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Abstract

We study a multiple-receiver Bayesian persuasion model in which the sender
wants to achieve an outcome and commits to an experiment which sends corre-
lated messages to homogeneous receivers. Receivers are connected in a network
and can perfectly observe their immediate neighbors’ messages. After updating
their beliefs, receivers choose an action to match the true state of the world.
Surprisingly, the sender’s gain from persuasion does not change monotonically
with network density. We characterize a class of networks in which increased
communication among the receivers is strictly better for the sender and hence
strictly worse for the receivers.
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1 Introduction

Multiple-receiver Bayesian persuasion models with private communication often as-
sume that receivers do not exchange information with each other between receiving
messages from the sender and taking their action. However, in reality people usu-
ally deliberate before taking an action and might consult friends and acquaintances in
search of additional opinions and information. We model such communication among
receivers prior to making a decision with a simple setup that captures limited infor-
mation spillovers : receivers are in a fixed network and neighbors can observe each
other’s private messages. An application of such communication are social networks
like Facebook or Twitter, where senders (e.g. sellers, political parties) can target
receivers (e.g. consumers, voters) with adverts. For example, if a person likes or
shares an ad or a video on Twitter it is visible to all of their followers. Thus, senders
are aware that the information they share will spread through the network of their
followers.1

Incorporating a communication network with limited information sharing signifi-
cantly complicates the sender’s problem of optimal persuasion as she must also take
into account the intricacies of the information flow between receivers when designing
a communication protocol. An immediate question that arises is whether the re-
ceivers always benefit from communicating more with each other. Alternatively, can
the sender actually benefit from greater information sharing between the receivers?
Surprisingly, the answer we provide is in the affirmative.

1.1 Illustrative Example

Consider a company that develops a new product and wishes to achieve a critical mass
of big corporate clients, which will allow the company to be self-sufficient and would
significantly increase the demand for the product in the future. The product’s quality
is either good (G) or bad (B). Suppose that 5 out of 9 corporate clients constitute a
critical mass.2 The clients initially believe that the quality is good with probability
1/3 and they would buy if they have a belief of at least 1/2. The company prepares
reports about the product’s quality, which are privately distributed among the clients.
The communication protocol of the company, which we call an experiment, can be
formalized by distributions π(·|G) and π(·|B) on a set of signals. Let ḡ = (g, . . . , g)
denote the signal in which all agents observe message g and define b̄ analogously.
Messages g and b can be interpreted as recommendations to buy and to not buy,

1Several papers study the use of social media to spread (fake) news; see Allcott and Gentzkow
(2017), Grinberg, Joseph, Friedland, Swire-Thompson, and Lazer (2019), and Zhuravskaya, Petrova,
and Enikolopov (2020).

2We assume that all clients demand one unit of the product. In a related study (Kerman and
Tenev, 2022) we relax this assumption and consider heterogeneous demands without information
spillovers.
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respectively. While π is known by the clients, under private communication they
only observe their own message.

First, assume that the clients do not communicate with each other, i.e. they form
an empty network. Let T be the set of signals in which 5 agents observe g and 4
agents observe b, i.e. |T |=

(
9
5

)
. An optimal experiment, π, is given in the following

table, where every signal in T is targeted with equal probability, 9/10 · 1/|T |.

π G B

ḡ 1 0

T 0 9
10

b̄ 0 1
10

1

2 3

9 8 7

4 5

6

After observing g, a client’s belief that the quality is good is (1/3 · 1)/(1/3 · 1 + 2/3 ·
5/9 · 9/10) = 1/2. Hence, after all realizations except b̄ at least five clients buy the
product. Thus, the value of π (the probability of reaching the critical mass) is 14/15.

Now assume that there are four communicating pairs of clients (1-2, 3-4, 5-6,
and 8-9), as shown by the solid edges above, who exchange the information from
the reports before making their decisions. Experiment π is no longer optimal: any
signal in which agent 1 observes b and agent 2 observes g will result in both agents
not buying the product; agent 2 will deduce that the true state is B from agent
1’s message. In this case, the communicating pairs always take the same action
(regardless of their observed message) and optimal communication leads to reaching
the critical mass with lower probability, 8/9. Hence, the additional communication
constrains the company and makes it worse off.

It is natural to expect that if the clients communicate even more, then the optimal
value will decrease further. In fact, if all clients communicate with each other, optimal
communication is public (which gives the lower bound of the value). Now consider
an intermediate case given by the dashed and solid edges above (circle network).3

Surprisingly, not only does the company improve upon the previous case, but it can
reach the empty network optimal value 14/15. This can be achieved via a simple
modification to π: let T be the set of signals in which two consecutive agents observe
b and all others observe g (i.e. |T |= 9), e.g. (g, g, b, b, g, g, g, g, g). This ensures
that exactly 5 agents buy the product after all realizations in T and allows the
company to fully exploit private communication on the circle network. Hence, the
company benefits from more communication among the clients, i.e. the optimal
value is higher on a denser network.4 The example highlights the non-monotonic
relationship between the network density and the sender’s gain from persuasion in
the presence of information spillovers.

3The information of agent 1 spills over to agents 2 and 9 and not to any other, the information
of agent 2 spills over to agents 1 and 3 and not to any other, and so on.

