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1. Introduction

Inquiry is one of the most frequent and important modes of information processing

in our daily life. Examples are abundant. A doctor visit usually consists of a series

of questions from reception to actual consultation of the patient’s conditions. A crime

investigation typically consists of a series of questions and processing their answers.

Inquiry about product characteristics and payment schemes is an important aspect of

shopping experiences. In all these examples, information to be gathered can be poten-

tially overwhelming, whereas cognitive resources available to process it are limited and

precious. In this paper, we propose a theory of optimal inquiry to process information

that takes costly cognition seriously, and study its implications to the decision-making

processes and outcomes.

We formalize an inquiry as the decision maker’s strategy of asking questions about

the relevant state of the world. It starts with an initial question and a contingent plan

that decides which question to ask depending on the answers to the previous ones.

As in the standard Bayesian paradigm, the answers to the inquiry hence determine

the information set that guides the decision maker’s final action. Unlike the standard

framework, however, our framework explicitly postulates a cognitive cost associated

with the length of the inquiry; more precisely, we assume that the cost is linear in the

average number of questions the inquiry entails.

Our framework provides an explicit and intuitive procedure for information process-

ing, and share the same motivation that initiates the rational-inattention literature,

as Sims’ (2010) example shows, “Finding whether a test well indicates oil is present

may cost thousands of dollars, yet provide only the answer to a yes-or-no question [...]

Rational inattention theory [...] might explain why an executive in the oil company

[...] might after ‘looking at’ all the reports seem to know the test well report in de-

tail, while having only a vague idea of what was in the other reports.” Different from

that literature, however, our explicit formulation of inquiry allows us to put the cost

directly on the procedure due to the physical and mental acts involved, independent of

the content. For example, the cost of performing a blood-sugar test and processing its

result (in terms of physical or cognitive resources) would be independent of the doctor’s

prior knowledge about the patient in our model, whereas the cost would depend on the

prior belief of the doctor in the standard rational inattention model.
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Moreover, the explicit formulation of the decision-making process allows us to eval-

uate the dynamic consistency of the process in our framework. While optimality is

defined from the ex ante perspective, we show that an optimal inquiry is dynamically

consistent in the following sense. Consider a decision maker who processes information

following an optimal inquiry, and suppose that she has asked a few questions but not

yet ready for a final decision. At this point, she could stop and reconsider her inquiry

strategy, taking all the information she already processed so far as given. Dynamic

consistency requires it be optimal to stick with the original plan at this interim stage,

and we prove this property for any optimal inquiry in our framework.

Optimal inquiry trades off the accuracy of information processed against the cog-

nitive resources needed to achieve it. On the extensive margin, this leads to an en-

dogenous consideration set, according to which only a subset of all feasible options is

considered, to save cognitive resources. On the intensive margin, this leads an endoge-

nous collection of categories. The inquiry determines which category the state belongs

to, and then prescribes the decision in the consideration set that is optimal for that

category. A novel feature is that the optimal categories are jointly determined with

the consideration set and the structure of inquiry.

Our first main result fully characterizes the optimal inquiry. This characterization

bridges information theory to economic decision-making, for which we use two well-

known results in information theory: the Kraft inequality and the Huffman coding.

First, we use the Kraft inequality to fully characterize the set of payoff-relevant out-

comes that can be implemented by an inquiry. Such an outcome consists of a consid-

eration set, categories of states induced by the inquiry, and the inquiry length profile

corresponding to each category. Kraft inequality is then employed to show that only

the size of the consideration set and the length profile matters and they are connected

by a simple equation.

This allows us to reduce the overall design problem into two stages: first we choose

a consideration set and a length profile, and then we solve for the optimal categories

for a given consideration set and length profile. However, the optimal inquiry must

also satisfy a fixed-point property: the optimal information partition give rise to a

distribution of the corresponding categories, but the length profile must minimize the

average length with respect to that distribution. The solution to this minimization
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problem is the well known Huffman coding scheme for a given distribution, and our

framework endogenizes the underlying distribution through optimal categories.

We draw behavioural implications from the optimal trade-off between a more precise

posterior for each option considered against the simplicity of the decision process, here

measured by the number of questions required to arrive at the posterior. First, there

is negative correlation between the inquiry length that leads to a category and the

likelihood of the choice of the associated decision. That is, more likely decisions are also

easier to arrive at. Second, the consideration set shrinks with the cognitive cost. For a

very low cost, all feasible options are considered; for a very high cost, only one of them

will be considered and no information is processed. In between, the optimal average

length of the inquiry decreases with the cost, and, in environments with i.i.d. valuations

according to the uniform distribution, the size of consideration set decreases with the

cost.

Our second main result demonstrates that the optimal inquiry exhibits confirmation

bias. We show that the decision maker optimally seek information to confirm the

optimality of the ex ante more likely options by enlarging the categories in which such

decisions are taken. This is in line with the definition given by Nickerson (1998),

“It refers usually to unwitting selectivity in the acquisition and use of evidence.” By

doing so, the decision maker endogenously increases the probability to end the inquiry

with shortest questions and hence decreases the average length of inquiry. We show

that such bias always exists weakly, and it holds strictly whenever the optimal inquiry

includes an unequal length profile.

Related Literature. This paper provides a rational account of how to use limited cog-

nitive resources, and how this optimal allocation explains two well-known behavioral

biases: focused consideration, according to which the decision-maker only focus on a

subset of feasible options, and confirmation bias, according to which the decision-maker

seeks evidence to confirm her ex ante most likely options. These results contribute to

three strands of literature, both conceptually and methodologically.

The first strand includes papers with an explicit formulation of decision procedures

connected to the use of cognitive resources. Wilson (2014), following the approach

of Cover and Thomas (2006), formulates the decision-making process as a finite au-

tomaton. The main result in Wilson (2014) is a dynamic-consistency type of result
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called multi-self consistency. The cognitive limitation is modelled via an exogenously

given number of memory states that capture the decision-maker’s memory capacity. In

contrast, we prove the dynamic consistency in the conventional sense and endogenize

the size of the optimal inquiry via a cognitive cost.

The second strand includes papers that take the rational-inattention approach and

model information processing via noisy-signal acquisition initiated by Sims (2003).

Methodologically, in this literature the cognitive cost is typically modelled as entropy

reduction relative to the prior belief, as in Matějka and McKay (2015) and Jung et al.

(2019). In contrast, we have an explicit formulation of the decision process, and our

cognitive cost is directly associated with asking questions. The dynamic consistency

result allows us to show that our approach is robust to the assumption that the decision-

maker has to commit to the information acquisition strategy that is typical in the

literature. Moreover, our results provide endogenous categorization directly linked to

the consideration sets generated by the optimal inquiry.

