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Abstract

I study the optimal regulation of a banking system in a Gertler and Kiyotaki (2010) economy.

Bankers issue deposits to households and use their own net worth to invest in productive firms

subject to an enforcement constraint: the forward-looking bank value cannot be less than the

value of default. I show that a benevolent policymaker has two distinct objectives. First, the

optimal policy induces private bankers internalize the pecuniary externalities inherent in the

enforcement constraint. An optimal linear deposit tax financed with a net worth subsidy is

effective for that matter, while regulatory capital requirements are generally not. Second, the

optimal policy rewards survival of banks by tilting the bank value distribution from entrants to

survivors, which mitigates the enforcement friction in the first place. A way to achieve the latter

is to introduce variation in net worth subsidies between the two groups of banks. The future

subsidies to survivors—“preemptive bailouts”—relax the enforcement constraint of the banking

system as whole, decreasing the probability of financial crises. Quantitatively, unregulated banks

underborrow and underlend compared to the optimal allocation under commitment, and similar

conclusions arise in the context of Markov perfect equilibria without commitment.
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1 Introduction

The global financial crisis and the Great Recession of the late 2000s raised several challenging nor-

mative questions. Is there a need for macroprudential regulation, and if so, which policy instruments

are effective? Should regulatory requirements be conditioned on individual-specific characteristics?

Is “too big to fail” a problem? Are bailouts justified? In the recent decade, considerable progress has

been made in understanding the rationales for macroprudential regulation in small open economies

that borrow in the international financial market at exogenously determined interest rates. At the

same time, our knowledge of the optimal regulation of banks in quantitative general equilibrium

remains limited. Banking crises were at the heart of the global financial crisis of 2007–2009, in-

cluding in the US and the UK, and many developed and developing economies have a bank-based

financial system. Therefore, it is crucial to understand how to regulate banks optimally over the

business cycle.

This paper considers a quantitative general equilibrium environment with endogenous financial

frictions in the banking system. In this environment, multiple externalities arise, justifying system-

wide regulation, e.g., bank balance sheet taxation or minimum capital requirements. Without

regulation, occasional large drops in net worth lead to financial crises when endogenous financial

constraints switch from being slack to binding. An alternative way to decrease the probability

of financial crises and improve welfare is through “preemptive bailouts.” Expected future trans-

fers relax the current financial constraints guaranteeing bank solvency and alleviating the limited

enforcement friction in the first place. Such transfers are systemic, not being a source of moral

hazard. Addressing pecuniary externalities and mitigating the enforcement friction generally con-

stitutes a trade-off between limiting excessive borrowing and lending by banks ex ante and relaxing

their financial constraints ex post. Quantitatively, unregulated banks overborrow and overlend

compared to the Markov perfect equilibrium outcome but underborrow and underlend compared

to the Ramsey outcome.

The economy I consider is a real business cycle model with a banking sector (Gertler and Kiy-

otaki, 2010; Gertler and Karadi, 2011) and a nonlinear investment technology (Lucas and Prescott,

1971). The banking system consists of heterogeneous banks that issue deposits to households, invest

in the real economy with state-contingent returns, and face survival risk. Financial intermediation

is imperfect due to the limited enforcement of deposit contracts and the resulting enforcement

constraint faced by individual banks. The enforcement constraint posits that the forward-looking

bank value must be at least as great as the value of default—running away with a fraction of

assets—at all possible contingencies. The constraint is thus similar to that studied by Kehoe and

Perri (2002) in an international real business cycle model with endogenously incomplete markets.

In addition, banks can become insolvent under limited liability, with the deposit insurance agency

financed lump sum guaranteeing that deposits are risk free.

I highlight two distinct sources of the inefficiency of the competitive equilibrium allocation.

First, there are pecuniary externalities: individual bankers do not internalize that their private

portfolio decisions influence the price of claims on firm profits and the future return on bank assets,

2



affecting both the forward-looking bank value and the value of default of all banks. The equilibrium

asset price at t is a function of the aggregate capital stock chosen at t−1 and t, depending negatively

on the former and positively on the latter. Consequently, in the partial derivative sense, greater

bank lending to the real sector at t is linked to a greater demand for capital goods and asset price

at t, increasing the value of default; furthermore, there is a lower asset price and marginal product

of capital at t + 1, decreasing the ex-post return on bank assets at t + 1 and the bank value at t.

Both effects tighten enforcement constraints of all banks at t. On the other hand, by decreasing the

asset price at t+1, greater bank lending at t decreases the value of default at t+1, relaxing future

enforcement constraints. Hence, while the former effects are consistent with excessive borrowing

and lending in the competitive equilibrium, the latter effect contributes to insufficient borrowing

and lending, and in both cases, the effect on bank borrowing is due to the balance sheet identity.

There are, moreover, additional externalities, many of which depend on the extent of commitment

by the policymaker. A planner that can choose a policy plan at the beginning of time once and

for all internalizes the effect of allocations at t on t− 1 expectations. As a result, the planner with

commitment internalizes that greater bank lending at t increases the bank value and relaxes the

enforcement constraint at t − 1, which is due to a positive effect on the asset price and thus on

the ex-post asset return at t. This effect is absent without commitment when the planner must

consider how current decisions affect the endogenous state and optimal decisions in the future.

The second type of inefficiencies is the very nature of the limited enforcement friction that re-

stricts bank borrowing and lending compared to the economy without such a friction. Intuitively, if

the enforcement constraint is binding at t, one can achieve a strict welfare improvement by promis-

ing a greater future bank value conditional on survival to t+1, relaxing the financial constraint at

t. Formally, this goal can be achieved by manipulating the future bank value distribution between

entrants and survivors. This strategy has a limitation in that an implementable distribution must

be constrained to a half-open unit interval: entrants must have a positive bank value to operate.

Since the feasible space is not compact, it is not guaranteed that the maximum can be attained:

indeed, to relax the enforcement constraint in some contingencies, the planner might want to choose

a distribution that is infinitely close to the feasible boundary. To avoid this caveat, I conduct the

normative analysis either for a given distribution or under a constraint specifying that the dis-

tribution must be in a certain sense consistent with that endogenously arising in the competitive

equilibrium. Under the assumption of commitment, the planner internalizes how allocations affect

the future distribution. E.g., a greater future bank debt decreases the future bank value of survivors

and tightens the current enforcement constraint, thus contributing to potential overborrowing and

overlending in the competitive equilibrium taking the enforcement friction as given.

Formally, I characterize the constrained efficient allocation, which results from a planning prob-

lem of a benevolent policymaker that maximizes household welfare subject to the competitive

equilibrium implementability constraints except for the optimality conditions of bankers: that is,

the policymaker makes portfolio decisions on behalf of the banking system. I study this problem

both under the assumption of commitment and no commitment on the planner’s side. The no-
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commitment case corresponds to a Markov perfect equilibrium of a non-cooperative game between

successive policymakers (Klein et al., 2008). As explained in the previous paragraphs, both types of

constrained efficient allocations highlight similar distortions in the competitive equilibrium. There

are, however, two key differences. First, the competitive equilibrium deposit supply is efficient

in the intertemporal sense when compared to the commitment allocation for a given bank value

distribution. There is no wedge between the agent’s and the planner’s bank debt Euler equations.

At the same time, due to the balance sheet constraint, the quantity of deposits need not be effi-

cient if bank loans are not. Second, by construction of the Markov allocation, the time-consistent

planner cannot affect the future bank value distribution except by affecting the future endogenous

state. Therefore, the distribution is always taken as given in the time-consistent analysis. Although

the argument about the potential welfare benefit of the survivors-biased bank value distribution

generally applies, there are crucial quantitative differences from the case of commitment.

I show how to implement both types of constrained efficient allocations in a regulated compet-

itive equilibrium with two types of policy instruments that address the two types of inefficiencies.

The externalities can be corrected either by linear taxes on deposits and loans balanced in the

aggregate or by one of these types of taxes rebated lump sum, by targeting the bank capital ratio,

or—under certain assumptions—with minimum state-contingent capital requirements. The prob-

lem with the latter is in its asymmetric nature, which does not allow closing the wedges in the

contingencies in which the optimal credit spread is too low. The given bank value distribution can

be achieved with entrants/survivors-specific transfers—preemptive bailouts—that either add up to

zero or match the aggregate lump-sum transfer that rebates the proceeds from the linear taxes.

For most computations, I use global projection methods to fully account for precautionary savings

effects when the occasionally binding enforcement constraint is about to switch from the slack to

the binding regime.

Quantitatively, in both the Markov perfect and Ramsey equilibria, the enforcement constraint

is binding by an order of magnitude less often than in the competitive equilibrium. Both normative

arrangements generate sizable consumption-equivalent welfare gains: from a 0.57% state-space me-

dian at the Markov allocation to a 0.75% ergodic distribution average at the commitment allocation.

At the same time, there are crucial differences in the nature of the optimal bank value distribution

and the relative magnitude of bank assets and debt. In the Markov perfect equilibrium, the opti-

mal distribution is more entrants biased than in the competitive equilibrium, and banks generally

borrow and lend less than in the competitive equilibrium. Conversely, in the Ramsey equilibrium,

an opposite situation occurs: the optimal distribution is more survivors biased, and there is more

borrowing and lending than in the competitive equilibrium. At the same time, the Ramsey allo-

cation has less borrowing and lending than in the unconstrained competitive equilibrium—that is,

the competitive equilibrium in the environment without the enforcement friction. These differences

reflect a trade-off that the planner faces. Without commitment, limiting excessive borrowing and

lending ex ante to address the pecuniary externalities is the key pursuit, as the planner has limited

ability to affect the future bank value distribution. A more entrants-biased distribution helps to
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achieve this goal. However, with commitment, preemptive bailouts have more power, and the plan-

ner leans toward a more survivors-biased distribution that generates greater equilibrium borrowing

and lending. At the same time, it is not optimal to choose an extremely biased distribution, and

under both arrangements, transfers to survivors increase around crises. We can thus identify a

two-sided objective: on the one hand, to prevent banks from becoming too large ex ante; on the

other hand, to provide preemptive support to older and larger banks when financial constraints

bind ex post.

Related literature This paper is related to the literature on financial crises and pecuniary ex-

ternalities arising from endogenous financial constraints. Lorenzoni (2008) is the first to highlight

overborrowing in the competitive equilibrium due to a pecuniary externality in the price of capital in

a three-period model with two-sided limited commitment and direct finance; Dávila and Korinek

(2018) provide a comprehensive theoretical analysis of pecuniary externalities. Bianchi (2011)

considers a quantitative endowment (small open) economy with two goods and a flow collateral

constraint that depends on the relative price of nontradable goods. He shows that overborrowing

due to the pecuniary externality can be corrected with a state-contingent debt tax. In the same

model, Benigno et al. (2016) show that policies that relax financial constraints ex post achieve

greater welfare than the optimal debt tax since the former can implement the unconstrained first-

best allocation. The competitive equilibrium features underborrowing compared to that allocation.

Moreover, Schmitt-Grohé and Uribe (2021) emphasize that there exist reasonable parameteriza-

tions under which multiple equilibria arise in that model, including a self-fulfilling equilibrium

that features underborrowing. Benigno et al. (2013) find that underborrowing arises in a related

production economy and highlight the importance of ex-post policies. In the context of small

open and endowment economies with stock collateral constraints, Bianchi and Mendoza (2018) and

Jeanne and Korinek (2019) identify overborrowing in the competitive equilibrium compared to the

Markov perfect equilibrium and characterize the optimal time-consistent debt tax. The current

paper focuses on the implications of pecuniary externalities due to asset prices and asset returns

that affect the forward-looking enforcement constraint faced by financial intermediaries. My quan-

titative findings correlate with the findings in the small open and endowment economy contexts.

I identify overborrowing by banks in the competitive equilibrium compared to the Markov perfect

equilibrium outcome but underborrowing compared to the Ramsey outcome.

