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Abstract

I consider policy-making in the face of two types of small-probability catastrophes:

environmental events that can lead to very low consumption and extermination events

(such as large meteor strikes) that cut short an indefinitely long flow of future util-

ity. A robustness requirement that a policy ranking should not be overturned by a

small change in the distributions of outcomes will block any ranking of policies. The

maxmin criterion for multiple priors can get around this impasse. In the environment

setting, maxmin policymakers should minimize the likelihood of the tail event of very

low consumption while in the extermination setting they should ignore the tail event

where civilization survives until the very distant future. The former conclusion pro-

vides a rationale for Weitzman’s Dismal Theorem while the latter conclusion validates

conventional policy comparisons based on discounting.
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1 Introduction

Criticisms of conventional welfare analyses of climate change often combine arguments

against expected utility theory with calls to avert global warning. Weitzman in his Dismal

Theorem (2009, 2014) argued that the expected social loss from carbon emissions is infinitely

great and that large sacrifices in current consumption to reduce emissions are therefore war-

ranted. These positions lead to several policy and theoretical puzzles. When each policy

option leads to an expected utility of −∞, the options will be unranked, even when one

of them leads to greater probabilities for the catastrophic outcomes. Although expected

utilities that diverge underscore the magnitude of what is at stake, they fail to discriminate

among policy choices. There is also an immiseration problem: if expected utility maxi-

mization implies that we should avoid catastrophic outcomes that bring unboundedly great

losses, should we accept any sacrifice of current consumption that lessens the likelihood of

such losses even slightly?1

The expected utility delivered by a policy can equal −∞ in Weitzman’s work because

society’s utility function is not bounded below. Each policy generates a probability dis-

tribution over environmental outcomes and thus over future utility levels. If, as global

warming increases and future utility levels fall, the probabilities that weight those outcomes

diminish slowly then an expected utility of −∞ can result. As a result, the rankings of

policies become highly sensitive to the tails of the distributions that policies specify: small

changes in the distribution of extreme outcomes can overturn policy judgments. So without

precise knowledge of these tails, decision-making will be crippled. Expected utilities that di-

verge are not required for this conclusion: unbounded utilities are Weitzman’s mathematical

short-hand for policymakers’uncertainty about where the lower bounds lie.

To model imprecision about policies, the decision-maker in this paper will assign multiple

priors —a set of probability distributions over outcomes —to each policy. Since nihilism will

result if a policy ranking has to secure the backing of all of these distributions, a policymaker

will evaluate options by the maxmin criterion: the value of a policy option will be the smallest

expected utility the option can achieve as the distributions vary over the policymaker’s priors

1See Nordhaus (2009, 2011).
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(Gilboa and Schmeidler (1989)). To eliminate the ties where many policies deliver a utility

of −∞, our policymaker will truncate the left tails (the worst outcomes) of the distributions

assigned to each policy option, apply the maxmin criterion to the truncated options, and

take the limit as the truncations become small. As long as there is a well-defined limit,

a winning policy will emerge; policy discrimination can therefore be salvaged. With mild

restrictions on priors, this method will recommend minimizing the likelihood of the most

extreme negative outcomes, thus giving formal support for the guardrail policies backed by

Stern and Stiglitz (2021) and many others. These conclusions hold even when every policy

leads to infinitely negative utility levels.

The ‘fatness’of the tails of the distributions of outcomes will drive the ranking of policies:

when the tails are relevant, the options that can lead to distributions of outcomes with fatter

left tails will be rejected. This conclusion echoes Weitzman, who put great emphasis on fat

tails. But the absolute fatness of tails does not matter: it is comparisons of fatness that

determine the winning policies.2 The maxmin assumption shows that policy options can be

ranked even when decision-makers exhibit a muscular aversion to ambiguity.

A second literature on catastrophic risks will clarify when the present approach deviates

from conventional welfare analyses. ‘Long-termism’ in philosophy (see Bostrom (2003),

Greaves and MacAskill (2021)) analyzes various civilization-ending calamities such as a large

meteor collision or uncontrollable artificial intelligence.3 The reach of human civilization

is assumed to be vast, encompassing quadrillions of lives when humanity does not perish

prematurely, and the value of those lives, if they are lived, is undiscounted. In judging an

expenditure that reduces the probability of an extermination event, the undiscounted utility

of a quadrillion or more lives is functionally equivalent to an infinitely large benefit: virtually

any expenditure that reduces the likelihood of calamity will be justified.

The two literatures consider the policy consequences of utility functions that are effec-

tively unbounded: instead of global warming leading to an expected utility level that can

be unboundedly negative, extermination events can lead to the loss of an expected utility

level that can be unboundedly positive. But the environment and extermination cases are

2For related empirical work drawing on Weitzman, see Ackerman et al. (2010) and Dietz (2011).
3On AI risks, see Bostrom (2014), Ngo et al. (2023), Russell (2019), and Yudkowsky (2008).
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dramatically different from the maxmin point of view. In the extermination model, each

policy option will be assessed by one of the priors that leads to a finite expected value.

When judging an option, a decision-maker will be guided by the distribution that assigns a

small likelihood to the right tail of the distribution of outcomes, where civilization lasts into

the far future; right tails therefore become unimportant. This conclusion backs the tradi-

tional economic objective functions that discount the far future into irrelevance, the very

approach that the long-termist literature has aimed to overturn. So if, say, infectious dis-

eases or bioterrorism exemplify the civilization-ending catastrophes of the proximate future

and uncontainable AI is a longer-term risk, the current analysis will recommend investing in

protections against the first category.4

This paper will place the environment and extermination problems in a common mathe-

matical framework where utility functions evaluate current consumption and a future benefit

—the only difference is that in the environment model it is the utilities of the small values of

the future benefit that diverge (to −∞) while in the extermination model it is the utilities

of the large values that diverge (to +∞). In both cases the unbounded utilities will mean

that small modeling differences can upend policy rankings. But to avoid duplication, I will

emphasize the environment rather than the extermination model. Until we come to the

maxmin criterion, every result is one model has a close parallel in the other setting.

Three results will lay out the diffi culties with expected utilities that are either unbounded

are where policymakers do not know where the bounds are. First, no pair of policies can

be robustly ranked: arbitrarily small changes in the distributions of outcomes associated

with policies can overturn any policy ranking.5 Second, if we model unknown bounds

for utility functions by considering various truncations to the tail of extreme outcomes then

policy recommendations become acutely sensitive to where the truncations are made. Third,

optimal policies can reduce the current generation to extreme poverty: for any set of policy

options and any level of current consumption ε > 0, no matter how small, there is a nearby

set of policy options such that the optimal policy reduces current consumption to ε.

4See Jones (2016) for an economic analysis, with discounting, of extermination events. Discounting is of
course prominent in most economic analyses of climate change. See Arrow et al. (1996), Stern (2007), and
Nordhaus (2017, 2019).

5Environmental policy rankings can also fail to be robust with respect to other modeling changes besides
changes in distributions. See Budolfson et al. (2017) and Gillingham et al. (2018).
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The maxmin-cum-truncation proposal in this paper can rescue policy discrimination from

this quagmire. But despite the mathematical similarities of the environment and extermi-

nation models, the terms of the rescue will depend on where the utility of the future benefit

is unbounded. In the environment model, utility is unbounded ‘on the left’where future

consumption is small. The worst-case or minimum-utility evaluation of a policy option

will then be determined by the distribution of the policymaker’s that has the fattest left

tail —where low future consumption is assigned the greatest probability. Maxmin there-

fore endorses guardrail policies that avoid the extreme low-consumption outcomes of climate

change: these policies make the minimum-utility evaluation as favorable as possible. In the

extermination model, utility is unbounded ‘on the right’and hence the maxmin focus on

the worst case will evaluate a policy option using a distribution with a thin right tail that

deems survival into the distant future, where utility is unboundedly great, to be unlikely.

Little emphasis should therefore be placed on increasing the probability of very long survival

times.

The main response from traditional decision theory to models where environmental poli-

cies can lead to expected utilities of negative infinity has been to object to unbounded utility

functions, including those such as the CRRA utility that are common in applications. See,

for example, Arrow and Priebsch (2014) or Pindyck (2011), which argue in different ways for

bounds on utility. In the extermination model, the corresponding complaint would criticize

utility or social welfare functions that place no upper bound on the value of the length of

human civilization: in the orthodox view those functions should be bounded above.

