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Abstract

In production theory, conditional frontiers and conditional efficiency measures are
flexible and appealing tools to investigate the role of environmental variables on the
production process. Direct approaches estimate non-parametrically conditional distri-
bution functions requiring smoothing techniques and the use of bandwidths. Traditional
methods for selecting bandwidths provide bandwidths with order that may not be opti-
mal when estimating the boundary of the distribution function. In this paper we suggest
an approach that avoids this problem, by eliminating in a first step, with flexible control
functions, the influence of the environmental factors on the inputs and the outputs. By
doing this we produce “pure” inputs and outputs which allow to estimate a “pure” mea-
sure of efficiency, more reliable for ranking the firms, since the influence of the external
factors have been eliminated. We are also able to recover the frontier and efficiencies in
original units. This can be viewed as an extension of location-scale models for whitening
the variables, avoiding often inappropriate restrictions. We describe the method, its sta-
tistical properties and we show in some Monte-Carlo simulations, how our new method
dominates both the traditional direct and the location-scale approaches. We illustrate
the usefulness of the approach with a real data set on banks.
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1 Introduction

1.1 The Setup and Our Contribution

In the productivity and efficiency analysis, we analyze how production units (firms) transform
a set of inputs to produce a set of outputs. The efficient frontier is then defined in the input-
output space as the locus of optimal organization, e.g. the maximal attainable level of the
outputs given the level of the inputs, or the minimal attainable level of inputs to produce
given level of outputs. The efficiency level of a firm is then determined by an appropriate
distance (in the output direction or in the input direction) of this firm to the optimal frontier.
Farrell-Debreu radial distances (Debreu, 1951; Farrell, 1957) are often used to measure these
efficiency scores.

Recently, the efficiency literature has focused on the role of environmental variables, these
factors are neither inputs nor outputs and are typically not under the control of the managers,
but they might influence the production process. Formally, we will consider the univariate
input oriented case,1 where we look for the minimal input (or cost) X ∈ R+ achievable for
producing the vector of goods or services Y ∈ Rq

+ when the producer is facing environmental
factors described by Z ∈ Rd. The environmental conditions may affect the range of the input-
output (X, Y ), and hence the shape of the frontier, or Z may affect only the distribution of the
inefficiencies inside the attainable set, or in some cases Z may affect both, or finally, Z might
be completely independent of (X, Y ). In this paper we present a novel, fully nonparametric
method designed to address the influence of these external variables. Our approach enables
us to capture the intricate relationships between these variables and the target outcomes,
without assuming any specific functional forms governing these relationships. It allows for
more comprehensive analysis of how these external variables impact diverse units and distri-
bution patterns. This aspect is of crucial importance for applied analysis, providing a robust
foundation for exploring the complexities inherent in the relationships under consideration.

A general and appealing approach to investigate the role of Z on the production process,
is to consider conditional frontiers and conditional efficiency scores, as introduced by Cazals
et al. (2002) and Daraio and Simar (2005). They consider a probabilistic formulation of
the production process where the random variables (X, Y, Z) are defined on an appropriate
probability space. The conditional distribution of the input-outputs (X, Y ) given particular
values of Z is of central interest. It can be described by the conditional survival function

SX,Y |Z(x, y|z) = P(X ≥ x, Y ≥ y|Z = z)

= SX|Y,Z(x|y, z)SY |Z(y|z), (1.1)

where SX|Y,Z(x|y, z) = P(X ≥ x|Y ≥ y, Z = z) and SY |Z(y|z) = P(Y ≥ y|Z = z). Note the
unusual conditioning on Y in SX|Y,Z(x|y, z), because Y is an output. With this notation, the
conditional minimum input (or cost) frontier is then defined as the minimal achievable input
level x for units producing at least the level y of outputs, facing the environmental conditions
z:

τ(y, z) = inf{x|SX|Y,Z(x|y, z) < 1}. (1.2)

1The presentation is easy to adapt to the univariate output oriented case, where we search for the maximal
production level, given the level of a set of inputs.
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Of course if there are no environmental factors Z, or if we want to consider an unconditional
to Z frontier, the survival function SX|Y,Z(x|y, z) has to be replaced by the unconditional to Z
survival function SX|Y (x|y) = P(X ≥ x|Y ≥ y) in all the equations above. This will provide
the full unconditional frontier

τ(y) = inf{x|SX|Y (x|y) < 1}. (1.3)

Given a sample of observations Sn = {Xi, Yi, Zi)}ni=1, traditional nonparametric estimators
of the frontier functions are obtained by plugging in a nonparametric estimator of the survival
function in the appropriate formula. For the unconditional to Z case, it is given by

ŜX|Y (x|y) =
∑n

i=1 1I(Xi ≥ x, Yi ≥ y)∑n
i=1 1I(Yi ≥ y)

, (1.4)

where 1I(·) is the indicator function. Then the FDH estimator (see Deprins et al., 1984) of
the minimal input function is given by

τ̂(y) = inf{x|ŜX|Y (x|y) < 1} = min
{i|Yi≥y}

{Xi}, (1.5)

The conditional to Z cases, require some smoothing in Z, so we have

ŜX|Y,Z(x|y, z) =
∑n

i=1 1I(Xi ≥ x, Yi ≥ y)Khz(Zi − z)∑n
i=1 1I(Yi ≥ y)Khz(Zi − z)

, (1.6)

where hz is a vector of d bandwidths (hz1 , . . . , hzd) with Khz(u) =
∏d

j=1(1/hzj)k(uj/hzj) and
k is a univariate kernel with support [−1, 1]. Then we have

τ̂(y, z) = inf{x|ŜX|Y Z(x|y, z) < 1}. (1.7)

Partial frontiers have also been introduced in the literature, considering less extreme bench-
marks, and so providing estimators more robust to outliers and extreme data points. In this
paper we will focus on the order-m frontier introduced by Cazals et al. (2002). In Section
1.2 we will summarize most of the available properties of these nonparametric estimators of
full and order-m robust frontiers. In particular the latter have better properties than the
estimators of the full frontiers, i.e. convergence to a Gaussian process and better rates of
convergence.

In this traditional or “direct” approach for estimating conditional frontiers, the statistical
properties rely on the properties of the bandwidths hz used for estimating the conditional
survival function (1.1). Least squares cross-validation (LSCV) techniques are available pro-
viding bandwidths with the optimal order, i.e. hzj ∝ n−1/(d+4) (see Li et al., 2013). However,
as pointed in Bădin et al. (2019), these bandwidths might not be optimal when the objective
is to estimate the lower bound of the support of SX|Y,Z(x|y, z). The problem, already noticed
by Jeong et al. (2010), is that for a given hz, the conditional FDH estimator does not target
τ(y, z) but rather τhz(y, z) defined as

τhz(y, z) = inf
{
x|Shz

X|Y,Z(x|y, z) = P
(
X ≥ x | Y ≥ y, |Z − z| ≤ hz

)
< 1

}
(1.8)
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where |Z − z| ≤ hz has to be understood component by component, i.e. |Zj − zj| ≤ hzj ,
j = 1, . . . , d. This introduces an additional error, similar to a bias of localization, which
under mild regularity condition (smoothness of the frontier as a function of z) is of order
||hz||, unless the separability condition holds (see Bădin et al., 2019, for details).2 To the
best of our knowledge, this issue has not been yet solved in the literature. Bădin et al.
(2019) suggest a bootstrap (subsampling) algorithms to derive an optimal bandwidth, but
this involves huge numerical burden and, as fairly said in their paper, there is no theoretical
justification of the procedure, although their Monte-Carlo experiments, for univariate Z, are
encouraging.

Florens et al. (2014) suggested an alternative approach, avoiding this bandwidth selection
issue. They consider location-scale models to describe the links between the input, the outputs
and Z. They assume that{

X = µx(Z) + σx(Z)εx
Yj = µyj(Z) + σyj(Z)εyj for j = 1, . . . , q,

(1.9)

where (εx, εy) is assumed to be independent of Z, with mean zero and variance one.3 Then
if their location-scale assumptions hold, the resulting error terms of these models, εx and εy,
provide, in a sense, “cleaned” versions of X and of Y , or “pure” input and outputs whitened
from the effects of the environmental variables Z. In this pure input-output space we can define
an efficient frontier which allows to estimate a “pure” measure of efficiency or “managerial”
efficiency, more reliable for ranking the firms, since the influence of the external factors have
been eliminated.

As described in Florens et al. (2014), the nonparametric estimation of the model (estima-
tion of µℓ(Z) and of σℓ(Z) where ℓ stands for x or yj) involves only smoothing in the center
of the data clouds and avoids the bandwidth selection issue described above. However, the
location-scale approach suffers from some drawbacks. First the model (1.9) assumes that Z
cannot affect the shape of the distribution of the variables (X, Y ) but only their means and
variances. This is not common in most of the models used in the frontier literature where
e.g. skewness or kurtosis of the variables may also be dependent of Z. Second, even if the
assumptions in (1.9) remains reasonable, the nonparametric estimation of the scale functions
σℓ(Z), is obtained by regressing on Z, the squares of the residuals obtained in a first step non-
parametric estimation of the location functions µℓ(Z). Squaring these residuals introduces
some statistical instability, in particular for the extreme data values, as will be confirmed in
our Monte-Carlo experiments in Sections 4.2 and 4.3.

In this paper we propose a new approach avoiding the drawbacks and restrictions of the
location-scale model. The links between the input, the outputs and the environmental factors
Z, are described by fully nonparametric models based on control functions. We suppose the
vector (X, Y, Z) satisfies the following model:{

X = φx(Z,Ux)
Yj = φyj(Z,Uyj) for j = 1, . . . , q,

(1.10)

2The separability condition, introduced by Simar and Wilson (2007), states that the support of
SX|Y,Z(x|y, z) does not depend on z, i.e. Z has no effect on the shape or the level of the frontier.

3Note that we use in our paper the traditional notation in the frontier literature where X is the input and
Y the outputs. Florens et al. (2014) did the opposite way.
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where the functions φℓ(·, Uℓ) are nonseparable and monotone increasing in Uℓ, ℓ = x, y1, . . . , yq.
Without loss of generality (see below Section 2), we assume that the Uℓ are uniformly dis-
tributed on [0, 1]. The model assumes that the Uℓ are independent of Z, this assumption is
part of the model and, as seen below, is needed to identify each individual equation in (1.10).
This kind of models (control functions) have been used e.g. in Matzkin (2003), or Imbens and
Newey (2009) in a different context where Z play the role of instruments to address endo-
geneity issues in regression models and in Simar et al. (2016) to identify latent heterogeneity
in frontier models.