This paper is also related to the literature on financial crises, bailouts, and optimal financial

regulation. Allen and Gale (2004) generalize the model of Diamond and Dybvig (1983) and show

that with complete markets and limited market participation, the competitive equilibrium is either

incentive efficient or constrained efficient, defaults and financial crises occur in equilibrium with

incomplete contracts, and no regulation is warranted. However, with incomplete markets, there is

room for liquidity regulation.1 In the current paper, there is endogenous market incompleteness

that gives rise to pecuniary externalities and inefficient financial intermediation. Farhi and Tirole

1Farhi et al. (2009) show that the competitive equilibrium in the model of Diamond and Dybvig (1983) is con-
strained inefficient even with complete markets if agents can engage in hidden trades.
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(2012) demonstrate that imperfectly targeted time-consistent accommodating interest-rate policies

lead to multiple equilibria, increase correlation in risk-taking behavior by financial intermediaries

and sow the seeds of future crises. Regulation in the form of a cap on short-term debt reduces

the set of equilibria to a singleton that corresponds to the commitment benchmark. The current

paper focuses on the symmetric equilibrium in the banking system to facilitate aggregation and

permit tractable positive and normative analysis. Even though preemptive bailouts are imperfectly

targeted within entrants and survivors, the symmetric equilibrium is not subject to collective moral

hazard. Bianchi (2016) studies the implications of a pecuniary externality in an equity constraint

that depends on the market wage rate and emphasizes the benefits of a systemic debt relief policy—

a proportional reduction in debt repayments—that helps relax equity constraints during crises. The

objective of relaxing financial constraints is similar to the objective of preemptive bailouts in the

current paper, but the latter constitute a somewhat different policy—group-dependent lump-sum

transfers provided to banks at t + 1 to relax financial constraints at t. Chari and Kehoe (2016)

develop a model where costly firm bankruptcies occur in the competitive equilibrium, which is both

ex-ante and ex-post efficient if compared to the commitment benchmark. Without commitment,

inefficient bailouts will arise, and regulation in the form of a limit on the debt-to-value ratio and

the tax on firm size is desirable to achieve a sustainably efficient outcome. In the current paper, the

competitive equilibrium is constrained inefficient compared to the commitment benchmark, while

preemptive (not actual) bailouts help mitigate the source of endogenous market incompleteness.

As part of smaller quantitative literature, Boissay et al. (2016) develop a real business cycle

model with a banking sector that features an interbank market. High-skilled banks borrow from

low-skilled banks and households to lend to firms and may decide to divert borrowed funds to invest

in the storage technology subject to diversion costs. A relevant incentive compatibility constraint

eliminates the former possibility. The authors briefly discuss the constrained inefficiency of the

competitive equilibrium and compute welfare losses. A crucial difference from the current paper

is that the bank’s problem is static, and the incentive constraint is always binding in equilibrium;

therefore, the sources of the inefficiency of the competitive equilibrium are utterly different from

those in the current paper. Indeed, in the current paper, the competitive equilibrium is constrained

efficient if the enforcement constraint is always binding, and the bank value distribution externality

arises because the enforcement constraint is forward looking. Collard et al. (2017) study locally

Ramsey-optimal bank capital requirements and monetary policy. In their model, sufficiently high

capital requirements help eliminate risky lending in equilibrium. On the contrary, in the current

paper, capital requirements do not generally constitute an effective policy instrument, and their role

is different—to force individual banks to internalize pecuniary externalities due to the enforcement

constraint. In a continuous-time environment, Di Tella (2019) demonstrates how the possibility of

hidden trades in physical capital by intermediaries inflates the asset price and risk exposure of other

intermediaries. The constrained efficient allocation can be implemented with a tax on assets, while

bank capital requirements are ineffective. Van der Ghote (2021) develops a continuous-time model

with nominal rigidities and a banking sector that is similar to that in the current paper but with the
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capital requirement constraint imposed as part of the environment. The author restricts attention

to Markov equilibria and acknowledges the presence of pecuniary externalities, discussing them

intuitively and computing the optimal capital requirement numerically. The current paper instead

characterizes constrained efficient allocations that do not depend on the presence of specific policy

instruments. Indeed, as mentioned above, capital requirements might not be effective for correcting

the externalities. Moreover, the current paper identifies the bank value distribution externality and

conducts the normative analysis both with and without commitment on the planner’s side.

Several papers studied the welfare implications of specific policies in related environments un-

der the assumption that the enforcement constraint is always binding to allow for smooth local

approximations (Gertler and Kiyotaki, 2010; Gertler and Karadi, 2011; Gertler et al., 2012; De

Paoli and Paustian, 2017). In the current paper, the enforcement constraint is occasionally bind-

ing, and the model is solved using global or quasi-global methods. Moreover, as mentioned above,

the competitive equilibrium is constrained efficient if the enforcement constraint is always binding,

so in that case, regulation might not be desirable. Gertler et al. (2020b) and Akinci and Queralto

(forthcoming) also use global methods, but they do not study efficiency, restricting the analysis to

specific policy rules.

The rest of this paper proceeds as follows. Section 2 describes the theoretical model and defines

the sequential and recursive competitive equilibria. Section 3 conducts the normative analysis.

Section 4 presents quantitative results. Section 5 concludes. Appendix contains proofs of theoretical

results.

2 Model

Consider a basic version of the economy described in Gertler and Kiyotaki (2010) and Gertler and

Karadi (2011). Time t is discrete, and the horizon is infinite, so t ∈ Z+. There are unit measures

of identical households and firms producing final and capital goods. Each household is a family of

f ∈ (0, 1) bankers and 1− f workers, and there is perfect consumption insurance within a family.

Bankers manage banks that intermediate funds between households and final good firms. Crucially,

there is limited enforcement of deposit contracts between households and banks, which gives rise

to an endogenous financial friction. Without that friction, the economy collapses to a standard

real business cycle model. At each date t > 0, there is uncertainty regarding the state of nature

st ∈ S, and s0 ∈ S is fixed. For simplicity, we can think of S being finite. A history of states is

st = (s0, s1, . . . , st) ∈ St, where St ≡ St−1 × S with S0 ≡ S, and the probability of a history st is

πt(s
t). We will keep the history dependence implicit when possible.

2.1 Households

On behalf of a family, the head of the household decides how much to consume Ct, save in one-

period risk-free deposits Dt+1

Rt
with the gross return Rt, and how much labor Lt to supply at the

7



wage rate Wt. The budget constraint of the household is

Ct +
Dt+1

Rt
≤WtLt +Dt +Πt − Tt,

where Πt denotes net transfers from the ownership of banks and firms, and Tt is a lump-sum tax.

The household’s preferences are represented by E0[
∑∞

t=0 β
tU(Ct, Lt)], where β ∈ (0, 1), U :

R2
+ → R is twice continuously differentiable and strictly concave with UC > 0, UL < 0, and

limC→0 UC(C,L) = ∞ for all L ≥ 0. The necessary conditions for optimality include the budget

constraint holding as equality, the labor supply condition that links the wage to the marginal rate

of substitution of consumption for leisure (1), and the Euler equation that prices deposits (2).

Wt = −
UL,t
UC,t

, (1)

UC,t = βRtEt(UC,t+1). (2)

Combined with initial and transversality conditions on {Dt}, the above equations are also sufficient

to determine the household’s optimal plan given prices and government policies.

2.2 Bankers

A banker manages a bank that invests net worth nt and deposits dt+1

Rt
into firms’ equity kt+1 at the

price Qt. The bank’s balance sheet constraint is then

Qtkt+1 = nt +
dt+1

Rt
.

Bankers are assumed to stay in the banking business for a finite expected period of time.

Specifically, a banker in period t remains to be a banker in period t + 1 with the probability

σ ∈ [0, 1) and becomes a worker with the probability 1 − σ. Hence, the expected lifetime of the

banking business is 1
1−σ . A banker that exits transfers the accumulated net worth to their household.

Accordingly, (1− σ)f workers start a banking business each period, being endowed with a startup

net worth n0t > 0 by their households. The future net worth is the difference between the ex-post

returns on assets and liabilities:

nt+1 = Xt+1kt+1 − dt+1,

where Xt is the gross payoff per unit of capital stock. We will make the following assumption to

ensure that the aggregate net worth of the banking system does not explode over time.

Assumption 1. σ < β.

Unlike in the standard framework, we will explicitly allow for the possibility of becoming insol-

vent. If a banker has survived to period t > 1 but nt ≤ 0, the banker cannot operate and remains

inactive until becoming a worker. If a banker has become a worker in t and nt ≤ 0, the banker

cannot transfer anything to their household. Hence, there is limited liability on the banker’s side.
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In the baseline analysis, we will assume that there is a deposit insurance agency that guarantees

households a risk-free return on deposits and is funded lump sum.

Let vt denote the bank value. The bank value satisfies a stochastic difference equation:

vt = Et
{
β
UC,t+1

UC,t
[(1− σ)nt+1 + σvt+1]

}
Since households are identical, the same stochastic discount factor applies to future payoffs of all

bankers.

We assume that at the end of a period t, a banker could divert a fraction θ ∈ [0, 1] of assets to

their household. In that case, the bank would default, while other households could recover only

the remaining fraction 1− θ of assets. Consequently, other households will be willing to lend to the

bank only if the following incentive compatibility constraint holds:

vt ≥ θQtkt+1.

This constraint is essentially an enforcement constraint (EC) of the type studied in Kehoe and Perri

(2002). Since vt, and thus the banker’s budget set, depends on infinitely many future controls,

a recursive representation of the banker’s problem need not exist (Marcet and Marimon, 2019).

The standard approach in the literature is to guess that vt is linear in individual net worth and

reformulate the problem in terms of the state-contingent marginal value of net worth common to all

bankers. Although this approach identifies a solution to the banker’s problem, other—nonlinear—

solutions could exist. To investigate this possibility, we will solve the general banker’s problem, not

taking ex-ante assumptions on the form of vt.
2

The banker’s problem is

max
{dt+1,kt+1,vt}

v0

subject to the non-negativity, balance sheet, net worth, bank value, and enforcement constraints.

Let ν̃t(s
t), γt(s

t), and λ̃t(s
t) denote the Lagrange multipliers on the balance sheet, bank value, and

enforcement constraints for a history st normalized by (βσ)tπt(s
t)
UC,t(s

t)
UC,0

. Define also the scaled

multipliers νt ≡ ν̃t
γt−1

and λt ≡ λ̃t
γt−1

. The following assumption is sufficient to have a unique solution

to the banker’s problem.

Assumption 2. At an optimal plan, for all t ≥ 0, st ∈ St, and all continuations of st, a sequence

n 7→ βn
∏n
i=1(1 + λt+i−1(s

t+i−1)) is bounded.

Assumption 2 thus requires that
∏n
i=1(1+λt+i−1) does not grow too fast. The next proposition

characterizes the solution to the banker’s problem.

2As shown by Marcet and Marimon (2019), the Lagrangian in these types of problems admits a recursive rep-
resentation on the expanded state space. The solution characterized below can be equivalently derived using the
reformulated Lagrangian.
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Proposition 1. Under assumption 2, the unique bounded solution to the banker’s problem has

vt = νtnt. The solution is characterized by the Euler equations

νt = (1 + λt)Et
[
β
UC,t+1

UC,t
(1− σ + σνt+1)

]
Rt, (3)

θλt + νt = (1 + λt)Et
[
β
UC,t+1

UC,t
(1− σ + σνt+1)

Xt+1

Qt

]
, (4)

and the complementary slackness conditions

0 = λt(vt − θQtkt+1), λt ≥ 0, vt ≥ θQtkt+1,

where the optimal bank value satisfies

vt = νtnt.

The transformed Lagrange multipliers λt and νt and the ratios dt+1

nt
and kt+1

nt
are independent of nt.

Aggregate variables:

Dt+1 ≡
∫ f

0
di,t+1 di , Kt+1 ≡

∫ f

0
ki,t+1 di , Nt ≡

∫ f

0
ni,t di , Vt ≡

∫ f

0
vi,t di

We have shown that the linear solution to the banker’s problem is indeed the unique solution,

so the conventional approach in the literature is without loss of generality. The risk-neutrality of

bankers is critical for this result. According to the expression for the value function, the marginal

value of net worth equals the scaled multiplier νt. The intuition is that net worth is more valuable

when the balance sheet constraint is tighter: the greater the original multiplier on the balance sheet

constraint ν̃t, the greater the marginal value of net worth νt.

As shown in the proof of proposition 1, at the optimal plan, γt = 1+
∑t

j=0 λj . Remember that

γt affects the scaled multipliers νt and λt; therefore, similar to Kehoe and Perri (2002) and Marcet

and Marimon (2019), the solution to the banker’s problem depends on the history of Lagrange

multipliers associated with the EC. At the same time, the scaled multipliers νt and λt are sufficient

statistics for the characterization of the optimal plan. For this reason, the banker’s problem admits

a recursive representation, as we will see in a later subsection.

The KKT conditions (3) and (4) imply that the risk-adjusted credit spread Et[β
UC,t+1

UC,t
(1− σ +

σνt+1)(
Xt+1

Qt
− Rt)] is entirely determined by the scaled multiplier λt. The tighter the EC, the

greater the λt, and the greater the spread. Due to limited liability, the greater the probability

of future insolvency, the lower the marginal cost of issuing deposits and the marginal benefit of

extending credit, which is a standard source of moral hazard.

By proposition 1,

Vt = νtNt. (5)

The signs of all individual ECs are equivalent to the sign of the aggregate EC. Hence, it is enough
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to consider the aggregate complementary slackness conditions

0 = λt(Vt − θQtKt+1), λt ≥ 0, Vt ≥ θQtKt+1. (6)

The banking sector balance sheet is

QtKt+1 = Nt +
Dt+1

Rt
. (7)

The aggregate net worth Nt is a sum of the aggregate net worth of survivors N1
t and entrants

N0
t . A fraction σ of old banks survive, so their aggregate net worth is N1

t = σ(XtKt −Dt). The

aggregate endowment of entrants is N0
t = N̄ + ωQtKt, where (N̄ , ω) ∈ R2

+. Hence,

Nt = σ(XtKt −Dt) + N̄ + ωQtKt. (8)

A necessary condition for the existence of a deterministic steady state is σR < 1, which ensures that

the initial net worth N0 > 0—determined by the initial conditions—vanishes as t → ∞. Taking

into account (2), the former condition is equivalent to that stated in assumption 1. Quantitatively,

assumption 1 is also necessary for the existence of an ergodic distribution: σRt < 1 must hold “on

average” to have limt→∞ E(Nt) ∈ R++.