4Density is the ratio of the number of actual links and the number of potential links. Hence, any
network obtained by adding a link to another network is denser.
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1.2 Contribution and Related Literature

This paper characterizes a class of networks in which increasing communication
among receivers benefits the sender and harms the receivers. Two prominent ap-
plications of our model which showcase the importance of its insights are marketing
and voting. We show that more interconnected groups of agents can be more suscep-
tible to manipulation. In the context of marketing, this implies that reaching a critical
mass for a subpar product and being stuck in a “bad” equilibrium is more likely. In
the presence of network effects (i.e. demand side economies of scale), it could be an
uphill battle to escape this bad equilibrium since the deviation of a small number
of agents is not sufficient to shift the status quo. The setup can also be interpreted
as a voting model with information spillovers, where the critical mass corresponds
to the voting quota. In this context, our results imply that the “wrong” outcome is
implemented with a higher probability. Hence, more information becomes harmful
for collective decision-making.

The current model comes closest to Arieli and Babichenko (2019) and Kerman,
Herings, and Karos (2023), which build upon the seminal work of Kamenica and
Gentzkow (2011). While Arieli and Babichenko (2019) characterize optimal commu-
nication for different utility functions of the sender, Kerman et al. (2023) focus on
private communication and collective decision making. A crucial difference to the
current setup is that in their models a receiver only has access to information re-
vealed to them directly by the sender, whereas in our setup directly connected agents
exchange information.

Several working papers consider information spillovers and are closely related to
ours. In Galperti and Perego (2023) agents are able to employ mixed strategies and
information diffuses through all directed paths in the network.5 They show that under
these conditions the revelation principle can be recovered. In contrast, we show that
under limited information spillovers and employing only pure strategies this is no
longer the case.6 In a model with similar spillovers Candogan (2020) analyzes agents
who observe the experiments assigned to their neighbors instead of messages.

The findings in Babichenko, Talgam-Cohen, Xu, and Zabarnyi (2021) closely com-
plement ours. The authors define information-dominating pairs (one of two agents
observes all information channels that the other one does) and show that an informa-
tion structure is weakly better for the sender than another if and only if every such
pair in the former is also information-dominating in the latter. In contrast, we explore
when an intervention in the network structure can strictly benefit the sender. Taken
together, our results provide a blueprint for approaching the problem of persuading
agents in an environment with limited information spillovers.

5In a sense, the two models can be seen as two possible extremes of information sharing: infor-
mation in their model acts close to a global public good, while in ours it is strictly a local public
good.

6It is natural to assume that buyers/voters employ pure strategies when making binary pur-
chase/voting decisions.
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Liporace (2021) considers spillover effects similar to ours, however, the sender
only knows the degree distribution of the agents, but not the network structure.
Yet, the paper also shows that the sender can benefit from a denser network. In
another model of information sharing, Egorov and Sonin (2020) consider a sender
who communicates publicly with receivers in a fixed network, where a receiver either
relies on his neighbors to learn the provided information or obtains it directly from
the sender for a cost. In contrast, the receivers in our model have costless access to
information.

Finally, our paper also contributes to the research on private communication and
voting games. Some studies in this literature compare public and private commu-
nication under different settings (Wang, 2013; Mathevet, Perego, and Taneva, 2020;
Titova, 2022; Sun, Schram, and Sloof, 2023), while others investigate voting games
that focus on different voting rules (Bardhi and Guo, 2018; Chan, Gupta, Li, and
Wang, 2019). We show that private communication is beneficial also with information
spillovers.

2 Setup

2.1 Communication

Let N = {1, . . . , n} be the set of receivers and Ω = {X, Y } be the set of states of
the world. For any set S denote by ∆(S) the set of probability distributions over S
with finite support. The receivers share a common prior belief λ0 ∈ ∆◦(Ω) about the
true state of the world, where ∆◦(Ω) denotes the set of strictly positive probability
distributions on Ω.

Let Si be a finite set of messages the sender can send to receiver i, and let
S =

∏
i∈N Si, where the elements of S are called signals. An experiment is a function

π : Ω→ ∆(S) which maps each state of the world to a joint probability distribution
over signal realizations. Let Π be the set of all experiments.

For each signal s ∈ S, let si ∈ Si denote the message for receiver i. For each
π ∈ Π, define Sπ = {s ∈ S|∃ ω ∈ Ω : π(s|ω) > 0}, i.e. the signals in S which
are sent with positive probability by π. Similarly, for each i ∈ N , define Sπi ={
si ∈ Si|∃ ω ∈ Ω :

∑
t∈S:ti=si

π(t|ω) > 0
}

, which is the set of messages receiver i ob-
serves with positive probability under π.

2.2 Information Spillovers

An undirected network is a map g : N ×N → {0, 1} with gij = g(i, j) and gij = gji.
Given a set of receivers N , let G(N) be the set of all networks. We assume that
receivers are in a fixed network and each receiver in the network observes his direct
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neighbors’ message realizations.7 Thus, in a non-empty network a receiver gathers
more information about the true state than he would from the same experiment
under the empty network. For any network g ∈ G(N), we denote the empty network
with the same number of receivers by g0.

Let Ni(g) = {j ∈ N |gij = 1} ∪ {i} be the neighborhood of receiver i in g and let
δgi = |Ni(g)|−1 be the degree of i in g. Let si(g) = (sj)j∈Ni(g) be the information set
of receiver i in s, which is the vector of messages receiver i observes upon realization
s.

For any g ∈ G(N), we call g′ ∈ G(N) an extension of g (denoted g ( g′) if for all
i ∈ N it holds that Ni(g) ⊆ Ni(g

′) and there exists j ∈ N such that Nj(g) ( Nj(g
′).

In words, g′ is a network formed by adding one or multiple links to g.
Let Aπi (g, s) = {t ∈ Sπ|ti(g) = si(g)} be the association set of agent i given s, i.e.

the set of signals i considers possible upon realization s. For any g ∈ G(N), π ∈ Π,
and s ∈ Sπ, the posterior belief vector λs,g ∈ ∆(Ω)n is defined by

λs,gi (ω) =

∑
t∈Aπi (g,s) π(t|ω)λ0(ω)∑

ω′∈Ω

∑
t∈Aπi (g,s) π(t|ω′)λ0(ω′)

, i ∈ N,ω ∈ Ω.

