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Abstract

We study the problem of detecting structural instability of factor strength in asset pricing

models for financial returns with observable factors. We allow for strong and weaker factors,

in which the sum of squared betas grows at a rate equal to and slower than the number of

test assets, respectively: this growth rate determines the strength of the corresponding fac-

tor. We propose LM and Wald statistics for the null hypothesis of stability and derive their

asymptotic distribution when the break fraction is known, as well as when it is unknown

and has to be estimated. We corroborate our theoretical results through a comprehensive

series of Monte Carlo experiments. An extensive empirical analysis uncovers the dynamics

of instability of factor strength in financial returns from equity portfolios.
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1 Introduction

Financial asset returns exhibit a factor structure, as a handful of common factors drives their

cross-sectional dependence.1 This empirical evidence has generated a large number of contribu-

tions on factor models in asset pricing: see Giglio et al. (2021) for an overview of the literature. In

estimating asset pricing models, it has been common to assume that all factors are strong, mean-

ing that they are pervasive and influence almost all securities: see Fama and MacBeth (1973),

and Shanken (1992). The assumption of strong factor structure may be restrictive in practice,

as some of the factors may not be strong and do not actually drive the cross-section of all securi-

ties: Kan and Zhang (1999), Kleibergen (2009), Bryzgalova (2016), Burnside (2016), Gospodinov

et al. (2017), and Anatolyev and Mikusheva (2021), study this scenario when factors are known

and observable; in the spirit of Connor and Korajczyk (1986), Lettau and Pelger (2020), Bai and

Ng (2021), Freyaldenhoven (2021), Giglio et al. (2021), and Uematsu and Yamagata (2023a,b)

consider specifications in which all factors are latent and estimated.

We focus on observable factors. We follow Chudik et al. (2011) and define the strength of

a factor based on how the sum of squared betas grows with the number of test assets N . We

classify a factor as being strong, semi-strong or weak, depending on whether the sum of squared

betas grows at a rate equal to N , between N1/2 (excluded) and N (excluded), or less than or

equal to N1/2, respectively. Bailey et al. (2021), Connor and Korajczyk (2022), and Pesaran

and Smith (2021a,b), employ the same classification scheme. Bailey et al. (2021) develops an

estimator for the factor strength that is based on the fraction of statistically significant betas

and takes into account the associated multiple testing problem. Pesaran and Smith (2021b)

show that the convergence rate of the Fama and MacBeth (1973) two-pass estimator depends on

pricing errors and factors strength, and thus an estimation of the latter is required.

To the very best of our knowledge, existing studies that allow for semi-strong and weak factors

assume that the factor strength is stable over the estimation period. This assumption may not

be supported by the data. Bailey et al. (2021), and Pesaran and Smith (2021b), document

time-variation in factor strength in large cross-sections of equity returns over rolling estimation

windows. In particular, as discussed in Bailey et al. (2021), changes in factor strength may be

1For example, see Litterman and Scheinkman (1991), Fama and French (1993), and Lustig et al. (2011), in
relation to U.S. government bonds, equity returns, and exchange rates, respectively
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associated to sizeable financial events such as crisis periods, examples being the burst of the dot-

com bubble or the Global Financial Crisis. Based on the results in Pesaran and Smith (2021b),

detecting breaks in factor strength is important as these breaks may affect the convergence rate

of two-pass estimators.

This paper fills a gap in the literature by addressing the problem of instability of factor

strength in asset pricing models. It introduces a general testing strategy for the null hypoth-

esis of strength stability. We build LM and Wald-type test statistics based on the difference

between the estimator for the factor strength before and after the break. They differ in their

variance being estimated under the null and under the alternative, respectively. We derive their

asymptotic distribution under the null and show that it is normal. Under the alternative, both

statistics asymptotically diverge. Our results are corroborated by an extensive set of Monte

Carlo simulations, which shows the good performance of our tests in finite samples.

We stress that we focus on instability in the factor strength and not in the factor betas.

Strength instability can only occur if the corresponding betas experience a break, and betas

instability is a necessary condition for strength instability. This has implications for deriving

the asymptotic distribution of our test statistics under the null. In particular, our proposed test

statistics do not suffer from the problem of a nuisance parameter being identified only under the

alternative: see Davies (1977, 1987). Stability of factor strength is tested after a break in the

betas is detected and the break fraction is identified both under the null and the alternative.

Finally, we illustrate the usefulness of our procedure for empirical work through an analysis

of equity portfolios.2 We consider a large set of 739 portfolios from Chen and Zimmermann

(2021). We set up a factor model for the cross-sectional variation of returns and apply our

testing procedure using rolling estimation windows of suitable length. Our results shed light

on the dynamics of local instability of factor strength over time for the set of test assets and

the factor model specification we consider. From an asset pricing perspective, they imply that

stability of factor strength may not be a realistic assumption for empirical purposes. Strength

instability should be accounted for when running inference on risk premia in order to avoid

potentially misleading inferential results.

The rest of the paper is organized as follows. Section 2 sets up the problem. Section 3

2The data used in the empirical analysis are described in details in Section 5.1
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introduces the tests. Section 4 runs a set of Monte Carlo experiments. Section 5 performs the

empirical analysis. Section 6 concludes. Mathematical proofs are provided in Appendix A.

Notation: I (·) denotes the indicator function; ⌊·⌋ is the integer part of the argument; given

a positive integer A, ιA is the A×1 vector of ones; |·| is the absolute value of the argument; Φ (·)

is the cumulative distribution function of the standard normal distribution, and Φ−1 (·) is its

inverse;
d→ denotes convergence in distribution; vec (A) denotes the vectorization of the matrix

A; the norm of a generic matrix A is ∥A∥ = [tr (A′A)]1/2, where tr (B) denotes the trace of a

square matrix B;
a.s.→ denotes almost sure convergence.

2 Set up

2.1 Econometric model

We assume that asset (excess) returns are generated according to

Rit = I (t /T ≤ τ) (α1i + β′
1ift) + I (t /T > τ) (α2i + β′

2ift) + eit, (1)

for i = 1, . . . , N, and t = 1, . . . , T , where N is the total number of assets, and T is the time series

dimension: Rit is the return on asset i at time t; 0 < τ < 1 is the break fraction, which can be

either known or unknown; αji is the asset-specific intercept, for j = 1, 2; βji = (βji1, . . . , βjiK)
′

is the K × 1 vector of regression betas, for j = 1, 2; ft = (f1t, . . . , fKt)
′ is the K × 1 vector of

observable traded factors; eit is the idiosyncratic component for return i at time t.3 We further

assume that the cross-sectional dispersion of regression betas evolves according to

βjik ̸= 0, i = 1, . . . ,
⌊
Nλjk

⌋
,

βjik = 0, i =
⌊
Nλjk

⌋
+ 1, . . . , N,

, 0 ≤ λjk ≤ 1, j = 1, 2, k = 1, . . . , K, (2)

where the ordering of the betas is for ease of exposition only and it is not required for the validity

of our results, as it becomes clear in the condition in (4) below.

3We focus on the case in which the factors in ft are all traded. If some of the factors in ft are not returns
themselves, following Breeden (1979) we conjecture that our results can be extended using a “mimicking-portfolio”
approach. A similar idea underlies the model comparison tests of Barillas et al. (2020). We aim at formalising
this interesting extension in future work.
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We are interested in the null hypothesis H0k against the alternative H1k defined as

H0k : λ1k = λ2k, H1k : λ1k ̸= λ2k, k ∈ {1, . . . , K} : (3)

for any k such that k ∈ {1, . . . , K}, λ1k is equal to λ2k under the null hypothesis, whereas λ1k

and λ2k are different from each other under the alternative hypothesis. From (3), we can see

that our framework is analogous to Bai and Perron (1998), and Qu and Perron (2007), in that

we model a break as a discrete change in the parameters of interest.

Although formal assumptions are introduced in Sections 3.2.2 and 3.3, it is worth discussing

some of the features of the model in (1). For j = 1, 2 an i = 1, . . . , N , we do not impose

any restriction on the structure of αji, which, in the spirit of Pesaran and Smith (2023), is

allowed to depend on a spanning error related to some common factors and on a security-

specific idiosyncratic pricing error. The factor structure is described in (2), and the strength

of factor k in regime j is determined by λjk. Finally, for ease of tractability, the idiosyncratic

component eit is assumed to be distributed independently along the cross-section. This implies

that missing factors that display weak cross-sectional dependence are not allowed, as instead

advocated in Pesaran and Smith (2023): missing factors could be allowed for at the expense of

higher mathematical complexity.

It is also worth discussing the panel dimensions N and T . In particular, we assume that

N → ∞ and T → ∞, as imposed in Theorem 3.1 and Theorem 3.2 below: T → ∞ is required

to consistently estimate the betas; N → ∞ is needed to then conduct inference on the factor

strength. This is the same set up as in Theorem 1 in Bailey et al. (2021) and does not require

any restriction on the relative speed of convergence of N and T to infinity.

From an econometric perspective, (1) describes a factor model subject to structural instability

occurring at the break fraction τ . The evolution of regression betas in (2) determines the strength

of the factors before and after the break. In particular, the strength of the k − th factor within

regime j is determined by the parameter λjk, for j = 1, 2, and k = 1, . . . , K. Following Chudik

et al. (2011), and Pesaran and Smith (2021a,b), we classify the k − th factor within regime j as

strong, semi-strong, and weak, depending on whether λjk = 1, 0.5 < λjk < 1, and 0 ≤ λjk ≤ 0.5,

respectively. Connor and Korajczyk (2022) use a similar classification. The role played by the
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factor strength within our testing procedure is discussed in details in Section 3.2.1. Finally, the

condition on the cross-sectional dispersion of the betas in (2) may be written more generally as

N−λjk

N∑
i=1

β2
jik → Cjk, 0 < Cjk < ∞, j = 1, 2, k = 1, . . . , K, (4)

as N → ∞, which states that the sum of squared betas for factor k within regime j grows at

rate Nλjk : this extends the analogous condition given for linear asset pricing models in Pesaran

and Smith (2021a,b) and employed in Connor and Korajczyk (2022).

2.2 Interpretation of instability in factor strength

The null and alternative hypotheses H0k and H1k, respectively, in (3) deserve further consid-

erations. In particular, they do not refer to the regression betas in (1), but to the parameters

λjk that govern the strength of the factors within each regime. In other words, the null and

the alternative hypotheses in (3) relate to the stability of the factor strength and not to the

stability of the regression betas. The two concepts are distinct although related. In a system

of equations with observable factors such as (1), the stability of the regression betas may be

assessed through the procedure developed in Qu and Perron (2007) for systems of equations,

which suitably extends the seminal work by Bai and Perron (1998) for single equation models.

Clearly, instability in the betas is a necessary condition for instability in the factor strength.

Therefore, a break in the factor strength can occur only conditional upon a break in the factor

betas: we explore this intuition in Section 3.3, where we let the break fraction τ be unknown.

