two regimes are close in

value. Also, the estimates of the forward-looking component (γf ) indicate similar importance in

the two regimes.

The column ‘C-Lasso’ in Table 7 reports the (monetary policy) sign-dependent group-specific

estimates when assuming unobserved group pattern of heterogeneity. We implement a Chow test

to test whether the parameters are distinct across two groups. The test statistic is 10.257, which is

significant at 1% significance level, providing evidence of a significant difference in group-specific es-

timates. Figure 8 further compares the (monetary policy) sign-dependent group-specific estimates.

Figure 9 presents the group membership, identifying states with similar or differing patterns. In

addition, we report in Figure A4b in the online Appendix the group membership averaged across

twelve distinct slack measures. Our results indicate the following: Useful information may be

lost when ignoring the heterogeneity and using the pool estimates only. – In the ‘Expansionary’

monetary policy regime, there is not much heterogeneity, which is consistent with the pool esti-

mates. However, in the ‘Contractionary’ monetary policy regime, there is great heterogeneity that

has been unaccounted for. Specifically, in the ‘Contractionary’ monetary policy regime, states in

Group 1 (Alabama, Alaska, Arkansas, Colorado, Connecticut, Florida, Georgia, Hawaii, Illinois,

Indiana, Kansas, Louisiana, Maryland, Michigan, Missouri, North Carolina, Oklahoma, Oregon,

Tennessee, Texas, Utah, Virginia, Washington) have a slope (λ) estimate of 0.004, which is in-

significantly different from zero, implying disappearance of Phillips curve; while states in Group 2

(California, District of Columbia, Massachusetts, Minnesota, Mississippi, New Jersey, New York,

Ohio, Pennsylvania, South Carolina, Wisconsin) have a slope (λ) estimate of -0.172, which implies

a well and alive Phillips curve. Besides, after considering the group pattern of heterogeneity, the

group-specific estimates in both groups exhibit great differences across the two regimes, although

the pool estimates indicate the opposite. Specifically, states in Group 1 have a much more flatten-

ing curve in the ‘Contractionary’ regime than in the ‘Expansionary’ regime, while states in Group

2 have a much steeper curve in the ‘Contractionary’ regime than in the ‘Expansionary’ regime.

INSERT TABLE 7 HERE
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INSERT FIGURE 7 HERE

INSERT FIGURE 8 HERE

INSERT FIGURE 9 HERE

4.3 Phillips curve during recession

There has been substantial empirical evidence of changes in macroeconomic dynamics during

recessions. Take the Great Recession, for instance. In 2006-2007, the unemployment rate was

below 5 percent. However, it surged to 10 percent by the end of 2009 before eventually dropping

to below 4 percent again. While inflation has remained remarkably stable, with core inflation

ranging between 1 and 2.5 percent most of the time. In occasional periods, it dipped below 1

percent. All this evidence implies different patterns in the inflation-unemployment trade-off during

recessions, and it would be essential to statistically verify whether the Phillips curve pattern has

significantly changed during recessions and figure out how. Due to data constraints, we lack state-

level inflation and unemployment data during the recent pandemic. Nonetheless, insights from

recession-dependent outcomes can offer a perspective on the potential behavior of the Phillips

curve during the recent period, often considered a recession.

In what follows, we investigate whether the Phillips curve pattern has significantly changed

during recessions and how. The ‘recession state’ is defined based on the NBER recession dates.4

Table 8 presents the pool estimates as well as the group-specific estimates of parameters during

recessions and expansions, with two groups considered. The column ‘Pooled’ in Table 8 reports the

recession-dependent estimates when assuming across-sectional homogeneity, with Figure 10 com-

paring the recession-dependent pool estimates. We also implement a Chow test to test whether the

estimates differ between recession and expansion. The test statistic is 17.171, which is significant

at 1% level, providing evidence of a difference in the pattern of the Phillips curve during recession

and expansion. The estimates indicate that the slope (λ) during expansion is indistinguishable

4The dates are extracted from NBER public use date archive.

19



from zero, while it is significant during recession. Besides, the estimates of the forward-looking

component (γf ) during recession and expansion are close in value.

The column ‘C-Lasso’ in Table 8 reports the recession-dependent group-specific estimates when

assuming unobserved group patterns of heterogeneity. We implement a Chow test testing whether

the recession-dependent parameters are distinct across two groups. The test statistic is 10.225,

which is significant at 1% significance level, providing evidence of a significant difference in group-

specific estimates. Figure 11 further compares the recession-dependent group-specific estimates.

Figure 12 presents the group membership, identifying states with similar or differing patterns.