2.3 Firms

The economy is populated by firms that produce final and capital goods.

2.3.1 Final good producers

Firms that produce the final good demand labor Lt and purchase machines and equipment Kt from

capital good producers. The technology is represented by a production function F : R2
+ → R+,

which is twice continuously differentiable, satisfies Inada conditions, and exhibits constant returns

to scale. Firms rely on external financing from banks to purchase capital goods by offering state-

contingent securities, which correspond to the quantity of capital goods demanded. By no-arbitrage,

the price of both securities and capital goods equals Qt. The objective of the firm is then

max
Kt,Lt

AtF (ξtKt, Lt) +Qt(1− δ)ξtKt −XtKt −WtLt,

where At is the total factor productivity (TFP), ξt represents capital quality, and δ ∈ [0, 1] is the

depreciation rate. Both {At} and {ξt} are exogenous stochastic processes. Profit maximization

implies

Xt = [AtFK,t +Qt(1− δ)]ξt, (9)

Wt = AtFL,t. (10)

11



2.3.2 Capital good producers

Capital goods are produced according to a production technology (I,K) → f(I,K), where f :

R2
+ → R is strictly increasing in I, increasing in K, and concave. An example of such a technology

is described in Lucas and Prescott (1971). The firm’s problem is static:

max
It

Qtf(It,Kt)− It,

which implies

Qt =
1

fI,t
. (11)

2.4 Market clearing

The capital, securities, and final good markets clear as follows:

Kt+1 = (1− δ)ξtKt + f(It,Kt), (12)

AtF (ξtKt, Lt) = Ct + It. (13)

2.5 Competitive equilibrium

We will now define the sequential and recursive competitive equilibria (CE) in the unregulated

economy.

A sequential CE (SCE) can be defined as follows.

Definition 1. Given initial conditions D0, K0, transversality conditions, and exogenous stochastic

processes {At, ξt}, an SCE is represented by the following measurable functions that map St to R
for all t ≥ 0:

• allocations Ct, Dt+1, It, Kt+1, Lt, Nt;

• prices Qt, Rt, Wt, Xt;

• transformed Lagrange multipliers λt, νt;

• deposit insurance tax Tt.

The functions are consistent with (1)–(13) for all t ≥ 0.

The linearity of the banker’s problem allows the construction of a set of allocations of individual

bankers consistent with the SCE.

We need to introduce additional notation to define a recursive CE (RCE). Denote as X ⊆ R2

and Z ⊆ R2 the spaces of endogenous and exogenous state variables X ∈ X and z ∈ Z. We have

X = (D,K) and z = (A, ξ). Let S ≡ X × Z with S ∈ S. To simplify notation, we will often use

the subscripts S and S′ to denote the values of functions evaluated at those states. The problems

of all agents except bankers could be identically set up recursively, yielding the recursive analogs of
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the corresponding optimality conditions. As discussed in the description of the banker’s problem,

the EC generally depends on future control variables and thus does not allow setting up a recursive

problem directly. At the same time, proposition 1 showed that the banker’s value function in

the sequential problem is linear in net worth. Therefore, the banker’s problem admits a recursive

representation, as stated in the following lemma.

Lemma 1. The banker’s problem can be represented by the Bellman equation

v(n, S) = max
(d,s)∈Γ(n,S)

Ez{η′ΛS,S′ [(1− σ)n′ + σv(n′, S′)]},

where η′ ≡ 1R++(n
′) and the correspondence Γ : R+ × S → P(R2

+) is defined by the following

constraints

ν : 0 ≤ n+
d

RS
−QSs,

λ : 0 ≤ Ez{η′ΛS,S′ [(1− σ)n′ + σv(n′, S′)]} − θQSs,

n′ = RKS′QSs− d.

1. η ∈ {0, 1}, λ ≥ 0, and ν ≥ 1 are independent of n.

2. The KKT conditions, in addition to constraints, are

νS = (1 + λS)RSEz[ηS′ΛS,S′(1− σ + σνS′)], (14)

θλS + νS = (1 + λS)Ez[ηS′ΛS,S′(1− σ + σνS′)RKS′ ], (15)

0 = λS(νSn− θQSs), λS ≥ 0.

3. The solution to the Bellman equation is v(n, S) = νSn.

The Euler equations (14) and (15) are equivalent to their sequential counterparts (3) and (4).

So are the expressions for the value functions. The aggregate bank value is VS = νSNS , and the

aggregate EC is

νSNS ≥ θQSS
K
S . (16)

Similar to the discussion after proposition 1, the aggregate complementary slackness conditions are

0 = λS(νSNS − θQSS
K
S ), λS ≥ 0. (17)

We are now ready to define an RCE.

Definition 2. Given the exogenous Markov processes {A, ξ}, an RCE is represented by the following

measurable functions that map S to R:

• allocations C, D′, I, K ′, L, N , SK ;
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• prices Q, R, X, W ;

• Lagrange multipliers λ, ν;

• deposit insurance tax T .

The functions are consistent with (14)–(17) and the recursive versions of (1), (2), (7)–(13). The

aggregate law of motion S 7→ S′ is generated by D′, K ′, and Markov transitions z → z′.

3 Normative analysis

This section studies the problem of a benevolent social planner who will maximize household wel-

fare, internalizing the determination of market prices and making the optimal portfolio decisions

on behalf of the banking system subject to the aggregate EC. We will characterize the constrained

efficient allocation under commitment (CEA) and the Markov-perfect constrained efficient alloca-

tion (MCEA). We will show how to implement the CEA and MCEA in the regulated CE with

either affine taxes on bank assets and liabilities or state-contingent capital requirements to address

the pecuniary externalities and bank entrants/survivors-specific transfers to achieve the targeted

bank value distribution.

3.1 Sources of inefficiency

To proceed with the formal characterization of the CEA and MCEA, we must derive the aggregate

EC of the banking system. Doing so will also clarify the nature of distortions in the CE on an

intuitive level.

Let us index the existing bankers with i ∈ [0, f ]. We can assume without loss of generality

that survivors are always in the [0, σf ] interval, and entrants are in the (σf, f ] interval. Hence, the

indices of (1− σ)σf current survivors that will exit next period will be filled by σ(1− σ)f current

entrants that will survive to the next period. Let v1i,t+1(s
t+1) denote the bank value of the banker i

conditional on survival from st to st+1. Let ∆t ≡ V 1
t
Vt
, where V 1

t ≡
∫ σf
0 vi,t di is the aggregate bank

value of survivors. It follows that the aggregate bank value of the banking system satisfies

Vt ≡
∫ f

0
vi,t di

= Et
{
β
UC,t+1

UC,t

[
(1− σ)

∫ f

0
ni,t+1 di+ σ

∫ f

0
v1i,t+1 di

]}
= Et

{
β
UC,t+1

UC,t

[
(1− σ)(Xt+1Kt+1 −Dt+1) +

∫ σf

0
vi,t+1 di

]}
= Et{β

UC,t+1

UC,t
[(1− σ)(Xt+1Kt+1 −Dt+1) + ∆t+1Vt+1]}, (18)

where the second equality follows from the definition of the individual bank value of the banker

i ∈ [0, f ], the third equality follows from the fact that each banker i has the same probability of
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survival from st to st+1, and the fourth equality follows from definitions of V 1 and ∆.

The aggregate EC is

Vt ≥ θQtKt+1. (19)

Further using (9) and substituting (18) in (19), we obtain

Et
{
β
UC,t+1

UC,t

[
(1− σ){[At+1FK(ξt+1Kt+1, Lt+1) +Q(Kt+1,Kt+2, ξt+1)(1− δ)]ξt+1Kt+1 −Dt+1}

+∆t+1Vt+1

]}
≥ θQ(Kt,Kt+1, ξt)Kt+1,

where the asset price function Q is defined by (11) and (12) as

Q(Kt
−
,Kt+1

+
, ξt) =

[
Φ′
(
Φ−1

(
Kt+1

Kt
− (1− δ)ξt

))]−1

.

The function Q is decreasing in the first argument and increasing in the second argument, which

follows from Φ being strictly increasing and concave.

There are two broad sources of potential distortions in the CE allocation. The first, highlighted

in red, arises because individual bankers do not internalize how their asset allocations affect the

current asset price and the future asset returns. The second, highlighted in green, reflects that the

future continuation value of the banking system conditional on survival might be inefficiently low.

The first type of distortions reflects pecuniary externalities working through the asset price Q

and the asset payoff X, affecting both the bank value and the value of default—running away with

a fraction of assets. First, private bankers do not internalize that higher investment in the real

sector—higher Kt+1 in the aggregate—decreases the future asset returns by decreasing both the

future marginal product of capital and the future asset price, which, in turn, decreases the current

bank value and makes the ECs of all banks more likely to be binding at t. Second, individual bankers

do not internalize that greater Kt+1 increases the current asset price Qt, making the default option

more attractive and further increasing the probability that ECs of all bankers are binding at t.

Third, since greater Kt+1 decreases the future asset price, it has a negative effect on the future

value of default, relaxing the future ECs. Fourth, from the perspective of the planner that has

commitment, a higher Kt+1 increases the t−1 expectation of the current asset return, thus relaxing

the EC at t−1. Fifth, from the perspective of the planner that does not have commitment and limits

its policies to Markovian ones, the changes in Dt+1 and Kt+1 are the changes in the endogenous

state variables of the “future” planner, having multiple additional effects through the future policy

functions. Therefore, the private portfolio decisions might be distorted through multiple channels

working in opposite directions, some of which depend on the assumption of commitment from the

planner’s side. We will study these channels in more detail in the following subsections.

The nature of the second type of potential inefficiencies is linked to how the future bank value

conditional on survival affects the current value of the banking system. From the perspective of

an individual banker, the continuation value is a product of the constant survival probability σ
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and the future bank value vt+1. From the planner’s perspective, the aggregate continuation value

equals the aggregate bank value of the survived banks V 1
t+1, which is a state-contingent share ∆t+1

of the aggregate future bank value Vt+1. If the planner could choose {∆t}, it would generally be

optimal to increase it in all contingencies to relax the aggregate EC and thus expand the feasible

set, potentially leading to welfare gains.

We are now ready to proceed with the formal characterization of the constrained efficient allo-

cations, both with and without commitment.

3.2 Constrained efficient allocation under commitment

Consider the sequential planning problem of optimizing the household welfare by choosing infi-

nite sequences of history-contingent allocations at t = 0 subject to relevant infinite sequences of

history-contingent CE implementability constraints. By definition 1, the complete set of CE im-

plementability conditions is (1)–(13). Since we let the planner optimize on behalf of the banking

system, the constraints (3), (4), and (6) are not applicable. Consequently, we replace (bankers

aggregate EC) with the definition of the aggregate bank value (18) and the aggregate EC (19). We

can use (2), (8), (10), (9), (11), and (12) to solve for Rt, Nt, Wt, Xt, Qt, and It, respectively. It is

also convenient to define the investment and asset price functions I and Q. (The latter has already

been defined in the previous subsection.) The investment function I is defined based on (12) as

I(Kt
−∗
,Kt+1

+
, ξt) = Φ−1

(
Kt+1

Kt
− (1− δ)ξt

)
Kt,

where ∗ in −∗ indicates a numerical statement, although it is true under any reasonable calibration.

Before describing the planning problem, we must decide how to handle ∆t+1 appearing in (18).

By definition, we must have ∆t(s
t) ∈ [0, 1) for all t ≥ 0 and st ∈ St. To see that the right bound

is not included, note that otherwise we would have vi,t = 0 for all entering bankers i ∈ (σf, f ].

By the individual EC, we would then have Qtki,t+1 = 0 for all such i, implying that all entrants

could not operate. Note that ∆t = 0 is possible, since survivors can become insolvent. Suppose the

planner considers {∆t} as a control variable. Since the latter affects the continuation value in the

EC only, it may be optimal to set ∆t+1(s
t+1) → 1 if the EC is binding at st. In such a case, the

maximum cannot be attained. To avoid this problem, let us, first, define the CE-consistent bank

value distribution {σ̂1t }, where

σ̂1t ≡
σ(XtKt −Dt)

Nt
.