On the other hand, instability in the factor strength is a sufficient condition for instability in

the factor betas. Therefore, this paper effectively proposes a two-step procedure: the first step

requires inference on the stability of the betas and estimation of the break fraction τ , as studied

in Qu and Perron (2007); the second step is the actual inference on the factor strength stability,

which is the focus of this paper.

Structural instability in the betas in (1) relates our set up to latent factor models with

structural breaks and, more generally, with discrete shifts in the loadings: see Barigozzi and

Massacci (2022), and Massacci (2017, 2023), and references therein. To the very best of our

knowledge, this literature has mainly worked under the maintained assumption that all latent
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factors are strong. We explicitly focus on the model in (1) with observable factors.

Finally, the model in (1) has one break fraction. We handle the case of multiple breaks

in two ways. We let T be the whole time series dimension and estimate the multiple break

fractions using a sequential algorithm, as outlined in Section 3.4 below. Alternatively, (1) may

be seen as a local model that applies to a window of length T strictly shorter than the whole

available time series. This second approach allows to test the null hypothesis of local stability :

under this null hypothesis, the factor strength is stable within the time interval T ; however, this

does not imply that it is globally stable within the whole available time period, which is strictly

greater than T . The notion of local (as opposed to global) stability is not new. For example,

in an out-of-sample framework, Timmermann (2008) documents the existence of short spells of

time in which stock returns are predictable; and Giacomini and Rossi (2010) develop a measure

of local relative forecasting performance between two competing predictive models, and assess

the stability of this measure through a suitable inferential procedure. As further discussed in

Section 5.2, inference on local stability is consistent with existing studies, which document a high

degree of time-variation in the factor strength by using rolling window estimation strategies: see

Bailey et al. (2021), and Pesaran and Smith (2021a). Therefore, the results in Theorem 3.1 and

Theorem 3.2 below, which refer to the model with one break in (1), can be interpreted in light

of the null hypothesis of local stability.

2.3 Asset pricing implications

Define Rt = (R1t, . . . , RNt)
′, αj = (αj1, . . . , αjN)

′, Bj = (βj1, . . . ,βjN)
′, and et = (e1t, . . . , eNt)

′,

for j = 1, 2. The model in (1) can then be written as

Rt = I (t /T ≤ τ) (α1 +B1ft) + I (t /T > τ) (α2 +B2ft) + et. (5)

Let Γj =
(
γj0,γ

′
j1

)′
, where γj0 is the zero-beta rate, and γj1 is the K × 1 vector of factor risk

premia, for j = 1, 2. Define as Xj = (ιN ,Bj) the N × (K + 1) beta matrix augmented by the

N × 1 vector of ones ιN .

Consider first the case when the number of test assets N is finite. Since ft is a vector of

traded factors, then α1 and α2 are vectors of pricing errors. Therefore, under the assumption of
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exact pricing (correct model specification), it holds that α1 = α2 = 0. In this case, the vector

of asset expected returns µt is state-dependent and defined as

µt = E (Rt) = I (t /T ≤ τ)X1Γ1 + I (t /T > τ)X2Γ2. (6)

Under correct model specification, the model in (1) allows for structural instability in the quantity

and in the price of risk, as measured by Xj and Γj, respectively, for j = 1, 2. The model in

(6) can be estimated from the multivariate regression model in (5): inference on the structural

break and estimation of the break fraction τ first has to be conducted following for example

the procedure of Qu and Perron (2007); Bj and Γj can then be estimated using the standard

Fama and MacBeth (1973) two step procedure within each regime j = 1, 2. This implies that a

piecewise linear asset pricing model has to be estimated whenever a break in the betas occurs.

The piecewise specification for the risk premia in (6) is also consistent with a model with time-

varying betas, such as the one implicitly employed for the empirical analysis in Section (5). The

model in (6) can then be thought as being valid for a time window of length T that is a fraction

of the whole available time series: in this case, the null hypothesis H0k : λ1k = λ2k in (3) is

consistent with the idea of local stability discussed in Section 2.2.

In linear asset pricing models, Pesaran and Smith (2021b) show that it is still possible to

estimate the risk premia in the presence of non-zero pricing errors as N → ∞. For a given

factor, Pesaran and Smith (2021b) show that the rate of convergence as N → ∞ of the Fama and

MacBeth (1973) two-pass estimator for the risk premium monotonically increases and decreases

in the strength of the factor and of the pricing errors, respectively. The estimator for the risk

premia is consistent if the strength of the factor is greater than the strength of the pricing errors,

and the convergence rate is slower the smaller the difference between the two.

For a given sample split induced by structural instability at the break fraction τ , our setting

can be cast within the framework of Pesaran and Smith (2021b). Therefore, the result shown

for linear asset pricing models in Pesaran and Smith (2021b) holds within each regime of the

piecewise linear model in (1) in relation to the risk premia Γ1 and Γ2 in (6). This is true

regardless of whether the break fraction τ is known, or it is unknown and has to be estimated.

Following Qu and Perron (2007), and as also discussed in details in Section 3.3, this is because
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the convergence rate of the least squares estimator for τ is faster than that of the remaining set

of parameters in (1). Following Pesaran and Smith (2021b), under the alternative hypothesis

H1k : λ1k ̸= λ2k the convergence rate of the Fama and MacBeth (1973) two-pass estimator for

the risk premium of the k− th factor within regime j also experiences a break and becomes equal

to N−(λjk−λαj)/2, where λαj regulates the strength of the pricing errors in regime j. Formally,

λαj satisfies

N−λαj

N∑
i=1

α2
ji → Cαj, 0 < Cαj < ∞, j = 1, 2,

which means that, within regime j, the sum of squared pricing errors grows at rate Nλαj as

N → ∞. If the strength of the pricing errors is stable over time (i.e., λα1 = λα2), testing for

stability in factor strength gives valuable information about the stability of the convergence rate

of the Fama and MacBeth (1973) two-pass estimator. However, the assumption of constant

strength of the pricing errors is unlikely to hold in practice, as it implies that misspecification

of the factor model is stable even when the strength of the factors is not. For example, if λjk

and λαj vary by the same amount, the convergence rate N−(λjk−λαj)/2 of the estimator for the

corresponding risk premium is unaffected. However, if λjk and λαj change by different amounts

between the two regimes, the break in the factor strength impacts N−(λjk−λαj)/2. Therefore,

detecting breaks in factor strength is generally informative about changes in the convergence

rate of the estimator for the corresponding risk premium.

Existing contributions have studied whether cross-sectional risk premia are stable over time.

Fama and MacBeth (2021) assess the stability of the value premium by splitting the sample

between the period July 1963 – June 1991 and the period July 1991 – June 2019. This is analogous

to considering a model like (1) with a known value of the break fraction τ , which corresponds

to a break occurring in June 1991. In a Bayesian setting, Smith and Timmermann (2021) study

the more general problem of stability in risk premia by allowing for multiple unknown breaks in

the data generating process of asset returns. This setting in analogous to the one discussed in

Section 3.4 below. To the best of our knowledge, no existing contribution accounts for the role of

factor strength in assessing the stability of risk premia. We make a contribution on this respect

by formally studying whether factor strength is constant over time. We do so in the empirical

analysis in Section 5 by testing for local stability as discussed in Section 2.2.
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3 Detecting instability in factor strength

3.1 Estimation of factor strength under structural instability

In order to estimate the factor strength before and after the break, we extend the estimator

developed in Bailey et al. (2021) to allow for the piecewise linear setting of our framework. For

ease of exposition, we start by assuming that the break fraction τ in (1) is known. Section 3.3

deals with the case in which τ is unknown and has to be estimated.

We consider the multi-factor model in (1), and the null and the alternative hypothesis in (3).

Let I1t (τ) = I (t /T ≤ τ), I2t (τ) = I (t /T > τ), and the matrix IjT (τ) be

IjT (τ) =



Ij1 (τ) 0 · · · 0

0
. . .

...

...
. . .

...

0 · · · IjT (τ)


, j = 1, 2,

which is the T×T diagonal matrix with t−th diagonal element equal to Ijt (τ). For k = 1, . . . , K,

define the T ×K matrix Fj,−k (τ) as

Fj,−k (τ) = IjT (τ)
(
ιT , f1, . . . , fk−1, fk+1, fK

)
,

where fk = (fk1, . . . , fkT )
′: the matrix Fj,−k (τ) collects all but the k − th factor and it is

augmented by the T × 1 vector of ones ιT . Let the T × T matrix MjT,−k (τ) be

MjT,−k (τ) = IjT (τ)− Fj,−k (τ)
[
Fj,−k (τ)

′ Fj,−k (τ)
]−1

Fj,−k (τ)
′ ,

and the T × 1 vector f jkT (τ) as

f jkT (τ) = MjT,−k (τ) fk = [fjk1 (τ) , . . . , fjkT (τ)]′ .
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Given the estimator β̂jikT (τ) for βjik defined as

β̂jikT (τ) = [f ′kMjT,−k (τ) fk]
−1

[f ′kMjT,−k (τ)Ri]

=
[
f jkT (τ)′ f jkT (τ)

]−1 [
f jkT (τ)′ Ri

]
,

(7)

with Ri = (Ri1, . . . , RiT )
′, the relevant test statistic for the significance of βjik is

t̂jikT (τ) =
β̂jikT (τ)√
ω̂jiT (τ)

=

[
f jkT (τ)′ f jkT (τ)

]−1 [
f jkT (τ)′ Ri

]√
ω̂jiT (τ)

,

where

ω̂jiT (τ) =

∑Tj(τ)
t=1 fjkt (τ) êjit (τ) fjkt (τ) êjit (τ)

Tj (τ)
,

Tj (τ) =
∑T

t=1 Ijt (τ) is the number of time series observations within regime j, and

êjiT (τ) = [êji1 (τ) , . . . , êjiT (τ)]′ = MjT,−k (τ)
[
Ri − fkβ̂jikT (τ)

]
.

Therefore, ω̂jiT (τ) is the White (1980) estimator, which allows for conditional heteroskedasticity

in the error terms eit in line with Assumption 1 below.

For given nominal size of the individual tests p and critical value exponent δ > 0, from Chudik

et al. (2018) define the critical value function cp (N) as

cp (N) = Φ−1
(
1− p

2N δ

)
. (8)

Following Bailey et al. (2021), the factor strength λjk is estimated as

λ̂jkNT (τ) = I [π̂jkNT (τ) > 0] λ̃jkNT (τ) , (9)

where

d̂jikT (τ) = I
[∣∣t̂jikT (τ)

∣∣ > cp (N)
]
, π̂jkNT (τ) =

1

N

N∑
i=1

d̂jikT (τ) , (10)

with

λ̃jkNT (τ) = 1 +
ln π̂jkNT (τ)

lnN
, π̂jkNT (τ) > 0. (11)
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From (9), λ̂jkNT (τ) = 0 if π̂jkNT (τ) = 0, and λ̂jkNT (τ) = λ̃jkNT (τ) if π̂jkNT (τ) > 0, with

π̂jkNT (τ) and λ̃jkNT (τ) defined in (10) and (11), respectively. By construction, 0 ≤ π̂jkNT (τ) ≤

1, since π̂jkNT (τ) is the proportion of cross-sectional units with non-zero beta on the factor within

regime j. Also, λ̂jkNT (τ) and λ̃jkNT (τ) are asymptotically equivalent since the probability of

the event π̂jkNT (τ) = 0 is equal to zero as N → ∞.