Our results indicate the following: Group 1 has stable group-specific estimates of both the slope

(λ) and the forward-looking component (γf ). In both recession and expansion, states in Group 1

(Florida, Georgia, Hawaii, Maryland, Michigan, Mississippi, Missouri, New York, North Carolina,

Ohio, Pennsylvania, South Carolina, Texas, and Washington) have a dead Phillips curve with

insignificant slopes (λ). In contrast, states in Group 2 (Alabama, Alaska, Arkansas, California,

Colorado, Connecticut, District of Columbia, Illinois, Indiana, Kansas, Louisiana, Massachusetts,

Minnesota, New Jersey, Oklahoma, Oregon, Tennessee, Utah, Virginia, Wisconsin) exhibit very

different patterns in recession and expansion – the slope (λ) is brought to 0.013 during expansion,

which is insignificantly different from zero implying a dead Phillips curve; while the slope (λ) is

brought to -0.258 during recession, which is much steeper. This finding implies that the Phillips

curve is well and alive during the recession, which is consistent with the conclusion in Blanchard

(2016) as well as the recent findings that the Phillips curve is coming back in the recent pandemic

recession periods in Inoue et al. (2023). This finding is opposite to Smith et al. (2023) who find

the price Phillips curve relatively steep when the economy is running hot.

Besides, the forward-looking component for states in Group 2 is more important than those in

Group 1 during both recession and expansion.

In addition, we report in Figure A4c in the online Appendix the results based on twelve distinct

slack measures.

INSERT TABLE 8 HERE
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5 Conclusion

We contribute to the trade-off between unemployment and inflation by offering insights from a

nonlinear panel approach. Our approach takes into account nonlinearities according to different

features of the economy as well as unobserved heterogeneity across different states in the U.S.

We find evidence of both nonlinearities and group patterns in the Phillips curve. Besides, we

conclude that the disappearance of the Phillips curve is a regional and sporadical phenomenon.

There are several interesting topics for further research. First, it may be interesting to investigate

what characteristics are driving the group pattern, that is, the common behavior and the diverse

behavior across states. Second, it may be interesting to introduce more flexible time-variation

in the framework while considering the unobserved heterogeneity simultaneously. We leave these

topics for future research.
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Figures and Tables

Table 1: State and nation level Phillips relation. The table shows the estimated correlation
and slope in the Phillips relation: Et∆4πi,t = β0+β1x4

i,t+µi, where x4
i,t is the four quarter moving

average x4
i,t = (

∑3
i=0 xi,t−l)/4 and∆4 = (1−L4), L denotes the lag operator such that Lxi,t = xi,t−1.

Inflation is measured by state CPI from Hazell et al. (2022) for panel data and CPIU-xFES for time
series. xit is various slacks, see Mavroeidis et al. (2014) and Stock and Watson (2020). Standard
error is clustered at state level for panel data and adjusted by Newey and West (1987) using 8 lags
for time series. The sample periods of full sample, pre- and post-1990 are 1979-2017, 1979-1990
and 1991-2017. There are 21 and 34 states in the pre- and post-1990 subsamples.

Slack

Panel data: State-Level CPI Aggregate: CPIU-xFES
Correlation Slope (SE) Correlation Slope (SE)

Full Pre- Post- Full Pre- Post- Full Pre- Post- Full Pre- Post-
sample 1990 1990 sample 1990 1990 sample 1990 1990 sample 1990 1990

Unemployment rate -0.139 -0.412 -0.072 -0.309 -0.791 -0.169 -0.455 -0.700 -0.255 -0.378 -0.774 -0.161
(Baxter-King filtered) (0.044) (0.089) (0.045) (0.164) (0.133) (0.087)

Unemployment rate -0.136 -0.421 -0.068 -0.329 -0.890 -0.159 -0.457 -0.727 -0.250 -0.412 -0.868 -0.156
(Hodrick-Prescott filtered) (0.063) (0.183) (0.044) (0.157) (0.090) (0.079)

Unemployment rate -0.122 -0.375 -0.060 -0.283 -1.090 -0.134 -0.325 -0.709 -0.106 -0.289 -0.993 -0.060
(Linear detrended) (0.042) (0.233) (0.024) (0.161) (0.166) (0.065)
Unemployment rate -0.123 -0.393 -0.061 -0.293 -1.143 -0.135 -0.332 -0.729 -0.107 -0.297 -1.002 -0.061

(Quadratic detrended) (0.044) (0.239) (0.025) (0.165) (0.150) (0.065)
Unemployment rate -0.138 -0.377 -0.071 -0.319 -0.967 -0.163 -0.370 -0.685 -0.157 -0.324 -0.875 -0.093
(Bi-weight filtered) (0.045) (0.211) (0.030) (0.163) (0.178) (0.076)
Unemployment rate -0.111 -0.291 -0.055 -0.293 -1.188 -0.143 -0.307 -0.675 -0.078 -0.272 -0.928 -0.045
(Real time filtered) (0.044) (0.250) (0.029) (0.164) (0.178) (0.062)

Employment-population ratio -0.095 -0.379 -0.032 -0.213 -0.769 -0.073 -0.457 -0.710 -0.237 -0.379 -0.766 -0.152
(Baxter-King filtered) (0.055) (0.177) (0.045) (0.151) (0.151) (0.080)

Employment-population ratio -0.098 -0.385 -0.033 -0.227 -0.768 -0.077 -0.459 -0.733 -0.231 -0.422 -0.849 -0.149
(Hodrick-Prescott filtered) (0.084) (0.305) (0.043) (0.146) (0.108) (0.081)