We will then conduct the analysis under the assumption that {∆t} is either given or satisfies

{∆t} = {σ̂1t }. Since the feasible set for {∆t} is a space of sequences of functions that map to an

open unit interval, we can explore the implications of alternative distributions {∆t} quantitatively

in a straightforward manner.
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The sequential planning problem is, therefore,

max
{Ct,Dt+1,Kt+1,Lt,Vt}

E0

[ ∞∑
t=0

βtU(Ct, Lt)

]

subject to

0 = Nt −Q(Kt,Kt+1, ξt)Kt+1 + βEt
(
UC(Ct+1, Lt+1)

UC(Ct, Lt)

)
Dt+1,

0 = Et
{
β
UC(Ct+1, Lt+1)

UC(Ct, Lt)
[(1− σ)(Xt+1Kt+1 −Dt+1) + ∆t+1Vt+1]

}
− Vt,

0 ≤ Vt − θQ(Kt,Kt+1, ξt)Kt+1,

0 = UC(Ct, Lt)AtFL(ξtKt, Lt) + UL(Ct, Lt),

0 = AtF (ξtKt, Lt)− Ct − I(Kt,Kt+1, ξt),

where

Ñt ≡ [AtFK(ξtKt, Lt) +Q(Kt,Kt+1, ξt)(1− δ)]ξtKt −Dt,

Nt ≡ σ(XtKt −Dt) + N̄ + ωQ(Kt,Kt+1, ξt)Kt,

and {∆t} is either given or satisfies

∆t = ∆(Dt
−
,Kt
−∗
,Kt+1

+∗
, Lt
+
, At, ξt) = σ̂1t ,

where we again use notation −∗ and +∗ to indicate numerical statements.

Let us denote the Lagrange multipliers on the planner’s constraints—normalized by βtπ(st)—as

ν̃t, γ̃t, λ̃t, λ
L
t , and λ

Y
t , respectively. Define νt ≡ ν̃t

UC,t
, λt ≡ λ̃t

UC,t
, and γt ≡ γ̃t

UC,t
. As in the CE, define

x̂t ≡ xt
γt

and x̄t ≡ x̂t
1−λ̂t

for x ∈ {ν, λ, λL, λY }.
As discussed in the previous subsection, there are multiple potential sources of inefficiency of

the CE allocation. The next proposition provides a formal validation.

Proposition 2. The CE (SCE) allocation is generally inefficient compared to the CEA. The CEA

analogs of the Euler equations (3) and (4) are

ν̃t = (1 + λ̃t)Et

βUC,t+1

UC,t

1− σ +∆t+1σν̃t+1 −∂∆t+1

∂Dt+1
Vt+1︸ ︷︷ ︸

future distribution (+)


Rt,

θλ̃t + ν̃t = (1 + λ̃t)Et[β
UC,t+1

UC,t
(1− σ +∆t+1σν̃t+1)

Xt+1

Qt
] + ΨK

t ,
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where ΨK
t satisfies

QtΨ
K
t ≡ ν̃tQ2,t{[σ(1− δ)ξt + ω]Kt −Kt+1}︸ ︷︷ ︸

balance sheet (−∗)

+(1 + λ̃t)Et
(
β
UC,t+1

UC,t

∂∆t+1

∂Kt+1
Vt+1

)
︸ ︷︷ ︸

future distribution (−∗)

−λ̃tθQ2,tKt+1︸ ︷︷ ︸
value of default (−)

− λ̃Yt
UC,t

I2,t︸ ︷︷ ︸
consumption (−∗)

+
1N(t)

∆t

[
(1− σ)Q2,t(1− δ)ξtKt︸ ︷︷ ︸

asset return (+)

+
∂∆t

∂Kt+1
Vt︸ ︷︷ ︸

distribution (+∗)

]

︸ ︷︷ ︸
t− 1 expectations

+ (1 + λ̃t)Et{β
UC,t+1

UC,t
(1− σ +∆t+1σν̃t+1)[At+1FKK,t+1ξt+1 +Q1,t+1(1− δ)]ξt+1Kt+1}︸ ︷︷ ︸

future asset return (−)

+ (1 + λ̃t)Et

(
β
UC,t+1

UC,t
∆t+1

{
ν̃t+1[ω(Q1,t+1Kt+1 +Qt+1)−Q1,t+1Kt+2]︸ ︷︷ ︸

future balance sheet (+∗)

−λ̃t+1θQ1,t+1Kt+2︸ ︷︷ ︸
future value of default (+)

+ λ̃Lt+1At+1FKL,t+1ξt+1︸ ︷︷ ︸
future wage (+∗)

+
λ̃Yt+1

UC,t+1
(At+1FK,t+1ξt+1 − I1,t+1)︸ ︷︷ ︸
future consumption (+∗)

})
.

Moreover, the following holds.

1. If (19) at the CEA is either binding almost surely (a.s.) or slack a.s. for all t ≥ 0, then the

CEA is time consistent. Otherwise, it is generally time inconsistent.

2. If {∆t} = {σ̂1t } and (19) at the CEA is binding a.s. for all t ≥ 0, and the CEA satisfies

Et[β
UC,t+1

UC,t
ft+1(

Xt+1

Qt
− Rt)] ≥ 0 for all {ft}t≥1 with ft : S

t → R++, then the CEA equals the

CE allocation, that is, the latter is constrained efficient.

3. Given {∆t}, for all t ≥ 0, let S̄t ⊆ St be the set of histories at which (19) is strictly binding—

in the sense that the corresponding Lagrange multiplier is positive. If S̄t is of positive measure

at least for some t ≥ 0, then there exists {σ̃1t } with σ̃1t (s
t) ∈ [∆t(s

t), 1) for all (t, st) such that

{σ̃1t } is strictly preferred to {∆t}.

Our first observation is that if the planner takes the distribution as given, there is no distortion

in the choice of deposits, consistent with our intuitive analysis in the previous subsection.3 If

the planner internalizes the determination of the distribution, a wedge between the deposit Euler

equations does appear: the social marginal cost of deposits is greater than the private marginal cost

because the planner understands that greater borrowing at t has a negative effect on the future net

worth of survived banks and, therefore, on their relative bank value. At the same time, the presence

3One might notice a slight difference in the Euler equations: instead of σν̃t+1 in proposition 1 we have ∆t+1σν̃t+1

in proposition 2—this difference is solely due to how the Lagrange multiplier on the bank value constraint is related
to the multiplier on the EC. All original multipliers are stationary in the CEA, unlike in the CE. If one writes the
deposit Euler equation in terms of the original multipliers, it will be symbolically equivalent to that in the CE, as
one can verify in the proofs of Propositions 1 and 2.
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of the wedge in the Euler equation should not necessarily lead to overborrowing in the CE because

the deposit Euler equation is essentially a fixed-point equation in the transformed multiplier {ν̃t}
conditional on other variables, and the multipliers in the CE and CEA are generally different.

The wedge between the asset Euler equations ΨK
t consists of multiple terms with opposing effects

on the sign of the wedge. If {∆t} = {σ̂1t }, there are two terms (highlighted in green) capturing

the effect of the choice of capital on the bank value distribution. On the one hand, greater capital

negatively affects the future distribution through the negative effect on the future asset price and

asset return. On the other hand, greater capital positively affects the t − 1 expectation of the

distribution at t through the positive effect on the current asset price. Both effects rely on the

nature of commitment.

Consider the remaining terms that do not depend on the ability to affect the distribution.

Greater capital affects the current asset price positively, increasing the ex-post asset return and net

worth of both survivors and entrants (the liability side) while also directly increasing the value of

bank assets. These two balance sheet margins typically have a negative net effect on the planner’s

marginal value of capital. By increasing bank assets, greater capital immediately increases the

value of default, thus negatively affecting the marginal benefit of capital. Moreover, it increases

investment and lowers consumption, generating an additional negative partial effect. The final

negative effect is due to the negative impact of greater capital on the future asset price and asset

return.

There are several positive effects. With commitment, greater capital and a greater asset price

at t affect the t − 1 expectation of the current asset return positively, increasing the bank value

and relaxing the EC at t − 1. Furthermore, the balance sheet, value of default, and consumption

channels described in the previous paragraph have their future counterparts since the asset price

function depends on both the beginning-of-the-period and end-of-the-period capital stock. Greater

capital has a negative effect on the future asset price; therefore, the future balance sheet, value

of default, and consumption effects have positive signs. Furthermore, greater capital increases the

future marginal product of labor and the wage rate, having an additional positive effect.

The inefficiency of the CE allocation relative to the CEA and the fact that the planner chooses

allocations that must be consistent with the forward-looking household Euler equation (2) and the

definition of the forward-looking aggregate bank value (18) imply that the CEA is generally time

inconsistent. There is a special case when the CEA is time consistent: it happens if the EC is

either always binding or always slack at the CEA. In such a case, the implementability constraints

completely determine the CEA. These constraints can be formulated recursively as a system of

functional equations on the state space (D,K, z); therefore, the CEA must be time consistent. If

this situation occurs with {∆t} = {σ̂1t }, the CEA implementability constraints are necessary for the

CE. They are, moreover, sufficient if the expected credit spread discounted with the pricing kernel

β
UC,t+1

UC,t
ft+1 for positive-valued f is nonnegative in the CEA. (This condition guarantees that the

CE Lagrange multiplier λ̃t is nonnegative.) The described situation does not arise quantitatively:

the EC is only occasionally binding. Nevertheless, this result has an implication for computing
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macro-banking models similar to that in this paper. If we computed such a model ignoring the

occasionally binding constraint, assuming that it is always binding, we would not be able to identify

the externalities and would wrongly conclude that the CE allocation is efficient. Note that the issue

here is not in the order of local approximation—the allocations would seem identical independently

of the order—but in accounting for the occasionally binding constraint properly.

The final part of proposition 2 states that for a given distribution {∆t}, we can generally find

an alternative distribution {σ̃1t } which is at least weakly preferred to {∆t} as long as the CEA at

the original distribution has contingencies in which the EC is binding. The alternative distribution

increases the future bank value of survivors, which automatically increases the current bank value

both at st and the preceding contingencies, relaxing the EC at those contingencies and expanding

the planner’s feasible set. Again, this argument relies on the nature of commitment: the planner

relaxes the EC at t by promising more survivors-biased distribution at t+1, bearing similarity with

forward guidance for monetary policy. Note also that ex post, the planner is indifferent between

honoring such promises or not because {∆t} affects the planner’s constraints only through the

continuation value in the forward-looking bank value. In other words, affecting the bank value

distribution by itself is not a source of time inconsistency.

3.3 Markov perfect equilibrium

Since the CEA is generally time inconsistent, a thorough and complete investigation of the con-

strained efficiency of the economy considered in this paper requires exploring the implications of

the lack of commitment by the policymaker. To do so, we will study a Markov perfect equilibrium

(MPE) of a non-cooperative game between sequential—“current” and “future”—social planners

(Klein et al., 2008). We will focus on the concept of MPE due to its quantitative tractability,

following Bianchi (2016) and Bianchi and Mendoza (2018) who applied this approach in the analy-

sis of optimal macroprudential policy in small open economies. Other concepts of time-consistent

policies exist, such as sustainable policies (Chari and Kehoe, 1990), and Markov policies are gener-

ally inferior to history-contingent sustainable policies. It is, however, harder to compute the latter

policies in our environment.

Denote the future planner’s value and policy functions as V̄ h, C̄, K̄ ′, L̄, V̄ 1, where all functions

map S → R. Since the current planner can affect the future bank value of survivors V̄ 1 only

indirectly by affecting S′ = (D′,K ′, z′), we can use (18) to solve for V , removing it from the set of

implementability conditions. The current planner’s best response to the future planner’s decisions

is represented by

V h(S) = max
(C,D′,K′,L)∈G(S)

U(C,L) + βEz(V̄ h(S′)),
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where G : S → P(R4
+) is defined by the constraints

0 = σηSÑS + N̄ +Q(K,K ′, ξ)(ωK −K ′) + βEz
(
UC(C̄S′ , L̄S′)

UC(C,L)

)
D′,

0 ≤ βEz
{
ηS′

UC(C̄S′ , L̄S′)

UC(C,L)
[(1− σ)ÑS′ + V̄ 1

S′ ]

}
− θQ(K,K ′, ξ)K ′,

0 = UC(C,L)AFL(ξK,L) + UL(C,L),

0 = AF (ξK,L)− C − I(K,K ′, ξ),

where

ÑS ≡ [AFK(ξK,L) +Q(K,K ′, ξ)(1− δ)]ξK −D, ηS ≡ 1R++(ÑS),

ÑS′ ≡ [A′FK(ξ′K ′, L̄S′) +Q(K ′, K̄ ′
S′ , ξ′)(1− δ)]ξ′K ′ −D′, ηS′ ≡ 1R++(ÑS′).

In an MPE for a given distribution ∆ : S → [0, 1), V h ≡ V̄ h solves the Bellman equation, and

policy functions of the current and future planners coincide. In particular, V 1 satisfies

V 1
S = ∆SEz{ηS′ΛS,S′ [(1− σ)ÑS′ + V 1

S′ ]}.

