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Abstract. This paper proposes a semiparametric and a nonparametric instrumental variable
(IV) estimators, under the assumption that the conditional mean of the endogenous variable,
given the instrumental variable, is known to be monotone increasing. We employ isotonic
estimation to obtain the fitted instruments in the first stage of a two-stage semiparametric or
nonparametric estimation procedure. We show that the proposed semiparametric IV estimator
is tuning-parameter-free and achieves the semiparametric efficiency bound. Moreover, we show
that compared to the nonparametric two-stage least squares estimator (Blundell, Chen and
Kristensen, 2007; Horowitz, 2011, 2012), our proposed nonparametric IV estimator requires
notably fewer tuning parameters and achieves the same convergence rate. Additionally, it
exhibits greater stability as evidenced by Monte Carlo simulations.

1. Introduction

In economic studies, the explanatory variables are often endogenous, i.e., they are correlated
with unobservables, leading to inconsistent estimators. To address this endogeneity issue, linear
instrumental variable estimation, also known as two-stage least squares (2SLS), is extensively
applied; see, e.g., Wooldridge (2010, Chapter 7) for a review.

To mitigate the restrictive assumption of linearity and to enhance the robustness of esti-
mation and inference processes, semiparametric and nonparametric IV estimations—henceforth
referred to as SPIV and NPIV, respectively—have been developed. Significant contributions
in this area include works by Newey and Powell (2003), Hall and Horowitz (2005), Blundell,
Chen and Kristensen (2007), Chen and Reiss (2011), and Horowitz (2011, 2012), among others.
Except for Hall and Horowitz (2005), which employs a kernel-based method, the majority of
the works mentioned above utilize series estimation in the first-stage regression of the endoge-
nous variables on the instrumental variables (or in an implicit first stage of a one-step NPIV
estimation procedure, which can be equivalently decomposed into two stages of separate series
estimations). Once the fitted instrumental variables are obtained, they are then used in the
second-stage estimation to recover a consistent estimator of conditional mean in the presence of
endogenous explanatory variables. For the NPIV estimation, this two-step procedure is some-
times referred to as nonparametric 2SLS; see Horowitz (2011) for a detailed discussion of its
properties.

In this paper, we propose employing isotonic estimation for the first-stage estimation within
both SPIV and NPIV frameworks, and we refer to the proposed estimators as “monotone
SPIV/NPIV”. The isotonic estimator can be traced back to the mid-20th century, with founda-
tional contributions from Ayer et al. (1955), Grenander (1956), Rao (1969, 1970), and Barlow
and Brunk (1972), among others. The isotonic estimator for a regression function is defined

1



through least squares estimation under the monotonicity constraint. Assuming the conditional
expectation E[Y |X] = m(X) is monotone increasing, for an iid random sample {Yi, Xi}ni=1,
the isotonic estimator emerges as the solution that minimizes the sum of squared differences,
minm∈M

∑n
i=1{Yi −m(Xi)}2, where M denotes the set of monotone increasing functions. The

minimizer can be derived using the pool adjacent violators algorithm, as outlined by Barlow and
Brunk (1972), or equivalently by identifying the greatest convex minorant in the cumulative sum
diagram {(0, 0), (i,

∑i
j=1 Yj), i = 1, . . . , n}, with {Xi}ni=1 arranged in sequence; see Groeneboom

and Jongbloed (2014) for an exhaustive examination of isotonic regression’s various facets.
The implementation of isotonic regression is predicated on the assumption that the conditional

mean of the endogenous variable, given the instrumental variable, is monotone increasing. This
assumption is common in the literature on IV estimation. For instance, in a classic economic
problem that examines the effect of education level on future wages, it is reasonably argued
that the conditional expectation of education level increases monotonically with the IV that
reflects the result of IQ tests. Blundell, Chen and Kristensen (2007) uses log earnings as the
instrument for log family expenditure; the conditional mean of the latter, given the former, is
arguably monotone increasing (see Figures 4 and 5 in Blundell, Chen and Kristensen (2007) and
Figure 2 in Härdle and Linton (1994) for nonparametric regression plots of family expenditure
on earnings). Furthermore, in the errors-in-variables problem, the conditional mean of the
mismeasured running variable is by construction monotone increasing in its IV, an independently
repeated measurement of the same value. Broadly speaking, any economic study involving a
univariate endogenous variable and univariate instrumental variables, and utilizing the linear
2SLS method, implicitly imposes the monotonicity assumption, as a univariate linear function
is inherently monotone.1

