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Abstract

Low-volatility investing often involves sorting and selecting stocks based on retrospective

risk measures, for example, the historical standard deviation of returns. In this paper, we use

the volatility forecasts from a wide spectrum of volatility models to sort and select stocks and

estimate portfolio weights. Our portfolios are more closely aligned with the ex-post optimal

portfolio and deliver large, significant economic gains compared to traditional benchmarks

after transaction costs. Importantly, we find that choosing portfolio weights by optimally

combining the volatility forecasts from the different models delivers the strongest forecast

and financial performance in real time.
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1 Introduction

Low-risk investment strategies are prominent in the financial industry and well-motivated by the

low-volatility anomaly—the consistent empirical evidence that points towards an inverse relation-

ship between (idiosyncratic) volatility and expected returns (e.g. Ang et al. (2006); Blitz et al.

(2019) among many others). Low-volatility portfolios are straightforward investment strategies

that only require estimates of each stock’s volatility and no estimates of correlations. Two promi-

nent examples are the S&P 500 Low Volatility Index which is based on the 100 least volatile stocks

in the S&P 500 and the S&P 500 Low Volatility Top 80% Index that is based on the 400 least

volatile stocks in the S&P 500.1 These indices assign a weight to each stock inversely proportional

to the respective stock’s volatility, measured by the standard deviation of daily returns over the

preceding year. The methodology of the S&P 500 Low Volatility Top 80% Index is motivated

by the empirical observation that the relation between volatility and returns is flat for low- and

medium-volatility stocks, but negative for the stocks with the highest volatility. Hence, it pays off

to avoid investing in high-volatility stocks (Gu et al., 2020; Blitz et al., 2019).

Nonetheless, from an ex-ante perspective, it remains an open question whether the past stan-

dard deviation or volatility forecasts, e.g., based on high-frequency data, should be used to select

stocks and estimate portfolio weights. Our paper focuses on improving low-volatility investing

through a comprehensive forecast evaluation of a large set of models and forecast combinations

in a large cross section of assets. The aim is to provide methodological improvements in the im-

plementation of low-volatility portfolios with monthly re-balancing. We take a new perspective

on low-volatility allocations by considering an infeasible post-hoc portfolio as the benchmark. We

define the post-hoc portfolio as the portfolio that an investor would choose with perfect foresight

of each stock’s monthly volatility.

In the financial econometrics literature (see, e.g., Ghysels et al., 2019), it is common to evaluate

model forecast performance and to select the best model ex-post based on the out-of-sample fore-

cast performance for individual stocks. Due to the monthly forecast horizon and a small sample,

1https://www.spglobal.com/spdji/en/documents/methodologies/methodology-sp-low-volatility-indices.pdf
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this is not feasible in our setting. Instead, we select the best models and forecast combinations in

each month based on the forecast performance in the cross section of stocks. Thus, our approach

is implementable in real-time. We then assess which model-based volatility forecasts facilitate con-

structing low-volatility portfolios that get as close as possible to the post-hoc portfolio. By treating

the allocation as a prediction problem of the post-hoc portfolio, we link low-volatility portfolios to

the literature on volatility forecasting. We investigate whether state-of-the-art volatility models

are useful for anticipating the correct composition of the post-hoc portfolio.

In the literature on low-volatility portfolios, volatility is typically measured using the standard

deviation of monthly or daily stock returns over a specific period (e.g., previous year, six months,

or month). Bali et al. (2016) provide an overview of commonly used metrics. Instead, following

the literature on estimating volatility from high-frequency intraday return data (e.g., Andersen

et al., 2003), we use the realized volatility to measure monthly volatility ex-post. To forecast

volatility, we employ a wide range of time series models. First, we use simple RiskMetrics models

and various generalized autoregressive conditional heteroskedasticity (GARCH)-type models (see,

e.g., Glosten et al., 1993). Those models treat the conditional variance as a latent process, and

daily (or monthly) returns are used for estimating and forecasting volatilities. Second, we use

heterogeneous autoregression (HAR) models (Corsi, 2009) and mixed-frequency data sampling

(MIDAS)-type models (Ghysels et al., 2004). Here, the realized variances are modeled directly as

a function of past realized variances. Third, we consider forecast combinations; that is, we combine

the forecasts from various volatility models according to measures of past forecast performance.

Our empirical application on large US equities suggests that portfolios based on forecast com-

binations more closely resemble the post-hoc portfolio than those based on individual models. In

this regard, our results examining a larger cross-section of assets and with a target horizon of one

month, are in line with previous research showing that forecast combinations outperform individual

forecasts. Among the different models, those that employ direct forecasting via realized variances

outperform all other models. However, our findings provide an important contrast to the broader

literature regarding forecast combinations. Whereas it is often found that it is hard to outperform
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forecast combinations that use equal weights (see, e.g., Stock and Watson, 2004; Smith and Wallis,

2009; Claeskens et al., 2016), we find that the most effective forecast combination relies on model

selection, i.e., in each period places all weight on the currently best-performing model. This is

optimal because the relative forecasting accuracy across models varies over time, but differences

in forecast accuracy are persistent enough to be exploitable in real time.

The out-of-sample performance of the low-volatility portfolios based on state-of-the-art volatil-

ity models significantly improves performance relative to simple benchmarks. These findings are

robust to the inclusion of estimated effective trading costs. We compute the annualized fee required

to make an investor indifferent between the post-hoc allocation and the feasible trading strategies.

Comparing the forecast combinations to the simple benchmark allocations, we find differences in

fees are as large as one percentage point, annualized, net of transaction costs. This corresponds to

a reduction of almost 40 percent. The appraisal ratio associated with the low-volatility portfolios,

for an investor that is holding the five Fama-French factors, more than doubles using effective

forecast combinations instead of the benchmarks based on daily returns. Our results show that

volatility forecasting within a large cross-section of stocks can bring important economic gains.

Model forecasting performance varies strongly over time, but model selection can uncover the best

models with sufficient accuracy.

The remainder of the paper is organized as follows. Section 2 reviews the previous literature

and presents empirical evidence for the low-volatility anomaly. Section 4 introduces the volatility

models and Section 5 describes the data. The forecast performance of the volatility models is eval-

uated in Section 6. Sections 7 and 8 provide a comparison of the various low-volatility portfolios.

Section 9 concludes.

2 Related literature

The anomaly that realized returns appear inversely related to volatility is well-documented in the

financial literature. Haugen and Heins (1972) and Haugen and Heins (1975) make use of total
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volatility while (Ang et al., 2006) and Ang et al. (2009) study allocations based on idiosyncratic

volatility. Gu et al. (2020) demonstrate that total volatility can be used to predict returns through

the use of machine-learning techniques. Likewise, there is a literature that studies risk defined as

beta (Haugen and Heins, 1972, 1975; Frazzini and Pedersen, 2014). All of these findings are related

as high-beta stocks are typically high-volatility stocks, and total volatility is highly correlated with

idiosyncratic volatility (Baker et al., 2011; Bali et al., 2016; Blitz et al., 2019).

Several explanations have been proposed for the low-volatility anomaly. Examples are that

investors face leverage constraints (e.g., Frazzini and Pedersen, 2014), regulatory constraints, or

constraints on short-selling (see for example Blitz et al. (2014), for an overview). Behavioral expla-

nations include representativeness, overconfidence, or preferences for lottery-like stocks (Barberis

and Huang, 2008; Bali et al., 2011; Baker et al., 2011). Asness et al. (2020) find evidence supporting

both the leverage and the lottery hypothesis.

Within the Markowitz framework (Markowitz, 1952), the minimum variance allocation often

proves to be an empirically robust alternative to the mean-variance alternatives that require esti-

mates of the expected returns. Clarke et al. (2006) explores the comparison on US equities and

DeMiguel et al. (2009) find that the global minimum variance allocation tends to generate more

stable allocations with higher out-of-sample performance, even with respect to Sharpe ratios. Kirby

and Ostdiek (2012) further extend the analysis to include, among else, volatility timing portfolios.

They find that these simple allocation rules provide effective active strategies that provide net

Sharpe ratios above simple equally weighted alternatives.

In this paper, we take a forward-looking perspective on the inverse volatility allocations by

utilizing time-series models that have been widely documented to perform better than trailing

volatility measures. Ghysels et al. (2005) employ MIDAS models to derive variance forecasts for

the market, providing evidence for a positive relationship between risk and return. Similarly, Fu

(2009) employs the exponential generalized autoregressive conditional heteroskedasticity model by

Nelson (1991) to forecast idiosyncratic volatilities, which he finds to be positively correlated with

returns, contradicting the findings of Ang et al. (2006, 2009). While Ghysels et al. (2005), Fu
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(2009), and Gu et al. (2020) demonstrate the usefulness of time-series models for portfolio sorting,

their analyses are limited to using daily return data, excluding forecasting models based on realized

variances.

We contribute to this literature by providing a comprehensive study of a large spectrum of

volatility models based on low-frequency observations as well as intraday returns. In addition, we

consider a rich set of forecast combinations to possibly enhance forecasting accuracy further. The

literature on intraday data for variance-based portfolio sorting follows the simple trailing volatility

approach. Boudt et al. (2015) perform a study similar to ours.2 However, Boudt et al. (2015)

find that there is no (statistically significant) benefit in portfolio returns from using intraday data.

In contrast to our study, they do not use volatility models and have a smaller sample. However,

already Haugen and Heins (1975) note that high-volatility stocks are primarily outperformed by

low-volatility stocks at longer investment periods which they attribute to superior performance

during bear markets. Liu (2009) concludes that at a monthly investment horizon there is no

benefit from intraday data if an investor has access to at least 12 months of daily data. Similarly,

Amaya et al. (2015) find no significant predictive power of lagged realized variances on weekly

stock returns.

3 Volatility forecasting and inverse volatility allocation

In this section, we take a new perspective on low-volatility allocations by creating and evaluating

the performance of an ex-ante infeasible post-hoc portfolio. As discussed in more detail in Section 5,

we use daily stock price data from the Center of Research in Security Prices (CRSP) and combine

it with intraday data from the New York Stock Exchange TAQ database. Each month, we use

the 500 stocks that are the largest as measured by market capitalization. In total, our analysis

includes 1616 stocks because the cross-section is time-varying between 2005:M1 and 2021:M12.

First, we provide evidence that the low-volatility anomaly is much stronger from an ex-post

2They use a S&P 500 real-time constituents data set to overcome the survivorship bias in De Pooter et al. (2008);
Hautsch et al. (2015).
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Table 1: Returns and Sharpe ratios of equally-weighted quintile portfolios

Quintile 1 2 3 4 5

Trailing volatility sort Ret 10.31 10.52 10.44 10.78 9.77
SR 0.98 0.82 0.72 0.67 0.54

Post-hoc volatility sort Ret 14.93 12.59 12.46 9.71 2.15
SR 1.45 1.02 0.87 0.62 0.22

Notes: The annualized compounded returns and corresponding Sharpe ratios are calculated
based on monthly returns of volatility-sorted portfolios. In each month, we sort stocks either
based on a trailing volatility proxy (volatility of 12 months of daily return data) or we sort
stocks based on the ex-post measure of monthly volatility calculated using intraday data.
The investment universe is the set of 500 largest U.S. common stocks by market capitalization
in the previous month. The sample period is 2005:M1 to 2021:M12.

than an ex-ante perspective. We denote the monthly realized variance of stock i, i = 1, . . . , N ,

in month m by RVi,m. The monthly realized variance equals the sum of daily realized variances

based on intraday data (see Section 5). The previous literature on low-volatility portfolios has

focused on volatility measures based on daily data. We follow the construction of the S&P 500

Low Volatility Index and measure volatility of stock i in month m by the standard deviation of

daily returns over the last twelve months (i.e., 252 trading days) which we denote by 12m-RVd
i,m.

3

From an ex-ante perspective, the low-volatility anomaly can be illustrated by sorting all stocks

in month m according to the ascending ordering of 12m-RVd
i,m, forming quintile portfolios and

computing returns in month m + 1. We refer to this approach as trailing volatility sort. Table 1

shows those portfolios’ average monthly returns and Sharpe ratios. Clearly, the average returns

and Sharpe ratios of the 20% stocks with the highest volatility are the lowest. Next, we take

an ex-post perspective. We think of a hypothetical investor who constructs infeasible quintile

portfolios that are formed at the end of month m according to the realized volatility from the end

of month m+1. We refer to this infeasible approach as post-hoc volatility sort. As Table 1 shows,

the low-volatility anomaly is much more pronounced from an ex-post perspective. Now, average

return and Sharpe ratios decline smoothly from the first to the fourth quintile portfolio and then

drop dramatically for the fifth quintile portfolio.