Looking to the equations (1.10), we see that due to the independence between U and
Z, the variables U are constructed as being the part of the input (respectively outputs)
which is independent on Z. In other words they are whitened versions of X and Y defined
in a set of general nonparametric nonseparable equations. We can, in the same lines of
Florens et al. (2014), interpret (Ux, Uy) as “pure” input and outputs which remain monotone
transformations of the original measures. It can also be seen as the part of the input and
outputs not dependent on Z. So, here again we will be able to build the efficient frontier
in the pure input-output space, allowing to define an efficiency score, or a “managerial”
efficiency, that will be independent of the environmental conditions. This will be done for
both full frontiers and robust order-m ones. We will see below that the location-scale models
of Florens et al. (2014) can be viewed as a particular semiparametric case of our model.

In this paper, we prove that, in our model (1.10), (i) the resulting estimators of the pure
order-m efficiency measures are free of the curse of dimensionality due to the dimension of
Z and converge with rate

√
n to a Gaussian process, (ii) we are able to recover the frontiers

in the original units of (X, Y ), and (iii), the order-m frontier estimates in the original units,

converge to a Gaussian process at rate
√

nh̄z where h̄z is the product of d bandwidths defined
in the next sections. The latter results is similar to the properties of the estimators derived by
the direct approach or by the location-scale models (see Section 1.2). These results allow to
use the bootstrap for making practical inference on order-m efficiencies, as illustrated below
in our real data example.

The paper is organized as follows. After Section 1.2, that summarizes known properties
of nonparametric estimators of full and order-m frontiers, Section 2 presents the properties of
our model and the way to compute nonparametric estimators. Section 3 gives the asymptotic
properties of the estimators and Section 4 shows through some simulations how our model
produces, as expected, estimators that dominates (in term of MISE) the traditional direct
approach, but even those obtained through the location-scale models. We illustrate in Section
5 its practical use with real data. Section 6 concludes. Technical details of the proofs are given
in Appendix A and more complete set of results of Monte-Carlo experiments are described in
supplementary material (Appendix B).

1.2 Nonparametric Frontier Estimators, in a Nutshell

This section summarizes facts from the literature that are useful to permit comparison with
the properties of the estimators obtained by our new method. The reader familiar with
nonparametric frontier estimation can skip this section. More details and additional references
can be found e.g. in the survey Simar and Wilson (2015).

The partial order-m cost-frontier (see Cazals et al., 2002) is defined, for a given integer
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m ≥ 1 as

τm(y) = E[min(X1, . . . , Xm)|Y ≥ y] =

∫ ∞

0

Sm
X|Y (x|y) dx. (1.11)

The idea is to benchmark the cost of a unit producing the value y of outputs not against the
minimal technically possible cost of such firms (as for the full frontier) but against the average
of m peers producing at least the value y of outputs. We have τm(y) ≥ τ(y) and τm(y) → τ(y),
as m → ∞ (see Cazals et al., 2002; Daraio and Simar, 2007; Daouia and Gijbels, 2011, for
details and discussions on the choice of m). In the presence of environmental variables we
have, by analogy

τm(y, z) = E[min(X1, . . . , Xm)|Y ≥ y, Z = z]

=

∫ ∞

0

Sm
X|Y,Z(x|y, z) dx, (1.12)

Nonparametric estimators are obtained by plugging in (1.11) and (1.12) the appropriate non-
parametric estimators (1.4) or (1.6). We have

τ̂m(y) =

∫ ∞

0

Ŝm
X|Y (x|y) dx. (1.13)

τ̂m(y, z) =

∫ ∞

0

Ŝm
X|Y Z(x|y, z) dx. (1.14)

The statistical properties of the resulting frontier estimators for the full and order-m
frontiers are well established: see Park et al. (2000), Cazals et al. (2002). We have

n1/(1+q)
(
τ̂(y)− τ(y)

) L−→ Weibull(µ(1+q)
y , 1 + q) (1.15)

√
n
(
τ̂m(y)− τm(y)

) L−→ N(0, σ2
y), (1.16)

where exact expressions for the parameters of the limiting distributions have been derived.
For the conditional to Z frontiers, it has been proven (see Cazals et al., 2002; Jeong et al.,
2010) that under mild regularity conditions, we have similar results where the sample size n
has to be replaced by its effective number of observations in a neighborhood of z, namely nh̄z

where h̄z =
∏d

j=1 hzj . So to summarize:

(nh̄z)
1/(1+q)

(
τ̂(y, z)− τ(y, z)

) L−→ Weibull(µ(1+q)
y,z , 1 + q) (1.17)√

nh̄z

(
τ̂m(y, z)− τm(y, z)

) L−→ N(0, σ2
y,z), (1.18)

In this traditional or “direct” approach for estimating conditional frontiers, the results
in (1.17) and (1.18) rely on the properties of the bandwidths hz used for estimating the
conditional survival function (1.1). Least squares cross-validation (LSCV) techniques provide
bandwidths with the order, hzj ∝ n−1/(d+4) (see Li et al., 2013) which deteriorates the rates in
(1.17) and (1.18), in particular when d increases. The same happens when using the corrected
bandwidths suggested by Bădin et al. (2019). We will establish in Section 3 the asymptotic
properties for the estimators derived from our new method.
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2 Properties and Estimation of the Model

Looking to our model (1.10), when Uℓ are uniform on [0, 1] for ℓ = x, y1, . . . , yq, then φℓ can be
interpreted as a quantile function, as shown below. The choice of the uniform is a matter of
rescaling the Uℓ to get this nice interpretation.

4 It is known that under the above assumptions,
the Uℓ are identified by the conditional distribution of the input and the outputs given Z.
The argument is going along the following lines (we do it for the input, but it is the same for
the outputs):

FX|Z(x|z) = P(X ≤ x|Z = z)

= P(φx(Z,Ux) ≤ x|Z = z)

= P(Ux ≤ φ−1
x (Z, x)|Z = z)

= P(Ux ≤ φ−1
x (z, x))

= φ−1
x (z, x),

where the last line is obtained because we assume Ux ∼ Unif([0, 1]). Since this is true for all
(x, z), we have Ux = FX|Z(X|Z) with probability one. So, more generally we have:{

Ux = FX|Z(X|Z)
Uyj = FYj |Z(Yj|Z) for j = 1, . . . , q,

(2.1)

So we see that φx(Z,Ux) = F−1
X|Z(Ux|Z), i.e. the conditional quantile of X given Z evaluated

at Ux ∈ [0, 1]. The same is true for Y1, . . . , Yq, each function φyj(Z,Uyj) = F−1
Yj |Z(Uyj |Z),

j = 1, . . . , q has the same conditional quantile interpretation.
Since the functions φℓ are unknown, the values Uℓ,i are not observed but they can be

estimated by nonparametric methods by estimating the appropriate conditional distribution
functions:

Ûx,i = F̂X|Z(Xi|Zi) =

∑n
k=1Ghx(Xk −Xi)Khz(Zk − Zi)∑n

k=1Khz(Zk − Zi)
, (2.2)

Ûyj ,i = F̂Yj |Z(Yj,i|Zi) =

∑n
k=1 Ghyj

(Yj,k − Yj,i)Khz(Zk − Zi)∑n
k=1 Khz(Zk − Zi)

, (2.3)

where now optimal bandwidths hz, hx and hyj can be obtained for each equation, by the
LSCV techniques described in Li et al. (2013) and we avoid the problem of selecting optimal
bandwidths hz when estimating the boundary of some conditional distribution function and
all the issues mentioned above. Here the kernels used are standard: Khz(·) are usual kernels
for estimating densities and Ghℓ

(·) are cumulative kernels used for estimating distribution
functions (cdf).5 For example in the input case Ghx(Xk −Xi) = G

(
(Xk −Xi)/hx

)
and G is

a cdf defined as G(v) =
∫ v

−∞ w(u)du for some kernel density function w(·) (see e.g. Li et al.,

4Since the functions φℓ in (1.10) are monotone increasing with respect to Uℓ, any monotone, increasing
transformation of Uℓ could be included in φℓ, to get any desired continuous distribution for Uℓ. But the
interpretation of the resulting φℓ will depend on the specific transformation that is used.

5We could avoid the smoothing in the variables X and Y , and use indicator functions in place of the
kernels G. This would probably not change the practical results, but for the theory below, we need smoothed
estimators of these distribution functions.
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2013 for details). Note again that here we are interested in the estimation of the distribution
on its full range and not only on the boundary of their support where the data can be rather
sparse. We will see below that estimates of the quantile functions can also be derived from
these quantities.

Having these input and outputs in pure units, we can estimate the minimal cost frontier
and its order-m robust version, by usual techniques. For the full frontier, it is defined in pure
units by

ϕ(uy) = inf{ux|SUx|Uy(ux|uy) < 1}, (2.4)

where SUx|Uy(ux|uy) = P(Ux ≥ ux|Uy ≥ uy}. So ϕ(uy) is the minimal achievable level of input
in pure units, for units producing at least the level of output uy in pure units. For the order-m
frontier, we have for a given m

ϕm(uy) = E [min(Ux,1, . . . , Ux,m)|Uy ≥ uy] ,

=

∫ 1

0

Sm
Ux|Uy

(ux|uy) dux, (2.5)

which provides also, for finite m, a less extreme benchmark than the full frontier ϕ(uy). Here,
as shown in Cazals et al. (2002), as m → ∞, we have ϕm(uy) → ϕ(uy).

Note that from the frontiers in the pure units we can recover the frontiers in the original
units. We have indeed due to our assumptions (with some abuse of notation where multidi-
mensional inequalities involving y have to be understood component by component):

τ(y, z) = inf{x|SX|Y,Z(x|y, z) < 1}
= inf{x|P(X ≥ x|Y ≥ y, Z = z) < 1}
= inf{x|P(φx(Z,Ux) ≥ x|φy(Z,Uy) ≥ y, Z = z) < 1}
= inf{x|P(Ux ≥ ux = φ−1

x (z, x)|Uy ≥ uy = φ−1
y (z, y)) < 1}

= inf{x|SUx|Uy(ux|uy) < 1} with ux = φ−1
x (z, x), uy = φ−1

y (z, y), (2.6)

where we used the monotonicity properties of the functions φ−1
ℓ and the independence between

(Ux, Uy) and Z. Now due to the monotonicity of φx(z, ux) in ux, we have

τ(y, z) = φx

(
z, inf{ux|SUx|Uy(ux|uy) < 1}

)
= φx(z, ϕ(uy)), where uy = φ−1

y (z, y). (2.7)

Note that here and below, uy = φ−1
y (z, y) means uyj = FYj |Z(yj|z) for j = 1, . . . , q.