The advantages of substituting the first-stage series estimation with isotonic regression con-
vince us of its worth. First, it is widely acknowledged that the choice of tuning parameters
significantly influences the performance of semiparametric and nonparametric estimations. The
isotonic estimator, as a nonparametric method without involving tuning parameters, helps to
alleviate this issue of choice for both SPIV and NPIV. In the context of the SPIV, we obtain a
tuning-parameter-free SPIV estimator that attains the semiparametric efficiency bound, within
the framework of Ai and Chen (2003). Regarding the NPIV, our approach simplifies the selec-
tion of tuning parameters, reducing the count from Kn + 1 – where Kn represents the series
length in the second stage – to merely one.2 Second, imposing the monotonicity assumption in
the first-stage estimation can help to stabilize the resulting NPIV estimator. In Section 4 of
simulations, we illustrate that compared to the nonparametric 2SLS, our proposed monotone

1We will discuss the multivariate SPIV and NPIV in Section 3, where we employ the monotone partially lin-
ear models and the monotone single index models to address the issue of the coexistence of monotonicity and
multivariate regression.
2It is worth noting that although the NPIV methods by Blundell, Chen and Kristensen (2007) and Horowitz
(2011, 2012) require the selection of only one tuning parameter, this simplicity is due to the enforcement of a
universal series length across both stages of series estimations. The implicit number of tuning parameters of their
approaches remains Kn + 1.
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NPIV method exhibits a significantly more stable performance across various Kn. Similar sta-
bilizing effects of the monotonicity constraint have also been observed in another NPIV problem
within a different context, as discussed by Chetverikov and Wilhelm (2017).

Our proposed monotone NPIV method contributes to the literature on plugging nonpara-
metric estimators into another nonparametric estimation procedure. Examples include Rilstone
(1996), Song (2018), Mammen, Rothe and Schienle (2012), and Hahn and Ridder (2013), among
others. Additionally, the studies on nonparametric 2SLS methods mentioned previously also fall
into this category. Contrary to these works, our proposed method incorporates a non-smooth
first-stage isotonic estimator into a smooth second-stage series estimator, making theoretical
developments substantially different from the existing approaches.

This paper is organized as follows. In Section 2, we consider univariate monotone SPIV and
NPIV estimation. The multivariate case will be discussed in Section 3. Section 4 illustrates the
proposed method by a simulation study.

2. Univariate case

In this section, we introduce the setups and study our estimator in the univariate case. The
multivariate case will be discussed in Section 3. Considering the following instrumental variable
regression model:

Y = g(X) + U, E[U |W ] = 0, (2.1)

X = ζ(W ) + ϵ, E[ϵ|W ] = 0,

where Y is a scalar dependent variable, X is a scalar endogenous regressor, W is a scalar instru-
mental variable, and U and ϵ are unobservable error terms. Function g can be either parametric
or nonparametric, and these two cases will be discussed in the following two subsections, re-
spectively. Throughout the paper, function ζ is unknown, and we are particularly interested
in estimating function g by using a random sample {Yi, Xi,Wi}ni=1 of (Y,X,W ) ∈ R× X ×W ,
under the shape constraint that ζ is a monotone increasing function. The case of decreasing ζ

can be investigated in the same manner.

2.1. Semiparametric IV estimation. In this section, we discuss the case where the second
stage is a linear model, i.e.,

g(X) = β1 +Xβ2,

and we aim to estimate the unknown linear coefficients β := (β1, β2)
′ under the potential endo-

geneity, E (U |X) ̸= 0. In this setup, model (2.1) becomes a semiparametric instrument variable
model (SPIV).

Let En[·] = n−1
∑n

i=1 ·. By utilizing monotonicity of ζ, we propose to implement the first
stage regression by the isotonic regression

min
ζ∈M

En[{X − ζ(W )}2], (2.2)

where M is the class of monotone increasing functions. The minimizer of (2.2) can be calculated
with the pool adjacent violators algorithm (Barlow and Brunk, 1972), or equivalently by solving
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the greatest convex minorant of the cumulative sum diagram. Define Z = ζ(W ), Ẑ = ζ̂ (W )

to be the estimator solving (2.2), and v(x) = (1, x)′. Then our semiparametric instrumental
variable estimator of β is defined as

β̂ = En[v(Ẑ)v(X)′]−1En[v(Ẑ)Y ]. (2.3)

To study asymptotic properties of the proposed estimator, we impose the following assump-
tions.

