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1 Introduction

In over-the-counter (OTC) markets, investors solicit quotes from dealers and have the flexibility to accept,

reject, or negotiate the offers they receive. Typically, the trading protocols used do not provide anonymity,

meaning both parties involved in the transaction are aware of each other’s identities. This characteristic of

OTC markets enables the formation of long-term trading relationships, as investors can freely select their

preferred counterparties.1 Empirical evidence supports this notion, with several studies finding that market

participants maintain persistent relations with a limited number of trading partners (e.g., Hendershott, Li,

et al. 2020). However, this behavior contrasts with a common assumption in search-theoretic models of OTC

markets, which posits that interactions with dealers are short-lived. Since stronger relationships correlate

with tighter spreads (Di Maggio, Kermani, and Song 2017) and reduced trading delays (Afonso, Kovner,

and Schoar 2013), their omission from conventional theories of OTC markets neglects a dimension of trade

that is known to impact the objects of study of such theories.

The key contribution of this paper is to introduce trading relationships in a market where opportunities

to trade an asset occur infrequently and terms of trade are negotiated bilaterally. The model is closely

based on that of Lagos and Rocheteau (2009). Meetings between investors and dealers originate according

to a random search technology, but in contrast to Lagos and Rocheteau (2009), the meetings are long-

lived. This formalization of relationships is similar in spirit to worker-firm relationships in Mortensen and

Pissarides (1994). Importantly, this type of meeting arrangement enables repeated trade between an investor-

dealer pair. Effectively, relationships give investors the ability to temporarily bypass search frictions that

are associated with finding a counterparty. By allowing investors to contract with dealers over a long-term

horizon, they obtain a form of liquidity insurance: a payment in exchange for the right to trade continuously.

I use this framework to study the role relationships play in shaping conventional measures of market liquidity.

I find that the stability (longevity) of trading relationships has important implications for market liquidity,

as measured by volume and transaction costs. When trading relationships become longer-lived, the volume

of trade increases monotonically, and transaction costs decline. These liquidity improvements are twofold.

First, on the extensive margin, stable relationships mechanically increase trading volume by providing more

investors with the opportunity to trade. Less obviously, a second effect arises from the intensive margin.

Because investors can contract with dealers over a long-term horizon, relationships mitigate a ‘hold-up’

problem.2 In Lagos and Rocheteau (2009), whenever an investor trades, it is never with the same dealer that

she acquired her current asset holdings from. Thus, any portfolio investment made by the investor cannot

yield gains from trade with the current dealer with which she is bargaining. Furthermore, since the investor

does not appropriate the entire surplus generated from her investment, given the next dealer she meets will

1In many platforms, such as MarketAxess’ Open Trading product, investors looking to send a Request For Quote (RFQ)
to dealers have the option to send non-anonymous RFQ’s to those dealers with whom they have existing relationships, or
anonymous RFQ’s to all other dealer’s participating in the market.

2For a discussion on how long term contracts can address the hold-up problem described in Goldberg (1976), refer to Klein,
Crawford, and Alchian (1978).
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have some bargaining power, the investor under-invests by trading in smaller quantities. In my model, since

investors make the portfolio investment with the same dealer with whom they bargain and generate surplus

with, the hold-up problem is not as severe. This leads to more extreme asset positions, larger trade volume,

and lower fees per unit of the asset traded.

To understand how dealers incentives to provide intermediation are influenced by the stability of relation-

ships, I consider the free entry of dealers. I show that more stable relationships can not only eliminate a

potential multiplicity of equilibria but also generate a unique steady-state equilibrium with more favorable

liquidity properties —such as more participating dealers, higher trade volume, and lower fees. The mecha-

nism at work is that of Lagos and Rocheteau (2007). By making the contact rate a function of the measure

of participating dealers, two countervailing forces generate a multiplicity of equilibria. First, as more dealers

enter, the expected profits of any one dealer decline as a result of increased competition. The second effect

is that as the number of dealers increases, the meeting rate of investors rises, prompting them to trade in

larger quantities. These larger trades tend to produce more surplus which increases the expected profits

of dealers. For any given level of participation, making relationships more stable increases the expected

fees those participating dealers will receive. It means that ceteris paribus, longer-lived relationships provide

greater incentives for dealers to enter.

I expand the baseline environment by introducing the coexistence of spot trading into the model and find

that spot transactions are more costly for investors as opposed to trading via relationships. Furthermore, I

show that under plausible parametric choices, average intermediation fees for spot transactions can decline

as relationships are more unstable which is in contrast to the behavior of trading fees in the baseline envi-

ronment. This feature of my model is able to generate non-monotone patterns for market-wide measures

of transaction costs and trade volume which highlights a potential trade-off between improving liquidity for

spot transactions at the expense of relationship traders. It suggests that depending on the composition and

structure of a given market, certain policies that affect relationship stability can yield differential outcomes

for market liquidity.

Lastly, I endogenize the formation and destruction of trading relationships by introducing a heterogeneous

flow cost associated with maintaining a relationship. This extended model is solved numerically and cali-

brated using data moments from the inter-dealer municipal bond market. To quantify the value of trading

relationships within this market, I shut down the ability of investors to form relationships. Through this

exercise, I find that the absence of trading relationships leads to a 40% increase in spreads, coupled with a

9% decrease in trading volume.

1.1 Empirical Evidence of Trading Relationships

Certain asset classes are inherently unfit for continuous all to all trading. Bonds, derivative instruments,

and unsecured loans all have idiosyncratic properties such as credit risk, lot size, and expiration dates

that make them particularly difficult to standardize. As a result, these non-fungible assets often trade in
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decentralized, fragmented markets where each trade is bilaterally negotiated between a buyer-seller pair.

Investors are generally limited in the number of dealers they can feasibly contact for quotes. Bessembinder

and Maxwell (2008) document that quoted prices from dealers in the corporate bond market are firm “as

long as the breath is warm”, implying that investors only ever get to sample a subset of the market before

quotes are rendered obsolete.

Since investors in OTC markets need to search over a potentially large pool of counterparties in order to

fulfill their trading needs, associated delays arising from market fragmentation pose a challenge from a risk

management standpoint; Investors need the ability to offload or onboard assets quickly to satisfy liquidity

and hedging requirements (Hendershott, Li, et al. 2020). In practice, it is found that relationships are often

used as a mechanism to fulfill liquidity needs both in normal times (Afonso, Kovner, and Schoar 2013; Riggs

et al. 2020; Han, Nikolaou, and Tase 2022) and in times of crisis (Di Maggio, Kermani, and Song 2017).

Investors not only find assets more readily with their relationship counterparties, those with whom prior

relations already exist, but also do so at better prices.3

Finding quality assets at reasonable prices remains a time consuming and costly process in decentralized

environments. It comes as no surprise then that empirical studies have found the existence of either a core-

periphery network structure or the presence of long-term bilateral relationships, if not both, in virtually all

OTC asset markets.4 In an effort to economize on informational or search frictions, investors build trading

relationships to provide a form of liquidity insurance. In this way, relationships act as a tool for investors to

limit uncertainty around asset purchases and help them to circumvent costly trading delays.

1.2 Related Literature

This paper contributes to an extensive theoretical literature that seeks to understand the role of search

frictions on liquidity in OTC markets. Duffie, Gârleanu, and Pedersen (2005) (DGP hereafter), although

not the first to study bid-ask spreads or decentralized asset markets (e.g., Amihud and Mendelson 1980;

Rubinstein and Wolinsky 1987), are the first to show that endogenous bid-ask spreads arise naturally as a

result of trading frictions and depend critically on investors’ outside options. This approach is a departure

from earlier literature using dealer inventory considerations or asymmetrically informed investors to explain

bid-ask spreads. While stylized, the model of DGP captures two key features of OTC markets which are

present in my model as well: bilateral meetings and bargaining over prices. The framework is extended in a

number of ways to provide explanations for many relevant empirical features of decentralized asset markets.5

Most relevant to this paper, Lagos and Rocheteau (2009) (LR hereafter) expand the economic setting of

3There exists ample evidence of this phenomenon in the market for federal funds such as in Ashcraft and Duffie (2007),
Cocco, Gomes, and Martins (2009), Afonso, Kovner, and Schoar (2013), Bräuning and Fecht (2017), but also for longer term
lending markets as in Li (2021) and even in the corporate bond market as documented by Di Maggio, Kermani, and Song
(2017).

4See for example Li and Schürhoff (2019) (municipal bonds), Hollifield, Neklyudov, and Spatt (2017) (ABS), Han, Nikolaou,
and Tase (2022) (triparty repos), Iercosan and Jiron (2017) (CDS), Di Maggio, Kermani, and Song (2017) (corporate bonds),
Afonso, Kovner, and Schoar (2013) (federal funds).

5See Weill (2020) for a comprehensive review of the search based literature on OTC markets.
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DGP by allowing for unrestricted asset holdings and more general investor preferences. This more general

economic setting provides a new channel through which investors can bypass search frictions, namely, their

portfolio size. LR show that the resulting asset dispersion and so called liquidity hedging behavior by investors

is a key determinant of market liquidity. This dimension of portfolio choice is present in my model as well.

Whereas LR focus exclusively on one-time, spot transactions, I build on their framework and consider the

existence of repeated trade between investors and dealers in long-term matches.

Zhang (2018) considers repeat trades between investor-dealer pairs in an environment with private val-

uations. They show that dealer’s screening behavior can lead to liquidity distortions even if investors do

not face severe search frictions given the existence of trading relationships. My model differs in that the

degree to which relationships are unstable generates liquidity distortions in its own right without the need

for asymmetric information. The liquidity distortion in Zhang (2018) is obtained via the breakdown of trade

that occurs as a result of asymmetric information. In contrast, the liquidity distortion in my model is real-

ized directly through the degree of relationship instability which affects transaction costs and trade volume

through the endogenous trade sizes.

There exists a complementary strand of papers on OTC markets that are interested in studying the

formation of networks.6 This literature shares a common element with my paper in that it acknowledges that

trade is not fully random but instead occurs via repeated interactions with the same counterparties. As an

example, Sambalaibat (2019) endogenously generates trading networks by allowing for ex-ante heterogeneous

investors to choose which dealers to form relationships with. The relationships in the model lack a long-term

component since by assumption, they consist of a bond purchase and a sale back to the same dealer, but

the relationship is over after the round trip trade is completed. In contrast, I allow for investors to trade

multiple times with dealers which is more consistent with the idea of a trading relationship. Furthermore,

while Sambalaibat (2019) can explain the persistent interdealer trading links present in many OTC markets,

nothing can be said about the stability of investor-dealer relationships as evidenced in Li and Schürhoff

(2019). On the other hand, I study precisely the effects of relationship stability on market liquidity.

Relationships have also been studied extensively in alternative economic environments such as banking,

credit arrangements, and labor (e.g., Chiu, Eisenschmidt, and Monnet 2020; Bethune et al. 2022; Mortensen

and Pissarides 1994). In the case of labor market models, a key difference with my paper is that a worker’s

labor, the analogue of the asset in my paper, is not re-traded. In my model, investors’ need to trade the

asset multiple times drives inefficiencies through a hold-up problem with dealers, which is partially mitigated

by relationships. This source of inefficiency is not present in most models of labor markets. Bethune et al.

(2022) construct a model of corporate lending where entrepreneurs must form relationships with banks in

order to secure external financing from suppliers of capital. The relationships between entrepreneurs and

banks serve as a technology to circumvent the breakdown of trade arising from commitment problems. The

6See for example Malamud and Rostek (2017), Babus and Hu (2017), Chang and Zhang (2021), Hendershott, Li, et al.
(2020), Wang (2017).
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relationships in my model are a technology that saves on search costs, whereas the relationships in Bethune

et al. (2022) are technologies that improve credibility.

2 Environment

Time is continuous and the horizon infinite. There are two types of infinitely-lived agents: a unit measure

of investors and a unit measure of dealers. There is one asset and one perishable good, which I use as a

numéraire. The asset is durable, perfectly divisible, and in fixed supply, A ∈ R+. The numéraire good

is produced and consumed by all agents. The instantaneous utility function of an investor is ui(a) + c,

where a ∈ R+ represents the investor’s asset holdings, c ∈ R is the net consumption of the numéraire good

(c < 0 if the investor produces more than she consumes), and i ∈ {1, ..., I} ≡ I indexes a preference shock.

The utility function ui(a) is strictly increasing, concave, continuously differentiable and satisfies the Inada

condition that u′
i(0) = ∞. Investors receive idiosyncratic preference shocks that occur with Poisson arrival

rate λ. Conditional on the preference shock, the investor draws preference type i with probability πi, and∑I
i=1 πi = 1. These preference shocks capture the notion that investors value the services provided by the

asset differently over time, and will generate a need for investors to periodically change their asset holdings.

The instantaneous utility of a dealer is simply c. All agents discount at the same rate r > 0.

There is a competitive market for the asset. Dealers can continuously buy and sell in this market at price

p, while investors can only access through a dealer. I assume that investors and dealers can form lasting

relationships. Hence, investors are either matched (connected) or unmatched (unconnected). An unmatched

investor forms a relationship with a dealer according to a Poisson process with arrival rate α. Once the

investor and the dealer have made contact, they negotiate the terms of a long term contract that specifies

the quantity of assets that the dealer will acquire (or sell) in the market on behalf of the investor, conditional

on the history of preference shocks of the investor, and the discounted sum of the intermediation fees that

the investor will pay the dealer for their services. A relationship is destroyed at rate δ.

3 Equilibrium

I focus on steady-state equilibria where the asset price and the distribution of investors across states are

constant through time.