That is, λs,gi (ω) is receiver i’s posterior belief that the state is ω upon observing si(g).

2.3 Receivers’ Decisions

For each i ∈ N , let Bi = {x, y} be the set of actions of receiver i. Let B =
∏

i∈N Bi

denote the space of action profiles and Z = {x, y} be the set of outcomes, where
outcome x corresponds to achieving the critical mass and y to the opposite case.

Let zk : B → Z be a map, where zk(a) is the outcome when the action profile is
a and the critical mass is k. Formally,

zk(a) =

{
x if |{i ∈ N : ai = x} |≥ k,

y otherwise.

Throughout the paper we assume that k = bn+1
2
c, i.e. the critical mass is a simple

majority. The sender’s utility function v : Z → {0, 1} has value 1 if the outcome is
x and 0 otherwise. For each i ∈ N , let ui : Bi × Ω → {0, 1} be the utility function
of receiver i such that ui(x,X) = ui(y, Y ) = 1 and ui(x, Y ) = ui(y,X) = 0. That is,
the receivers want their actions to match the true state of the world.

7Limited information spillovers can be observed in different contexts: while Gatewood (1984)
shows that there is only limited information sharing between groups among Alaskan salmon seiners,
Ali and Miller (2016) show that agents in communities may not transmit one neighbor’s information
to another to ensure cooperation. Other types of limited information spillovers include cases where
agents only observe their direct neighbors’ beliefs (Molavi and Jadbabaie, 2011; Anunrojwong and
Sothanaphan, 2018) or actions (Corten and Buskens, 2010; Karamched, Stolarczyk, Kilpatrick, and
Josic, 2020).
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For any g ∈ G(N), π ∈ Π, and i ∈ N , let Sπi (g) =
∏

j∈Ni(g) S
π
j be the space of

message vectors that i can observe. Given their utility functions, receivers choose the
action that corresponds to the state which they think is more likely. In particular,
the strategy of agent i is given by απ,gi : Sπi (g) → Bi such that for any realization
s ∈ Sπ it holds that

απ,gi (si(g)) =

x if λs,gi (X) ≥ 1

2
,

y otherwise.

Throughout the paper we assume that λ0(X) < λ0(Y ), since otherwise receivers
already take the sender’s preferred action. Define the set of signals which achieve the
critical mass on g under π as Zg

x(π) =
{
s ∈ Sπ|zk (απ,g(s)) = x

}
.

Let a ∈ B be an action profile and z = zk(a) be an outcome. The value of an
experiment π ∈ Π for critical mass k is defined as the sender’s expected utility under
π on network g. As we fix λ0 and απ,g throughout the paper, we write V π

k (g) =
V π
k (λ0, g, απ,g), where

V π
k (g) = Eλ0

[
Eπ
[
v(zk (απ,g (s))

]]
= λ0(X)

∑
s∈Zgx(π)

π(s|X) + λ0(Y )
∑

s∈Zgx(π)

π(s|Y ).

That is, given n, k, and g, the value of an experiment is equal to the probability of
reaching the critical mass. An experiment π∗ ∈ Π is optimal on g for critical mass k
if V π∗

k (g) = supπ∈Π V
π
k (g).

3 Complexity and Bounds

On the empty network, an optimal experiment is straightforward (à la Kamenica and
Gentzkow (2011)), anonymous, and sends x to all receivers with probability 1 if the
state is X and to a set of k receivers (selected randomly with equal probability) if the
state is Y .8 However, limited information spillovers create a serious tractability issue
for optimality in arbitrary networks. In particular, neither of the three characteristics
of optimal experiments on the empty network outlined above hold in general in our
setup.9 Straightforwardness does not hold as the same recommendation is interpreted
differently by different agents due to information spillovers. Anonymity trivially does
not hold when agents are in a network. Finally, the sender might benefit from garbling
information in state X and thus revealing the true state in X is not necessarily
optimal.

While the information a receiver gathers on a non-empty network g can always
be replicated on g0, the converse is not necessarily true. This implies that the upper

8An experiment is straightforward if for all i ∈ N it holds that (i) Sπi ⊆ Bi and (ii) for all
g ∈ G(N) and s ∈ Sπ with si = ai, α

π,g
i (si(g)) = ai.

9Cf. Kerman and Tenev (2021) for an illustration.

7



bound of the sender’s gain from persuasion is the optimal value on the empty network
which we denote by V n

k . Since our model boils down to the setup of Kerman et al.
(2023) when the network is empty, we conclude that V n

k = min
{
n+k
k
λ0 (X) , 1

}
.10 On

the other hand, the optimal public experiment (i.e. agents observe the same message
within every signal) is independent of the network structure and thus guarantees the
sender a lower bound, which we denote by V p. In particular, it always yields the
same value V p = 2λ0(X) for any k, as either all agents are persuaded or none are.11

Note that V p < V n
k .

Proposition 1. The value of an optimal experiment lies within [V p, V n
k ].

The proofs and formal statements of the results can be found in the Appendix. Notice
that V p is the optimal value on the complete network. Hence, starting from the empty
network and extending it to the complete network implies that the optimal value
must strictly decrease after some extension. Moreover, Proposition 1 implies that
if the receivers could form links without cost, they would form a complete network.
However, surprisingly, we show that forming a limited number of links might not be
in their best interest.