Consistent with the notation used so far, let us denote the Lagrange multipliers on the planner’s

constraints as ν̃, λ̃, λL, and λY , respectively. Define νS ≡ ν̃S
UC,S

and λS ≡ λ̃S
UC,S

. The next proposition

parallels proposition 2 in the context of the MPE.

Proposition 3. The CE (RCE) allocation is generally inefficient compared to the MCEA. Under

the assumption of differentiability of the policy functions, the MCEA generalized Euler equations

associated with D′ and K ′—corresponding to (14) and (15)—can be represented as

νS = RSEz{ηS′ΛS,S′ [(1− σ)λS + σνS′ ]} −
RSΞ

D
S

UC,S︸ ︷︷ ︸
future policy

,

θλS + νS = Ez{ηS′ΛS,S′ [(1− σ)λS + σνS′ ]RKS′}+ΩKS +
ΞKS

QSUC,S︸ ︷︷ ︸
future policy

,

where for X ∈ {D,K},

ΞXS ≡ βνSEz(UCC,S′C̄X,S′ + UCL,S′L̄X,S′︸ ︷︷ ︸
SDF in deposit rate (−∗)

)D′
S + βλSEz

(
ηS′

[
(UCC,S′C̄X,S′ + UCL,S′L̄X,S′︸ ︷︷ ︸
SDF in aggregate bank value (−∗)

)

× [(1− σ)ÑS′ + V̄ 1
S′ ] + UC,S′{(1− σ)[A′FKL,S′L̄X,S′ +Q2,S′K̄ ′

X,S′(1− δ)]ξ′K ′
S + V̄ 1

X,S′︸ ︷︷ ︸
future asset return and bank value of survivors

}
])
,

where SDF is the stochastic discount factor, is the combined marginal effect of X ′ on the current
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planner’s Lagrangian through the policy functions of the future planner C̄, L̄, K̄ ′, and V̄ 1. The

capital wedge satisfies

QSΩ
K
S ≡ νSQ2,S{[σηS(1− δ)ξ + ω]K −K ′

S}︸ ︷︷ ︸
balance sheet (−∗)

−λSθQ2,SK
′
S︸ ︷︷ ︸

value of default (−)

−
λYS
UC,S

I2,S︸ ︷︷ ︸
consumption (−∗)

+ Ez{ηS′ΛS,S′ [(1− σ)λS + σνS′ ][A′FKK,S′ξ′ +Q1,S′(1− δ)]ξ′K ′
S}︸ ︷︷ ︸

future asset return (−)

+ Ez

(
ΛS,S′

{
νS′ [ω(Q1,S′K ′

S +QS′)−Q1,S′K ′
S′ ]︸ ︷︷ ︸

future balance sheet (+∗)

−λS′θQ1,S′K ′
S′︸ ︷︷ ︸

future value of default (+)

+λLS′A′FKL,S′ξ′︸ ︷︷ ︸
future wage (+∗)

+
λYS′

UC,S′
(A′FK,S′ξ′ − I1,S′)︸ ︷︷ ︸

future consumption (+∗)

})
.

First, as in the case of commitment, we must be aware that the planner’s (transformed) Lagrange

multipliers are generally different from those in the CE. Moreover, the direct quantity effects in

the planner’s Euler equations (right-hand sides without the wedges) are symbolically different from

those in (14) and (15): the planner’s (1 − σ)λS + σνS′ corresponds to the individual banker’s

(1 + λS)(1 − σ + σνS′), which both reflect the direct effects on the future net worth and the

(relevant) continuation value. In the individual banker’s problem, the bank value appears in the

EC and in the objective function—hence, the multiplication by 1+λS . Moreover, the shadow value

of net worth ν is linked to the derivative of the banker’s value function v. In the planner’s problem,

the objective is the household welfare, so the bank value appears once in the EC (multiplication

by λS only). Moreover, the shadow value of net worth is linked to the derivatives of the household

value function V h, not being related to the EC—therefore, there is no multiplication by 1 + λS .

Now consider the wedges. Without commitment, the current planner must take into account

how its current decisions affect the future endogenous state and the decisions of the future planner,

which introduces the ΞDS and ΞKS terms reflecting those effects. These objects have a symmetric

structure, capturing three main transmission mechanisms. First, D′ and K ′ affect the future

consumption C̄ and labor L̄ decisions and thus the future marginal utility of consumption and the

stochastic discount factor, which affects the deposit rate according to the household Euler equation

(2). Second, there is a similar effect on the stochastic discount factor implicit in the forward-looking

bank value (18). Third, D′ and K ′ affect the future net worth at exit and the future bank value of

survivors V̄ 1 conditional on survival, where the former is generated by the impact on both the future

marginal product of capital through L̄ and the future asset price through K̄. Intuitively, we can

expect that the derivatives of the policy functions with respect to K are generally nonnegative since

greater K is associated with both greater output and a greater bank net worth. On the contrary,

a greater bank debt D has a negative effect on net worth, investment, and the household value

function, so we can expect that the derivatives of the policy functions are generally nonpositive.
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The combined effects and the signs of ΞDS and ΞKS remain ambiguous.4

The additional capital wedge ΩKS corresponds to a similar term arising under commitment.

Contrary to the latter, the time-consistent planner cannot affect the t− 1 expectations of the asset

return and the bank value distribution at t. Likewise, without commitment, the planner cannot

affect the future distribution except for the indirect impact through the future endogenous states.

For this reason, we did not make the distribution explicit in the continuation value of survivors V̄ 1.

The remaining effects—the negative balance sheet, value of default, and consumption channels,

the corresponding positive future effects, and the negative impact on the future asset return—are

identical to the case of commitment. A quantitative exploration is generally required to assess which

effects dominate. Indeed, as we will see, the combined effect is typically not uniformly positive or

negative but state-contingent, allowing for both excessive and insufficient borrowing and lending in

the CE.

Unlike in the case of commitment, we do not have a formal statement on the welfare ranking

of Markov perfect outcomes corresponding to different ∆. A shift in ∆ directly affects the fixed

point as we iterate on V̄ 1, so the welfare effects may have different signs in different regions of the

state space. We can, however, state with certainty that a uniform positive shift in ∆ must increase

welfare in the steady state in which the EC is binding.

3.4 Implementation with taxes, transfers, and capital requirements

The presence of two broad sources of inefficiencies—various pecuniary externalities and a potentially

suboptimal bank value distribution—generally requires two types of policy instruments to imple-

ment the CEA (MCEA) in a regulated CE. A given distribution ∆ can naturally be achieved with

entrants/survivors-specific transfers within the banking system. The wedges in the Euler equations

can be addressed with proportional taxes on bank deposits and assets or, under some assumptions,

with state-contingent capital requirements. The next proposition formalizes the alternative ways

of implementing the CEA (MCEA) in a regulated CE. We will use the sequential (CEA) notation

where {xt} denotes a sequence of functions xt : St → R, while the implicit recursive (MCEA)

analog is a single function x : S → R.

Proposition 4. Consider a regulated CE which differs from those in Definitions 1 and 2 in that

the banker i ∈ [0, f ] now has the budget constraint

(1 + τKt )Qtki,t+1 ≤ ni,t + (1− τDt )
di,t+1

Rt
+ τi,t,

faces an additional regulatory constraint

ni,t ≥ κtQtki,t+1,

4Our quantitative approach is to find a fixed point in the Bellman equation and the policy functions directly
instead of solving the KKT conditions, so we will not be assuming that the policy functions are differentiable.
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where κt ≤ 1, and there is a budget constraint τDt
Dt+1

Rt
+ τKt QtKt+1 =

∫ f
0 τi,t di of the macropru-

dential authority.

The CEA (MCEA) can be implemented in a regulated CE above as follows. If {∆t} = {σ̂1t },
we can set τi,t = 0 for all (i, t, st). Otherwise, {τi,t} can be set to achieve the targeted distribution

{∆t}. The following instruments can be used to account for the wedges.

1. If
∫ f
0 τi,t di = 0, we can use {τDt , τKt } and set κt = −∞ for all (t, st).

2. If
∫ f
0 τi,t di ̸= 0, we can use {τDt } ({τKt }) and set τKt = 0 (τDt = 0) and κt = −∞ for all

(t, st).

3. Independently of {τi,t}, if the CEA (MCEA) satisfies Et[β
UC,t+1

UC,t
ft+1(

Xt+1

Qt
− Rt)] ≥ 0 for all

(t, st) and all {ft}t≥1 with ft : S
t → R++, then we can use {κt} and set τDt = τKt = 0 for

all (t, st). Without loss of generality, we can set κt ≡ Nt
QtKt+1

, where the right-hand side is

evaluated at the CEA (MCEA), in which case the regulatory constraint is always binding in

the regulated CE.

The CEA (MCEA) and the policy that implements it constitute a Ramsey (Markov perfect) equi-

librium.

As explained in the proof of proposition 4, we construct all the policies using the primal ap-

proach. For example, in all variants of the implementation with taxes, the optimal tax rate τDt

satisfies

τDt = 1−
Et[β

UC,t+1

UC,t
(1− σ + σν̃t+1)]Rt

ν̃t
,

conditional on the optimal allocations and the regulated CE multiplier ν̃t, which itself is a function

of the optimal allocations. If τi,t = 0 for all (i, t, st), the individual banker’s value function is still

linear in the individual net worth, so we can immediately solve for ν̃t =
Vt
Nt

, where the right-hand

side is evaluated at the CEA (MCEA). In general, {ν̃t} solves a fixed-point equation, which differs

based on whether we allow for aggregate lump-sum transfers (
∫ f
0 τi,t di ̸= 0). In the latter case, we

need only one proportional tax.

Instead of linear taxes, we can also implement the optimal allocation by introducing a regulatory

capital requirement constraint. Capital requirements alone are sufficient to account for the wedges

if and only if a measure of a discounted credit spread stays nonnegative in the CEA (MCEA). A

sufficient condition for the latter is that Et[β
UC,t+1

UC,t
ft+1(

Xt+1

Qt
−Rt)] ≥ 0 for all positive-valued ft+1.

A necessary and sufficient condition is that it holds for ft+1 = 1 − σ + σ(ν̃t+1 + ξ̄t+1), where ξ̄t

is a transformation of the Lagrange multiplier on the regulatory constraint. A difficulty is that

{ν̃t, ξ̄t} solve a system of two stochastic difference equations (the banker’s deposit and asset Euler

equations) conditional on the optimal allocation. Quantitatively, the required assumption is not

always valid: the planner can optimally choose to have a negative discounted credit spread in some

contingencies. In this case, capital requirements alone fail to be effective, although they would still

be effective if augmented, for example, with a linear deposit subsidy.
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Define N̄1
t ≡ (ν̃t+ ξ̄t)[∆t(Nt+T

b
t )−σ(XtKt−Dt)], where ξ̄t is a transformation of the Lagrange

multiplier on the regulatory constraint and T bt ≡
∫ f
0 τi,t di is the aggregate lump-sum transfer. In

the case of the implementation with taxes, the regulatory constraint is irrelevant, so ξ̄t = 0. If we

do not allow for the aggregate lump-sum transfer, then T bt = 0. Note that ν̃t+ ξ̄t is the total shadow

value of wealth for bankers, and ∆t(Nt + T bt )− σ(XtKt −Dt) is survivors’ targeted net worth gain

from more survivors-biased bank value distribution. As shown in the proof of proposition 4, the

aggregate transfer to survivors τ1t ≡
∫ σf
0 τi,t di can be expressed as

τ1t =
1

ν̃t

N̄1
t + (∆t − σ)Et

 ∞∑
i=0

i−1∏
j=0

∆t+1+j

1N(i)

β1+i
UC,t+1+i

UC,t
N̄1
t+1+i


 .

If ∆t = σ, the transfer is simply proportional to the targeted gain in net worth. Otherwise, there

is an additional dynamic component—an expected discounted sum of future net worth gains that

correspond to the targeted distribution {∆t}.
The final part of proposition 4 is about the equivalence between the Ramsey problem conditional

on the corresponding set of policy instruments and the CEA (MCEA) planning problem. Hence,

each policy from proposition 4 is Ramsey optimal.5 This equivalence is a consequence of the

application of the primal approach to construct a policy that implements the CEA (MCEA).

4 Quantitative results

This section describes the model calibration and conducts a multifaceted comparison of the CE,

MCEA, and CEA allocations. We will investigate the efficiency of borrowing and lending by

the banking system, explore the properties of optimal policies, analyze welfare gains, compare

the economic dynamics around financial crises, and study the implications of alternative bailout

policies.

4.1 Calibration and computation

I assume separable preferences for households: U(C,L) = limx→γ
C1−x−1
1−x − χL

1+ϕ

1+ϕ with (γ, ϕ, χ) ∈
R3
+. The final and capital good production technologies are F (ξK,L) = (ξK)αL1−α with α ∈ (0, 1),

and Φ(x) = ζ+κ1x
ψ with ζ ∈ R, κ1 > 0, and ψ ∈ (0, 1]. The logs of exogenous stochastic processes

{At} and {ξt} are AR(1) with autocorrelations (ρa, ρξ) and standard deviations (σa, σξ).