3.1 Bargaining

Long term trading relationships are made explicit by a contract specifying two components. The first is a

path of assets the dealer will acquire for the investor during the relationship, conditional on the investor’s

idiosyncratic history of preference types, for all possible histories. This object is best thought of as an asset

rule that assigns for any history of preference types an according asset position. Therefore, it is possible to

define a desired asset path as a mapping from the partial histories of preference types whilst in a relationship
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into a time path of asset positions. Let t0 denote the time a relationship is formed. Define the partial

history of investor preference types from the time a relationship is formed up to time t as the time path

it = {i(t0), . . . , i(t)}. We can define the mapping a : it 7−→ at ∀t where at is the optimal steady state asset

position of an investor at time t and a is the resulting asset path. An investor-dealer pair will bargain over

the asset path acquired for the investor by the dealer during the course of the relationship. It is assumed the

dealer can commit to providing assets to the investor in the future. The second component of the contract

is an expected discounted sum of intermediation fees, Φ, paid to the dealer for his services.

Terms of the contract are determined by the generalized Nash bargaining Solution. The problem of an

investor-dealer pair is given by

max
a,Φ

[Vi(a0,a)−Wi(a0)− Φ]1−ηΦη

where Vi(a0,a) is the utility of a matched investor before the discounted sum of fees are paid to the dealer

when the investor has preference type i, initial asset holdings a0, and holds an asset path a throughout the

relationship. Wi(a0) is the value of being unmatched with portfolio a0. Dealers’ bargaining power is η. The

solution to the bargaining problem is given by the following equations

a = argmax
a′

{
Vi(a0,a

′)−Wi(a0)
}

(1)

Φi(a0) = η[Vi(a0,a)−Wi(a0)]. (2)

As a result of preferences that are linear in the numeraire, the outcome of Nash bargaining will be such

that the asset path maximizes the joint surplus of a long-term relationship and the discounted sum of

intermediation fees splits the surplus created by the match according to the dealer’s bargaining power.

3.1.1 Bargaining Without Dealer Commitment

I provide strategic foundations to the axiomatic solution discussed in the previous section and consider

a bargaining approach that does not require the assumption of dealer commitment. I view the trading

relationship as a sequence of alternating offer games with discounting and exogenous risk of breakdown, in

the spirit of Rubinstein (1982), between an investor and a dealer. An investor-dealer pair only interact at

discrete points in time. A proposal made by either agent consists of an asset position for the investor and

an intermediation fee paid to the dealer. The receiver of the offer is free to accept or reject the proposed

contract. In the case where an offer is accepted, the players remain matched but the bargaining game ends

and both players receive their according payoffs. I assume counteroffers take time. In the case of rejection,

the game continues on unless either a preference shock is received, after which I assume a new bargaining

game begins, the relationship is destroyed or a new counterparty is found.

I find that taking the limit as counteroffer speeds approach zero yields investor asset demands that are

identical to those obtained by Nash bargaining.7 Thus, dealer commitment is not requisite to sustain asset

7The two asset positions are identical up to some transformation. I only require that the ratio of counteroffer speeds in the
alternating offer game equals the ratio of bargaining powers used in Nash bargaining.
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allocations that maximize the joint surplus of a relationship. Furthermore, the strategic approach yields

per-trade intermediation fees that can be used in supplement to the discounted sum of fees in my analysis.

For further details on the case of bargaining without commitment, I direct the reader to Appendix A where

the bargaining game is fully characterized and solved.

3.2 Bellman Equations

Consider first an investor and a dealer in a relationship.

Proposition 1 The lifetime utility of a matched investor is linear in wealth such that Vi(a) = pa+ Vi

One can think of the matched investor as selling all her assets at unit price p, which generates a wealth pa,

before reoptimizing her portfolio. The term Vi solves the following HJB equation:

rVi = max
a′≥0

{
ui(a

′)− rpa′ + δ[Wi(a
′)− Vi(a

′)] + λ
∑
j∈I

πj [Vj(a
′)− Vi(a

′)]

}
. (3)

At each point in time, the investor chooses her asset holdings, a′, so as to maximize the right side of (3).

The first two terms, ui(a
′) − rpa′, correspond to the instantaneous utility of the investor net of the flow

cost of holding the asset. One can think of the investor as renting the asset from the dealer at the rental

price rp. The third term, Wi(a
′) − Vi(a

′), corresponds to the event where the investor gets disconnected

from the dealer at Poisson arrival rate δ. At the time of separation, the investor cannot readjust her asset

holdings and is stuck with the asset position she had previously chosen. The last term corresponds to the

arrival of preference shocks at rate λ. The new preference type is j with probability πj . We can make use

of the linearity of the value function, Vi(a), to notice that Vj(a
′) − Vi(a

′) is independent of a′ and simplify

the problem further as

rVi = max
a′≥0

{
ui(a

′)− rpa′ + δ[Wi(a
′)− Vi(a

′)]

}
+ λ

∑
j∈I

πj

[
Vj − Vi

]
. (4)

So from (4), the investor maximizes her instantaneous utility net of the rental cost of the asset and the cost

from losing access to the dealer, which creates a potential illiquidity.

Using that V ′
i (a) = p, the first-order condition for the optimal asset holdings is

u′
i(ai) + δW ′

i (ai) = (r + δ) p. (5)

The left side is the marginal instantaneous utility from the asset taking into account the risk of separation

while the right side is the holding cost of the asset.

I now turn to the value of an unmatched investor with preference type i and asset holdings, a. It solves

the following Bellman equation:

rWi(a) = ui(a) + λ
∑
j∈I

πj [Wj(a)−Wi(a)] + α(1− η) [Vi(a)−Wi(a)] . (6)

The unmatched investor enjoys ui(a) from holding the asset. At Poisson arrival rate λ, she draws a new

preference type. At Poisson rate α, the investor meets a dealer. They negotiate the terms of a long term
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contract that specifies asset holdings during the relationship and a discounted sum of intermediation fees.

The outcome of this negotiation is given by (1) and (2). As a result of the quasi-linear preferences, the

discounted sum of intermediation fees is simply a fraction of the joint surplus. Therefore, at rate α an

unmatched investor meets a dealer and enjoys her share of the joint surplus. Alternatively, we could think

of the unmatched investor as contacting a dealer at a bargaining-adjusted rate α(1 − η) and extracting the

full surplus, which corresponds to the last term of (6).

At this point we will make an observation that will allow to compute the value function, Wi(a), in closed

form. According to (6), from the view point of the investor, the economy is payoff-equivalent to one where

she gains access to the competitive asset market at rate α(1− η). Upon access, the duration of participation

in the market is exponentially distributed with mean 1/δ. Hence, we can rewrite (6) as

Wi(a) = Ui(a) + Ei

[
e−rTVs(T )(a)

]
, (7)

where T is exponentially distributed with mean 1/ [α(1− η)] and where

Ui(a) ≡ Ei

[∫ T

0

e−rtus(t)(a)dt

]
.

The expectation is with respect to T , the time to gain effective access to the market, and the history of

preference shocks, s(t), conditional on the initial preference type, s(0) = i. The function Ui(a) represents the

discounted sum of utility flows until the next access to the market at rate α(1 − η). It solves the following

Bellman equation:

rUi(a) = ui(a) + λ
∑
j∈I

πj [Uj(a)− Ui(a)]− α(1− η)Ui(a). (8)

It adds the discounted utility flows until the next effective access to the market occurs are rate α(1− η). We

take a weighted sum of (8) to compute the expected discounted sum of utility flows across preference types:∑
i

πiUi(a) =

∑
i πiui(a)

r + α(1− η)
.

It is simply the expected instantaneous utility with respect to the preference type discounted at rate r +

α(1− η). We substitute this expression back into (8) and solve to obtain:

Ui(a) =
[r + α(1− η)]ui(a) + λ

∑
j πjuj(a)

[r + α(1− η)] [r + λ+ α(1− η)]
. (9)

We see from (9) that [r + α(1− η)]Ui(a) is a weighted average of the current instantaneous utility of the

investor, ui(a), and her expected future utility at the time the next preference shock occurs,
∑

j πjuj(a).

The weight on the current utility increases with the rate of time preference, r, and the rate of effective access

to the market, α(1− η).

Using that T is distributed according to an exponential distribution with parameter α(1 − η), we can

compute the second term of (7) recursively as the solution to the following Bellman equation:

rXi(a) = α(1− η)[Vi(a)−Xi(a)] + λ
∑
j∈I

πj [Xj(a)−Xi(a)]
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where

Xi(a) ≡ Ei

[
e−rTVs(T )(a)

]
. (10)

Employing the same method used to solve (8), we obtain:

Xi(a) =
α(1− η)

r + α(1− η)

[
[r + α(1− η)]Vi(a) + λ

∑
j πjVj(a)

r + α(1− η) + λ

]
. (11)

It is a discounted weighted sum of maximum attainable lifetime utilities while matched. When λ, the rate at

which a preference shock occurs increases, more weight is put on the average value of being matched. When

investors meet dealers more frequently or become more impatient (increases in α and r), more weight is put

on the value of being matched now.

It follows that the expected discounted utility of the unmatched investor can be re-expressed as below

Wi(a) = Ui(a) +Xi(a). (12)

The lifetime value of an unmatched investor is the sum of two components: the utilities an investor enjoys

while unmatched (first term) and the utility from being matched at a later date (second term).

3.3 Asset Demands

We are now in position to obtain the demand for asset holdings of the matched investors. Differentiate the

Bellman equation (12) to obtain the marginal benefit of one unit of asset for an unmatched investor:

W ′
i (a) = U ′

i(a) +
α(1− η)

r + α(1− η)
p.

It is the discounted sum of the utility flows until the investor has access to a dealer plus the expected

discounted resale price. We substitute this expression into the first-order condition for the choice of asset

holdings, (5), to obtain:

u′
i(ai) = rp+ δ

[
rp

r + α(1− η)
− U ′

i(ai)

]
. (13)

The optimal asset holdings are such that the instantaneous marginal utility of the asset is equal to the rental

price of the asset, net of a term that captures the cost of being temporarily stuck with the asset when the

trading relationship is severed at rate δ. This cost is equal to the difference between the expected resale

price of the asset and the discounted sum of utility flows of that asset when the investor is unmatched. We

substitute U ′
i(a) obtained from (9) to rewrite the individual demand for assets as:

(λ+ r + α(1− η) + δ) (r + α(1− η))u′
i(ai) + δλ

∑
j πju

′
j(ai)

(λ+ r + α(1− η)) (r + α(1− η) + δ)
= rp. (14)

The left side of (14) is strictly decreasing in ai, it goes to +∞ as ai approaches 0 and to 0 as ai goes to

infinity. Hence, there is a unique ai > 0 solution to (14) and it is decreasing in the asset price, p.

We can use (14) to study the effects of the stability of trading relationships on asset demands. It can

be checked that the left side of (14) is a weighted average of the marginal instantaneous utility, u′
i(ai), and

the expected marginal utility,
∑

j πju
′
j(ai). The weight associated with the current utility is decreasing in δ
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while the weight associated with the expected utility increases with δ. Hence, if u′
i(ai) >

∑
j πju

′
j(ai), then

an increase in δ leads to a decrease in asset demand and vice-versa if u′
i(ai) <

∑
j πju

′
j(ai).

We can also check that the model admits as limiting cases both the model of Lagos and Rocheteau (2009)

and the model of a frictionless asset market. Suppose first that δ → +∞, i.e., matches with dealers are short

lived. From (14), the asset demand is given by

(r + α(1− η))u′
i(ai) + λ

∑
j πju

′
j(ai)

λ+ r + α(1− η)
= rp.

This expression corresponds to the asset demand in Lagos and Rocheteau (2009). At the opposite, suppose

that, δ → 0. In that case,

u′
i(ai) = rp.

The asset demand is the one of a frictionless market where the marginal utility of the asset is equal to the

rental price of the asset.

3.4 Intermediation Fees

I now compute the intermediation fees incurred by investors in order to have access to a trading relationship.

Substituting (12), the value of an unmatched investor, into (4), the HJB for a matched investor, and solving

for Vi yields that

Vi =
(κ+ λ)Zi(ai)

(r + λ)(κ+ λ+ δ)
+

[κλ(κ+ λ) + δλα(1− η)]
∑

j πjZj(aj)

(r + λ)(κ+ λ+ δ)(κ+ λ)r
. (15)

where κ ≡ r + α(1− η) and

Zi(a) ≡ ui(a) + δUi(a)−
r(κ+ δ)

κ
pa.

Hence, from (12) and (15) we obtain a closed form solution for the surplus of a match, Vi(a)−Wi(a). It is

equal to the difference between the value of being matched net of fees and the value of being unmatched.

Finally, the discounted sum of fees received by the dealer over a relationship is:

Φi(a) = η[Vi(a)−Wi(a)]. (16)

It is a constant fraction η of the total surplus from a relationship.

3.5 Distribution of Investors Across States

I now turn to the distribution of investors across states. I denote nm the measure of matched investors and

nu = 1 − nm the measure of unmatched investors. In a steady state, the flow of new relationships is αnu

while the destruction of existing relationships is δnm. Hence, the steady-state measure of relationships is

nm =
α

α+ δ
.

I adopt the notation ns
ji to denote the measure of investors with match status s ∈ {u,m} who holds aj and

has preference type i. Note that here I used the observation that in a steady state all investors must hold

asset holdings corresponding to some preference type, i.e., the support of the distribution of assets holdings
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is {ai}Ii=1. Because matched investors can adjust their asset holdings instantly,

nm
ii = πin

m =
απi

α+ δ
for all i ∈ I (17)

nm
ji = 0 for all j ̸= i. (18)

Matched investors always hold assets corresponding to their preference type. Moreover, the distribution

of preference types across matched investors corresponds to the invariant distribution, {πi}Ii=1. Among

unmatched investors, the laws of motion of nu
ji are given by:

ṅu
ii = δnm

ii − αnu
ii + λπi

∑
k ̸=i

nu
ik − λ(1− πi)n

u
ii for all i ∈ I

ṅu
ji = λπi

∑
k ̸=i

nu
jk − [λ(1− πi) + α]nu

ji for all j ̸= i.