3.2 Testing for strength instability

3.2.1 Test statistics

Our inferential procedure tests for stability of the strength using the estimators obtained before

and after the break as described in Section 3.1. In doing so, we assume the break fraction τ in

(1) is known. We relax this assumption in Section 3.3, in which we let the break fraction τ be

unknown so that it has to be estimated.

Given d̂jikT (τ) and π̂jkNT (τ) as in (10), define

D̂jkNT (τ) =
N∑
i=1

d̂jikT (τ) = N λ̂jkNT (τ), DjkN =
N∑
i=1

djik = Nλjk , djik = I (βjik ̸= 0) ,

so that

D̂jkNT (τ)

DjkN

=
N λ̂jkNT (τ)

Nλjk
= N λ̂jkNT (τ)−λjk . (12)

Given

ÂjkNT (τ) =

∑N
i=1

{
d̂jikT (τ)− E

[
d̂jikT (τ)

]}
Nλjk

, BjkNT (τ) =

∑N
i=1 E

[
d̂jikT (τ)

]
−Nλjk

Nλjk
,

the approximate equality

[ln (N)]
[
λ̂jkNT (τ)− λjk

]
= ÂjkNT (τ) +BjkNT (τ) , (13)
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holds.4 Given (13), interest lies in the difference

[ln (N)]
{[

λ̂1kNT (τ)− λ1k

]
−
[
λ̂2kNT (τ)− λ2k

]}
=

[
Â1kNT (τ) +B1kNT (τ)

]
−
[
Â2kNT (τ) +B2kNT (τ)

]
.

(14)

Under H0k : λ1k = λ2k, (14) simplifies to

[ln (N)]
[
λ̂1kNT (τ)− λ̂2kNT (τ)

]
=

[
Â1kNT (τ) +B1kNT (τ)

]
−
[
Â2kNT (τ) +B2kNT (τ)

]
.

Under Assumptions 1 - 3 in Section 3.2.2 below, for 0 < C1, C2, C3, C4 < ∞,

Var
[
ÂjkNT (τ)

]
=

N −Nλjk

N2λjk
CT

p

N δ

(
1− CT

p

N δ

)
+O

[
exp

(
−C1T

C2
)

Nλjk

]
(15)

and

BjkNT (τ) =
N −Nλjk

Nλjk
CT

p

N δ
+O

[
exp

(
−C3T

C4
)]

, (16)

for some 0 < CT < ∞ such that CT → 1 as T → ∞.5

The terms B1kNT (τ) and B2kNT (τ) defined according to (16) account for the bias induced

by the multiple testing strategy that underlies our inferential procedure. This bias is due to

the number of non-zero betas being the outcome of a test with a type one and a type two

errors. Therefore, there is a positive probability that the outcome of the N individual tests run

in the first step within each regime is incorrect. From (16), B1kNT (τ) and B2kNT (τ) are both

asymptotically negligible if δ > 1 − min {λ1k, λ2k}. More importantly, [B1kNT (τ)−B2kNT (τ)]

converges to zero exponentially fast as T → ∞ under H0k : λ1k = λ2k.

From (15), both Â1kNT (τ) = op (1) and Â2kNT (τ) = op (1) if δ > 1 − 2min {λ1k, λ2k}. This

general condition links the factor strength to the critical value exponent δ: in particular, for δ > 0,

it is satisfied for 0.5 < min {λ1k, λ2k} ≤ 1, and the k− th factor is at least semi-strong before and

after the break. This is consistent with the empirical findings in Section 5.2, which show that

the factors are always either strong of semi-strong given the empirical model we employ. Also,

ÂjkNT (τ) = Op

(
N1/2−δ/2−λjk

)
if 0 ≤ λjk < 1, for j = 1, 2: as noted in Bailey et al. (2021), when

4See equation (A.1) in Appendix A.
5See the proof of Theorem 3.1 in Appendix A.
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λjk = 1 the distribution of ÂjkNT (τ) is degenerate as the convergence rate is exponential. This

implies that a test for the null hypothesis H0k : λ1k = λ2k against the alternative H1k : λ1k ̸= λ2k

can be implemented only if δ > 1 − 2min {λ1k, λ2k} and 0 ≤ min {λ1k, λ2k} < 1: in particular,

either Â1kNT (τ) or Â2kNT (τ) (or both) need to have a non-degenerate asymptotic distribution

under H1k. It is important to note that the test can be implemented if either 0 ≤ λ1k < 1

or 0 ≤ λ2k < 1: therefore, the test can be implemented if the factor strength were to change

from unity to a lower value. From the empirical results in Section 5.2, the more restrictive case

δ > 1− 2min {λ1k, λ2k} and 0.5 < min {λ1k, λ2k} < 1 is relevant in practice.

The above sufficient condition δ > 1 − 2min {λ1k, λ2k} and 0.5 < min {λ1k, λ2k} < 1 has

implications for the vector of factors ft. In particular, for inference on the factor strength, ft

enters the model both before and after the break, and no factor is irrelevant in either regime.

Also, following the classification introduced in Chudik et al. (2011), the factors have to be at

least semi-strong to conduct valid inference on their strength stability.

Consider the quantity

φN (λjk) =
N −Nλj1k

N2λjk

p

N δ

(
1− p

N δ

)
, (17)

defined in Bailey et al. (2021): φN (λjk) = O
(
N1−δ−2λjk

)
for 0 ≤ λjk < 1 and φN (λjk) = 0 for

λjk = 1. Therefore, φN (λjk) is a consistent estimator for Var
[
ÂjkNT (τ)

]
in (15) as N, T → ∞.

In order to test the null hypothesis H0k : λ1k = λ2k against the alternative H1k : λ1k ̸= λ2k, we

propose the test statistics L̂MkNT (τ) and ŴkNT (τ) respectively defined as

L̂MkNT (τ) =
[ln (N)]

[
λ̂1kNT (τ)− λ̂2kNT (τ)

]
[
2max

{
φN

[
λ̂1kNT (τ)

]
, φN

[
λ̂2kNT (τ)

]}]1/2 . (18)

and

ŴkNT (τ) =
[ln (N)]

[
λ̂1kNT (τ)− λ̂2kNT (τ)

]
{
φN

[
λ̂1kNT (τ)

]
+ φN

[
λ̂2kNT (τ)

]}1/2
. (19)

The statistics L̂MkNT (τ) and ŴkNT (τ) in (18) and (19), respectively, differ in the es-

timator for the asymptotic variance of [ln (N)]
[
λ̂1kNT (τ)− λ̂2kNT (τ)

]
. The Wald statistic

ŴkNT (τ) employs the unrestricted estimator
{
φN

[
λ̂1kNT (τ)

]
+ φN

[
λ̂2kNT (τ)

]}
. The LM
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statistic L̂MkNT (τ) uses the restricted estimator
{
2max

{
φN

[
λ̂1kNT (τ)

]
, φN

[
λ̂2kNT (τ)

]}}
,

which deserves some attention. The null hypothesis H0k : λ1k = λ2k does not rule out a break in

the factor loadings, as this may occur even if the factor strength is constant over time. Therefore,

the factor strength cannot be estimated over the full sample period under the null hypothesis, as

the loadings may still experience a break. The denominator of L̂MkNT (τ) accounts for this by

taking the maximum between φN

[
λ̂1kNT (τ)

]
and φN

[
λ̂2kNT (τ)

]
: λ̂1kNT (τ) and λ̂2kNT (τ) con-

verge to the same probability limit underH0k : λ1k = λ2k; max
{
φN

[
λ̂1kNT (τ)

]
, φN

[
λ̂2kNT (τ)

]}
accounts for the small sample discrepancy between λ̂1kNT (τ) and λ̂2kNT (τ) by making L̂MkNT (τ)

more conservative in finite samples. Finally, the convergence rate ln (N) of the test statistics

L̂MkNT (τ) and ŴkNT (τ) comes from (13), which in turn follows from (12), and it is formally

derived in equation (A.1) in Appendix A using relevant results in Bailey et al. (2021).

3.2.2 Asymptotic properties of test statistics

In order to study the asymptotic distribution of the test statistics L̂MkNT (τ) and ŴkNT (τ) in

(18) and (19), respectively, we consider the following set of assumptions.

Assumption 1 The error terms eit, and the demeaned factors ft−E (ft), are martingale differ-

ence processes with respect to Fui
t = σ (uit−s, s ≤ t) and Ff

t = σ (ft−s, s ≤ t), respectively. The

error terms eit are independent over i and of ft.

Assumption 2 E
{
[ft − E (ft)] [ft − E (ft)]

′} = Σf , where Σf is a positive definite matrix.

Assumption 3 There exist sufficiently large positive constants C1, C2 > 0, and q > 0 such that

supi,t Pr (|eit| > ν) ≤ C1 exp (−C2ν
q) , ∀ν > 0,

and

supk,t Pr (|fkt| > ν) ≤ C1 exp (−C2ν
q) , ∀ν > 0.

Assumption 4 The breaks in the regression betas satisfy B2 − B1 = ∆, where ∆ ̸= 0 is

independent of the time series dimension T .

Assumption 5 The break fraction τ satisfies 0 < τ < 1.
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Assumptions 1 - 3 are the same as the homologous Assumptions 1 - 3 in Bailey et al. (2021)

and allow to use results in Lemma A.10 in Chudik et al. (2018). According to Assumption

1, the error terms eit are cross-sectionally independent, which ensures that the central limit

theorem that underlies Theorem 3.1 below still holds. On this respect, Assumption 1 could

be weakened by assuming some suitable spatial mixing condition, as discussed in Bailey et al.

(2021). Alternatively, once could assume that eit follows a spatial martingale difference process

as defined in Definition 1 in the online appendix of Kapetanios et al. (2023). As it is, Assumption

1 implies that the tradable factors ft are serially uncorrelated, a reasonable approximation for

financial returns as argued in Barillas et al. (2020). The important point is that the degree

of cross-sectional dependence in eit is such that an underlying central limit theorem holds both

before and after the break fraction τ : in particular, the break can still impact the degree of cross-

sectional dependence in eit provided that such a central limit theorem remains valid. Assumption

1 also restricts the demeaned factors ft to be a martingale difference sequence, as in Chudik et al.