3Alternatively, volatility might be measured using returns over the previous months (e.g., Ang et al., 2006, 2009)
or the previous three years (e.g., Blitz and van Vliet, 2007).
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Motivated by these observations, we follow the methodology of the S&P 500 Low Volatility Top

80% Index for the remainder of this paper; that is, we exclude the top 20% volatility stocks from

our portfolio allocation and attach weights inversely proportional to an asset’s volatility to the

remaining assets. We refer to the feasible portfolio that is based on the 80% stocks with the lowest

volatility as measured ex-ante by 12m-RVd
i,m by 12m-RVd. Because it employs the same sorting

and weighting variables, the 12m-RVd portfolio has a correlation of 98.7% with the S&P 500 Low

Volatility Top 80% Index. The small remaining difference is due to the fact that our investment

universe is slightly different (largest 500 common stocks vs. S&P 500 constituents) and that we

have a different rebalancing frequency (monthly vs. quarterly). For comparison, we construct the

hypothetical portfolio that is based on the 80% stocks with the lowest RVi,m+1 and choose portfolio

weights accordingly. We refer to this infeasible portfolio as post-hoc portfolio.

Figure 1 shows the cumulative return of the post-hoc (blue), the 12m-RVd portfolio (purple),

and the CRSP value-weighted market return (red) during the 2005 to 2021 period. For comparison,

the figure also depicts the return of the S&P 500 Low Volatility Top 80% Index4 in green. Over

the whole sample period, the post-hoc portfolio clearly outperforms the 12m-RVd portfolio and

the market portfolio. As expected, the returns of the 12m-RVd portfolio and the S&P 500 Low

Volatility Top 80% Index are almost identical.

Table 2 presents summary statistics of the post-hoc portfolio, the 12m-RVd portfolio along

with three feasible alternatives, which use volatility forecasts based on the daily returns over the

previous 4 years (4y-RVd), the previous six months (6m-RVd) and the previous month (1m-RVd).

Table 2 shows that the post-hoc portfolio has a higher return, a lower volatility and, hence, a

considerably higher Sharpe ratio than the four feasible low-volatility portfolios.

An investor pursuing an inverse volatility allocation seeks to replicate the post-hoc portfolio as

closely as possible. In the remaining paper, we treat the task of replicating the post-hoc portfolio

as a forecasting problem. We forecast the realized variances of the N stocks in month m+1 based

on information up to the end of the month m and form a portfolio based on the ranking that is

4Bloomberg ticker: SP5LVTUT
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Figure 1: Cumulative return of volatility-weighted portfolios against market
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Notes: Cumulative returns of two volatility-weighted portfolios along the CRSP value-weighted market return in between 2005:M1
to 2021:M12. The construction of the low-volatility portfolios mimics the methodology in the S&P 500 Low Volatility Top 80%
Index (Bloomberg ticker SP5LVTUT). For more info about the data underlying the low-volatility portfolios, see Section 5.

implied by the forecasted variances R̂V i,m+1|m, i = 1, . . . , N . Excluding the 20% assets for which

the volatility forecasts are the highest, we assign weights inversely proportional to the volatility

forecast to those included.

Ultimately, we will address the forecasting problem in three steps. We first estimate various

volatility models for each stock and evaluate the forecast performance of each model. Figure 2

below highlights the persistence of the realized volatilities in the cross-section of assets that are

included in our analysis. The forecasting step of the analysis allows us to answer the question

of which state-of-the-art volatility models provide the best forecasts of monthly stock volatility

in a large cross-section of returns. While a large amount of literature evaluates daily volatility

forecasting, the one-month horizon that is the main focus in our setting is less explored.

Secondly, we evaluate whether the forecasts from the volatility models translate into more

accurate inverse volatility weights than the forecasts from the benchmark models. This is measured

by the absolute deviations from the post-hoc allocation. This evaluation spans two dimensions:

identifying high-volatility assets such that the right assets are excluded and performing accurate

volatility forecasts such that the assigned portfolio weights are close to the post-hoc allocation.
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Table 2: Performance statistics for low-volatility portfolios

Ret Std SR

Post-hoc 12.81 13.01 0.98

4y-RVd 10.74 14.13 0.76

12m-RVd 10.56 13.95 0.76

6m-RVd 10.75 13.86 0.78

1m-RVd 10.81 13.73 0.79

Market 8.88 15.88 0.56

Notes: We report arithmetic means of discrete
excess returns (Ret), their standard deviation,
and the corresponding Sharpe ratio (SR). All
measures are annualized. The evaluation pe-
riod is 2005:M1–2021:M12. The market return
is given by the CRSP value-weighted portfolio
return.

Lastly, we evaluate the out-of-sample performance of the portfolio allocations. We assess how

attractive the portfolios are to particular investors both in terms of gross performance and net of

transaction costs. To make this evaluation as realistic as possible, we estimate the effective costs

of trading each individual asset.

4 Models

We examine an extensive selection of models that are commonly used for modeling volatility. These

models can be broadly classified into four categories: RiskMetrics, GARCH, HAR, and MIDAS.

The RiskMetrics and GARCH models approach volatility as a latent variable, while the HAR and

MIDAS models model the realized variances directly. Next, we provide a brief introduction to each

of the model specifications, with a more comprehensive description available in Appendix A.

We use four variants of the RiskMetrics model, which is an exponentially-weighted moving

average (EWMA). Two variants employ monthly realized variances based on squared daily returns

while the other two employ weighted averages of squared daily returns. The RiskMetrics models

also differ in the amount of historical return data they consider, with some models using either

six or twelve months of data. It is worth noting that the RiskMetrics models can be viewed as
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Figure 2: Autocorrelation of monthly realized variances
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Notes: The fan chart depicts the empirical autocorrelation functions (ACF) of monthly realized variances across 582
stocks that (1) were among the 500 largest at some point in between 2000:M1 to 2021:M12 and (2) were continuously
traded during this period. The ACF is estimated using the instrumental variables regression proposed by Hansen and
Lunde (2014) with 1 to 6 monthly lagged monthly RV as instruments.

restricted GARCH models with fixed ARCH/GARCH parameters and a constant equal to zero.

Besides the simple GJR-GARCH of Glosten et al. (1993), we employ a “Panel GARCH” model

which uses variance targeting for each stock and restricts the ARCH/GARCH coefficients to be

the same across stocks. We also use the Factor GARCH model of Engle et al. (1990) and combine

it with the GARCH-MIDAS of Engle et al. (2013). As explanatory variables in the long-term

component, we use the VIX, housing starts and the term spread. Those variables have been shown

to be powerful predictors of longer term volatility (Conrad and Loch, 2015; Conrad and Kleen,

2020). Correspondingly, these models are denoted as Factor GARCH-VIX, Factor GARCH-∆Hous,

and Factor GARCH-TS.

We also consider two types of multiplicative error (MEM) models (Engle and Gallo, 2006). The

MEM models differ from other GARCH models because they are estimated using the square-root

of realized variances instead of daily return data.

We consider the original HAR specification as suggested by Corsi (2009) as well as seven

extensions. In the original HAR model the realized variance is a linear function of the lagged
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daily, weekly, and monthly realized variances. Among the extensions are specifications that model

the realized variance of stock i as depending on stock i’s lagged realized variances but also on

a HAR-type forecast for the S&P 500 or the VIX index. Moreover, it has been documented

that pooled cross-sectional estimation improves the out-of-sample forecast performance; see, for

example, Bollerslev et al. (2018) and Kleen and Tetereva (2022). We denote these models by Panel

HAR(-LR).

The MIDAS class of volatility models has been proposed in Ghysels et al. (2004, 2005, 2006).

The realized variance is modeled as a weighted average of lagged daily realized variances. The

weights are parsimoniously parameterized via a flexible parametric weighting scheme. The HAR

model of Corsi (2009) is nested when imposing certain constraints on the weights.

We estimate all models on a rolling window of four years with a minimum number of 600

observations. The only exceptions are the three variants of Factor GARCH-MIDAS models, which

employ housing starts or term spread data beginning in 1987 and the VIX and S&P 500 returns

beginning in 1990 in order to identify the long-term component. Forecasts are computed for month

m = 1, . . . ,M .

Ghysels et al. (2019) compare iterated versus direct multi-step-ahead forecasting for GARCH,

HAR, and MIDAS models. Accordingly, we follow their recommendations and directly forecast

the average 22-day realized variance for all HAR-type and MIDAS models. On the other hand, we

compute iterative volatility forecasts for the GARCH and MEM models.

5 Data

Monthly portfolio returns are calculated from monthly total returns taken from the Center of

Research in Security Prices (CRSP). For our empirical analysis, we use the stocks that are among

the largest 500 measured by market capitalization at some point in our sample. We adjust for

CRSP delisting returns to have a survivorship bias-free data set (Shumway, 1997; Bali et al., 2016).

Similar to Bollerslev et al. (2019) and Bollerslev et al. (2022), we merge daily CRSP data with
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Table 3: Methods included in the empirical evaluation

Model Description

12m-RVd Historical variance based on 12 months of daily data

4y-RVd Historical variance based on 4 years of daily data

6m-RVd Historical variance based on 6 months of daily data

1m-RVd Historical variance based on 1 month of daily data

RM monthly, 12 months EWMA (J.P. Morgan, 1996) based on 12 months of monthly data
RM monthly, 6 months EWMA (J.P. Morgan, 1996) based on 6 months of monthly data
RM daily, 12 months EWMA (J.P. Morgan, 1996) based on 12 months of daily data
RM daily, 6 months EWMA (J.P. Morgan, 1996) based on 6 months of daily data

GJR-GARCH Glosten et al. (1993)
Panel GJR-GARCH Pakel et al. (2011)
Factor GARCH Engle et al. (1990)
Factor GARCH-VIX Factor GARCH based on VIX
Factor GARCH-∆Hous Factor GARCH based on macro-finance forecast
Factor GARCH-TS Factor GARCH based on macro-finance forecast

MEM Engle and Gallo (2006)
Panel MEM Equivalent extension as Panel GJR-GARCH

HAR Corsi (2009)
HAR-LR Adapted HAR to monthly horizon
HAR-SPX Includes a variance forecast for the SPX
HAR-SPX-LR Adapted HAR-SPX to monthly horizon
HAR-VIX Bekaert and Hoerova (2014)
HAR-VIX-LR Adapted HAR-VIX model to monthly horizon
Panel HAR Bollerslev et al. (2018)
Panel HAR-LR Adapted Panel HAR model to monthly horizon

MIDAS Ghysels et al. (2004)
Panel MIDAS Equivalent extension as Panel GJR-GARCH

Notes: A detailed description of the models can be found in Appendix A.

NYSE TAQ intraday data. Open and close prices per day are taken from the daily CRSP data

files. All intraday transaction data is obtained from NYSE TAQ. This trade data is thoroughly

cleaned and we include only trades from the exchange that is referenced in the daily CRSP data.

The two data sets are merged via the Wharton Research Data Services linking tables.

Some of our models rely on intraday market data. For this, one-minute intraday data for the

S&P 500 is downloaded from Tick Data.5 Daily values for the VIX are obtained from the Cboe

website.6. Observations start in January 2000 and end in December 2021. For the intraday realized

variance estimates, we include prices during market hours from 9:30 to 16:00 and calculate 5-minute

5https://www.tickdata.com
6http://www.cboe.com/products/vix-index-volatility/vix-options-and-futures/vix-index/vix-historical-data
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log-returns. The first 5-minute return of each day is an open-to-close return, and all others are

close-to-close ones. We use 5-minute returns since these are common in the literature and because

it has been shown to be a fairly robust choice as a trade-off between using high-frequency data

and obstructing micro-structure noise related estimation errors (Liu et al., 2015). We rescale

the intraday-based realized variance to the daily close-to-close period as discussed in Hansen and

Lunde (2006). At day t and for stock i we will denote this combined measure by RVi,t. The average

monthly realized variance, RVi,m, of stock i is defined as the average RVi,t over all days t in month

m. Alternatively, squared daily (close-to-close) returns are often used as a simple but less accurate

measure of volatility. We will denote this noisy proxy by RV d
i,t.

Excess market returns Rmkt,t and the corresponding risk-free rates Rrf,t are obtained from

Kenneth R. French’s data library.7 For further factor analyses, we use the Fama-French(-Carhart)

four- and five-factor portfolio returns; that is, monthly returns of SMB (Small Minus Big), HML

(High Minus Low), MOM (Momentum), RMW (Robust Minus Weak) and CMA (Conservative

Minus Aggressive) portfolios (Fama and French, 1993; Carhart, 1997; Fama and French, 2015).

These are also obtained from Kenneth R. French’s data library website. Last, real-time housing

starts data are downloaded from ALFRED8 and term spread data from the New York Federal

Reserve website.9

6 Forecast Evaluation and Model Selection

In this section, we introduce two loss functions for evaluating the statistical performance of the

models. We then discuss combining and examining the forecasts from a cross-sectional perspective.