Traditional decision theory moreover does not assume bounded utility functions; bounded

utilities are deduced from axioms on preferences —the primitive of the subject. Specifically

the classical von Neumann-Morgenstern assumption of continuity implies that any expected

utility representation of an agent’s preferences must use a bounded utility function for out-

comes. It is questionable however to take an agent’s or society’s preferences as given: advice

on the environment requires policymakers to consider outcomes that no one has ever encoun-

tered. In that vein, I will pose an alternative continuity axiom that applies to individuals

who are endowed with preferences over truncated domains of consumption and are trying to

construct a preference over the full, nontruncated domain. This axiom, which is inconsistent
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with classical continuity, will generate preferences represented by unbounded utilities.

When a single individual makes a decision that risks death, the agent implicitly assigns

a finite utility level to death. But for environmental catastrophes, the worst-case outcomes

are diffi cult to fathom: the 0 level of future consumption in this paper will represent not just

many deaths but the end of society as we know it. Individuals therefore might not be able to

identify an a priori lower bound on how bad they judge that outcome to be. Although agents

might nevertheless make decisions that risk society-ending catastrophes, those decisions may

be artifacts of being forced to choose rather than thought-through judgments.

Whether the case for unbounded utilities is right or wrong, no point in this paper turns on

utility functions that are literally unbounded: comparably to Weitzman (2009), each result

can be reposed using large but finite bounds. For example, the conclusion that orderings

of policy options are not robust to small changes in the distributions of outcomes can be

rewritten as ‘for any ε > 0 and any ranking of two policies, there exist finite bounds for utility

functions such that the ranking can be overturned by some ε change in the distribution of

outcomes that the policies induce.’ Unbounded utilities are a modeling convenience that

allows for less convoluted statements.

2 The need for robustness: an example

The need for robust policy assessment when utility is unbounded can be obscured by the

parametric details of a model. In the Weitzman (2009) model of the environment, there

are two layers of uncertainty. Society’s future consumption c is governed by a family of

log-normal distributions (or some other thin-tailed distribution) that differ with respect to

the standard deviation s they assign to ln c. That is, the conditional distribution of c given

s is log-normal, but s is uncertain. The probability density function f for the distribution

of s is assumed to obey a power law, f(s) ∝ s−k. The probabilities in the right tail of

the distribution therefore diminish slowly: the tail is fat. Since the fat right tail of the

distribution of s assigns relatively large probabilities to the large standard deviations, the

probability of ln c diminishes slowly as c → 0. Compared to the exponential speed of

convergence of the probability of ln c to 0 when c is log-normally distributed with known
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parameters, the left tail of the distribution of ln c is fat. When this distribution is combined

with a CRRA utility, u(c) = 1
1−αc

1−α where α > 1, utility can reach unboundedly negative

values as c→ 0 and the expected utility of c can equal −∞.6

Without the fatness assumption on the right tail of the distribution of s, the−∞ expected

utility conclusion would not obtain. Even putting aside the infinite expected values for s,

most economists would be hard pressed to opine on the tail of the distribution of standard

deviations, which suggests that policy advice ought not turn on such details. At a more

technical level, assumptions on the exact form of the distributions of tails place emphasis

on a secondary factor. The fatness of tails is neither necessary nor suffi cient for expected

utilities equal to ±∞: it is the unboundedness of utility functions that matters.

The significance of this example lies in the discontinuity between the distribution of

outcomes and the expected utility of a policy option: a small change to the tail of the

distribution of the parameter s can lead to a large utility change, from finite to infinite or

vice versa. I will formalize this fragility in the next section. But the example suggests that

unbounded utilities will make policy discrimination diffi cult, both because of the subtlety of

the link between distributions and expected utility outcomes and because ties will become

more likely (many options will deliver an expected utility of −∞). Unbounded utilities thus

do not lend support to guardrail policies that minimize climate change; they make all policy

rankings problematic.

3 Policy paralysis

A policy will consist of current consumption x0 ≥ 0 and a probability distribution P for a

nonnegative random x1 that represents a future benefit. In a model of the environment,

a policymaker chooses a level of, say, carbon abatement today that affects both x0 and

the distribution of consumption x1 at some future date. In a model of extermination,

the policymaker can invest in safeguards against a future civilization-ending calamity, thus

reducing x0, and the benefit x1 measures how long civilization survives or the consumption

6In Weitzman’s exact formulation, the expected marginal utility of future consumption is infinitely great.
See Nordhaus (2009).
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stream of all who live until a calamity does arrive. A x will denote a pair (x0, P ).

Let u0 and u1 be strictly increasing utility functions for current consumption and for

the future benefit respectively. Neither function is assumed to be bounded above or below;

utility levels can diverge as current consumption or the future benefit approaches 0 or ∞.

The utility of 0 current consumption or a 0 future benefit is allowed to equal −∞.

Each policy is evaluated by the sum of the utility of its current consumption and the

expected utility of its future benefit. So, for a policy x = (x0, P ), define the overall utility

of x by

u(x) = u0(x0) + EPu1(x1)

where expectations and hence u(x) can equal ∞ or −∞. I assume that, for every policy

(x0, P ), P (0) = 0, as for example when P is atomless. Appendix A will expand on the paper’s

formal concepts and lay out some technical assumptions, for example on when expectations

and infinite utility levels are well-defined.

Definition 1 The policy preference %, a binary relation on policies, is defined by x % x̂ if

and only if u(x) ≥ u(x̂).

So when u(x) = u(x̂) =∞ or when u(x) = u(x̂) = −∞ holds, indifference between x and x̂

obtains. The strict policy preference � associated with % is defined by x � x̂ if and only if

x % x̂ holds and x̂ % x does not hold.

Corresponding to the two main interpretations of x1 as future consumption and as the

length of civilization, two different assumptions can apply to u1. In the environment model,

the utility of future consumption x1 decreases without a lower bound as x1 converges to 0

(as in Weitzman (2009, 2014)). In the extermination model, the utility of the survival date

x1 increases without bound as x1 increases. Since u1 is unbounded in both cases, the models

violate the rules of expected utility theory. The extermination model notably cannot arise

from a discounted sum of the utilities of future lives: that would bound u1.

Define a sequence of probability distributions P (n) to converge to distribution P or

P (n)→ P if the maximum, over sets S of positive numbers, of the distance between P (n)(S)

and P (S) converges to 0.7

7The reader should assume here and subsequently that any S ⊂ R+ to which a probability P is applied
is measurable. See Appendix A.
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Definition 2 A sequence of policies 〈(x0(n), P (n))〉 converges to policy (x0, P ) if x0(n)→

x0 and P (n) converges to P .

When a sequence of policies x(n) converges to x and n is suffi ciently large, the difference

between x(n) and x is effectively unobservable.

If P (n) converges to P then EP (n)f → EPf for any bounded and continuous real-valued

function f . The distinctive feature of our setting is that the random variable of interest,

u1(x1), will not be bounded. So, even when P (n)→ P , EP (n)u1(x1) might not converge to

EPu1(x1).8

Call the policy preference % robust if its strict rankings are maintained at least weakly
for all nearby policies. That is, for all policies x and x̂ with x � x̂, if x(n) and x̂(n) converge

to x and x̂ respectively then x(n) % x̂(n) for all n suffi ciently large.9

The following example shows that % fails to be robust: an arbitrarily small change in
probability distributions can reverse a policy ranking.

Example 1 In the environment model, fix some x0 > 0 and let the probability distributions

P and P̂ satisfy P (2) = P̂ (1) = 1. Then (x0, P ) � (x0, P̂ ). For each positive integer n,

let P (n) satisfy P (n)(2) = 1 − 1
n
and P (n)(εn) = 1

n
where 0 < εn < 2 is chosen so that

u1(εn) < −n2, which the environment model permits. Then P (n) converges to P . Setting

P̂ (n) = P̂ for each n, P̂ (n) converges to P̂ . But since u0(x0)+EP (n)u1(x1)→ −∞, we have

(x0, P̂ (n)) � (x0, P (n)) for all n suffi ciently large. �

Theorem 1 Let x and x̂ be policies in either the environment or extermination model. Then

there are sequences of policies 〈x(n)〉 and 〈x̂(n)〉 that converge to x and x̂ respectively such

that x(n) � x̂(n) for all n.

It follows from Theorem 1 that there are pairs of policies near x and x̂ where the policy

near x is strictly preferred to the policy near x̂ and other pairs near x and x̂ where the policy

near x̂ is strictly preferred to the policy near x.

8There are alternative definitions of convergence, provided in Appendix A, that would allow slight gen-
eralizations of Theorems 1 and 2 below.