Table 1 reports the parameter values that are mostly set to reflect long-run facts about the

US economy in 1990–2019. The Cobb—Douglas elasticity α targets the average labor share in the

nonfarm business sector based on the US Bureau of Labor Statistics data. The discount factor β

corresponds to the annualized real interest rate of 2%. The risk-aversion γ is set to unity, implying

5Traditionally, the term “Ramsey” applies to a sequential problem where the planner chooses a policy plan at
t = 0. In the context of an MPE, by “Ramsey” we mean a planning problem similar to the MCEA problem; that
is, a planner without commitment sets the policy optimally, taking into account the impact on the decisions of the
future planner.
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Table 1. Parameter values

Parameter Value Target

Preferences and technology

α 0.404 labor share ≈ 59.6%
β 0.995 annualized real interest rate = 2%
γ 1 log preferences from consumption
δ 0.02 annual depreciation rate ≈ 7.6%

ζ -0.007 I
K = δ

κ1 0.499 Q = 1
ϕ 0.625 microfounded aggregate Frisch elasticity = 1.6
χ 0.86 L = 1
ψ 0.75 panel data estimates in the literature

Banking

N̄ = 0 0 linear endowment rule
σ 0.976 bank exit probability ≈ 0.091
θ 0.216

N/(QK) = 0.125, annualized credit spread = 0.5%
ω 0.001

Exogenous stochastic processes

ρa 0.935

corr(Ŷt, Ŷt−1) ≈ 0.886, corr(Ît, Ît−1) ≈ 0.894,
sd(Ŷt) ≈ 0.013, sd(Ît) ≈ 0.045

ρξ 0.956
σa 0.006
σξ 0.002

Note. X̂t denotes the cyclical component of ln(Xt) extracted using the HP filter with λ = 1600.

log preferences from consumption, as common in the literature. The depreciation rate δ proxies

the average depreciation rate of the current-cost net stock of private fixed assets and consumer

durables in the Bureau of Economic Analysis data. The capital production technology parameters

(ζ, κ1) are set to have I
K = δ and normalize Q = 1 in the deterministic steady state, while ψ is

set as in Gertler et al. (2020a) to match panel data estimates. The labor disutility elasticity ϕ—an

inverse of the Frisch elasticity of labor supply— targets the average of the microfounded estimates

of the aggregate Frisch elasticity for males (Erosa et al., 2016) and females (Attanasio et al., 2018).

The labor disutility scale χ corresponds to a normalization L = 1 in the steady state.

It is computationally convenient to set N̄ = 0 so that the aggregate endowment of entrants

is linear in the assets of exiting bankers. I set the survival probability σ based on the average

establishment exit rate in finance, insurance, and real estate according to the Business Dynamics

Statistics data. The remaining banking parameters (θ, ω) target the average capital ratio of 12.5%—

consistent with the evidence in Begenau et al. (2020) that for most banks, regulatory constraints

are not binding—together with the annualized credit spread of 0.5% so that the EC binds in the

CE less than half of the time.

The AR(1) parameters—autocorrelations (ρa, ρξ) and standard deviations (σa, σξ)—target the
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autocorrelations and standard deviations of output and investment, using the National Income and

Product Accounts data. Each variable is logged and detrended using the HP filter with λ = 1600,

a standard value for quarterly data.

To compute the CE and MCEA, I use global projection methods (Judd, 1998) so that the

nonlinearities due to the occasionally binding EC and limited liability can be fully addressed.

Specifically, I approximate the CE and MCEA unknown functions with linear 2D splines for each

z ∈ Ẑ ⊂ Z. (Accordingly, I approximate the exogenous stochastic process {At, ξt} by a finite-state

Markov chain z 7→ z′.) In the case of the CEA, I employ both the global projection method—linear

4D splines—and the local piecewise linear perturbation method (Guerrieri and Iacoviello, 2015)

that respects occasionally binding constraints but not precautionary savings. The latter method

serves as the baseline, but I verify some results with the global method on a coarse grid. Since

Lagrange multipliers γt−1 and νt−1 must be treated as state variables, the complexity of the Ramsey

problem combined with the course of dimensionality makes fully global approximation challenging.

The details of the solution algorithms are described in Appendix.

Instead of the natural endogenous state (D,K), I work with a rotated state space based on

(log(D), log(K)). This way we can account for the strong positive correlation between log(D) and

log(K), which is illustrated in figure 1 in the CE case.

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-0.6

-0.4

-0.2

0
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Figure 1. Endogenous state space, CE ergodic distribution. For X ∈ {D,K}, x̃ ≡ log(X) −
Ê(log(X)), and (d̂, k̂) are obtained by rotating (d̃, k̃) clockwise at the angle arctan

(
ĉov(d̃,k̃)

v̂ar(d̃)

)
.
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4.2 Bank solvency and EC regimes

The model has two main nonlinearities. First, banks can become insolvent, in which case they

must default under limited liability. Second, the EC is occasionally binding. When the constraint

binds, banks are indifferent between continuing the business and running away with a fraction of

assets. As illustrated in figure 2, these two binary events divide the underlying endogenous state

space into three regions: banks are solvent and unconstrained (highlighted in yellow), solvent but

constrained (light green), and insolvent and constrained (dark green). Banks cannot be insolvent
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Figure 2. Bank solvency and EC regimes in the worst and best exogenous states in the CE. In the
yellow region, banks are solvent, and the EC is slack. In the light green region, banks are solvent,
but the EC is binding. In the dark green region, banks are insolvent, and the EC is binding. The
dashed parallelogram (not a rectangle due to scaling) is the boundary of the endogenous state space
represented in the canonical basis.

and unconstrained in the CE simultaneously. If the survived banks are insolvent, their bank value

is zero, so the EC must be binding for them. Since the Lagrange multipliers depend only on the

aggregate state, the entering banks must also be constrained.

According to figure 2, banks are solvent and unconstrained when the initial capital stock K is

sufficiently large compared to bank debt D. There generally exist thresholds K̄(D, z) and K̂(D, z),

such that banks are solvent when K > K̄(D, z) and are, moreover, unconstrained when K >

K̂(D, z) ≥ K̄(D, z). Based on the figure, we can conjecture that both K̄ and K̂ are decreasing

in z in the sense that K̄(D, s2) ≤ K̄(D, s1) when A2 > A1 and ξ2 > ξ1. The thresholds are also

generally increasing in D. An analytic characterization of K̄ and K̂ does not seem possible, but

the conjectured properties are intuitive.

Although the area of the insolvency region might seem significant, the model does not typically

visit those states. According to figure 1, the ergodic set is a thin ellipse inside the gridded state

space (the dashed parallelogram in figure 2). Insolvency is more likely in the worst exogenous state,

but it does not typically occur even in that case. On the other hand, the model stays in the binding

EC regime approximately 40% of the time in the CE.

Figure 2 confirms the potential welfare benefits from preemptive bailouts. By keeping banks

away from the solvent-but-constrained buffer zone, the policymaker escapes the potentially harmful
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effects of being in the constrained regime and decreases the probability of ending up in the insolvency

region, at which point the banking system would collapse.

Figure 3 further explores how the magnitude of the distance between the aggregate bank value

and the value of default VS − θQSK
′
S varies in the state space. We now focus on the gridded state
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Figure 3. Net bank value in the CE. Slices of the underlying surfaces along the d̂ dimension at the
quartiles of the k̂ grid. The y-axis is VS − θQSK

′
S in % of QSK

′
S .

space where the model is solved. Figure 3 displays the variation along the d̂ dimension, that is,

moving from the southwest to northeast inside the dashed parallelogram in figure 2 at the quartiles

of the k̂ grid. In the lowest exogenous state, the EC is typically binding at higher leverage ratios,

e.g., at or below the median of k̂. The constraint is slack when banks are more capitalized (higher

k̂), and the slack in proportion to bank assets slightly decreases as the balance sheet expands (larger

d̂). In the highest exogenous state, the expected asset returns are greater and financial constraints

are mostly slack, especially at the higher capital ratios. As with the lowest state, the relative

slack generally decreases as the balance sheet expands at higher capital ratios; however, there is

an opposite relationship when banks are more leveraged. These regularities indicate that a way to

improve over the CE is to relax the binding ECs when exogenous conditions are worse.

4.3 Financial crises in the unregulated economy

When the banker’s EC binds, a banker is indifferent between continuing to run the banking business

and defaulting on liabilities and running away with a fraction of assets. Our convention is that

bankers continue to operate at the point of indifference. The instances where the aggregate EC

is about to switch from being slack to binding and the ensuing spells in the binding regime with

the associated deleveraging can naturally correspond to the build-up of systemic risk and financial

crises. The risk is systemic because our banks make symmetric decisions: when the EC binds for

one bank, it binds for all. This subsection explores the economic dynamics around such episodes.

Define a financial crisis that starts at t as an event that satisfies two conditions on the behavior

of the aggregate EC: it is slack for at least five years before the crisis ([t−20, t−1]) and then binding

for at least one year ([t, t + 3]). Figure 4 illustrates a typical dynamics around such crises. The
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Figure 4. Financial crises in the CE. Averages over a 1,000,000-period simulation.

figure is obtained by simulating the CE for 1,000,000 periods (quarters), selecting crisis episodes as

defined above, and averaging the simulated paths. There are 8,106 such crises, which corresponds to

approximately 3.2 financial crises per century, consistent with the findings in the related literature

(Mendoza, 2010).

Financial crises have a boom-bust pattern. Ahead of a crisis, output, consumption, and invest-

ment are increasing, and the balance sheet of the banking system is expanding. A leading indicator

of the crisis is the gradually falling forward-looking asset price. The aggregate EC binds when a

bad exogenous state occurs, typically due to a decrease in capital quality. The asset price and the

realized return on bank assets drop, which triggers a sharp fall in bank net worth—the bust starts.

As banks deleverage, balance sheets shrink, firms cut investment, and an economic recession starts.

There is a slight rise in consumption on impact due to the fall in the deposit rate and the increase

in labor supply, but the effect is short-term, as consumption starts to fall next period. Meanwhile,

the forward-looking asset price starts to recover, and so does bank net worth and the aggregate

investment. As bank deleveraging continues, the EC switches to being slack again, and the bank

value slowly begins to recover. The fall in output gradually slows down, but the recession and

financial deleveraging persist.

4.4 Markov perfect equilibrium

This subsection explores the optimal time-consistent allocation. The CE and MCEA have the same

underlying state space, so we can directly compare the policy functions. Specifically, we will focus

on differences in bank deposits and loans, welfare gains, and optimal policies. We will also compare

the economic dynamics around events identified as financial crises in the CE.

We will focus on the MCEA computed conditional on the distribution ∆ : S → R that is the

optimal linear transformation of the CE distribution. Define the CE distribution σ̄1S ≡ ηS
σÑS
NS

for
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all S ∈ S, where the right-hand side is evaluated at the CE allocation. Then ∆ = λ∗σ̄1, where

λ∗ = arg sup
λ∈[0,λ̃)

E(V h
S | ∆ = λσ̄1), λ̃ = sup{λ | sup

S∈S
(λσ̄1S) ≤ 1}.

Numerically, the upper bound for λ is λ̃ ≈ 1.004, while λ∗ ≈ 0.995—that is, the CE bank value

distribution must be scaled down to maximize the unconditional welfare over the MCEA ergodic

distribution.

The planner finds it optimal to scale down the distribution because it complements the plan-

ner’s efforts to address the pecuniary externalities in the CE. In turn, correcting the pecuniary

externalities helps to relax the EC. When the constraint is mostly slack, it might be inferior to

increase λ further up due to the general nonconcavity of the value function. Later we will explore

the implications of different values of λ.

4.4.1 Bank borrowing and lending

Proposition 3 identified multiple channels through which the time-consistent planner’s marginal

cost of bank borrowing and marginal benefit of bank lending differ from those in the CE. The

channels have opposing signs, and the net effect is theoretically ambiguous. Let us now resolve the

ambiguity numerically.

Figure [update] displays the histograms of bank deposits Dt+1

Rt
and bank loans QtKt+1 from

a 1,000,000-period simulation of the CE and MCEA with the same sequence of exogenous state

variables {At, ξt} and initial conditions (D0,K0). The histograms demonstrate that the CE allo-

cation has both overborrowing and overlending by the banking system compared to the MCEA.

The efficient amount of borrowing and lending is characterized by a lower mean, variance, and

skewness. Excessive borrowing and lending in the CE are mainly reflected in the longer right tail

of the distributions. Specifically, the constraint is in the binding regime at about 40% of the time

in the CE but less than 5% in the MCEA. The MCEA planner internalizes how asset prices affect

the bank value and the value of default and optimally chooses a buffer to insure away from the

constrained regime, so the distribution of deposits and loans is less skewed.