4 Detrimental Information

Let us return to our illustrative example in which the sender benefits from the creation
of multiple links and therefore the change in the optimal value is non-monotonic. To
systematically explain this result, we make two observations. First, if two agents have
exactly the same neighborhood, then they can be treated identically. This is a feature
we call Symmetry. Because of the way we model information spillovers the sender
cannot separate the beliefs of agents who receive the same aggregate information.

Lemma 1 (Symmetry). If two agents have the same neighborhood, then it is optimal
to send them the same message within each signal.

Second, the sender’s persuasion capability is not hindered on a circle network pro-
vided that it is not complete, i.e. when n > 3. While limited information spillovers
on a circle network decrease the variety of minimal winning coalitions that can be
persuaded in state Y (relative to the empty network), it is still sufficiently rich as to
allow the sender to fully exploit private communication.

Lemma 2. The sender can achieve V n
k on a circle network whenever n > 3.

10Note that the result of Kerman et al. (2023) also follows from Corollary 2 of Arieli and
Babichenko (2019).

11Since receivers share a common prior, the situation is equivalent to persuading a single receiver
as in Kamenica and Gentzkow (2011).
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This result can also be explained by the findings in Babichenko et al. (2021). In
their terminology, a receiver information-dominates another if he observes at least
the same information channels. The authors show that the sender can achieve the
upper bound of the value if there are no information-dominating pairs, which is the
case for the circle network. However, in their setup the sender employs a continuum
of messages and an experiment that achieves the upper bound is not provided. On
the other hand, we prove the result by constructing an experiment that employs only
two messages and achieves V n

k .
We can now state our first result on the non-monotonicity of the optimal value.

Proposition 2. If all agents in a network have degree at most 1, then the sender can
either achieve V n

k or there exists an extension that strictly benefits the sender.12

Note that all agents having degree at most one is equivalent to a network consisting
of pairs and singletons. Proposition 2 helps explain the observation in our illustrative
example. Intuitively, in these types of networks having pairs and at most one singleton
presents the greatest limitation for the sender’s persuasion capabilities. We prove the
result by establishing the existence of networks on which the sender cannot achieve
V n
k so that extending them to a circle is a strict improvement to the value.

The intuition behind Proposition 2 is as follows. On the one hand the existence
of multiple connected pairs constrains the sender’s possible choice of experiments by
Lemma 1, since the pairs will take the same action as each other even if they observe
different messages. This implies that the optimal value is likely to be less than V n

k .
On the other hand, extending this network to a circle allows the sender to exploit
private communication and induce different actions. Consequently, by Lemma 2, the
sender can achieve V n

k and benefit from a denser network.
Intuitively, the network of pairs can be treated as a weighted voting setup or

as a situation where customers have non-unitary demand for a product. Indeed,
in reality voter blocs vote for the same alternative and customers within the same
segment make the same purchase decisions. Moreover, all voters within a bloc (or
all customers within a segment) have the same ex-ante belief, as well as the same
ex-post belief. This makes it more difficult for the sender to reach a critical mass
optimally. However, in a circle network voter blocs (or customer segments) are not
as strictly delineated and thus the sender might induce different ex-post beliefs and
achieve a higher probability of persuasion.

In the remainder of the section we will focus on stars (i.e. structures which
have a center connected to all agents and all other agents are only connected to the
center). There are two main reasons for stars to be a point of interest. First, a
star is a commonly observed structure in friendship networks on social media outlets.
The center in a star can be interpreted as an information hub or opinion leader in
society. Because of their increased access to information, companies and political

12The logic of the proposition easily applies to networks which consist of connected triples and at
most one singleton.
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parties strategically incorporate such agents in marketing and political campaigns.
Stars can also represent smaller scale situations, such as a board of directors in which
the chairperson is the center node.

Second, the optimal value on any network with a star component of sufficiently
large size is less than V n

k . This is an important observation, since in this case the
sender cannot achieve the upper bound of the value. The intuition is as follows. In an
optimal experiment on a network with a sufficiently large star component, the center
node always observes the same message in state X and thus is only persuaded when
he cannot change the outcome. This implies that it is in the sender’s best interest
not to attempt to persuade the center node.

Proposition 3. The optimal value on a network containing a star component with
more than k agents is strictly less than V n

k .

Since the sender does not attempt to persuade the center node, it is as if the sender is
persuading k out of n−1 agents, in which case V n−1

k is the upper bound of the value.
More generally, a similar result could be derived for networks with a star component
that has more than one center, say m > 1. In this case it follows from applying
Symmetry to the centers that the sender can achieve V n−m

k . This implies that for a
fixed number of agents n, the optimal value monotonically decreases as m increases
and becomes V p when m is sufficiently high (e.g. m = n).13

Next, we show that networks with star components are important for the non-
monotonicity of the optimal value when a network is extended. Particularly, whenever
there is a large enough star component, the sender can benefit from creating new links.

Proposition 4. For any network containing a star component with more than k
agents, there exists an extension that strictly benefits the sender.

Proposition 4 implies that the change in the optimal value as the network becomes
denser can be non-monotonic. In particular, it is easy to find a sequence of extensions
that starts from g0 and ends with a network that has a star component such that
the value monotonically decreases. However, as we illustrate in Example 5, we can
always extend this network in a way that benefits the sender. Therefore, in this new
sequence of extensions, the change in value will be non-monotonic.

Example 5. Let n = 8, λ0(X) = 1/3, and k = 4.14 Consider network g below
(without dashed edge). By Proposition 3, for any π ∈ Π that is optimal on g it holds
that V π

4 (g) ≤ V n−1
4 = V 7

4 = 11/12.