9With this definition, a failure of robustness must pass a relatively demanding test: if % fails to be robust
it would also fail to meet the requirement that the strict rankings of % remain strict for nearby policies.
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Proofs are in Appendix B.

Theorem 1 shows that policy rankings are fragile with respect to vanishingly small changes

in the distributions of x1: when utilities are unbounded, essentially any policy advice can

be overturned by a slight and unobservable adjustment of the model. Utility comparisons

therefore cannot tell policymakers how much current consumption should be invested in the

future benefit.

If agents in the environment model hold that some risks of 0 future consumption to be

acceptable or if agents in the extermination model discount the future suffi ciently, utilities

will be bounded. Theorem 1 then will not hold. But when utilities are bounded, policy

rankings will depend delicately on where exactly the bounds lie.

To model this fragility, I will truncate the extreme values of the future benefit or its

utility by cutting off the future benefit below or above a certain level. In the environment

model, reset the domain of u1 to consist of those x1 greater than some cutoff ε > 0 and (to

deal with one problem at a time) assume that u1 is bounded above. The model would then

appear to be well-behaved: a small change in policies cannot reverse a � ranking. Similarly,

if in the extermination model we reset the domain to consist of those x1 less than some δ > 0

and assume that u1 is bounded below then small changes again cannot overturn a � ranking

of policies.

Truncations unfortunately address the symptom not the underlying problem. Although

% will robustly rank any pair of policies for a truncated model, the rankings that are gener-
ated will depend on the ε’s and δ’s that define the cutoffs: the ranking of policies can switch

back and forth repeatedly as ε shrinks or δ grows. Since truncations will later play a key

constructive role, the details of this conclusion will prove valuable.

Define a sequence of truncations for policy x = (x0, P ) in the environment model by a

sequence of numbers 〈εn > 0〉 such that εn → 0. Each εn is identified with the policy xn =

(x0, P
n) where P n is the conditional distribution of P given [εn,∞). In the extermination

model, a sequence of truncations for x = (x0, P ) is defined by a 〈δn > 0〉 such that δn →∞

and each δn is identified with xn = (x0, P
n) where P n is the conditional distribution of P

given [0, δn].10

10In both models, these conditional distributions are unique for all large n. See Appendix A.
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These truncations will serve as a stand-in for a wider family of potential truncations.

For example, in the environment model we could instead declare that u1(x1) = u1(ε) for all

future consumption levels x1 less than ε. Theorem 2 below would then continue to hold

exactly as stated.

Let the distance between two policies (x0, P ) and (x′0, P
′) equal |x0 − x′0|+d(P, P ′), where

d(P, P ′) is the distance between probability distributions P and P ′. See Appendix A. This

notion of distance defines ‘arbitrarily near’in the result below.

Theorem 2 Let x and x̂ be policies in either the environment or extermination model. Then

there exist policies x∗ and x̂∗ arbitrarily near to x and x̂ and truncations 〈xn〉 and 〈x̂n〉 of

x∗ and x̂∗ such that xn � x̂n for infinitely many n and x̂n � xn for infinitely many n.

Truncations thus convert the robustness failure of Theorem 1 into a sensitivity to the

cutoffs of truncations.

Weitzman’s dismal theorem linked infinitely negative expected utilities with the policy

recommendation to invest nearly all of x0 in improvements in the distribution of x1: present-

day immiseration can be rationalized as optimal. We can re-express this conclusion in a

manner similar to the above paralysis results.

Suppose a set of policies X is assigned a set of indices I and let the superscript of a policy

xi in X denote the index. Define a sequence of sets of policies 〈X(n)〉 to converge to X if

each X(n) and X can be indexed by the same I and, for each i ∈ I, xi(n) converges to xi.

Given a set of policies X, x ∈ X is %-maximal in X if x % x̂ for all x̂ ∈ X.

The following Observation is essentially a corollary of Theorem 1.

Observation. Let the set of policies X be indexed by I. In either the environment or

extermination model, for any i ∈ I there exists a sequence of sets of policies 〈X(n)〉 that

converges to X such that xi(n) is the unique %-maximal policy in X(n) for all n.

Since the choice of i ∈ I in the Observation is arbitrary, any policy (x0, P ) in a feasible

choice set of policies X is optimal, no matter how small its current consumption x0, when a

policymaker chooses from some approximation of X.
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4 A multiple priors solution

Rankings of policies will fail to be robust when utilities are unbounded and truncation will not

by itself eliminate the fragility. To escape these diffi culties, I will formalize a policymaker’s

inability to assign a single distribution to each policy option by assuming that each option is

associated with a set of distributions or priors.11 For each (x0, P ), the policymaker believes

that P ′ might also govern the benefit x1 for at least some of the distributions P ′ near to P .

Requiring a policy ranking to be approved by all of a policymaker’s priors would return us

to the paralysis of the previous section. I will therefore follow the maxmin rule of Gilboa

and Schmeidler (1989): our policymaker will act as if the true distribution is the prior that

minimizes the expected utility of the policy. This rule does not solve all of the policymaker’s

problems. In the environment model, many or even all policy options might deliver the same

maxmin expected utility of −∞. It is here that truncation comes to the rescue. When

the tails of distributions are truncated expected utilities are finite and hence one policy can

defeat all of its competitors. That victory moreover can persist in the limit as we decrease

the size of the tails that are truncated.

Formally, the discrimination procedure has three steps. First, truncate the model to

ensure that expected utility calculations are finite. Second, evaluate a policy x = (x0, P )

based on the minimum utility delivered by the policies x′ = (x0, P
′) where P ′ is drawn from

an appropriate set of distributions near to P . For each pair of policy options, one of the

options will then be at least weakly superior to the other. Third, let the interval of x1’s

that the truncations cut off decrease in size. If x defeats x̂ in the limit then x is the maxmin

winner.

A policymaking option will now specify a level of current consumption x0 and a set of

distributions P over the future benefit and can therefore be represented as a set of policies

of the form X = {(x0, P ) : P ∈ P}. I will call such a set of policies a decision.

Given a decision X and either a cutoff εn > 0 for the environment model or a cutoff

δn > 0 for the extermination model, define the decision Xn by applying the cutoff to each

policy in X. Let xn = (x0, P
n) be a representative policy in Xn, where P n is a conditional

11See Millner et al. (2013) and Lemoine and Traeger (2016) for applications of multiple priors to climate
change.
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distribution of P given [εn,∞) or [0, δn]. A sequence of cutoffs 〈εn〉 with εn → 0 or a

sequence 〈δn〉 with δn →∞ thus defines a sequence of truncated decisions 〈Xn〉 for X.

Since we can view a decision X as a set of probability distributions, the maxmin criterion

can be applied. Define the min utility of decision X for a truncation εn or δn by

unmin(X) = min
xn∈Xn

u(xn).

(When Xn contains infinitely many policies, the min above should be replaced by inf but I

will use the notation min throughout the text.)

Definition 3 In either the environment or extermination model, decision X is maxmin

superior to decision X̂ if for all sequences of truncated decisions for X and X̂ we have

unmin(X) > unmin(X̂) for all n suffi ciently large.12

Beyond the specific advice that maxmin superiority gives for environmental and exter-

mination risks, which will come in the next two sections, the criterion enjoys two structural

advantages.

First, maxmin superiority can rank policies that deliver the same infinite expected utility

level. The following example illustrates.

Example 2 In the environment model, let x = (x0, P ) and x̂ = (x̂0, P̂ ) be two policies (or

equivalently singleton decisions) where u(x) is finite and u(x̂) = −∞. Let xα be the mixture

of x and x̂ given by (αx0+(1−α)x̂0, αP+(1−α)P̂ ) where 0 < α < 1.13 Although xα delivers

the better policy x with positive probability and would therefore appear to be superior to x̂,

policies xα and x̂ share the same utility level −∞. But for any positive sequence εn → 0

we have u(xnα) > u(x̂n) for all n suffi ciently large.14 A limit of truncations thus delivers the

reasonable judgment that xα is superior to x̂. �

Second, maxmin superiority is robustness-proof: if we begin with two policies that are

strictly ranked by % then the decisions that contain all policies with nearby distributions
12This test shares some similarities to overtaking criteria in growth theory. See Brock (1970), Gale (1967),

Koopmans (1963), and von Weizsäcker (1965).
13The distribution αP + (1− α)P̂ assigns probability αP (S) + (1− α)P̂ (S) to any S ⊂ R+.
14Given that P (0) = P̂ (0) = 0, a monotone convergence argument shows that u(xnα)→ u(x) and u(x̂n)→

u(x̂) as n→∞.
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will be maxmin ranked the same way. For each truncation of any policy, the minimum

utility of all nearby policies will be achieved by the distribution that maximally increases the

probability of the smallest future benefit level the truncation allows, εn in the environment

model. Since these maxmin adjustments will have the same impact on all policies, the

% ranking of policies will not change. A policy thus cannot be selectively poisoned by

adding small probabilities of arbitrarily small future benefit levels as in Example 1; due to

the truncation the poison will be ignored. The imprecision of a policymaker’s information

about the tails of distributions therefore no longer undercuts decision-making.