For the order-m the relation is little more tricky because the transformation φx(z, ux) is
not necessarily linear in ux (as it was the case in the particular location-scale model (1.9)).
Here, we obtain the following equivalence

{min(X1, . . . , Xm)|Y ≥ y, Z = z} = φx (z,min {(Ux,1, . . . , Ux,m)|Uy ≥ uy}) , (2.8)

where the last expression can be read as φx(z, ·) is evaluated at the minimum of m iid replica-
tions of Ux,j, j = 1, . . . ,m generated under the condition Uy ≥ uy. Here again uy = φ−1

y (z, y).
So to recover the order-m frontier in original units, we need to compute the following expec-
tation

τm(y, z) = E [φx(z,min(Ux,1, . . . , Ux,m)|Uy ≥ uy)] , (2.9)
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which leads to

τm(y, z) =

∫ 1

0

φx(z, t)dFŨm|Uy
(t|uy), (2.10)

where Ũm = min(Ux,1, . . . , Ux,m) and FŨm|Uy
(t|uy) = 1− Sm

Ux|Uy
(t|uy).

The nonparametric estimator of the frontier in the pure units is obtained from our set of
predicted values of input and outputs in the space of pure units: {(Ûx,i, Ûy,i)}ni=1 by plugging
in the nonparametric estimator of SUx|Uy(ux|uy) in equations (2.4) and (2.5), respectively.
This estimator is simply given by the empirical version of SUx|Uy(ux|uy):

ŜUx|Uy(ux|uy) =

∑n
i=1 1I(Ûx,i ≥ ux, Ûy,i ≥ uy)∑n

i=1 1I(Ûy,i ≥ uy)
. (2.11)

So, we recover the FDH estimator of ϕ(uy) in pure units:

ϕ̂(uy) = inf{ux|ŜUx|Uy(ux|uy) < 1},
= min

i|Ûy,i≥uy

Ûx,i. (2.12)

The order-m in pure units is given by the integral

ϕ̂m(uy) =

∫ 1

0

Ŝm
Ux|Uy

(ux|uy) dux, (2.13)

where an exact formula is provided in Cazals et al. (2002).
Estimates of the frontiers in original units are easy to recover for the full frontier

τ̂(y, z) = F̂−1
X|Z(ϕ̂(ûy)|z), (2.14)

where ûyj = F̂Yj |Z(yj|z), for j = 1, . . . , q and F̂−1
X|Z(·|z) is the nonparametric estimator of the

conditional quantile of X given Z = z (see Li et al. 2013 for computations and properties).
To be explicit, we have e.g.

τ̂(y, z) = inf
{
t | F̂X|Z(t|z) ≥ ϕ̂(ûy)

}
= argmin

t
| ϕ̂(ûy)− F̂X|Z(t|z) | . (2.15)

For reasons explained above, in the order-m case, ϕ̂m(uy) is not useful to recover the order-
m frontier in original unit due to the nonlinearity of φx(z, ux) as a function of ux. In fact we
have directly from (2.10) that

τ̂m(y, z) =

∫ 1

0

φ̂x(z, t) dF̂Ũm|Uy
(t|ûy), (2.16)

where F̂Ũm|Uy
(t|ûy) = 1− Ŝm

Ux|Uy
(t|ûy).

This can be computed as follows. Denote ny the number of observations Ûi,y ≥ ûy and let

V y
(1) ≤ . . . ≤ V y

(ny)
be the order statistics of the estimates Ûj,x such that Ûj,y ≥ ûy. Then it is

easy to show that

τ̂m(y, z) =

ny∑
j=1

φ̂x(z, V
y
(j))

[(
ny − j + 1

ny

)m

−
(
ny − j

ny

)m]
, (2.17)
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where for all γ ∈ (0, 1),

φ̂x(z, γ) = F̂−1
X|Z(γ|z) = inf

{
t | F̂X|Z(t|z) ≥ γ

}
= argmin

t
| γ − F̂X|Z(t|z) |, (2.18)

i.e. the γ-quantile of F̂X|Z(·|z).
Having the estimates of the conditional frontiers and estimates of the unconditional (marginal)

frontiers, several analyses could be of interest to the practitioner to investigate the effect of
the environmental factors on the production process. The methodology proposed in Bădin
et al. (2012), and applied with the location-scale approach in Florens et al. (2014), allows
to disentangle the role of Z on the level of the frontier and its effect of the distribution of
efficiencies. As illustrated in a real data example below, our approach allows the same kind of
analysis. Since it is fully nonparametric and does not rely on restrictive assumptions on the
effect of Z on X and Y , this may provide promising tools for the practitioner. We will also
see from our Monte-Carlo experiments below that our method provides much more reliable
results than the traditional direct approach and even than the location-scale approach (even
in case where the latter is true).

Remark 2.1 As pointed out above, the Florens et al. (2014) location-scale model (1.9) is
indeed a particular case of our model, where the functions φℓ, for ℓ = x, y have an additive
separable location scale structure φℓ(Z,Uℓ) = µℓ(Z) + σℓ(Z)εℓ with (εx, εy) being independent
of Z. So εℓ = ηℓ(Uℓ), with ηℓ(Uℓ) monotone in Uℓ (as φℓ), hence Uℓ = η−1

ℓ (εℓ). We select
Uℓ = Fεℓ(εℓ) to get a uniform on [0, 1] and εℓ = F−1

εℓ
(Uℓ).

Remark 2.2 If Z is fully independent of X and/or of Y , Florens et al. (2014) noticed that
in the location-scale models, the corresponding functions µ(Z) and σ(Z) would be constant.
In our model here, for instance if Z is independent of the input X, we would have FX|Z ≡ FX

and so Ux = FX(X) would be just a monotone rescaling of X to become uniform on [0, 1].
The same for any output. So the procedure above is still valid if Z is independent of (X, Y ).
Our model does not involve spurious dependencies in the estimation.

3 Asymptotic Properties

For simplicity, we take d = q = 1 and k = w, where the functions k and w are the univari-
ate kernels used in (2.2)–(2.3). The general case of multivariate outputs and environmental
variables can be handled using higher order kernels or local polynomial smoothing methods,
instead of the second order local constant smoothers that are used here. We will show below
that with our general nonparametric approach to whiten the input and the outputs from the
dependence on Z, we keep similar properties for the resulting estimators than the ones derived
in Florens et al. (2014), but here, without the location-scale assumption.

The assumptions under which the asymptotic results are valid are:

(C1) The function k is defined on [−1, 1], and is a nonnegative, symmetric, and bounded
second-order kernel function (i.e.

∫
k(u)u du = 0 and 0 <

∫
k(u)u2 du < ∞).

(C2) The bandwidths hx, hy and hz satisfy hx, hy, hz → 0, nhx → ∞, nhy → ∞ and nh3+δ
z →

∞ for some 0 < δ < 1.
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(C3) The functions fZ(z), FX|Z(x|z) and FY |Z(y|z) have uniformly continuous fourth-order
partial derivatives with respect to x, y and z.

(C4) The support of (X, Y, Z) in R3 is compact and we will denote by RX , RY , RZ the
corresponding marginal supports, infx,z fX|Z(x|z) > 0 and infy,z fY |Z(y|z) > 0, where
fX|Z = F ′

X|Z and fY |Z = F ′
Y |Z .

(C5) The functions z → F−1
X|Z(u|z) and z → F−1

Y |Z(u|z) belong to C1+δ
M (RZ) for all u ∈ [0, 1],

where C1+δ
M (RZ) is the space of all functions f : RZ → R such that ∥f∥1+δ ≤ M , where

∥f∥1+δ = max
(
sup
z∈RZ

|f(z)|, sup
z∈RZ

|f ′(z)|
)
+ sup

z1,z2∈RZ

|f ′(z1)− f ′(z2)|
|z1 − z2|δ

,

and where M < ∞ and 0 < δ < 1 is defined in (C2).

Theorem 3.1 Assume (C1)-(C5).

(i) Then,

ŜUx|Uy(ux|uy)− SUx|Uy(ux|uy)

= n−1

n∑
i=1

ξ(Xi, Yi, Zi, ux|uy) + h2
xbx(ux|uy) + h2

yby(ux|uy) + h2
zbz(ux|uy) +Rn(ux|uy),

where

ξ(X, Y, Z, ux|uy) = SUy(uy)
−1
[
1I(FX|Z(X|Z) ≥ ux, FY |Z(Y |Z) ≥ uy)− SUx,Uy(ux, uy)

]
+ fUx|Uy(ux|uy)

[
1I(FX|Z(X|Z) ≤ ux)− ux

]
− ∂

∂uy

SUx|Uy(ux|uy)
[
1I(FY |Z(Y |Z) ≤ uy)− uy

]
bx(ux|uy) = fUx|Uy(ux|uy)

∫
Bx(F

−1
X|Z(ux|z)|z)fZ(z)dz

by(ux|uy) = − ∂

∂uy

SUx|Uy(ux|uy)

∫
By(F

−1
Y |Z(uy|z)|z)fZ(z)dz

bz(ux|uy) = fUx|Uy(ux|uy)

∫
Bz(F

−1
X|Z(ux|z)|z)fZ(z)dz

− ∂

∂uy

SUx|Uy(ux|uy)

∫
Bz(F

−1
Y |Z(uy|z)|z)fZ(z)dz,

and sup0≤ux,uy≤1 |Rn(ux|uy)| = oP (n
−1/2), and where the functions Bx, By and Bz are

given in Lemma A.1, in the Appendix.

(ii) We have sup0≤ux,uy≤1 |ŜUx|Uy(ux|uy)−SUx|Uy(ux|uy)| = OP (n
−1/2)+O(h2

x+h2
y+h2

z), and

if hx = Cxn
−1/4(1 + o(1)), hy = Cyn

−1/4(1 + o(1)) and hz = Czn
−1/4(1 + o(1)) for some

0 ≤ Cx, Cy, Cz < ∞, then the process n1/2(ŜUx|Uy(ux|uy)−SUx|Uy(ux|uy)), 0 ≤ ux, uy ≤ 1,
converges weakly to a Gaussian process W (ux|uy) with covariance function given by

Cov(W (ux1|uy1),W (ux2|uy2)) = E[ξ(X, Y, Z, ux1|uy1)ξ(X, Y, Z, ux2|uy2)]

and mean function given by E[W (ux|uy)] = C2
xbx(ux|uy) + C2

yby(ux|uy) + C2
z bz(ux|uy).
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We next prove the asymptotic i.i.d. representation and the weak convergence of the esti-
mators of the order-m frontier in pure units ϕ̂m(uy) and the order-m frontier in the original
units τ̂m(y, z).

Theorem 3.2 Assume (C1)-(C5).