The third strand includes papers that rationalize behavioural biases with cognitive

frictions. These papers range from axiomatic to constrained optimization approaches.

For consideration sets, the former include Masatlioglu et al. (2012) and Manzini and

Mariotti (2014) and the latter includes Caplin et al. (2019). While our approach is

closer to the latter, we connect the two approaches by showing that our optimal inquiry

satisfies certain desirable axioms, such as dynamic consistency and the attention-filter

property in Masatlioglu et al. (2012). For confirmation bias, Wilson’s (2014) model

also generates a form of confirmation bias based on limited memory. However, in

her model the decision-maker does not seek evidence but passively processes it. In

contrast, our decision-maker actively seeks evidence to confirm her more likely options.

Nimark and Sundaresan (2019) also obtain a “confirmation effect” using the rational-

inattention approach. Both papers consider binary states and confirmation to the

prior. In contrast, we define confirmation bias as the decision-maker seeking evidence

to confirm ex ante most likely guesses about which decision is optimal, a definition

that is based on the observable choices.

2. The model

2.1. Primitives. A decision-maker (DM) needs to process information about a uncer-

tain state of the world before taking an action. The DM’s utility u(a, x) depends on
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her action, a ∈ A, and an uncertain state of the world, x ∈ X. The set of actions A

is finite and contains at least two actions. The set of states X is a convex subset of

RL, L ∈ N. State x is distributed according to a probability distribution G that is

absolutely continuous and has full support on X. We will use notation P[·] and E[·] to

denote the probability and expectation under G, respectively.

We say that action a weakly dominates another action a′ if u(a, x) ≥ u(a′, x) for all

x ∈ X. Throughout the paper, we assume:

(A1) For all a ∈ A, expected utility E[u(a, x)] is finite.

(A2) For all a, a′ ∈ A, a does not weakly dominate a′.

(A3) For all a′, a′′ ∈ A and any constant c ∈ R, the set {x ∈ X :u(a′, x)−u(a′′, x) = c}
has empty interior.

Assumption (A1) is needed for the DM’s optimization problem to be well defined.

Assumptions (A2) and A3) are introduced to simplify exposition. Assumption (A2)

precludes existence of dominated actions. Assumption (A3) is a generalization of the

condition of “thin” indifference curves between each pair of actions. It means that the

utility curves of any two actions are almost never parallel to each other. Many usual

utility functions satisfy this assumption. For example, (A3) is satisfied for the following

three classes of utility functions.

(U1) Here we have |A| = L and X ⊂ RL, and u(al, x) = xl, that is, xl is the value of

action al.

(U2) Here we have X ⊂ RL and A ⊂ RL, and, for each a ∈ A, there is a (αa, βa) ∈
R×RL such that u(a, x) = βa · x+ αa. This is essentially the Lancaster model

of product characteristics.

(U3) Here A ⊂ RL and u(a, x) is the negative distance between a and x, that is,

u(a, x) = −||a− x||p, where || · || is the Lp-norm on RL. This is typically called

the tracking problem.

2.2. Inquiries. When confronted with a state x, the DM does not observe x directly.

Instead, she relies on a series of questions about x. Formally, we consider an inquiry

as a series of true/false questions formulated as propositions about x. A proposition is

a statement about certain properties of x, that is, a proposition has the form “x ∈ Y ”,

where Y ⊂ X is a Borel set. Denote the collections of Borel subsets of X by B(X).
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We identify a proposition with a set Y ∈ B(X); we say that the proposition is true if

x ∈ Y and it is false if x 6∈ Y .

An inquiry Q = 〈N, T, σ, χ, d〉 is a finite binary tree that describes propositions at

non-terminal nodes and decisions in terminal nodes of the tree. Specifically:

• a finite setN of nodes contains a root no and a nonempty set T of terminal nodes

(note that the tree may consist of a single terminal node, i.e., N = T = {no});
• each non-terminal node n ∈ N − T is followed by exactly two edges labelled

true and false;

• successor function σ assigns to each non-terminal node n ∈ N − T and each

edge e = {true, false} a child σ(n, e) ∈ N of node n following edge e;

• proposition mapping χ assigns to each non-terminal node n ∈ N − T a propo-

sition χ(n) ∈ B(X);

• decision rule d assigns to each terminal node t ∈ T an action dt ∈ A.

We denote the set of all possible inquiries by QX .

Given a state of nature x ∈ X, the inquiry Q begins with the proposition χ(no) at the

root of the inquiry tree, and it ends whenever a terminal node is reached. It proceeds

by following the tree. At a non-terminal node n ∈ N − T , the inquiry asks whether

it is true that x ∈ χ(n). If true, then the inquiry proceeds to the node σ(n, true);

otherwise, the inquiry proceeds to the node σ(n, false). When a terminal node t ∈ T
is reached, the DM takes action dt.

2.3. Information. The inquiry transforms a quantitative statement, say, “x ≥ r”,

into a qualitative one, say, “yes” or “no”, eventually leading to a qualitative recom-

mendation of which action to choose. The underlying assumption is that the DM

cannot directly digest quantitative information. Knowing that my blood sugar level is

6 mmol/L means little to a medical lay person like me, but knowing that it is below

the level that would be labelled as “normal” is very useful as it suggests a decision of

not going to the GP. Indeed, our theory is aimed at the optimal thresholds for what it

means by “normal” (do nothing), “concerning” (see the doctor soon), or “emergency”

(call an ambulance). In fact, in many concrete applications we should think of the

quantitative state x as a composite score of different dimensions that only experts can

read but our DM can and need to digest the qualitative information; our notion of

inquiry endogenizes the semantics of the qualitative information.
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Formally, the inquiry categorizes states of nature into subsets through a series of

questions. When arriving any (terminal or non-terminal) node n ∈ N , the DM’s

information about the state is summarized by a subset of states, denoted by In(Q).

That is, given the answers to the questions in previous nodes, the DM can infer that

the true state belongs to In(Q), recursively defined as follows. Clearly, at the root, all

states are possible, and hence Ino(Q) = X. Given a non-terminal node n ∈ N − T , let

ntrue and nfalse be the successors of n after “true” and “false” answers to the proposition

χ(n), respectively. Then we define

Intrue(Q) = In(Q) ∩ χ(n) and Iqfalse(Q) = In(Q) ∩
(
X − χ(n)

)
. (1)

Now, for each x ∈ X, the DM will reach some terminal node t at the end of the inquiry.