To formalize this second point, I define the set of policies near to some x = (x0, P ).

Given some d > 0, a decision X is a d-neighborhood of policy x if it consists of all policies

with current consumption x0 and a probability distribution within distance d of P . See

Section 3 and Appendix A for more precision and for a formulation of the result below using

a variant definition of the distance between probability distributions.

Call the extermination model pure if u1 is bounded below.15

Theorem 3 Suppose, in either the environment model or the pure extermination model,

that x � x̂ for two policies x and x̂. Then each suffi ciently small neighborhood of x is

maxmin superior to each suffi ciently small neighborhood of x̂: there is a d̄ > 0 such that the

d-neighborhood of x is maxmin superior to the d-neighborhood of x̂ for all 0 < d < d̄.

There is one knife-edge case where maxmin superiority is suspect. Suppose we allowed

policies to specify probability distributions that assign strictly positive probability to x1 = 0.

For a decision X in the environment model that contains such a policy, no sequence of

truncated decisions for X will pick up on this fact: the min utility levels given by unmin(X)

will therefore be inappropriately large. Such a X might maxmin defeat a decision X̂ that

contains only policies with P̂ (0) = 0 but the victory will be unconvincing.

15In any extermination model that is not pure, each neighborhood of any policy will contain a policy with
an expected utility of −∞. See Theorem 1.
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5 A fat-tail theorem for the environment model

For an arbitrary pair of decisions X and X̂, there is no guarantee that the min utility of one

of the decisions will dominate the min utility of the other for all suffi ciently small truncations.

Instead of unmin(X) > unmin(X̂) or the reverse inequality holding for all n suffi ciently large,

the lead might switch back and forth as n increases. But there will be a winner in the limit,

a maxmin superior decision, if in the environment model the tails of the distributions given

by X and X̂ are suitably ordered by their likelihoods.

In the environment model, let the distribution P of some policy x in decision X have a

fatter left tail than the distributions for policies in decision X̂. For climate decision-making,

X̂ is the guardrail option: it assigns smaller probabilities than x to all of the suffi ciently bad

outcomes. All else being equal, the fat left tail will count against x in comparisons with the

policies in X̂. But that effect will be substantial only if x delivers utility −∞. If instead x

has finite utility, P’s fat left tail is unlikely to be decisive: the utility contribution of the tail

will also be finite and hence the negative effect of its fatness will become arbitrarily small as

we proceed further out the left tail. These two assumptions about x, the fat left tail of P

and its −∞ utility, are enough to conclude that the guardrail decision X̂ is maxmin superior

to X.

The maxmin criterion will be indispensable for this conclusion: there may well be policies

in X that lead to greater utility than some policies in X̂ but under maxmin a policymaker

will ignore the high-utility policies in X. Maxmin also lets a policymaker remain undecided

about whether the policies in a decision can deliver unbounded expected utility levels. The

maxmin superiority of X̂ over X requires only that one of the policies associated with X

delivers an expected utility of −∞.

Let X ′ = {(x′0, P ′) : P ′ ∈ P ′} be a decision. Define policy (x0, P ) to have a fatter left

tail than policies in X ′ if P assigns larger probability than the distributions in X ′ to all

suffi ciently small left tails, that is, there exist ε > 0 and k < 1 such that kP (S) > P ′(S) for

all P ′ ∈ P ′ and S ⊂ [0, ε].16

Theorem 4 Let X and X̂ be two decisions in the environment model with positive current

16See Rojo (1992) for related orderings.
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consumption. If there is a policy x ∈ X with a fatter left tail than the policies in X̂ and

u(x) = −∞ then X̂ is maxmin superior to X.

Theorem 4 permits every policy in both decisions X and X̂ to deliver an expected utility

of −∞: policymakers can therefore make recommendations even when all decisions lead to

negatively infinite utilities. Indeed, as mentioned, policymakers can stay agnostic about

whether X and X̂ will deliver an expected utility of −∞. The most pressing objections to

Weitzman (2009) therefore do not apply to the current approach. Weitzman’s emphasis on

tails moreover is validated, though their importance lies in policy discrimination rather than

in showing that expected utilities can equal −∞.

The proof of Theorem 4 argues that since x delivers an expected utility of −∞, the min

utility of X must converge to −∞ as the truncations of the left tail shrink. The result then

follows immediately if each policy in X̂ has finite or greater expected utility. So suppose

there is a policy x̂ in X̂ that, like x, delivers an expected utility of −∞. The race between x̂

and x will then be decided by their left tails (which by themselves deliver utility −∞) and,

due to x’s fatter left tail, x̂ will emerge as the victor. Since x probability-dominates x̂ in

the left tail and u1 is not bounded below, the tail advantage of x̂ over x grows ever larger as

the tail shrinks and will overtake any nontail advantage that x might enjoy. Notice that x

might not determine the min utility of X: there might be policies in X even worse than x

but if x̂ defeats x then it must also defeat the smallest-utility policy in X.

Theorem 4 invokes a moderately weak fat tail assumption that, for some k < 1, P̂ (S) <

kP (S) for all events S far enough out on the left tail and all P̂’s for the policies in X̂, but it

is not the weakest possible. If we had assumed the milder, P̂ (S) < P (S) for all events S far

enough out on the left tail, then a nontail advantage of X could outweigh the tail advantage

of X̂.

To apply maxmin superiority via Theorem 4, a policymaker will have to judge the tails

of distributions. To see if our fat tail assumption holds, a policymaker will need to weigh

claims about the tails of various distributions and determine if decision A makes extreme

climate outcomes more likely than decision B. But the demands of decision-making are more

modest than in Weitzman (2009), which first put the spotlight on fat tails. Truncations

allow policymakers to avoid debates over whether the policies/distributions in a decision
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necessarily lead to an expected utility of −∞ or whether tails meet some target level of

fatness. Whether a policy delivers −∞ expected utility can turn on minute modeling

details, as we saw in section 2, and there is no critical level of fatness that necessarily leads

to −∞ expected utility. Policymakers fortunately face an easier task: they just need to

compare the likelihoods of tails for different decisions. Theorem 4’s assumption that the

x in X with the fatter tail delivers a utility of −∞ could be satisfied simply because every

policy in X has a fatter tail than the policies in X̂ and the policymaker is open-minded

about their utility levels.

The maxmin proposal makes little progress on the immiseration problem: it can be opti-

mal to invest nearly all of x0 on tail improvements if by so doing the tail of the distribution

of x1 becomes less fat. Immiseration conclusions however present more of a predicament for

social welfare maximization than for effi ciency. The variables x0 and x1 are the consump-

tions of different generations; and perhaps social welfare would be enhanced if the present

generation suffered severe hardship for the greater good. An effi ciency test instead asks

how, given the present generation’s consumption x0, future welfare would be most improved.

Since x0 can be fixed across decisions, the maxmin approach can answer that question.

6 Tail irrelevance in the extermination model

From the maxmin point of view, the environment and extermination models differ dramati-

cally. In the environment model, the utility of x1 is unbounded ‘on the left’which renders

the left tail of the distribution of x1 all important. If one of the policies in a decision, due to

its left tail, leads to a utility level of −∞ then the minimum-utility policy in the decision will

also deliver a utility of −∞. In a contest with other decisions, tail comparisons will then

be paramount. In the extermination model, the utility of x1 in unbounded ‘on the right’

and hence the utility of some policies can diverge to ∞. But the minimum expected utility

levels delivered by a decision will usually be finite or smaller and the right tail will then

be irrelevant. In fact if we narrow our view to one problem at a time by assuming in the

extermination model that u1 is bounded below then the left tail will be irrelevant too: the

expected utility of the smallest intervals of x1 will converge to 0 as the intervals shrink. The
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centers of the distributions of the future benefit will then be in the driver’s seat and the min

utilities of decisions will be finite. Policy comparisons can therefore proceed conventionally

without any need for truncation.