(i) Then,

ϕ̂m(uy)− ϕm(uy) = n−1

n∑
i=1

η(Xi, Yi, Zi, uy)

+ h2
xbx(uy) + h2

yby(uy) + h2
zbz(uy) +Rn(uy),

where

η(X, Y, Z, uy) = 2m−1

∫ 1

0

Sm
Ux|Uy

(ux|uy)ξ(X, Y, Z, ux|uy) dux

bx(uy) = 2m−1

∫ 1

0

Sm
Ux|Uy

(ux|uy)bx(ux|uy) dux

by(uy) = 2m−1

∫ 1

0

Sm
Ux|Uy

(ux|uy)by(ux|uy) dux

bz(uy) = 2m−1

∫ 1

0

Sm
Ux|Uy

(ux|uy)bz(ux|uy) dux,

and sup0≤uy≤1 |Rn(uy)| = oP (n
−1/2).

(ii) We have sup0≤uy≤1 |ϕ̂m(uy) − ϕm(uy)| = OP (n
−1/2) + O(h2

x + h2
y + h2

z), and if hx =

Cxn
−1/4(1 + o(1)), hy = Cyn

−1/4(1 + o(1)) and hz = Czn
−1/4(1 + o(1)) for some 0 ≤

Cx, Cy, Cz < ∞, then the process n1/2(ϕ̂m(uy) − ϕm(uy)), 0 ≤ uy ≤ 1, converges weakly
to a Gaussian process Wm(uy) with covariance function given by

Cov(Wm(uy1),Wm(uy2)) = E[η(X, Y, Z, uy1)η(X, Y, Z, uy2)]

and mean function given by E[Wm(uy)] = C2
xbx(uy) + C2

yby(uy) + C2
z bz(uy).

Theorem 3.3 Assume (C1)-(C5).

(i) Then,

τ̂m(y, z)− τm(y, z) = (nhz)
−1

n∑
i=1

k
(Zi − z

hz

)
g(Xi, Yi, Zi, y|z)

+ h2
xbx(y|z) + h2

yby(y|z) + h2
zbz(y|z) +Rn(y|z),

where
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g(X, Y, Z, y|z) =
∫ 1

0

1I(X ≤ F−1
X|Z(t|Z))− t

fX|Z(F
−1
X|Z(t|z)|z)fZ(z)

dSm
Ux|Uy

(t|uy)

+m
1I(Y ≤ y)− FY |Z(y|Z)

fZ(z)

∫ 1

0

F−1
X|Z(t|z)

∂

∂uy

[
Sm−1
Ux|Uy

(t|uy)fUx|Uy(t|uy)
]
dt,

and

bx(y|z) =
∫ 1

0

Bx(F
−1
X|Z(t|z)|z)

fX|Z(F
−1
X|Z(t|z)|z)

dSm
Ux|Uy

(t|uy)

by(y|z) = By(y|z)
∫ 1

0

F−1
X|Z(t|z)

∂

∂uy

[
Sm−1
Ux|Uy

(t|uy)fUx|Uy(t|uy)
]
dt

bz(y|z) =
∫ 1

0

Bz(F
−1
X|Z(t|z)|z)

fX|Z(F
−1
X|Z(t|z)|z)

dSm
Ux|Uy

(t|uy)

+Bz(y|z)
∫ 1

0

F−1
X|Z(t|z)

∂

∂uy

[
Sm−1
Ux|Uy

(t|uy)fUx|Uy(t|uy)
]
dt,

and supy∈RY ,z∈RZ
|Rn(y|z)| = oP ((nhz)

−1/2).

(ii) We have supy∈RY ,z∈RZ
|τ̂m(y, z) − τm(y, z)| = OP ((nhz)

−1/2) + O(h2
x + h2

y + h2
z), and if

hx = Cxn
−1/5(1 + o(1)), hy = Cyn

−1/5(1 + o(1)) and hz = Czn
−1/5(1 + o(1)) for some

0 ≤ Cx, Cy, Cz < ∞, then the process (nhz)
1/2(τ̂m(y, z) − τm(y, z)), y ∈ RY (z and m

fixed), converges weakly to a Gaussian process Vm(y|z) with covariance function

Cov(Vm(y1|z), Vm(y2|z)) = ν0fZ(z)E[g(X, Y, Z, y1|z)g(X, Y, Z, y2|z)|Z = z]

and mean function given by E[Vm(y|z)] = C2
xbx(y|z) + C2

yby(y|z) + C2
z bz(y|z), where

ν0 =
∫
k2(u)du.

As a last asymptotic result we show the weak consistency of the estimators of the full
frontier in pure units ϕ̂(uy) and the full frontier in the original units τ̂(y, z).

Theorem 3.4 Assume (C1)-(C5). Then,

ϕ̂(uy)− ϕ(uy) = oP (1), and τ̂(y, z)− τ(y, z) = oP (1),

for all 0 ≤ uy ≤ 1, y ∈ RY and z ∈ RZ.

To summarize, we obtain convergence to Gaussian processes when order-m objects are
considered, but the asymptotic bias and variances although explicit, are difficult to estimate.
So, in practice bootstrap methods will allow to make inference for the order-m quantities. As
in Florens et al. (2014), we will use a smoothed bootstrap on the “residuals” (Ûx,i, Ûy,i) for
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each Zi producing (U∗,s
x,i , U

∗,s
y,i ), i = 1, . . . , n.6 Then we generate (X∗

i , Y
∗
i ) by our estimated

model (1.10). So we have a bootstrap sample (X∗
i , Y

∗
i , Z

∗
i ), i = 1, . . . , n, where

Z∗
i = Zi, (3.1)

X∗
i = F̂−1

X|Z(U
∗,s
x,i |Z∗

i ), and Y ∗
i = F̂−1

Y |Z(U
∗,s
y,i |Z∗

i ). (3.2)

With this bootstrap sample we compute the pure and conditional frontiers (of order-m) at
the points of interest, and repeating the procedure a large number of times we obtain the
bootstrap approximation of the sampling distribution of these objects.

When full frontiers are considered, we only prove weak consistency, but as conjectured in
Florens et al. (2014), if the functions φℓ in (1.10) are sufficiently smooth, the FDH rates of

convergence would be maintained for ϕ̂(uy) and τ̂(y, z).

4 Numerical Illustration

We will first illustrate on 3 simple examples how our method performs compared to the direct
nonparametric method and compared to the location-scale method. Then in a more realistic
example we will also consider order-m estimators and investigate the effect of the presence of
outliers. In all the numerical examples below, the optimal bandwidths have been computed
for each sample by least-squares cross validation, for each nonparametric regressions in the
location-scale approach and for each estimation of conditional distribution functions.

4.1 A “Toy” example

We start with what we could call a “Toy” example which is a very simple classic model of
frontier where the external factor Z only influences the density of the inefficiencies (see e.g.
Kumbhakar and Lovell, 2000). The cost model is given by

X = 1 + Y 2 + ξ, (4.1)

where Y ∼ 3Beta(1, 2) and ξ|Z = z ∼ Exp(3/(z + 1)) and Z ∼ Unif(0, 4). So here the mean
conditional efficiency is given by µξ(z) = (z + 1)/3 and the true cost conditional frontier
τ(y, z) = τ(y) = 1 + y2 since Z only influences the inefficiency distribution. Note that here
this simple traditional frontier model does not fit the location-scale assumptions given in (1.9).
We simulate i.i.d. values (Xi, Yi, Zi), i = 1, . . . , n according to this model.

Now the idea is to see if we can correctly estimate the true values τ(Yi, Zi). We will
compare below the performance of our estimator compared with the traditional, direct one
and the location-scale method. For doing so we can look, for each approach, to the estimates
of the ISE (Integrated Squared Error) given by

ISE = n−1

n∑
i=1

(τ̂(Yi, Zi)− τ(Yi, Zi))
2. (4.2)

6To generate smoothed bootstrap values of U∗,s
ℓ,i , for ℓ = x, y in [0, 1] we can proceed as follows: define

for ℓ = x, y, U∗,s
ℓ,i = Φ[Φ−1(U∗

ℓ,i) + hnϵ
∗
ℓ,i], where (U∗

x,i, U
∗
y,i) is a simple random draw with replacement in

the set (Ûx,i, Ûy,i), i = 1, . . . , n, hn = 1.06n−1/5 is the optimal bandwidth for estimating a N(0, 1) density,
ϵ∗ℓ,i ∼ N(0, 1) and Φ(·) is the N(0, 1) cdf.
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We estimate the Mean Integrated Squared Error (MISE) by doing 500 Monte-Carlo simula-
tions according to our DGP and averaging the ISE over the 500 trials. To check if some dif-
ferences are significant we give also the estimates of the standard deviation of the Monte-Carlo
estimator of the MISE. We do this for n = 100, 200 and 500. The results for this “Toy” ex-
ample are reported in Table 1, where “Direct” indicates the results for the traditional method,
“New Method” for our approach and the “Loc-Scale” for the approach developed in Florens
et al. (2014). A quick analysis of the table reveals that for each approach theMISE decreases,

Table 1: MISE for the simple “Toy” example.

n = 100 n = 200 n = 500
Direct 0.2459 0.1749 0.1001
(std) ( 0.0080) ( 0.0058) ( 0.0026)

New Method 0.1837 0.1407 0.1098
(std) ( 0.0045) ( 0.0030) ( 0.0022)

Loc-Scale 0.3187 0.2491 0.1948
(std) ( 0.0081) ( 0.0065) ( 0.0040)

as it should, when the sample size increases. We also see that our new approach dominates
the two others. The direct traditional approach suffers from the problems mentioned above
after equation (1.8) and already pointed by Florens et al. (2014). Note that when the sample
increases, the direct approach gives similar performance as our new approach, illustrating the
fact that our new approach does not improve the rate of convergence of the estimators of the
full frontier. However here the location-scale model is inappropriate, since the model does not
fit the needed assumptions, providing in the table (bottom line) the worst case for this simple
näıve model.