At a steady state, ṅu
ii = ṅu

ji = 0. We can use the observation that
∑

k n
u
jk = πjn

u to obtain:

nu
ji =

λπiπjn
u

λ+ α
=

δλπiπj

(λ+ α) (α+ δ)
for all i ̸= j (19)

nu
ii =

δπin
m + λπ2

i n
u

α+ λ
=

δαπi + λδπ2
i

(λ+ α) (α+ δ)
for all i ∈ I (20)

3.6 Market Clearing and Equilibrium

It is possible to characterize market clearing in terms of flows. The measure of investors who have access to

the market at a given point in time is nm. The average quantity of assets held by matched investors is Am

while the average quantity of assets held by unmatched investors is Au. In the steady state, δnmAm = αnuAu

implies Am = Au = A. Hence, the flow of matched investors who receive a preference shock bring to the

market λnmA units of asset. By the law of large numbers, among these investors, a fraction πi are of type

i. Hence, they demand λnm
∑

i πiai. It implies that market clearing requires∑
i∈I

πiai = A. (21)

The right side is the fixed asset supply. The left side of (21) is decreasing in p, from +∞ when p = 0 to 0

when p = +∞. Hence, there is a unique p solution to (21). We are now in a position to define an equilibrium

which can be characterized recursively.

Definition 1 A steady-state equilibrium of the OTC market with trading relationships is the following list of

objects, {ai}Ii=1, {ns
ji}(j,i)∈{1,...,I}2,s∈{m,u}, {Φji}(j,i)∈{1,...,I}2 , p, solution to the following. Given the asset

demands in (14), the market clearing condition, (21), gives both p, and the support of the distribution of asset

holdings, {ai}Ii=1. The distribution of investors across states is given by (17)-(18) and (19)-(20). Finally,

the trading costs, Φji = Φi(aj), are obtained from (16).

3.7 Some Special Cases

Linear utility Suppose the flow utility from holding an asset is εia with ε1 < ε2 < ... < εI . For this

specification, we need to allow for corner solutions for the choice of asset holdings. It is easy to show that

11



only investors with the highest preference type will want to hold assets, i.e., a1 = ... = aI−1 = 0 and aI > 0.

From (14), the asset price solves

p =
[r + λ+ α(1− η) + δ] [r + α(1− η)] εI + δλε̄

r [r + λ+ α(1− η)] [r + α(1− η) + δ]
,

where ε̄ =
∑

j πjεj . Using that εI > ε̄, it follows that ∂p/∂δ < 0. So as trading relationships become more

stable, the asset price increases. Each matched investor of type I holds A/πI . Hence, the volume of trade is

V = (nmπI)λ(1− πI)
A

πI
=

α

α+ δ
λ(1− πI)A.

The volume of trade increases as more investors are matched.

Linear utility with satiation Suppose the utility takes the form ui(a) = εi min{1, a}. The investor has

a constant marginal utility for the asset until asset holdings reach a = 1 after which the marginal utility is

zero. We now assume that ε has a continuous cumulative distribution, F (ε). The mean of the distribution

is ε̄. There is a threshold, εR, above which investors desire to hold one unit of the asset. It satisfies:

p =
[r + λ+ α(1− η) + δ] [r + α(1− η)] εR + δλε̄

r [r + λ+ α(1− η)] [r + α(1− η) + δ]
.

Market clearing requires

1− F (εR) = A.

The share of investors who desire to hold the asset is equal to the asset supply. We can rewrite this condition

as

εR = F−1 (1−A) .

It follows that ∂p/∂δ > 0 if A > 1− F (ε̄) and ∂p/∂δ < 0 if A < 1− F (ε̄).

Logarithmic utility Suppose now that ui(a) = εi ln a. From (14), the asset demand of a type i investor

solves:

ai =
[r + λ+ α(1− η) + δ] [r + α(1− η)] εi + δλε̄

[r + λ+ α(1− η)] [r + α(1− η) + δ] rp
.

It follows that ∂ai/∂δ < 0 if εi > ε̄ and positive otherwise. So asset holdings become more dispersed when

trading relationships are more stable. From (21), the asset price solves

p =
ε̄

rA
.

The asset price is independent of trading frictions, α, bargaining power of dealers, η, and the stability of

relationships, δ. So, trading relationships affect the volume of trade but not asset prices.

3.8 Liquidity Measures

To help gauge market liquidity in the model, I look at multiple dimensions of liquidity such as trade sizes,

trade volume, and transaction costs. The measures used are discussed below.
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Trade Volume Investors can be classified as either mismatched or not with respect to their portfolios.

Mismatched investors have assets that are not in line with their preference type. In contrast, investors who

are not mismatched are satisfied with their current asset holdings. In addition to trading contingent on a

preference shock, mismatched investors will also engage in realignment trades upon forming a relationship.

Thus, volume of trade can be expressed as

V = α
∑
i,j

nu
ji|ai − aj |+ λ

∑
i,j

nm
ii πj |aj − ai|.

It is the sum of two components. The first is the sum of all realignment trades and the second is the trading

that takes place due to the arrival of preference shocks while in a relationship.

Proposition 2 When investor preferences are represented by ui(a) = εiln(a), trading volume exhibits the

following characteristics: ∂V/∂δ ≤ 0 and ∂2V/∂δ2 ≥ 0.

When relationships are less stable, not only are there fewer investors who are able to trade, but the ones

who do transact do so in smaller quantities. These two effects taken together imply that trading volume is

a convex function of relationship instability.

Trading Fees per Unit of Time and Asset Traded I use trading costs paid per unit of asset traded

to resemble more closely a bid-ask spread that one might observe in financial markets. Denote Vji as the

volume of trade attributable to an investor of type i with asset holdings j and note that

Φi(aj)

Vji

represents the average deviation from the interdealer price that an investor pays. To construct my measure

of transaction costs, I weight the individual intermediation fees paid per unit of asset traded by the fraction

of total volume an investor accounts for then I sum over all investors.8 Hence, the measure of trading fees I

use, commonly referred to as the effective half-spread, is

F = nm
∑
i,j

fijΦi(aj)(r + δ)

Vji

Vji

V
= nm

∑
i,j fijΦj(ai)(r + δ)

V

where fij ≡ nu
ij/n

u is the fraction of matched investors who negotiated a fee payment of Φj(ai) for access to

a relationship and hence pay Φj(ai)(r+ δ) per unit of time.9 One can think of F as the average fee a dealer

receives per unit of intermediation he provides to the market.

Proposition 3 Assume ui(a) = εiln(a), then (i) ∂Φi(a)/∂δ approaches 0 as δ approaches ∞

(ii) ∂F/∂δ > 0 for δ sufficiently large.

As relationships are made fully unstable, the aggregate measure of transaction costs rises. It implies that

more unstable relationships make it more costly for investors to trade.

8Appendix D considers an alternative measure of transaction costs and shows that they are qualitatively equivalent.
9When analyzing steady state measures of trading fees, we may encounter situations where it appears as if no fees are being

paid (constituting a highly liquid market), when it is solely an artifact of the equivalence between the discounted sum of fees
and the flow payments. To avoid these potential missteps, I re-express the discounted sum of intermediation fees as a payment
per unit of time.
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Exploiting the fact that the model is solved in closed form, I use the following parametrization for numerical

examples.10 Preferences of investors are given by ui(a) = εia
1−σ/(1 − σ), r = 0.05, σ = 3, and binary

valuation types εl = 1 and εh = 10 with associated probabilities πl = 0.667 and πh = 0.333. Investors

contact dealers at rate α = 3 and receive preference shocks at rate λ = 4. Dealer bargaining power is set to

η = 0.5. The supply of assets is normalized to A = 1.
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Figure 1: Effects of a Change in Relationship Stability

The key parameter in this model is δ, the volatility of relationships. A high value indicates short lived

relationships and vice versa. Panel 1(a) plots F as a function of relationship volatility. Changing δ has

three distinct effects on trading costs. The first effect has to do with how relationship volatility affects

match surpluses. Shorter lived relationships generate less value for investors, since they cannot enjoy their

connection status for as long, thereby leading to a reduction in the discounted sum of fees paid to the dealer.

This first effect decreases transaction costs. Second, making relationships shorter-lived decreases the number

of matched investors who pay fees in the first place. This effect on the distribution of investors decreases

trade volume (panel 1(b)) and total intermediation fees paid. The third distinct effect from changing δ is

concerned with the dispersion of asset holdings. As relationships are shorter lived, investors put more weight

on their average preference type when choosing their portfolio. Panel 1(c) shows how the distribution of

asset holdings approaches an average level as relationships are short-lived. Investors use their portfolios to

limit trading needs as relationships are more unstable. This type of liquidity hedging reduces volume and

increases trading fees per unit of asset traded.

4 Free Entry of Dealers

Dealers’ decisions to provide their intermediation services cannot be taken as given. In this section, I am

concerned with understanding how relationship stability impacts a dealer’s decision to make markets. I

assume that investors rate of contact varies with the amount of dealers presently active in the market.

Specifically, denote α(ν) as the (endogenous) rate at which investors form relationships which depends

10The parameter values are taken from the numerical exercises in Zhang (2018) who calibrate certain parameters themselves
and also borrow from existing literature.
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critically on the measure ν of active dealers.11 I assume that limν→0 α(ν) = 0 and limν→∞ α(ν) = ∞.

Furthermore, assume dealers pay a flow cost γ to operate in the market. The remaining characteristics of

the environment remain unchanged from Section 3.

Denoting dealer profits as Γ ≡ α(ν)/ν ·
∑

i,j n
u
ijΦi(aj)− γ, the free entry condition implies that Γ = 0. A

particular dealer is contacted at rate α(ν)/ν and earns
∑

i,j n
u
ijΦi(aj) on average. The difference between

dealer revenues and their operating cost, γ, must be zero in equilibrium.

The following graphs were obtained with the subsequent parameter values: ui(a) = εiln(a), r = 0.1,

η = 0.5, δ = 2, λ = 1, A = 1, πL = 0.667, πH = 0.333, εL = 1, εH = 4, α(ν) = 5ν0.9.
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Figure 2: Multiplicity of Equilibria

Relationship stability affects the number of steady-state equilibria. For example, when relationships are

short lived (high δ), there can exist a unique ‘low liquidity’ equilibrium that is characterized by a small

number of dealers present in the market, low asset dispersion, low volume of trade, and high transaction

costs. The high degree of relationship instability does not provide dealers with enough incentive for them to

provide their services. Instead, few dealers enter and capture the limited amount of fees investors are willing

to pay for short-lived relationships thereby creating an illiquid market.

As relationships are rendered more stable (decrease in δ), multiplicity of equilibria appears. A larger

measure of dealers has two effects. First, it reduces the probability a dealer will be contacted by an investor

which tends to decrease per-dealer profits. Second, an increase in ν causes an increase in the rate at which

investors contact dealers. This causes investors to choose larger portfolio sizes tending to increase fees, via

larger gains from trade, resulting in higher per-dealer profits. These two opposing effects generate the non-

monotone behavior of dealer profits giving rise to multiple equilibria: a low-liquidity, intermediate-liquidity,

and high-liquidity state. Moving from low to high liquidity equilibria, we find increases in the measure of

11This formalization is adopted from Lagos and Rocheteau (2007). Presumably, if there are many dealers, investors will have
larger contact rates while if there are few dealers in the market, investors will make contact with dealers more infrequently.
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active dealers, dispersion of portfolios, and trade volume in addition to reductions in trading fees.

In a market where relationships are long-lived, the uniqueness of equilibria is recovered but with more

favorable liquidity properties compared to the unique equilibrium under short-lived relationships. It is

characterized by high trading volume and asset dispersion, a large number of dealers, and low trading fees.

Since trading relationships are long lived, investors’ gains from entering a relationship are large. Accordingly,

many dealers enter to capture the existing profits. In this way, relationship stability is both a tool that

incentivizes dealers to make markets, and a mechanism that can be used to coordinate on higher liquidity

equilibria.

5 Spot Trading vs. Relationship Trading

To account for the possibility of non-relationship investor-dealer trades, I assume that an investor may contact

a unit measure of two types of dealers: Relationship Dealers (RD) that trade exclusively via relationships

and Spot Dealers (SD) who engage only in one off transactions. I allow for RD and SD to have different

bargaining powers which we denote η and ηs, respectively. As before, RD are contacted at rate α by investors

upon which a relationship is formed. Novel to this section is the arrival of trading opportunities with SD

at a Poisson arrival rate, αs. This model setup captures the idea that investors have more than one way in

which to trade.12 Since many derivations are identical in nature to those of Section 3 (up to the addition of

some new parameters to describe spot transactions) they are relegated to Appendix D.

5.1 Bargaining Problem (Spot Transactions)

Spot trades are formalized in a similar fashion to relationships with two important differences. First, the

assets acquired by the dealer on behalf of the investor will be a one-time acquisition, not an asset path.

Second, the intermediation fee paid to the dealer will be a one-time fee, not a discounted sum of fees. I

assume the generalized Nash bargaining Solution is used.