Each decision X in this section again denotes a set of policies that differ only with respect

to their distributions of x1. Call an extermination model pure if u1 is bounded below and let

us say that decision X has the finite min utility if minx∈X u(x) is finite. When X contains

infinitely many policies, min should be replaced by inf but I will use the min notation below.

Decisions in the pure extermination model will normally have finite min utilities and all

truncations will lead to these utilities. The truncations themselves are therefore superfluous

and policymaking can proceed without them: a decision-maker will face a straightforward

choice between options with finite utility.

Theorem 5 Let decision X in the pure extermination model contain a policy with finite

expected utility. Then X has a finite min utility minx∈X u(x) and the min utility of X for a

truncation will converge to minx∈X u(x) as the truncations decrease (δn →∞). A decision

X will contain a policy with finite expected utility if X contains every policy suffi ciently near

to some policy x.

So under mild conditions decisions in the pure extermination model will have finite ex-

pected utility.

To derive clear-cut policy advice from Theorem 5, we need only eliminate flukes where

the finite min utilities happen to tie. I will continue to use a limit-of-truncations definition

of an optimal policy, in part to provide a result that covers both the environment and

extermination models. But as we have now seen truncations are usually unnecessary in the

extermination model.

Let a policymaker choose from a finite feasible set of decisions X . Let X ∈ X be a

maxmin optimum if X is maxmin superior to all other policies in X .17

The set of decisions X is generic if the (possibly non-finite) min utilities of decisions in

X differ, that is, minx∈X u(x) 6= minx∈X′ u(x) when X 6= X ′ and both are in X . Genericity
17So if X is a maxmin optimum then, for all sequences of truncated decisions for the decisions in X , the

min utility of X is greater than the min utility of X ′ for truncation εn or δn, that is, unmin(X) > unmin(X
′),

for all decisions X ′ in X besides X and for all n suffi ciently large.
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is best-suited to the extermination model. Under the assumption, at most one X ∈ X

can have minx∈X u(x) = −∞ and thus a leading case of the environment model, where

many decisions have a min utility of −∞, is excluded. In the pure extermination model, in

contrast, Theorem 5 reports that decisions will normally have finite min utilities; genericity

then just requires these finite utility levels to differ across decisions. However genericity

comes to be satisfied, it implies that a finite set of decisions will have a unique maxmin

optimum.

Theorem 6 If the feasible set of decisions is finite and generic then in either the environ-

ment or extermination model there is a unique maxmin optimum.

The upshot of Theorems 5 and 6 is that in the pure extermination model there will

normally be a feasible X with finite utility that maxmin dominates all other feasible options

and X’s superiority holds even if we ignore the right tail. The classical advice to ignore the

distant future is valid.

The proof of Theorem 6 argues that the min utility of decision X for a truncation,

unmin(X), converges tominx∈X u(x) as the truncations shrink in size. Genericity and finiteness

furthermore imply that only one decision X∗ in the feasible set can maximize minx∈X u(x).

The min utility of X∗ for all truncations suffi ciently small must then outstrip the min utility

of the other feasible decisions and is therefore the maxmin optimum.

7 Discussion: asymptotic discounting

The environment and extermination models come to different conclusions about the im-

portance of the tails of the distribution of the future benefit, as Theorems 4 and 5 have

shown.

In the environment model, utility diverges to −∞ as future consumption x1 decreases to

0; the left tails of the distribution of x1 can therefore lead the expected utilities of policies to

diverge to −∞ as well. When this fact is combined with the maximin criterion, the left tails

will drive the ranking of decisions. Since the likelihoods of the lowest future consumption

levels will determine the min utilities, a policymaker should minimize the likelihood of the
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consumption outcomes on the left tail —the guardrail advice that Weitzman (2009) backed

informally.

In the pure extermination model, utility diverges to ∞ as the length of civilization x1

increases. The distributions that govern the min utility will therefore assign high likelihood

to an early end to civilization (small values of x1) and thus deliver finite expected utility

levels. A policymaker should therefore ignore the right tail and pay little attention to

the dangers that are likely to end civilization only in the far future. In fact, in the pure

extermination model the left tail is also unimportant: when the utility of x1 is bounded

below, the utility impact of the left tail will become vanishingly small as the lower bound

that defines the left tail goes to 0.

Returning to the right tail, an asymptotic form of discounting or risk aversion appears

in both the environment and extermination models. Just as the principle of diminishing

marginal utility tells us to pay more for the high marginal utility gains that arise at small

levels of consumption, maxmin optimization tells us to assign greater weight to small con-

sumption levels and to ignore large civilization survival times. This advice moreover does

not require u0 or u1 to be concave.

The tail asymmetry in our results —give priority to fat tails in the environment model

but not in the extermination model —is driven by the pessimism of min utility evaluations.

With a max or sup definition of the utility of a decision, the advice would be reversed: give

priority to fat tails in the extermination model but not in the environment model. Dual

to Theorem 4, if in the extermination model a policy x in decision X has a fatter right rail

than the policies in X̂ and if u(x) =∞ then X will be maxmax superior to X̂.

8 Conclusion: unbounded utilities and classical deci-

sion theory

Weitzman (2009) and Stern and Stiglitz (2021) argue that expected utility theory does

not apply when distributions are fat-tailed: fat tails combined with some standard utility

functions lead to expected utilities that diverge. From the point of view of classical decision
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theory, this criticism is hard to understand. In the von Neumann-Morgenstern setting where

agents choose between known probability distributions (lotteries), axioms are placed on

preference relations over probability distributions not on utility functions. Moreover, when

preferences satisfy standard axioms it is a theorem that the utility functions that represent

those preferences are bounded above and below —which is presumably why decision theory

has mostly ignored Weitzman’s dismal theorem.18

According to the classical agenda, critics of expected utility theory should not posit

unbounded utility functions; they should identify the axiom of choice under uncertainty

they wish to challenge. It is clear which axiom the preferences in this paper (or the implicit

preferences in Weitzman (2009)) violate: they fail to obey the continuity axiom. If we fix

current consumption x0 then in the language of this paper continuity states: if (x0, P ) �

(x0, Q) � (x0, R) then there exist α, β ∈ (0, 1) such that

(x0, αP + (1− α)R) � (x0, Q) � (x0, βP + (1− β)R). (vNM continuity)

To see that the policy preference % violates vNM continuity, suppose that

∞ > EPu1 > EQu1 > ERu1 = −∞.

Then for every α ∈ (0, 1) we have EQu1 > EαP+(1−α)Ru1 and hence (x0, Q) � (x0, αP + (1−

α)R), thus violating the first � in vNM continuity.

Instead of taking a position on whether or not vNM continuity is reasonable, I will show

that it violates a different and equally compelling continuity axiom. Fix u0 and u1 and,

for concreteness, a sequence of truncations in the environment model defined by εn → 0.

Consider an agent who for each n has a preference %n over the εn truncations defined by

(x0, P
n) %n (x̂0, P̂

n) if and only if u0(x0) + EPnu1 ≥ u0(x̂0) + EP̂nu1,

where P n and P̂ n are defined as in section 3. The%n fit together well: if (x0, P
n) %n (x̂0, P̂

n)

then, for any integer i > 0, (x0, P
n) %n+i (x̂0, P̂

n). That is, a later preference in the sequence

18See Arrow and Priebsch (2014), however, which argues that sensible utilities should be bounded.
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agrees with any earlier preference over the truncated policies that lie in the earlier preference’s

domain.

Now suppose that the agent wishes to extend his or her preferences to a % that applies
to nontruncated policies. Continuity considerations recommend the following axiom:

if xn �n x̂n for all n suffi ciently large then x % x̂, (tail continuity)

where as usual xn = (x0, P
n) and x̂n = (x̂0, P̂

n). But if we assume tail continuity then %
will violate vNM continuity. Fix some α ∈ (0, 1) and x0 and let P , Q, and R be defined as

before. Then (x0, Q
n) �n (x0, αP

n + (1 − α)Rn) for all n suffi ciently large and hence, by

tail continuity, (x0, Q) � (x0, αP + (1− α)R). Since this holds for all α ∈ (0, 1), we have a

violation of vNM continuity. So even though our agent has nicely behaved preferences over

truncated policies, the vNM continuity axiom will block their natural extension.