Assumption 2.1.1. [Sampling] (i) {Yi,Wi, Xi}ni=1 is an iid sample of (Y,X,W ) ∈ R×X ×W,
where X ⊆ R, and W is a compact subset of R; (ii) X and W are jointly continuously distributed.

Assumption 2.1.2. [Monotonicity] ζ(w) = E[X|W = w] is a monotone increasing function of
w ∈ W .

Assumption 2.1.3. [Instrument relevance and homoscedasticity] (i) V ar (E[X|W ]) ̸= 0; (ii)
E
[
U2|W = w

]
= σ2

u for any w ∈ W.

Remark 2.1. Assumption 2.1.1 establishes the basic setup for data generating process. As-
sumption 2.1.2 imposes the monotonicity, the key property we aim to integrate into our SPIV
and NPIV frameworks. Assumption 2.1.3(i) ensures the identification of β, and it serves a role
analogous to Cov (X,W ) ̸= 0 in a linear IV model. Assumption 2.1.3(ii) enforces homoscedas-
ticity conditional on instruments, ensuring the efficiency of the proposed estimator.

Assumption 2.1.3(ii) can be relaxed. In this case, to achieve the efficiency, we shall plug-
in an estimated conditional variance matrix obtained by regressing residual Û2, which can be
derived from a consistent estimator (2.3), on instrument W . If E

[
U2|W = w

]
is assumed to

be monotone increasing in w, we can also employ isotonic regression, as in Arai, Otsu and Xu
(2022). The resulting estimator remains tuning-parameter-free and efficient.

Theorem 2.1. Under Assumptions 2.1.1 to 2.1.3, it holds
√
n
(
β̂ − β

)
d→ N(0,Ω),

where Ω = σ2
UE [v(Z)v(Z)′]−1attains the efficiency bound of estimating β (see, e.g., formula (22)

on p. 1814 of Ai and Chen, 2003). Furthermore, the estimation of β does not involve any tuning
parameter. In addition, a tuning-parameter-free estimator of the variance-covariance matrix is
given by Ω̂ = 1

n

∑n
i=1 Û

2
i

[
v(Ẑ)v(Ẑ)′

]−1
.

2.2. Nonparametric IV estimation. In this section, we no longer impose a parametric struc-
ture on function g(X) in (2.1). The estimation of g(·) becomes a NPIV problem, where the
unobserved U might be correlated to the regressor X.

Let p(x) = (p1(x), . . . , pKn(x))
′ be a vector of complete basis functions for L2 (X ) := {h :

X → R,
√∫

X h(x)2dx < ∞}, and {Kn} be a positive sequence such that Kn → ∞ as n → ∞.
To apply our monotone NPIV estimator, we choose those types of bases that for any k ∈ N,
E (pk(X)|W = w) is a monotone increasing function of w. This condition can be satisfied by
polynomials under certain assumptions (see the remark following Assumption 2.2.4 below), and
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it can be extended to series bases that are transformed from polynomials, including various
types of splines.

Now we can define

qk (w) = E (pk(X)|W = w) ,

q (w) = (q1(w), . . . , qKn(w))
′ . (2.4)

Note that qk (·) is a function defined on W while pk (·) is a function defined on X .
Assuming the monotonicity of qk (·), we propose to employ isotonic regression to estimate the

basis functions q (w) directly: For each k ∈ {1 : Kn},

q̂k (·) = arg min
ζ∈M

En[{pk(X)− ζ(W )}2],

q̂ (w) = (q̂1(w), . . . , q̂Kn(w))
′ . (2.5)

Recall M is the class of monotone increasing functions. Note that p(·), q(·), p̂ (·), and q̂ (·)
have the same dimension of Kn, which should increase with the sample size n. This information
about their dimension is suppressed in their notations provided there is no confusion in the
context.

Then our proposed NPIV estimator of g is defined as

ĝ (·) = p (·)′ En

[
q̂ (W ) p (X)′

]−1 En [q̂ (W )Y ] . (2.6)

To study the asymptotic properties of ĝ, let fX|W be the Lebesgue density functions of X

conditional on W and fW be the marginal density function of W , respectively. Then, we define
the reduced-form conditional mean to be

m(w) = E[Y |W = w],

and define T : L2 (X ) → L2 (W) to be an operator such that for any w ∈ W ,

(Tν)(w) =

∫
X
ν(x)fX|W=w(x,w)dx.