An investors’ surplus from spot trading is the capital gain on her lifetime utility net of the price she pays to

readjust her portfolio. The capital gain is given by Wi(a
′)−Wi(a), where a

′ denotes her new asset holdings,

and the price she pays for the readjustment is p(a′ − a)− ϕi(a), where ϕi(a) is the one-time intermediation

fee the dealer receives. The outcome of bargaining is given by

asi = argmax
a′

{Wi(a
′)− pa′} (22)

ϕi(a) = ηs[Wi(a
s
i )−Wi(a)− p(asi − a)]. (23)

where asi denotes an asset position acquired from a spot trade. An investor chooses a portfolio that equates

12There often exists parallel markets for many assets: an OTC style market where relationships prove to be important and
a Limit-Order-Book market where trading occurs all-to-all with anonymity. See relevant evidence in the market for corporate
bonds (Hendershott and Madhavan (2015)), treasury securities (Barclay, Hendershott, and Kotz (2006)), and foreign exchange
contracts (Holden et al. (2021)). I view the RD in this section as the OTC market and SD as the more centralized, spot trading
LOB market. Alternatively, we could view this setting as a single OTC market where a certain number of dealers are willing
to form relationships (core) and other dealers prefer to only engage in spot transactions (periphery).
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the marginal value of being unmatched to the price of the asset. Fees paid to the dealer are a constant

fraction ηs of the surplus that is created from trade.

5.2 Spot Trade Asset Demands

I now turn to the determination of asset demands by investors in spot trades. From (22) the FOC for spot

trade asset demands is given by

W ′
i (a

′) = p.

It equates the marginal benefit of the asset for an unmatched investor to the price of the asset. Differentiating

Wi(a), which can be found in Appendix D, and substituting it into the above equation yields the following

asset demand equation

[r + α(1− η) + αs(1− ηs)]u
′
i(a

′) + λ
∑

j πju
′
j(a

′)

λ+ r + α(1− η) + αs(1− ηs)
= rp. (24)

Noticeably, δ does not appear in (24). It implies that relationship volatility only affects the spot trading

asset decision through potential effects via the interdealer price, p. Whereas increasing δ means putting

more weight on future marginal utilities for relationship trades, it has no effect on the marginal benefit

for spot traders. The only parameters that affect how much weight is allocated to current versus future

marginal utilities are the bargaining-adjusted arrival rates of trading opportunities, α(1− η) and αs(1− ηs),

the rate at which preference shocks arrive, λ, and the rate of time preference, r. An important determinant

of market liquidity will be how different the portfolios chosen by spot traders are from the portfolios chosen

for relationship trades.

5.3 Trading Volume and Transaction Costs

I distinguish between liquidity measures used for relationships and spot trades to compare both types of

trading arrangements. In particular, Vr and Fr denote our measures of relationship trade volume and

relationship transaction costs, respectively, which remain largely unchanged compared to Section 3 while Vs

and Fs are the analogous measures for spot transactions and are defined in Appendix D. Functional forms

and all parameter values already specified remain unchanged. Investors meet spot dealers at rate αs = 6 and

I consider symmetric RD and SD bargaining powers so that η = ηs = 0.5. I consider 3 different ‘regimes’

which differ in the intensity of preference shocks.13 Regime 1 is such that investors rarely need to trade with

λ = 1.5, Regime 2 exhibits an intermediate need to trade with λ = 15, and Regime 3 resembles a market

where investors change preference types frequently with λ = 150.

13Different asset markets exhibit varying needs to trade. For example, corporate bonds often trade infrequently and are many
times held to maturity as opposed to treasury securities which are traded frequently for a variety of purposes.
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Figure 3: Effects of Relationship Stability on Trading Costs Under Regimes 1-3

As relationships become increasingly volatile, trading costs per unit of asset traded for both spot trades

and relationships converge to the same level. The intuition being that in the limit as δ → ∞, relationships

are so short lived that they are not any different from spot trades. In fact, we see from (56) that taking the

limit as δ → ∞ yields the asset demand equation for spot trades, (24).

The next important observation is with respect to the levels of spot fees and relationship fees. We see

clearly that per unit of asset traded, relationship fees are bounded above by spot trading costs. On average,

trading vis-à-vis a relationship is more liquid than trading via spot transactions along this dimension. The

difference in trading costs between both arrangements is exacerbated as investors trade more frequently, with

the connection status of matched investors becoming increasingly important.

The third, and perhaps most important, observation is that the slope of spot trading fees per unit of asset

traded can be either positive or negative leading to potentially non-monotone behavior of market-wide trading

costs. This is driven by the fact that as preference shocks are increasingly frequent, relationship portfolios

will approach those levels of spot portfolios. As a result, the gains from trade from a spot transaction will

be lower, on average, since the portfolio of a mismatched investor will likely already be close to the desired

level for a spot transaction. Increasing the arrival of destruction shocks amplifies this phenomenon.
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Figure 4: Effects of Relationship Stability on Trading Volume

As before, relationship trading volume is diminished as δ increases for two reasons. The number of agents

who are able to trade declines in addition to the quantities they wish to trade. The trade volume for spot

transactions on the other hand has the opposite effect. Increasing the arrival rate of destruction shocks means

that there are more unmatched investors in the market. From time to time, these unmatched investors will

be able to contact a spot dealer and engage in a one-off trade. The amount of spot trades happening in the

market is increasing in δ. As a result, as relationships are more unstable, spot traders engage in more trades

of the same quantities. These two opposing effects yield non-monotone behavior of total market-wide trade

volume, the sum of spot and relationship trade volume.

6 Endogenous Relationships

Trading relationships are costly to form (Hendershott, Li, et al. 2020). As a result, investors maintain finite

trading networks keeping only the most beneficial relationships. In practice, counterparties are chosen so as

to offset trading needs or risk profiles (Afonso, Kovner, and Schoar 2013). Investors who are more inclined

to purchase a certain class of assets will pair themselves with dealers who more often than not hold those

assets in their inventories. This implies that not all relationships are created equal.

I formalize this notion by assuming investors incur a match specific flow cost to maintaining a relation-

ship.14 I denote by χ the flow cost borne by investors in relationships. Once the cost is drawn, it remains

constant for the duration of the relationship. If the investor chooses not to form a relationship, they still

retain the opportunity to engage in a spot trade with the dealer. This is in contrast to section 5 where the

investor’s choice of trading arrangement, spot or relationship, was exogenous.

14Note that this formalization is identical to describing a flow benefit to being in a relationship so that investors drawing low
benefits would be equivalent to incurring high costs. The cost need not be thought of as purely a monetary or opportunity cost
but also captures the extent to which a particular relationship is a good match.
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6.1 Bellman Equations

The lifetime value of an investor currently in a relationship is again Vi(a) = pa + Vi where Vi solves the

following HJB equation instead

rVi = max
a′

{
ui(a

′)− rpa′ − χ+ δ
[
Wi(a

′)− Vi(a
′)
]
+ λ

∑
j∈I

πj

[
max

{
Vj , Ωj

}
− Vi

]}
(25)

where Ωi ≡ max
a′′

{Wi(a
′′)− pa′′}. Matched investors choose their portfolio optimally at every point in time.

They receive flow utility net of the cost of acquiring the asset, incur a flow cost to maintain the relationship,

are unmatched at rate δ and receive preference shocks at rate λ. Whenever an investor switches to a new

preference type, they re-evaluate the cost of maintaining the relationship against the cost of accessing the

asset market infrequently. If accessing the market infrequently is less costly to the investor than staying

matched, the investor will engage in a final trade, choosing assets that will be optimal for her spell as an

unmatched individual, and terminate the relationship. Importantly, since investors can trade when they

receive the preference shock, this decision is independent of asset holdings.

Proposition 4 There exists a unique reservation cost χ∗
i that makes investors indifferent between forming

relationships and spot trading. It is defined implicitly such that Vi = Ωi.

By definition, χ∗
i makes investors indifferent between forming relationships and spot trading. Since ∂V/∂χ <

0, it follows that for χ > χ∗
i investors prefer to spot trade while for χ ≤ χ∗

i , investor will choose to form a

relationship.

The difference for unmatched investors in this environment is that relationship formation, as well as the

choice to trade via spot or relationship transactions, is endogenous. The changes are incorporated below.

Using the notion of the reservation cost, χ∗
i , we can write the HJB as

rWi(a) = ui(a) + λ
∑
j∈I

πj [Wj(a)−Wi(a)] + α(1− η)
[
max{Vi,Ωi}+ pa−Wi(a)

]
. (26)

Unmatched investors enjoy some flow utility, receive preference shocks at rate λ, and contact dealers at

rate α after which they obtain a fraction (1 − η) of the joint surplus from whichever trading arrangement

they choose (spot trade or relationship). Investors choose to form a relationship if the match specific cost

they draw is less than their reservation threshold. Otherwise, they spot trade. Regardless of the trading

arrangement chosen, investors offload their current portfolios generating some wealth pa and incur a capital

gain in lifetime value. This is captured by the last two terms in the square brackets.

Asset demands remain identical to those in Section 5. The match-specific cost affects the decision of

whether to form or destroy a relationship, but has no direct effect on the asset positions that are chosen.
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6.2 Calibration

I calibrate the model to match a variety of moments from the inter-dealer municipal bond market and choose

a unit of time to represent one month.15 The rate of time preference is set to 5% per year, i.e., r = 0.05/12.

The supply of assets is normalized to A = 1. I set the number of preference types to I = 30 and assume that

the εi are equally spaced between the 0th and 90th percentiles of a Generalized Pareto distribution G(µ, ζ, β)

with location parameter µ, shape parameter ζ and scale parameter β.16 The πi are chosen so as to create

a valid probability distribution (details are left to Appendix C). Furthermore, investors’ utility function is

ui(a) = εia
1−σ/1− σ.

There are 9 parameters that I jointly calibrate to minimize the sum of squared deviations of 13 model

moments from their data counterparts. The calibrated parameters are χ, α, δ, σ, λ, η, and the three

parameters governing the distribution of valuations: µ, ζ, and β. The model is solved numerically and the

procedure is detailed in Appendix C. Expressions for all targeted model moments can also be found there.

Municipal bonds outstanding at the end of 2017 totalled $3.948 trillion (SIFMA 2024) with inter-dealer

trading volume totaling $530.561 billion (MSRB 2018). These figures imply a monthly inter-dealer turnover

(volume as a percentage of supply) of 1.12%. Wu (2018) uses data from 2017 and reports an estimate for the

average interdealer effective spread (expressed as a percentage of the midpoint price) of 76.6 basis points.17

I use this estimate as my target for the average effective spread paid in my model. The MSRB (2018) Fact

Book also reports that 2017 saw 3.826 million interdealer transactions. Furthermore, Clowers (2012) reports

that there exists approximately 1.138 million unique municipal securities. Taken together, these figures imply

that the average bond is traded 0.2801 times per month. Together with the figure for asset turnover, the

number of trades per security per month imply that on average, each trade is roughly 4% of the outstanding

asset supply.

Li and Schürhoff (2019) calculate a dealer relationship stability transition matrix using data from 1998

to 2012. They find that conditional on trading together in a given month, the probability that two dealers

maintain a relationship with each other in the following month is 66%. It implies a monthly relationship

separation probability of 34%. This probability is analogous to the model’s endogenous separation probability

which is computed as the average probability, conditional on being matched, that at least 1 destruction shock

arrives or at least one preference shock arrives such that the relationship is terminated. Similarly, the same

transition matrix also reports that new relations are formed from one month to the next with a probability

15I choose to target the interdealer portion of the municipal bond market since transaction level data is more readily available
for inter-dealer markets as opposed to customer to dealer segments. As a result, moments on relationship stability, a key feature
of the model, are more readily available for interdealer markets.

16The choice of distribution is not crucial for matching moments related to transactions cost or trade volume. However,
when the distribution of valuations is not heavily skewed, the model has difficulty in matching the distribution of trade sizes.
Intuitively, bond markets have many participants who trade in small quantities, and a few participants who trade in very large
quantities.

17The data used by Wu (2018) only includes interdealer trades of less than $100k. However, a majority of interdealer trades
(≈ 83%) fall within this category. Thus, while imperfect, the spread represents an sensible measure of transactions costs for
that year in the interdealer market.
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of 2%. This serves as the counterpart for the endogenous relationship formation probability given by the

model.

The remaining moments I choose to target are aimed at capturing features of trade size heterogeneity.

The MSRB (2018) reports the number of inter dealer trades that fall within 8 categories of trade sizes which

I will call categories 1-8 for simplicity.18 I then re-express these categories as fractions of the largest trade

size to obtain a distribution of normalized trade sizes comparable to the calibration exercise done in Lester,

Rocheteau, and Weill (2015). The fraction of interdealer trades that fall within each category is reported in

Table 1.

A summary of the calibrated parameter values and model fit is provided in Table 1. The calibrated value

for the contact rate implies that unmatched dealers meet other dealers approximately every 1.1 trading days

which is in line with estimates commonly found in the literature.19 Dealers who initiate the transaction

appear to receive a small share of the trade surplus, as indicated by the high bargaining power parameter.

Intuitively, if dealers contact each other quickly, the model requires a large bargaining power to match the

moments on transaction costs. In other words, if the contact rate is very large, to match the data, the model

requires a smaller bargaining-adjusted contact rate α(1 − η). The model does well in matching moments

closely, but has some difficulty in matching exactly the distribution of trade sizes.

Distribution of Normalized Trade Sizes Figure 5 reports the empirical distribution of normalized trade

sizes and its theoretical counterpart. The model does well in roughly matching the empirical distribution

but underestimates slightly the proportion of large sized trades. The average normalized trade size in the

model is 1.15% which is smaller but of comparable magnitude compared to the average normalized trade

size seen in the data of 2.59%.