Truncations suggest a role for unbounded utility functions: they can summarize the

preferences of agents who can judge the harm of diminishing consumption but are unsure how

to evaluate very small levels of consumption. When in social decision-making 0 consumption

represents the end of civilization, a judgment that the loss incurred has no obvious lower

bound does not seem unreasonable.

A Appendix: technicalities

Further assumptions and conventions

I assume throughout the paper that, for each policy (x0, P ), (1) u0(x0) = −∞ andEPu1(x1) =

∞ do not hold simultaneously and (2) EPu1(x1) exists (with ±∞ allowed). As mentioned

in the text, P (0) = 0 also holds for any (x0, P ).

Due to (2), for any policy (x0, P ) the integrals with respect to P of the positive and negative

parts of u1 do not both equal ∞.

Expectations will designate Lebesgue rather than Riemann integrals.

When a sequence of policies x(n) converges to policy x, I will sometimes write x(n)→ x.

Convergence of probability distributions
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The distance d between two measures P and P ′ on R+ is defined by d(P, P ′) = supS |P (S)−

P ′(S)| where the supremum is taken over all measurable S ⊂ R+. The measures do not

have to be probability distributions. The sequence of measures P (n) converges to measure

P if d(P (n), P ) → 0. Weak convergence provides an alternative definition of convergence

for probability measures and can be defined by the requirement that EP (n)f → EPf for

any bounded and continuous f : R+ → R. Convergence as defined by d implies weak

convergence.

Section 3

The two paralysis results, Theorems 1 and 2, will hold under slightly weaker conditions if

they are restated using weak convergence. If ‘P (n) converges weakly to P’replaces ‘P (n)

converges to P’in Definition 2 then Theorem 1 remains valid even if we no longer require a

policy (x0, P ) to assign probability 0 to x1 = 0, P (0) = 0. Theorem 2 will also continue to

hold without the same requirement if a weak-convergence definition of the distance between

probability distributions P and P̂ replaces the d given in A1. Specifically, distance could

instead be given by the Lévy-Prokhorov metric d∗ defined by: if F and F̂ are the distributions

functions for P and P̂ then

d∗(P, P̂ ) = inf{γ ∈ R+ : F (x1 − γ)− γ ≤ F̂ (x1) ≤ F (x1 + γ) + γ for all x1 ∈ R+}.

See Billingsley (1999).

In both the environment and extermination model, there is a unique conditional distribution

of P given [εn,∞) and [0, δn] respectively for all n suffi ciently large given by

P n(S) = 1
P ([εn,∞))

P (S ∩ [εn,∞)) and P n(S) = 1
P ([0,δn])

P (S ∩ [0, δn])

for each measurable S ⊂ R+.

In Theorem 2, a more precise statement of ‘arbitrarily near’is that, for any distance b > 0,

there exist policies x∗ and x̂∗ such that the distance between x and x∗ and the distance

between x̂ and x̂∗ are both less than b.

Section 4

Using the definition of the distance d in A1 and letting b > 0, decisionX is the b-neighborhood

of (x0, P ) if X = {(x0, P
′) : d(P ′, P ) ≤ b}.
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If we use a metric for weak convergence to define b-neighborhoods then Theorem 3 will hold if

we additionally assume that u1 is Lipschitzian (see Gibbs and Su (2003) on the Kantorovich

metric).

Section 6

In Theorem 5, a more precise statement of ‘X contains every policy suffi ciently near to some

policy x’is that there is a b > 0 and a policy x such that x′ ∈ X if the distance between x

and x′ is less than b.

B Appendix: proofs

Proof of Theorem 1. The proofs for the two models are similar. Consider the en-

vironment model and let x = (x0, P ) and x̂ = (x̂0, P̂ ). To construct 〈x(n)〉, let 〈εn〉

be a sequence of positive numbers with εn → 0. For each n and measurable S, de-

fine P (n)(S) = P (S ∩ (εn,∞)) + p where p equals P ([0, εn]) if εn ∈ S and 0 otherwise.

Since, by continuity from below, P (S ∩ (εn,∞)) → P (S \ {0}) and since P (0) = 0,

P (S ∩ (εn,∞)) → P (S). Moreover, since P (0) = 0, continuity from above implies

P ([0, εn]) → 0. Hence P (n)(S) → P (S) and P (n) → P . Setting x(n) = (x0 + εn, P (n)),

we have x(n)→ x and u(x(n)) > −∞ for all n.

Let 〈δ̂n〉 be a sequence of positive numbers such that δ̂n → ∞. Given some n and

0 < ε̂n < δ̂n, set x̂0(n) = x̂0 + ε̂n and define P̂ (n) by setting, for any measurable S,

P̂ (n)(S) = (1− 1
n+1

)P̂ (S ∩ (ε̂n, δ̂n)) + p+ q where p equals (1− 1
n+1

)P̂ ([0, ε̂n]) + 1
n+1

if ε̂n ∈ S

and 0 otherwise and q equals (1 − 1
n+1

)P̂ ([̂δn,∞)) if δ̂n ∈ S and 0 otherwise. Similarly to

the previous paragraph, P̂ (S∩ (ε̂n, δ̂n))→ P̂ (S \{0}) and, since P̂ (0) = 0, P̂ (S∩ (ε̂n, δ̂n))→

P̂ (S). Moreover P̂ ([0, εn]) → 0 and P̂ ([̂δn,∞)) → 0. Hence P̂ (n)(S) → P̂ (S) and

P̂ (n)→ P̂ . Since x̂0(n)→ x̂0, we have x̂(n)→ x̂.

Set 〈ε̂n〉 recursively by letting each ε̂n satisfy ε̂n ≤ 1
2
ε̂n−1 for n > 1, 0 < ε̂n < δ̂n, and

u0(x̂0(n)) + EP̂ (n)u1(x1) = u0(x̂0(n)) + P̂ (n)(ε̂n)u1(ε̂n) +

∫
(ε̂n,δ̂n]

u1(x1)dP̂ (n) < u(x(n)).

The inequality can be satisfied since (1)
∫

(ε̂n,δ̂n]
u1(x1)dP̂ (n) and u0(x̂0(n)), each seen as a

23



function of ε̂n, are bounded above by u1(δ̂n) and u0(x̂0 + ε̂0) respectively, (2) P̂ (n)(ε̂n) ≥
1

n+1
> 0 for all ε̂n, (3) u1(ε̂n) → −∞ as ε̂n → 0, and (4) u(x(n)) > −∞. So for x̂(n) =

(x̂0(n), P̂ (n)), we have u(x(n)) > u(x̂(n)) for all n.

Proof of Theorem 2. As the proofs for the two models are again similar, assume the

environment model. Fix a number b > 0 which will serve as a bound for the distance

between x∗ and x and between x̂∗ and x̂. I will show that there exists a ε0 > 0, a sequence

of positive numbers 〈εn〉, and sequences of measures 〈Qn〉 and 〈Q̂n〉 such that:

u0(x̂0 + ε0) + 1

Q̂n(R+)

∫
[εn,∞)

u1(x1)dQ̂n < u0(x0 + ε0) + 1
Qn(R+)

∫
[εn,∞)

u1(x1)dQn (Odd)

for all odd n > 0,

u0(x̂0 + ε0) + 1

Q̂n(R+)

∫
[εn,∞)

u1(x1)dQ̂n > u0(x0 + ε0) + 1
Qn(R+)

∫
[εn,∞)

u1(x1)dQn (Even)

for all even n > 0. There will furthermore be probability distributions P ∗ and P̂ ∗ such that

(A) for each n, 1
Qn(R+)

Qn and 1

Q̂n(R+)
Q̂n are conditional distributions of P ∗ and P̂ ∗ given

[εn,∞) and (B) d(P ∗, P ) + ε0 < b, and d(P̂ ∗, P̂ ) + ε0 < b.

Given 0 < ε0 < δ, define Q0 by letting, for any measurable S, Q0(S) = P (S ∩ (ε0, δ)).

For the same 0 < ε0 < δ, define Q̂0 by Q̂0(S) = P̂ (S ∩ (ε0, δ)). Comparably to the proof of

Theorem 1, set ε0 > 0 small enough and δ large enough that d(Q0, P ) + 1−Q0(R+) + ε0 < b

and d(Q̂0, P̂ ) + 1− Q̂0(R+) + ε0 < b.