13Note that this is in the same spirit as in a result in Candogan (2019), where the sender’s payoff
is decreased as some nodes in the network have a higher degree.

14Note that we consider a network with even number of agents only for ease of exposition.
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1

2 5

3

4

6

7

8 π′ X Y
x̄ 1 0

s 0 1
2

t 0 1
2

Now consider network g′ (with dashed edge). Let x̄i = x for all i ∈ N , s ∈ S be such
that si = y for i = 6, and sj = x for j ∈ N \ {6}. Similarly, let t ∈ S be such that
ti = y for i ∈ {1, 2, 3} and tj = x for j ∈ N \ {1, 2, 3}. Consider π′ given above that
employs s and t. It is easy to verify that x is implemented after any signal realization
and thus the optimal value strictly increases to V π

4 (g′) = V 8
4 = 1. 4

Proposition 4 and Example 5 highlight the importance of the network structure
for the sender’s gain from persuasion.15 We can interpret this result from two different
angles. For the sender, nodes with many sources of information (information hubs)
are difficult to persuade. To increase the probability of persuasion, the sender can
either try to break social ties (i.e. create more singleton nodes) or alternatively, she
can try to encourage more communication. While the former strikes as a polarizing
approach, the latter is usually perceived as unifying and democratic. However, both
can be equally detrimental for the receivers.

From the perspective of the receivers, forming more links seems like a natural
improvement as it allows access to more sources of information (e.g. following more
people on Twitter). Nevertheless, our result implies that receiving information from
multiple sources might harm the receivers when these sources are highly correlated.16

In Example 5, agent 5 forming a link with agent 6 allows the sender to employ a
rougher partition of the network and diminish the influence of the information hub.
In this way, the sender can leverage to her advantage the natural properties of real-life
social networks, which usually exhibit high degrees of clustering, e.g. around opinion
leaders (Jackson and Rogers, 2007).

5 Conclusion

The paper tests the naive intuition that more information provided to the receivers
through the network would make them less manipulable. Interestingly, it is possi-
ble that the sender achieves a higher value on the denser of two networks. More

15Example 5 also illustrates an important difference between our results and Babichenko et al.
(2021): while they show that V nk can be achieved if there are no information-dominating pairs, the
sender can achieve V nk on g′ even though agent 4 information dominates agents 1, 2, and 3.

16Increasing concentration of media ownership (Vizcarrondo, 2013; Noam, 2016) suggests that
news from different sources might be highly correlated. Some theoretical studies in different con-
texts (Colla and Mele, 2010; Currarini, Ursino, and Chand, 2020) show how correlation between
information sources can have a negative effect on a decision-maker.
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importantly, the value of an optimal experiment does not always decrease monoton-
ically when the network is extended. This is due to the fact that in some network
structures, additional connections enable the sender to fully exploit all channels of
information transmission among agents to her benefit.

Our results imply that simply encouraging more communication among receivers
is not necessarily a good solution to collective decision making problems. In fact,
increased communication might make it less likely that the receivers choose the “cor-
rect” outcome. Thus, a policy intervention that encourages the creation of more
social ties requires a specific analysis of the network structure to ensure maximum
efficacy, lest it yield counterproductive results.

Appendix A Proofs

Proof of Proposition 1. Let π ∈ Π. For each i ∈ N , assume that |Sπi (g)|= c(i).

Let R(i) =
{
m1
i , . . . ,m

c(i)
i

}
⊆ Si be a set of distinct messages for i. Moreover for

any j ∈ N , q ∈ {1, . . . , c(i)}, and q′ ∈ {1, . . . , c(j)} let mq
i 6= mq′

j .
For each i ∈ N , let φi : Sπi (g)→ R(i) be a bijection, so each information set of i

is mapped to a unique message in R(i). For each ω ∈ Ω and s′ ∈ S, define π′ ∈ Π:

π′ (s′|ω) =

{
π(s|ω) if φi(si(g)) = s′i, ∀i ∈ N,
0 otherwise.

Note that the definition of π′ implies that there is a bijection φ : Sπ → Sπ
′

such that
for each i ∈ N , φ(s) = s′ if and only if φi(si(g)) = s′i. Hence, π′ is an experiment.

We want to show that the value of π′ under the empty network is equal to the value
of π under g, i.e., V π′

k (g0) = V π
k (g). What remains to be shown is that each receiver

i has the same posterior belief upon observing si(g) under π and upon observing

φi(si(g)) under π′. Let s′ ∈ Sπ′ be such that s′i ∈
{
m1
i , . . . ,m

c(i)
i

}
. For any ω ∈ Ω,

we have

λs
′

i (ω) =

∑
s∈Sπ′ :si=s′i

π′(s|ω)λ0(ω)∑
ω′∈Ω

∑
s∈Sπ′ :si=s′i

π′(s|ω′)λ0(ω′)
=

∑
s∈Sπ :si(g)=φ−1(s′i)

π(s|ω)λ0(ω)∑
ω′∈Ω

∑
s∈Sπ :si(g)=φ−1(s′i)

π′(s|ω′)λ0(ω′)

=

∑
s∈Aπi (g,φ−1(s′)) π(s|ω)λ0(ω)∑

ω′∈Ω

∑
s∈Aπi (g,φ−1(s′)) π(s|ω′)λ0(ω′)

= λ
φ−1(s′),g
i (ω).

Thus, for each s ∈ Sπ it holds that απ,g(s) = απ
′,g0(φ(s)). Hence, V π′

k (g0) = V π
k (g).

Since any π ∈ Π on some network g can be replicated on the empty network,
V n
k ≥ V π

k (g). Finally, since receivers share a common prior and have homogeneous

12



preferences it follows from Kamenica and Gentzkow (2011) that V π
k (g) ≥ V p for any

optimal π ∈ Π.