Spreads The model also predicts effective spreads conditional on being matched and unmatched. The

effective spread for relationship trades is 69.35bps while for spot transactions it is 108.91bps. The difference

in levels between the two effective spreads appears of reasonable magnitude and is in line with empirical

evidence that trading with relationship dealers is less expensive. For example, Di Maggio, Kermani, and

Song (2017) find an inter-dealer relationship discount of approximately 20bps in the market for corporate

bonds. The difference in the level thus seems of a reasonable magnitude and would be interesting to confirm

empirically.

Who Forms Relationships? The calibrated model also speaks to what types of investors choose to form

relationships. Figure 6 plots Vi−Ωi for each preference type for the calibrated set of parameters. A positive

value indicates that a dealer endogenously chooses to form a relationship while a negative value indicates

18The 8 categories of reported trade sizes are $0 - $25k, $25k - $50k, $50k - $75k, $75k - $100k, $100k - $500k, $500k - $1mm,
$1mm - $2mm, and $2mm+.

19See for a reference the calibration section of Hugonnier, Lester, and Weill (2020).
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Parameter Notation Calibrated Value

CRRA coefficient σ 1.358

Destruction Shock Arrival Rate δ 0.288

Preference Shock Arrival Rate λ 0.306

Relationship Flow Cost χ 0.0428

Contact Rate α 19.04

Bargaining Power η 0.9979

Preference Type Distribution Shape Parameter ζ 2.19

Preference Type Distribution Scale Parameter β 1.23

Preference Type Distribution Location Parameter µ 2.625

Endogenous Variable Target Model Value

Effective Spread 76.60bps 76.63bps

Asset Turnover 1.119% 1.118%

Relationship Separation Probability 34.00% 34.30%

Relationship Formation Probability 2.00% 1.89%

Trades per Security 0.2813 0.2818

Percent of Trades in Category 1 50.12% 50.02%

Percent of Trades in Category 2 20.36% 23.03%

Percent of Trades in Category 3 4.83% 6.53%

Percent of Trades in Category 4 7.69% 5.36%

Percent of Trades in Category 5 12.92% 13.66%

Percent of Trades in Category 6 2.19% 1.00%

Percent of Trades in Category 7 1.01% 0.29%

Percent of Trades in Category 8 0.87% 0.11%

Table 1: Calibrated Parameters and Model Fit

that a dealer instead chooses spot transactions.

The Value of Relationships To quantify the value that trading relationships add to the inter-dealer

municipal bond market, I shut down the ability of agents to form relationships and study the resulting

impact on various endogenous measures of liquidity. This experiment can be thought of as taking δ or χ to

infinity. Table 2 reports the results. One interpretation of such an extreme shift in market structure would

be the adoption of fully anonymous trading protocols such as Alternative Trading Systems (ATS), which

have risen in popularity in recent years in the interdealer portion of the market (Wu 2021).

Endogenous Variable Model with Relationships No Relationships Percent Change

Effective Spread 76.63bps 166.59bps 117.39%

Asset Turnover 1.118% 0.675% −39.62%

Trades per Security 0.2818 0.2793 −0.89%

Welfare −8.8711 −8.8744 −0.037%

Table 2: Value of Relationships

When relationships cannot be formed, agents trade less (both in number of trades and quantity traded)

and do so at wider spreads. The mechanisms at play remain identical to those described earlier in the
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paper: relationships partially solve a hold-up problem that increases the size of investor trades. The model

predicts that spreads rise by approximately 31 basis points, while asset turnover and the number of trades per

security fall by 1.5% and 0.818, respectively. These figures imply that eliminating relationships corresponds

to a 40.85% increase in spreads, and decline in turnover and trades per security of 9.38% and 79.18%

respectively. Of course, these results are conditional on other parameters remaining fixed at their calibrated

values. To address this concern, I look at how much certain parameters would need to change for market

liquidity to remain constant if relationships were eliminated. Thus, one takeaway of the following results is

to say that any policies that may eliminate trading relationships would need to improve liquidity along other

dimensions to prove beneficial.

Policy Counterfactual I examine the effects of scaling down the distribution of relationship specific

maintenance costs on the model’s endogenous variables. One example of such a parametric shift would be

a policy aimed at matching natural counterparties. For any given bond, certain dealers may be frequent

buyers while others may be frequent sellers. It would seem natural that these two dealers should form a

trading relationship since those demanding liquidity would be matched with those supplying it. However,

these potential counterparties may be hard to locate and relationships may be formed with less ideal trading

partners instead, or not at all. A trade mechanism known as match auctions that attempts to resolve similar

issues and has been proposed for use in treasury markets (Chaboud et al. 2022).20

20One important difference being that match auctions are currently anonymous trading protocols, which would not allow for
the formation of trading relationships.
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Figure 6: Relationship Surplus

Endogenous Variable Model Value χ ↓ 50%

Effective Spread 76.34bps 65.46bps

Asset Turnover 15.98% 16.84%

Relationship Separation Probability 98.48% 98.47%

Relationship Formation Probability 5.61% 9.35%

Fraction of Matched Investors 10.00% 16.64%

Proportion of Retail Sized Trades 79.24% 86.31%

Trades per Security 1.033 1.567

Table 3: Counterfactual Analysis

Table 3 reports the effects of scaling down the distribution of match-specific costs. Liquidity generally

improves in that the effective spread is reduced by approximately 11 basis points while turnover and the

number of trades per security increase as well.

7 Conclusion

Despite a large body of empirical work documenting the existence of trading relationships in financial markets

and its importance for spreads and trading volume, the search based literature on OTC markets spurred

by Duffie, Gârleanu, and Pedersen (2005) has largely ignored this empirical finding in theoretical work. I

build a model that encompasses the salient features of relationship trading within decentralized markets,

namely, repeated interaction between an investor-dealer pair. The tractability of the model admits closed

form solutions and can easily adopt a variety of functional forms in numerical exercises and analytical
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results alike. Investors temporarily circumvent search frictions via relationships which impact portfolio

decisions, trading volume, and transaction costs. When there is free entry of dealers, relationship stability

plays a role in determining both the number and respective liquidity properties of surviving steady state

equilibria. More stable relationships allow for coordination on a unique, higher liquidity outcome (i.e.

greater liquidity provision, larger trade volume, lower transaction costs). When spot trading and relationship

trading coexist, standard measures of market liquidity may change in a non-monotone fashion as the stability

of relationships is altered which highlights a trade-off in liquidity between differing trading arrangements.

Finally, relationships are endogenized in the model and calibrated to a real world OTC market. The results

suggest that relationships add value to the inter-dealer municipal bond market by positively impacting

various measures of market liquidity.
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A Limited Commitment of Dealers

Here, I relax the assumption that dealers are able to commit to providing the assets that investors demand

throughout the entire length of the relationship. I construct an extensive form game representing the strategic

bargaining process over an intermediation fee and asset position of an investor-dealer pair.

A.1 Game Design

The bargaining problem is represented as an alternating offer game with discounting and exogenous risk of

breakdown. An investor-dealer pair only interact at discrete points in time. A proposal made by either agent

consists of an asset position for the investor and an intermediation fee paid to the dealer. The receiver of the

offer is free to accept or reject the proposed contract. If an investor (dealer) rejects a proposal, I assume they

must wait ∆I (∆d) units of time before formulating their own offer. In the case where an offer is accepted,

the players remain matched but the bargaining game ends and both players receive their according payoffs.

In the case of rejection, the game continues on unless either the relationship is destroyed, a new counterparty

is found, or a new preference shock is received after which I assume a new bargaining game begins.

A.2 Equilibrium

I restrict my attention to equilibria where investors and dealers use stationary strategies so that proposals

and acceptance rules will be the same in all periods for a given agent.

A.2.1 Maximization Problems

Let Vi(a) (Wi(a)) denote the expected lifetime utility of a matched (unmatched) investor with preference

type i and a units of the asset. The function Πi(a) is the expected lifetime utility of a dealer who is in a

relationship with an investor having characteristics (i, a). If the investor makes an offer, she chooses her

terms of trade to maximize her expected utility net of the fees incurred to rebalance her portfolio, subject

to a dealer indifference condition, as follows

max
a′,ϕ′

{
−ϕ′ + Ui(a, a

′) + ΥI
i (a

′) : ϕ′ +Υd(a′) ≥ Rd(a)
}

(27)

where

Ui(a, a
′) ≡ Ei

[∫ τ

0

e−rtui(a
′)dt

]
− p(a′ − a)

is the expected utility of an investor from now until the next shock occurs (preference or destruction) at

time τ = min(τλ, τδ) where τλ and τδ are exponentially distributed with means 1/λ and 1/δ, respectively.

The functions ΥI
i (a

′) and Υd(a′) are defined as

ΥI
i (a

′) ≡ E
[
e−rτ1{τ=τλ}Vs(τλ)(a

′)
]
+ E

[
e−rτ1{τ=τδ}Wi(a

′)
]
=

λ

r + λ+ δ

∑
j∈I

πjVj(a
′) +

δ

r + λ+ δ
Wi(a

′)

Υd(a′) ≡ E
[
e−rτ1{τ=τλ}Πs(τλ)(a

′)
]
=

λ

r + λ+ δ

∑
j∈I

πjΠj(a
′)
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and represent the expected continuation values of an investor and dealer, respectively. Rd(a) denotes the

reservation value of a dealer and is taken as given by the investor, it is defined precisely shortly. The

investor will always propose an intermediation fee so as to make the dealer indifferent between accepting

and rejecting the proposal so that the inequality constraint will always bind in equilibrium. Substituting the

binding constraint into the objective function reduces the investors problem into a choice of asset holdings

that solves the following maximization problem

max
a′

{
Ui(a, a

′) + ΥI
i (a

′) + Υd(a′)−Rd(a)
}
. (28)

The functions Π(·), V (·), and W (·) are taken as given by the investor when formulating her offer. The

portfolio choice will pin down the intermediation fees so that an investor’s proposed contract will be entirely

summarized by the following:

aI(i) = argmax
a′

{Ui(a, a
′) + ΥI

i (a
′) + Υd(a′)−Rd(a)} (29)

ϕI(i, a) = Rd(a)−Υd(aI(i)). (30)

The proposal consists of an asset position that maximizes the joint value of the investor-dealer pair while

the intermediation fee makes the dealer indifferent between accepting the proposal or rejecting it.

If the dealer gets the chance to make an offer he will maximize his expected payoff, equal to the current

per-trade fees plus his expected discounted continuation value, such that the investor is indifferent between

accepting and rejecting his proposal. His problem is written in a similar fashion to the investors problem as

follows:

max
a′,ϕ′

{
ϕ′ +Υd(a′) : Ui(a, a

′) + ΥI
i (a

′)− ϕ′ ≥ RI(a)

}
. (31)

The dealer’s proposed contract is summarized by the following equations

ad(i) = argmax
a′

{Ui(a, a
′) + ΥI

i (a
′) + Υd(a′)−RI(a)} (32)

ϕd(i, a) = Ui(a, ad(i)) + ΥI
i (ad(i))−RI(a). (33)

It is an asset position that maximizes the joint value of a relationship and an intermediation fee that equals

the largest payment an investor would be willing to make.

Inspecting (29) and (32), it follows that the assets proposed in a contract will maximize the joint value of

a relationship irrespective of who is making the offer. Thus, in my notation, I write ai as the asset holdings

proposed in a contract when the investor is of type i.

A.2.2 Bellman Equations

The expected lifetime utility of a matched investor can be written as below.21

Vi(a) = E
[∫ τ

0

e−rtui(ai)dt

]
− p(ai − a)− ϕd(i, a) +

δ

r + δ + λ
Wi(ai) +

λ

r + δ + λ

∑
j∈I

πjVj(ai) (34)

21In writing the Bellman equations here I assume that dealers make the first offer. However, the problem can be written
identically when investors make the first offer. Since I am interested in the limit as the time between counteroffers goes to zero,
any first-mover advantage will be eliminated implying that this exposition is without loss in generality.
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It equals the discounted utility of holding the asset until the next shock arrives net of the cost of acquiring

it, plus the expected continuation values when that shock is realized. The lifetime utility of an unmatched

investor with characteristics (i, a) solves

rWi(a) = ui(a) + λ
∑
j∈I

πj

[
Wj(a)−Wi(a)

]
+ α

[
Vi(a)−Wi(a)

]
(35)

with the obvious difference from equation (6) that the exogenous dealer bargaining power does not enter the

above equation. The expected lifetime utility of a dealer solves

Πi(a) = ϕd(i, a) +
λ

r + δ + λ

∑
j∈I

πjΠj(ai). (36)

A dealer enjoys the current per-trade fees paid to him by the investor, plus an expected continuation value

of remaining in the relationship. Crucially, the dealer’s continuation value depends on the assets he trades

with the investor today.

A.2.3 Reservation Utilities

Here I write the expressions for the reservation utilities of investors and dealers, respectively. In my notation

I make use of the fact that on the equilibrium path, counteroffers will always be accepted.

An investors reservation utility can be broken down into two components as below.

RI(a) = ∆Iui(a) + e−r∆I

(
δ∆IWi(a) + λ∆I

∑
j∈I

πj

[
Uj(a, aj)− ϕd(a, j) + ΥI

j (aj)
]

+ α∆I

[
Ui(a, ai)− ϕd(a, i) + ΥI

i (ai)
]

+ (1− δ∆I − λ∆I − α∆I)
[
Ui(a, ai)− ϕI(a, i) + ΥI

i (ai)
])

.

(37)

The first component represents the utility flow enjoyed by an investor during an interval of length ∆I , should

an agreement not be reached. The second component represents the discounted expected utility an investor

will receive after this interval of length ∆I has passed. The terms inside the brackets correspond to the

following events. With probability δ∆I a relationship is destroyed and the investor becomes unmatched.