(2018): weaker mixing conditions could be employed at the expense of higher mathematical

complexity, as discussed in Bailey et al. (2021). Assumption 2 imposes a standard regularity

condition on the covariance matrix of the factors, which ensures that the estimator in (7) is well

defined. Note that Assumption 2 accommodates a break in the covariance matrix of the factors

ft, as it does not rule out regime-specific covariance matrices: this is important in modelling

financial returns, as discussed in Baele et al. (2010). Assumption 3 imposes thin probability tail

conditions used for the asymptotic distribution of the test statistics in (18) and (19) stated in

Theorem 3.1 below. Assumption 4 is analogous to Assumption A6 in Qu and Perron (2007) and

captures a large shift in the betas: this is required because a break in the factor strength occurs

only if a break in the betas takes place, as discussed in Section 2.2. From Assumption 4, for a

given factor, the break happens at the same time in all cross-sectional units that are affected.

However, it does not require that all units or all factors experience a break, and it is satisfied if

structural instability affects at least one cross-sectional unit and one factor. Also, Assumption 4

does not require N → ∞ since the break is identified along the time series dimension. Note that

Assumption 4 is not tested in the paper as this can be done using the procedure developed in Qu

and Perron (2007). If Assumption 4 fails to hold, the factor strength is stable over time because

betas instability is a necessary condition for strength instability. However, Assumption 4 is likely
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to hold empirically because factor models for asset returns experience structural instability, as

shown in Smith and Timmermann (2021). Finally, Assumption 5 is standard in the literature

and allows to identify the model before and after the break: see Assumption A8 in Qu and

Perron (2007).

Our aim is to test for stability in the factor strength, and not to estimate or conduct inference

on risk premia. Therefore, for j = 1, 2, Assumptions 1 - 5 do not impose any restriction on the

asset specific intercept αji: as discussed in Section 2.1, αji could depend on a spanning error

generated by some common factors and on a security-specific idiosyncratic pricing error, as

advocated in Pesaran and Smith (2023).

Theorem 3.1 Consider the model in (1), and let Assumptions 1 - 5 hold. Further, assume

that the break fraction τ is known. For k ∈ {1, . . . , K}, if 0 ≤ λ1k < 1 or 0 ≤ λ2k < 1 (or

both), with δ > 1 − 2min {λ1k, λ2k}, then the test statistics L̂MkNT (τ) and ŴkNT (τ) defined

in (18) and (19), respectively, are such that for N, T → ∞: (a) L̂MkNT (τ)
d→ N (0, 1) and

ŴkNT (τ)
d→ N (0, 1) under the null H0k : λ1k = λ2k; (b) Pr

(∣∣∣L̂MkNT (τ)
∣∣∣ > C1

)
→ 1 and

Pr
(∣∣∣ŴkNT (τ)

∣∣∣ > C2

)
→ 1 for any positive constants C1 and C2 under the alternative H1k :

λ1k ̸= λ2k.

For k ∈ {1, . . . , K}, Theorem 3.1 shows the validity of the test statistics defined in (18)

and (19) for the null hypothesis H0k : λ1k = λ2k against the alternative H1k : λ1k ̸= λ2k.

Intuitively, the numerator [ln (N)]
[
λ̂1kNT (τ)− λ̂2kNT (τ)

]
of the test statistics converges to a

normal distribution under the null, whereas it diverges under the alternative. The formal proof

of the theorem is provided in Appendix A. The results in the theorem are valid provided that

either 0 ≤ λ1k < 1 or 0 ≤ λ2k < 1 (or both): if λjk = 1, from (15) it follows that ÂjkNT (τ)
p→ 0

exponentially fast as T → ∞; therefore, the asymptotic distribution of the test statistics no

longer holds under the null hypothesis H0k : λ1k = λ2k = 1. This implies that we can still test

the null hypothesis H0k : λ1k = λ2k even if λjk⋆ = 1, for j = 1 or j = 2 (or both), k⋆ ∈ {1, . . . , K}

and k⋆ ̸= k. It also implies that we can test if the factor strength changes from unity to a lower

value. The results in Theorem 3.1 hold when the break fraction τ is known: Section 3.3 deals

with the scenario in which τ is treated as unknown and has to be estimated.
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3.3 Unknown change point

Theorem 3.1 holds if the break fraction τ is known. We now relax this assumption and consider

the case in which the break fraction τ is unknown and needs to be estimated. The multi-factor

model in (1) can be cast within the general framework considered in equation (1) in Qu and

Perron (2007). We thus employ relevant findings obtained therein to show that the results

stated in Theorem 3.1 apply also when τ no longer is known and needs to be estimated.

Recall the formulation in (5), which we repeat for ease of exposition,

Rt = I1t (τ) (α1 +B1ft) + I2t (τ) (α2 +B2ft) + et.

Let τ̂ , α̂j and B̂j be the least squares estimators for τ , αj and Bj, respectively, for j = 1, 2. De-

note by θ̂ =

[
τ̂ , α̂′

1, vec
(
B̂′

1

)′
, α̂′

2, vec
(
B̂′

2

)′
]′
the estimator for θ =

[
τ,α′

1, vec (B
′
1)

′ ,α′
2, vec (B

′
2)

′]′:
θ̂ solves

θ̂ = argmin
θ

1

NT

T∑
t=1

∥Rt − I1t (τ) (α1 +B1ft)− I2t (τ) (α2 +B2ft)∥2 .

In practice, θ̂ is obtained in two steps. First, the estimator τ̂ is computed. Second, given τ̂ ,

α̂j and B̂j are obtained for j = 1, 2. Formally, for given τ , the estimators α̂j (τ) and B̂j (τ) for

αj and Bj, respectively, are obtained by concentrating out τ as

[
α̂j (τ) , B̂j (τ)

]
=

[
T∑
t=1

Ijt (τ)Rtg
′
t

][
T∑
t=1

Ijt (τ)gtg
′
t

]−1

,

for j = 1, 2, where gt = (1, f ′t)
′. The estimator τ̂ for τ is then obtained as

τ̂ = argmin
τ

1

NT

T∑
t=1

∥∥∥Rt − I1t (τ)
[
α̂1 (τ) + B̂1 (τ) ft

]
− I2t (τ)

[
α̂2 (τ) + B̂2 (τ) ft

]∥∥∥2

.

Given τ̂ , the estimators α̂j and B̂j are obtained as α̂j (τ̂) and B̂j (τ̂), respectively, for j = 1, 2.

Once τ̂ is computed, the test statistics L̂MkNT (τ) and ŴkNT (τ) in (18) and (19) can be

modified as

L̂MkNT (τ̂) =
[ln (N)]

[
λ̂1kNT (τ̂)− λ̂2kNT (τ̂)

]
[
2max

{
φN

[
λ̂1kNT (τ̂)

]
, φN

[
λ̂2kNT (τ̂)

]}]1/2 , (20)

18



and

ŴkNT (τ̂) =
[ln (N)]

[
λ̂1kNT (τ̂)− λ̂2kNT (τ̂)

]
{
φN

[
λ̂1kNT (τ̂)

]
+ φN

[
λ̂2kNT (τ̂)

]}1/2
, (21)

respectively. In order to derive the asymptotic properties of L̂MkNT (τ̂) and ŴkNT (τ̂), we

consider the following additional set of assumptions.

Assumption 6 For l1 ≤ ⌊τT ⌋ and l2 ≤ T − ⌊τT ⌋, (1 /l1 )
∑l1

t=1 ftf
′
t

a.s.→ Q1 as l1 → ∞, and

(1 /l2 )
∑⌊τT ⌋+l2

t=⌊τT ⌋+1 ftf
′
t

a.s.→ Q2 as l2 → ∞, where Q1 and Q2 are nonrandom positive definite

matrices non necessarily equal to each other.

Assumption 7 There exists a l0 > 0 such that for all l > l0 the minimum eigenvalues of

(1 /l )
∑⌊τT ⌋

t=⌊τT ⌋−l ftf
′
t and of (1 /l )

∑⌊τT ⌋+l
t=⌊τT ⌋+1 ftf

′
t are bound away from zero.

Assumption 8
∑l

t=q ftf
′
t is invertible for l − q ≥ q0 for some 0 < q0 < ∞.

Assumptions 6, 7 and 8 are analogous to Assumptions A.1, A.2 and A.3, respectively, in Qu

and Perron (2007), and impose restrictions on a local neighbourhood of the break fraction τ ,

which allow for consistent estimation of τ itself. Assumption 6 is stronger than Assumption 2 and

still allows the factors to have different distributions before and after the break. Assumption 7

rules out local collinearity. Assumption 8 is an invertibility requirement. The remaining relevant

conditions in Assumptions A.4 through A.8 in Qu and Perron (2007) are implied by Assumptions

1, 3, 4, and 5. The asymptotic properties of L̂MkNT (τ̂) and ŴkNT (τ̂) defined in (20) and (21),

respectively, are stated in Theorem 3.2 below.

Theorem 3.2 Consider the model in (1). Let Assumptions 1, and 3 - 8 hold. For k ∈

{1, . . . , K}, if 0 ≤ λ1k < 1 or 0 ≤ λ2k < 1 (or both), with δ > 1 − 2min {λ1k, λ2k}, then

the results in (a) and (b) of Theorem 3.1, and stated for L̂MkNT (τ) and ŴkNT (τ), remain valid

for L̂MkNT (τ̂) and ŴkNT (τ̂), respectively, as defined in (20) and (21), as N, T → ∞.

Theorem 3.2 shows that the asymptotic distribution of L̂MkNT (τ̂) and ŴkNT (τ̂) under the

null hypothesis is the same as it would be if τ was known and did not have to be estimated by

τ̂ : intuitively, following from Corollary 1 in Qu and Perron (2007), the limiting distribution of

the estimator for the betas is the same as it would be if τ was known; the result in Theorem
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3.2 then naturally follows from Theorem 3.1 since [ln (N)]
[
λ̂1kNT (τ̂)− λ̂2kNT (τ̂)

]
converges to

a normal distribution under the null, whereas it diverges under the alternative. This is because

the break fraction τ is estimated at rate T , which is fast enough not to affect the asymptotic

distribution of the estimator B̂j = B̂j (τ̂), for j = 1, 2: on this, see also Bai (1997) and Bai and

Perron (1998). Although the test statistics L̂MkNT (τ̂) and ŴkNT (τ̂) are based on the outcome

of N tests of significance on the regression betas, they are unaffected by τ̂ : their asymptotic

distribution depends only on the asymptotic distribution of B̂1 and B̂2, which is unaffected by τ̂

due to its fast convergence rate T . Theorem 3.2 is formally proved in Appendix A. Also, neither

L̂MkNT (τ̂) nor ŴkNT (τ̂) suffer from the problem of having one parameter being identified

only under the alternative originally addressed in Davies (1977, 1987), since both statistics are

constructed under the maintained assumption that τ is identified also under the null hypothesis:

this is because a necessary condition for a break in factor strength is the occurrence of a break

in the betas, as stated in Assumption 4; this allows to identify τ regardless of whether the factor

strength remains stable over time. As in Section 3.2.2, we take Assumption 4 as given and we do

not test for it: this could be done following the procedure developed in Qu and Perron (2007).