Figure [update] illustrates the % difference in the quantity of deposits
D′

S
RS

in the MCEA relative

to the CE along the d̂ dimension at the quartiles of the k̂ grid. For convenience, the bottom

part of the figure contains histograms of {d̂t} conditional on the corresponding exogenous states.

Remember that an increase in d̂ corresponds to an increase in both bank debt D and capital stock

K linked to bank assets. An increase in k̂ corresponds to a decrease in D and an increase in K,

which approximately corresponds to a decrease in the leverage ratio (an increase in the bank capital

ratio).

The majority of the state space is characterized by overborrowing by the banking system in

the CE relative to the MCEA. The extent of overborrowing is not uniform, and there are indeed

some states where we observe slight underborrowing instead. Overborrowing is smaller when banks

are well-capitalized. Overborrowing is generally severe when banks are highly leveraged at the low
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quantities of debt. We see in figure 3 that in such states, the EC is either binding or close to being

so in the CE. On the contrary, as illustrated in figure [update] , the constraint is slack in the MCEA

(in the lowest exogenous state—only slightly).

Conditional on the lowest exogenous state, the magnitude of overborrowing has an inverted S-

like shape. The global minimum of overborrowing is around the first quartile of d̂—in that region,

the MCEA EC is close to being binding, which indicates that the planner is constrained in their

ability to improve over the CE allocation. As bank debt increases, the financial constraint becomes

slack in the MCEA, and the magnitude of both the net bank value and overborrowing is at their

maximum near the third quartile of the d̂ grid. This regularity is particularly striking when k̂ is

lower and banks are more leveraged. Indeed, in the latter states, the EC stays binding in the CE,

while the time-consistent planner moves away from the binding region quite significantly, realizing

the harmful effects of entering the debt-deflation spiral at larger debt values. When the balance

sheet size is closer to the upper bound of the grid, the relative net bank value slightly decreases

in the MCEA, so the extent of overborrowing in the CE also decreases. Looking at the bottom

row of figure [update] , we must observe that the region of the state space between the first and

second quartiles of d̂ grid is more likely to occur since it is problematic to expand the balance sheet

significantly conditional on the lowest exogenous state (when asset prices are low).

Conditional on the highest exogenous state, the situation is quite different. We still have

significant overborrowing when banks are more leveraged at low values of debt, as the relative slack

of the planner’s EC is large there, but as the balance sheet expands, the magnitude of overborrowing

is close to zero, and there are some states where we observe slight underborrowing. The reason is

that the EC is already slack in the CE, so externalities are less pronounced—mathematically, many

terms in the wedges in proposition 3 vanish. In this case, the planner is not building substantial

buffers to insure away from the binding regime, as the consequences of the latter are less severe

when exogenous conditions are good.

Figure [update] parallels the top row of figure [update] illustrating the differences in bank

lending. The patterns are qualitatively very similar to those in the case of deposits, which is

not surprising due to the bank balance sheet constraint. The magnitude of overlending is generally

more significant than that of overborrowing since pecuniary externalities directly impact bank asset

allocation, while the effect on deposits is indirect through the bank balance sheet. Related to the

latter, the magnitude of overlending tracks more closely the magnitude of the planner’s net bank

value: overlending in the CE is greater in those states where the planner’s EC is slacker.

4.4.2 Optimal policies

Let us now turn attention to optimal policies that implement the MCEA. Figure [update] shows

the policy functions for the optimal deposit tax rebated lump sum in the aggregate and the corre-

sponding transfer to survived banks τ1S that supports the optimal distribution ∆. (We will refer to

this policy as optimal affine taxation.) The policy function for the tax parallels the policy functions

for the net bank value, overborrowing, and overlending. Inefficiencies are manifested to the greatest
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extent when exogenous conditions are bad. The policies are the most active in those states, and

the deposit tax is primarily positive. The tax is greater when the planner’s EC is slacker and banks

have more debt. On the contrary, the tax varies about zero in the good state and can be negative,

reflecting underborrowing by banks.

The variations in the optimal transfer to survived banks (as a percentage of bank assets) over

the state space are qualitatively similar to those in the optimal deposit tax due to the government

budget constraint τDS
D′

S
RS

= τ1S +
∫ f
σf τi,S di. In the worst exogenous state, when banks are the

most leveraged and the planner’s constraint is almost binding, the transfer is mostly negative,

encouraging deleveraging. When the agent’s constraint is binding but the planner’s constraint is

slack, the transfer increases since it helps to relax the EC. In the best state, financial constraints

are mostly slack in both the CE and MCEA, so the transfer is close to zero.

Consider now the policy scheme in which the aggregate lump-sum transfers are forbidden, that

is,
∫ f
0 τi,S di = 0. In this case, the planner must balance the budget with a linear tax on bank

assets. The planner can still distribute entrants/survivors-specific lump-sum transfers that must

vanish in the aggregate. Figure [update] displays the optimal policy in the described situation.

(We will refer to this policy as optimal linear taxation.) Qualitatively, the deposit tax has similar

trends to those in the affine scheme, but the tax dispersion in the state space increases. In the bad

exogenous state, the optimal tax is mostly positive and now reaches up to 60% at some debt values.

The tax varies about zero in the good exogenous state, but the fluctuations are more pronounced

than before, ranging from a 40% subsidy to a 50% tax. Such extreme values are not, however,

typically observed in the ergodic distribution, which has a mode around the first quartile of d̂ in

the worst state and around the third quartile in the best state.

The optimal transfer to survivors is now fully funded by a tax on entrants. The magnitude of

the transfer is significantly less than that in the case of affine taxation since the transfer is now not

directly related to system-wide proportional taxes. In the bad state, the transfer to survived banks

is positive at greater leverage ratios, helping to relax the EC in the CE, where it is binding. The

transfer is also generally more significant in the regions where the planner’s constraint is slacker—at

both shallow and large values of bank debt. In the good state, the EC is mostly slack in the CE,

except at the very low debt values when the transfer is greater. Otherwise, the transfer is either

close to zero or negative.

Numerical results indicate that a possible implementation with minimum capital requirements

is not always possible: the optimal credit spread and the implied Lagrange multiplier could be

negative in some states. In other words, conditional on the same state, the optimal bank capital

ratio in the MCEA can be smaller than in the CE. On the other hand, the ergodic state space is

different in the MCEA due to the general overborrowing and overlending in the CE. If we compare

the empirical distributions of the bank capital ratio, the MCEA distribution is shifted to the right

compared to the CE distribution. This fact is illustrated in figure 5 together with the implied

optimal transfer and all other policy schemes.

In the ergodic distribution, the optimal taxes have more mass in the positive region, reflecting
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overborrowing and overlending in the CE. The deposit tax and the optimal transfer in the affine

scheme have long right tails not shown for the sake of clear illustration. As discussed above, the

magnitude of optimal deposit taxes in the linear scheme is generally greater, while the magnitude

of optimal transfers is smaller and primarily negative. The optimal bank capital ratio is typically

greater than in the CE, with a mean of about 19%. The transfer corresponding to a possible

implementation with capital requirements is only relevant when the Lagrange multiplier on the

regulatory constraint is nonnegative, and the latter is not always the case. Generally, capital

requirements alone are insufficient to implement the optimal allocation and must be augmented

with other instruments.

4.4.3 Welfare gains and the role of optimal transfers

We have seen that the extent of overborrowing and overlending and, correspondingly, the magnitude

of optimal taxes and transfers can be quite significant. Figure [update] illustrates how welfare gains

from the baseline MCEA relative to the CE allocation vary in the state space. Welfare gains are

generally greater when exogenous conditions are bad, banks are more leveraged, and the CE EC

is more binding—at the lower values of assets and debt. The mean welfare gain over the whole

state space is 0.75% of consumption, and the median welfare gain is 0.57% of consumption. These

numbers are about twice as large as those found in the open economy international finance context

by Bianchi and Mendoza (2018).

Figure [update] illustrates how the average welfare gain from the MCEA varies as a function

of λ—the scale of the CE bank value distribution. At λ < 0.9 (approximately), the MPE does not
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exist since the EC cannot be satisfied in some states. At λ ∈ (0.9, 0.98], the EC is binding almost

everywhere in the state space, and as we increase λ, welfare losses steadily decrease as constraints

are relaxed. When we move to λ = 0.99, λ is large enough for the EC to be mostly slack, and

average welfare jumps to the welfare gain region. As we increase λ from 0.99 to 0.994, the measure

of the state space where the constraint is slack continues to increase slightly, after which there is a

significant jump when we move to λ∗ = 0.995. A further increase in λ does not lead to an increase

in the measure of the slack region—on the contrary, it decreases slightly, and the decrease is more

significant as we move to λ = 0.999 and further above.

The reason welfare starts to decrease at λ > λ∗ is the fact that the value function is generally

not globally concave. A typical situation is that there are two local maxima: one where the EC is

binding, another where the EC is slack, and the latter is typically quite distant from the binding

region. When the constraint is mostly slack but we keep increasing λ, the feasible set expands,

and some of the global maxima switch from the slack to the binding region. The switching affects

the continuation value at other states, and when the value function converges, we can observe a

decrease in welfare. Despite the decrease, welfare gains remain sizable.

Let us note here that we also considered an alternative situation where the distribution ∆ is

restricted to satisfy ∆S = ηS
σÑS
NS

for all S ∈ S. Note that we should not confuse this case with

the case of λ = 1. In the latter case, ∆ is fixed ex ante at the CE distribution σ̄1, that is, the

values ∆S are given for all S ∈ S. In the former case, the distribution object ∆ is part of the

MPE—∆ is updated at each iteration to satisfy the proportionality constraint. The corresponding

MPE outcome does not require any transfers for implementation since the equilibrium distribution

is consistent with the linearity of the individual bank value in the individual net worth. In this

case, the average welfare gain is 0.67%, and the median welfare gain is 0.5%, lower than under the

optimal linear transformation that serves as the baseline in our analysis.

It is worth emphasizing that one can construct infinitely many distributions that are not limited

to linear transformations and dominate the baseline distribution. It is interesting to investigate

some of those possibilities, although the investigation is hindered by the computationally intensive

reality of finding the MPE in alternative cases.

4.4.4 Financial crises

We will conclude the analysis of the MPE by exploring the economic dynamics around time periods

that were identified as financial crises in the CE. Figure 6 compares the dynamics around such events

in the CE and MCEA. The most striking difference is that the EC remains slack during the whole

crisis window in the MCEA. As bad shocks hit, the bank value decreases gradually, but the buffer

over the value of default is safely sufficient to evade transitioning to the binding regime. Bank net

worth falls on impact by about 28.5% compared to 35.7% in the CE and starts to recover much

faster. There is a slightly greater fall in bank assets and the asset price on impact, but both rebound

faster than in the CE. There is a greater relative fall in bank deposits during the first 2.5 years,

which contributes to the slackness of the EC. We also notice that banks are much less leveraged
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Figure 6. Financial crises, CE and MCEA. Averages over a 1,000,000-period simulation.

before the crisis, as the bank capital ratio is at about 20.3% at t = 0 in the MCEA compared to

14.3% in the CE. A faster recovery in bank assets and the asset price is reflected in a much faster

recovery in investment, which crowds out consumption to a certain extent. In sum, the cumulated

fall in output is lower in the MCEA compared to the CE.

Figure 7 further explores how potential MCEA decentralization policies behave around crises.

During the two years ahead of the average crisis, the optimal deposit tax in the affine scheme
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Figure 7. MCEA decentralization policies around financial crises. Averages over a 1,000,000-period
simulation. Each column corresponds to an alternative implementation mechanism. Transfers refer
to τ1.

increases from about 15 to 17 basis points. Accordingly, the optimal transfer to survivors stays

modest. The optimal tax is much larger in the linear taxation scheme, growing from 213 to

221 basis points before the crisis. The magnitude of the transfer, on the other hand, is much
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smaller in the linear scheme, as it is not linked to the tax in the government budget constraint.

Moreover, the transfer is negative, reflecting that the optimal distribution ∆ is uniformly lower than

the CE distribution—therefore, the planner is supporting entrants in good times. As for capital

requirements, they are much larger than the CE capital ratio before the crisis, while the transfer

is negative similar to the case of linear taxation.

When the bad shock hits and the EC binds in the CE, the optimal deposit tax—in both the

affine and linear schemes—increases significantly, contributing to faster deleveraging and evading

the binding constraint entirely in the MPE. The optimal transfer to survivors rises substantially in

both taxation mechanisms (in the linear scheme, the negative transfer decreases), compensating for

the rise in the deposit tax. This rise reflects the preemptive bailout: the rise in the transfer supports

the value of the bank so that it stays above the value of default, and the EC remains slack. The

optimal capital requirements—which, by proposition 4, correspond to the optimal capital ratio—

fall significantly when the bad shock hits but stay well above the capital ratio in the CE allocation.

Hence, the optimal capital requirements have a macroprudential nature. Note that, unlike in the

whole state space, the implementation with capital requirements is effective around the potential

crises. In general, however, they must be augmented by taxes to be effective.