With probability λ∆I an investor changes type after which a new bargaining game begins and the dealer

makes an offer. With probability α∆I an investor meets a new dealer who makes an offer that the investor

accepts. Lastly, with complement probability (1− δ∆I − λ∆I −α∆I) the investor is neither unmatched nor

changes type nor meets a new dealer and is thus able to make a counteroffer.

A dealers reservation utility is simply his expected discounted utility from rejecting an offer. So,

Rd(a) = e−r∆d

(
λ∆d

∑
j∈I

πj

[
ϕd(a, j) + Υd(aj)

]
+ (1− δ∆d − λ∆d − α∆d)

[
ϕd(a, i) + Υd(ai)

])
. (38)

Over an interval of length ∆d after a dealer’s rejection, four events are possible. First, the game ends

with probability δ∆d after which the dealer receives a payoff of zero. Second, with probability λ∆d, an

investor changes type and a new game begins, with the dealer making an offer. Third, with probability α∆d

an investor meets a new counterparty and the dealer receives a payoff of zero. Lastly, with complement
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probability (1− δ∆d − λ∆d −α∆d), the investor’s characteristics remain unchanged and the dealer makes a

counteroffer.

Definition 2 An equilibrium of the alternating offer game for an investor-dealer pair must satisfy 3 condi-

tions. First, a set of proposals {aI , ϕI} and {ad, ϕd} that satisfy equations (29),(30) and (32),(33) taking

as given the Bellman equations V,W, and Π as well as the reservation values Rd and RI . Second, equations

(34), (35), and (36) that define the values V,W, and Π. Lastly, equations (37) and (38) that define the

reservation values for investors and dealers, respectively.

A.3 Immediate Counteroffers

I assume that the ratio ∆I/∆d is constant and equal to θ so that an investor takes θ times longer to formulate

a counteroffer compared to a dealer. Equivalently, I can write ∆d ≡ ∆ and ∆I ≡ θ∆. I am interested in

finding a solution to the bargaining game described above when ∆ → 0. When counteroffers are immediate,

I remove any first-mover advantage in the bargaining procedure. The intermediation fees reflect comparative

advantages in terms of proposal speed and outside options instead of who is the first to make an offer.

A.3.1 Per-Trade Intermediation Fees

It can be checked from (30) and (33) that as the time between counteroffers goes to zero, ϕd = ϕI . Thus, in

the limit as counteroffers are immediate, contracts proposed by investors will exactly match those contracts

offered by dealers. Combining (30) and (33) while using the expressions for the reservation values (37) and

(38) it follows that ϕd(i, a) can be expressed as

ϕd(i, a) = Γ1[Ui(a, ai) + ΥI
i (ai)] + Γ2

∑
j∈I

πj [Uj(a, aj) + ΥI
j (aj)] + Γ3Υ

d(ai) + Γ4

∑
j∈I

πjΥ
d(aj)

+ Γ5ui(a) + Γ6

∑
j∈I

πjuj(a) + Γ7Wi(a) + Γ8

∑
j∈I

πjWj(a) (39)

where the Γ coefficients are provided in Section A.6. There exists a direct mapping from the ratio of

counteroffer speeds, θ, into the ratio of bargaining powers used in Nash Bargaining, η
1−η , given by θ → η

1−η .
22

Taking the limit as ∆ −→ 0 yields per-trade fees given by

ϕi(a) = η

[
(r + δ + λ)[Ui(a, ai) + ΥI

i (ai) + Υd(ai)]

κ+ δ + λ

]
− η

[
λα

∑
j πj [Uj(a, aj) + ΥI

j (aj) + Υd(aj)]

(κ+ δ + λ)(κ+ δ)

]
− η

[
ui(a) + δWi(a)

κ+ δ + λ

]
− η

1− η

[
λ
∑

j πjuj(a) + λδ
∑

j πjWj(a)

(κ+ δ + λ)(κ+ δ)

]
−Υd(ai). (40)

The fees paid by an investor for trade to occur depends on how fast she can formulate an offer relative to the

dealer, how much she stands to gain if trade occurs, and her outside options from holding the asset without

trade. I illustrate three special cases below.

22In anticipation of this result, I replace θ
1+θ

with η and 1
1+θ

with 1 − η. It follows that θ = 0 is equivalent to η = 0 and

θ → ∞ is equivalent to η = 1.
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Fast Dealers When dealers respond substantially faster than investors (θ −→ ∞), (40) reduces to

ϕi(a) = Ui(a, ai) + ΥI
i (ai)−

[
δ(r + δ)Wi(a) + δλ

∑
j πjWj(a)

(r + δ)(r + λ+ δ)
+

(r + δ)ui(a) + λ
∑

j πjuj(a)

(r + δ)(r + λ+ δ)

]
so that the fees paid by an investor equal exactly the expected utility from accepting a proposal (first two

terms) net of the investors utility should an agreement not be reached (third term). This corresponds to the

outcome of the Nash Bargaining solution when dealers have all the bargaining power.

Fast Investors When investors have maximum advantage with respect to counteroffer speeds (θ = 0),

combining equation (40) with (36) implies that a dealer’s lifetime utility is zero so that (40) reduces to

ϕi(a) = 0

which corresponds to the outcome of the Nash Bargaining solution when dealers have no bargaining power.

It means that investors need not pay any fees when they are significantly faster than dealers and instead

enjoy the full joint surplus.

Equal Counteroffer Times When investors and dealers are symmetric in their ability to generate coun-

teroffers (θ = 1), we obtain the following expression for the intermediation fees:

ϕi(a) =
1

2

[
(r + δ + λ)[Ui(a, ai) + ΥI

i (ai) + Υd(ai)]

r + α
2 + δ + λ

]
− 1

2

[
λα

∑
j πj [Uj(a, aj) + ΥI

j (aj) + Υd(aj)]

(r + α
2 + δ + λ)(r + α

2 + δ)

]
− 1

2

[
ui(a) + δWi(a)

r + α
2 + δ + λ

]
−

[
λ
∑

j πjuj(a) + λδ
∑

j πjWj(a)

(r + α
2 + δ + λ)(r + α

2 + δ)

]
−Υd(ai).

Investors and dealers split the surplus created by a trade equally amongst themselves.

A.3.2 Bellman Equations Revisited

It follows from the results above that the maximum lifetime utility attainable by an investor and dealer,

respectively, can be written as

Vi(a) = (1−η)

[
(r + α+ δ + λ)[Ui(ai, a) + ΥI

i (ai) + Υd(ai)]

κ+ δ + λ

]
+η

[
λα

∑
j πj [Uj(aj , a) + ΥI

j (aj) + Υd(aj)]

(κ+ δ + λ)(κ+ δ)

]
+ η

[
ui(a) + δWi(a)

κ+ δ + λ

]
+

η

1− η

[
λ
∑

j πjuj(a) + λδ
∑

j πjWj(a)

(κ+ δ + λ)(κ+ δ)

]
(41)

and

Πi(a) = η

[
(r + δ + λ)[Ui(a, ai) + ΥI

i (ai) + Υd(ai)]

κ+ δ + λ

]
− η

[
λα

∑
j πj [Uj(a, aj) + ΥI

j (aj) + Υd(aj)]

(κ+ δ + λ)(κ+ δ)

]
− η

[
ui(a) + δWi(a)

κ+ δ + λ

]
− η

1− η

[
λ
∑

j πjuj(a) + λδ
∑

j πjWj(a)

(κ+ δ + λ)(κ+ δ)

]
. (42)

The joint surplus of a relationship then, Vi(a) + Πi(a), is linear in wealth since

Si(a) ≡ Vi(a) + Πi(a) =
(r + δ + λ)[Ui(a, ai) + ΥI

i (ai) + Υd(ai)]

κ+ δ + λ
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so that S′
i(a) = p. Using this and the choice of asset holdings given by both (29) and (32), it follows that

the FOC for the portfolio decision can be written as

u′
i(ai) + δW ′

i (ai) = (r + δ)p. (43)

It is identical to equation (5) with the only exception being that Wi(a) solves (35) instead of (6).

A.4 Asset Demands

Equation (35) can be differentiated with respect to an investor’s current portfolio to obtain

rW ′
i (a) = u′

i(a) + λ
∑
j∈I

πj

[
W ′

j(a)−W ′
i (a)

]
+ α

[
V ′
i (a)−W ′

i (a)
]
.

Differentiating (40) and substituting into into the above equation after using the fact that V ′
i (a) = p−ϕ′

i(a)

yields an expression for W ′
i (a) in terms of current and future marginal utilities, u′

i(a) and
∑

j πju
′
j(a), and

the interdealer price p. After some algebra, one obtains that

(α+ (1 + θ)(r + δ + λ)) (α+ r(1 + θ))u′
i(ai) + δλ(1 + θ)2

∑
j πju

′
j(ai)

(α+ (1 + θ)(r + λ)) (α+ (1 + θ)(r + δ))
= rp.

Using the fact that a mapping exists between θ, the ratio of counteroffer speeds, and η, dealers’ bargaining

power, the above equation can be re-expressed as

(λ+ r + α(1− η) + δ) (r + α(1− η))u′
i(ai) + δλ

∑
j πju

′
j(ai)

(λ+ r + α(1− η)) (r + α(1− η) + δ)
= rp

which exactly coincides with the asset demands under the generalized Nash solution.

A.5 Intermediation Fees and Trade Sizes

Differentiating (40) with respect to an investor’s current portfolio yields that

ϕ′
i(a) =

(
η

κ+ λ+ δ

)[
p(r + δ)− u′

i(a)− δW ′
i (a)

]
−

(
η

κ+ λ+ δ

)
λ

κ

[
p(αη − r) +

∑
j πju

′
j(a)

1− η

]
. (44)

It is the sum of two terms.23 From the FOC given by (43), the first term equals zero when a = ai. Since

both ui(a) and Wi(a) are strictly concave, it follows that the first term has the same sign as a − ai. The

following proposition provides sufficient conditions to determine the sign of ϕ′
i(a).

Proposition 5 Suppose a > ai then

i) ∂ϕi(a)/∂a ≥ 0 when p(αη − r) +
∑

j πju
′
j(a)/(1− η) ≤ 0

ii) ∂ϕi(a)/∂a < 0 when p(αη − r) +
∑

j πju
′
j(a)/(1− η) > κ/λ[p(r + δ)− u′

i(a)− δW ′
i (a)]

and opposite otherwise.

Proof of Proposition 5.

23Note that the function Wi(a) referenced in equation (44) is not the same at the function that solves (6) but instead is given
by (35).
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As opposed to Lagos and Rocheteau (2009) where intermediation fees increase as a function of trade sizes,

per-trade intermediation fees in my model need not be increasing functions of trade sizes. This result is more

in line with empirical evidence of asset markets that find larger trade sizes generally receive more favorable

prices (e.g. Edwards, Harris, and Piwowar 2007). Given the nearly identical structure of my model and

that of Lagos and Rocheteau (2009), I can attribute this result to the existence of long term relationships

between investors and dealers.

A.6 Coefficients for Section A.3.1

We have that

Γ1 ≡ 1− e−rθ∆(1− δθ∆− λθ∆)

γ1

Γ2 ≡ γ2[1− (1− δθ∆)e−rθ∆]− λθ∆e−rθ∆

γ1

Γ3 ≡ e−rθ∆(1− δθ∆− λθ∆− αθ∆)[e−r∆(1− δ∆− λ∆− α∆)− 1]

γ1

Γ4 ≡ e−r(1+θ)∆(1− δθ∆− λθ∆− αθ∆)λ∆

γ1
− γ2e

−rθ∆(1− δθ∆− λθ∆− αθ∆)[1− e−r∆(1− δ∆− α∆)]

Γ5 ≡ −θ∆

γ1

Γ6 ≡ −θ∆γ2

Γ7 ≡ −e−rθ∆δθ∆

γ1

Γ8 ≡ −γ2e
−rθ∆δθ∆

where γ1 and γ2 are given by

γ1 ≡ 1− αθ∆e−rθ∆ − e−r∆(1+θ)(1− δθ∆− λθ∆− αθ∆)(1− δ∆− λ∆− α∆)

γ2 ≡ e−rθ∆[λθ∆+ e−r∆(1− δθ∆− λθ∆− αθ∆)λ∆]

γ1
(
γ1 − e−rθ∆[λθ∆+ e−r∆(1− δθ∆− λθ∆− αθ∆)λ∆]

) .
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Taking the limit as ∆ → 0 and applying l’Hôpitals rule where necessary yields that

lim
∆→0

Γ1 =
θ(r + δ + λ)

α+ (1 + θ)(r + δ + λ)

lim
∆→0

Γ2 = − θλα

(α+ (1 + θ)(r + δ + λ))(α+ (1 + θ)(r + δ))

lim
∆→0

Γ3 = − r + δ + λ+ α

α+ (1 + θ)(r + δ + λ)

lim
∆→0

Γ4 = − θλα

(α+ (1 + θ)(r + δ + λ))(α+ (1 + θ)(r + δ))

lim
∆→0

Γ5 = − θ

α+ (1 + θ)(r + δ + λ)

lim
∆→0

Γ6 = − λθ(1 + θ)

(α+ (1 + θ)(r + δ + λ))(α+ (1 + θ)(r + δ))

lim
∆→0

Γ7 = − δθ

α+ (1 + θ)(r + δ + λ)

lim
∆→0

Γ8 = − δλθ(1 + θ)

(α+ (1 + θ)(r + δ + λ))(α+ (1 + θ)(r + δ))
.
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B Proofs

Proof of Proposition 1. Since a matched investor is connected to the interdealer market, we can think

of her lifetime utility from the moment she chooses to reoptimize her portfolio onward. Thus,

Vi(a) = max
a′≥0

{∫ τ

0

e−rtui(a
′)dt− p(a′ − a) + E

[
e−rτ1{τ=τδ}

∑
j∈I

πjVj(a
′)
]
+ E

[
e−rτ1{τ=τδ}Wi(a

′)
]}

where τ ≡ min(τδ, τλ) and τδ and τλ are exponentially distributed times with respective means of 1/δ and

1/λ. Expanding the above equation further we obtain that

Vi(a) = pa+max
a′≥0

{
ui(a

′)

r + λ+ δ
− pa′ +

λ

r + λ+ δ

∑
j∈I

πjVj(a
′) +

δ

r + λ+ δ
Wi(a

′)

}
.