4.2 A full independence case

We redo the exercise with a case where Z is fully independent of (X, Y ) and so, has no influence
on the production process. We have as above τ(y, z) = τ(y) = 1 + y2 with Y ∼ 3Beta(1, 2)
and Z ∼ Unif(0, 4) and however we select the cost according to X = τ(Y ) × exp(ξ) where
ξ ∼ N+(0, 0.52) a truncated normal independent of Z. Obviously this model fits the location-
scale assumptions. The results for the MISE for the 3 estimators are displayed in Table 2.
Here again, our new approach dominates the two other ones, note that the new method even
performs better than the location-scale approach despite the fact that the latter is appropriate.
This comes probably from the fact that in the location-scale approach, we first estimate the
location by a local linear estimator then in a second step, we regress on Z, in a nonparametric
way, the squares of the residuals obtained when estimating the location function. Squaring the
residuals introduces some instability in the estimation process. But still, the location-scale
approach dominates the traditional direct approach. Note that the Monte-Carlo standard
deviations indicate that the differences are significant.
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Table 2: MISE for the full independence case example.

n = 100 n = 200 n = 500
Direct 1.6502 0.9712 0.5651
(std) ( 0.0762) ( 0.0408) ( 0.0271)

New Method 0.7281 0.4480 0.2339
(std) ( 0.0227) ( 0.0151) ( 0.0078)

Loc-Scale 1.1930 0.6333 0.3178
(std) ( 0.0606) ( 0.0287) ( 0.0147)

4.3 A Location-Scale model

In this model we try to simulate a more general model that fits the location-scale assumptions.
The objective is to explore the performance of our new approach in scenarios where the
location-scale model is applicable. The model is a bit artificial but indeed the location-scale
assumptions in (1.9) are less natural in a frontier model setup, even if these models can be
viewed as flexible approximations of the DGP. The model goes along the following lines.

As above, we choose Y ∼ 3Beta(1, 2) independent of Z ∼ Unif(0, 4), so µy(Z) = 1 and
σy(Z) =

√
2/2 and the location-scale model is true for Y . Let the random variable W be

defined as W = (1+Y )+ ξ where ξ ∼ Exp(1) will govern the cost inefficiencies. Let us define
X = µx(Z)+σx(Z)εx for some functions of Z, µx(Z) and σx(Z) where εx = (W−E(W ))/σ(W )
is now standardized as required in (1.9). In our case, this defines εx = (Y − 2 + ξ)/

√
3/2. So

we can rewrite the cost X as

X = µx(Z) + σx(Z)

[
Y − 2√

3/2

]
+ σx(Z)ξ/

√
3/2, (4.3)

where the first two terms identify the true frontier in original units τ(y, z) and the last term
is the inefficiency and is positive. In our example here we chose µx(Z) = 2(Z + 1)/6 and
σx(Z) = (Z + 1)/6. The results of the Monte-Carlo experiment for this example are in Table
3. Here again, and surprisingly, our new approach dominates significantly the location-scale

Table 3: MISE for the Location-Scale model example.

n = 100 n = 200 n = 500
Direct 0.0410 0.0289 0.0176
(std) ( 0.0013) ( 0.0009) ( 0.0004)

New Method 0.0181 0.0109 0.0054
(std) ( 0.0004) ( 0.0003) ( 0.0001)

Loc-Scale 0.0240 0.0141 0.0063
(std) ( 0.0008) ( 0.0004) ( 0.0002)

approach of Florens et al. (2014), probably for the same reasons explained above in the full
independence case. But of course the location-scale method dominates the traditional direct
approach.
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4.4 More elaborate realistic examples

Inspired by the DGPs proposed by Bădin et al. (2019) and Simar and Wilson (2011), we aim
to Illustrate how various approaches perform under different conditions where the external
variable Z influences the production process. Specifically, the effect of Z may be observed on
the level of the frontier, on the distribution of inefficiencies, on both, or on neither. So we
consider in Appendix B of the supplementary material these four cases in various scenarios
with one input X (X is a cost), and one output Y for uni- and bi-variate Z. We illustrate
also in Appendix B the effect of Z on the DGP by various figures in the case of univariate Z
in 3D figures.

Here we only focus on one case where Z is bivariate and influences both the frontier
level and the inefficiency distribution (this is case-D in the Appendix). We also analyse
the consequence of adding 3 outliers in the data set. We will look to the behavior of the
order-m partial frontiers, we select, only for illustration, the values of m = 10, 20, 50, 100
and 200. The true values of the order-m frontiers are difficult to compute. For some given
point, they can be obtained by numerical integration in y to get the true survival function
SX|Y Z(x | Y ≥ y, Z = z) and then by integrating on x for computing τm(y, z) in each scenario
(see (1.12)). This would be infeasible for all the data points, for all the cases and for each
Monte-Carlo trial. So we investigate rather how the order-m frontier estimates the true full
frontier. This will be of particular interest for investigating the cases where we added outliers.
All the detailed tables of MISE for various scenarios are available in the supplementary
material.

To summarize the scenario presented here, we have a basic “cost” frontier τ(y) = 1 + y2

for y ∈ (0, 3) and Zj ∼ Unif(0, 4), independently for j = 1, 2. Then we consider that, as often
the case in practice, the output Y may depend on Z1. We define

Y | Z1 = z1 ∼ 3Beta(1 + z1/4, 2− z1/4) (4.4)

where Beta(a, b) is the beta distribution. So depending on the value of z1, the shape of
f(y|Z1 = z1) give more weights to values of Y near its lower bound for small z1 and near its
upper bound for large values of z1. For instance we have E(Y | Z1 = z1) = 1 + z1/4. We see
that Z1 may influence not only the location and the scale of the distribution of Y but also
moments of higher order. So the location-scale model is not verified for Y . The inefficiency
will be governed by a multiplicative factor exp(ξ) ≥ 1 to the frontier function, where ξ ≥ 0.
We will choose

ξ | Z = z ∼ N+(µξ(z), σ
2
ξ (z)), (4.5)

where

µξ(z) = 1− (z1 + z2)/2 (4.6)

σξ(z) = ((z1 + z2)/2 + 3)/10. (4.7)

As above we did 500 MC replications and we look at theMISE for samples of size n = 100, 200
and 500. The results are displayed in Table 4. The results speak by themselves: as the
simpler examples above our new method dominates the location-scale method and also the
direct approach. Note that here for this complex case, where Z affects both the frontier and
the efficiency distribution, the location-scale is not correct and the approach gives even worse
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results than the direct traditional method. Here, there are no outliers but interestingly the
order-m estimators provide better estimates of the full frontier from values of m near 50. This
is because they are less sensitive to extreme data points that can jeopardize the full frontier
estimates. Note also that our method also dominates the two other ones for the order-m
estimates.

Table 4: MISE for the simulated examples, Bivariate Z, Case D: Z1 does affect the frontier,
and Z1 and Z2 affect both the efficiency distribution.

n = 100 Full m = 10 m = 20 m = 50 m = 100 m = 200
Direct 1.4624 1.3764 1.2837 1.3325 1.3815 1.4169
(std) ( 0.1510) ( 0.1529) ( 0.1518) ( 0.1509) ( 0.1508) ( 0.1509)

New Method 0.7701 0.9894 0.8045 0.7675 0.7689 0.7700
(std) ( 0.0264) ( 0.0268) ( 0.0257) ( 0.0261) ( 0.0263) ( 0.0264)

Loc-Scale 2.1966 2.5026 2.0952 2.0129 2.0885 2.1649
(std) ( 0.1836) ( 0.1733) ( 0.1637) ( 0.1637) ( 0.1719) ( 0.1801)

n = 200 Full m = 10 m = 20 m = 50 m = 100 m = 200
Direct 1.0943 1.2377 1.0373 1.0120 1.0348 1.0579
(std) ( 0.0569) ( 0.0590) ( 0.0581) ( 0.0575) ( 0.0573) ( 0.0572)

New Method 0.5825 0.8749 0.6306 0.5704 0.5747 0.5805
(std) ( 0.0161) ( 0.0182) ( 0.0162) ( 0.0158) ( 0.0159) ( 0.0161)

Loc-Scale 1.6307 2.1291 1.6425 1.4679 1.4934 1.5607
(std) ( 0.0761) ( 0.0684) ( 0.0649) ( 0.0650) ( 0.0676) ( 0.0714)

n = 500 Full m = 10 m = 20 m = 50 m = 100 m = 200
Direct 0.7965 1.1906 0.8815 0.7788 0.7706 0.7764
(std) ( 0.0372) ( 0.0397) ( 0.0388) ( 0.0381) ( 0.0378) ( 0.0375)

New Method 0.5089 0.8962 0.5754 0.4767 0.4793 0.4937
(std) ( 0.0129) ( 0.0143) ( 0.0122) ( 0.0119) ( 0.0123) ( 0.0126)

Loc-Scale 1.3869 2.0295 1.4525 1.1892 1.1695 1.2228
(std) ( 0.0608) ( 0.0473) ( 0.0432) ( 0.0421) ( 0.0435) ( 0.0466)

Next we introduce in the same scenario three outliers. We replaced the 3 last simulated
values of (Xi, Yi, Zi) in the preceding samples by fixing Yi = 1, 1.75 and 2, keeping the same
3 simulated values of Z and then, for the 3 fixed points Yi, we define Xi below the true cost
frontier at a level of 50% of the true value. The results are displayed in Table 5.

We observe indeed that the order-m frontiers are resistant to these outliers when m is not
too large (otherwise the order-m frontiers and estimates converge to the full frontiers, see e.g.
Cazals et al. (2002)). But again our new method performs better than the two others and in
particular than the location-scale approach which is inappropriate. In this scenario, it seems
that an optimal order-m would be around 10 or 20 depending on the value of n. In practice
for a real data example, several techniques have been proposed to select an appropriate value
of m for a given sample (see e.g. Daouia and Gijbels, 2011).

4.5 Conclusions from these Monte-Carlo experiments

To summarize, we observed in our various scenarios (including all the cases in the Appendix
B) that our new method based on the control functions approach dominates, as expected,
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Table 5: MISE for the simulated examples, Bivariate Z, Case D: Z1 does affect the frontier,
and Z1 and Z2 affect both the efficiency distribution, with 3 outliers.

n = 100 Full m = 10 m = 20 m = 50 m = 100 m = 200
Direct 2.4774 1.6725 1.8832 2.1840 2.3239 2.3990
(std) ( 0.1509) ( 0.1503) ( 0.1497) ( 0.1501) ( 0.1506) ( 0.1508)

New Method 2.2479 1.0634 1.3265 1.8663 2.1312 2.2292
(std) ( 0.0340) ( 0.0269) ( 0.0286) ( 0.0316) ( 0.0334) ( 0.0339)

Loc-Scale 3.6885 2.3308 2.4772 3.0768 3.4495 3.6351
(std) ( 0.1981) ( 0.1603) ( 0.1562) ( 0.1652) ( 0.1802) ( 0.1930)

n = 200 Full m = 10 m = 20 m = 50 m = 100 m = 200
Direct 1.8295 1.3545 1.3663 1.5596 1.6790 1.7499
(std) ( 0.0574) ( 0.0582) ( 0.0572) ( 0.0567) ( 0.0568) ( 0.0571)

New Method 2.0350 0.8016 0.8282 1.2787 1.6700 1.9216
(std) ( 0.0271) ( 0.0163) ( 0.0176) ( 0.0216) ( 0.0247) ( 0.0265)

Loc-Scale 3.1665 1.8353 1.6858 2.1433 2.6255 2.9702
(std) ( 0.0824) ( 0.0607) ( 0.0598) ( 0.0652) ( 0.0710) ( 0.0766)

n = 500 Full m = 10 m = 20 m = 50 m = 100 m = 200
Direct 1.2243 1.1636 0.9662 1.0121 1.0906 1.1501
(std) ( 0.0348) ( 0.0383) ( 0.0370) ( 0.0358) ( 0.0352) ( 0.0349)

New Method 1.8634 0.7942 0.5681 0.7295 1.0538 1.4278
(std) ( 0.0234) ( 0.0136) ( 0.0126) ( 0.0155) ( 0.0186) ( 0.0209)

Loc-Scale 2.8680 1.8621 1.4008 1.4656 1.8214 2.2622
(std) ( 0.0704) ( 0.0478) ( 0.0441) ( 0.0453) ( 0.0493) ( 0.0548)

the traditional direct approach defined by (1.7) and (1.14) but also, in most of the cases, the
location-scale model, which is too restrictive since Z can only influence the first two moments
of the input and the outputs. But even if the location-scale model is true, we have seen in
our scenarios above that the new method has better MISE performances, we pointed above
that this may come from the second stage nonparametric regression for estimating the scale
functions σ(Z) (squaring the residuals of the first stage regression introduces more instability).
We see also that our new method has in most of the cases, the smallest Monte-Carlo standard
deviation of the MISE indicating a greater statistical stability. These remarks apply also to
the order-m estimates.