7https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/
8https://alfred.stlouisfed.org/series?seid=HOUST
9https://www.newyorkfed.org/research/capital markets/ycfaq.html#/

14

https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/
https://alfred.stlouisfed.org/series?seid=HOUST
https://www.newyorkfed.org/research/capital_markets/ycfaq.html#/


6.1 Loss functions

For evaluating the variance forecast R̂V m|m−1, we employ robust loss functions L(RVm, R̂V m|m−1)

following Patton (2011).10 In theory, one would prefer to evaluate the forecasts with respect to the

quadratic variation (QV) of stock returns. However, as QV is unobservable, we use the monthly

realized variances RVm as proxies for QVm.

In response, we employ two popular loss functions that are robust to employing RVm instead

of QVm: the squared error (SE) loss defined as

L(RVm, R̂V m|m−1) = (RVm − R̂V m|m−1)
2,

and the QLIKE loss,

L(RVm, R̂V m|m−1) = RVm/R̂V m|m−1 − log(RVm/R̂V m|m−1)− 1.

While the SE is a symmetric loss function, the QLIKE is asymmetric and penalizes underes-

timation more heavily than overestimation. Furthermore, the QLIKE is less affected by extreme

observations.

6.2 Forecast evaluation in a large cross-section of stocks

For each stock i, we consider the out-of-sample volatility forecasts R̂V
j

i,m|m−1, m = 1, . . . ,M of

model j. For each loss function and model j, we define the cross-sectional average loss in month

m as,

Lj
m =

1

N

N∑
i=1

Lj(RVi,m, R̂V
j

i,m|m−1). (1)

We denote the loss of the benchmark model by LB
m. The losses Lj

m and LB
m can be used in real-

time to select models. We report five statistics from the cross-sectional losses. First, we report the

time-series averages and time-series medians of Lj
m/L

B
m. To reveal for how many months we are

10For simplicity in the notation, we drop the index i in this subsection.
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outperforming the benchmark model we compute,

LRj =
1

M

M∑
m=1

1Lj
m/LB

m<1. (2)

Here 1Lj
m/LB

m<1 equals one if Lj
m/L

B
m < 1 and zero else. Hence, LRj reports the share of months

during which model j outperforms the benchmark in the cross-section. In addition, we report for

how many months a specific model j is ranked best in terms of Lj
m (denoted by Rkj = 1) or among

the top-4 models (denoted by Rkj ≤ 4).

To combine forecasts, we consider the approach promoted by Caldeira et al. (2017). For each

model j we determine the cross-sectional forecast performance in month m as

L̄j
m =

1

m

m−1∑
k=0

δkLj
m−k, (3)

with δ ∈ [0, 1]. When δ approaches zero, we exclusively rely on the loss ratio in month m. In the

other extreme, when δ = 1, the forecast performance is measured by the simple average of the loss

ratios over the previous m months. All loss ratios are taken into account for 0 < δ < 1, but the

weights are declining from the most recent to the most distant observation in time. In the interest

of brevity, we restrict the evaluation to the cases of δ = 0 and δ = 1.

A natural concern is that some models perform better in high-volatility environments while

others perform best in low-volatility environments (Conrad and Kleen, 2020). In the following,

we consider forecast combinations as a means to safeguard against such time-varying model per-

formance. Bates and Granger (1969) promote forecast diversification by combining forecasts from

different models. 11 The combined forecast for the volatility of stock i, i = 1, . . . , N , for period m

is then given by

R̂V
cf

i,m|m−1 =
J∑

j=1

λj,m−1R̂V
j

i,m|m−1, (4)

11For further discussions see, for example, Timmermann (2006).
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where the weights are given by

λj,m−1 =
(L̄j

m−1)
−η∑J

j=1(L̄
j
m−1)

−η
. (5)

with η ≥ 0. Setting η = 0 assigns equal weights to the forecasts, while η = ∞ assigns full weight

on a single model for which the loss in Equation (3) is the lowest and all other models receive a

weight of zero. Weights are inverse proportional to the loss of the respective model when η = 1.

Note that η = 1/2 in combination with the SE means that the weights are chosen according to the

root mean squared error.

6.3 Volatility forecasting

Table 4 presents the forecast evaluation for individual models in Panel A, and for combined fore-

casts in Panels B and C. The left-hand side shows the loss statistics for SE and the right-hand

side shows the QLIKE loss. The first two columns of each loss function in Table 4 present the

monthly mean and median loss ratios Lj
m/L

B
m. The third column of the respective losses reveals

the fraction of months the loss is lower than the 12m-RVd benchmark. In Panel A, we further

present the fraction of months a model achieved the lowest loss and is among the four models with

the lowest losses, respectively.

Panel A reveals that no single model is dominant with respect to volatility forecasting. The

strongest performing models are found within the HAR class, but the Midas framework and the

Multiplicative Error Models obtain the lowest SE losses in around 40 percent of the sample months.

In Panel B and C of Table 4, we see that combining forecasts produce lower or equal mean

and median forecast errors both with respect to SE and QLIKE. However, the lowest median

forecast error is associated with forecast combinations that perform model selection rather than

weighting forecasts from different models. Furthermore, we find that the most accurate forecasting

is associated with combinations that reduce the combination weights to the losses observed in the

previous month. Jointly, these results imply that the median-loss optimal forecasts come from

using a single model, which can change rapidly with new financial conditions. The best-performing

model combination changes if we consider mean losses. By this metric, the most accurate forecasts
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Table 4: Forecast comparison of model performance

SE QLIKE

Model Mean Med LRj Rkj = 1 Rkj ≤ 4 Mean Med LRj Rkj = 1 Rkj ≤ 4

Panel A: Model-based forecasts

12m-RVd — — — 0.01 0.06 — — — 0.00 0.03

4y-RVd 3.78 1.50 0.32 0.01 0.05 1.82 1.52 0.30 0.02 0.04

6m-RVd 1.24 1.00 0.49 0.00 0.06 0.98 0.98 0.56 0.00 0.09

1m-RVd 2.61 1.43 0.31 0.01 0.01 1.38 1.23 0.34 0.00 0.04

RM monthly, 12 months 0.98 0.98 0.68 0.01 0.06 0.98 0.98 0.76 0.00 0.03
RM monthly, 6 months 1.23 0.99 0.50 0.00 0.06 0.97 0.97 0.56 0.00 0.08
RM daily, 12 months 1.48 1.00 0.50 0.00 0.05 0.95 0.91 0.60 0.01 0.05
RM daily, 6 months 1.53 1.02 0.49 0.00 0.05 0.97 0.91 0.59 0.00 0.06

GJR-GARCH 1.48 0.99 0.52 0.00 0.01 1.00 1.00 0.50 0.00 0.01
Panel GJR-GARCH 1.79 1.14 0.43 0.00 0.03 1.10 1.00 0.50 0.00 0.03
Factor GARCH 1.31 0.98 0.50 0.00 0.03 1.02 1.01 0.50 0.01 0.03
Factor GARCH-VIX 1.05 0.85 0.59 0.00 0.03 0.94 0.93 0.59 0.00 0.01
Factor GARCH-∆Hous 1.06 0.89 0.60 0.00 0.05 0.92 0.94 0.63 0.00 0.01
Factor GARCH-TS 1.05 0.88 0.59 0.00 0.05 0.93 0.94 0.62 0.00 0.01
MEM 0.95 0.78 0.60 0.10 0.23 7.26 5.42 0.19 0.02 0.10
Panel MEM 1.05 0.71 0.61 0.08 0.23 7.64 4.01 0.29 0.11 0.16

HAR 0.95 0.59 0.77 0.01 0.18 0.87 0.55 0.86 0.01 0.31
HAR-LR 2.52 0.60 0.75 0.05 0.21 1.72 0.59 0.82 0.08 0.30
HAR-SPX 0.89 0.53 0.78 0.01 0.25 1.11 0.59 0.82 0.02 0.20
HAR-SPX-LR 2.40 0.58 0.71 0.04 0.30 1.89 0.60 0.78 0.03 0.24
HAR-VIX 0.90 0.50 0.78 0.07 0.39 1.02 0.56 0.83 0.10 0.29
HAR-VIX-LR 2.39 0.58 0.71 0.14 0.34 2.11 0.62 0.75 0.05 0.20
Panel HAR 0.74 0.55 0.78 0.06 0.29 0.63 0.57 0.84 0.08 0.38
Panel HAR-LR 0.63 0.52 0.84 0.14 0.34 0.59 0.54 0.90 0.19 0.45

MIDAS 0.76 0.49 0.82 0.09 0.32 0.58 0.54 0.92 0.08 0.45
Panel MIDAS 0.88 0.58 0.75 0.12 0.30 0.74 0.55 0.85 0.15 0.37

Panel B: Loss-based combined forecasts δ = 0

η = 0 0.68 0.57 0.84 — — 0.68 0.66 0.90 — —

η = 1/2 SE 0.59 0.47 0.92 — — 0.62 0.60 0.93 — —
QLIKE 0.67 0.56 0.85 — — 0.65 0.65 0.90 — —

η = 1 SE 0.55 0.41 0.93 — — 0.58 0.56 0.95 — —
QLIKE 0.64 0.53 0.89 — — 0.63 0.62 0.91 — —

η = ∞ SE 0.70 0.39 0.86 — — 0.82 0.54 0.81 — —
QLIKE 0.61 0.39 0.88 — — 0.59 0.52 0.87 — —

Panel C: Loss-based combined forecasts δ = 1

η = 1/2 SE 0.64 0.53 0.88 — — 0.66 0.64 0.92 — —
QLIKE 0.69 0.58 0.85 — — 0.68 0.66 0.89 — —

η = 1 SE 0.62 0.51 0.89 — — 0.65 0.62 0.92 — —
QLIKE 0.68 0.58 0.86 — — 0.67 0.65 0.90 — —

η = ∞ SE 0.71 0.48 0.86 — — 0.63 0.56 0.86 — —
QLIKE 0.63 0.52 0.87 — — 0.59 0.53 0.90 — —

Notes: For each loss function SE and QLIKE, the first two columns report the time-series mean and median of the loss ratio
Lj
m/LB

m. The column LRj reports the proportion of months in which the cross-sectional loss Lj of model j is lower than the
one of the 12m-RVd benchmark forecast. Rkj ≤ 1 and Rkj ≤ 4 report the proportion of the respective model being the best or
among the four best-performing models as measured by Lj

m. In Panel B and C, we report results for combined forecasts with
δ = 0 and δ = 1, respectively. The combined forecast with equal weights (η = 0) is listed only for δ = 0 because equal weights
are independent of the smoothing parameter δ. In Panel A, numbers in bold highlight the lowest average and median loss ratio
across models. Similarly, we highlight the highest LRj , Rkj = 1, and Rkj ≤ 4. We jointly apply the same highlighting to Panel
B and C that are based on forecast combinations. The evaluation period is 2005:M1–2021:M12.

18



come from utilizing a model combination of all models where weights are inversely proportional

to the losses they obtained in the previous month. We do not find that equally weighting models

deliver competitive forecasting performance.

Within the set of model-based forecasts, it is evident that the short-term realized volatility

models (1m-RVd and 6m-RVd) perform worse than the 12-month benchmark regarding the mean

SE loss. Likewise, they fail to produce forecasts that outperform the benchmark to any greater

extent with respect to the mean and median QLIKE losses. In the same way, we only find minor

forecast improvements over the benchmark from the RiskMetrics methods (RM).

In contrast, the models based on intraday information such as MEM, HAR, and MIDAS models,

generally perform better. Although the mean SE loss ratio for the Panel MEM is 105%, the

median SE loss ratio is only 71%. Only the Panel MEM and individual HAR models with long-

run components have average loss ratios that are worse than the benchmark. Individual HAR-LR

models have an average loss ratio above 250% relative to the benchmark. However, the median loss

associated with these models is lower than the benchmark, highlighting a very meaningful skewness

in the losses over time. Among the HAR models, the Panel HAR-LR model stands out, with the

lowest average SE loss ratio of 0.63, which is 11 percentage points lower than the Panel HAR model

without quarterly and bi-annual RV. These results suggest that it is informative to incorporate

lagged RVs of more than one month for monthly forecast horizons, despite the increased estimation

uncertainty. Nonetheless, the increased estimation uncertainty needs to be addressed; for example,

by the panel estimation approach.

Concerning the GARCH specifications, we find that the GARCH models that incorporate

macroeconomic information (i.e., VIX, housing starts, or term spread) outperform the benchmark

with respect to the median loss. However, the GARCH-type models only produce higher SE

forecast accuracy than the benchmark between 43% and 61% of the months, significantly below

the loss rate LRj of the high-accuracy HAR- and MIDAS-type models, which ranges from 71% to

84%.