Moreover, for A ∈ {X ,W}, let ∥·∥ denote L2 (A) norm, ∥h∥:=
√∫

A h(a)2da. For a non-negative
integers r and c, let Λr

c (A) denote the Hölder space that is defined, for example, on p. 1623 of
Blundell, Chen and Kristensen (2007). Then for some positive constant K, we define

Hn =

{
h : X → [0,K], h ∈ Λr

c (X ) , h(X) =

Kn∑
k=1

bkpk(X)

}
, (2.7)

where b = (b1, . . . , bKn) is a vector of unknown sieve coefficients.
Following Blundell, Chen and Kristensen (2007), we define the sieve measure of ill-posedness:

ρn = sup
h∈Hn

∥h∥
∥Th∥

.
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In addition, we define

β̂ = En

[
q̂ (W ) p (X)′

]−1 En [q̂ (W )Y ] ,

βx,n = E
[
p(X)p(X)′

]−1 E [p(X)g(X)] ,

βw,n = E
[
q(W )q(W )′

]−1 E [q(W )Y ] , (2.8)

gx,n(·) = p(·)′βx,n, gw,n(·) = p(·)′βw,n.

Note that by definition, ĝ(·) = p(·)′β̂. Although both gx,n and gw,n are functions defined on
X , the latter is constructed with the projection coefficients of projecting Y on q(W ). This gw,n

is required to handle the possible case where E [q(W ) (Y − gx,n(X))] ̸= 0, despite E [q(W )U ] =

0. (See the remark following Assumption 2.2.4 below). Note that we do not defined βx,n as
E [p(X)p(X)′]−1 E [p(X)Y ] since X is an endogenous variable.

To study asymptotic properties of the proposed estimator, we impose the following assump-
tions.

Assumption 2.2.1. [Data generating] (i) {Yi,Wi, Xi}ni=1 is an iid sample of (Y,X,W ) ∈
R × X × W, where X ⊆ R, and W is a compact subset of R; (ii) T is nonsingular, and the
equation Tv = m has a unique solution v = g almost surely; (iii) for the true function of interest
g, it holds that g ∈ H ≡ Λr

c (X ) for some r ≥ 2 and supx∈X g(x) ≤ K, where K is the same
positive constant in (2.7).

Assumption 2.2.2. [Monotonicity and continuity] For each k ∈ {1 : Kn}: (i) qk (w) =

E[pk(X)| W = w] is a monotone increasing function of w; (ii) (X,W ) has a Lebesgue density
function fXW , and the marginal density of W , fW (·), satisfies that for some positive constants
f and f , it holds f < fW (·) < f all w ∈ W; (iii) there exist b > 0 and M > 0 such that
E[|X|m|W = w] ≤ m!Mm−2b for all integers m ≥ 2 and almost every w.

Assumption 2.2.3. [Instrument relevance and series order] (i) For each Kn, the largest eigen-
values of both E [p(X)p(X)′] and E [q(W )q(W )′] are bounded, and their smallest eigenvalues are
bounded away from zero; (ii) Kn → ∞ and K3

n/n → 0.

Assumption 2.2.4. [Bounds of projection errors] ρn · ∥T (gw,n − gx,n)∥ ≤ const · ∥g − gx,n∥.

Remark 2.2. Assumption 2.2.1(i) establishes the basic setup for data generating process. As-
sumptions 2.2.1 (ii) and (iii) are adapted from Assumption 1 of Blundell, Chen and Kristensen
(2007), restricting the true function of interest, g, to a function space subject to certain condi-
tions of smoothness and boundedness.

Assumption 2.2.2 (i) requires that the conditional mean of each basis function, E[pk(X)|W =

w], is monotone increasing in w. Combined with the following conditions, this assumption can
be satisfied by the polynomial basis.

A1: For all w ∈ W , ζ(w) is non-negative and monotone increasing in w.
A2: For all w ∈ W , the conditional density of ϵ|W = w is symmetrically distributed around

0.
A3: For all i ∈ {1 : Kn}, σi(w) := E(ϵi|W = w) is finite and non-decreasing in w.
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A1 imposes the non-negativity, which can be satisfied transforming the original data. A2 can
be satisfied by many well-known distributions. A3 is satisfied if ϵ is mean-independent of W .
Assumptions similar to A2 and A3 are not uncommon in the literature addressing different but
related problems, for example, Newey and Steigerwald (1997).

For the polynomial bases, pk(X) = Xk, we have

E[pk(X)|W = w] = E[Xk|W = w]

= E[(ζ(W ) + ϵ)k |W = w]

= E

(
k∑

i=0

(
k

i

)
ζ(W )k−iϵi|W = w

)

= E

 ∑
0≤i≤k,i is odd

(
k

i

)
ζ(W )k−iϵi|W = w


+ E

 ∑
0≤i≤k,i is even

(
k

i

)
ζ(W )k−iϵi|W = w


= I + II.