The first term is an investor’s wealth, pa, and the second term can be fully summarized by an investor’s

current preference type. It follows that the lifetime utility of a matched investor can be written as

Vi(a) = pa+ Vi.

Hence, her value function is linear in her wealth.

Proof of Proposition 2. Volume of trade is given by the following equation

V = α
∑
i,j

nu
ji|ai − aj |+ λ

∑
i,j

nm
ii πj |aj − ai|.

Using both the expressions for the distribution of investors (Section 3.5) and ai (Section 3.7), V is easily

reexpressed, after a few lines of algebra, as follows:

V =
(δ + λ+ α)(δ + λ+ r + α(1− η))

(δ + α)(δ + r + α(1− η))

[
αλ(r + α(1− η))

∑
i,j πiπj |εi − εj |

(α+ λ)(r + α(1− η) + λ)rp

]
.

After taking the first and second derivatives of V with respect to δ where we use the fact that p is independent

of the relationship stability parameter under log-utility, we easily obtain the desired results that ∂V
∂δ ≤ 0 and

∂2V
∂δ2 ≥ 0.

Proof of Proposition 3. The discounted sum of intermediation fees, Φi(a), after combining like terms

can be expressed as follows

Φi(a) =
rpa

κ
−

κui(a) + λ
∑

j πjuj(a)

κ(κ+ λ)
+

λ[α(1− η)(2(κ+ δ + λ) + r) + r(r + λ)]
∑

j πjpaj

κ(κ+ λ)(κ+ λ+ δ)

− r(κ+ δ)pai
κ(κ+ λ+ δ)

+
ui(ai)

(κ+ λ)
+

δλ
∑

j πjuj(ai)

κ(κ+ λ)(κ+ λ+ δ)
+

λ
∑

j πjuj(aj)

(κ+ δ)(κ+ λ)
+

δλ2
∑

j πj

∑
k πkuk(aj)

κ(κ+ δ)(κ+ λ)(κ+ δ + λ)
.
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To establish the first part of the proposition, differentiate the above expression with respect to δ to obtain

Φ′
i(a) =

rp

κ

∂a

∂δ
− εi

a(κ+ λ)

∂a

∂δ
− ελ

aκ(κ+ λ)

∂a

∂δ
− λ[α(1− η)(2(κ+ δ + λ) + r) + r(r + λ)]

κ(κ+ λ)(κ+ λ+ δ)
p
∑
j

πj
∂aj
∂δ

+
λr

∑
j πjpaj

κ(κ+ λ+ δ)2
− λrpai

κ(κ+ λ+ δ)2
− r(κ+ δ)

κ(κ+ λ+ δ)
p
∂ai
∂δ

+
εi

a(κ+ λ)

∂ai
∂δ

+
λεln(ai)

κ(κ+ λ+ δ)2
+

δλ

κ(κ+ λ)(κ+ λ+ δ)

ε

ai

∂ai
∂δ

+
λ

(κ+ δ)(κ+ λ)

∑
j

πj
εj
aj

∂aj
∂δ

−
λ
∑

j πjεj ln(aj)

(κ+ δ)2(κ+ λ)

+
λ2(κ(κ+ λ)− δ2)

∑
j πjεln(aj)

κ(κ+ δ)2(κ+ λ)(κ+ δ + λ)2
+

δλ2

κ(κ+ δ)(κ+ λ)(κ+ δ + λ)

∑
j

πj
ε

aj

∂aj
∂δ

.

after using the fact that ui(a) = εiln(a) and the interdealer price is not affected by market frictions under

log-utility. One can notice that taking δ → ∞ means the above expression reduces to Φ′
i(a) = 0 after using

the fact that ∂a/∂δ approaches 0 and that ai approaches a constant when δ becomes large. This establishes

the first part of the proposition. To show that the second claim is true, notice that F can be expressed as

follows

F =
nm

∑
i,j fijΦj(ai)(r + δ)

V
=

r+δ
α+δ

∑
i
α(απi+λπ2

i )
λ+α Φi(ai)

V
+

r+δ
α+δ

∑
j

∑
i ̸=j

αλπiπj

λ+α Φj(ai)

V
.

Using the quotient rule, we obtain that

∂F/∂δ =

∑
i

approaches 0 as δ→∞︷ ︸︸ ︷
Ψ1[

r + δ

α+ δ

∂Φi(ai)

∂δ
+

α− r

(α+ δ)2
Φi(ai)]V −

<0︷ ︸︸ ︷
Ψ1

∂V
∂δ

r + δ

α+ δ
Φi(ai)

V2

+

∑
j

∑
i ̸=j Ψ2[

r+δ
α+δ

∂Φj(ai)
∂δ + α−r

(α+δ)2Φj(ai)]V −Ψ2
∂V
∂δ

r+δ
α+δΦj(ai)

V2
.

where Ψ1 and Ψ2 denote some coefficients independent of δ. When δ becomes large, the first term in both

summations approaches zero where we use the fact that ∂Φi(a)/∂δ approaches 0 as δ → ∞, a claim which

has already been established in the first part of this proposition. The second term of either summation is

negative since by proposition 2, ∂V/∂δ ≤ 0. Thus, since these negative terms are subtracted, it implies that

∂F/∂δ > 0.

Proof of Proposition 4. A reservation cost renders an investor indifferent between forming a relationship

and spot trading so that by definition

Vi(a, χ
∗) = max

a′′

{
Wi(a

′′)− p(a′′ − a)
}
.

As a result of the linear preferences, the above equation can be simplified to the following equation

Vi(χ
∗) = max

a′′

{
Wi(a

′′)− pa′′
}
.

It is an implicit equation that determines the reservation cost, χ∗, for each investor of type i. One can

check by inspection that an investor’s preference type fully determines the reservation cost that makes her

indifferent between forming or maintaining a relationship and spot trading. Thus, the reservation cost for

an investor of type i depends only on her current preference type and is written as χ∗
i . Taking the derivative
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of the LHS with respect to χ where we use equation (25) yields that ∂V/∂χ is bounded above and below so

that

∂V/∂χ ∈
[

−1

r + δ
,

−1

r + δ + λ

]
is always negative. The first bound corresponds to when an investor always forms a relationship while the

second represents the case when the investor never forms relationships. The derivative of the RHS with

respect to χ equals zero. Thus it implies that there is a unique reservation cost such that the investor is

indifferent between forming or maintaining a relationship and spot trading.
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C Endogenous Relationships Numerical Procedure

Here I detail the numerical procedure used to compute the solutions to equations (25) and (??). I also

numerically compute the endogenous distribution of investors and calculate measures of market liquidity.

C.1 Preparations

To begin, rewrite (25) and (26) in such a way so as to resemble a standard Bellman equation. We have that

Vi(χ) = βm

[
max
a′

{
ui(a

′)− (r+ δ)pa′ −χ+ δWi(a
′)+λ

I∑
j=1

πj max
{
Vj(χ),max

a′′

{
Wj(a

′′)− pa′′
}}}]

(45)

where

βm ≡ 1

r + λ+ δ

and

Wi(a) = βu

[
ui(a)+λ

I∑
j=1

πjWj(a)+α(1−η)

(
pa+

∫ χ

χ

max
{
Vi(χ

′),max
a′′

{Wi(a
′′)−pa′′}

}
dF (χ′)

)]
(46)

where

βu ≡ 1

r + λ+ α(1− η)
.

For what follows, we will make use of the steady state distribution of asset holdings to discretize the contin-

uous state space of asset positions. More precisely, recognize that in a steady state, an investors portfolio

choice will be the solution to one of two equations. Either the investor will spot trade, and update her port-

folio with choice of asset holdings asi , solution to (22), or the investor will trade via relationships choosing

ai, solution to (5).

I also discretize the distribution of match specific costs, F (χ). With this in mind, (46) is rewritten as

Wi(a) = βu

[
ui(a) + λ

I∑
j=1

πjWj(a) + α(1 − η)

(
pa +

M∑
k=1

ρk max
{
Vi(χ

k),max
a′′

{Wi(a
′′) − pa′′}

})]
(47)

where ρk denotes the probability of drawing a match-specific cost, χk, from the PMF resulting from the

discretization of its continuous analogue, f(χ), with M partitions.
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C.2 Distribution of Investors

The laws of motion for the distribution of investors can be written as below.

ṅm
ii = α(πi − nm

ii )− δnm
ii − λ(1− πi)n

m
ii + λπi

∑
j ̸=i

nm
jj for all i ∈ {1, ..., I} such that Vi − Ωi ≥ 0 (48)

ṅm
ii = 0 for all i ∈ {1, ..., I} such that Vi − Ωi < 0 (49)

ṅur
ii = δnm

ii − αnur
ii + λπi

∑
k ̸=i

nur
ik − λ(1− πi)n

ur
ii for all i ∈ {1, ..., I} (50)

ṅur
ji = λπi

∑
k ̸=i

nur
jk − λ(1− πi)n

ur
ji − αnur

ji for all j ̸= i (51)

ṅus
ii = α

M∑
k=k∗

i

∑
j

ρkn
ur
ji + α

M∑
k=k∗

i

∑
j ̸=i

ρkn
us
ji − α

k∗
i∑

k=1

ρkn
us
ii + λπi

∑
k ̸=i

nus
ik − λ(1− πi)n

us
ii + πiλ

M∑
k=k∗

i

∑
j ̸=i

nm
jjk

(52)

ṅus
ji = λπi

∑
k ̸=i

nus
jk − λ(1− πi)n

us
ji − αnus

ji for all j ̸= i (53)

C.3 Algorithm Philosophy

To begin, I arbitrarily choose an inter-dealer market price. Given the price, we then compute the value func-

tions through value function iteration and obtain the relationship formation thresholds. Once the thresholds

are known, we can compute the endogenous distribution of investors. Next, given the distribution of in-

vestors, we calculate the total assets held by investors. If the asset demand deviates from the supply of

assets, we change the inter-dealer price accordingly and repeat the process until the asset market clears.

Once we have an inter-dealer price that clears the market, we can calculate our measures of liquidity.

C.4 Algorithm

Denote I the number of preference types, K the number of steady state asset positions, and M the number

of match-specific costs an investor can draw.24 We let Zi,j denote the element from the ith row and jth

column of a given matrix, X, where the boldface denotes a matrix or vector. The algorithm proceeds as

follows:

1. Depending on the choice of distribution for the match specific costs, it may need to be discretized in

different ways. If the Uniform distribution or any other discrete distribution is used, nothing needs to

be done. In the calibration of the model, the distribution is chosen to be Normal and the discretization

process is standard. Should another distribution be preferred, more care will need to be taken to

generate an appropriate discrete approximation of the continuous PDF.

2. Fix an inter-dealer market price, p (a natural initial guess is the price resulting from section 5).

24Note that K = 2I in a steady state.
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3. Construct a K × 1 column vector of steady state asset holdings, denoted by A where the first I rows

correspond to relationship portfolios and rows I + 1 to K correspond to spot trade portfolios.

4. Construct a 1 × M row vector of equally spaced match-specific costs, χ, denoted by X where the

element in the first column position is χ and the element in the M th column position is χ.

5. Construct an I × 1 column vector of preference type probabilities, π, denoted by Π where the element

in the first row position is π1 and the element in the Ith row position is πI . The sum of all rows must

equal 1.

6. Construct an M × 1 column vector of match-specific cost probabilities, ρ, denoted by P where the

element in the first row position is ρ1, the probability of drawing χ, and the element in the M th row

position is ρM , the probability of drawing χ. The sum of all rows must equal 1.

7. Denote V0 the initial guess for (45). It is an M × I matrix where the ith row corresponds to match

specific cost χi with i ∈ {1, . . . ,M}, and the jth column corresponds to preference type j ∈ {1, . . . , I}.

Guess any arbitrary V0.

8. Denote W0 the initial guess for (47). It is a K × I matrix where the ith row corresponds to the

investors current portfolio, and the jth column corresponds to preference type j ∈ {1, . . . , I}. Guess

any arbitrary W0.

9. Set t = 0. Choose a maximum number of iterations, T , and a convergence criterion, ϵ.

10. Calculate Vt+1 as the solution to:

Vt+1
i,j = βm

[
uj(Aj,1)− (r + δ)pAj,1 −X1,i + δWt

j,j + λ

I∑
s=1

Πs,1 max
{
Vt

i,s,W
t
s+I,s − pAs+I,1

}]
∀i ∈ {1, . . . ,M} and j ∈ {1, . . . , I}

11. Calculate Wt+1 as the solution to:

Wt+1
i,j = βu

[
uj(Ai,1)+λ

I∑
s=1

Πs,1W
t
i,s+α(1−η)

(
pAi,1+

M∑
s=1

Ps,1 max
{
Vt

s,j ,W
t
j,j+I−pAj+I,1

})]
∀i ∈ {1, . . . ,K} and j ∈ {1, . . . , I}

12. Statement : |Vt+1
i,j − Vt

i,j | < ϵ and |Wt+1
q,j − Wt

q,j | < ϵ ∀i ∈ {1, . . . ,M}, j ∈ {1, . . . , I}, and q ∈

{1, . . . ,K}. If the previous statement is true, proceed to the next step. If the previous statement is

false, and t < T , set t = t+ 1 and go to step 9. Else, terminate code.25

13. Construct an M × I matrix, denoted by Γ, where Γi,j ≡ Vi,j −Wj+I,j + pAj+I,1

25You have reached the maximum number of iterations. Choose better initial guesses V0 and W0 or increase the maximum
number of iterations.
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14. For each column of Γ, identify the row that contains smallest element in absolute value. Call the

identified row number of column j as r∗j .