Employment-population ratio -0.079 -0.243 -0.025 -0.126 -0.698 -0.056 -0.214 -0.473 -0.068 -0.158 -0.638 -0.042
(Linear detrended) (0.033) (0.178) (0.022) (0.151) (0.354) (0.064)

Employment-population ratio -0.089 -0.358 -0.033 -0.213 -1.101 -0.071 -0.317 -0.716 -0.092 -0.290 -1.016 -0.052
(Quadratic detrended) (0.045) (0.262) (0.024) (0.148) (0.191) (0.059)

Employment-population ratio -0.091 -0.292 -0.031 -0.173 -0.749 -0.070 -0.284 -0.553 -0.110 -0.232 -0.730 -0.067
(Bi-weight filtered) (0.033) (0.230) (0.024) (0.144) (0.306) (0.064)

Employment-population ratio -0.026 -0.260 -0.007 -0.092 -1.308 -0.019 -0.129 -0.550 0.027 -0.123 -1.097 0.015
(Real time filtered) (0.028) (0.270) (0.022) (0.089) (0.443) (0.059)

Unemployment gap (CBO) / / / / / / -0.326 -0.712 -0.107 -0.290 -1.004 -0.061
/ / / (0.163) (0.162) (0.065)

GDP gap (CBO) / / / / / / -0.266 -0.719 -0.143 -0.250 -1.362 -0.077
/ / / (0.131) (0.190) (0.063)

25



Table 2: Forecasting annual changes in inflation. The first column reports the Sup-Wald
statistic (15% trimming) testing the null hypothesis that all three coefficients are stable in the
four-quarter ahead direct forecasting regression ∆4πi,t = β0+β1xi,t−4+β2∆4πi,t−4+µi+ ei,t, when
estimated over 1984Q1-2017Q4. **Rejects the null of constant coefficients at the 1% significance
level. The remaining columns report the out-of-sample performance of the forecasting regression.
It shows the pseudo out-of-sample RMSFE ratio, which is defined as the ratio of the pseudo
out-of-sample root mean squared forecast errors of the direct forecasting regression above, to the
RMSFE for the restricted version without the slack variable. The fixed estimation window is
1983Q1-2007Q1, and the RMSFEs are computed over 2008Q1-2017Q4. The rolling and recursive
windows are modified from the fixed window. Inflation is measured by state CPI from Hazell et al.
(2022) for panel data and CPIU-xFES for time series. The gap is computed through the one-sided
exponentially-weighted moving average following Stock and Watson (2020).

Predictor slack variable
Sup-Wald Pseudo RMSFE ratio

test Fixed Rolling Recursive

Panel data with homogeneity
Unemployment rate 40.212** 1.068 1.031 1.060
Employment-population ratio 48.208** 1.157 1.028 1.085
Unemployment rate (real time gap) 48.505** 1.078 1.035 1.070
Employment-population ratio (real time gap) 38.140** 1.083 1.019 1.041

Panel data with heterogeneity
Unemployment rate / 1.094 1.105 1.123
Employment-population ratio / 1.145 1.125 1.139
U. (real time gap) / 1.111 1.117 1.138
E-p (real time gap) / 1.155 1.128 1.143

Time series (aggregate level) data
Unemployment rate 15.985** 1.222 0.996 1.128
Employment-population ratio 23.029** 1.251 1.001 1.114
Unemployment rate (real time gap) 18.502** 1.676 1.156 1.369
Employment-population ratio (real time gap) 29.479** 1.816 1.114 1.233
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Table 3: State and nation level Phillips curve given γf + γb = 1. The table lists the
coefficients of the structural Phillips curve πi,t = λxi,t+γfπi,t+1+γbπi,t−1+µi+ui,t given γf+γb = 1,
estimated using TS2SLS. Inflation is measured by state CPI from Hazell et al. (2022) for panel
data and CPIU-xFES for time series. The slack is unemployment gap obtained using the one-
sided exponentially-weighted moving average following Stock and Watson (2020). The instruments
include four inflation lags and two slack lags. Standard error is clustered at state level for panel
data and adjusted to a TS2SLS version, following Chodorow-Reich and Wieland (2020). Adjusted
R-squared is reported. The sample periods of full sample, pre- and post-1990 are 1979-2017, 1979-
1990 and 1991-2017. There are 21 and 34 states in the pre- and post-1990 subsamples.