3.4 Multiple change points

So far, we have worked under the maintained assumption of a single structural break. In the

case of multiple breaks, the specification in (1) generalizes to the following model with J break

fractions τj such that 0 < τj < 1, for j = 1, . . . , J , and J + 1 regimes

Rit =



α1i + β′
1ift + eit, t /T ≤ τ1,

α2i + β′
2ift + eit, τ1 < t /T ≤ τ2,

...
...

αJ+1,i + β′
J+1,ift + eit, t /T > τJ ,

, (22)

where αji is the asset-specific intercept, and βji = (βji1, . . . , βjiK)
′, for j = 1, . . . , J + 1. Note

that the specification in (22) means that Assumption 4 holds for each break fraction τj, for

j = 1, . . . , J . Formally, given Bj = (βj1, . . . ,βjN)
′, it must hold that Bj+1 − Bj = ∆j, where
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∆j ̸= 0, for j = 1, . . . , J . In this case, the cross-sectional dispersion of betas in (2) becomes

βjik ̸= 0, i = 1, . . . ,
⌊
Nλjk

⌋
,

βjik = 0, i =
⌊
Nλjk

⌋
+ 1, . . . , N,

, 0 ≤ λjk ≤ 1, j = 1, . . . , J + 1, k = 1, . . . , K, (23)

where the ordering of the betas is for ease of exposition only. We then consider the following

null and alternative hypotheses H0j1j2k and H1j1j2k, respectively,

H0j1j2k : λj1k = λj2k, H1j1j2k : λj1k ̸= λj2k, j1, j2 = 1, . . . , J + 1, j1 ̸= j2, k ∈ {1, . . . , K} :

we can then test for factor strength equality over any two regimes even if they are not consecutive.

In particular, a factor strength that is equal between two non-consecutive regimes is evidence of

a cyclical component in the strength itself.

Let τ̂j be the estimator for τj, for j = 0, . . . , J+1, where τ̂0 = τ0 = 0 and τ̂J+1 = τJ+1 = 1: τ̂j

can be estimated using the procedure in Qu and Perron (2007), for j = 1, . . . , J . From (22) and

(23), λjk is the strength of factor k in regime j = 1, . . . , J +1, which occurs for τj−1 < t /T ≤ τj.

Given the estimators τ̂j−1 and τ̂j for τj−1 and τj, respectively, we can estimate λjk following

steps analogous to those detailed in Section 3.1. Let λ̂jkNT (τ̂j−1, τ̂j) denote the estimator for λjk

obtained within the interval τ̂j−1 < t /T ≤ τ̂j, for j = 1, . . . , J + 1. For j1, j2 = 1, . . . , J + 1,

with j1 ̸= j2, and k ∈ {1, . . . , K}, the test statistics L̂MkNT (τ̂) and ŴkNT (τ̂) defined in (20)

and (21), respectively, generalize to

L̂MkNT (τ̂j1−1, τ̂j1 , τ̂j2−1, τ̂j2) =
[ln (N)]

[
λ̂j1kNT (τ̂j1−1, τ̂j1)− λ̂j2kNT (τ̂j2−1, τ̂j2)

]
[
2max

{
φN

[
λ̂j1kNT (τ̂j1−1, τ̂j1)

]
, φN

[
λ̂j2kNT (τ̂j2−1, τ̂j2)

]}]1/2 ,
and

ŴkNT (τ̂j1−1, τ̂j1 , τ̂j2−1, τ̂j2) =
[ln (N)]

[
λ̂j1kNT (τ̂j1−1, τ̂j1)− λ̂j2kNT (τ̂j2−1, τ̂j2)

]
{
φN

[
λ̂j1kNT (τ̂j1−1, τ̂j1)

]
+ φN

[
λ̂j2kNT (τ̂j2−1, τ̂j2)

]}1/2
,

respectively. Under conditions analogous to those in Theorem 3.2, L̂MkNT (τ̂j1−1, τ̂j1 , τ̂j2−1, τ̂j2)

and ŴkNT (τ̂j1−1, τ̂j1 , τ̂j2−1, τ̂j2) inherit the properties of the asymptotic distribution of L̂MkNT (τ̂)
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and ŴkNT (τ̂), respectively, as stated in Theorem 3.2. This result follows directly from Corollary

1 in Qu and Perron (2007), which states that, in the model with multiple change points in (22),

the estimator τ̂j for the break fraction τj is such that the estimator for the betas is the same as

it would be if τj was known, for j = 1, . . . , J . Therefore, the explanation provided in Section 3.2

for the model with a single change point also holds in the case of multiple breaks.

In the model with multiple change points, the true number of breaks J (as defined by suitably

extending Assumption 4) does not need to be known. Inference on the number of breaks can be

run using the procedure in Qu and Perron (2007), provided that the factors ft are stationary.

Should this assumption fail to hold, suitable bootstrap procedures may be employed: see Hansen

(2000), and Cavaliere and Georgiev (2020). The number of breaks could also be fixed a priori.

If the true number of breaks is chosen, the model is correctly specified. However, if the wrong

number of breaks is imposed, the model becomes misspecified. The consequences of this kind of

misspecification on the performance of the test statistics we propose are currently unknown and

will be studied in future research.

4 Monte Carlo study

4.1 Data generating process

For s = 1, . . . , S, i = 1, . . . , N , and t = 1, . . . , T , we consider the DGP

Rs
it = I (t /T ≤ τ) (α1i + β1i1f

s
1t + β1i2f

s
2t) + I (t /T > τ) (α2i + β2i1f

s
1t + β2i2f

s
2t) + eit,

where s is the replication index and S is the total number of replications, with S = 2000. We

consider combinations of N and T such that N ∈ {100, 200, 500, 1000} and T ∈ {500, 1000}.

We look at two values for the break fraction τ , namely τ = 1/2 and τ = 1/3. We generate the

intercept α1i as α1i ∼ IIDN (0, 1) fixed in repeated samples and we set α2i = α1i, for i = 1, . . . , N .

The factors f s
1t and f s

2t are generated as

f s
kt = ρfkf

s
k,t−1 +

√
1− ρ2fkε

s
kt, k = 1, 2, t = −99, . . . , T, f s

k,−100 = 0,
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with ρf1 = ρf2 = 0.5 and εskt ∼ IIDN (0, 1), so that Var (f s
kt) = Var (εskt) = 1. We minimize

the effect of the starting value f s
k,−100 = 0 by discarding the first 100 observations in the DGPs

for f s
kt, for k = 1, 2. We generate the idiosyncratic components as eit = σi [(uit − 2) /2], with

σ2
i ∼ χ2 (1) fixed in repeated samples, and uit ∼ IIDχ2 (2): this set up, which is analogous to

the one used in Chudik et al. (2018), implies that eit has a non-Gaussian distribution such that

E (eit) = 0, Var (eit) = σ2
i and limN→∞

[
N−1

∑N
i=1Var (eit)

]
= 1.

As for the factor loadings, we first consider those on f s
1t. We begin by generating vi ∼

IIDU (µv − dv, µv + dv) fixed in repeated samples, with µv = 1.00 and dv = 0.2. We then

randomly assign
⌊
Nλ11

⌋
elements of vi to

⌊
Nλ11

⌋
elements of the sequence {β1i1}Ni=1 and set to

zero the remaining elements of {β1i1}Ni=1. In a similar way, we randomly assign
⌊
Nλ21

⌋
elements

of vi to
⌊
Nλ21

⌋
elements of the sequence {β2i1}Ni=1 and set to zero the remaining elements of

{β2i1}Ni=1. In this way, under the null hypothesis H01 : λ11 = λ21 = λ1, the sequences {β1i1}Ni=1

and {β2i1}Ni=1 have the same number of non-zero elements, although those elements may be

different since they are obtained from independent draws from {vi}Ni=1. Under the alternative

hypothesis H11 : λ11 ̸= λ21, the sequences {β1i1}Ni=1 and {β2i1}Ni=1 have a different number of

non-zero elements: in this case, we define κ1 = λ21 − λ11, so that if κ1 < 0 the factor strength

decreases, whereas f s
1t becomes stronger if κ1 > 0. Both under the null and under the alternative,

we set λ11 = 0.55, 0.75, 0.80, 0.85, 0.90, 0.95, 0.99.

As for the loadings of f s
2t, for j = 1, 2 we randomly assign

⌊
Nλj2

⌋
elements of vi generated as

previously described to as many elements of the sequence {βji2}Ni=1 and set to zero the remaining

elements of {βji2}Ni=1, with λ12 = λ22 = 0.85: therefore, the strength of f s
2t is kept fixed, although

its betas may experience a break.

4.2 Results

We group our results based on the underlying Monte Carlo experiment and consider four scenarios

given by as many experiments: consistently with Theorem 3.1, Experiments 1 and 2 treat the

break fraction τ as known and study L̂MkNT (τ) and ŴkNT (τ) in (18) and (19), respectively; as

in Theorem 3.2, Experiments 3 and 4 let τ be unknown and look at L̂MkNT (τ̂) and ŴkNT (τ̂)

in (20) and (21), respectively. In all experiments, we follow Bailey et al. (2021) and implement

the critical value function in (8) by setting p = 0.10 and δ = 1/4. We consider the size of
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L̂MkNT (τ), ŴkNT (τ), L̂MkNT (τ̂) and ŴkNT (τ̂) as being equal to 0.05.

4.2.1 Experiment 1

Table 1 about here

The focus is on the size when τ is known. The results in Table 1 show that L̂MkNT (τ) generally

has good properties irrespective of N , λ1 and τ (see Panel A). On the other hand, ŴkNT (τ)

overreject slightly more often than L̂MkNT (τ) (see Panel B): this is likely to be due to the differ-

ent estimator for the asymptotic variance of [ln (N)]
[
λ̂1kNT (τ)− λ̂2kNT (τ)

]
, which we discuss

extensively in Section 3.2.1. In particular, the denominator of L̂MkNT (τ) is greater than that

of ŴkNT (τ), which makes L̂MkNT (τ) a slightly more conservative test statistics. Note that

ŴkNT (τ) overrejects when λ1 = 0.99 for N = 1000, when instead L̂MkNT (τ) performs well. We

conclude that L̂MkNT (τ) has a hedge over ŴkNT (τ).

4.2.2 Experiment 2

Table 2 about here

We study the power when τ is known. We fix T = 500 and consider κ1 = −0.02,−0.01, 0.01, 0.02

with the exception of λ11 = 0.99, in which case we consider κ1 = −0.02,−0.01, 0.01 only. The

results collected in Table 2 show that L̂MkNT (τ) and ŴkNT (τ) have similar power properties:

it increases in the cross-sectional dimension N , in the factor strength λ11, and in the magnitude

of the break κ1. Both L̂MkNT (τ) and ŴkNT (τ) thus have good empirical power properties.