Lemma 1. Let π ∈ Π and let g ∈ G(N) and i, j ∈ N be such that Ni(g) = Nj(g).
Then there exists π′ ∈ Π such that for any s ∈ Sπ′ it holds that si = sj and V π′

k (g) =
V π
k (g).

Proof. First, note that since N̄i(g) = N̄j(g), for any s ∈ Sπ we have Aπi (g, s) =
Aπj (g, s). Hence, i and j have the same posterior belief, i.e. for any ω ∈ Ω and any
s ∈ Sπ it holds that λs,gi (ω) = λs,gj (ω).

Let |Sπi × Sπj |= c. Let R = {m1, . . . ,mc} be a set of distinct messages. Define
a bijection φ : Sπi × Sπj → R. That is, for any tuple (si, sj), (ti, tj) ∈ Sπi × Sπj it
holds that φ(si, sj) = φ(ti, tj) if and only if (si, sj) = (ti, tj), so that each distinct
combination of messages of i and j (and not every distinct neighborhood) is mapped
to a distinct message in R.

Define S ′ =
{
s′ ∈ S| s ∈ Sπ, s′−ij = s−ij and φ(si, sj) = s′i = s′j ∈ R

}
. In words,

S ′ consists of signals obtained by replacing the messages of i and j with distinct
messages in R (for each distinct message combination) and leaving the other receivers’
messages unchanged, in each signal in Sπ. Let τ : Sπ → S ′ be a bijection such that
for any s ∈ Sπ we have τ(s) = s′ if τ(si, sj) = s′i = s′j and s′−ij = s−ij.

For every s ∈ Sπ and ω ∈ Ω, define π′ (τ(s)|ω) = π(s|ω). It is clear that π′ is
an experiment. Note that since the probability weights are the same under π and π′,
receivers i and j still have the same posterior belief under π′, i.e. for any ω ∈ Ω and
s ∈ Sπ′ it holds that λs,gi (ω) = λs,gj (ω).

Next, we show that for any r ∈ N̄i(g), ω ∈ Ω, and s ∈ Sπ we have λs,gr (ω) =

λ
τ(s),g
r (ω). That is,

λs,gr (ω) =

∑
t∈Aπr (g,s) π(t|ω)λ0(ω)∑

ω′∈Ω

∑
t∈Aπr (g,s) π(t|ω′)λ0(ω′)

=

∑
t∈Aπr (g,s) π

′(τ(t)|ω)λ0(ω)∑
ω′∈Ω

∑
t∈Aπr (g,s) π

′(τ(t)|ω′)λ0(ω′)

=

∑
t′∈Aπ′r (g,τ(s)) π

′(t′|ω)λ0(ω)∑
ω′∈Ω

∑
t′∈Aπ′r (g,τ(s)) π

′(t′|ω′)λ0(ω′)
= λτ(s),g

r (ω).

Finally, any r /∈ N̄i(g) has the same posterior belief under π and π′, as it is not
affected by the transformation. Hence, V π′

k (g) = V π
k (g).

Lemma 2. Let g ∈ G(N) be a circle and n > 3. Then there exists π ∈ Π such that
V π
k (g) = V n

k .

Proof. Let w1 = (λ0(X)/λ0(Y ))(n/k). For all i ∈ N , define Ti = {i (mod n), (i +
1)(mod n), . . . , (i+n−2−k) (mod n)}. For each Ti, define sTi ∈ S such that sTij = x

for all j ∈ Ti and sTi` = y for all ` /∈ Ti. Let x̄i = x and ȳi = y for all i ∈ N . Let π ∈ Π
be defined as π(x̄|X) = 1, π

(
sTi|Y

)
= w1/n for all i ∈ N , and π(ȳ|Y ) = 1−w1. That

is, π sends x to all agents in state X, and sends x to k + 2 agents who are indexed
consecutively in state Y . It is easy to verify that π is a probability distribution and
that V π

k (g) = λ0(X) · 1 + λ0(Y )w1 = min
{
n+k
k
λ0(X), 1

}
= V n

k .
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Proposition 2. Let g ∈ G(N) be such that for all i ∈ N it holds that δi ≤ 1. Let
π ∈ Π be optimal on g. Then either (i) V π

k (g) = V n
k or (ii) there exists g′ ) g and

π′ ∈ Π such that V π′

k (g′) > V π
k (g).

Proof. We first introduce a technical lemma.

Lemma A1. Let g ∈ G(N) and π ∈ Π be such that V π
k (g) < 1. If there exists s ∈ Sπ

with s ∈ Zg
x(π) and |{i ∈ N : απ,gi (si(g)) = x}|> k, then V n

k > V π
k (g).

Proof. Suppose that there exists s ∈ Sπ such that |{i ∈ N : απ,gi (si(g))}|> k. We can
transform π on g into π̂ ∈ Π on g0 such that agents have the same action patterns and
V π̂
k (g0) = V π

k (g). Then, there exist at least k signals that can be obtained via s by
removing the excess agents who chose x. Define π′ ∈ Π such that π′(s|Y ) = 0, where
π(s|Y ) is distributed evenly among k − 1 such signals and takes some probability
from ȳ for the kth signal. The probabilities of all other signals are preserved under
π′. Thus, V π′

k (g0) > V π̂
k (g0) and hence V n

k > V π̂
k (g0) = V π

k (g).

We will establish the existence of cases in which the sender cannot achieve V n
k . First

consider the case |{i ∈ N : δi = 0}|= 0, that is the network consists of pairs, which
implies that n = 2m for m ∈ N. Consider the case that k = 2` + 1. By Lemma A1
and Symmetry, V π

k (g) < V n
k .