Panel data: State-level CPI Aggregate: CPIU-xFES
Slack: U. Gap Full Pre- Post- Full Pre- Post-
(Real time) sample 1990 1990 sample 1990 1990

λ -0.028 -0.218 -0.015 -0.014 -0.122 0.009
(0.005) (0.003) (0.010) (0.024) (0.017) (0.025)

γf 0.385 0.133 0.531 0.415 0.410 0.267
(0.009) (0.010) (0.030) (0.098) (0.093) (0.087)

Obs. 4395 672 3672 156 48 108
Adj. R-sq 0.080 0.052 0.102 0.092 0.246 0.007
State effects ! ! ! × × ×
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(a) Confidence region for λ and γf
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(b) Point estimates for λ and γf

Figure 1: State level Phillips curve given γf + γb = 1 before and after 1990. This
figures shows the coefficient estimates and confidence region of the structural Phillips curve πi,t =
λxi,t+γfπi,t+1+γbπi,t−1+µi+ui,t given γf+γb = 1, estimated using TS2SLS. Inflation is measured by
state CPI from Hazell et al. (2022). Panel (a) shows the estimated value (dot), 95%, 90%, and 68%
confidence region (shadows) in the (λ, γf ) space, where xi,t is unemployment gap obtained using
the one-sided exponentially-weighted moving average following Stock and Watson (2020). Panel
(b) shows the point estimates of various slacks from Stock and Watson (2020) and Mavroeidis
et al. (2014) in the (λ, γf ) space. The slacks include detrended series of unemployment rate and
employment-population ratio using HP filter, BK filter, linear detrending, quadratic detrending,
Bi-weight filter and one-sided exponentially weighted moving average. The instruments include
four inflation lags and two slack lags. Standard error is clustered at state level for panel data
and adjusted to a TS2SLS version, following Chodorow-Reich and Wieland (2020). The sample
periods of pre- and post-1990 are 1979-1990 and 1991-2017. There are 21 and 34 states in the pre-
and post-1990 subsamples.
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Table 4: Group selection of state level Phillips curve before and after 1990. This table
shows the information criterion IC(K) = ln σ̂2

K+ρpK(NT )−1/2 of the group-specific Phillips curve
πi,t = λixi.t+γf,iπi,t+1+γb,iπi,t−1+µi+ui,t given γf +γb = 1 where ρp = ρ ·p, βi = (λi, γf,i)′ = θk if
i ∈ Gk, k = 1, .., K against the number of groups K. Inflation is measured by state CPI from Hazell
et al. (2022). The slack is unemployment gap obtained using the one-sided exponentially-weighted
moving average following Stock and Watson (2020). The instruments include four inflation lags
and two slack lags. The model is estimated by C-Lasso and TS2SLS. The sample periods of full
sample, pre- and post-1990 are 1979-2017, 1979-1990 and 1991-2017. There are 21 and 34 states
in the pre- and post-1990 subsamples.

Slack: U. Gap Full sample Pre-1990 Post-1990
(Real time) ρp = 0.1 0.2 0.3 0.1 0.2 0.3 0.1 0.2 0.3

K = 1 0.024 0.025 0.027 -0.131 -0.127 -0.123 0.028 0.030 0.032
K = 2 0.016 0.019 0.022 -0.152 -0.144 -0.137 0.025 0.029 0.032
K = 3 0.016 0.020 0.025 -0.154 -0.142 -0.131 0.025 0.030 0.035
K = 4 0.017 0.023 0.029 -0.150 -0.134 -0.119 0.029 0.036 0.042
K = 5 0.019 0.027 0.034 -0.141 -0.122 -0.102 0.030 0.039 0.047

Selected K 2 2 2 3 2 2 2 2 1
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Table 5: Group-specific Philips curve. This table lists the coefficients of the group-specific
structural Phillips curve πi,t = λixi.t + γf,iπi,t+1 + γb,iπi,t−1 + µi + ui,t given γf + γb = 1 where
βi = (λi, γf,i)′ = θk if i ∈ Gk, k = 1, 2, estimated using C-Lasso and TS2SLS. Inflation is measured
by state CPI from Hazell et al. (2022) and slack is unemployment gap obtained using the one-
sided exponentially-weighted moving average following Stock and Watson (2020). The instruments
include four inflation lags and two slack lags. Standard error is clustered at state level for panel data
and adjusted to a TS2SLS version, following Chodorow-Reich and Wieland (2020). The proportion
of states in each group is reported as %G1. Adjusted R-squared is reported. Joint difference
between vectors θ1 and θ2 is tested by Chow test. **Reject the null of constant coefficients at
the 1% significance level. The sample periods of full sample, pre- and post-1990 are 1979-2017,
1979-1990 and 1991-2017. There are 21 and 34 states in the pre- and post-1990 subsamples.

Slack: U. Gap Full sample Pre-1990 Post-1990
(Real time) G1 G2 G1 G2 G1 G2

λ -0.027 -0.046 -0.291 -0.224 -0.031 -0.002
(0.008) (0.005) (0.003) (0.002) (0.010) (0.007)

γf 0.508 0.249 0.323 0.015 0.626 0.408
(0.023) (0.012) (0.008) (0.003) (0.029) (0.017)

Obs. 2351 2044 288 384 2052 1620
Adj. R-sq 0.107 0.052 0.099 0.043 0.151 0.053
State effects ! ! ! ! ! !