With respect to the QLIKE loss, we find that our forecast results align closely with those of the
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SE results for the HAR- and MIDAS-type models, but with some notable exceptions. Foremost,

the asymmetry of the QLIKE loss leads to remarkably high mean (and median) loss ratios that

exceed 700% for the MEM models. This is because the MEM models frequently imply forecasts

that are significantly lower than the realized volatility, and the QLIKE loss assigns greater weight

to underprediction than to overprediction. With the exception of the MEM, HAR-SPX and HAR-

VIX models, we find that the average loss ratio to the benchmark is lower under the QLIKE

measure. Thus, the benchmark model appears more likely to underpredict volatility than the

model-based alternatives.

Panel B and C of Table 4 present the forecast performance of the combined forecasts. The

ex-post best forecast combination, in terms of the median SE-loss ratio, is 10 percentage points

lower than the corresponding figure for the ex-post best model (the univariate MIDAS model).

Furthermore, the forecast combinations that assign weights based on time-series averages of losses

do not perform as well as the combinations using solely the last months losses. However, this is

somewhat attributable to the limited time series available at the initial stages of the out-of-sample

period. In Appendix B, we perform a forecast evaluation on a sub-sample that ranges from 2015

to 2021. The results are can be found in Table B.1. In this instance we find that the Panel-HAR

models and the MIDAS approach produce lower mean forecast errors than the model combinations

based on the most recent losses. In Table B.1, we further observe that selecting the best model

based on long-term average performance (that is, δ = 1 and η = ∞) yields the best performance

among all model combinations and is now as efficient as the ex-post best model.

7 Comparison of Low-Volatility Portfolios

7.1 Portfolio construction

We illustrate the construction of the low-volatility portfolios for volatility forecasts based on model

j. Assume that the volatility forecasts R̂V
j

i,m|m−1 for the N stocks in month m are already in

ascending order; that is, R̂V
j

1,m|m−1 ≤ R̂V
j

2,m|m−1 ≤ . . . ≤ R̂V
j

N,m|m−1. Based on this ordering of
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the forecasts, the 80% stocks with the lowest volatility are included in the portfolio for month m.

Stocks receive weights inverse proportional to their forecasted volatility, which is in line with

the construction of the S&P 500 Low Volatility Top 80% Index, and closely aligns the portfolio

allocation with volatility forecasts. We denote the individual weight of stock i w.r.t. forecasts from

model j by

wj
i,m ∝ 1√

R̂V
j

i,m|m−1

.

The weights are standardized such that the sum of all weights is equal to 1. All remaining stocks

that are in the highest volatility quintile receive a weight of zero. The inverse volatility allocation

does not necessarily minimize the aggregate portfolio variance. However, assuming zero correlation

between assets provides an allocation that is more stable and thus attracts less allocation costs

(Kirby and Ostdiek, 2012). Furthermore, excluding covariances from the estimation of the portfolio

weights reduces the variance of the estimates. This comes at the cost of a possible bias, but since

the cross-section of assets is large in our application we have reason to believe that the net effect

with respect to portfolio performance will be positive.

7.2 Portfolio evaluation

We measure the performance of the portfolios by their out-of-sample returns, volatilities, Sharpe

ratios, turnover, costs and utility for a hypothetical investor. The Sharpe ratios are the average out-

of-sample excess return divided by the out-of-sample volatility. In the tables we report annualized

values by simple 12 and
√
12 scaling.

7.2.1 Portfolio turnover and transaction costs

We calculate the turnover of the portfolio allocations by the average fraction of wealth reallocated

at re-balancing. Denoting the portfolio turnover TOm, we follow the recent literature on portfolio-

allocation based on high-frequency-based measures of realized (co-)variation (Bandi et al., 2008;

De Pooter et al., 2008; DeMiguel et al., 2009; Hautsch et al., 2015; Nolte and Xu, 2015). Recall
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that wj
i,m is the weight assigned for stock i by model j at the very end of month m − 1. Based

on the volatility forecasts for month m + 1, the new desired weights are wj
i,m+1. Before the next

re-balancing at the end of period m, due to price movements, the weight of stock i changes to

wj
i,m

1+Ri,m/100

1+(wj
m)′Rm/100

where wj
m = (wj

1,m, . . . , w
j
n,m)

′ and Rm is the vector of equity returns; that is,

Rm = (R1,m, . . . , Rn,m)
′. Hence, the turnover due to portfolio re-balancing at the end of month m

is given by

TOj
m =

N∑
i=1

∣∣∣∣wj
i,m+1 − wj

i,m

1 +Ri,m/100

1 + (wj
m)′Rm/100

∣∣∣∣ . (6)

The quantity TOm can be interpreted as the proportion of wealth reallocated at the end of

month m.

To assess the impact of transaction costs on portfolio performance, we follow the approach of

Novy-Marx and Velikov (2016). Effective costs are estimated through a generalized trading-cost

model proposed by Hasbrouck (2009) where daily log returns ri,t are modeled as

ri,t = ci∆qi,t + βirmkt,t + ui,t, (7)

with rmkt,t being the market factor in log returns, qi,t being an indicator for the trade direction in

asset i and ci denoting the cost. The error terms ui,t are assumed to be i.i.d. normal with variance

σ2
u. The cost is treated as unobserved and estimated using a Gibbs sampler.12 Estimates are annual

using daily data. We treat missing values as proposed by Novy-Marx and Velikov (2016). We

match assets with respect to the Euclidean distance of rank-transformed idiosyncratic volatility and

market capitalization. We calculate the ranks based on in-month average idiosyncratic volatilities.

The latter are obtained from 90-day rolling window regressions.

With the portfolio turnover and the effective trading cost estimates we compute the portfolio

returns in excess of the one-month Treasury bill rate,

Rj
p,m =

W j
m

W j
m−1

− 1−Rrf,m. (8)

12We are grateful to Hasbrouck for making SAS code available (https://pages.stern.nyu.edu/ jhasbrou/).

22

https://pages.stern.nyu.edu/~jhasbrou/


Here, W j
m is the wealth of the model/loss-based portfolio, which can be obtained as

W j
m = W j

m−1 · (1 + (wj
m)

′Rm) · (1− TCj
m), (9)

with TCj
m being the turnover-implied transaction costs per dollar traded at the end of month m.

In the tables we report both gross and net performance of the allocations.

7.3 Utility

To highlight the economic significance of the various portfolios we make use of a utility framework.

We follow Fleming et al. (2001, 2003) and compute the fee required to make a hypothetical investor

indifferent with respect to the portfolios and the post-hoc allocation. Using a quadratic utility

function with risk-aversion parameter γ, the monthly utility generated by a portfolio based on

model j is given by

Uγ(R
j
p,m) = (1 +Rj

p,m/100)−
γ

2(1 + γ)

(
1 +Rj

p,m/100
)2

.

This utility is compared to the utility obtained from the post-hoc portfolio under a fee. Denoting

the return of the post-hoc portfolio by Ro
p,m, we compute the maximum fee ∆j

γ that an investor

would be willing to pay in order to switch from portfolio j to the post-hoc portfolio by solving

M∑
m=1

Uγ(R
j
p,m) =

M∑
m=1

Uγ(R
o
p,m −∆j

γ). (10)

Portfolio with a comparably small ∆j
γ are more closely mimicking the utility of the post-hoc

portfolio. We report the fee ∆j
γ in Table 5 in annualized percentage points for γ = 4.

23



8 Out-of-sample portfolio performance

8.1 Portfolio performance

Table 5 shows the annualized returns of each portfolio with and without trading costs. The 12m-

RVd serves as our benchmark portfolio. We report the annualized return and test whether there

is a significant difference between the return of the respective model-/loss-based portfolio and

the benchmark. Inference is based on Newey-West standard errors. We also test for differences

in Sharpe ratios and volatilities between the respective portfolios and the benchmark using tests

proposed by Ledoit and Wolf (2008, 2011).

The financial performance relative to the benchmark depends greatly on whether transaction

costs are included or not. With respect to the annualized Sharpe ratios obtained under the model-

based portfolios, we find that the statistical difference to the RV benchmark is greatly reduced

once transaction costs are accounted for. Without transaction costs, all HAR specifications, MEM

and MIDAS models obtain Sharpe ratios that are significantly higher than the Sharpe ratios of the

benchmark on all conventional significance levels. However, the number of model- and loss-based

portfolios that remain significantly different at the 5% level drops from 24 to 8 portfolios when

accounting for transaction costs.

The highest Sharpe ratios are associated with the models that deliver the lowest forecast errors

in Section 6. However, the differences in Sharpe ratios between the loss-based and the HAR-

and MIDAS-based portfolios are only minor. In contrast to the forecasting performance, we find

that the portfolios formed from model combinations using δ = 1 and η = ∞ deliver lower out-of-

sample volatility and higher net expected returns than the other loss-based portfolios. Together

with the Panel-HAR-LR and HAR-VIX approaches, a forecast combination with δ = 1 and η = ∞

provides the most financially effective portfolio in our evaluation. It is noteworthy that the equally-

weighted forecast combination neither delivers low forecasting errors (see Table 4) nor high financial

performance in terms of mean returns, volatilities, or Sharpe ratios.

Turning to the net-return volatility we find that among the model-based portfolios, it is only the
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Table 5: Returns of low-volatility portfolios

Without TC With TC

Ret Std SR ∆4 Ret Std SR ∆4

Post-hoc 12.81 13.01 0.98 — 12.24 13.02 0.94 —

Panel A: Model-based portfolios

12m-RVd 10.56 13.95 0.76 2.78 10.33 13.97 0.74 2.44

4y-RVd 10.74 14.13** 0.76 2.70 10.54 14.14** 0.75 2.33

6m-RVd 10.75 13.86* 0.78 2.53 10.45 13.88* 0.75 2.27

1m-RVd 10.81 13.73* 0.79 2.40 9.82* 13.74* 0.72 2.81

RM monthly, 12 months 10.58 13.95 0.76 2.75 10.34 13.96 0.74 2.42
RM monthly, 6 months 10.75 13.86 0.78 2.54 10.44 13.88 0.75 2.28
RM daily, 12 months 10.73 13.87 0.77 2.56 10.26 13.88 0.74 2.46
RM daily, 6 months 10.72 13.83 0.77 2.55 10.24 13.85 0.74 2.46

GJR-GARCH 10.79 13.84 0.78 2.48 10.30 13.86 0.74 2.41
Panel GJR-GARCH 10.71 13.86 0.77 2.58 10.27 13.87 0.74 2.44
Factor GARCH 10.85 14.02 0.77 2.53 10.48 14.03 0.75 2.33
Factor GARCH-VIX 10.86 14.10* 0.77 2.57 10.47 14.11* 0.74 2.38
Factor GARCH-∆Hous 10.90* 14.13** 0.77 2.54 10.51 14.14** 0.74 2.36
Factor GARCH-TS 10.87 14.15** 0.77 2.58 10.48 14.16** 0.74 2.40
MEM 11.23** 13.89 0.81** 2.08 10.75 13.91 0.77 1.98
Panel MEM 11.13** 13.82 0.81** 2.14 10.68 13.83 0.77* 2.01

HAR 11.01* 13.75* 0.80** 2.21 10.59 13.76 0.77* 2.06
HAR-LR 11.20*** 13.72* 0.82*** 2.00 10.73* 13.73* 0.78** 1.91
HAR-SPX 11.07** 13.78 0.80** 2.17 10.65 13.79 0.77 2.02
HAR-SPX-LR 11.13** 13.68* 0.81** 2.05 10.64 13.70* 0.78* 1.98
HAR-VIX 11.15*** 13.77* 0.81*** 2.08 10.75** 13.78 0.78** 1.91
HAR-VIX-LR 11.23*** 13.68* 0.82*** 1.95 10.75* 13.69* 0.79** 1.86
Panel HAR 11.14** 13.80* 0.81** 2.11 10.77* 13.82* 0.78** 1.91
Panel HAR-LR 11.20** 13.76** 0.81*** 2.03 10.86** 13.77** 0.79** 1.80

MIDAS 11.19** 13.80 0.81*** 2.06 10.80** 13.82 0.78** 1.88
Panel MIDAS 11.06* 13.83 0.80* 2.21 10.69 13.85 0.77 2.01

Panel B: Loss-based portfolios δ = 0

η = 0 10.92** 13.84* 0.79** 2.35 10.59 13.85* 0.76* 2.11

η = 1/2 SE 10.90* 13.85 0.79** 2.38 10.57 13.86 0.76* 2.14
QLIKE 10.90* 13.87 0.79** 2.39 10.57 13.88 0.76* 2.15

η = 1 SE 10.94** 13.85 0.79** 2.34 10.60 13.86* 0.76* 2.11
QLIKE 10.93** 13.86 0.79** 2.35 10.60 13.87 0.76* 2.12

η = ∞ SE 11.05** 13.87 0.80** 2.24 10.56 13.89 0.76 2.17
QLIKE 10.86 13.88 0.78* 2.43 10.41 13.90 0.75 2.32

Panel C: Loss-based portfolios δ = 1

η = 0 10.92** 13.84* 0.79** 2.35 10.59 13.85* 0.76* 2.11

η = 1/2 SE 10.89* 13.85* 0.79** 2.38 10.56 13.86* 0.76* 2.14
QLIKE 10.90* 13.84* 0.79** 2.38 10.57 13.85* 0.76* 2.13

η = 1 SE 10.90* 13.86* 0.79** 2.38 10.57 13.87* 0.76* 2.14
QLIKE 10.92* 13.84* 0.79** 2.35 10.60 13.85* 0.77* 2.10

η = ∞ SE 11.24*** 13.75** 0.82*** 1.98 10.88** 13.77** 0.79*** 1.77
QLIKE 11.19** 13.76** 0.81*** 2.04 10.84** 13.77** 0.79** 1.82

Notes: Average annualized excess return (Ret), annualized standard deviation (Std), and Sharpe Ratio (SR). ∆γ is the annualized
fee in percent an investor would be willing to pay for switching to the infeasible post-hoc portfolio; see Equation (10). We perform
two-sided tests of equal returns using Newey-West standard errors with 3 lags against the benchmark model 12m-RVd. Sharpe ratio
test according to Ledoit and Wolf (2008) and the volatility test according to Ledoit and Wolf (2011). Statistical significance at the
10%, 5%, and 1% level are indicated by *, **, and *** respectively. In Panel A, numbers in bold represent the highest return, the
lowest standard deviation, the highest SR and the lowest fee ∆4 across all models. We jointly apply the same highlighting to all
forecast combinations in Panel B and C. The evaluation period is 2005:M1–2021:M12.