Thus, the set It(Q) consists of all states under which terminal node t is reached. Thus,

the collection of sets {It(Q) : t ∈ T} forms a partition of X, and it represents the

information sets at the end of the inquiry.

As we are not concerned with zero probability events, we adopt and use throughout

the paper a measure based notion of partition that disregards sets of measure zero

under G. Specifically:

Definition 2.1. A collection of sets {X1, X2, ..., XK} is a partition of X if P(Xk) > 0

for each k, and
∑

k P(Xk) = P(X) = 1.

2.4. Payoffs. We assume that asking questions is costly. Let the DM’s cognitive cost

of any single question be λ > 0. Given an inquiry Q, let `t(Q) be the length of the

path from no to t in the tree, that is, `t(Q) is the number of questions asked to reach

terminal node t. Then, the ex-post cost of inquiry at terminal node t is equal to λ`t(Q).

We can now formulate the DM’s optimization problem. Given an inquiry Q, if

terminal node t is reached, the DM’s ex-post payoff net of the cognitive cost at state

x is

u(dt, x)− λ`t(Q).

Because each terminal node t ∈ T is reached whenever the state x is in It(Q), the DM’s

ex-ante expected utility from inquiry Q is

W (Q;λ) =
∑
t∈T

∫
x∈It(Q)

(
u(dt, x)− λ`t(Q)

)
G(dx). (2)
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The DM’s optimization problem is

max
Q∈Q

W (Q;λ). (3)

The maximization problem (2) resembles the problem studied in the rational inat-

tention literature, e.g. Matějka and McKay (2015), Jung et al. (2019), and Caplin et al.

(2019). But this resemblance is more in formality than in substance. Indeed, while

from information theory we that the average length of investigation defined here is

closely related to entropy and the rational-inattention approach is motivated by mea-

suring cognitive cost as number of questions, the standard approach measures the cost

of information in terms of entropy reduction relative to the prior belief. In contrast,

here the primitive cost does not depend on the prior—it is simply the asking (and the

implied act of processing the answer) itself is costly. Moreover, while in the usual setup

the model is silent about the corresponding procedure that the DM uses to arrive her

decision, in our model there is an explicit connection between the solution to (3) and

the procedure used. In particular, we may say that the realized process is simpler for

a decision if fewer questions are needed to arrive that decision, that is, ` is smaller.

3. Optimal Inquiries

Unlike most of the literature, our model of information processing emphasizes the

dynamic nature of the process. In particular, the order of the questions in an inquiry

not only affects the final information set for the DM in her decision, but also affects

the length of the inquiry, which also matters for the DM’s payoff.

This emphasis of process makes the decision problem, (3), a nonstandard one, and it

does not allow the use of the standard optimization techniques. In particular, the set

of possible inquiries, QX , is a infinite set and its elements are discrete in nature, which

precludes the standard first-order approach. Below we establish three principles of op-

timality for the decision-making processes: the first is dynamic consistency, the second

is the use of the consideration set, and the third is relationship between the inquiry

length and the corresponding category of states for each element in the consideration

set.

3.1. Dynamic Consistency. In our formulation, we implicitly assume that the DM

commits to an inquiry strategy ex ante. Here we show that the DM does not want

to change her ex-ante optimal inquiry strategy at any interim stage, so, her choices
9



are not only ex-ante, but also sequentially optimal. This means that the commitment

assumption is without loss of generality.

We use the following notion of dynamic consistency. Let Q = 〈N, T, σ, χ, d〉 ∈ QX
be an inquiry. Consider a node n ∈ N . At that node, the DM infers that the state is

in In(Q). Observe that every possible play after reaching n is itself an inquiry, whose

initial set of states is In(Q). Let us refer to it as a sub-inquiry at node n ∈ N . The set

of all possible sub-inquiries at n given information In(Q) is QIn(Q). Denote by Qn the

specific sub-inquiry at n that prescribes to play according to the original inquiry Q.

Suppose that the DM initially follows inquiry Q but, upon reaching node n, she

reevaluates her plan: whether to follow the original plan Qn or to deviate to another

sub-inquiry Q̂. Let Wn(Q̂;λ) be the DM’s expected payoff conditional on reaching node

n if she chooses sub-inquiry Q̂ ∈ QIn(Q) upon arrival to n. We say that the original

inquiry Q is dynamically consistent if no deviation is beneficial at any node.

Definition 3.1. An inquiry Q = 〈N, T, σ, χ, d〉 is dynamically consistent if, for each

node n ∈ N ,

Wn(Qn;λ) = max
Q̂∈QIn(Q)

Wn(Q̂;λ). (4)

Note that dynamic consistency implies that the DM behaves sequentially optimally

at each terminal node. Specifically, the DM chooses a decision that maximizes her

expected payoff given the information at that node. That is, if Q is dynamically

consistent, then, for each terminal node t ∈ T , the action dt must be a solution of

max
a∈A

∫
x∈It(Q)

u(a, x)G(dx|It(Q)). (5)

We have the following theorem.

Theorem 3.1. Every optimal inquiry is dynamically consistent.

3.2. Outcomes. We argue that it suffices to describe an optimal inquiry by its payoff

relevant outcome. The outcome consist of three components: the set of actions em-

ployed at the terminal nodes, the inquiry length profile associated with the terminal

nodes, and the information to the DM at the terminal nodes.

First, observe that if an inquiry is optimal, then every node must be reached with

positive probability. Indeed, if there was a node n that is only reached with probability
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zero, then, in some predecessor node n′, the proposition χ(n′) or its complement would

have had measure zero, so the associated costly question would have been redundant.

Lemma 3.1. If an inquiry Q = 〈N, T, σ, χ, d〉 is optimal, then every node n ∈ N is

reached with positive probability.

Second, observe that an optimal inquiry cannot induce the same action in two or

more terminal nodes. Indeed, if it was the case, it would be no need to distinguish

between these terminal nodes, so the number of costly questions in the inquiry could

be reduced.

Lemma 3.2. If an inquiry Q = 〈N, T, σ, χ, d〉 is optimal, then dt 6= dt′ for all pairs of

distinct terminal nodes t, t′ ∈ T .

An immediate implication of Lemma 3.2 is that each terminal node corresponds to a

unique action in A. In what follows, we will identify terminal nodes with actions they

induce. Specifically, let D(Q) be the set of actions induced in inquiry Q. We will refer

to D(Q) as the consideration set. The actions of D(Q) are identified with the terminal

nodes of Q. A representative terminal node is denoted by d ∈ D(Q).