4.2.3 Experiment 3

Table 3 about here

The focus is on the size when the break fraction τ no longer is known. We obtain the estimator τ̂

using the algorithm detailed in Section 3.3 through the grid {0.05, 0.10, 0.15, . . . , 0.85, 0.90, 0.95}.

We also compute the average (over the replications) bias and root-mean square error (RMSE)

of τ̂ . We consider T = 500 and τ = 1/2. The findings in Table 3 support the results in Theorem

3.2: given the very low values of bias and RMSE for τ̂ , τ is precisely estimated; the size of both
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L̂MkNT (τ̂) and ŴkNT (τ̂) is unaffected by the estimation noise induced by τ̂ , as the values in

Table 3 are almost identical to their counterparts in Table 1. Note that L̂MkNT (τ̂) is correctly

sized, whereas ŴkNT (τ̂) is more often oversized, especially when N = 1000 and λ11 = 0.99, thus

confirming the conclusions drawn from Experiment 1.

4.2.4 Experiment 4

Table 4 about here

Finally, we study the power when τ is unknown. We use the same framework as in Experiment

3, and we set κ1 as in Experiment 2. The findings in Table 4 confirm the results in Theorem

3.2: the power of both L̂MkNT (τ̂) and ŴkNT (τ̂) increases in N , λ11 and κ1, thus mirroring the

conclusions drawn in Experiment 2.

4.3 Discussion

The Monte Carlo results in Section 4.2 support the theoretical findings in Theorems 3.1 and

3.2. In particular, L̂MkNT (τ) and L̂MkNT (τ̂) have an edge over ŴkNT (τ) and ŴkNT (τ̂),

respectively, in terms of better empirical size properties when the factor strength is very close to

unity. For this reason, in the empirical analysis in Section 5 we employ the LM-type statistic.

5 Empirical analysis

5.1 Data and empirical specification

We study the Chen and Zimmermann (2021) large dataset of equity portfolios and use the April

2021 version of it. Given 205 characteristics, Chen and Zimmermann (2021) build a number of

portfolios whose returns are then provided; we then obtain the excess returns of those portfolios

by subtracting the risk-free rate measured as the one-month Treasury bill rate.6 The sample

period of interest runs from July 1967 through December 2020, a total of T = 690 time series

observations. To ensure that inference on the factor strength is not affected by the time-varying

6The Chen and Zimmermann (2021) dataset is available at https://www.openassetpricing.com/ .
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dimension and nature of the cross-section, we balance the dataset and retain only those portfolios

that are available over the entire sample period. This results in N = 739 portfolios.

We consider the six factor model proposed in Fama and French (2016).7 This is made of

the following factors: the market return in excess of the risk-free rate as measured by the one-

month Treasury bill rate (RmRf), size (SMB), value (HML), operating profitability (RMW ),

investment (CMA), and momentum (MOM).

We estimate our empirical model using rolling windows of length equal to 240 months. Given

the discussion in Section 4.3, we then test for the stability of the factor strength over two

consecutive non-overlapping windows using the L̂MkNT (τ) test defined in (18) and discussed in

Section 3.2. From a methodological standpoint, this is equivalent to estimating the model over

T = 480 time series observations and testing for a break in factor strength at a known break

fraction τ = 0.50. This set up is consistent with the Monte Carlo results in Section 4, which

show the good finite sample properties of the L̂MkNT (τ) statistic for T approximately equal

to 500, as stressed in Section 4.3. This strategy therefore is informative about local stability of

factor strength, which we further motivate in Section 5.2 below. Note also that pre-break and

post-break estimation windows of 240 month are aligned with the set up in Fama and MacBeth

(2021), who consider the first and the second half of the July 1963–June 2019 period to test

for the stability of the value premium. As in the Monte Carlo experiments in Section 4, we set

p = 0.10 and δ = 1/4 in (8). We consider the size of L̂MkNT (τ̂) and ŴkNT (τ̂) equal to 0.05.

5.2 Results

We first empirically motivate the detection of local instability as discussed in Section 5.1. Follow-

ing the strategy adopted in Bailey et al. (2021), and Pesaran and Smith (2021a), we document

substantial time-variation in the strength of the six factors included in our specification: this is

a first empirical contribution of our paper. As discussed in Section 5.1, we estimate the model

using rolling windows of length equal to 240 months.

Figure 1 and Figure 2 about here

7The data for the pricing factors are available from Kenneth French website at https://mba.tuck.dartmouth.
edu/pages/faculty/ken.french/data_library.html.
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The sequences of estimated strength for the six factors are displayed in Figure 1. The factor

RmRf is strong over the whole sample period, since its estimated strength is always equal to

unity: as such, given Theorem 3.1, in this case we cannot run inference on the strength stability.

Turning to SMB, it is a semi-strong factor, although its estimated strength always lies in the

proximity of unity: in particular, the estimated values fall between 0.991 and 0.993. The re-

maining factors displays a higher degree of strength variation over time: HML is characterized

by a cyclical behaviour around an average value of 0.921; RMW displays a clear upward trend,

starting from 0.808 at the beginning of the sample, and reaching an average value of approxi-

mately 0.941 from early 2000s onwards; CMA has a very pronounced cyclical behaviour, with a

peak of 0.945 in January 2000 and a trough of 0.748 in October 1990; MOM reaches an average

value approximately equal to 0.986 from January 2000 onwards.

We conduct inference on the local stability as discussed in Section 5.1. Figure 2 displays the

evolution over time of the L̂MkNT (τ) test statistic together with the 95% confidence band. The

SMB factor is stable over the whole sample period. To a different degree, the remaining factors

display evidence of strength instability: HML is locally unstable at the beginning of the sample

and during a short spell between January 1996 and September 1998; RMW exhibit significant

local increases until January 2000, whereas this behaviour is somehow reverted after June of the

same year; CMA is unstable from April 1995 onwards; MOM has dynamics similar to those of

RMW , in that local increases in factor strength take place almost until the end of the sample.

6 Conclusions

This paper studies the detection of structural instability in factor strength in asset pricing mod-

els for financial returns. We distinguish between strong and weaker factors. We construct LM

and Wald statistics and show that they are asymptotically normally distributed under the null

hypothesis of factor strength stability. The empirical analysis conducted over a rolling estimation

window uncovers the dynamics of factor strength instability in empirical models for equity port-

folio returns. Given the tools we have developed, future work will focus upon the consequences

of structural instability in factor strength for asset pricing and portfolio choice.
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Table 1: Experiment 1: λ11 = λ21 = λ1, λ12 = λ22 = 0.85

Panel A: LM test
(a) τ = 1 /2

T 500 1000
λ1 0.55 0.75 0.80 0.85 0.90 0.95 0.99 0.55 0.75 0.80 0.85 0.90 0.95 0.99
N
100 0.0225 0.0365 0.0765 0.0580 0.0500 0.0350 0.0255 0.0230 0.0555 0.0755 0.0555 0.0510 0.0365 0.0170
200 0.0345 0.0490 0.0375 0.0675 0.0325 0.0295 0.0550 0.0295 0.0670 0.0375 0.0670 0.0325 0.0220 0.0535
500 0.0335 0.0410 0.0540 0.0470 0.0395 0.0685 0.0390 0.0335 0.0425 0.0585 0.0390 0.0395 0.0530 0.0305
1000 0.0400 0.0630 0.0475 0.0500 0.0410 0.0490 0.0595 0.0320 0.0550 0.0450 0.0505 0.0585 0.0445 0.0350

(b) τ = 1 /3
T 500 1000
λ1 0.55 0.75 0.80 0.85 0.90 0.95 0.99 0.55 0.75 0.80 0.85 0.90 0.95 0.99
N
100 0.0210 0.0310 0.0645 0.0510 0.0525 0.0460 0.0505 0.0180 0.0375 0.0770 0.0515 0.0475 0.0295 0.0200
200 0.0330 0.0510 0.0355 0.0585 0.0315 0.0310 0.0725 0.0225 0.0425 0.0305 0.0510 0.0240 0.0245 0.0505
500 0.0470 0.0560 0.0670 0.0465 0.0465 0.0760 0.0635 0.0385 0.0455 0.0615 0.0435 0.0425 0.0650 0.0380
1000 0.0350 0.0640 0.0525 0.0620 0.0575 0.0535 0.0715 0.0355 0.0575 0.0440 0.0475 0.0365 0.0465 0.0485

Panel B: Wald test
(a) τ = 1 /2

T 500 1000
λ1 0.55 0.75 0.80 0.85 0.90 0.95 0.99 0.55 0.75 0.80 0.85 0.90 0.95 0.99
N
100 0.0540 0.1000 0.0765 0.0580 0.1070 0.0350 0.0255 0.0600 0.0555 0.0755 0.0555 0.1070 0.0365 0.0170
200 0.0440 0.0490 0.0415 0.0675 0.0750 0.0525 0.0550 0.0395 0.0670 0.0405 0.0670 0.0730 0.0500 0.0535
500 0.0580 0.0780 0.0540 0.0790 0.0640 0.0685 0.0390 0.0610 0.0760 0.0585 0.0725 0.0600 0.0530 0.0305
1000 0.0540 0.0630 0.0715 0.0500 0.0410 0.0490 0.1185 0.0480 0.0550 0.0740 0.0505 0.0585 0.0445 0.0870

(b) τ = 1 /3
T 500 1000
λ1 0.55 0.75 0.80 0.85 0.90 0.95 0.99 0.55 0.75 0.80 0.85 0.90 0.95 0.99
N
100 0.0530 0.0810 0.0645 0.0510 0.1130 0.0460 0.0505 0.0565 0.0915 0.0770 0.0515 0.1000 0.0295 0.0200
200 0.0430 0.0510 0.0390 0.0585 0.0755 0.0640 0.0725 0.0310 0.0425 0.0355 0.0510 0.0635 0.0475 0.0505
500 0.0815 0.0860 0.0670 0.0770 0.0660 0.0760 0.0635 0.0670 0.0720 0.0615 0.0800 0.0600 0.0650 0.0380
1000 0.0540 0.0640 0.0750 0.0620 0.0575 0.0535 0.1425 0.0540 0.0575 0.0675 0.0475 0.0365 0.0465 0.1035
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Table 2: Experiment 2: λ21 = λ11 + κ1, λ12 = λ22 = 0.85, T = 500