5 Real Data Illustration

To illustrate our method with a real data set, we use data from the banking sector, also used
in Bădin et al. (2012) applying the direct traditional approach and in Florens et al. (2014),
implementing the location-scale model to clean the input (a cost) and the outputs. The aim
here is to show to practitioners the kind of useful results that can be exploited by using our
approach to estimate conditional cost frontiers. It is safer to opt for our control function
approach as described in (1.10), since, as discussed above, it allows more general structure
for the effects of environmental variables compared to the location-scale models. Also the
simulation section above indicates that our method is much more stable and dominates the
other two.
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The original dataset comes from Simar and Wilson (2007) and contains 3 inputs (purchased
funds, core deposits and labor) and 4 outputs (consumer loans, business loans, real estate loans
and securities held) for banks. Two environmental factors are considered, the size of the banks
Z1 (the log of the total assets = SIZE) and a measure of the diversity of the services proposed
by the banks Z2 (DIVERSITY). Daraio et al. (2018), using the same data set, rejected the
separability condition, advocating the use of conditional efficiency measures.

We select a subsample of 303 banks, as in Simar and Wilson (2007), Bădin et al. (2012) and
Florens et al. (2014). In the two latter papers, it is explained that, by using the methodology
described in Daraio and Simar (2007), the inputs can be aggregated in a one-dimensional
input measure, without losing much information and the same is true for the outputs. The
final output Y is highly correlated (more than 0.93) with the 4 original outputs and the same
is true for the final input X (correlation with the original inputs more than 0.97). This allows
to illustrate the results in low-dimensional pictures.

Figure 1 displays the values of the 303 banks in “pure” units, whitened from the influence
of (Z1, Z2) and the estimated full frontier ϕ̂(ûy) and the order-m frontier ϕ̂m(ûy), with m = 30.
We see that the full frontier in Figure 1 envelops nicely the cloud of data in pure units, with
the same qualitative remark for the order-m frontier. We see also that with m = 30 we have
only very few points below the m-frontier.7
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Figure 1: Bank example: Estimated “pure” inputs and outputs and the estimated efficient
frontiers ϕ̂(ûy) and ϕ̂m(ûy), here m = 30.

Finally, for practitioners, a detailed analysis of the individual efficiency scores (in pure
units and conditional on z) would be very informative, in particular to detect some inefficient
units and measure how far they are from the minimal cost frontiers in original units (full
and of order-m). For the bootstrap confidence intervals we used the procedure described in
(3.1) and (3.2). In Tables 6 and 7 we display the results for 15 randomly chosen banks. In

Table 6, we only display the results for the efficiencies in pure units, i.e δ̂i = ûxi
− ϕ̂(ûyi) and

δ̂i,m = ûxi
− ϕ̂m(ûyi). For instance, we see that the unit “237” has rank 1 and lies on the

efficient full frontier, then as expected it lies below the cost frontier of order-m. The 95%

7As in Florens et al. (2014), we selected m = 30 just for illustration. This provides, in our sample, less
than 6% of data points below the order-m cost frontier.
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confidence bounds for this unit indicate it is significantly below the order-m cost frontier, so
it behaves like a super-efficient unit. Unit “170” is one of the worst with respect to his cost.

Table 6: Pure and conditional efficiency scores of order-m, for 15 randomly selected banks.
The ranks Ri are computed relative to the pure order-m efficiency scores with m = 30. The
95% confidence bounds for δm,i are computed by bootstrap (B = 1000 replications).

Unit i δ̂i Ri δ̂m,i lowδm upδm
259 0.1439 41 0.1017 0.0171 0.2305
237 0.0000 1 -0.0745 -0.1275 -0.0487
258 0.1496 37 0.0743 0.0200 0.0967
1 0.3617 120 0.2848 0.2168 0.3086

241 0.4089 150 0.3514 0.3132 0.3699
66 0.5870 218 0.5225 0.4783 0.5495
164 0.3177 104 0.2478 0.1857 0.2849
274 0.5396 206 0.4826 0.4460 0.5078
303 0.1879 53 0.1378 0.0413 0.2341
199 0.2567 107 0.2558 -0.2063 0.5442
216 0.7948 271 0.7154 0.6439 0.7489
125 0.3263 108 0.2562 0.1954 0.3118
239 0.4024 145 0.3354 0.2890 0.3633
170 0.9079 297 0.8274 0.7543 0.8571
242 0.0150 7 -0.0438 -0.0825 -0.0214

In Table 7, we provide useful results in the original units. Comparing the cost of a bank
(column Xi) with the full cost frontier (the column τ̂i), we can appreciate the gap (excess
of cost) that each unit has to do for reaching the optimal cost function. Being less extreme,
the order-m frontier provides a less severe benchmark (column τ̂m,i). Also we provide an

efficiency measures in proportion, i.e. θ̂i = τ̂i/Xi, which gives the percentage of reduction of
the cost a bank should perform to achieve the optimal cost function. Their order-m versions
θ̂m,i = τ̂m,i/Xi are less severe. For points below the order-m cost frontier, this number can
exceed 1 (as for the super-efficient unit “237”). Again, for the order-m objects, we can provide
confidence intervals by bootstrap methods, as given in the Table.
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Table 7: Results for the same 15 banks in original units. Xi is the observed cost, τ̂i is its full
frontier estimate with τ̂m,i for the order-m with m = 30. The proportionate cost reductions

are given by θ̂i and θ̂m,i. 95% confidence bounds are for the order-m objects.

Unit i Xi τ̂i τ̂m,i lowτm upτm θ̂i θ̂m,i lowθm upθm
259 7.2986 6.2393 6.2432 5.0774 7.2337 0.8549 0.8554 0.6957 0.9911
237 0.3505 0.3505 0.4047 0.3573 0.4616 1.0000 1.1548 1.0196 1.3173
258 0.1998 0.1604 0.1830 0.1725 0.2433 0.8026 0.9157 0.8632 1.2177

1 1.1985 1.0134 1.0565 1.0156 1.1909 0.8456 0.8816 0.8474 0.9937
241 0.8693 0.6903 0.7254 0.6714 0.8077 0.7940 0.8344 0.7723 0.9291
66 0.3421 0.2396 0.2592 0.2413 0.3164 0.7005 0.7577 0.7055 0.9249
164 1.8694 1.6086 1.6930 1.5929 1.9406 0.8605 0.9056 0.8521 1.0381
274 0.4026 0.2715 0.2990 0.2842 0.3646 0.6743 0.7428 0.7061 0.9057
303 0.2969 0.2625 0.2725 0.2456 0.3324 0.8841 0.9177 0.8273 1.1196
199 2.6751 2.5152 2.5158 2.3157 3.0799 0.9402 0.9404 0.8656 1.1513
216 7.2741 5.7449 5.8366 5.4627 7.0507 0.7898 0.8024 0.7510 0.9693
125 1.0559 0.8559 0.9117 0.8257 0.9934 0.8106 0.8634 0.7820 0.9408
239 1.3945 1.1799 1.2690 1.2240 1.3916 0.8461 0.9100 0.8778 0.9980
170 2.9572 1.9072 2.1360 1.9677 2.3823 0.6449 0.7223 0.6654 0.8056
242 1.8388 1.8138 1.9190 1.7612 2.0793 0.9864 1.0436 0.9578 1.1308

It is quite interesting to analyze the shape of the frontier in the (Y,X) space for fixed
values of the environmental conditions. So, we selected 9 pairs (QZ1k, QZ2ℓ), for k, ℓ = 1, 2, 3,
for each quartile QZ1k of Z1 and QZ2ℓ of Z2. In Figure 2, we see the case for Z2 fixed at its
median and the 3 different quartiles for Z1. The conditional frontiers did not change so much
when changing the value of Z2, so to save space we do not display these figures. We see again
that with our approach the frontiers envelop nicely the cloud of points. The picture indicates,
as expected, that the SIZE (i.e. Z1) impacts the level of the frontier.
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Figure 2: Bank example: data points in original units and frontier estimates when fixing the
level of Z. Here Z2 (DIVERSITY) is fixed at its median value, and Z1 (SIZE) is fixed at its
3 quartiles (from the left to the right).

A final point of interest is to investigate how the support of (Y,X) is impacted by the
values of Z. This is usually done in this literature by looking to the ratios of τ̂(y, z)/τ̂(y)
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as a function of z for fixed values of Y defined at its 3 quartiles. This is displayed Figure
3. We provide the surface for the 3 quartiles of Y , because even if the global shape of the
surfaces is comparable, we can detect slight different behavior for large or small values of
Y . For the middle panel, Y equal its median, the effect of the SIZE (Z1) seems not being
important and the effect of DIVERSITY (Z2) seems slightly more important for small values
of Z1. We see also that the effect of Z2 is slightly more important for smaller banks (Z1 small)
than for large banks at each quartile of Y . For the upper quartile of Y this effect seems to be
slightly reversed: for small banks with low level of output (up to the median of Y ) too much
diversity seems to be favourable (smaller level for the conditional cost frontier compared to
the marginal one), but this effect seems to disappear for banks having the largest output.

Figure 3: Bank example: Analysis of the ratios τ̂(y, z)/τ̂(y) for fixed values of y. From left
to right y is given by the 3 quartiles of Y . Z1 is the SIZE and Z2 is DIVERSITY.