The identification of terminal nodes with their corresponding actions allows us to

characterize the payoff-relevant outcomes by the consideration set. To do so, let Q be

an inquiry with consideration set D(Q). Observe that each action d in the consideration

set D(Q) is associated with the length of inquiry `d(Q) leading to the terminal node

where d is chosen, and with the information set Id(Q) induced by Q in that terminal

node. Let `(Q) = (`d(Q))d∈D(Q) and I(Q) = (Id(Q))d∈D(Q). Let us refer to the triple

Z(Q) = (D(Q), `(Q), I(Q)) as the outcome profile induced by Q.

Let D ⊆ A, let (`d)d∈D ∈ N|D| be a profile of lengths, and let I be a partition of X

into |D| elements. Denote by ZX the set of triples (D, `, I). We say that an outcome

profile (D, `, I) ∈ ZX is implementable if there exists an inquiry Q ∈ QX that induces

this outcome profile, that is, (D, `, I) = Z(Q). The following lemma characterizes

implementable outcomes.

Lemma 3.3. An outcome profile (D, `, I) ∈ ZX is implementable if and only if∑
d∈D

2−`d = 1. (6)
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Observe that outcomes capture all we need to know to evaluate the DM’s expected

payoff. Indeed, suppose that two different inquiries Q and Q′ implement the same

outcome (D, `, I). Then, by (2), we have

W (Q;λ) = W (Q′;λ) =
∑
d∈D

∫
x∈Id

(
u(d, x)− λ`d

)
G(dx).

3.3. Optimal Inquiries. We have shown that, without loss of generality, an inquiry

can be summarized by an outcome (D, `, I) it induces. Moreover, Lemma 3.3 shows

that the partition of information I does not affect whether or not an outcome profile

if implementable. This characterization allows us to solve the optimal inquiry in two

stages. We first fix an arbitrary (D, `) that satisfies (6), and solve for the optimal I;

then, we maximize over all possible (D, `)’s.

In the first stage, taking (D, `) as given, we solve for the optimal action d ∈ D for

each state: under state x, the payoff net of the cognitive cost associated with action

d is given by u(d, x) − λ`d. Accordingly, for a given (D, `), let I∗d(D, `) be the set of

states where action d is the unique best-response action among all actions in D when

the DM takes into account the cost of inquiry associated with each action:

I∗d(D, `) =
{
x ∈ X : u(d, x)− λ`d > u(a, x)− λ`a for all a ∈ D − {d}

}
. (7)

Let I∗(D, `) = {I∗d(D, `)}d∈D. Note that I∗(D, `) is a partition of X, because, by

assumption (A3), the set
(⋃

d∈D I
∗(D, `)

)
−X has measure zero. The key observation

is that I∗(D, `) is the optimal information partition given (D, `), as the DM chooses

the unique best-response action for each state x ∈ X, except for a measure zero of

states.

Lemma 3.4. If (D, `, I) is the outcome of an optimal inquiry, then I is identical to

I∗(D, `) up to a measure zero set.

The second stage is the choice of (D, `). Let Z∗ be the set of all pairs (D, `) with D ⊆
A and ` satisfying (6). The DM chooses (D, `) ∈ Z∗, and the outcome is determined

by (D, `, I∗(D, `)). By Lemmas 3.2–3.4, we obtain the following characterization of

optimal inquiries.
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Theorem 3.2. An inquiry Q is a solution of (3) if and only if the pair (D(Q), `(Q))

is a solution of

max
(D,`)∈Z∗

∑
d∈D

∫
x∈I∗d (D,`)

(
u(d, x)− λ`d

)
G(dx). (8)

Because Z∗ is a finite set, and the expected utility is bounded for each d ∈ D by

assumption (A1), we establish the existence of optimal inquiry.

Corollary 3.1. An optimal inquiry exists.

We conclude this section by pointing out a useful property of optimal inquiry. Let

(D, `, I) be the outcome of an optimal inquiry. The optimal length profile ` is deter-

mined through the Huffman coding applied to the probability distribution {P(Id)}d∈D
over D. The algorithm follows a simple rule to generate a binary tree, using the prob-

abilities {P(Id)}d∈D as the input. To describe the algorithm, denote p0
d = P(Id) and

order the probabilities according to the their values. In the first stage, take the last

two, say, d1 and d2, and add up p1
{d1,d2} = p0

d1
+ p0

d2
; for other d 6= d1, d2, take p1

d = p0
d.

Next, we add up the least two values in p1
C ’s to obtain p2

C′ ’s. Then repeat the same

exercise for p1
C ’s. Note that at each stage, we obtain a distribution, pjC with the C’s

form a partition of D. in the end of the process, we obtain p
|D|−2
C1

and p
|D|−2
C2

, where

C1 ∪ C2 = D. The tree is then generated as follows. From the initial node we branch

into C1 and C2. Now, p
|D|−2
C1

is the sum of p
|D|−3

C′1
+ p

|D|−3

C′2
with C ′1 ∪ C ′2 = C1, and we

branch C1 into C ′1 and C ′2, and so on. This ends until we reach the singleton d’s and

those will be the terminal nodes. For each Id, the corresponding length is the length

of the path leading from the initial node to the terminal node corresponding to d. We

have the following proposition.

Proposition 3.1. If (D, `, I) is the outcome of an optimal inquiry, Then:

(a) ` is obtained from the Huffman coding w.r.t. the distribution {P(Id)}d∈D;

(b) for all d, d′ ∈ D, if `d < `d′, then P(Id) ≥ P(Id′).

According to Proposition 3.1, for any candidate consideration set D, the optimal

length profile ` is endogenously determined by the partition I∗(D, `). Moreover, deci-

sions that take longer to reach are less likely to be chosen. Since the information parti-

tions need to adjust with the length profile ` and vice versa, a fixed-point argument is

needed to determine the two jointly. The adjustment of the optimal categories reflect
13



a distortion coming from the cognitive cost, as compared to the standard Bayesian

analysis where the DM learns the state at zero cost, and then chooses the optimal

action in each state.

A positive cognitive cost brings about two effects. First, it may be optimal to have

a smaller consideration set than A. Second, the categories that are reached faster

under optimal inquiry have greater probabilities. So, the DM is willing to sacrifice the

precision in the sense of taking the precise action by enlarging the set of parameters

under which an action is taken with a shorter inquiry. This preference generates a

“bias” if we compare the categories thus generated to the ones that would be used by

a Bayesian DM. We examine these two effects in the following two sections.

4. Optimal Consideration Sets

Now we show that, as the cognitive cost increases, it is optimal for the DM to reduce

her consideration set, and the expected length of inquiry decreases.

Given an outcome Z = (D, `, I) ∈ ZX , let ¯̀(Z) be the expected length of inquiry:

¯̀(Z) =
∑
d∈D

`dP(Id).