Under assumption A1-A3, we have I = 0, and II =
∑

0≤i≤k,i is even

(
k

i

)
ζ(w)k−iσi(w) is a

sum of monotone increasing functions of w. As a result, E[pk(X)|W = w] is monotone increasing
in w.

Assumption 2.2.3(i) is the nonparametric version of Assumption 2.1.3(i). Assumption 2.2.3(ii)
is a standard condition for series estimation. Assumption 2.2.4 is adapted from Assumption 6 of
Blundell, Chen and Kristensen (2007). It is required to control the size of E [q(W ) (g(X)− gx,n(X))].
The projection error, g(X)− gx,n(X), is uncorrelated to the basis function pk(X), but not nec-
essarily uncorrelated to qk(W ) = E (pk(X)|W ). For more details, see (A.9), (A.10), and the
relevant discussions in Appendix A.2.

Theorem 2.2. Suppose Assumptions 2.2.1 to 2.2.4 hold, then

∥ĝ − g∥2= Op

(
K−r

n + ρn

√
Kn

n

)
.

3. Multivariate case

(Forthcoming: first-stage partially linear model; first-stage monotone single index model)
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4. Simulation

Here we conduct a simulation study to assess the performance of our proposed NPIV estima-
tor. Considering the following DGP

Y = X2 + ϵ, (4.1)

X = exp(W ) + ϵ, E[ϵ|W ] = 0,

W ∼ U[−1.2, 1.3],

ϵ ∼ N(0, 1).

In the following Table 1, we compare the proposed method (labeled as “isotonic+series”)
with that proposed in Blundell, Chen and Kristensen (2007) and Horowitz (2011,2012) labeled
as “series+series”). For the series estimation in both methods, we test the polynomial order
Kn = 2, 3, 4, and 5. Among these choices, Kn = 3 is an appropriate choice given the data
generating process of the second-stage equation (4.1). The number of Monte-Carlo simulations
is 500 for each sample size. We evaluate perfomances of two estimators by the sample mean and
median of intergrated square error (ISE).

Table 1. series+series vs. isotonic+series

n Methods Kn ISE mean ISE median Kn ISE mean ISE median

1000
series+series 2 6.3849 6.3423 3 0.0186 0.0099

isotonic+series 2 6.7102 6.6843 3 0.0129 0.0093

5000
series+series 2 6.3703 6.3516 3 0.0037 0.0022

isotonic+series 2 6.6582 6.6374 3 0.0029 0.0020

10000
series+series 2 6.3851 6.3834 3 0.0019 0.0011

isotonic+series 2 6.6671 6.6566 3 0.0015 0.0010
n Methods Kn ISE mean ISE median Kn ISE mean ISE median

1000
series+series 4 76.9304 0.0840 5 6366.3067 0.6196

isotonic+series 4 0.0544 0.0442 5 0.1286 0.0894

5000
series+series 4 0.0432 0.0179 5 402.7918 0.6034

isotonic+series 4 0.0202 0.0140 5 0.3070 0.2305

10000
series+series 4 0.0229 0.0136 5 8.0989 1.1050

isotonic+series 4 0.0151 0.0121 5 1.0894 0.6934

As evident from Table 1, for Kn = 3, 4, 5, the proposed isotonic IV+series outperforms the se-
ries+series method across all the sample size. For Kn = 2, the series+series performs marginally
better. However, in this case, the model is misspecified as a linear model while in the other three
cases, the model is correctly specified but has some redundant regressors. Another remarkable
feature of our proposed estimator is that it gives much more stable results than the series+series
method: In all the setup in Table 1, it never gives extreme results as the series+series method
does in the case of Kn = 4,5 and n = 1000.

Overall, the Monte-Carlo simulation results support the proposed monotone NPIV method.
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Appendix A. Mathematical appendix

A.1. Proof of Theorem 2.1. We have the semiparametric model

Y = β1 +Xβ2 + U, E[U |W ] = 0, (A.1)

X = ζ(W ) + ϵ, E[ϵ|W ] = 0.

Note that for v(x) = (1, x)′, we have β1 +Xβ2 = v(X)′β. And from (2.3), we have

En[v(Ẑ)Y ]− En[v(Ẑ)v(X)′]β̂ = 0.