6 Conclusions

Conditional frontiers and conditional efficiency measures are useful tools for the practitioner
to investigate the role of environmental variables on a production process. The traditional,
direct, approach implies the estimation of the support of appropriate conditional survival
function, implying the selection of optimal bandwidths. The latter is often obtained by least-
squares cross validation techniques which are optimal for estimating a survival function over
its full range, but, as pointed in Bădin et al. (2019) not necessarily optimal for estimating its
boundary.

We propose in this paper a way to overcome this difficulty without imposing any additional
assumptions on the model. The idea is to pre-whiten the variables (input and outputs) from
the influence of these environmental factors in a first nonparametric stage by control functions
type model. By doing so, we first produce a version of pure input and outputs, which can
be viewed as part of the original variables independent of the environmental factors, allowing
to measure “pure” or “managerial” efficiency measures, more appropriate to rank the firms.
Second, we are able to recover the frontiers, full and robust versions, in the original units. We
prove that for the order-m robust frontier in pure units, the derived estimator does not suffer
from the curse of dimensionality due to the dimension of Z, proving the

√
n convergence

to a Gaussian process. For this frontier in original units, we keep the nice properties of
its correspondent obtained by traditional methods (i.e.

√
nhz convergence to a Gaussian

process). This is similar to the results obtained by Florens et al. (2014), but in our case
we do not have to rely to the restricted location-scale assumptions, which assume that Z
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can only influence the mean and the scale of the input and outputs, and not other shape
parameters. Our fully nonparametric approach, characterized by its non-separability in Z,
enables the practitioners to analyse the intricate, non-separable connections between these
variables and the target outcomes, avoiding assuming any specific functional forms governing
these relationships. Hence, it is very important in applied analysis to aim at exploring the
complexities inherent in the relationships under investigation.

Various Monte-Carlo experiments demonstrate that our approach yields much more reliable
estimators of the true frontier (full and robust order-m) when compared to the direct approach,
but even compared with the location-scale approach. When the location-scale assumptions are
not verified the latter approach can provide very poor results, as indicated in our experiments.
Finally we illustrate the practical use of our approach in a real data set, showing its great
flexibility and usefulness.
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A Appendix: Proofs

The proofs rely on two lemmas. We start with a lemma regarding the estimators F̂Y |Z(y|z)
and F̂−1

Y |Z(u|z), that will be used multiple times in the proofs of the main results. The result

is e.g. given in Theorems 2.4 and 4.1 in Li et al. (2013). Similar results hold for Y replaced
by X.

25



Lemma A.1 Assume (C1)-(C5). Then,

F̂Y |Z(y|z)− FY |Z(y|z) = (nhz)
−1

n∑
i=1

k
(Zi − z

hz

)1I(Yi ≤ y)− FY |Z(y|Zi)

fZ(z)
(A.1)

+ h2
yBy(y|z) + h2

zBz(y|z) +OP ((nhz)
−1 log n),

and

F̂−1
Y |Z(u|z)− F−1

Y |Z(u|z) = −(nhz)
−1

n∑
i=1

k
(Zi − z

hz

)1I(Yi ≤ F−1
Y |Z(u|Zi))− u

fY |Z(F
−1
Y |Z(u|z)|z)fZ(z)

(A.2)

− h2
y

By(F
−1
Y |Z(u|z)|z)

fY |Z(F
−1
Y |Z(u|z)|z)

− h2
z

Bz(F
−1
Y |Z(u|z)|z)

fY |Z(F
−1
Y |Z(u|z)|z)

+OP ((nhz)
−1 log n),

uniformly in u ∈ [0, 1], y ∈ RY , z ∈ RZ, where By(y|z) = κ2

2
∂2

∂y2
FY |Z(y|z), Bz(y|z) =

κ2

2
∂2

∂z2
FY |Z(y|z), and κ2 =

∫
k(u)u2du.

Lemma A.2 Assume (C1)-(C5). Then,

sup
0≤uy≤1

∣∣∣n−1

n∑
i=1

{
1I(Ûy,i ≥ uy)− 1I(Uy,i ≥ uy)

}
− P(Ûy ≥ uy) + P(Uy ≥ uy)

∣∣∣ = oP (n
−1/2),

and

sup
0≤ux,uy≤1

∣∣∣n−1

n∑
i=1

{
1I(Ûx,i ≥ ux, Ûy,i ≥ uy)− 1I(Ux,i ≥ ux, Uy,i ≥ uy)

}
− P(Ûx ≥ ux, Ûy ≥ uy) + P(Ux ≥ ux, Uy ≥ uy)

∣∣∣ = oP (n
−1/2),

where P(Ûy ≥ uy) and P(Ûx ≥ ux, Ûy ≥ uy) are the survival function of Ûy and (Ûx, Ûy),
respectively, conditional on the data.

Proof. We will show the first statement, the second one can be shown in a similar way.
Define the class of functions

F =
{
(y, z) → 1I(F (y|z) ≥ u) : u ∈ [0, 1], F (·|z) monotone onto [0, 1]

for all z ∈ RZ , F
−1(u|·) ∈ C1+δ

M (RZ) for all u ∈ [0, 1]
}
,

where δ,M and C1+δ
M (RZ) are defined in condition (C5). We will first show that F is Donsker.

Since the function z → F−1(u|z) ∈ C1+δ
M (RZ) for all u ∈ [0, 1] and all F satisfying the above

conditions, there exist ϵ2-brackets bLj ≤ bUj , j = 1, . . . ,Mϵ = O(exp(ϵ−2/(1+δ))), such that for
a given u and F there exists 1 ≤ j ≤ Mϵ satisfying bLj (·) ≤ F−1(u|·) ≤ bUj (·) (see Corollary
2.7.2 in Van der Vaart and Wellner, 1996). Hence, we also have that

1I(bUj (·) ≤ y) ≤ 1I(F−1(u|·) ≤ y) = 1I(F (y|·) ≥ u) ≤ 1I(bLj (·) ≤ y),
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where the equality holds thanks to the monotonicity of F in the first argument. Next, calculate∫ [
1I(bLj (z) ≤ y)− 1I(bUj (z) ≤ y)

]2
dFY,Z(y, z) =

∫ [
FY |Z(b

U
j (z)|z)− FY |Z(b

L
j (z)|z)

]
dFZ(z)

≤ K∥bUj − bLj ∥LP
1
≤ K∥bUj − bLj ∥LP

2
≤ Lϵ2,

for some K,L < ∞, provided supy,z fY |Z(y|z) < ∞. This shows that N[ ](F , ϵ, L2(P)) ≤ Mϵ,
where N[ ](F , ϵ, L2(P)) is the ϵ-bracketing number of the class F with respect to the L2(P)
measure (with P the joint probability measure of (Y, Z)), i.e. the smallest number of ϵ-brackets
needed to cover the space F . Hence,∫ 2M

0

(
logN[ ](F , ϵ, L2(P))

)1/2
dϵ ≤ K1

∫ 2M

0

ϵ−1/(1+δ)dϵ = K2(2M)δ/(1+δ) < ∞,

for some K1, K2 < ∞. It now follows from Theorem 2.5.6 in Van der Vaart and Wellner
(1996) that the class F is P-Donsker, and hence

lim
α→0

lim
ϵ→0

P
(

sup
f,g∈F ,ρP(f−g)<α

∣∣∣n−1/2

n∑
i=1

{
f(Yi, Zi)− g(Yi, Zi)

− Ef(Y, Z) + Eg(Y, Z)
}∣∣∣ > ϵ

)
= 0, (A.3)

where ρ2P(f) = Varf(Y, Z) (see Corollary 2.3.12 in Van der Vaart and Wellner, 1996).

Next, we show that for all 0 ≤ u ≤ 1, the function (y, z) → 1I(F̂Y |Z(y|z) ≥ u) belongs

to F with probability tending to one. For this it suffices to show that sup0≤u≤1 ∥F̂−1
Y |Z(u|·)−

F−1
Y |Z(u|·)∥1+δ = oP (1), since we assume that F−1

Y |Z(u|·) ∈ C1+δ
M (RZ) for all u ∈ [0, 1]. This

follows from Guerre and Sabbah (2012).
Finally we calculate

Var
(
1I(F̂Y |Z(Y |Z) ≥ u)− 1I(FY |Z(Y |Z) ≥ u)

)
≤ E

(
1I(F̂Y |Z(Y |Z) ≥ u)− 1I(FY |Z(Y |Z) ≥ u)

)2

=

∫ [
FY |Z(F̂

−1
Y |Z(u|z)|z)− FY |Z(F̂

−1
Y |Z(u|z) ∧ F−1

Y |Z(u|z)|z)
]
dFZ(z)

+

∫ [
FY |Z(F

−1
Y |Z(u|z)|z)− FY |Z(F̂

−1
Y |Z(u|z) ∧ F−1

Y |Z(u|z)|z)
]
dFZ(z)

= sup
0≤u≤1,z∈RZ

|F̂−1
Y |Z(u|z)− F−1

Y |Z(u|z)| = o(1) a.s.

Hence, the result follows from (A.3). 2

Proof of Theorem 3.1.

ŜUx|Uy(ux|uy)− SUx|Uy(ux|uy) (A.4)

= ŜUx,Uy(ux, uy)
[ 1

ŜUy(uy)
− 1

SUy(uy)

]
+

1

SUy(uy)

[
ŜUx,Uy(ux, uy)− SUx,Uy(ux, uy)

]
,
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where ŜUy(uy) = n−1
∑n

i=1 1I(Ûy,i ≥ uy) and ŜUx,Ux(ux, uy) = n−1
∑n

i=1 1I(Ûx,i ≥ ux, Ûy,i ≥ uy).
It follows from Lemma A.2 that

ŜUx,Uy(ux, uy)− SUx,Uy(ux, uy)

= n−1

n∑
i=1

{
1I(Ux,i ≥ ux, Uy,i ≥ uy)− SUx,Uy(ux, uy)

}
+ P

(
X ≥ F̂−1

X|Z(ux|Z), Y ≥ F̂−1
Y |Z(uy|Z)

)
− P

(
X ≥ F−1

X|Z(ux|Z), Y ≥ F−1
Y |Z(uy|Z)

)
+ oP (n

−1/2).