We say that an inquiry with outcome Z is uniform if `d is the same for all d ∈ D.

That is the inquiry is uniform if it ends with the same number of questions for all

states of nature. Note that this can only happen if |D| = 2k for some k ∈ {0, 1, ...}.

Proposition 4.1. Given λ, let Zλ be the outcome of an optimal inquiry. Then:

(a) The average inquiry length ¯̀(Zλ) is decreasing in λ, and it strictly decreasing

in λ whenever Zλ is not uniform.

(b) There exist two thresholds λ2 > λ1 > 0 such that for all λ < λ1, the optimal

consideration set is Dλ = A; and for all λ > λ2, the optimal consideration set

is a singleton, |Dλ| = 1, and ¯̀(Zλ) = 0.

Proposition 4.1 gives the comparative statics result w.r.t. the cognitive cost. The

main trade-off faced by the DM is between more precise information induced by longer

inquiries and the cognitive cost. But more precise information is useful only if it leads

to differential actions that generate higher differential payoffs under different states of

nature. In contrast, if two actions are similar, it will not be worthwhile to differentiate
14



them. Formally, let δ(a′, a′′) measure how close actions a′ and a′′ are in the payoff

space:

δ(a′, a′′) = sup
x∈X
|u(a′, x)− u(a′′, x)|.

Proposition 4.2. When two actions are sufficiently close, then only one of them will

be in the optimal consideration set.

The literature, however, is also interested in the comparative statics w.r.t. the set of

actions A. In particular, a popular property is called “attention filter” (Masatlioglu et

al., 2012), and is defined as follows. Suppose that DM’s consideration set D is a strict

subset of A. Then, the attention filter property requires that, under a smaller action

set A′ that contains D, the optimal consideration set is still D. The following theorem

shows that this property holds under optimal inquiry.

Proposition 4.3. If (D, `, I) is the outcome for an optimal inquiry for A, then it is

also the outcome for an optimal inquiry for each A′ such that D ⊆ A′ ( A.

5. Endogenous Confirmation Biases

We have seen from the previous section that, under the optimal inquiry, it is optimal

for the DM to choose a consideration set and ask questions that would lead to decisions

in that set only. Together with the dynamic consistency result (Theorem 3.1), the DM

will never consider any action outside that set even if she can re-optimize at some point

in her inquiry. This may be interpreted as a form of confirmation bias in the extensive

margin, as the DM only searches for evidence to support decisions within the chosen

consideration set.

Now we turn to confirmation bias in the intensive margin. Namely, under a given op-

timal consideration set D ⊆ A, the DM searches for evidence to confirm the desirability

of the actions in D that are most likely to be optimal from ex ante perspective.

Given the consideration set D, consider what would have been the optimal partition

of X in case of costless information processing, λ = 0. This case corresponds to the

standard Bayesian analysis where the DM knows the state. Let IB be the optimal

information partition for a Bayesian DM (without the cost) when the set of feasible

actions given by D. Formally, for each d ∈ D, IBd = I∗d(D, `) as defined by (7) for any

`, with λ = 0. Note that, by (A2) and (A3), IBd has a nonempty interior for each d ∈ D.
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We define confirmation bias against the zero-cost benchmark, given the same con-

sideration set. To do so, let us order the actions in D, so D = {dk}|D|k=1, such that

P(Id1) ≥ P(Id2) ≥ ... ≥ P(IdK )

with a tie-breaking rule P(Idk) = P(Idk+1
) =⇒ `dk ≤ `dk+1

.
(9)

We have the following definition.

Definition 5.1. An inquiry Q with outcome (D, `, I) has confirmation bias if for every

order {dk}|D|k=1 that satisfies (9)⋃K

t=1
IBdk ⊆

⋃K

k=1
Idk all K = 1, ..., |D|, (10)

It has strict confirmation bias if (10) holds and there exists K ∈ {1, ..., |D|} such that(⋃K

k=1
Idk

)
−
(⋃K

t=1
IBdk

)
has nonempty interior. (11)

Note that the inclusion (10) implies probability ranking for each K ∈ {1, ..., |D|}:
K∑
k=1

P(Idk) ≥
K∑
k=1

P(IBdk). (12)

Moreover, because the distribution G has full support on X, strict confirmation bias

implies that (12) is strict for some K.

According to Definition 5.1, confirmation bias means that an outside observer would

conclude that the DM take the accumulative frequencies of the more likely actions

would be higher than those of a corresponding Bayesian DM with identical preferences

but has not cognitive cost. The reason for that to happen in our model is that the

DM optimally adjust her inquiry strategy to seek information that would confirm those

more likely actions.

The following theorem shows that all optimal inquiries have confirmation bias. Recall

that an inquiry with outcome (D, `, I) is uniform if the inquiry lengths `d are the same

for all d ∈ D.

Theorem 5.1. Every optimal inquiry has confirmation bias. Moreover, an optimal

inquiry has strict confirmation bias if and only if it is not uniform.

Theorem 5.1 then shows that the optimal inquiry would always prefer to confirm the

more likely actions, and strictly so whenever the inquiry is not uniform. This strictness
16



happens whenever the total number of categories is not a power of two, or, even when

it is, the probabilities of different categories are sufficiently heterogeneous.

This result has various implications. First, it shows that whenever the DM has

limited cognitive resources and prefers to minimize the use of them, she would bias

toward more ex ante more likely actions to obtain a simpler cognitive process. This

seems to match with the findings in the “tunnel vision” theory of wrongful convictions,

according to which the investigators would direct the instigation and process informa-

tion aiming at confirming ex ante more likely hypotheses (c.f., O’Brien (2009), Findley

and Scott (2006)). Similarly, papers that study misdiagnoses find that doctors often

have bias toward more likely conditions and inquire along the line to confirm those

hypotheses (c.f. Croskerry (2013)). Our theory then provides a potential explanation

based on costly cognition for such phenomena.

Appendix A. Proofs

A.1. Proof of Theorem 3.1. To prove Theorem 3.1, we use the results presented in

Sections 3.2 and 3.3.