25



HAR models along with the 1m-RVd and 6m-RVd that deliver statistically significant reductions in

portfolio volatility compared to the benchmark allocation. In this set of models, it is only the Panel

HAR-LR that reduces volatility to an extent that is significant at the 1% level. That reduction is

of 0.2 percentage points, and, together with an increase in mean excess returns of slightly above

0.5 percentage points, we find a Sharpe ratio increase of about 0.05, annualized.

Among the portfolios formed from forecast combinations, we found that the combinations

that use short-term losses to perform model selection produced the lowest level of forecast error.

However, the inverse volatility allocations from these forecasts exhibit greater costs than the other

loss-based portfolios. The difference between the gross and net returns falls from 11.05 to 10.56,

whereas the combination relying on selection using long-term average losses only decreases from

11.24 to 10.88. Performing model selection using the short-term losses fails to improve upon

the benchmark Sharpe ratio in a manner that is statistically significant at any significance level.

In Appendix C, we report additional results for value-weighted portfolios with stock exclusion

and inverse-volatility-weighted portfolios without stock exclusion. It becomes evident that our

combination of stock exclusion and volatility-weighting performs best in terms of returns and

Sharpe ratios.

8.2 Economic significance

To contextualize the improvements to financial performance we assess the fee required to make

an investor indifferent between the post-hoc allocation and the feasible allocations. In most cases,

we see that the required fee ∆γ decreases when costs are introduced. This implies that while the

post-hoc portfolio obtains the highest net performance, it is comparably expensive to maintain.

Independent of whether costs are accounted for or not, the greatest utility is observed for the loss-

based approach when setting η = ∞, δ = 1, and using the SE-loss. Allowing for costs, an investor

holding the post-hoc portfolio would prefer this allocation if the annualized fee on the infeasible

allocation exceeds 1.77%. This fee is around 37% lower than the highest fee that we obtain, which

is for the 1m-RVd equal to 2.81 %. A striking finding is that the fee associated with this allocation
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increases once costs are introduced, contrary to most other methods. Thus, this method allocates

more wealth than the post-hoc to assets that are associated with higher trading costs.

Since the analysis that incorporates costs is the most realistic, we will focus our discussion on

these results in the following. We find that using the ex-ante standard deviation of daily returns as

volatility measures and the RiskMetrics variants often produce worse results in terms of net utility

than model-based approaches. The strongest performance of the model-based portfolios within

this utility framework is found within the HAR category. The fees obtained from these estimators

are consistently low relative to the other methods evaluated. Within the set of HAR models, the

lowest fee is associated with the approach that incorporates long-run components and the VIX

index (HAR-VIX-LR).

Most of the loss-based portfolios do not obtain a level of utility as high as those of the best-

performing HAR models. The exception is when an investor averages forecast performance over

all previous months (δ = 1) and puts all weight on the forecast with the lowest loss (η = ∞).

This is again in stark contrast to the common finding that equally-weighted forecasts are hard to

outperform. A possible explanation is that averaging the loss over the previous months reduces

the variance of the loss estimate.13 As such, an investor can rely on the time-series model with

the lowest loss. If we set δ = 0, such that the loss simply becomes that of the previous month, we

find relatively poor performance when η = ∞. In this case, the equally-weighted forecasts provide

a better alternative.

8.3 Comparison to the post-hoc portfolio and trading costs

To compare the respective portfolios with the infeasible post-hoc allocation we compute absolute

deviations in the portfolio weights (WAD). We summarize the cross-section of WAD by the mean

and median deviations along with the minimum, maximum, 20th and 80th percentiles. Table 6

presents the time-series averages of these statistics. To complement the summary of the cross-

sectional deviations from the post-hoc portfolio, we compute the variation in weights over time for

13This reduction comes at the cost of a potential bias in the case where the loss is time-varying.
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the respective portfolios. This is the turnover, which we contextualize economically through the

transaction costs.

The minimum deviations across the model-based and loss-based portfolios are naturally zero.

These are the cases where both the post-hoc and the forecasted allocations agree on excluding

certain assets. Likewise, we see that the maximum is magnitudes larger than the average 80th

percentile. These are cases where the allocations disagree on including assets or not. The average

maximum deviations are greater in the cases of disagreement and where one of the allocations

assigns a high weight (i.e., low volatility) to the asset. These extreme disagreements are around

of 4.8 percent and foremost within the set of model-based portfolios and the loss-based portfolios

that maintain δ = 1 and η = ∞. These loss-based portfolios select a single model based on

the average loss. Two outliers within the set of large deviations are the 1m-RVd and the Panel

HAR allocations. These exhibit average maximum deviations of 4.19 and 4.24 percent respectively,

which is far below the level we find across the other methods.

Disagreements about including certain assets create a strong positive skewness in the distribu-

tion of WAD. For example, the median deviation under the Panel MEM approach is more than

half of the mean deviation. It is very striking that while the 1m-RVd exhibit low maximum devi-

ations from the post-hoc portfolio, the mean 80th percentile exceeds that of the other allocations.

It is around 0.14 percent, which is more than double that of many loss-based combinations and

HAR-based portfolios.

Focusing on the median deviations, we find that the loss-based, HAR-, and MIDAS-based

portfolio weights exhibit lower deviations. These as the same models that exhibit high forecasting

performance in Table 4. Loss-based portfolios that maintain δ = 1 and η = ∞ again provide an

interesting case where the average median deviation is low, 0.02 percent. Likewise, we see that

the difference of the average 20th and average 80th percentiles is comparably low at around 0.05

percent. The implications is that using solely the most accurate forecast based on long-run average

losses will give you an allocation comparably close to the post-hoc allocation, but with a small

number of large misallocations.
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Turning to the turnover of the respective portfolios we find that the portfolios formed on

the realized volatilities using daily returns over the previous month (1m-RVd) require an, in this

context, extreme degree of trading. On average 42.83 percent of wealth is traded to maintain this

portfolio. The cost associated with this turnover is 8.18 basis points per month. Strikingly, the

second-highest turnover is associated with the post-hoc portfolio. Economically this implies that

the post-hoc foresight of the inverse volatility allocation produces a portfolio that is impractical

and expensive to maintain; that is, monthly trading costs of 4.74 basis points on average.

Naturally, the allocations that rely on averages of squared daily returns over a 12 or 48-month

period are by contrast very stable, with turnover as low as 8.32 percent. We also find low turnover

within the set of loss-based allocations, with the exception of model selection using solely short-

term losses. The costs of the other loss-based portfolios range from 2.73 to 2.86 basis points.

Within the set of model-based allocations, the Panel HAR-LR, long-run realized volatilities, and

the RiskMetrics utilizing monthly data obtain the same level of costs.

8.4 Portfolio characteristics over time

The portfolio allocations that we form by model selection deliver better out-of-sample performance

than those formed using 12 months of daily returns. In this section we further dissect the differences

between the competing procedures by analyzing the financial characteristics of the portfolios. Using

accounting data from CRSP and Computstat, we compute the market capitalization, book-to-

market ratio, operating profitability and investment characteristics for each firm in the sample. For

this, we follow the same procedure and conventions used by Green et al. (2017). Aggregating the

firm characteristics in the portfolios—weighted by the relative wealth invested in each stock—lets

us compute the characteristics of the portfolios. Fama and French (2015) find monotonic relations

between these characteristics and expected returns among stocks with high market capitalization,

which provides the basis for our comparison since the volatility sorts are restricted to the largest

firms on the market.

Figure 3 presents the magnitude of the characteristics associated with the portfolio formed
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Table 6: Portfolio characteristics

WAD TO TC

Min q20% Mean Median q80% Max — —

Post-hoc — — — — — — 24.33 4.74

Panel A: Model-based portfolios

12m-RVd 0.00 0.01 0.06 0.03 0.10 4.82 9.96 1.99

4y-RVd 0.00 0.01 0.07 0.04 0.12 4.77 8.32 1.69

6m-RVd 0.00 0.01 0.06 0.03 0.10 4.83 13.04 2.56

1m-RVd 0.00 0.01 0.07 0.04 0.14 4.19 42.83 8.18

RM monthly, 12 months 0.00 0.01 0.06 0.03 0.10 4.82 9.99 1.99
RM monthly, 6 months 0.00 0.01 0.06 0.03 0.10 4.83 13.07 2.57
RM daily, 12 months 0.00 0.01 0.06 0.03 0.11 4.78 20.03 3.89
RM daily, 6 months 0.00 0.01 0.06 0.03 0.11 4.78 20.54 3.96

GJR-GARCH 0.00 0.01 0.07 0.04 0.11 4.73 20.03 4.12
Panel GJR-GARCH 0.00 0.01 0.06 0.04 0.11 4.67 17.46 3.60
Factor GARCH 0.00 0.01 0.07 0.04 0.11 4.81 14.72 3.10
Factor GARCH-VIX 0.00 0.01 0.07 0.04 0.11 4.81 15.38 3.23
Factor GARCH-∆Hous 0.00 0.01 0.07 0.04 0.11 4.82 15.49 3.24
Factor GARCH-TS 0.00 0.01 0.07 0.04 0.11 4.82 15.44 3.23
MEM 0.00 0.01 0.06 0.03 0.10 4.44 19.40 3.96
Panel MEM 0.00 0.00 0.05 0.02 0.07 4.64 17.91 3.73

HAR 0.00 0.00 0.04 0.02 0.06 4.41 16.70 3.49
HAR-LR 0.00 0.00 0.05 0.02 0.06 4.69 18.40 3.97
HAR-SPX 0.00 0.00 0.05 0.02 0.06 4.76 16.72 3.53
HAR-SPX-LR 0.00 0.00 0.05 0.03 0.07 4.78 19.13 4.13
HAR-VIX 0.00 0.00 0.05 0.02 0.06 4.78 15.76 3.31
HAR-VIX-LR 0.00 0.01 0.05 0.03 0.07 4.77 18.46 4.01
Panel HAR 0.00 0.00 0.04 0.02 0.05 4.24 15.11 3.08
Panel HAR-LR 0.00 0.00 0.04 0.02 0.05 4.84 14.14 2.83

MIDAS 0.00 0.00 0.04 0.02 0.06 4.43 15.57 3.23
Panel MIDAS 0.00 0.00 0.04 0.02 0.05 4.68 15.02 3.05

Panel B: Loss-based combined portfolios δ = 0

η = 0 0.00 0.00 0.05 0.03 0.07 4.76 13.46 2.73

η = 1/2 SE 0.00 0.00 0.05 0.02 0.06 4.76 13.69 2.79
QLIKE 0.00 0.00 0.05 0.02 0.06 4.76 13.69 2.79

η = 1 SE 0.00 0.00 0.05 0.02 0.06 4.76 13.98 2.86
QLIKE 0.00 0.00 0.05 0.02 0.06 4.76 13.98 2.86

η = ∞ SE 0.00 0.00 0.05 0.02 0.06 4.43 20.18 4.14
QLIKE 0.00 0.00 0.05 0.02 0.06 4.43 20.18 4.14

Panel C: Loss-based combined portfolios δ = 1

η = 1/2 SE 0.00 0.00 0.05 0.03 0.07 4.76 13.49 2.73
QLIKE 0.00 0.00 0.05 0.03 0.07 4.76 13.49 2.73

η = 1 SE 0.00 0.00 0.05 0.02 0.07 4.76 13.56 2.74
QLIKE 0.00 0.00 0.05 0.02 0.07 4.76 13.56 2.74

η = ∞ SE 0.00 0.00 0.04 0.02 0.05 4.84 14.88 3.01
QLIKE 0.00 0.00 0.04 0.02 0.05 4.84 14.88 3.01

Notes: Summary measures of the model-based and loss-based portfolios are reported. WAD
refers to the absolute distance between the model-based portfolio weights and the weights of the
infeasible post-hoc portfolio. We report the time-series average of the cross-sectional minimum
WAD (Min), 20%-quantile of WAD (q20%), mean WAD (Mean), median WAD (Median), 80%-
quantile of WAD (q80%), and the maximum WAD (Max). For the definition of turnover (TO)
see Subsection 7.2.1. WAD and TO are reported in percentages. TC are reported in basis
points. The evaluation period is 2005:M1–2021:M12.
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using model selection relative to the allocation based on 12m-RVd. While there is significant

variation in the ratio over time, some striking patterns stand out. First, using model selection

delivers portfolios that have lower market capitalization than the portfolios based on 12m-RVd.