Then

E
[
v(Z)v(X)′

] (
β̂ − β

)
+ 0

= E
[
v(Z)v(X)′

] (
β̂ − β

)
+ En[v(Ẑ)Y ]− En[v(Ẑ)v(X)′]β̂

= E
[
v(Z)v(X)′

] (
β̂ − β

)
+ En[v(Ẑ)

(
v(X)′β + U

)
]− En[v(Ẑ)v(X)′]β̂

= En

[
v(Ẑ)U

]
−
{
En[v(Ẑ)v(X)′]− E

[
v(Z)v(X)′

]}(
β̂ − β

)
= En [v(Z)U ]−

{
En

[
v(Z)v(X)′

]
− E

[
v(Z)v(X)′

]} (
β̂ − β

)
+ En

[(
v(Ẑ)− v(Z)

)
U
]
− En

[(
v(Ẑ)− v(Z)

)
v(X)′

] (
β̂ − β

)
= En [v(Z)U ] + En

[(
v(Ẑ)− v(Z)

)
U
]
+ op(β̂ − β). (A.2)

The last equality follows from

En

[
v(Z)v(X)′

]
− E

[
v(Z)v(X)′

]
= op(1),

En

[(
v(Ẑ)− v(Z)

)
v(X)′

]
= op(1). (A.3)

Note that v(Ẑ) − v(Z) =
(
0, ζ̂(W )− ζ(W )

)
, and both ζ̂(·) and ζ(·) belongs to M, which is

a Donsker class. Thus,
En

[(
v(Ẑ)− v(Z)

)
U
]
= op(n

−1/2). (A.4)

Furthermore, we note that v(Z) = E [v(X)|W ] due to Z = ζ(W ) = E [X|W ]. By Law of
iterated expectation,

E
[
v(Z)v(X)′

]
= E

[
v(Z)v(Z)′

]
.

Note that

E
[
v(Z)v(Z)′

]
= E

(
1 E[X|W ]

E[X|W ] E[X|W ]2

)
.

Therefore, E [v(Z)v(Z)′] is invertible if

det
(
E
[
v(Z)v(Z)′

])
= E

(
E[X|W ]2

)
− {E (E[X|W ])}2

= V ar (E[X|W ]) ̸= 0.
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This is satisfied by Assumption 2.1.3(i).
Combining (A.2), (A.4), and the invertibility of E [v(Z)v(Z)′], we have

√
n
(
β̂ − β

)
= E

[
v(Z)v(Z)′

]−1√
nEn [v(Z)U ] + op

[√
n
(
β̂ − β

)]
,

and under Assumption 2.1.3(ii), we have
√
n
(
β̂ − β

)
∼d N(0, σ2

uE
[
v(Z)v(Z)′

]−1
),

Ω = σ2
uE
[
v(Z)v(Z)′

]−1
.

Note that under Assumption 2.1.3(ii), Ω is the efficient variance matrix for estimating β. (Ai
and Chen, 2003).

A.2. Proof of Theorem 2.2. By the triangle inequality

∥ĝ − g∥ ≤ ∥ĝ − gx,n∥+ ∥g − gx,n∥

≤ ∥ĝ − gw,n∥+ ∥gw,n − gx,n∥+ ∥g − gx,n∥ . (A.5)

Note that both gw,n and gx,n belong to Hn. By the definition of ρn and Assumption 2.2.4,

∥gw,n − gx,n∥ ≤ ρn · ∥T (gw,n − gx,n)∥

≤ const · ∥g − gx,n∥ .

Furthermore, by Assumptions (2.2.1)(iii) and (2.2.2) (iii), and the properties of the sieve space
Hn given by (2.7), we have

∥g − gx,n∥ = Op

(
K−r

n

)
. (A.6)

In addition, by the definitions of gw,n, ĝ, operator T , and q(·),

T (gw,n) = T
(
p(·)′βw,n

)
= q(·)′βw,n,

T (ĝ) = T
(
p(·)′β̂

)
= q(·)′β̂. (A.7)

Now we focus on ∥ĝ − gw,n∥. Define QX
n = E [p(X)p(X)′] and QW

n = E [q(W )q(W )′]:

∥ĝ − gw,n∥2 =
∥ĝ − gw,n∥2

∥T (ĝ − gw,n)∥2
∥T (ĝ − gw,n)∥2

=
∥ĝ − gw,n∥2

∥T (ĝ − gw,n)∥2
×
(
β̂ − βw,n

)′
QW

n

(
β̂ − βw,n

)
≤ sup

h∈Hn

∥h∥2

∥Th∥2
×
(
β̂ − βw,n

)′
QW

n

(
β̂ − βw,n

)
= ρ2n ×

(
β̂ − βw,n

)′
QW

n

(
β̂ − βw,n

)
, (A.8)

where the second equality follows from (A.7); the first inequality follows from the fact that
both ĝ and gw,n belong to Hn.