Proceeding by induction, suppose that εn, ∆n, ∆̂n, Qn, and Q̂n for 1 ≤ n ≤ m satisfy: (i)

Odd and Even, (ii) d(Qn, P ) < d(Q0, P )+1−Q0(R+) and d(Q̂n, P̂ ) < d(Q̂0, P̂ )+1−Q̂0(R+),

(iii) 0 < 1−Qn(R+) < 1
n
if n is odd and 0 < 1−Q̂n(R+) < 1

n
if n is even, (iv) Qn = Qn−1 if n

is even and Q̂n = Q̂n−1 if n is odd, (v) d(Qn, Qn−1) = ∆n and Qn(R+) = Qn−1(R+)+∆n if n

is odd and d(Q̂n, Q̂n−1) = ∆̂n and Q̂n(R+) = Q̂n−1(R+)+∆̂n if n is even, (vi) εn < εn−1, and

(vii) the supports of Qn and Q̂n are contained in [εn, δ]. Due to vii,
∫

[εm,∞)
u1(x1)dQm and∫

[εm,∞)
u1(x1)dQ̂m are finite. For concreteness, let m be even. Set Qm+1 = Qm and ∆m+1 =

0. Since (1) u1(εm+1) → −∞ as εm+1 → 0, (2)
∫

[εm,∞)
u1(x1)dQ̂m,

∫
[εm,∞)

u1(x1)dQm,

u0(x̂0 + ε0) and u0(x0 + ε0) are finite, and (3)
∫

[εm+1,∞)
u1(x1)dQm+1 =

∫
[εm,∞)

u1(x1)dQm for
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any εm+1 ≤ εm, we can for any ∆̂m+1 > 0 choose 0 < εm+1(∆̂m+1) < εm so that

u0(x̂0 + ε0) + 1

Q̂m(R+)+∆̂m+1
∆̂m+1u1(εm+1(∆̂m+1)) + 1

Q̂m(R+)+∆̂m+1

∫
[εm,∞)

u1(x1)dQ̂m

< u0(x0 + ε0) + 1
Qm+1(R+)

∫
[εm+1,∞)

u1(x1)dQm+1.

Fix ∆̂m+1 so that 0 < 1−Q̂m(R+)+∆̂m+1 <
1

m+1
and set εm+1 = εm+1(∆̂m+1). Define Q̂m+1

by Q̂m+1(S) = Q̂m(S) + ∆̂m+1 for any measurable S such that εm+1 ∈ S and Q̂m+1(S) =

Q̂m(S) for any measurable S such that εm+1 /∈ S, thus satisfying iii and v.

We then have

d(Q̂m+1, P̂ ) ≤ d(Q̂m, P̂ ) + d(Q̂m+1, Q̂m) = d(Q̂m, P̂ ) + ∆̂m+1 = d(Q̂0, P̂ ) +
∑m+1

n=1
∆̂n

= d(Q̂0, P̂ ) + Q̂m+1(R+)− Q̂0(R+) ≤ d(Q̂0, P̂ ) + 1− Q̂0(R+),

where the inequalities are due to the triangle inequality and iii, the first equality is due to

the definition of Q̂m+1, and the final two equalities are due to v. Condition ii is therefore

satisfied for m + 1. Since i, iv, vi, and vii are evidently satisfied as well, the induction is

complete.

Define P ∗ and P̂ ∗ by P ∗(S) = Q0(S ∩ [ε0, δ]) +
∑∞

n=1Q
n(S ∩ {εn}) and P̂ ∗(S) = Q̂0(S ∩

[ε0, δ])+
∑∞

n=1 Q̂
n(S∩{εn}) for each measurable S. Due to iii, P ∗(R+) = 1 and P̂ ∗(R+) = 1

and so P ∗ and P̂ ∗ are probability distributions. Since d(Qn, P ∗) → 0 and d(Q̂n, P̂ ∗) → 0,

taking the limit of ii gives d(P ∗, P ) ≤ d(Q0, P ) + 1−Q0(R+) and d(P̂ ∗, P̂ ) ≤ d(Q̂0, P̂ ) + 1−

Q̂0(R+). Given that d(Q0, P ) + 1− Q̂0(R+) + ε0 < b and d(Q̂0, P̂ ) + 1− Q̂0(R+) + ε0 < b,

we have B. Define x∗ = (x0 + ε0, P
∗) and x̂∗ = (x̂0 + ε0, P̂

∗) and let the truncations 〈xn〉

and 〈x̂n〉 of x∗ and x̂∗ be defined by the 〈εn〉 given in the induction argument. Since

Qn|[εn,∞) = P ∗|[εn,∞) and Q̂n|[εn,∞) = P̂ ∗|[εn,∞), we have A. Odd therefore shows

that xn � x̂n for each odd n and Even shows that x̂n � xn for each even n.

Proof of Theorem 3. I again restrict the proof to the environment model. Let x∗ =

(x∗0, P
∗) and x̂ = (x̂0, P̂ ) satisfy x∗ � x̂ and let X∗ and X̂ be the b-neighborhoods of

x∗ and x̂. (In the proof, I use b rather than d to denote a particular distance.) Since
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x∗ � x̂, u(x∗) > −∞ and therefore x∗0 > 0. Fix some positive sequence εn → 0.

Let (x0, P ) ∈ {x∗, x̂} and 0 < b < 1. Then P ([0, εn]) < 1− b for all n suffi ciently large.

Fix n at such a value, allowing the construction of a probability distribution P ′ with P ′(εn) =

P (εn) + b. Let X = {(x0, P
′) : d(P, P ′) ≤ b}. Let δ > εn equal max{δ′ : P ([δ′,∞)) ≥ b},

where the max exists due to continuity from above. Then infxn∈Xn u(xn) is achieved by the

P ′ defined by, for any measurable S, P ′(S) = P (S ∩ [0, δ)) + p+ q where p = b if εn ∈ S and

0 otherwise and q = P ([δ,∞))− b if δ ∈ S and 0 otherwise.

Fixing some n,

u(x0, P
′n)

= u0(x0) +
1

1− P ′([0, εn))

(
P (εn)u1(εn) + bu1(εn) +

∫
(εn,δ)

u1(x1)dP + (P ([δ,∞))− b)u1(δ)

)
.

For x = x∗ define P ∗′ = P ′ and δ∗ = δ, and for x = x̂ define P̂ ′ = P ′ and δ̂ = δ. Then,

using the fact that

1

1− P ∗′([0, εn))
− 1

1− P̂ ′([0, εn))
=

P ∗′([0, εn))− P̂ ′([0, εn))

1 + P ∗′([0, εn))− P̂ ′([0, εn)) + P ∗′([0, εn))P̂ ′([0, εn))
,

we have

u(x∗0, P
∗′n)− u(x̂0, P̂

′n) = u0(x∗0)− u0(x̂0)

+
1

1− P ∗′([0, εn))
P ∗(εn)u1(εn)− 1

1− P̂ ′([0, εn))
P̂ (εn)u1(εn) (1a)

+

(
P ∗′([0, εn))− P̂ ′([0, εn))

1 + P ∗′([0, εn))− P̂ ′([0, εn)) + P ∗′([0, εn))P̂ ′([0, εn))

)
bu1(εn)

(1b)

+
1

1− P ∗′([0, εn))

∫
(εn,δ

∗)

u1(x1)dP ∗ − 1

1− P̂ ′([0, εn))

∫
(εn,δ̂)

u1(x1)dP̂

(1c)

+ 1
1−P ∗′([0,εn))

(P ([δ∗,∞))− b)u1(δ∗)− 1

1−P̂ ′([0,εn))
(P ([̂δ,∞))− b)u1(δ̂).

(1d)
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Suppose first that u(x∗0, P
∗) and u(x̂0, P̂ ) are both finite. Then, for P ∈ {P ∗, P̂}, as

n→∞ we have P (εn)u1(εn)→ 0, P ′([0, εn))→ 0, and P (R+ \ {εn})→ 1. For x ∈ {x∗, x̂},

the finiteness of u(x0, P ) implies that
∫

[0,εn)
u1(x1)dP ′ → 0 as n→∞. For all n suffi ciently

large, |u1(x1)| > |u1(εn)| for all x1 < εn. Hence P ∗′([0, εn))u1(εn)→ 0 and P̂ ′([0, εn))u1(εn)

as n → ∞. Therefore 1a and 1b converge to 0 as n → ∞. For 1c and 1d, observe that

δ → ∞ as b → 0 and, since the finiteness of u(x0, P ) implies that
∫

[δ,∞)
u1(x1)dP → 0 as

δ → ∞, (P ([δ,∞)) − b)u1(δ) → 0 as b → 0. Hence 1d converges to 0 as b → 0. Since

the finiteness of u(x0, P ) also implies that
∫

(εn,δ)
u1(x1)dP →

∫
(εn,∞)

u1(x1)dP as δ → ∞

and
∫

(εn,δ)
u1(x1)dP →

∫
(εn,δ)

u1(x1)dP as n → ∞, for any ε > 0 there exist ε̄ > 0 and

δ̄ > 0 such that, for all εn < ε̄ and δ > δ̄,
∣∣∣∫(εn,δ)

u1(x1)dP −
∫
R+
u1(x1)dP

∣∣∣ < ε and therefore∣∣∣u0(x0) +
∫

(εn,δ)
u1(x1)dP − u(x)

∣∣∣ < ε. Given that P ∗(R+\{εn})→ 1 and P̂ (R+\{εn})→ 1

as n → ∞, there is a b̄ > 0 such that, for all 0 < b < b̄, u(x∗0, P
∗′n) − u(x̂0, P̂

′n) and

u(x∗) − u(x̂) will have the same sign for all n suffi ciently large. So, for these values of b,

u(x∗0, P
∗′n) > u(x̂0, P̂

′n) for all n suffi ciently large.