The first term on the right hand side is a sum of i.i.d. terms. The second term equals∫ [
P
(
X ≥ F̂−1

X|Z(ux|Z), Y ≥ F̂−1
Y |Z(uy|Z)

∣∣Z = z
)

− P
(
X ≥ F−1

X|Z(ux|Z), Y ≥ F−1
Y |Z(uy|Z)

∣∣Z = z
)]
dFZ(z)

=

∫
∂

∂t1
SX,Y |Z(t1, F

−1
Y |Z(uy|z)|z)

∣∣
t1=F−1

X|Z(ux|z)

[
F̂−1
X|Z(ux|z)− F−1

X|Z(ux|z)
]
dFZ(z)

+

∫
∂

∂t2
SX,Y |Z(F

−1
X|Z(ux|z), t2|z)

∣∣
t2=F−1

Y |Z(uy |z)

[
F̂−1
Y |Z(uy|z)− F−1

Y |Z(uy|z)
]
dFZ(z) + oP (n

−1/2)

=
∂

∂ux

SUx,Uy(ux, uy)

∫
fX|Z(F

−1
X|Z(ux|z)|z)

[
F̂−1
X|Z(ux|z)− F−1

X|Z(ux|z)
]
dFZ(z)

+
∂

∂uy

SUx,Uy(ux, uy)

∫
fY |Z(F

−1
Y |Z(uy|z)|z)

[
F̂−1
Y |Z(uy|z)− F−1

Y |Z(uy|z)
]
dFZ(z) + oP (n

−1/2)

= − ∂

∂ux

SUx,Uy(ux, uy)
{
(nhz)

−1

n∑
i=1

∫
k
(Zi − z

hz

)[
1I(Xi ≤ F−1

X|Z(ux|Zi))− ux

]
dz

+

∫ [
h2
xBx(F

−1
X|Z(ux|z)|z) + h2

zBz(F
−1
X|Z(ux|z)|z)

]
fZ(z)dz

}
− ∂

∂uy

SUx,Uy(ux, uy)
{
(nhz)

−1

n∑
i=1

∫
k
(Zi − z

hz

)[
1I(Yi ≤ F−1

Y |Z(uy|Zi))− uy

]
dz

+

∫ [
h2
yBy(F

−1
Y |Z(uy|z)|z) + h2

zBz(F
−1
Y |Z(uy|z)|z)

]
fZ(z)dz

}
+ oP (n

−1/2),

where SX,Y |Z(x, y|z) = P(X ≥ x, Y ≥ y|Z = z), and where the last equality follows from
Lemma A.1. The latter expression can be further simplified as follows:

− ∂

∂ux

SUx,Uy(ux, uy)n
−1

n∑
i=1

[
1I(FX|Z(Xi|Zi) ≤ ux)− ux

]
− ∂

∂uy

SUx,Uy(ux, uy)n
−1

n∑
i=1

[
1I(FY |Z(Yi|Zi) ≤ uy)− uy

]
− ∂

∂ux

SUx,Uy(ux, uy)

∫ [
h2
xBx(F

−1
X|Z(ux|z)|z) + h2

zBz(F
−1
X|Z(ux|z)|z)

]
fZ(z)dz

− ∂

∂uy

SUx,Uy(ux, uy)

∫ [
h2
yBy(F

−1
Y |Z(uy|z)|z) + h2

zBz(F
−1
Y |Z(uy|z)|z)

]
fZ(z)dz + oP (n

−1/2),
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On the other hand, using a similar decomposition, the first term of (A.4) equals

ŜUx,Uy(ux, uy)
[ 1

ŜUy(uy)
− 1

SUy(uy)

]
= −

SUx,Uy(ux, uy)

S2
Uy
(uy)

fUy(uy)n
−1

n∑
i=1

[
1I(FY |Z(Yi|Zi) ≤ uy)− uy

]
−

SUx,Uy(ux, uy)

S2
Uy
(uy)

fUy(uy)

∫ [
h2
yBy(F

−1
Y |Z(uy|z)|z) + h2

zBz(F
−1
Y |Z(uy|z)|z)

]
fZ(z)dz

+ oP (n
−1/2).

Finally, note that

SUx,Uy(ux, uy)

S2
Uy
(uy)

fUy(uy) +
1

SUy(uy)

∂

∂uy

SUx,Uy(ux, uy) =
∂

∂uy

SUx|Uy(ux|uy)

and SUy(uy)
−1 ∂

∂ux
SUx,Uy(ux, uy) = −fUx|Uy(ux|uy), from which the result follows. 2

Proof of Theorem 3.2. Write

ϕ̂m(uy)− ϕm(uy)

=

∫ 1

0

[
Ŝm
Ux|Uy

(ux|uy)− Sm
Ux|Uy

(ux|uy)
]
dux

= 2m−1

∫ 1

0

Sm−1
Ux|Uy

(ux|uy)
[
ŜUx|Uy(ux|uy)− SUx|Uy(ux|uy)

]
dux + oP (n

−1/2),

since am − bm = (a− b)(
∑m−1

k=0 cka
m−1−kbk) for any a, b and for certain coefficients ck that are

such that
∑m−1

k=0 ck = 2m−1. The result now follows from the first part of Theorem 3.1. 2

Proof of Theorem 3.3. Write

τ̂m(y, z)− τm(y, z)

= −
∫ 1

0

F̂−1
X|Z(t|z)dŜ

m
Ux|Uy

(t|ûy) +

∫ 1

0

F−1
X|Z(t|z)dS

m
Ux|Uy

(t|uy)

= −
∫ 1

0

[
F̂−1
X|Z − F−1

X|Z
]
(t|z)dSm

Ux|Uy
(t|uy)

−
∫ 1

0

F−1
X|Z(t|z)d

[
Ŝm
Ux|Uy

(t|ûy)− Sm
Ux|Uy

(t|ûy)
]

−
∫ 1

0

F−1
X|Z(t|z)d

[
Sm
Ux|Uy

(t|ûy)− Sm
Ux|Uy

(t|uy)
]
+ oP ((nhz)

−1/2)

= T1(y, z) + T2(y, z) + T3(y, z) + oP ((nhz)
−1/2),

uniformly in y. First note that

T2(y, z) =

∫ 1

0

[
Ŝm
Ux|Uy

(t|ûy)− Sm
Ux|Uy

(t|ûy)
]
dF−1

X|Z(t|z) = oP ((nhz)
−1/2),
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uniformly in y, thanks to Theorem 3.1. Next, (A.2) allows us to write T1(y, z) as a sum of
i.i.d. terms, up to a negligible term:

T1(y, z)

= (nhz)
−1

n∑
i=1

k
(Zi − z

hz

)∫ 1

0

1I(Xi ≤ F−1
X|Z(t|Zi))− t

fX|Z(F
−1
X|Z(t|z)|z)fZ(z)

dSm
Ux|Uy

(t|uy)

+

∫ 1

0

[
h2
x

Bx(F
−1
X|Z(t|z)|z)

fX|Z(F
−1
X|Z(t|z)|z)

+ h2
z

Bz(F
−1
X|Z(t|z)|z)

fX|Z(F
−1
X|Z(t|z)|z)

]
dSm

Ux|Uy
(t|uy) + oP ((nhz)

−1/2).

Finally, we consider the term T3(y, z):

T3(y, z)

= m

∫ 1

0

F−1
X|Z(t|z)

[
Sm−1
Ux|Uy

(t|ûy)fUx|Uy(t|ûy)− Sm−1
Ux|Uy

(t|uy)fUx|Uy(t|uy)
]
dt

= m

∫ 1

0

F−1
X|Z(t|z)

∂

∂uy

[
Sm−1
Ux|Uy

(t|uy)fUx|Uy(t|uy)
]
(ûy − uy) dt+ oP ((nhz)

−1/2)

= m
[
(nhz)

−1

n∑
i=1

k
(Zi − z

hz

)1I(Yi ≤ y)− FY |Z(y|Zi)

fZ(z)
+ h2

yBy(y|z) + h2
zBz(y|z)

]
×

∫ 1

0

F−1
X|Z(t|z)

∂

∂uy

[
Sm−1
Ux|Uy

(t|uy)fUx|Uy(t|uy)
]
dt+ oP ((nhz)

−1/2),

where the last equality follows from (A.1) in Lemma A.1. 2

Proof of Theorem 3.4. Let i1 = argminjZj, i2 = argminj:Zj−Zi1
>2h(Zj − Zi1), i3 =

argminj:Zj−Zi2
>2h(Zj − Zi2), etc., and note that there are rn = O(h−1) such indices. By con-

struction, the variables Ûx,i1 , Ûx,i2 , ..., Ûx,irn are mutually independent, and similarly with x re-

placed by y. Also, note that 0 ≤ ϕ̂(uy)−ϕ(uy) ≤ min{Ûx,ik : k = 1, . . . , rn, Ûy,ik ≥ uy}−ϕ(uy).
Now, fix s > 0 and consider

P
(
ϕ̂(uy)− ϕ(uy) ≤ s

)
≥ P

(
min{Ûx,ik : k = 1, . . . , rn, Ûy,ik ≥ uy} ≤ ϕ(uy) + s

)
= 1− P

(
Ûy,i1 < uy or Ûx,i1 > ϕ(uy) + s

)
× . . .× P

(
Ûy,irn < uy or Ûx,irn > ϕ(uy) + s

)
≥ 1− πrn

n , (A.5)

where πn = maxk=1,...,rn P
(
Ûy,ik < uy or Ûx,ik > ϕ(uy) + s

)
. For δn → 0, for νn sufficiently
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small and k = 1, . . . , rn, write

P
(
Ûy,ik < uy or Ûx,ik > ϕ(uy) + s

)
≤ P

({
Ûy,ik < uy or Ûx,ik > ϕ(uy) + s

}
and sup

j=x,y

rn
max
k=1

∣∣Ûj,ik − Uj,ik

∣∣ ≤ δn
)

+ P
(
sup
j=x,y

rn
max
k=1

∣∣Ûj,ik − Uj,ik

∣∣ > δn
)

≤ P
(
Uy,ik < uy + δn or Ux,ik > ϕ(uy) + s− δn

)
+ νn

≤ P
(
Uy,ik < uy + δn or Ux,ik > ϕ(uy + δn

)
+

s

2
) + νn

:= 1− q + νn ≤ 1− q

2
< 1,

since q > 0. The second inequality holds since maxni=1 |Ûy,i − Uy,i| = oP (1) and similarly for
Ux,i. It follows that πn → π < 1, and hence (A.5) converges to one, since rn → ∞ as n → ∞.

Hence, ϕ̂(uy)− ϕ(uy)
P→ 0.

Next, consider

τ̂(y, z)− τ(y, z) = F̂−1
X|Z

(
ϕ̂(ûy)|z)− F−1

X|Z(ϕ(uy)|z
)

=
1

fX|Z
(
ϕ(uy)|z

)(ϕ̂(ûy)− ϕ(uy)
)
+ oP (1),

and this converges to zero in probability thanks to the weak consistency of ûy. 2
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