Let Q∗ = 〈N, T, σ, χ, d〉 be an optimal inquiry, and let Z∗ = (D∗, `∗, I∗) be the

outcome implemented by Q∗. By Lemma 3.2, D∗ = T . By Lemma 3.4, for each

d ∈ D∗, category I∗d is given by (7). To simplify notation, let Xn = In(Q∗) for each

n ∈ N . By Lemma 3.1,

P(Xn) > 0 for all n ∈ N . (13)

Fix a node n ∈ N . Let Tn ⊂ T be the set of terminal nodes that can be reached

from n under Q∗. Note that if n is terminal (that is, if n ∈ T ), then Tn = {n}. Let

`n(Q∗) be the length of the path from no to n. Let Q∗n be the sub-inquiry at n induced

by the optimal inquiry Q∗. Conditional on reaching n, the DM’s expected payoff from

a sub-inquiry Q̂ = 〈N̂ , T̂ , σ̂, χ̂, d̂〉 ∈ QXn is given by

Wn(Q̂;λ) =
1

P(Xn)

∑
t∈T̂

∫
x∈It(Q̂)

u(d̂t, x)− λ`t(Q̂)

G(dx|Xn), (14)

where {It(Q̂)}t∈T̂ is a partition of Xn induced by Q̂, and `t(Q̂) is the length of inquiry

beginning from node n and terminating at node t ∈ T̂ . Recall that Q∗n is the sub-

inquiry at n that prescribes to follow the optimal inquiry Q∗, so the DM’s expected

payoff from Q∗ conditional on reaching n is given by (14) with Q̂ = Q∗n.
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Let us prove (4). Clearly, Wn(Q∗n;λ) ≤ maxQ̂∈Q(Xn) Wn(Q̂;λ). Suppose by contra-

diction that this inequality is strict. That is, there is a deviation Q̂ ∈ Q(Xn) in node

n such that Wn(Q∗n;λ) < Wn(Q̂;λ), or equivalently, by (14),

∑
t∈Tn

(∫
x∈It(Q∗n)

u(dt, x)− λ`t(Q∗n)

)
G(dx|Xn)

<
∑
t∈T̂

(∫
x∈It(Q̂)

u(d̂t, x)− λ`t(Q̂)

)
G(dx|Xn). (15)

Let T̃ = (T − Tn) ∪ T̂ , and construct an outcome Z̃ = (Ĩt, ˜̀
t, d̃t)t∈T̃ as follows:

(Ĩt, ˜̀
t, d̃t) =

(It(Q
∗), `t(Q

∗), dt), for each t ∈ T − Tn,

(It(Q̂), `n(Q∗) + `t(Q̂), d̂t), for each t ∈ T̂ .

By construction, Z̃ is an implementable outcome by an inquiry in QX . Namely, inquiry

Q̃ that implements Z̃ is obtained from Q∗ by replacing the branch that follows node n

with Q̂. Then, we have

W (Q̃;λ)−W (Q∗;λ) = P(Xn)
(
Wn(Q̂;λ)−Wn(Q∗n;λ)

)
= P(Xn)

∑
t∈T̂

(∫
x∈It(Q̂)

u(dt, x)− λ(`n(Q∗) + `t(Q̂))

)
G(dx|Xn)

−
∑
t∈Tn

(∫
x∈It(Q∗n)

u(d∗t , x)− λ`t(Q∗)
)
G(dx|Xn)

]
> 0.

The first equality is by definition of W and that Q̃ and Q∗ differ only in the branch at

node n. The second equality is by definition of Wn and the fact that the total length

of path from no to t under Q̃ is the sum of the length from no to n under Q∗ and the

length from n to t under Q̂. The inequality is by (13) and (14). Thus, we reached a

contradiction to the assumption that Q∗ is optimal. �

A.2. Proof of Lemma 3.1. Let Q be an optimal inquiry. By contradiction, let n′ ∈ N
be a node that is reached with probability zero, but all the predecessors are reached

with positive probability. Let n be the immediate predecessor of n′, and let n′′ be

the second successor of n. Consider now a new inquiry Q̂ obtained by modifying Q

as follows. The question at node n and the entire branch following n′ are removed.

Instead, upon reaching node n, the inquiry Q̂ will follow the branch of Q starting
18



from the node n′′. Clearly, every terminal node t ∈ T that is reached with positive

probability under Q is reached with the same probability under Q̂, and the DM’s

expected payoff conditional on reaching any such node is unchanged. But the length

of inquiry for the terminal nodes in the branch that starts from n′′ is shorter under Q̂.

This contradicts the optimality of Q. �

A.3. Proof of Lemma 3.2. To prove Lemma 3.2, we use the following three claims.

Claim A.1. Let (N, T, σ) be a binary tree with a set of nodes N , a set of terminal

nodes T ⊂ N , and a successor function σ. For each t ∈ T , let `t be the length of the

path from the root to t. Then
∑

t∈T 2−`t = 1.

Proof. This claim directly follows from Theorem 5.2.1. in Cover and Thomas (2006)

and its proof. As in that proof, one can convert an instantaneous code into a binary

so that the lengths of paths to the terminal nodes correspond exactly to the codeword

lengths. We have an equality here instead of inequality because in our inquiry tree

every non-terminal node branches down to two further nodes. �

Claim A.2. Let K ≥ 1. If ` = (`1, ..., `K+1) ∈ NK+1 satisfies
∑K+1

k=1 2−`k = 1, then

there exists `′ = (`′1, ..., `
′
K) ∈ NK such that `′k ≤ `k for all k = 1, ..., K, `′k0

< `k0 for

some k0 ∈ {1, ..., K}, and
∑K

k=1 2−`
′
k = 1.

Proof. Without loss of generality assume that `1 ≤ · · · ≤ `K+1. It follows that `K =

`K+1; for otherwise the terminal node corresponding to `K+1 must be the only successor

of its predecessor. Let `′k = `k for k = 1, ..., K − 1 and let `′K = `K − 1. Thus,

K∑
k=1

2−`
′
k =

K−1∑
k=1

2−`k + 2−`
′
K =

K−1∑
k=1

2−`k + 2−`K+1 =
K+1∑
k=1

2−`k = 1,

where the second last inequality follows from the fact that `K = `K+1. �

Claim A.3. Let I = {Ik}Kk=1 be a partition of X into K elements, let D = {d1, ..., dK} ⊂
A, and let ` = (`1, ..., `K) ∈ NK be a length profile such that

K∑
k=1

2−`k = 1. (16)

Then, there exists an inquiry Q = 〈N, T, σ, χ, d〉 with a set T = {t1, ..., tK} of terminal

nodes such that

Itk(Q) = Ik and `tk(Q) = `k for all k = 1, ..., K. (17)
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Proof. By Theorem 5.2.1. in Cover and Thomas (2006) (with the argument as in the

proof of Claim A.1 that translate instantaneous codes into binary trees), (16) implies

that there exists a finite binary tree with a set of nodes N and a successor relation

over N , with K terminal nodes labeled t1, ..., tK , such that, for each k = 1, ..., K, the

length of the path from the root to each terminal node tk is exactly `k.