There are periods in which the size of the model selection portfolio is higher, but the average size

is about 95% of the market capitalization in the benchmark allocation. At times the ratio falls

as low as 80%. Thus, the increased forecasting accuracy as reported in Table 4, reveals a greater

number of large firms to be more volatile than 12m-RVd. These firms are thus excluded or receive

lower weight in the portfolio.

Fama and French (1995) highlight that typical high book-to-market firms are relatively dis-

tressed, and thus attract a premium. Over the greater part of our sample, we find that the

book-to-market ratio of the model selection portfolio is lower than the benchmark. The striking

exception is the period coinciding with the Covid-19 pandemic, during which the book-to-market

ratio in the allocation based on model selection spikes. We briefly discuss this period further in

Section 8.6.

Our Figure 3 also reveals that model selection delivers portfolios that are in general more robust

with respect to their operating profitability, and have higher levels of investments. The investment

characteristics is as much as 30% higher than the benchmark during the period that precedes the

financial crisis. The greatest differences in operating profitability are in the latter part of the

sample and at times exceeding 10%.

Complementary to the lower volatilities reported in Table 5, these results indicate the following:

Increasing the forecasting accuracy through model selection typically attracts different premia

than the benchmark allocation with regards to these 4 characteristics. Under model selection,

the smaller size and higher operating profitability attract premia, relative to the benchmark. The

allocation based on 12m-RVd typically finds relative premia through higher book-to-market and

lower investment characteristics.

A complete description of the differences in financial characteristics that emerge under different

forecasting methods is beyond the scope of this paper. However, we highlight that there is varia-
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tion in the financial characteristics of the portfolios formed from forecasting models that perform

selection, compared to the benchmark allocation that rely on 12m-RVd.

Figure 3: Ratio of weighted average firm characteristic of SE-based portfolio divided by weighted
average firm characteristic of 12m-RVd portfolio
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Notes: Monthly ratio of weighted stock characteristics. Time-series averages depicted as dashed lines. We merge our portfolio data with
firm characteristics as calculated in Green et al. (2017). Each month, we calculate the weighted sum of firm characteristics per 12m-RVd

portfolio and the best-performing SE-based portfolio (i.e., η = ∞, δ = 1). We calculate the ratio with the average characteristic of
12m-RVd in the denominator; that is, ratios above one indicate that the SE-based portfolio has a higher weighted characteristic as the
12m-RVd benchmark in that month.

8.5 Factor analysis

In this section, we evaluate the low-volatility allocations in the presence of a small number of

factors. By estimating time-series regressions of the low-volatility allocations onto the five Fama-

French factors and Momentum, we find whether the unexplained expected returns increase when

using our loss-based portfolios. The regressions are defined as,

Rp,m = αp + β′
pfm + ep,m, (11)

32



where Rp,m denotes again the monthly excess return on the low-volatility portfolios. Exposures to

the factors fm are denoted βp and the unexplained expected return is αp. The standard deviation

of the error term ep,m is denoted by σp,m.

We restrict the evaluation to our loss-based portfolios using η = ∞ and δ = 1, and the 12m-RVd

allocation as a benchmark. With respect to the factors, we make use of the CAPM, Fama-French-

Carhart (FFC) four-factor model (Fama and French, 1993; Carhart, 1997) and the Fama-French

five-factor model (Fama and French, 2015). All inference is based on Newey-West standard errors

and may be regarded as conservative in this context. The findings are reported in Table 7.

First, we observe that the alphas associated with the loss-based portfolios are statistically

significant at conventional levels of significance across all factor models. The weakest evidence

against a zero alpha is with respect to the QLIKE-based portfolio under the Fama-French five

factor model. The t-statistic associated with the intercept of 1.31 percent, annualized, is 1.86.

Under the CAPM and the four factor model the low-volatility portfolio retain annualized alphas

above 2% with t-statistics ranging from 2.66 to 3.53. The benchmark portfolio does not produce

similar findings; only when using the four factor model, the alpha becomes statistically different

from zero.

The appraisal ratio ARp = αp/σp,e tells us how an investor holding the factor strategies improves

the slope of the attainable mean-variance frontier by adding a portfolio with a long position in the

low-volatility portfolio and an equal short position in the risk-free rate. Contrasting the estimates

for our loss-based allocations to the benchmark we see that the appraisal ratios are consistently

higher across all factor models. The highest appraisal ratio is found in the SE-loss portfolio in

the context of the four factor model. In the case of the five factor model we find that the AR

increases from the benchmark 0.23 to 0.48 (SE) and 0.46 (QLIKE). This implies that the residual

volatility of the factor model increases with the loss-based approach but not to the same degree as

the increase in alpha, since the unexplained expected returns more than double compared to the

benchmark.

With respect to the individual factors, the estimates of the five factor model reveal that only
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exposures to the market and profitability factor are significant for the loss-based and benchmark

portfolios. In no model specification do we find strong conditional relations between the low-

volatility portfolios and the size and value factors. The residual variance is greatly decreased by

adding the Fama-French and momentum factor, but the exposure to the market factor remains

stable at around 0.9.

Table 7: Low-volatility portfolio returns and factor loadings

CAPM FFC FF5

α βMKT AR α βMKT βSMB βHML βMOM AR α βMKT βSMB βHML βRMW βCMA AR

12m-RVd 1.27 0.90 0.41 1.37 0.90 -0.02 0.05 0.02 0.45 0.66 0.91 0.02 0.02 0.14 0.06 0.23
(1.54) (39.05) (2.04) (41.09) (-0.45) (1.23) (0.77) (0.88) (37.16) (0.71) (0.52) (2.91) (1.16)

SE 2.08 0.89 0.69 2.11 0.89 -0.01 0.04 0.02 0.70 1.38 0.90 0.03 0.00 0.15 0.05 0.48
(2.75) (41.91) (3.53) (47.68) (-0.29) (0.84) (1.09) (1.97) (39.36) (1.07) (0.07) (2.94) (0.91)

QLIKE 2.02 0.89 0.67 2.04 0.89 -0.01 0.03 0.02 0.68 1.31 0.90 0.03 -0.00 0.15 0.05 0.46
(2.66) (42.12) (3.40) (48.03) (-0.21) (0.77) (1.02) (1.86) (39.47) (1.17) (-0.03) (2.90) (0.97)

Notes: Regressions of the low-volatility portfolio returns on different factor models in the leading case of η = ∞ and δ = 1. As
factors we consider the excess market return MKT, the size factor SMB, the value factor HML in conjunction with the momentum
factor MOM, or the profitability factor RMW and the investment factor CMA. Regarding the factor loading coefficients, we report
t-test statistics based on Newey-West covariance estimates in parentheses. Excess returns are reported on an annualized scale. The
appraisal ratio (AR) is the annualized ratio of the estimated excess return and the standard deviation of the factor-model-specific
residuals. The evaluation period is 2005:M1–2021:M12.

8.6 Sector concentration and Covid-19 period

To further assess the portfolio allocations features relative to post-hoc allocation, we examine

whether our low-volatility investing strategies may generate high exposure to a small set of indus-

tries. In Figure 4, we depict histograms of the average sector concentration by primary SIC codes.

We report numbers for the post-hoc portfolio, the 12m-RVd benchmark, and the SE- and QLIKE-

based portfolios for the leading case with η = ∞, δ = 1. For brevity, the latter two are considered

to be representative of our model-based strategies. We use real-time SIC codes from the CRSP files

in order to allow companies to be reassigned to a new sector. One example is S&P Global Inc.,

formerly McGraw-Hill Companies, for which industry classification changes from “Printing and

Publishing,” which is part of the “Manufacturing”-sector, to “Security and Commodity Brokers”

in “Finance, Insurance, and Real Estate” after the acquisition of financial service providers like

SNL Financial in April 2015 and divestitures like the sale of McGraw-Hill Education in 2013.
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In Figure 4, we see that 40.5% of the weight in the post-hoc portfolio belongs to stocks classified

as “Manufacturing.”14 The second largest industry is ”Transportation, Communications, Electric,

Gas, and Sanitary service” (17.1%), followed by “Finance, Insurance, and Real Estate” (14.6%),

“Services” (13.8%), “Trade” (11.3%), and “Mining and Construction” (2.26%). The other three

histograms of our low-volatility portfolios show that the higher returns do not come at the cost of

overexposure to one particular sector relative to the post-hoc portfolio.

The low weight for the sector “Mining and Construction” provides a practical distinction be-

tween our inverse volatility portfolios and minimum-variance allocations. Blitz et al. (2019) find

that these assets are relatively high risk, but with low correlation with other stocks. Hence, a

minimum-variance portfolio may include such high-risk-low-correlation stocks in order to mini-

mize the overall portfolio variance. We find that our inverse volatility portfolios have very low

exposure to this section, in line with the results of Blitz et al. (2019).

In Figure 5 we plot the monthly aggregate weight of sectors that are identified by S&P Global

Market Intelligence to be most affected by the Covid-19 pandemic; for example, the car industry.15

We report these aggregate weights for the 12m-RVd portfolio and the SE-based portfolio (for

η = ∞, δ = 1). We see that the reaction of the SE-based strategy to the Covid-19 epidemic crash

in March 2020 is way more timely. We observe a stable level shift in the weight attached to these

industries for the SE-based portfolio in contrast to the 12m-RVd portfolio. The latter seems to

“overshoot” in its reaction to the stock market crash in March 2020.

9 Conclusion

We investigate the impact of incorporating volatility models on low-volatility investments in the

US stock market. The low-volatility allocation is typically exploited by sorting stocks based on

historical volatility. In contrast, we employ a variety of time-series models based on intraday data,

14SIC code 2 and 3, see https://www.osha.gov/pls/imis/sic manual.html.
15https://www.spglobal.com/marketintelligence/en/news-insights/blog/industries-most-and-least-impacted-by-

covid-19-from-a-probability-of-default-perspective-january-2022-update
SIC codes: 13, 37, 45, 49, 50, 55, 58, 70, 79
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Figure 4: Sector concentration of post-hoc and feasible low-volatility portfolios
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Notes: Sector concentration by real-time Standard Industrial Classification (SIC). We report the time-average share inside each SIC class
for the infeasible post-hoc portfolio along the corresponding numbers for three exemplary ex-ante feasible portfolios: the benchmark
12m-RVd portfolio and the SE-based and QLIKE-based portfolios with η = ∞ and δ = 1. Industries are classified by the first number
of the SIC code as follows: “Agriculture, Forestry and Fishing” (0), “Mining and Construction” (1), “Manufacturing” (2 and 3),
“Transportation, Communications, Electric, Gas and Sanitary service” (4), “Trade” (5), “Finance, Insurance, and Real Estate” (6),
“Services” (7 and 8), “Public Administration and Other” (9). The evaluation period is 2005:M1–2021:M12.
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including Riskmetrics, GARCH, HAR, and MIDAS regressions. We compare their forecasting and

portfolio performance against our benchmark.

We evaluate the forecast performance in a large cross-section of 1616 stocks and, in comparison

to previous studies, with a focus of one-month-ahead predictions. Our empirical analysis reveals

compelling results, illustrating the substantial out-of-sample forecast performance of HAR and

MIDAS models. Consequently, we observe that incorporating model-based forecasts enhances the

financial performance of low-volatility investments. This improvement can be attributed to the

models’ enhanced ability to exclude high-risk assets more effectively. Additionally, our findings

demonstrate that forecast combinations relying on model selection are particularly effective, both

in terms of financial performance and forecast accuracy. These results are statistically significant

and robust, even when accounting for estimated effective trading costs. The superior performance

of model selection is contrary to the “forecast combination puzzle” and can be explained by our

use of large cross-sectional data.