%G1 55.88% 42.86% 55.88%
Chow test 3.419* 4.151* 34.000**
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(a) Confidence region for λ and γf
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(b) Point estimates for λ and γf

Figure 2: Group-specific state level Phillips curve given γf+γb = 1 before and after 1990.
This figures shows the coefficient estimates and confidence region of the group-specific Phillips
curve πi,t = λixi.t + γf,iπi,t+1 + γb,iπi,t−1 + µi + ui,t given γf,i + γb,i = 1 where βi = (λi, γf,i)′ = θk
if i ∈ Gk, k = 1, 2, estimated using C-Lasso and TS2SLS. Inflation is measured by state CPI from
Hazell et al. (2022). The instruments include four inflation lags and two slack lags. Panel (a)
shows the estimated value (dot), 95%, 90%, and 68% confidence region (shadows) in the (λ, γf )
space, where xi,t is unemployment gap obtained using the one-sided exponentially-weighted moving
average following Stock and Watson (2020). Panel (b) shows the point estimates of various slacks
from Stock and Watson (2020) and Mavroeidis et al. (2014) in the (λ, γf ) space. The slacks include
detrended series of unemployment rate and employment-population ratio using HP filter, BK filter,
linear detrending, quadratic detrending, Bi-weight filter and one-sided exponentially weighted
moving average. The filled and hollow dots represent group 1 (larger γf ) and 2. Standard error
is clustered at state level for panel data and adjusted to a TS2SLS version, following Chodorow-
Reich and Wieland (2020). The sample periods of pre- and post-1990 are 1979-1990 and 1991-2017.
There are 21 and 34 states in the pre- and post-1990 subsamples.

31



(a) Zero lower bound

(b) Monetary shock sign

(c) NBER recession

Figure 3: Features of economy. This figure shows the definition of features of economy, including
(1) 3-month t-bill interest rate near zero lower bound; (2) contractionary (positive) Romer and
Romer’s (2004) monetary shock; (3) NBER recession period. The grey shadow shows when state =
1, and otherwise state = 0. The state variable is available from 1979Q1 to 2017Q4, except that
the monetary shock is only available till 2007Q4.
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Table 6: State level Phillips curve given γf + γb = 1 during times of unconventional
monetary policy. This table lists the coefficients of the state-dependent Phillips curve πi,t =
It−1(λAxi,t+ γf,Aπi,t+1+ γb,Aπi,t−1+αA)+ (1− It−1)(λBxi,t+ γf,Bπi,t+1+ γb,Bπi,t−1+αB)+µi+ui,t

given γf,state + γb,state = 1 and the group-specific version under two groups estimated via C-Lasso.
I is a dummy variable indicating the period of near zero lower bound. Inflation is measured
by state CPI from Hazell et al. (2022) and slack is unemployment gap obtained using one-sided
exponentially weighted moving average following Stock and Watson (2020). The instruments
include the intersection of the two state variables (It−1 and 1 − It−1), and the four inflation lags
and two slack lags. Standard error is clustered at state level. Adjusted R-squared is reported.
Joint difference between the two states (in the pooled estimation) and the two groups (in the
C-Lasso estimation) is tested by Chow test. **Reject the null of constant coefficients at the 1%
significance level.

Pooled C-Lasso
Slack: U. Gap

Non ZLB
Non-ZLB ZLB

(Real time) G1 G2 G1 G2

λ -0.053 -0.025 -0.062 -0.065 0.086 -0.159
(0.006) (0.007) (0.009) (0.009) (0.022) (0.019)

γf 0.333 0.492 0.275 0.412 0.556 0.461
(0.014) (0.006) (0.014) (0.022) (0.014) (0.014)

Obs. 4340 2520 1875 2520 1875
Adj. R-sq 0.521 0.169 0.117 0.169 0.117
State effects ! ! ! ! !
Chow test 114.701** 17.798**

%G1 / 55.88%
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(a) Confidence region for λ and γf
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(b) Point estimates for λ and γf

Figure 4: State level Phillips curve given γf + γb = 1 during times of unconventional
monetary policy. This figure shows the coefficient estimates and confidence region of the state-
dependent Phillips curve πi,t = It−1(λAxi,t + γf,Aπi,t+1 + γb,Aπi,t−1 + αA) + (1 − It−1)(λBxi,t +
γf,Bπi,t+1 + γb,Bπi,t−1 + αB) + µi + ui,t given γf,state + γb,state = 1, where I is the dummy variable
indicating that interest rate is close to zero lower bound. Inflation is measured by state CPI from
Hazell et al. (2022). The instruments include four inflation lags and two slack lags. Panel (a)
shows the estimated value (dot), 95%, 90%, and 68% confidence region (shadows) in the (λ, γf )
space, where xi,t is unemployment gap obtained using one-sided exponentially weighted moving
average following Stock and Watson (2020). Blue circles and orange squares respectively represent
the coefficients during non-ZLB and ZLB period. Panel (b) shows the point estimates of various
slacks from Stock and Watson (2020) and Mavroeidis et al. (2014) in the (λ, γf ) space. The slacks
include detrended series of unemployment rate and employment-population ratio using HP filter,
BK filter, linear detrending, quadratic detrending, Bi-weight filter and one-sided exponentially
weighted moving average. Standard error is clustered at state level.
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(a) Confidence region for λ and γf
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(b) Point estimates for λ and γf