Define

e = Y − gw,n(X) = Y − p(X)′βw,n. (A.9)
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By the definition of q(·) and Law of iterated expectation, we have

E (q(W )e) = E
[
q(W )E

(
Y − p(X)′βw,n|W

)]
= E

[
q(W )E

(
Y − q(W )′βw,n|W

)]
= E

[
q(W )

(
Y − q(W )′βw,n

)]
= 0, (A.10)

where the last equality follows by (2.8) and the property of linear projection.
From (A.9), we can derive

β̂ − βw,n = En

[
q̂ (W ) p (X)′

]−1 En [q̂ (W )Y ]− βw,n

= En

[
q̂ (W ) p (X)′

]−1 En [q̂ (W ) e] .

Then (
β̂ − βw,n

)′
QW

n

(
β̂ − βw,n

)
= En [q̂ (W ) e]′ En

[
p (X) q̂ (W )′

]−1
QW

n En

[
q̂ (W ) p (X)′

]−1 En [q̂ (W ) e]

= En [q̂ (W ) e]′
(
QW

n

)− 1
2
(
QW

n

) 1
2 En

[
p (X) q̂ (W )′

]−1 (
QW

n

) 1
2

×
(
QW

n

) 1
2 En

[
q̂ (W ) p (X)′

]−1 (
QW

n

) 1
2
(
QW

n

)− 1
2 En [q̂ (W ) e]

= En [q̂ (W ) e]′
(
QW

n

)− 1
2
(
A′

n

)−1
A−1

n

(
QW

n

)− 1
2 En [q̂ (W ) e] , (A.11)

where

An :=

{(
QW

n

) 1
2 En

[
q̂ (W ) p (X)′

]−1 (
QW

n

) 1
2

}−1

=
(
QW

n

)− 1
2 En

[
q̂ (W ) p (X)′

] (
QW

n

)− 1
2 .

is a Kn ×Kn square matrix.
With some abuse of notations, in the following, we also use ∥·∥ to denote the matrix norm

provided there is no confusion in the context.

Lemma A.1. Under Assumptions 2.2.1 to 2.2.3, it holds: (i) ∥An − IKn∥ ;
p→ 0; (ii)

∥∥A−1
n − IKn

∥∥ p→
0; (iii) λmax

[
(A′

n)
−1A−1

n

]
= 1/λmin [AnA

′
n]

p→ 1.

Consequently, (
β̂ − βw,n

)′
QW

n

(
β̂ − βw,n

)
= En [q̂ (W ) e]′

(
QW

n

)− 1
2
(
A′

n

)−1
A−1

n

(
QW

n

)− 1
2 En [q̂ (W ) e]

≤
∥∥∥(A′

n

)−1
A−1

n

∥∥∥En [q̂ (W ) e]′
(
QW

n

)− 1
2
(
QW

n

)− 1
2 En [q̂ (W ) e]

≤ λmax

[(
A′

n

)−1
A−1

n

]
En [q̂ (W ) e]′

(
QW

n

)−1 En [q̂ (W ) e]

= OP (1)En [q̂ (W ) e]′
(
QW

n

)−1 En [q̂ (W ) e] , (A.12)
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where the first equality is the last row of (A.11); the first inequality follows from Quadratic
inequality; the second inequality and the last equality follow from Schwarz matrix inequality,
the definition of the matrix norm, and Lemma A.1.

Now we focus on the last row of (A.12):

En [q̂ (W ) e]′
(
QW

n

)−1 En [q̂ (W ) e]

=En [(q̂ (W ) + q (W )− q (W )) e]′
(
QW

n

)−1 En [(q̂ (W ) + q (W )− q (W )) e]

=En [q (W ) e]′
(
QW

n

)−1 En [q (W ) e]

+2En [(q̂ (W )− q (W )) e]′
(
QW

n

)−1 En [q (W ) e]

+En [(q̂ (W )− q (W )) e]′
(
QW

n

)−1 En [(q̂ (W )− q (W )) e]

=A+ 2B + C.

Lemma A.2. Under Assumptions 2.2.1 to 2.2.3, it holds: (i) A = Op

(
Kn
n

)
;(ii) B = Op

(
Kn
n

)
;

(iii) C = Op

(
Kn
n

)
.