Next suppose that u(x∗0, P
∗) is finite and u(x̂0, P̂ ) = −∞. For 1a, as before P ∗(εn)u1(εn)→

0 as n→∞ while P̂ (εn)u1(εn) < 0 for all n suffi ciently large. Similarly for 1b, P ∗′([0, εn))u1(εn)→

0 and P̂ ′([0, εn))u1(εn) < 0 for all large n. For 1d and either P ∈ {P ∗, P̂}, (P ([δ,∞)) −

b)u1(δ) → 0 as b → 0 as before, again letting δ be a function of b. For 1c, given the

finiteness of u(x∗0, P
∗), there again exist ε̄ > 0 and δ̄ > 0 such that, for all εn < ε̄ and δ̂ > δ̄,∣∣∣u0(x∗0) +

∫
(εn,δ

∗) u1(x1)dP ∗ − u(x∗)
∣∣∣ < ε. So, since

∫
(εn,δ

∗) u1(x1)dP ∗ → −∞ as εn → 0 for

all δ∗, there is a b̄ > 0 such that, for 0 < b < b̄, u(x∗0, P
∗′n) > u(x̂0, P̂

′n) for all n suffi ciently

large.

Finally suppose that u(x∗0, P
∗) = ∞ and u(x̂0, P̂ ) is finite. For P ∈ {P ∗, P̂} and any

ε > 0,
∫

[0,ε]
u1(x1)dP ∗ must then be finite. Hence 1a and 1b converge to 0 as in the all-finite

case. For 1d, (P̂ ([̂δ,∞)) − b)u1(δ̂) → 0 as b → 0 and (P ∗([δ∗,∞)) − b)u1(δ∗) ≥ 0 for all

b suffi ciently small. For 1c, given the finiteness of u(x̂0, P̂ ), there again exist ε̄ > 0 and

δ̄ > 0 such that, for all εn < ε̄ and δ̂ > δ̄,
∣∣∣u0(x̂0) +

∫
(εn,δ̂)

u1(x1)dP̂ − u(x̂)
∣∣∣ < ε. Since∫

(εn,δ
∗) u1(x1)dP ∗ → ∞ as δ∗ → ∞, uniformly for all εn, there is a b̄ > 0 such that, for

0 < b < b̄, u(x∗0, P
∗′n) > u(x̂0, P̂

′n) for all n suffi ciently large.
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Proof of Theorem 4. Let x∗ = (x∗0, P
∗) be the posited policy with the fatter left tail.

Given a policy x̄ = (x̄0, P̄ ) and a measurable S ⊂ R+, define uS(x̄) = u0(x̄0) +
∫
S
u1(x1)dP̄ .

Since x∗ has a fatter left tail than the policies in X̂, there is a ε̄ > 0 and γ̄ > 0 such that∫
[γ,ε̄] u1(x̂1)dP̂∫

[γ,ε̄] u1(x∗1)dP ∗ < k for all (x̂0, P̂ ) ∈ X̂ and all 0 < γ ≤ γ̄. Since u(x∗) = −∞, P ∗(0) = 0, and

u0(x∗0) is finite,
∫

[γ,ε̄]
u1(x∗1)dP ∗ → −∞ as γ → 0. In combination with the fact that u0(x̂0)

is finite for (x̂0, P̂ ) ∈ X̂, it follows that there is a ε′ > 0 and γ′ > 0 such that
u[γ,ε′](x̂)

u[γ,ε′](x
∗) < k

for all x̂ ∈ X̂ and all 0 < γ ≤ γ′. Since u(x∗) is a Lebesgue integral (plus a finite constant),

the assumption that u(x∗) = −∞ implies that u(ε̃,∞)(x
∗) is finite for each ε̃ > 0. Since

in addition limγ→0 u[γ,̃ε)(x
∗) = −∞ for any ε̃ > 0, there is a ε′′ > 0 and γ′′ > 0 such that

u[γ,ε′′](x̂)

u[γ,∞)(x
∗) < k for all x̂ ∈ X̂ and 0 < γ ≤ γ′′. Partition X̂ into X̂1 = {x̂ ∈ X̂ : u(ε̃,∞)(x̂) ≥ 0

for all ε̃ > 0} and X̂2 = X̂ \ X̂1. If x̂ ∈ X̂1 then for any pair of sequences of truncated

decisions 〈Xn〉 and 〈X̂n〉 there is a n′′′ such that u(x̂n) > u(x∗n) for all n > n′′′. For any

x̂ ∈ X̂2, u(ε′′,∞)(x̂) must lie in the bounded interval [u0(x̂0) + u1(ε′′), 0]. Since in addition

limγ→0 u[γ,∞)(x
∗) → −∞, for any δ > 0 there exists a γ̃ > 0 such that

u(ε′′,∞)(x̂)

u[γ,∞)(x
∗) < δ for all

x̂ ∈ X̂2 and 0 < γ ≤ γ̃. Since

u[γ,∞)(x̂)

u[γ,∞)(x∗)
=

u[γ,ε′′](x̂)

u[γ,∞)(x∗)
+
u(ε′′,∞)(x̂)

u[γ,∞)(x∗)
,

the fact that
u[γ,ε′′](x̂)

u[γ,∞)(x
∗) < k for all x̂ ∈ X̂2 and 0 < γ ≤ γ′′ implies there is a γ̃ > 0 such that

u[γ,∞)(x̂)

u[γ,∞)(x
∗) < k for all x̂ ∈ X̂2 and 0 < γ ≤ γ̃. Hence for any pair of sequences of truncated

decisions 〈Xn〉 and 〈X̂n〉 and any x̂ ∈ X̂ there exists n∗ such that u(x̂n) > un(x∗n) for all

n ≥ n∗. Given that infxn∈Xn u(xn) ≤ u(x∗n) for each n, X̂ is maxmin superior to X.

Proof of Theorem 5. Letting x̂ = (x0, P̂ ) be the posited policy with finite utility, u0(x0)

is finite. Since the extermination model is pure, u1(0) is finite and therefore u(x′) ≥ u0(x0)+

u1(0) > −∞ for each x′ ∈ X. Hence infx′∈X u(x′) is finite or greater. Since infx′∈X u(x′) ≤

u(x̂), infx′∈X u(x′) is finite. Given any positive sequence δn → ∞, limn→∞ u
n
min(X) =

infx′∈X u(x′) and hence the min utility of X for 〈δn〉 is infx′∈X u(x′).

Let x = (x0, P ) be the policy given in the final sentence of the Theorem. Since P (0) = 0,

for ε > 0 suffi ciently small and δ suffi ciently large the policy x̃ = (x0 + ε, P̃ ), where P̃ is

the conditional distribution of P given [ε, δ], is within distance d of x. So x̃ ∈ X. Since
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u0(x0 + ε) and
∫

[ε,δ]
u1(x1)dP̃ are both finite, so is u(x̃).

Proof of Theorem 6. Due to the maintained assumption that each policy (x0, P ) has

P (0) = 0, for any εn → 0 or δn → ∞, limn→∞ u
n
min(X) = infx∈X u(x) for each X ∈

X . Genericity and finiteness then imply there is a X∗ ∈ X such that limn→∞ u
n
min(X∗) >

limn→∞ u
n
min(X) for all X ∈ X \ {X∗}. Hence for any εn → 0 or δn →∞ there is a n̄ such

that unmin(X∗) > unmin(X) for all X ∈ X \ {X∗} and n > n̄.
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