15. Construct an I×1 column vector, denoted by X∗ where X∗
i,1 ≡ X1,r∗i

. It is a row vector of reservations

costs where the ith row corresponds to χ∗
i .

16. Numerically solve equations (48)-(53) using a solver.

17. Compute the total asset demand as the sum of all asset holdings given the distribution of investors.

18. Statement : |AssetDemand − AssetSupply| < ϵp . If the previous statement is true, proceed to next

step. If the statement is false and Asset Demand > Asset Supply, set p = p +∆ and go to step 2. If

the statement is false and Asset Demand < Asset Supply, set p = p−∆ and go to step 2.

19. You are done with the main loop and can now calculate the equilibrium objects of your choosing.

C.5 Calibration Details

The calibration of the model proceeds by minimizing the sum of squared percentage deviations of model

moments from their targeted data counterparts.

C.5.1 Expressions for Model Equivalents of Targeted Moments

Asset turnover in the model is given by
Vr + Vs

A
.

I use this estimate as my target for the average effective spread paid in my model which is given by

2α

p(Vr + Vs)

∑
i,j

( k∗
i∑

k=1

ρkn
ur
ji Φi(aj) +

k∗
i∑

k=1

ρkn
us
ji Φi(a

s
j) +

k∑
k=k∗

i +1

ρkn
ur
ji ϕi(aj) +

k∑
k=k∗

i +1

ρkn
us
ji ϕi(a

s
j)

)
.

This probability is analogous to the model’s endogenous, average separation probability for relationships

which can be computed as ∑
i,k

nm
iik

nm

(
1− e

−(δ+λ
∑

j πjIχk>χ∗
j
)
)
.

It is the average probability, conditional on being matched, that at least 1 destruction shock arrives or at

least one preference shock arrives such that the relationship is terminated. Similarly, the same transition

matrix can also be used to calculate the annualized rate at which new relations are formed, 5.53%, which

serves as a proxy for the endogenous, average relationship formation probability in the model given by∑
i,j

nur
ji + nus

ji

nu

(
1− e

−α
∑

k ρkIχk≤χ∗
i

)
which gives the probability that an unmatched investor will form a relationship within the next year.
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D Supplementary Material

D.1 Alternative Liquidity Measures

I consider here an alternative measure of transaction costs and show that qualitatively, similar results are

obtained. Instead of using a volume weighted measure of transaction costs, as in section 3, I consider here

a non-weighted sum. Consider the following expression

F̃ = nm(r + δ)
∑
i,j

fijΦj(ai)

Vij
.

where Vij is the amount of assets that an investor of type i with asset holdings corresponding to type j

trades over the entire course of the relationship.

Binary Preference Types For the case of two preference types, volume of trade attributed to a specific

individual can be calculated in closed form by calculating the probabilities that a preference shock arrives

before a destruction shock and noticing the geometric series after using the fact that all trades are of the

same size. It takes the following simple expression:

Vij = |ai − aj |
(
1 +

λδπj + 2πjπiλ
2

δ(λ+ δ)

)
for all j ̸= i

Vii = |ai − aj |
(
λδπj + 2πjπiλ

2

δ(λ+ δ)

)
for all i ∈ {1, ..., I}

The following graph plots F̃ for two preference types and the parameter values used in the baseline calibration

of Section 3.
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Figure 7: Alternative Measure of Trading Costs

The same qualitative features hold as opposed to the measure of transaction costs that is used in the

main body of the text. Transaction costs per unit of asset traded rise as relationships are more unstable.

Furthermore, since this measure of transaction costs is not weighted by the volume share of an individual

investor, it leaves open the possibility of interpreting an illiquid market as a result of a few investors who
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incur a large bid-ask spread but trade a very little amount of the asset. Nevertheless, it shows that the

results described in section 3 are also robust to alternative measures of trading costs.

D.2 Section 5 Supplementary Material

Bellman Equations Even though matched investors are able to contact spot trade dealers, given their

match status, their portfolios are always optimal implying they will never need to trade with a spot dealer.

As a result, the value function of a matched investor remains as in Section 3. Making use of the solution to

the bargaining problem for spot transactions, the lifetime utility of an unmatched investor solves

rWi(a) = ui(a) + λ
∑
j∈I

πj [Wj(a)−Wi(a)] + α(1− η)[Vi(a)−Wi(a)] + αs(1− ηs)[V
s
i (a)−Wi(a)] (54)

where

V s
i (a) ≡ pa+Ωi

denotes the value of being matched for a spot trade and Ωi ≡ max
a′

{Wi(a
′) − pa′}. An unmatched investor

enjoys some flow utility, changes type with intensity λ, and meets a RD or SD, respectively, at effective rates

α(1− η) and αs(1− ηs).

Solving for Wi(a) yields that

Wi(a) = E[e−rτpa] + Ei

[∫ τ

0

e−rtus(t)(a)dt

]
+∆i (55)

We break down the value of being unmatched into three different components. The first is the expected

wealth of the investor the next time she is able to trade, (i.e. when she next meets either type of dealer). This

event occurs at some future time τ that is exponentially distributed with parameter α(1− η) + αs(1− ηs).

The second component is the expected utility the investor enjoys until time τ . Finally, the third term ∆i

stands in for the expected value of being able to engage in a spot trade or trade vis-à-vis a relationship at

time τ , respectively.

Using equation (54), multiplying each side by πi, summing over all i and collecting like terms yields that∑
i

πiWi(a) =

∑
i πiui(a)

r + α(1− η) + αs(1− ηs)
+pa

α(1− η) + αs(1− ηs)

r + α(1− η) + αs(1− ηs)
+

∑
i πi[α(1− η)Vi + αs(1− ηs)Ωi]

r + α(1− η) + αs(1− ηs)
.

Substituting the above equation back into (54) and solving for Wi(a) yields

Wi(a) = pa
α(1− η) + αs(1− ηs)

κs
+

κsui(a) + λ
∑

j πjuj(a)

κs(κs + λ)

+
κs[α(1− η)Vi + αs(1− ηs)Ωi + λ

∑
j πj [α(1− η)Vj + αs(1− ηs)Ωj ]]

κs(κs + λ)

where κs ≡ r+α(1−η)+αs(1−ηs) is defined for notational convenience. The above equation expresses the

lifetime value of an unmatched investor as the sum of three terms: the expected wealth of an investor at a

future time τ that is exponentially distributed with parameter α(1− η) +αs(1− ηs), the utility the investor

enjoys up until that time τ , and the continuation value of the investor at time τ . It follows then that

Wi(a) = E[e−rτpa] + Ei

[∫ τ

0

e−rtus(t)(a)dt

]
+∆i
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which coincides exactly with equation (55).

Relationship Trade Asset Demands The first-order condition for the optimal asset holdings of a

matched investor is given by (5). After differentiating (55) and substituting the expression into (5), an

investors’ choice of asset holdings while in a relationship can be reduced to the following equation:

[λ+ δ + r + α(1− η) + αs(1− ηs)][r + α(1− η) + αs(1− ηs)]u
′
i(ai) + δλ

∑
j πju

′
j(ai)

[λ+ r + α(1− η) + αs(1− ηs)][δ + r + α(1− η) + αs(1− ηs)]
= rp. (56)

It equates the expected marginal utility of holding the asset (left side) to the marginal cost (right side). As

before, the expected marginal utility of holding the asset is a weighted sum of current utility and future

expected utility. The weight on current utility is increasing in r, α(1− η), and αs(1− ηs) while the weight

on future utility is increasing in λ and δ. As investors are more impatient or as they expect to be able

to contact dealers more quickly, their current valuation of the asset dominates. Conversely, when investors

expect to change types more quickly or as relationships are shorter lived, they place more weight on the

expected marginal utility.

Distribution of Investors Our measure of matched investors remains as given by (17) and (18). We

distinguish between investors whose last trade was in a relationship, with measure nur, and those whose last

trade was a spot transaction, with measure nus. We have then that nu = nus + nur. This distinction will

prove important since the quantity of assets acquired via spot trades can be different than that acquired

through relationships. The laws of motion for unmatched investors are given by the following four equations.

ṅur
ii = δnm

ii − αnur
ii − βnur

ii + λπi

∑
k ̸=i

nur
ik − λ(1− πi)n

ur
ii for all i ∈ {1, ..., I}

ṅur
ji = λπi

∑
k ̸=i

nur
jk − λ(1− πi)n

ur
ji − αnur

ji − βnur
ji for all j ̸= i

ṅus
ii = β

∑
k

nur
ki + β

∑
k ̸=i

nus
ki − αnus

ii + λπi

∑
k ̸=i

nus
ik − λ(1− πi)n

us
ii for all i ∈ {1, ..., I}

ṅus
ji = λπi

∑
k ̸=i

nus
jk − λ(1− πi)n

us
ji − αnus

ji − βnus
ji for all j ̸= i

The flow of investors whose last trade was a spot transaction is αsn
ur while the flow of investors whose

last trade was in a relationship is αnus. Thus, we have that nus = αs

α+αs
nu and nur = α

α+αs
nu. In a steady

state, solving the above equations yields the following equations.

nur
ii =

(α+ αs)αδπi + λαδπ2
i

(λ+ α+ αs)(α+ δ)(α+ αs)
for all i ∈ I (57)

nur
ji =

δλαπiπj

(λ+ α+ αs)(α+ δ)(α+ αs)
for all i ̸= j (58)

nus
ii =

αsδ(α+ αs)πi + αsδλπ
2
i

(λ+ α+ αs)(α+ δ)(α+ αs)
for all i ∈ I (59)

nus
ji =

αsδλπiπj

(λ+ α+ αs)(α+ δ)(α+ αs)
for all i ̸= j (60)
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Market Clearing In a steady state, the average amount of assets held by matched investors, Am, un-

matched investors whose last trade was spot, Aus, and unmatched investors whose last trade was via rela-

tionships, Aur must be constant so that Ȧm = ˙Aus = ˙Aur = 0 where

˙Aus = αsn
urAur − αnusAus (61)

˙Aur = δnmAm − αnurAur − αsn
urAur (62)

Ȧm = αnusAus + αnurAur − δnmAm. (63)

It follows then that Am = Aus = Aur = A and the flow supply of assets is given by

λnmA+ αsn
uA.

A fraction nm of investors receive a trading shock and bring to the market A units of the asset. Similarly, a

fraction nu of investors contact a spot dealer and bring to the market A units of the asset as well.

The flow demand is written as

λnm
∑
i∈I

πiai + αsn
u
∑
i∈I

πia
s
i .

The flow of matched investors who receive a trading shock is λnm. Using the law of large numbers, a

fraction πi will be of type i, and hence will demand ai. Also, at rate αs, unmatched investors will receive

the opportunity to spot trade. With probability πi, they will be of type i and demand asi .

Equating supply and demand yields the market clearing condition:

λnmA+ αsn
uA = λnm

∑
i∈I

πiai + αsn
u
∑
i∈I

πia
s
i . (64)

The left side of (64) is a constant, whereas the right side is decreasing in p. Thus, there is a unique interdealer

market price, p, that is a solution to (64).

Trading Volume Volume of trade is calculated as the sum of all realignment trades executed at the onset

of a relationship and subsequent trades made during the relationship after receiving a preference shock. The

novelty with the addition of spot trades is that we must keep track of what type of assets investors hold.

More precisely, asset positions that investors demand from spot trades will be different from those demanded

by investors in relationships, so the magnitude of the realignment trades will vary depending on what was

the last trade an investor engaged in. Relationship trading volume can be expressed as

Vr =
∑
i,j

(
αnus

ji |ai − asj |+ αnur
ji |ai − aj |+ λnm

ii πj |aj − ai|
)
. (65)

The first two terms in the summation operator capture the volume of trade driven by realignment trades of

investors who are newly matched and hold a portfolio that is aligned for spot transactions and relationships,

respectively. The last term represents volume of trade by investors currently in a relationship who trade

after receiving a preference shock.

One way to view volume of trade for spot transactions is as consisting only of realignment trades by
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investors. Spot volume, which we denote as Vs, is given by the following expression:

Vs = αs

∑
i,j

(
nus
ji |asi − asj |+ nur

ji |asi − aj |
)
. (66)

There will be those investors who hold a spot portfolio but are mismatched with respect to their preference

type (first term), and those investors who hold relationship portfolios (potentially mismatched) and wish to

transition to spot portfolios (second term).

Trading Costs Our measure of expected fees per unit of asset traded for relationships remains largely

unchanged with the exception that we pay closer attention to the distribution of asset holdings to correctly

calculate fees paid. We have then

Fr =
nm(r + δ)

∑
i,j

(
fs
ijΦj(a

s
i ) + fijΦj(ai)

)
Vr

(67)

where fs
ij ≡ nus

ij /n
u. Expected spot trade fees can be obtained by multiplying the distribution of investors

and the according fees that they pay. Hence, the measure of spot trade fees per unit of asset traded is

Fs =
αs

∑
i,j

(
nus
ij ϕj(a

s
i ) + nur

ij ϕj(ai)
)

Vs
. (68)
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