Even though our set of time series models is large, future research might still look at alternative

models to improve low-volatility investments. Secondly, in this study, we have not included volatil-

ity timing strategies. Kirby and Ostdiek (2012) propose volatility timing strategies as simple active

alternatives that can deliver reliable out-of-sample mean-variance performance. The parameters

that control timing aggressiveness are key in these strategies. It is possible that the forecasting

exercise can be extended to also incorporate these parameters.
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Figure 5: Monthly portfolio weights on a subset of industries at the start of the Covid-19 pandemic
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best-performing SE portfolio (η = ∞, δ = 1) and the 12m-RVd portfolio. The vertical line depicts March 2020.
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Appendix A Description of Time-Series Models

Because months have different numbers of days, all models forecast the 22-day-ahead average

realized variance which is then evaluated against the average realized variance in that month. Let

Ft denote the information set up to time t.

HAR-type models

• HAR: The HAR model (Corsi, 2009) employs the realized variances directly. In this model,

realized variances are regressed on past realized variances aggregated on a daily, weekly, and

monthly frequency. The model for forecasting the 22-day-ahead cumulative variance is given

by

RVi,t+1:t+22 = b0 + bdRVi,t + bwRVi,t−4:t + bmRVi,t−21:t + ηi,t

with RVi,t+1:t+l =
∑l

k=1 RVi,t+k and E[ηi,t|Ft−1] = 0.

• HAR-SPX: Now, let RVmkt,t denote the realized variance of the S&P 500 index. Then the

HAR-SPX model is the HAR model from above augmented by a HAR model forecast for the

market itself,

RVi,t+1:t+22 = bS0 + bSdRVi,t + bSwRVi,t−4:t + bSmRVi,t−21:t + bSmktR̂Vmkt,t+1:t+22|t + ηSi,t

with E[ηSi,t|Ft−1] = 0.

• HAR-LR: Given that we are only interested in monthly volatility forecast, we employ a

long-run version of the HAR model that includes a quarterly and semiannual component:

RVi,t+1:t+22 = bL0+bLdRVi,t + bLwRVi,t−4:t + bLmRVi,t−21:t

+ bLqRVi,t−65:t + bLsRVi,t−131:t + ηLi,t

with E[ηLi,t|Ft−1] = 0.

• HAR-SPX-LR: As we did in the HAR-SPX, we can als define a HAR-SPX-LR model which

employs both the long-run and the market component,

RVi,t+1:t+22 = bSL0 + bSLd RVi,t + bSLw RVi,t−4:t + bSLm RVi,t−21:t

+ bSLq RVi,t−65:t + bSLs RVi,t−131:t + bSLmktR̂Vmkt,t+1:t+22|t + ηSLi,t

with E[ηSLi,t |Ft−1] = 0.
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• Panel HAR: The HAR model can also be estimated in a panel if the individual realized

variances are demeaned first. Let RVi be the average realized variance of stock i in the

estimation period. Then we estimate Panel HAR coefficients

RVi,t+1:t+22 − RVi = bPd (RVi,t − RVi) + bPw(RVi,t−4:t − RVi) + bPm(RVi,t−21:t − RVi) + ηPi,t

with E[ηPi,t|Ft−1] = 0. For forecasting the individual stock’s realized variance, we re-add RVi

in the end.

• Panel HAR-LR: The Panel HAR-LR model is then the long-run analogue of the Panel

HAR:

RVi,t+1:t+22 − RVi = bPL
d (RVi,t − RVi) + bPL

w (RVi,t−4:t − RVi)

+ bPL
m (RVi,t−21:t − RVi) + bPL

q (RVi,t−65:t − RVi) + bPL
s (RVi,t−131:t − RVi) + ηPL

i,t

with E[ηPL
i,t |Ft−1] = 0.

• HAR-VIX: All models above are only backward-looking time series models and make no

use of expectations on future volatility; for example, those implied by option prices. Hence,

we include the squared VIX as a model-free risk-neutral measure of next-month’s volatility

of market returns,

RV i,t+1:t+22|t = bV0 + bVd RVi,t + bVwRVi,t−4:t + bVmRVi,t−21:t + bvixVIX
2
t + ηVi,t.

with E[ηVi,t|Ft−1] = 0. Bekaert and Hoerova (2014) use the same approach for forecasting

aggregate stock market volatility instead of individual stocks. Of course, one could derive

individual option-implied volatilities from each stock’s option prices but that is beyond the

scope of this paper.

• HAR-VIX-LR: The HAR-VIX model may also be augmented by our two long-run compo-

nents:

RV i,t+1:t+22|t =bV L
0 + bV L

d RVi,t + bV L
w RVi,t−4:t + bV L

m RV i,t−21:t

+ bV L
q RVi,t−66:t + bV L

s RVi,t−132:t + bV L
vixVIX

2
t + ηV L

i,t .

with E[ηV L
i,t |Ft−1] = 0.

All HAR models are estimated by ordinary least squares estimation.
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GARCH-type models

Let εmkt,t and εi,t denote the demeaned market and individual stock log returns. Likewise, let σ̄2
mkt

and σ̄2
i denote the empirical variances of the two in the corresponding estimation sample.

• GJR-GARCH: The GARCH specification of Glosten et al. (1993) of returns εi,t =
√

hGJR
i,t ZGJR

i,t ,

ZGJR
i,t ∼ D(0, 1), is given by

hGJR
i,t = (1− αGJR

i − βGJR
i − γGJR

i /2)σ̄2
i + αGJR

i ε2i,t−1 + γGJR
i 1{εi,t−1<0}ε

2
i,t−1 + βGJR

i hGJR
i,t−1.

We determine the rolling-window coefficients by quasi-maximum-likelihood estimation (QMLE).

• Panel GJR-GARCH: Instead of estimating the GARCH coefficients for every stock sepa-

rately, we can estimate a Panel GJR-GARCH in which

hPGJR
i,t = (1− αPGJR−βPGJR − γPGJR/2)σ̄2

i + αPGJRε2i,t−1

+ γPGJR1{εi,t−1<0}ε
2
i,t−1 + βPGJRhPGJR

i,t−1 .

Under the assumption of the innovation terms being independent, the Panel GJR-GARCH

is estimated via QMLE by summing up the individual log-likelihoods.

• Factor GARCH: In this model introduced by Engle et al. (1990), the market return is

modeled as a GJR-GARCH,

εmkt,t =
√
hCG
mkt,tZ

CG
mkt,t

with Zmkt,t ∼ D(0, 1) and

hmkt,t = (1− αCG
mkt − βCG

mkt − γCG
mkt/2)σ̄

2
mkt + αCG

mktε
2
mkt,t−1

+ γCG
mkt1{εmkt,t−1<0}r

2
mkt,t−1 + βCG

mkth
CG
mkt,t−1.

The individual demeaned stock return is given by

εi,t = βCG
i rmkt,t + ηCG

i,t = βCG
i rmkt,t +

√
hCG
i,t Z

CG
i,t

with ZCG
i,t ∼ D(0, 1) and

hCG
i,t = (1− αCG

i − βCG
i )ω̄i + αCG

i η2i,t−1 + βih
CG
i,t−1,

where ω̄i denotes the empirical variance of the stock-specific CAPM residuals. Under the as-
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sumption of independence of ZCG
mkt,t and ZCG

i,t , the forecast of the individual stock’s conditional

variance is given by (
βCG
i

)2
hCG
mkt,t+1:t+22|t + hCG

i,t+1:t+22|t

where hCG
mkt,t+1:t+22|t and hCG

i,t+1:t+22|t are the cumulated daily GARCH forecasts. The βCG
i s are

estimated separately for each stock in the respective rolling window as well as the GARCH

models for the market and the CAPM-residuals.

• The Factor GARCH-MIDAS model is the same as the CAPM GARCH model but the

market return is now given by a GARCH-MIDAS model. It includes either the VIX, changes

in housing starts, or the term spread as a covariate and estimation has been carried out using

QMLE, see Engle et al. (2013), using the R-package mfGARCH by Kleen (2018).

More specifically, the standardized demeaned market return εmkt,t is now modeled as

εmkt,t√
τm

=
√
gmkt,tZmkt,t,

where τm is specified as a function of a monthly explanatory variableXm, gmkt,t follows a daily

GARCH equation, and Zmkt,t is an i.i.d. innovation process with mean zero and variance one.

The short-term component is assumed to follow a mean-reverting unit-variance GJR-GARCH

process:

gmkt,t = (1− αCGM − γCGM/2− βCGM)

+
(
αCGM + γCGM1{εmkt,t−1<0}

) ε2mkt,t−1

τm
+ βCGMgmkt,t−1.

The long-term component τm in month m is given by

τm = exp

(
mCGM + θCGM

K∑
l=1

φl(w
CGM
1 , wCGM

2 )Xm−l

)
.

where the weights φl(w1, w2) ≥ 0 are parameterized via the Beta weighting scheme

φl(w1, w2) =
(l/(K + 1))w1−1 · (1− l/(K + 1))w2−1∑K
j=1(j/(K + 1))w1−1 · (1− j/(K + 1))w2−1

. (12)

In our versions with either changes in housing starts or the term spread as the explanatory

variable Xm, we choose K = 36. In case of the VIX, we choose K = 3. For more details see

Conrad and Kleen (2020). We name our Factor GARCH-MIDAS models accordingly to the

covariate employed: Factor GARCH-VIX, Factor GARCH-∆Hous, and Factor GARCH-TS.
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• MEM: The Multiplicative Error Model (MEM) by Engle and Gallo (2006) employs as the

dependent variable not (demeaned) returns but the demeaned square-root of the realized

measure itself denoted by RVoli,t,

RVoli,t = hMEM
i,t ZMEM

i,t , ZMEM
i,t ∼ D(0, 1),

and

hMEM
i,t = (1− αMEM

i − βMEM
i )RVol2i + αMEM

i RVol2i,t−1 + βMEM
i hMEM

i,t−1 ,

with RVol2i being the average RVol2i,t in the corresponding rolling estimation sample.

• Panel MEM: As in the Panel GARCH, we can estimate one parameter vector for all stocks

in a Panel MEM model by summing up the log-likelihoods with respect to all centered

conditional variance equations jointly,

hPMEM
i,t = (1− αPMEM − βPMEM)RVol2i + αPMEMRVol2i,t−1 + βPMEMhPMEM

i,t−1 .

MIDAS-type models

• MIDAS: The class of MIDAS models was introduced by Ghysels et al. (2004, 2005, 2006)

which are very flexible distributed lag models that potentially employ data sampled on

different frequencies (see the CAPM GARCH-MIDAS above). In our case, it is defined as

RVi,t+1:t+22|t − RVi = θMi

K−1∑
l=0

φl(1, w
M
i,2) · (RVi,t−l − RVi) + ηMi,t .

The weighting scheme is a Beta weighting scheme as in Equation (12) with w1 = 1 and we

choose K = 132 to match the long-run HAR models. We assume E[ηMi,t |Ft−1] = 0. The

parameters are obtained by minimizing the squared residuals.

• Panel MIDAS: Similar to our other panel variations for HAR and GARCH models, we

include a Panel MIDAS by restricting the scaling parameter θMi and the weighting parameter

wM
i,2 to be the same for all stocks,

RVi,t+1:t+22|t − RVi = θPM

K−1∑
l=0

φl(1, w
PM
2 ) · (RVi,t−l − RVi) + ηPM

i,t .

We assume E[ηPM
i,t |Ft−1] = 0. This is again estimated by minimizing the squared residuals.
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Riskmetrics

Our Riskmetrics forecasts are based either on monthly (indexed by m) or daily data (indexed by t).

In total we employ four different versions. The first is RM monthly, 12 months and the forecasts

are given by

RVd
m+1|m =

1∑K−1
k=0 λk

K−1∑
k=0

λkRVd
m−k

with K = 12 and RVd
m being the realized variance in month m based on squared daily returns. RM

monthly, 6 months is the same but with K = 6. RM daily, 12 months, and RM daily, 6 months are

similar but they use daily squared returns on the right hand side with the corresponding number

of lags to match the data of the monthly RM models. We choose λ = 0.97 because we target the

monthly horizon.