We now construct an inquiry Q = 〈N, T, σ, χ, d〉 that satisfies (17). Let N be as

above, and let T = {t1, ..., tK}. For each nonterminal node n ∈ N − T , let us asso-

ciate two edges leading out of n with true and false, and define the map σ so that

σ(n, true) = ntrue if n ntrue along the edge labelled true and σ(n, false) = nfalse if

n nfalse along the edge labelled false. Let decision rule d be given by the choice of

dk in terminal node tk for each k = 1, ..., K.

It remains to construct a proposition mapping χ that yields the partition I in the

terminal nodes. First, we associate each node in N with a set, In(Q), as follows. For

each k = 1, ..., K, let Itk(Q) = Ik. Then, by backward induction, for each nonterminal

node n ∈ N−T , let In(Q) = Iσ(n,true)(Q)∪Iσ(n,false)(Q). This implies that Ino(Q) = X

at the root no, since {Ik}Kk=1 is a partition.

Finally, define a proposition map χ as follows. For each nonterminal node n ∈ N−T ,

let χ(n) = Iσ(n,true)(Q). By induction from the root of the tree, it is straightforward

to verify that χ satisfies (1), so, for each n ∈ N , In(Q) is indeed the information set

induced by Q at node n. �

We now prove Lemma 3.2. Let Q = 〈N, T, σ, χ, d〉 be an optimal inquiry. Suppose,

by contradiction, that dt′ = dt′′ for some t′, t′′ ∈ T with t′ 6= t′′. Let K = |T | − 1, and

let us label the terminal nodes consecutively, T = {t1, ..., tK , tK+1}, such that tK = t′

and tK+1 = t′′.

Now we construct an alternative inquiry, Q′ = (N ′, T ′, σ′, χ′, d′), with |T ′| = K

terminal nodes that leads to a strictly higher expected value to the DM. Let

I ′k = Itk(Q) for each k = 1, ..., K − 1, and I ′K = ItK (Q) ∪ ItK+1
(Q), (18)

and let

d′k = dtk for each t = 1, ..., K.
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Now, by Claim A.1, we have
∑K+1

k=1 2−`tk (Q) = 1. By Claim A.2, there exists `′ ∈ NK

such that

`tk(Q) ≤ `′k for all k = 1, ..., K, `tk(Q) < `′k for some k ∈ {1, ..., K}, (19)

and
∑K

k=1 2−`
′
k(Q) = 1. By Claim A.3 applied to I ′ = {I ′k}Kk=1, `′ = (`′1, ..., `

′
K), and

d′ = (d′1, ..., d
′
K), there exists an inquiry Q′ = 〈N ′, T ′, σ′, χ′, d′〉 with T ′ = {t1, ..., tK}

such that

I ′tk(Q′) = I ′k and `′tk(Q′) = `′k for all k = 1, ..., K. (20)

Thus, we obtain

W (Q′;λ) =
K∑
k=1

∫
Itk (Q′)

(u(d′k, x)− λ`′tk(Q′))G(dx) =
K∑
k=1

∫
I′k

(u(d′k, x)− λ`′k)G(dx)

>
K+1∑
k=1

∫
Itk (Q)

(u(dtk , x)− λ`tk(Q))G(dx) = W (Q;λ),

where the first and last equalities are by (2), the second equality is by (20), and the

inequality is by (18), (19), and that, by Lemma 3.1, all the terminal nodes in T are

reached with positive probability under Q. �

A.4. Proof of Lemma 3.3.

Necessity. Suppose that an outcome profile (D, `, I) is implementable by an inquiry

Q = 〈T,N, σ, χ, d〉. Let (D, `, I) = (T, `(Q), I(Q)). By Lemma 3.2, D ⊂ A, and, by

Claim A.1, (D, `) satisfies (6).

Sufficiency. Immediate by Claim A.3. �

A.5. Proof of Lemma 3.4. Let (D, `) be given. For any partition I = {Id : d ∈ D},
let

W (I;D, `) =
∑
d∈D

∫
Id

[u(d, x)− λ`d]G(dx).

Now, by (7), for any I and any d ∈ D, if x ∈ I∗d(D, `) ∩ Id′ with d 6= d′ then

[u(d, x)− λ`d] > [u(d′, x)− λ`d′ ].
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Thus, since P(X − ∪d∈DI∗d) = 0 by (A3) and the fact that G has full support,

W (I∗;D, `)−W (I;D, `)

=
∑
d,d′∈D

∫
I∗d∩Id′

{[u(d, x)− λ`d]− [u(d′, x)− λ`d′ ]}G(dx)

−
∑
d∈D

∫
Id∩(X−∪d∈DI∗d )

[u(d, x)− λ`d]G(dx)

=
∑

d6=d′∈D

∫
I∗d∩Id′

{[u(d, x)− λ`d]− [u(d′, x)− λ`d′ ]}G(dx) ≥ 0,

and the inequality is strict if P(I∗d ∩Id′) > 0 for some d 6= d′. This proves the result. �

A.6. Proof of Theorem 3.2. By Lemma 3.4, if (D, `, I) is the outcome of an optimal

inquiry, then W (I;D, `) = W (I∗;D, `). To be optimal, it then must solve (8).

A.7. Proof of Proposition 3.1. (a) If (D, `) solves (8), given the partition, the length

profile must deliver the lowest average length and hence must be given by Huffman

coding.

(b) Let Z = (D, `, I) be the outcome of an optimal inquiry. First we show that if

`d < `d′ , then P(Id) ≥ P(Id′). Suppose, by contradiction, that P(Id) < P(Id′). Now, let

`′d = `d′ and `′d′ = `d, and keep other outcomes unchanged. Note that the new outcome

still satisfies (6) and hence can be induced by some inquiry. But now

[P(Id)`
′
d + P(Id′)`

′
d′ ]− [P(Id)`d + P(Id′)`d′ ] = [P(Id)`d′ + P(Id′)`d]− [P(Id)`d + P(Id′)`d′ ]

= −[P(Id′)− P(Id)](`d′ − `d) < 0.

Thus, the new inquiry decreases the average length but keeps the utilities unchanged.