Figure 5: Group-specific state level Phillips curve given γf + γb = 1 during times of un-
conventional monetary policy. This figure shows the coefficient estimates and confidence region
of the group-specific state-dependent Phillips curve πi,t = It−1(λA,ixi,t + γf,A,iπi,t+1 + γb,A,iπi,t−1 +
αA,i)+(1−It−1)(λB,ixi,t+γf,B,iπi,t+1+γb,B,iπi,t−1+αB,i)+µi+ui,t given γf,state,i+γb,state,i = 1, where
βi = (λA,i, γf,A,i,αA,i,λB,i, γf,B,i,αB,i)′ = θk if i ∈ Gk, k = 1, 2. I is a dummy variable indicating
the period of near zero lower bound. Panel (a) shows the estimated value (dot), 95%, 90%, and
68% confidence region (shadows) in the (λ, γf ) space, where xi,t is unemployment gap obtained
using one-sided exponentially weighted moving average following Stock and Watson (2020). Blue
circles and orange squares respectively represent the coefficients during non-ZLB and ZLB period.
The filled and hollow dots represent group 1 and 2. Panel (b) shows the point estimates of various
slacks from Stock and Watson (2020) and Mavroeidis et al. (2014) in the (λ, γf ) space. The slacks
include detrended series of unemployment rate and employment-population ratio using HP filter,
BK filter, linear detrending, quadratic detrending, Bi-weight filter and one-sided exponentially
weighted moving average. Standard error is clustered at state level.
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1.8 − 2.0
1.6 − 1.8
1.4 − 1.6
1.2 − 1.4
1.0 − 1.2
No data

Group ID = 1: Alabama, Colorado, Connecticut, District of Columbia, Florida, Georgia,
Illinois, Kansas, Massachusetts, Michigan, Minnesota, Missouri, New York, Ohio, Pennsylvania,
South Carolina, Texas, Washington, Wisconsin
Group ID = 2: Alaska, Arkansas, California, Hawaii, Indiana, Louisiana, Maryland,
Mississippi, New Jersey, North Carolina, Oklahoma, Oregon, Tennessee, Utah, Virginia

Figure 6: Group membership of the state-dependent Phillips curve given γf + γb =
1 during times of unconventional monetary policy. These maps show the classification
of states in the group-specific state-dependent Phillips curve πi,t = It−1(λA,ixi,t + γf,A,iπi,t+1 +
γb,A,iπi,t−1 + αA,i) + (1− It−1)(λB,ixi,t + γf,B,iπi,t+1 + γb,B,iπi,t−1 + αB,i) + µi + ui,t given γf,state,i +
γb,state,i = 1, where βi = (λA,i, γf,A,i,αA,i,λB,i, γf,B,i,αB,i)′ = θk if i ∈ Gk, k = 1, 2. I is a dummy
variable indicating the period of near zero lower bound. Inflation is measured by state CPI from
Hazell et al. (2022). xi,t is unemployment gap obtained using one-sided exponentially weighted
moving average following Stock and Watson (2020).
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Table 7: State level Phillips curve given γf+γb = 1 in different monetary policy regimes.
This table lists the coefficients of the state-dependent Phillips curve πi,t = It−1(λAxi,t+γf,Aπi,t+1+
γb,Aπi,t−1+αA)+(1− It−1)(λBxi,t+γf,Bπi,t+1+γb,Bπi,t−1+αB)+µi+ui,t given γf,state+γb,state = 1
and the group-specific version under two groups estimated via C-Lasso. I is a dummy variable
indicating contractionary monetary shock. Inflation is measured by state CPI from Hazell et al.
(2022) and slack is unemployment gap obtained using one-sided exponentially weighted moving
average following Stock and Watson (2020). The instruments include the intersection of the two
state variables (It−1 and 1− It−1), and the four inflation lags and two slack lags. Standard error is
clustered at state level. Adjusted R-squared is reported. Joint difference between the two states
(in the pooled estimation) and the two groups (in the C-Lasso estimation) is tested by Chow test.
**Reject the null of constant coefficients at the 1% significance level.

Pooled C-Lasso
Slack: U. Gap

Exp. Con.
Expansionary Contractionary

(Real time) G1 G2 G1 G2

λ -0.056 -0.060 -0.069 -0.042 0.004 -0.172
(0.013) (0.017) (0.014) (0.013) (0.016) (0.009)

γf 0.368 0.310 0.375 0.369 0.435 0.113
(0.021) (0.038) (0.026) (0.018) (0.035) (0.019)

Obs. 3048 2014 1055 2014 1055
Adj. R-sq 0.468 0.063 0.058 0.063 0.058
State effects ! ! ! ! !
Chow test 1.135 10.257**