Now consider the case |{i ∈ N : δi = 0}|= 1, that is the network consists of pairs
and one singleton, which implies that n = 2m+ 1. If k = 2`, then j ∈ N with δj = 0
is a dummy player and it follows that V π

k (g) < V n
k . If k = 2` + 1, then the sender

has two options: (i) the experiment targets minimal winning coalitions, in which
case the singleton node is a veto player and thus V π

k (g) < V n
k or (ii) the experiment

targets winning coalitions not all of which are minimal, in which case by Lemma A1
V π
k (g) < V n

k .
Whenever V π

k (g) < V n
k , consider the extension g′ ) g such that g′ is a circle.

Then, by Lemma 2 there exists π′ ∈ Π such that V π′

k (g′) = V n
k > V π

k (g).

Proposition 3. Let g ∈ G(N) have a star component with set of agents C and
|C|> k. Then for any π ∈ Π it holds that V π

k (g) ≤ V n−1
k .

Proof. We first give the definition of an anchor, which will be useful in the rest of
the proof.

Definition A1. Let π ∈ Π. A signal s ∈ Sπ is an anchor if π(s|X)λ0(X) ≥
π(s|Y )λ0(Y ). The set of all anchors is denoted by An(π).

Denote the center of the star component by c ∈ N . We first show that transferring
the information of c to the periphery nodes leads to no loss of information to c, as
he can uniquely reconstruct the information from the combination of messages of
the peripheral nodes. This means that c can be sent a single message in all signals,
without changing the value.
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Lemma A2. Let g ∈ G(N) have a star component with set of agents C and |C|> k.
For any π̂ ∈ Π and ŝ ∈ Sπ̂ such that απ̂,gc (ŝ) = x, there exists π ∈ Sπ such that
|Sπc |= 1 and V π̂

k (g) = V π
k (g).

Proof. Note that for two anchors s, t ∈ Sπ̂ with sc 6= tc, it holds that Aπ̂c (g, s) ∩
Aπ̂c (g, t) = ∅. Let S ′ ⊆ S. Define a bijection τ : Sπ̂ → S ′ such that τ(s) = s′ if
(i) s′c = x, (ii) for j ∈ C \ {c} it holds that s′j = (sj, sc), and (iii) for ` ∈ N \ C it
holds that s′` = s`. That is, in signals in S ′ the center always observes x and the
messages of nodes C\{c} are modified so that they contain the information previously
provided by c in signal s. So, the information that c reveals to nodes in C \ {c} is
shifted to them while c observes the same message in every signal.

For any ω ∈ Ω and s′ ∈ S ′ such that τ(s) = s′, let π ∈ Π be defined by π(s′|ω) =
π̂(τ−1(s′)|ω). As the probabilities of corresponding signals are the same under π as
under π̂ and c’s information under π̂ is shifted to nodes in C \ {c} under π (which
are observed by c), c’s action does not change. Moreover, the actions of nodes in
C \ {c} and in N \ C do not change either. To see this, note that for any i ∈ N
and t′ ∈ Aπi (g, s′) there exists t ∈ Aπ̂i (g, s) such that τ(t) = t′. This, together with
the definition of τ implies that

∑
t′∈Aπi (g,s′) π(t′|ω) =

∑
t∈Aπ̂i (g,s) π̂(t|ω). Thus, every

node has the same posterior belief upon observing s ∈ Sπ̂ and τ(s) ∈ Sπ. Hence,
V π
k (g) = V π̂

k (g).

Next, we show that whenever there is an experiment π̂ with a signal in which c
chooses x, there is another experiment which preserves the value and in which in all
signals where c chooses x, all peripheral agents also choose x.

Lemma A3. Let g ∈ G(N) have a star component with set of agents C and |C|> k.
For any π̂ ∈ Π and ŝ ∈ Sπ̂ such that απ̂,gc (ŝ) = x, there exists π ∈ Sπ where for
every s ∈ Sπ such that απ,gc (s) = x it holds that απ,gi (s) = x for all i ∈ C and
V π̂
k (g) = V π

k (g).

Proof. Put simply, by means of unique messages, every peripheral node in C can
uniquely identify the signals in which c, which has strictly more information than a
peripheral node, chooses x. Hence, all peripheral nodes are persuaded whenever c is.

Suppose that there is a signal t ∈ Sπ̂ in which c chooses x. Hence, there is at
least one anchor s ∈ An(π̂) with si = ti for all i ∈ C and for every r ∈ Sπ̂ such that
ri = si for all i ∈ C, c also chooses x. The action patterns of nodes in C in such
signals are: (a) all x; (b) c chooses x and zero or more nodes in C \ {c} choose x.

Consider case (b). It must be true that if some node ` ∈ C \ {c} chooses y this is
because it associates t with more signals than c. In other words, in all signals r ∈ Sπ̂
where (r`, rc) = (t`, tc) node ` chooses y and this includes the signals in which c does
not choose x. As this also includes the associated anchors, Aπ̂c (g, t) ( Aπ̂` (g, t).

Notice the trivial fact that for every s, t ∈ Sπ̂ with sc 6= tc and i ∈ C, it holds that
Aπ̂i (g, s)∩Aπ̂i (g, t) = ∅. So, whenever c receives different messages in different signals,
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these signals belong to disjoint association sets and the same observation holds for
every i ∈ C.

Let T be the set of signals in which receiver ` chooses y and c chooses x. That is,

T =
{
t ∈ Sπ̂| απ̂,g` (t`(g)) = y and απ̂,gc (tc(g)) = x

}
.