This is a profitable deviation and a contradiction to the optimality of the original

inquiry. �

A.8. Proof of Proposition 4.1. Let λ1 < λ2. Let Qλj be an optimal inquiry for

j = 1, 2. We show that ¯̀(Qλ1) ≥ ¯̀(Qλ2), and that D(Qλ1) cannot be a strict subset of

D(Qλ2)

By the optimality of Qλj given λj, for each j = 1, 2, we have

ū(Qλ1)− λ1
¯̀(Qλ1) ≥ ū(Qλ2)− λ1

¯̀(Qλ2)

ū(Qλ2)− λ2
¯̀(Qλ2) ≥ ū(Qλ1)− λ2

¯̀(Qλ1).
22



Combining these inequalities yields

λ1

(
¯̀(Qλ1)− ¯̀(Qλ2)

)
≤ ū(Qλ1)− ū(Qλ2) ≤ λ2

(
¯̀(Qλ1)− ¯̀(Qλ2)

)
(21)

Thus, by (21) we have ¯̀(Qλ1) ≥ ¯̀(Qλ2) whenever λ1 < λ2.

Clearly, for λ sufficiently large, the benefit from more information does not justify any

inquiry and hence optimal Q is the degenerate one. Now we prove that for sufficiently

small λ we have optimal D = A. Clearly, for any D ( A and any ` for D satisfying

(6), W (D, `; 0) < W (A, `∗; 0), where `∗ is obtained from the Hufffman coding with the

distribution (pBk )Kk=1. Since W is continuous in λ, for sufficiently small λ the inequality

still holds strictly. By (8) optimal inquiry has D = A. �

A.9. Proof of Proposition 4.2. Let (D, `, I) be the outcome of an optimal inquiry

Q. Suppose that δ(a′, a′′) < λ for some a′, a′′ ∈ A. Suppose by contradiction that

a′, a′′ ∈ D. There are two cases.

Case 1. Suppose that `a′ 6= `a′′ . W.l.o.g., let `a′ < `a′′ . By Lemma 3.4 and assump-

tion (A3), a′ ∈ D implies that the set

Ia′ = {x ∈ X : u(a′, x) > u(a, x)− λ(`a′ − `a) for all a ∈ D − {a′}} (22)

has nonempty interior. Therefore, because a′′ ∈ D, we must have

u(a′, x) > u(a′′, x)− λ(`a′ − `a′′) ≥ u(a′′, x) + λ for each x ∈ I∗a′ ,

where the first inequality is by (22), and the second inequality is because `a′ < `a′′ and

both `a′ and `a′′ are integers. This contradicts the assumption that δ(a′, a′′) < λ.

Case 2. Suppose that `a′ = `a′′ . Consider an inquiry Q̂ with the outcome (D̂, ˆ̀, Î)

given by D̂ = D − {a′′}, ˆ̀
a′ = `a′ − 1, ˆ̀

a = `a for all a ∈ D − {a′}, Îa′ = Ia′ ∪ Ia′′ ,
and Îa = Ia for all a ∈ D − {a′}. In words, Q̂ is the same as Q except that Q̂ merges

actions a′ and a′′ and removes the question that distinguishes these actions. Because

`a′ = `a′′ = ˆ̀
a′ + 1, (23)

we obtain 2−`a′ + 2−`a′′ = 2−`a′ . Since
∑

d∈D 2−`d = 1, we obtain that

∑
d∈D̂

2−
ˆ̀
d =

 ∑
d∈D̂−{a′}

2−
ˆ̀
d

+ 2−
ˆ̀
a′ =

 ∑
d∈D−{a′,a′′}

2−`d

+ 2−`a′ + 2−`a′′ = 1.
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Thus, by Lemma 3.3, there exists an inquiry Q̂ constructed as above. As Q and Q̂

differ only for x ∈ Ia′ ∪ Ia′′ , we obtain

W (Q̂;λ)−W (Q;λ) =

∫
Ia′

(
(u(a′, x)− λˆ̀

a′)− (u(a′, x)− λ`a′)
)
G(dx)

+

∫
Ia′′

(
(u(a′, x)− λˆ̀

a′)− (u(a′′, x)− λ`a′′)
)
G(dx)

=

∫
Ia′

λG(dx) +

∫
x∈Ia′′

(
u(a′, x)− u(a′′, x) + λ

)
G(dx)

> 0,

where the first equality is by (??), the second equality is by (23), and the inequal-

ity is because δ(a′, a′′) < λ and Ia′ ∪ Ia′′ has nonempty interior. We thus obtain a

contradiction to the optimality of Q. �

A.10. Proof of Proposition 4.3. Let (D, `, I) be the outcome of an optimal inquiry

such that D ⊆ A′ ( A. It is immediate by Theorem 3.2 that the DM’s maximal

expected payoff when restricted to A′ is attained by the same outcome. �

A.11. Proof of Theorem 5.1. Let (D, I, `) be an outcome of an optimal inquiry. By

(A2) and (A3), for each d ∈ D, the set

IBd = {x ∈ X : u(d, x) > u(d′, x) for all d′ ∈ D − {d}}

has nonempty interior.

Let K̄ = |D|, and let d1, ..., dK̄ be an order of actions in D that satisfies (9). By

Proposition 3.1b, P(Idk) > P(Idk+1
) implies `dk ≤ `dk+1

. Thus we have

`d1 ≤ `d2 ≤ ... ≤ `dK̄ . (24)

For each k and K such that 1 ≤ k ≤ K ≤ K̄, we have

IBdk =
{
x ∈ X : u(dk, x) > u(dm, x) ∀m ∈ {1, ..., K̄}, m 6= k

}
⊆
{
x ∈ X : u(dk, x) > u(dm, x) for all m ∈ {K + 1, ..., K̄}

}
(25)

⊆
{
x ∈ X : u(dk, x) > u(dm, x)− λ(`dm − `dk) for all m ∈ {K + 1, ..., K̄}

}
,

where the equality is by definition of IBdk = I∗dk(D, 0), the first inclusion is because the

constraint for x ∈ X is weaker, and the second inclusion is because `dm ≥ `dk by (24),
24



so the constraint for x ∈ X is weaker. Next, observe that

K⋃
k=1

{
x ∈ X : u(dk, x) > u(dm, x)− λ(`dm − `dk) for all m ∈ {K + 1, ..., K̄}

}
=

K⋃
k=1

Idk ,

because the left-hand side is the set of all x where at least one of the actions in {1, ..., K}
is strictly better than all actions in {K + 1, ..., K̄}, and the right-hand side is the same

expression by definition of Idk = I∗dk(D, `). Thus, taking the union over k = 1, ..., K in

(25), we obtain that (10) holds.

Suppose that the inquiry is not uniform, that is, there exist K and m with K < m

such that `dK < `dm . Then, the second inclusion in (25) is strict for all k ≤ K, because

λ > 0 and, by (24), `dm − `dk ≥ `dm − `dK > 0. Moreover, by (A3), the difference

between the third and second line in (25) has nonempty interior. Thus, taking the

union over k = 1, ..., K in (25), we conclude that (11) holds for the specified K. �
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