%G1 / 67.65%
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Figure 7: State level Phillips curve given γf+γb = 1 in different monetary policy regimes.
This figure shows the coefficient estimates and confidence region of the state-dependent Phillips
curve πi,t = It−1(λAxi,t + γf,Aπi,t+1 + γb,Aπi,t−1 + αA) + (1− It−1)(λBxi,t + γf,Bπi,t+1 + γb,Bπi,t−1 +
αB) +µi + ui,t given γf,state + γb,state = 1, where I is the dummy variable indicating contractionary
monetary shock. Inflation is measured by state CPI from Hazell et al. (2022). The instruments
include four inflation lags and two slack lags. Panel (a) shows the estimated value (dot), 95%, 90%,
and 68% confidence region (shadows) in the (λ, γf ) space, where xi,t is unemployment gap obtained
using one-sided exponentially weighted moving average following Stock and Watson (2020). Blue
circles and orange squares respectively represent the coefficients during expansionary and contrac-
tionary monetary policy shocks. Panel (b) shows the point estimates of various slacks from Stock
and Watson (2020) and Mavroeidis et al. (2014) in the (λ, γf ) space. The slacks include detrended
series of unemployment rate and employment-population ratio using HP filter, BK filter, linear
detrending, quadratic detrending, Bi-weight filter and one-sided exponentially weighted moving
average. Standard error is clustered at state level.
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(a) Confidence region for λ and γf
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(b) Point estimates for λ and γf

Figure 8: Group-specific state level Phillips curve given γf+γb = 1 in different monetary
policy regimes. This figure shows the coefficient estimates and confidence region of the group-
specific state-dependent Phillips curve πi,t = It−1(λA,ixi,t + γf,A,iπi,t+1 + γb,A,iπi,t−1 + αA,i) + (1 −
It−1)(λB,ixi,t + γf,B,iπi,t+1 + γb,B,iπi,t−1 + αB,i) + µi + ui,t given γf,state,i + γb,state,i = 1, where βi =
(λA,i, γf,A,i,αA,i,λB,i, γf,B,i,αB,i)′ = θk if i ∈ Gk, k = 1, 2. I is a dummy variable indicating
contractionary monetary shock. Panel (a) shows the estimated value (dot), 95%, 90%, and 68%
confidence region (shadows) in the (λ, γf ) space, where xi,t is unemployment gap obtained using
one-sided exponentially weighted moving average following Stock and Watson (2020). Blue circles
and orange squares respectively represent the coefficients during expansionary and contractionary
monetary policy shocks. The filled and hollow dots represent group 1 and 2. Panel (b) shows
the point estimates of various slacks from Stock and Watson (2020) and Mavroeidis et al. (2014)
in the (λ, γf ) space. The slacks include detrended series of unemployment rate and employment-
population ratio using HP filter, BK filter, linear detrending, quadratic detrending, Bi-weight filter
and one-sided exponentially weighted moving average. Standard error is clustered at state level.
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1.8 − 2.0
1.6 − 1.8
1.4 − 1.6
1.2 − 1.4
1.0 − 1.2
No data

Group ID = 1: Alabama, Alaska, Arkansas, Colorado, Connecticut, Florida, Georgia, Hawaii,
Illinois, Indiana, Kansas, Louisiana, Maryland, Michigan, Missouri, North Carolina, Oklahoma,
Oregon, Tennessee, Texas, Utah, Virginia, Washington
Group ID = 2: California, District of Columbia, Massachusetts, Minnesota, Mississippi, New
Jersey, New York, Ohio, Pennsylvania, South Carolina, Wisconsin

Figure 9: Group membership of the state-dependent Phillips curve given γf + γb = 1
in different monetary policy regimes. These maps show the classification of states in the
group-specific state-dependent Phillips curve πi,t = It−1(λA,ixi,t + γf,A,iπi,t+1 + γb,A,iπi,t−1 +αA,i) +
(1 − It−1)(λB,ixi,t + γf,B,iπi,t+1 + γb,B,iπi,t−1 + αB,i) + µi + ui,t given γf,state,i + γb,state,i = 1, where
βi = (λA,i, γf,A,i,αA,i,λB,i, γf,B,i,αB,i)′ = θk if i ∈ Gk, k = 1, 2. I is a dummy variable indicating
contractionary monetary shock. Inflation is measured by state CPI from Hazell et al. (2022). xi,t

is unemployment gap obtained using one-sided exponentially weighted moving average following
Stock and Watson (2020).
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Table 8: State level Phillips curve given γf + γb = 1 during NBER recession. This
table lists the coefficients of the state-dependent Phillips curve πi,t = It−1(λAxi,t + γf,Aπi,t+1 +
γb,Aπi,t−1+αA)+(1− It−1)(λBxi,t+γf,Bπi,t+1+γb,Bπi,t−1+αB)+µi+ui,t given γf,state+γb,state = 1
and the group-specific version under two groups estimated via C-Lasso. I is a dummy variable
indicating NBER recession. Inflation is measured by state CPI from Hazell et al. (2022) and slack
is unemployment gap obtained using one-sided exponentially weighted moving average following
Stock and Watson (2020). The instruments include the intersection of the two state variables
(It−1 and 1 − It−1), and the four inflation lags and two slack lags. Standard error is clustered at
state level. Adjusted R-squared is reported. Joint difference between the two states (in the pooled
estimation) and the two groups (in the C-Lasso estimation) is tested by Chow test. **Reject the
null of constant coefficients at the 1% significance level.