All models are reestimated at the end of each month. In a handful of cases, the forecast is

unreasonable (e.g., negative for some stocks in the Panel HAR model). Thus, we apply a rolling

“sanity filter” which truncates forecasts by one-third of the 1%- and three times the 99%-quantile

of the stock-specific monthly RVs in the estimation window.
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Appendix B Additional forecast evaluation results

Table B.1: Forecast comparison of model performance starting 2015

SE QLIKE

Model Mean Med LRj Rkj = 1 Rkj ≤ 4 Mean Med LRj Rkj = 1 Rkj ≤ 4

Panel A: Model-based forecasts

12m-RVd — — — 0.01 0.05 — — — 0.00 0.01

4y-RVd 1.01 0.90 0.56 0.02 0.07 1.10 1.03 0.49 0.02 0.07

6m-RVd 1.46 1.09 0.42 0.00 0.01 1.00 0.99 0.51 0.01 0.05

1m-RVd 2.92 1.32 0.36 0.02 0.02 1.38 1.14 0.38 0.00 0.01

RM monthly, 12 months 1.00 1.00 0.55 0.01 0.04 0.99 0.98 0.64 0.00 0.01
RM monthly, 6 months 1.46 1.09 0.43 0.00 0.04 1.00 1.00 0.50 0.00 0.02
RM daily, 12 months 1.75 0.98 0.51 0.00 0.04 0.98 0.86 0.64 0.01 0.04
RM daily, 6 months 1.81 0.99 0.51 0.01 0.05 0.99 0.85 0.62 0.00 0.05

GJR-GARCH 1.29 0.75 0.69 0.01 0.04 0.88 0.84 0.61 0.00 0.04
Panel GJR-GARCH 1.30 0.80 0.64 0.01 0.02 0.97 0.85 0.62 0.00 0.05
Factor GARCH 1.18 0.80 0.71 0.01 0.05 0.89 0.83 0.64 0.02 0.06
Factor GARCH-VIX 1.04 0.70 0.73 0.01 0.02 0.82 0.77 0.70 0.01 0.01
Factor GARCH-∆Hous 1.04 0.71 0.76 0.00 0.04 0.82 0.77 0.76 0.00 0.01
Factor GARCH-TS 1.04 0.72 0.74 0.00 0.01 0.82 0.79 0.74 0.00 0.00
MEM 1.11 0.88 0.54 0.02 0.04 10.73 8.83 0.07 0.00 0.01
Panel MEM 1.17 0.82 0.58 0.01 0.06 10.49 8.63 0.15 0.01 0.02

HAR 0.64 0.36 0.89 0.01 0.23 1.19 0.51 0.90 0.01 0.31
HAR-LR 2.30 0.48 0.77 0.01 0.15 2.34 0.58 0.82 0.04 0.19
HAR-SPX 0.62 0.32 0.86 0.02 0.35 1.65 0.50 0.87 0.06 0.23
HAR-SPX-LR 2.19 0.44 0.73 0.05 0.26 2.58 0.59 0.77 0.02 0.23
HAR-VIX 0.67 0.32 0.85 0.07 0.42 1.45 0.52 0.86 0.08 0.31
HAR-VIX-LR 2.21 0.45 0.70 0.12 0.26 2.90 0.58 0.77 0.06 0.19
Panel HAR 0.42 0.30 0.93 0.06 0.48 0.51 0.46 0.95 0.10 0.60
Panel HAR-LR 0.41 0.32 0.93 0.23 0.52 0.50 0.46 0.95 0.27 0.64

MIDAS 0.53 0.33 0.89 0.14 0.38 0.54 0.50 0.93 0.08 0.40
Panel MIDAS 0.86 0.35 0.83 0.12 0.37 0.59 0.47 0.92 0.18 0.44

Panel B: Loss-based combined forecasts δ = 0

η = 0 0.61 0.42 0.88 — — 0.63 0.60 0.93 — —

η = 1/2 SE 0.55 0.34 0.92 — — 0.59 0.56 0.94 — —
QLIKE 0.62 0.41 0.88 — — 0.61 0.59 0.93 — —

η = 1 SE 0.54 0.31 0.92 — — 0.56 0.53 0.94 — —
QLIKE 0.60 0.39 0.89 — — 0.59 0.57 0.92 — —

η = ∞ SE 0.69 0.30 0.82 — — 0.62 0.53 0.83 — —
QLIKE 0.62 0.30 0.88 — — 0.56 0.50 0.87 — —

Panel C: Loss-based combined forecasts δ = 1

η = 1/2 SE 0.59 0.39 0.89 — — 0.63 0.60 0.93 — —
QLIKE 0.63 0.41 0.89 — — 0.63 0.60 0.93 — —

η = 1 SE 0.57 0.37 0.89 — — 0.63 0.61 0.93 — —
QLIKE 0.62 0.40 0.89 — — 0.63 0.59 0.94 — —

η = ∞ SE 0.41 0.32 0.93 — — 0.50 0.46 0.95 — —
QLIKE 0.41 0.32 0.93 — — 0.50 0.46 0.95 — —

Notes: The same table as Table 4 but with a shorter evaluation sample starting in 2015. For each loss function SE
and QLIKE, the first two columns report the time-series mean and median of the loss ratio Lj

m/LB
m. The column

LRj reports the proportion of months in which the cross-sectional loss Lj of model j is lower than the one of the
12m-RVd benchmark forecast. Rkj ≤ 1 and Rkj ≤ 4 report the proportion of the respective model being the best
or among the four best-performing models as measured by Lj

m. In Panel B and C, we report results for combined
forecasts with δ = 0 and δ = 1, respectively. The combined forecast with equal weights (η = 0) is listed only for
δ = 0 because equal weights are independent of the smoothing parameter δ. In Panel A, numbers in bold highlight
the lowest average and median loss ratio across models. Similarly, we highlight the highest LRj , Rkj = 1, and
Rkj ≤ 4. We jointly apply the same highlighting to Panel B and C that are based on forecast combinations. The
evaluation period is 2015:M1–2021:M12.
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Appendix C Alternative weighting schemes

Table C.1: Returns of low-volatility portfolios—value-weighted instead of volatility-weighted

Without TC

Ret Std SR ∆4

Post-hoc 11.69 13.30 0.88 —

Panel A: Model-based portfolios

12m-RVd 10.25 13.66 0.75 1.64

4y-RVd 10.42 13.71 0.76 1.49

6m-RVd 10.37 13.65 0.76 1.50

1m-RVd 10.46 13.71 0.76 1.45

RM monthly, 12 months 10.22 13.65 0.75 1.66
RM monthly, 6 months 10.37 13.66 0.76 1.51
RM daily, 12 months 10.33 13.67 0.76 1.56
RM daily, 6 months 10.39 13.69 0.76 1.52

GJR-GARCH 10.20 13.71 0.74 1.72
Panel GJR-GARCH 10.41 13.59 0.77 1.43
Factor GARCH 10.23 13.68 0.75 1.67
Factor GARCH-VIX 10.22 13.70 0.75 1.69
Factor GARCH-∆Hous 10.30 13.67 0.75 1.59
Factor GARCH-TS 10.28 13.69 0.75 1.62
MEM 10.58 13.62 0.78 1.29
Panel MEM 10.61 13.66 0.78 1.28

HAR 10.51 13.60 0.77 1.34
HAR-LR 10.78** 13.60 0.79** 1.07
HAR-SPX 10.60* 13.55** 0.78* 1.22
HAR-SPX-LR 10.89*** 13.48** 0.81*** 0.89
HAR-VIX 10.68** 13.61 0.78** 1.18
HAR-VIX-LR 10.87** 13.51 0.80*** 0.94
Panel HAR 10.52 13.60 0.77 1.33
Panel HAR-LR 10.72** 13.58 0.79** 1.12

MIDAS 10.76** 13.55 0.79*** 1.06
Panel MIDAS 10.48 13.66 0.77 1.41

Panel B: Loss-based portfolios δ = 0

η = 0 10.46 13.58 0.77 1.38

η = 1/2 SE 10.44 13.60 0.77 1.41
QLIKE 10.45 13.59* 0.77 1.39

η = 1 SE 10.42 13.60 0.77 1.43
QLIKE 10.46 13.59* 0.77 1.39

η = ∞ SE 10.62* 13.63 0.78* 1.25
QLIKE 10.37 13.69 0.76 1.53

Panel C: Loss-based portfolios δ = 1

η = 0 10.46 13.58 0.77 1.38

η = 1/2 SE 10.47 13.58* 0.77 1.37
QLIKE 10.44 13.58 0.77 1.40

η = 1 SE 10.47 13.59* 0.77 1.38
QLIKE 10.47 13.59 0.77 1.38

η = ∞ SE 10.77** 13.55* 0.79** 1.05
QLIKE 10.71** 13.58 0.79** 1.13

Notes: Average annualized excess return (Ret), annualized standard deviation (Std), and Sharpe Ratio (SR). ∆γ is the annualized
fee in percent an investor would be willing to pay for switching to the infeasible post-hoc portfolio; see Equation (10). We perform
two-sided tests of equal returns using Newey-West standard errors with 3 lags against the benchmark model 12m-RVd. Sharpe ratio
test according to Ledoit and Wolf (2008) and the volatility test according to Ledoit and Wolf (2011). Statistical significance at the
10%, 5%, and 1% level are indicated by *, **, and *** respectively. In Panel A, numbers in bold represent the highest return, the
lowest standard deviation, the highest SR and the lowest fee ∆4 across all models. We jointly apply the same highlighting to all
forecast combinations in Panel B and C. The evaluation period is 2005:M1–2021:M12.
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Table C.2: Returns of low-volatility portfolios—volatility-weighted but without stock exclusion

Without TC

Ret Std SR ∆4

Post-hoc 12.02 14.08 0.85 —

Panel A: Model-based portfolios

12m-RVd 10.71 14.84 0.72 1.76

4y-RVd 10.79 14.93** 0.72 1.74

6m-RVd 10.75 14.73*** 0.73 1.65

1m-RVd 10.84 14.48*** 0.75** 1.41

RM monthly, 12 months 10.72 14.83 0.72 1.75
RM monthly, 6 months 10.75 14.73*** 0.73 1.65
RM daily, 12 months 10.79 14.72** 0.73 1.60
RM daily, 6 months 10.79 14.69*** 0.73 1.58

GJR-GARCH 10.75 14.64*** 0.73* 1.60
Panel GJR-GARCH 10.73 14.69** 0.73 1.65
Factor GARCH 10.84 14.85 0.73 1.63
Factor GARCH-VIX 10.86* 14.90 0.73 1.64
Factor GARCH-∆Hous 10.88* 14.91* 0.73 1.64
Factor GARCH-TS 10.86* 14.92* 0.73 1.65
MEM 11.19** 14.57*** 0.77*** 1.12
Panel MEM 11.04** 14.68*** 0.75*** 1.33

HAR 10.84 14.58*** 0.74*** 1.47
HAR-LR 10.97 14.54*** 0.75** 1.32
HAR-SPX 10.88 14.65** 0.74** 1.47
HAR-SPX-LR 10.94 14.52** 0.75** 1.33
HAR-VIX 10.94* 14.64*** 0.75*** 1.40
HAR-VIX-LR 10.99 14.53** 0.76** 1.29
Panel HAR 11.00** 14.70*** 0.75*** 1.38
Panel HAR-LR 11.06** 14.65** 0.76*** 1.29

MIDAS 11.01** 14.66*** 0.75*** 1.35
Panel MIDAS 10.93 14.70** 0.74** 1.46

Panel B: Loss-based portfolios δ = 0

η = 0 10.89** 14.76** 0.74*** 1.53

η = 1/2 SE 10.89** 14.77* 0.74*** 1.53
QLIKE 10.89** 14.76** 0.74*** 1.53

η = 1 SE 10.90** 14.77* 0.74*** 1.53
QLIKE 10.89** 14.76** 0.74*** 1.53

η = ∞ SE 10.95** 14.68*** 0.75*** 1.43
QLIKE 10.87 14.71*** 0.74*** 1.52

Panel C: Loss-based portfolios δ = 1

η = 0 10.89** 14.76** 0.74*** 1.53

η = 1/2 SE 10.88** 14.76** 0.74*** 1.54
QLIKE 10.89** 14.76** 0.74*** 1.53

η = 1 SE 10.88** 14.77** 0.74*** 1.54
QLIKE 10.89** 14.75** 0.74*** 1.53

η = ∞ SE 11.07** 14.64*** 0.76*** 1.28
QLIKE 11.05** 14.65** 0.75*** 1.31

Notes: Average annualized excess return (Ret), annualized standard deviation (Std), and Sharpe Ratio (SR). ∆γ is the annualized
fee in percent an investor would be willing to pay for switching to the infeasible post-hoc portfolio; see Equation (10). We perform
two-sided tests of equal returns using Newey-West standard errors with 3 lags against the benchmark model 12m-RVd. Sharpe ratio
test according to Ledoit and Wolf (2008) and the volatility test according to Ledoit and Wolf (2011). Statistical significance at the
10%, 5%, and 1% level are indicated by *, **, and *** respectively. In Panel A, numbers in bold represent the highest return, the
lowest standard deviation, the highest SR and the lowest fee ∆4 across all models. We jointly apply the same highlighting to all
forecast combinations in Panel B and C. The evaluation period is 2005:M1–2021:M12.
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