4.5 Ramsey equilibrium

In this subsection, we will explore the implication of the Ramsey equilibrium, relating them to the

findings discussed so far. The Ramsey allocation is not recursive but history-dependent; therefore,

we cannot directly compare policy functions with those in the CE.6 We will thus focus on comparing

the empirical distributions and the economic dynamics around financial crises in the CE.

As in section 4.4, the baseline analysis is conditional on the optimal bank value distribution

among a certain class of distributions. The baseline computation of the CEA relies on piecewise

linear perturbation about the steady state.7 For this reason, it is more convenient to focus on

constant distributions ∆t(s
t) = ∆ for all (t, st). The optimal distribution in the class of constant

distributions is ∆ ≈ 0.9985, the smallest value at which the aggregate EC is slack in the steady

state. Note that the steady-state value of the CE distribution is σ̄1 ≈ 0.9911.

Unlike in the MPE, where the CE distribution has to be optimally scaled down, it is optimal to

scale it up in the Ramsey equilibrium. The Ramsey planner finds it optimal to promise sufficiently

large transfers to the banks, such that the EC becomes just slack in the steady state—that is,

banks are exactly at the boundary of the constrained and unconstrained regions. Both with and

without commitment, there is a similar rationale to provide just enough transfers to have financial

constraints relaxed, but pecuniary externalities present an opposing force that prevents the planner

6Since the Ramsey equilibrium is recursive on the state space augmented with Lagrange multipliers, it is possible
to compare policy functions conditional on specific values of Lagrange multipliers.

7For consistency, in this subsection, we use the same method to compute the CE. The CE simulation will thus differ
from the baseline simulation from the previous analyses. The piecewise linear perturbation accounts for the occa-
sionally binding constraint but does not account for precautionary savings. The computational burden of simulating
the model using this approach is significant, so the simulation length is reduced from 1,000,000 to 100,000.
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from providing excessive preemptive bailouts. Commitment matters for the location of the optimal

transfer boundary. The boundary is further above with commitment, so the Ramsey planner

supports more bank debt and credit, as we will see momentarily.

Later we will explore the welfare implications of alternative ∆, as we did with the MPE analysis.

4.5.1 Bank borrowing, lending, and optimal policies

We begin by looking at the empirical distributions of bank deposits and loans. Figure 8 shows

the corresponding histograms, where in addition to the CE and CEA, we have histograms from

the frictionless (unconstrained) CE (UE), in which θ = 0 and all other parameters are identical to

those in the baseline CE. By construction, in the UE, the EC is always slack since the aggregate

net worth and bank value are strictly positive.
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Figure 8. Bank borrowing and lending in the CE, CEA, and UE. The latter refers to a frictionless
(unconstrained) CE with θ = 0. Histograms based on the 100,000-period simulation with the same
sequence of exogenous shocks. Variables are normalized by the average CE output; the y-axis has
the pdf normalization.

An immediate implication of the optimal preemptive bailout policy that supports the relative

bank value of survived banks at a greater value than in the CE is the expansion of bank balance

sheets. With commitment, we observe underborrowing and underlending by the banking sector

in the CE compared to the CEA. Bank deposits and loans have a greater mean and variance in

the Ramsey equilibrium than in the CE. The CEA histograms are more skewed to the left, so

the median deposits and loans are even greater. However, the optimal balance sheets are smaller

than in the UE, where the EC is always slack and the limited enforcement friction is shut down.

Hence, the Ramsey planner alleviates the friction with preemptive bailouts but does not eliminate

it, reflecting a trade-off between preventing excessive borrowing and lending ex ante and relaxing

financial constraints ex post.

Figure 9 displays the empirical distributions of the alternative CEA implementation policies.

Although there is greater bank borrowing and lending in the CEA than in the CE, the optimal

deposit taxes have more mass in the positive region, similar to what we found in the MPE. The

Ramsey planner uses taxes to correct the pecuniary externalities, which prevents borrowing and
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Figure 9. Optimal policies under commitment. Histograms based on the 100,000-period simulation
with the same sequence of exogenous shocks. Each column corresponds to an alternative CEA
decentralization scheme (pdf normalization on the y-axis). Outliers are removed. Transfers (τ1t )
are in % of bank assets. The transfer in the last column is meaningful only when the implied
Lagrange multiplier on the regulatory constraint is nonnegative, which does not always hold.

lending from being excessively large, even though it is larger than in the CE due to optimal transfers.

Similar to the MCEA, when aggregate transfers are forbidden (the linear implementation scheme),

the magnitude of the taxes is generally greater.

The optimal bank capital ratio has a lower mean and median than in the CE but a greater

variance and a much greater skewness to the right. Hence, under commitment, the optimal capital

ratios are generally lower than in the CE, reflecting the increased borrowing and lending, but

there is a nontrivial measure of contingencies in which the planner finds it optimal for banks to be

sufficiently more capitalized than in the CE.

The optimal transfers to survived banks are uniformly positive independently of the CEA im-

plementation mechanism. This fact contrasts with the MCEA, where transfers were primarily

negative since it was optimal to scale down the CE bank value distribution. The optimal transfers

have a comparable magnitude across implementation schemes with a mean of about 0.5% of bank

assets. As with the MCEA, we must note that the decentralization with capital requirements alone

does not always succeed; therefore, the optimal transfers are only valid conditional on having the

Lagrange multiplier on the regulatory constraint nonnegative in the relevant contingencies.

4.5.2 Welfare gains and the role of optimal transfers

Since the CEA is not recursive, instead of exploring how welfare gains vary in the state space, we will

focus on welfare gains based on the ergodic mean of the value function. Figure [update] illustrates

how the ergodic welfare gain varies as a function of ∆. The ergodic welfare gain from the CEA
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conditional on the optimal distribution ∆ is about 0.75% of consumption.8 When ∆ ∈ [0.9, 0.99],

we are in the ergodic welfare loss region, and the losses dramatically decrease as we increase ∆ and

the planner’s EC is relaxed in more and more contingencies. When we move to the CE distribution

with σ̄1 ≈ 0.9911, we finally get a welfare gain of 0.11%, and the EC is slack about 68.6% of

the time compared to 50.7% in the CE. When we go up to the optimal distribution ∆ ≈ 0.9985,

the constraint is slack 95.4% of the time and is now slack in the steady state. As we increase ∆

further up to 0.9999, the constraint becomes slack 99.6% of the time, but the trade-off between the

excessive borrowing and lending ex ante and the slackness of the EC ex post swings to the former,

so welfare gains decrease down to 0.51% of consumption, which is still significant.

The moral of the story is that it is optimal to relax the EC in most contingencies but not

necessarily in all possible contingencies: the optimal transfers should be large enough but not

excessively large. The Ramsey planner commits to providing enough help to older and larger banks

when financial constraints bind ex post while discouraging banks from growing too large ex ante.

In other words, “too big to fail” is a problem that must be addressed ex post, but it is better to

evade it ex ante.

4.5.3 Financial crises

Finally, we will look at the economic dynamics around financial crises. Remember that in this

subsection, we use a different approach to compute the CE for consistency with the computation of

the CEA. Our identification of financial crises changes slightly: instead of requiring the EC to be

slack for twenty quarters before the crisis, we look for at least ten quarters, which allows obtaining

a similar frequency of financial crises of about 3.1 crises per century.

Figure 10 illustrates the dynamics around crises. The general trends are quite similar to those

in figure 6, which, in particular, confirms that the alternative computational approach is adequate.

The most striking difference from the behavior of the optimal time-consistent allocation is that

the optimal bank capital ratio is now uniformly lower during the crises than in the CE. These

dynamics reflect the comparison of empirical distributions in figure 9. Since the planner finds it

optimal to provide sufficient support to survivors through transfers, they generally borrow more

and become more leveraged on average. A lower capital ratio is not a problem since the very

purpose of those transfers—or preemptive bailouts—is to prevent the EC from switching to the

binding regime, which is achieved successfully—the net bank value in the CEA generally remains

slack around crises and to a greater extent than in the MCEA.

The boom-bust dynamics in the CEA are generally less pronounced than in the CE, as both

real and financial variables are less volatile in such episodes and recover faster after the bad shock

hits. In particular, we observe a faster recovery in the asset price and bank assets and liabilities,

which does not allow investment to drop as severely as in the CE. Consumption also varies less,

8Although this number may seem identical to the baseline welfare gain from the MCEA, note again the difference
in welfare gain concepts. In the MCEA, we would detect an ergodic welfare loss due to the extent of overborrowing
and overlending in the CE.
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Figure 10. Financial crises, CE and CEA. Averages over a 100,000-period simulation.

and output rebounds faster.

Figure 11 focuses on the dynamics of the CEA decentralization policies. Some curves are not
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Figure 11. CEA decentralization policies around financial crises. Averages over a 100,000-period
simulation. Each column corresponds to an alternative implementation mechanism. Transfers refer
to τ1.

as smooth as in figure 7 due to a lower simulation length, but the trends are clear. As in the time-

consistent case, the optimal deposit taxes are increasing ahead of a crisis, albeit with a greater

magnitude, and jump when the bad shock arrives to encourage faster deleveraging and keep the

banking sector in the unconstrained regime. The increase is followed by a gradual decline as both

exogenous and endogenous conditions improve.

By construction, the optimal transfer in the affine scheme tracks the dynamics of the deposit

tax to a great extent. In the linear scheme, the optimal transfer is falling slightly ahead of a crisis,
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which is an additional way to encourage deleveraging ex ante. When the shock arrives, the trend

is reversed, and the transfer increases to relax the EC. We observe very similar behavior in the

optimal transfer conditional on the implementation with capital requirements. Unlike in the MPE,

the optimal transfers in all implementation schemes are generally positive around crises.

As in the MPE, the implementation with capital requirements is effective around crises since

the implied Lagrange multiplier on the regulatory constraint stays positive. At the same time, the

optimal capital ratio is generally lower than in the CE. It might seem unintuitive, but remember

that the optimal constant bank value distribution scales the CE analog up in the Ramsey equilib-

rium, so the corresponding transfers would decrease the CE capital ratio to even lower values in

the environment without additional regulation. Therefore, with optimal capital requirements and

preemptive bailouts, the regulatory constraint would bind in the regulated CE.

5 Conclusion

This paper has characterized the optimal regulation of a banking system in a quantitative general

equilibrium environment. We have found that a benevolent policymaker generally faces a trade-off

between limiting excessive borrowing and lending by banks ex ante in normal times and supporting

the banking system ex post in bad times. The optimal policy requires a combination of system-wide

deposit taxes or state-contingent capital requirements—that address pecuniary externalities implicit

in the banking system enforcement constraint—and bank entrants/survivors-specific transfers that

achieve the optimal bank value distribution. We have referred to the optimal transfers as preemptive

bailouts, as their goal is to prevent financial constraints from becoming binding, which guarantees

bank solvency.

We have studied the optimal policy in the Markov perfect equilibrium and the Ramsey equi-

librium, which differ in whether the policymaker can commit. Independently of the latter, the

optimal transfer policy generally ensures that the enforcement constraint is slack in most but not

all states/contingencies, and it is just slack in the long run. The presence of commitment has,

however, striking quantitative implications. We generally observe overborrowing and overlending

by banks in the competitive equilibrium compared to the Markov perfect equilibrium outcome,

and the optimal transfers are generally negative. There is, however, mostly underborrowing and

underlending in competitive markets compared to the Ramsey outcome, and the optimal transfers

are generally positive in this case. On the other hand, the behavior of optimal policies around

financial crises is quite similar: optimal taxes are mostly procyclical, while optimal transfers and

bank capital requirements are countercyclical.

The present analysis can be extended in various ways. We could consider alternative environ-

ments in which banks can self-insure with endogenous equity issuance or can invest in other types

of assets, such as government debt, which will potentially introduce additional externalities. It is

also interesting to generalize the model and explore the implications for optimal monetary policy.
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Schmitt-Grohé, Stephanie and Mart́ın Uribe, “Multiple Equilibria in Open Economies with

Collateral Constraints,” The Review of Economic Studies, 2021, 88 (2), 969–1001.

Van der Ghote, Alejandro, “Interactions and Coordination between Monetary and Macropru-

dential Policies,” American Economic Journal: Macroeconomics, January 2021, 13 (1), 1–34.

45


	Introduction
	Model
	Households
	Bankers
	Firms
	Final good producers
	Capital good producers

	Market clearing
	Competitive equilibrium

	Normative analysis
	Sources of inefficiency
	Constrained efficient allocation under commitment
	Markov perfect equilibrium
	Implementation with taxes, transfers, and capital requirements

	Quantitative results
	Calibration and computation
	Bank solvency and EC regimes
	Financial crises in the unregulated economy
	Markov perfect equilibrium
	Bank borrowing and lending
	Optimal policies
	Welfare gains and the role of optimal transfers
	Financial crises

	Ramsey equilibrium
	Bank borrowing, lending, and optimal policies
	Welfare gains and the role of optimal transfers
	Financial crises


	Conclusion