Define a bijection such that in signals in π̂ in which ` chooses y and c chooses x,
the message of ` is changed to a unique message that is specific to each distinct
information set of c and keep all other messages the same. Formally, let T ′ ( S and
define φ : T → T ′ such that for any t ∈ T it holds that φ(t) = t′ if t′` = tc(g) ∈ S ′` \Sπ̂`
and t′−` = t−`. Now for any ω ∈ Ω define a new experiment π ∈ Π, which transforms
the signals in T according to φ and keeps all other signals the same while preserving
the probability weights:

π (s′|ω) =

{
π̂(s′|ω) if s′ ∈ Sπ̂ \ T,
π̂(φ−1(s′)|ω) if s′ ∈ T.

Let s′ ∈ Sπ be such that φ(s) = s′ for some s ∈ T . Then,

λs
′,g
` (X) =

∑
t′∈Aπ` (g,s′) π(t′|X)λ0(X)∑

ω∈Ω

∑
t′∈Aπ` (g,s′) π(t′|ω)λ0(ω)

=

∑
t′∈Aπ` (g,s′) π̂(φ−1(t′)|X)λ0(X)∑

ω∈Ω

∑
t′∈Aπ` (g,s′) π̂(φ−1(t′)|ω)λ0(ω)

=

∑
t∈Aπ̂` (g,s)∩Aπ̂c (g,s) π̂(t|X)λ0(X)∑

ω∈Ω

∑
t∈Aπ̂` (g,s)∩Aπ̂c (g,s) π̂(t|ω)λ0(ω)

=

∑
t∈Aπ̂c (g,s)⊆T π̂(t|X)λ0(X)∑

ω∈Ω

∑
t∈Aπ̂c (g,s)⊆T π̂(t|ω)λ0(ω)

≥ 1

2
,

where φ(t) = t′ and the third equality follows from the definition of φ; Aπ̂` (g, s) ∩
Aπ̂c (g, s) = Aπ̂c (g, s) ⊆ T follows from Aπ̂c (g, t) ( Aπ̂` (g, t) and the inequality follows
from the definition of case (b). Similarly, it holds that λs

′,g
c (X) ≥ 1/2. This implies

that in π node ` will choose x whenever c chooses x in π. Additionally, node c will
still choose x in the corresponding signals in π̂ and π. Thus, the transformation does
not change the action of c in any signal, it only increases the number of x actions.
Observe that for s ∈ Aπ` (g, t) \ Aπc (g, t) such that t ∈ T , it holds that απ̂,g` (t`(g)) = y
and the transformation will not decrease the value, as in such s nodes ` and c must
already be choosing y. Hence, V π

k (g) = V π̂
k (g).

Lemma A2 implies that the center of a star component can be sent the same message
in all signals without affecting the value. Moreover, Lemma A3 implies that whenever
c chooses x, all peripheral nodes choose x. Hence, c’s action will never be decisive
since |N \C|< k. Even persuading all |N \C| will necessitate persuading a member of
C. This member can never be c because, that means that there will always be strictly
more players than the critical mass, who choose x. The center of a star then becomes
a dummy player (who should never be persuaded) and thus, V π

k (g) ≤ V n−1
k .

Proposition 4. Let g ∈ G(N) have a star component with set of agents C and
|C|> k. Let π ∈ Π be optimal on g. There exists g′ ) g and π′ ∈ Π such that
V π′

k (g′) = V n
k > V π

k (g).
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Proof. Let P be the set of peripheral nodes in C and M ⊆ P with |M |= k− |N \C|.
Note that V π

k (g) ≤ V n−1
k by Proposition 3. First suppose that n is even. Consider

g′ ⊇ g such that for some i ∈ N \ C, g′ij = 1 for all j ∈ M . Let s1 ∈ S be defined as
s1
i = x for all i ∈ (N \ C) ∪M ∪ {c} and s1

j = y otherwise. Similarly, define s2 ∈ S
as s2

i = x for all i ∈ C and s2
j = y otherwise. Now, define π′ ∈ Π as π′(x̄|X) = 1,

π′(s1|Y ) = λ0(X)/λ0(Y ), π′(s2|Y ) = λ0(X)/λ0(Y ), and π′(ȳ|Y ) = 1−2λ0(X)/λ0(Y ).
Hence, it follows that V π′

k (g′) = 3λ0(X) > V n−1
k = V π

k (g).
Now suppose that n is odd. We first provide the adapted definition of information-

domination due to Babichenko et al. (2021) and state a corollary to one of their
results.

Definition A2. Given a network g ∈ G(N), an ordered pair of receivers (i, j) is
information-dominating if Nj(g) ⊆ Ni(g).

Corollary A1. Let g ∈ G(N) and suppose that for any π ∈ Π it holds that V π
k (g) <

V n
k . If g′ ∈ N with g ( g′ has no information-dominating pairs, then there exists
π′ ∈ Π such that V π′

k (g′) = V n
k > V π

k (g).

Thus, we need to show that we can reach a network g′ with no information-dominating
pairs by extending g. Then, either (i) |P |= |N \C| or (ii) |P |> |N \C|. In case (i),
consider g′ ) g such that each i ∈ N \ C is connected to a unique node in P . Then,
there are no information-dominating pairs in g′ and therefore V π′

k (g′) > V π
k (g). In

case (ii), fix j ∈ N \C. Consider g′ ) g such that each i ∈ (N \C)\{j} is connected
to a unique node in P and j is connected all the nodes that are not connected to any
node in N \ C. Then, there are no information-dominating pairs in g′ and therefore
V π′

k (g′) = V n
k > V π

k (g).
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