As a result, (
β̂ − βw,n

)′
QW

n

(
β̂ − βw,n

)
= Op

(
Kn

n

)
. (A.13)

Combining (A.6), (A.8), and (A.13), we conclude that

∥ĝ − g∥ = Op

(
K−r

n + ρn

√
Kn

n

)
.

References

[1] Ai, C. and Chen, X. (2003) Efficient estimation of models with conditional moment restrictions containing
unknown functions. Econometrica, 71(6), 1795-1843.

[2] Arai, Y., Otsu, T. and Xu, M. (2022) GLS under monotone heteroskedasticity. arXiv preprint
arXiv:2210.13843.

[3] Ayer, M., Brunk, H. D., Ewing, G. M., Reid, W. T. and E. Silverman (1955) An empirical distribution
function for sampling with incomplete information, Annals of Mathematical Statistics, 26, 641-647.

[4] Barlow, R. and H. Brunk (1972) The isotonic regression problem and its dual, Journal of the American
Statistical Association, 67, 140-147.

[5] Chen, X. and Reiss, M. (2011) On rate optimality for ill-posed inverse problems in econometrics. Econometric
Theory, 27(3), 497-521.

[6] Chetverikov, D. and Wilhelm, D. (2017) Nonparametric instrumental variable estimation under monotonicity.
Econometrica, 85(4), 1303-1320.

[7] Blundell, R., Chen, X. and Kristensen, D. (2007) Semi‐nonparametric IV estimation of shape‐invariant Engel
curves. Econometrica, 75(6), 1613-1669.

[8] Grenander, U. (1956) On the theory of mortality measurement. II., Skand. Aktuarietidskr, 39, 125-153.
[9] Hall, P. and Horowitz, J. L. (2005) Nonparametric methods for inference in the presence of instrumental

variables. The Annals of Statistics, Ann. Statist. 33(6), 2904-2929.
[10] Hansen, B. (2022) Econometrics. Princeton University Press.
[11] Hahn, J. and Ridder, G. (2013) Asymptotic variance of semiparametric estimators with generated regressors.

Econometrica, 81(1), 315-340.
[12] Härdle, W. and Linton, O. (1994) Applied nonparametric methods. Handbook of econometrics, 4, 2295-2339.

12



[13] Horowitz, J. L. (2011) Applied nonparametric instrumental variables estimation. Econometrica, 79(2), 347-
394.

[14] Horowitz, J. L. (2012) Specification testing in nonparametric instrumental variable estimation. Journal of
Econometrics, 167(2), 383-396.

[15] Mammen, E., Rothe, C. and Schienle, M. (2012) Nonparametric regression with nonparametrically generated
covariates. The Annals of Statistics, Ann. Statist. 40(2): 1132-1170.

[16] Newey, W. K. (1993) Efficient estimation of models with conditional moment restrictions. Handbook of
Statistics, Vol. 11, 419-454.

[17] Newey, W. K. and Powell, J. L. (2003) Instrumental variable estimation of nonparametric models. Econo-
metrica, 71(5), 1565-1578.

[18] Newey, W. K., and Steigerwald, D. G. (1997) Asymptotic bias for quasi-maximum-likelihood estimators in
conditional heteroskedasticity models. Econometrica: Journal of the Econometric Society, 587-599.

[19] Rao, B. P. (1969) Estimation of a unimodal density, Sankhyā, A 31, 23-36.
[20] Rao, B. P. (1970) Estimation for distributions with monotone failure rate, Annals of Mathematical Statistics,

41, 507-519.
[21] Rilstone, P. (1996) Nonparametric estimation of models with generated regressors. International Economic

Review, 299-313.
[22] Song, K. (2008) Uniform convergence of series estimators over function spaces. Econometric Theory, 24(6),

1463-1499.
[23] Wooldridge, J. M. (2010) Econometric Analysis of Cross Section and Panel Data, 2nd ed., MIT Press.

Department of Economics, London School of Economics, Houghton Street, London, WC2A 2AE,
UK, and Keio Economic Observatory (KEO), 2-15-45 Mita, Minato-ku, Tokyo 108-8345, Japan.

Email address: t.otsu@lse.ac.uk

Faculty of Economics, Keio University, 2-15-45 Mita, Minato-ku, Tokyo 108-8345, Japan.
Email address: k-shinoda@keio.jp

Department of Economics, University of Mannheim, 68161 Mannheim, Germany.
Email address: mengshan.xu@uni-mannheim.de

13