Pooled C-Lasso
Slack: U. Gap

Exp. Rec.
Expansion Recesion

(Real time) G1 G2 G1 G2

λ 0.005 -0.130 -0.011 0.013 -0.010 -0.258
(0.005) (0.030) (0.005) (0.009) (0.015) (0.028)

γf 0.394 0.371 0.278 0.472 0.200 0.502
(0.013) (0.035) (0.014) (0.020) (0.032) (0.037)

Obs. 4340 1876 2519 1876 2519
Adj. R-sq 0.534 0.082 0.127 0.082 0.127
State effects ! ! ! ! !
Chow test 17.171** 10.225**

%G1 / 41.18%
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(a) Confidence region for λ and γf
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Figure 10: State level Phillips curve given γf + γb = 1 during NBER recession. This
figure shows the coefficient estimates and confidence region of the state-dependent Phillips curve
πi,t = It−1(λAxi,t+γf,Aπi,t+1+γb,Aπi,t−1+αA)+(1−It−1)(λBxi,t+γf,Bπi,t+1+γb,Bπi,t−1+αB)+µi+ui,t

given γf,state + γb,state = 1, where I is the dummy variable indicating NBER recession. Inflation
is measured by state CPI from Hazell et al. (2022). The instruments include four inflation lags
and two slack lags. Panel (a) shows the estimated value (dot), 95%, 90%, and 68% confidence
region (shadows) in the (λ, γf ) space, where xi,t is unemployment gap obtained using one-sided
exponentially weighted moving average following Stock and Watson (2020). Blue circles and orange
squares respectively represent the coefficients during normal and recession period. Panel (b) shows
the point estimates of various slacks from Stock and Watson (2020) and Mavroeidis et al. (2014)
in the (λ, γf ) space. The slacks include detrended series of unemployment rate and employment-
population ratio using HP filter, BK filter, linear detrending, quadratic detrending, Bi-weight filter
and one-sided exponentially weighted moving average. Standard error is clustered at state level.
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(a) Confidence region for λ and γf
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(b) Point estimates for λ and γf

Figure 11: Group-specific state level Phillips curve given γf + γb = 1 during NBER
recession. This figure shows the coefficient estimates and confidence region of the group-
specific state-dependent Phillips curve πi,t = It−1(λA,ixi,t + γf,A,iπi,t+1 + γb,A,iπi,t−1 + αA,i) + (1 −
It−1)(λB,ixi,t + γf,B,iπi,t+1 + γb,B,iπi,t−1 + αB,i) + µi + ui,t given γf,state,i + γb,state,i = 1, where
βi = (λA,i, γf,A,i,αA,i,λB,i, γf,B,i,αB,i)′ = θk if i ∈ Gk, k = 1, 2. I is a dummy variable indicat-
ing NBER recession. Panel (a) shows the estimated value (dot), 95%, 90%, and 68% confidence
region (shadows) in the (λ, γf ) space, where xi,t is unemployment gap obtained using one-sided ex-
ponentially weighted moving average following Stock and Watson (2020). Blue circles and orange
squares respectively represent the coefficients during normal and recession period. The filled and
hollow dots represent group 1 and 2. Panel (b) shows the point estimates of various slacks from
Stock and Watson (2020) and Mavroeidis et al. (2014) in the (λ, γf ) space. The slacks include
detrended series of unemployment rate and employment-population ratio using HP filter, BK fil-
ter, linear detrending, quadratic detrending, Bi-weight filter and one-sided exponentially weighted
moving average. Standard error is clustered at state level.
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1.8 − 2.0
1.6 − 1.8
1.4 − 1.6
1.2 − 1.4
1.0 − 1.2
No data

Group ID = 1: Florida, Georgia, Hawaii, Maryland, Michigan, Mississippi, Missouri, New
York, North Carolina, Ohio, Pennsylvania, South Carolina, Texas, Washington
Group ID = 2: Alabama, Alaska, Arkansas, California, Colorado, Connecticut, District of
Columbia, Illinois, Indiana, Kansas, Louisiana, Massachusetts, Minnesota, New Jersey,
Oklahoma, Oregon, Tennessee, Utah, Virginia, Wisconsin

Figure 12: Group membership of the state-dependent Phillips curve given γf + γb = 1
during NBER recession. These maps show the classification of states in the group-specific
state-dependent Phillips curve πi,t = It−1(λA,ixi,t + γf,A,iπi,t+1 + γb,A,iπi,t−1 + αA,i) + (1 −
It−1)(λB,ixi,t + γf,B,iπi,t+1 + γb,B,iπi,t−1 + αB,i) + µi + ui,t given γf,state,i + γb,state,i = 1, where
βi = (λA,i, γf,A,i,αA,i,λB,i, γf,B,i,αB,i)′ = θk if i ∈ Gk, k = 1, 2. I is a dummy variable indicating
NBER recession. Inflation is measured by state CPI from Hazell et al. (2022). xi,t is unemployment
gap obtained using one-sided exponentially weighted moving average following Stock and Watson
(2020).
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