Panel A: LM test
(a) τ = 1 /2

κ1 -0.02 -0.01
λ11 0.55 0.75 0.80 0.85 0.90 0.95 0.99 0.55 0.75 0.80 0.85 0.90 0.95 0.99
N
100 0.0300 0.2230 0.2335 0.7655 0.9135 0.9995 1.0000 0.0225 0.0565 0.0865 0.3480 0.3190 0.8540 0.9975
200 0.0575 0.5510 0.6760 0.9530 0.9995 1.0000 1.0000 0.0380 0.1855 0.2850 0.5740 0.7405 0.9920 1.0000
500 0.1190 0.7720 0.9890 1.0000 1.0000 1.0000 1.0000 0.0520 0.2750 0.6200 0.8655 0.9970 1.0000 1.0000
1000 0.1455 0.9870 1.0000 1.0000 1.0000 1.0000 1.0000 0.0610 0.5885 0.8870 0.9975 1.0000 1.0000 1.0000
κ1 0.01 0.02
λ11 0.55 0.75 0.80 0.85 0.90 0.95 0.99 0.55 0.75 0.80 0.85 0.90 0.95 0.99
N
100 0.0295 0.1105 0.2075 0.1785 0.5435 0.9105 1.0000 0.0295 0.2060 0.5960 0.6030 0.9870 1.0000 -
200 0.0455 0.1950 0.2815 0.5470 0.8710 0.9995 1.0000 0.0765 0.5425 0.7940 0.9835 1.0000 1.0000 -
500 0.0545 0.3575 0.6280 0.9575 1.0000 1.0000 1.0000 0.1105 0.8845 0.9990 1.0000 1.0000 1.0000 -
1000 0.0550 0.6430 0.9020 0.9990 1.0000 1.0000 1.0000 0.1715 0.9970 1.0000 1.0000 1.0000 1.0000 -

(b) τ = 1 /3
κ1 -0.02 -0.01
λ11 0.55 0.75 0.80 0.85 0.90 0.95 0.99 0.55 0.75 0.80 0.85 0.90 0.95 0.99
N
100 0.0345 0.2460 0.2510 0.7875 0.9075 0.9975 1.0000 0.0210 0.0525 0.0890 0.3845 0.3145 0.8275 0.9895
200 0.0655 0.5685 0.6935 0.9645 0.9990 1.0000 1.0000 0.0420 0.2030 0.2955 0.5860 0.7430 0.9955 1.0000
500 0.1405 0.8150 0.9835 1.0000 1.0000 1.0000 1.0000 0.0810 0.3135 0.6560 0.8800 0.9950 1.0000 1.0000
1000 0.1745 0.9875 1.0000 1.0000 1.0000 1.0000 1.0000 0.0785 0.6425 0.8945 0.9960 1.0000 1.0000 1.0000
κ1 0.01 0.02
λ11 0.55 0.75 0.80 0.85 0.90 0.95 0.99 0.55 0.75 0.80 0.85 0.90 0.95 0.99
N
100 0.0235 0.0875 0.1945 0.1720 0.5560 0.9245 1.0000 0.0235 0.1935 0.5540 0.5700 0.9870 1.0000 -
200 0.0350 0.1580 0.2590 0.5255 0.8655 0.9990 1.0000 0.0625 0.5350 0.7870 0.9870 1.0000 1.0000 -
500 0.0535 0.2950 0.5870 0.9540 0.9995 1.0000 1.0000 0.0860 0.8680 0.9970 1.0000 1.0000 1.0000 -
1000 0.0540 0.5965 0.8920 0.9985 1.0000 1.0000 1.0000 0.1460 0.9965 1.0000 1.0000 1.0000 1.0000 -

Panel B: Wald test
(a) τ = 1 /2

κ1 -0.02 -0.01
λ11 0.55 0.75 0.80 0.85 0.90 0.95 0.99 0.55 0.75 0.80 0.85 0.90 0.95 0.99
N
100 0.0760 0.2645 0.3650 0.7655 0.9135 0.9995 1.0000 0.0540 0.1105 0.1085 0.3480 0.4995 0.8540 0.9975
200 0.0795 0.5510 0.6760 0.9530 0.9995 1.0000 1.0000 0.0515 0.1855 0.2855 0.5740 0.7420 0.9920 1.0000
500 0.1710 0.8330 0.9890 1.0000 1.0000 1.0000 1.0000 0.0875 0.3615 0.6200 0.9180 0.9970 1.0000 1.0000
1000 0.1890 0.9870 1.0000 1.0000 1.0000 1.0000 1.0000 0.0885 0.5885 0.9095 0.9975 1.0000 1.0000 1.0000
κ1 0.01 0.02
λ11 0.55 0.75 0.80 0.85 0.90 0.95 0.99 0.55 0.75 0.80 0.85 0.90 0.95 0.99
N
100 0.0750 0.2145 0.2075 0.1785 0.6395 0.9110 1.0000 0.0750 0.3805 0.5960 0.6030 0.9870 1.0000 -
200 0.0570 0.1950 0.3145 0.5470 0.9450 0.9995 1.0000 0.0960 0.5425 0.8840 0.9835 1.0000 1.0000 -
500 0.0860 0.4395 0.6280 0.9575 1.0000 1.0000 1.0000 0.1630 0.9275 0.9990 1.0000 1.0000 1.0000 -
1000 0.0775 0.6430 0.9355 0.9990 1.0000 1.0000 1.0000 0.2185 0.9970 1.0000 1.0000 1.0000 1.0000 -

(b) τ = 1 /3
κ1 -0.02 -0.01
λ11 0.55 0.75 0.80 0.85 0.90 0.95 0.99 0.55 0.75 0.80 0.85 0.90 0.95 0.99
N
100 0.0895 0.2840 0.4020 0.7875 0.9225 0.9975 1.0000 0.0530 0.1075 0.1115 0.3845 0.4915 0.8275 0.9895
200 0.0905 0.5685 0.6935 0.9645 0.9990 1.0000 1.0000 0.0620 0.2030 0.2955 0.5860 0.7430 0.9955 1.0000
500 0.1940 0.8680 0.9835 1.0000 1.0000 1.0000 1.0000 0.1115 0.4110 0.6560 0.9195 0.9950 1.0000 1.0000
1000 0.2260 0.9875 1.0000 1.0000 1.0000 1.0000 1.0000 0.1165 0.6425 0.9150 0.9960 1.0000 1.0000 1.0000
κ1 0.01 0.02
λ11 0.55 0.75 0.80 0.85 0.90 0.95 0.99 0.55 0.75 0.80 0.85 0.90 0.95 0.99
N
100 0.0715 0.2055 0.1945 0.1720 0.6555 0.9245 1.0000 0.0715 0.3575 0.5540 0.5700 0.9870 1.0000 -
200 0.0470 0.1580 0.3000 0.5255 0.9455 0.9990 1.0000 0.0825 0.5350 0.8725 0.9870 1.0000 1.0000 -
500 0.0805 0.3865 0.5870 0.9550 0.9995 1.0000 1.0000 0.1310 0.9130 0.9970 1.0000 1.0000 1.0000 -
1000 0.0705 0.5965 0.9270 0.9985 1.0000 1.0000 1.0000 0.1850 0.9965 1.0000 1.0000 1.0000 1.0000 -
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Table 3: Experiment 3: λ11 = λ21 = λ1, λ12 = λ22 = 0.85, τ = 1/2, T = 500

Panel A: τ̂
(a) Bias

λ1 0.55 0.75 0.80 0.85 0.90 0.95 0.99
N
100 -0.0011 -0.0007 -0.0001 0.0000 -0.0004 -0.0003 0.0000
200 -0.0016 -0.0010 -0.0003 -0.0003 0.0000 0.0000 0.0000
500 -0.0002 -0.0001 0.0000 0.0000 0.0000 0.0000 0.0000
1000 -0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

(b) RMSE
λ1 0.55 0.75 0.80 0.85 0.90 0.95 0.99
N
100 0.0600 0.0342 0.0215 0.0186 0.0131 0.0127 0.0117
200 0.0723 0.0295 0.0249 0.0161 0.0098 0.0056 0.0032
500 0.0158 0.0071 0.0049 0.0035 0.0022 0.0000 0.0000
1000 0.0081 0.0030 0.0019 0.0000 0.0000 0.0000 0.0000

Panel B: LM test
λ1 0.55 0.75 0.80 0.85 0.90 0.95 0.99
N
100 0.0580 0.0485 0.0800 0.0590 0.0515 0.0360 0.0260
200 0.1200 0.0720 0.0495 0.0755 0.0365 0.0295 0.0550
500 0.0505 0.0440 0.0560 0.0475 0.0395 0.0685 0.0390
1000 0.0475 0.0650 0.0490 0.0500 0.0410 0.0490 0.0595

Panel C: Wald test
λ1 0.55 0.75 0.80 0.85 0.90 0.95 0.99
N
100 0.0975 0.1150 0.0800 0.0590 0.1080 0.0360 0.0260
200 0.1335 0.0720 0.0540 0.0755 0.0790 0.0540 0.0550
500 0.0790 0.0820 0.0560 0.0800 0.0640 0.0685 0.0390
1000 0.0645 0.0650 0.0730 0.0500 0.0410 0.0490 0.1185

Table 4: Experiment 4: λ21 = λ11 + κ1, λ12 = λ22 = 0.85, τ = 1/2, T = 500

Panel A: LM test
κ1 -0.02 -0.01
λ11 0.55 0.75 0.80 0.85 0.90 0.95 0.99 0.55 0.75 0.80 0.85 0.90 0.95 0.99
N
100 0.0365 0.2230 0.2325 0.7655 0.9135 0.9995 1.0000 0.0580 0.0590 0.0880 0.3480 0.3190 0.8540 0.9975
200 0.0605 0.5510 0.6755 0.9530 0.9995 1.0000 1.0000 0.0495 0.1860 0.2850 0.5735 0.7405 0.9920 1.0000
500 0.1190 0.7720 0.9890 1.0000 1.0000 1.0000 1.0000 0.0540 0.2750 0.6200 0.8655 0.9970 1.0000 1.0000
1000 0.1460 0.9870 1.0000 1.0000 1.0000 1.0000 1.0000 0.0615 0.5885 0.8870 0.9975 1.0000 1.0000 1.0000
κ1 0.01 0.02
λ11 0.55 0.75 0.80 0.85 0.90 0.95 0.99 0.55 0.75 0.80 0.85 0.90 0.95 0.99
N
100 0.0305 0.1115 0.2080 0.1790 0.5430 0.9105 1.0000 0.0305 0.2060 0.5960 0.6030 0.9870 1.0000 -
200 0.0740 0.1980 0.2815 0.5470 0.8710 0.9995 1.0000 0.0845 0.5420 0.7940 0.9835 1.0000 1.0000 -
500 0.0575 0.3575 0.6280 0.9575 1.0000 1.0000 1.0000 0.1110 0.8845 0.9990 1.0000 1.0000 1.0000 -
1000 0.0575 0.6430 0.9020 0.9990 1.0000 1.0000 1.0000 0.1715 0.9970 1.0000 1.0000 1.0000 1.0000 -

Panel B: Wald test
κ1 -0.02 -0.01
λ11 0.55 0.75 0.80 0.85 0.90 0.95 0.99 0.55 0.75 0.80 0.85 0.90 0.95 0.99
N
100 0.0830 0.2650 0.3640 0.7655 0.9315 0.9995 1.0000 0.0975 0.1135 0.1100 0.3480 0.4990 0.8540 0.9975
200 0.0815 0.5510 0.6755 0.9530 0.9995 1.0000 1.0000 0.0640 0.1860 0.2855 0.5735 0.7420 0.9920 1.0000
500 0.1710 0.8330 0.9890 1.0000 1.0000 1.0000 1.0000 0.0910 0.3615 0.6200 0.9180 0.9970 1.0000 1.0000
1000 0.1895 0.9870 1.0000 1.0000 1.0000 1.0000 1.0000 0.0895 0.5885 0.9095 0.9975 1.0000 1.0000 1.0000
κ1 0.01 0.02
λ11 0.55 0.75 0.80 0.85 0.90 0.95 0.99 0.55 0.75 0.80 0.85 0.90 0.95 0.99
N
100 0.0775 0.2160 0.2080 0.1790 0.6390 0.9110 1.0000 0.0775 0.3810 0.5960 0.6030 0.9870 1.0000 -
200 0.0870 0.1980 0.3145 0.5470 0.9450 0.9995 1.0000 0.1035 0.5420 0.8840 0.9835 1.0000 1.0000 -
500 0.0900 0.4395 0.6280 0.9575 1.0000 1.0000 1.0000 0.1635 0.9275 0.9990 1.0000 1.0000 1.0000 -
1000 0.0805 0.6430 0.9355 0.9990 1.0000 1.0000 1.0000 0.2185 0.9970 1.0000 1.0000 1.0000 1.0000 -

34



Figure 1: Factor strength, equity portfolios, six-factor model
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Figure 2: LM statistic, equity portfolios, six-factor model
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Supplementary material to “Instability of Factors

Strength in Asset Returns”

A Appendix: proofs of theorems

Proof of Theorem 3.1. For k ∈ {1, . . . , K}, consider d̂jikT (τ) defined in (10), and let

D̂jkNT (τ) =
N∑
i=1

d̂jikT (τ) = N λ̂jkNT (τ), DjkN =
N∑
i=1

djik = Nλjk , djik = I (βjik ̸= 0) .

We have

[ln (N)]
[
λ̂jkNT (τ)− λjk

]
= ln

[
D̂jkNT (τ)

DjkN

]

= ln

[
D̂jkNT (τ) +Nλjk −Nλjk

Nλjk

]

= ln

[
1 +

D̂jkNT (τ)−Nλjk

Nλjk

]
≃ D̂jkNT (τ)−Nλjk

Nλjk

=

∑N
i=1 d̂jikT (τ)−Nλjk

Nλjk

=

∑N
i=1

{
d̂jikT (τ)− E

[
d̂jikT (τ)

]}
Nλjk

+

∑N
i=1 E

[
d̂jikT (τ)

]
−Nλjk

Nλjk

= ÂjkNT (τ) +BjkNT (τ) ,

(A.1)

where

ÂjkNT (τ) =

∑N
i=1

{
d̂jikT (τ)− E

[
d̂jikT (τ)

]}
Nλjk

, BjkNT (τ) =

∑N
i=1 E

[
d̂jikT (τ)

]
−Nλjk

Nλjk
.

Since E
[
d̂jikT (τ)

]
= πjik = Pr

[∣∣t̂jikT (τ)
∣∣ > cp (N)

]
, then

BjkNT (τ) =

∑N
i=1 Pr

[∣∣t̂jikT (τ)
∣∣ > cp (N)

]
−Nλjk

Nλjk

=

∑⌊Nλjk⌋
i=1 Pr

[∣∣t̂jikT (τ)
∣∣ > cp (N) |βjik ̸= 0

]
−Nλjk

Nλjk

+

∑N

i=⌊Nλjk⌋+1
Pr

[∣∣t̂jikT (τ)
∣∣ > cp (N) |βjik = 0

]
Nλjk

.

(A.2)
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Following steps analogous to those in the proof of Theorem 1 in Bailey et al. (2021),

Pr
[∣∣t̂jikT (τ)

∣∣ > cp (N) |βjik ̸= 0
]
= 1− exp

(
−C1T

C2
)
, (A.3)

for some 0 < C1, C2 < ∞, so that

∑⌊Nλjk⌋
i=1 Pr

[∣∣t̂jikT (τ)
∣∣ > cp (N) |βjik ̸= 0

]
−Nλjk

Nλjk
= exp

(
−C1T

C2
)
. (A.4)

Further,

Pr
[∣∣t̂jikT (τ)

∣∣ > cp (N) |βjik = 0
]
≤ CT

p

N δ
, (A.5)

for some 0 < CT < ∞ such that CT → 1 as T → ∞, since the distribution of t̂jikT (τ) converges

to a standard normal for T → ∞. This implies that

∑N

i=⌊Nλjk⌋+1
Pr

[∣∣t̂jikT (τ)
∣∣ > cp (N) |βjik = 0

]
Nλjk

= CT

p
(
N −Nλjk

)
N δ+λjk

. (A.6)

Therefore, taking into account (A.2), (A.4) and (A.6), it follows that

BjkNT (τ) = CT

p
(
N −Nλjk

)
N δ+λjk

+O
[
exp

(
−C1T

C2
)]

.

Under Assumption (1), the error terms eit are cross-sectionally independent and

Var
[
ÂjkNT (τ)

]
= Var


{∑N

i=1 d̂jikT (τ)− E
[
d̂jikT (τ)

]}
Nλjk


=

1

N2λjk

N∑
i=1

Var
{
d̂jikT (τ)− E

[
d̂jikT (τ)

]}
=

1

N2λjk

N∑
i=1

πjikT (τ) [1− πjikT (τ)]

=
1

N2λjk

N∑
i=1

πjikT (τ)− 1

N2λjk

N∑
i=1

[πjikT (τ)]2

=
1

N2λjk

⌊Nλjk⌋∑
i=1

πjikT (τ) +
1

N2λjk

N∑
i=⌊Nλjk⌋+1

πjikT (τ)

− 1

N2λjk

⌊Nλjk⌋∑
i=1

[πjikT (τ)]2 − 1

N2λjk

N∑
i=⌊Nλjk⌋+1

[πjikT (τ)]2 .
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Therefore, taking into account (A.3) and (A.5), we have

Var
[
ÂjkNT (τ)

]
=

1

N2λjk

⌊Nλjk⌋∑
i=1

[
1− exp

(
−C1T

C2
)]

+
1

N2λjk

N∑
i=⌊Nλjk⌋+1

CT
p

N δ

− 1

N2λjk

⌊Nλjk⌋∑
i=1

[
1− exp

(
−C1T

C2
)]2 − 1

N2λjk

N∑
i=⌊Nλjk⌋+1

(
CT

p

N δ

)2

=
1− exp

(
−C1T

C2
)

Nλjk
+ CT

p
(
N −Nλjk

)
N δ+2λjk

−
[
1− exp

(
−C1T

C2
)]2

Nλjk
+

N −Nλjk

N2λjk

(
CT

p

N δ

)2

=
1

Nλjk

[
1− exp

(
−C1T

C2
)] {

1−
[
1− exp

(
−C1T

C2
)]}

+
N −Nλjk

N2λjk
CT

p

N δ

(
1− CT

p

N δ

)
=

N −Nλjk

N2λjk
CT

p

N δ

(
1− CT

p

N δ

)
+O

[
exp

(
−C1T

C2
)

Nλjk

]
.

This implies that, for 0 ≤ λjk < 1 we have

ÂjkNT (τ) = Op

(
N1/2−δ/2−λjk

)
.

whereas for λjk = 1

ÂjkNT (τ) = Op

[
exp

(
−C1T

C2
)
/N0.5λjk

]
.

Recall φN (λjk) defined in (17) and define ζN (λjk) as

ζN (λjk) =
p
(
N −Nλjk

)
N δ+λjk

.

Consider the case 0 ≤ λjk < 1, for j = 1, 2. For some 0 < C3, C4 < ∞, we then have

φN (λ1k)
−1/2

{
[ln (N)]

[
λ̂1kNT (τ)− λ1k

]}
21/2

−
φN (λ2k)

−1/2
{
[ln (N)]

[
λ̂2kNT (τ)− λ2k

]}
21/2

=
φN (λ1k)

−1/2 {Op

(
N1/2−δ/2−λ1k

)
+O (1) ζN (λ1k) +O

[
exp

(
−C1T

C2
)]}

21/2

−
φN (λ2k)

−1/2 {Op

(
N1/2−δ/2−λ2k

)
+O (1) ζN (λ2k) +O

[
exp

(
−C3T

C4
)]}

21/2
.
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Under H0k : λ1k = λ2k = λ1, it follows that φN (λ1k) = φN (λ2k) = φN (λk), and ζN (λ1k) =

ζN (λ2k) = ζN (λk), and

[ln (N)]
[
λ̂1kNT (τ)− λ̂2kNT (τ)

]
[2φN (λk)]

1/2

d→ N (0, 1) :

the result in (a) follows since

{
2max

{
φN

(
λ̂1k

)
, φN

(
λ̂2k

)}}
p→ 2φN (λk)

and [
φN

(
λ̂1k

)
+ φN

(
λ̂2k

)]
p→ 2φN (λk)

as N → ∞ under H0k : λ1k = λ2k = λk. Under H1k : λ1k ̸= λ2k it follows that

φN (λ1k)
−1/2 [ln (N)] λ̂1kNT (τ)− φN (λ2k)

−1/2 [ln (N)] λ̂2kNT (τ)

=
{
φN (λ1k)

−1/2 {[ln (N)]λ1k +O (1) ζN (λ1k)} − φN (λ2k)
−1/2 {[ln (N)]λ2k +O (1) ζN (λ2k)}

}
+Op (1) +

{
φN (λ1k)

−1/2 O
[
exp

(
−C1T

C2
)]

− φN (λ2k)
−1/2 O

[
exp

(
−C3T

C4
)]}

,

and

∣∣∣φN (λ1k)
−1/2 {[ln (N)]λ1k +O (1) ζN (λ1k)} − φN (λ2k)

−1/2 {[ln (N)]λ2k +O (1) ζN (λ2k)}
∣∣∣ → ∞

as N → ∞, which is sufficient to prove (b). This completes the proof of the theorem.

Proof of Theorem 3.2. By Corollary 1 in Qu and Perron (2007), the estimator τ̂ for τ is

such that the limiting distribution of the betas is the same as it would be if τ was known. This

implies that [ln (N)]
[
λ̂jkNT (τ̂)− λjk

]
and [ln (N)]

[
λ̂jkNT (τ)− λjk

]
in (A.1) are asymptotically

equivalent. The result in the theorem then follows from the same steps as in the Proof of Theorem

3.1.
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