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1 Introduction

In the United States, innovation is highly concentrated in some large metropolitan areas.

For example, residents of Santa Clara County in the Silicon Valley produced an average of

3,000 patents per year over 1970-2010, resulting in a staggering 2.2 patents per thousand resi-

dents. In many rural areas of the country, innovative activity is largely lacking, which is often

paralleled by large joblessness (Glaeser and Hausman, 2020). Okmulgee County in Oklahoma,

for instance, had 35,000 inhabitants, one patent annually, and a ratio of employment to work-

ing age population (age 15-64) equal to a mere 58% during 1970-2010. These disparities have

sparked a vivid policy debate in recent years. For example, Gruber and Johnson (2019) and

Atkinson et al. (2019) advocate a stronger geographic dispersion of research funding to promote

local innovation clusters outside of superstar cities, to help “jump-start the American growth

engine” (Gruber and Johnson, 2019, p.11). However, other studies have challenged this view,

both on the grounds of efficiency (Moretti, 2021) and equity (Glaeser and Hausman, 2020).

This debate raises broader questions about the responsiveness of innovation to an economic

impetus at the local geographic level. Does a rise in local economic activity promote the

creation of new ideas? Are the effects of economic booms undone during downturns, or are

they sustained? Does the impact vary across urban areas and more remote places, or across

other local characteristics such as human capital? And, what are the mechanisms at play?

These questions have been largely overlooked in existing literature, but they are crucial for a

better understanding of local innovation dynamics and regional development.

The contribution of this paper is twofold. First, we provide novel and plausibly causal

evidence that innovation responds very locally – and positively – to economic booms whose

genesis is unrelated to innovation. We derive this result from a long sample of US patenting

activity at the commuting zone level covering over four decades (1969-2012). Notably, local

innovation is procyclical also in commuting zones with little patenting, and in fact we observe

the strongest effects in commuting zones that are urban but not metropolitan. These findings

are highly policy relevant, as they suggest that in regions far from the current hotspots of

American innovation, innovative activity does respond relatively strongly to an increase in

economic activity – and thus potentially also to place-based policies. Our results also indicate
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that patent quality is not lower during local economic upswings, and that the rise in innovation

during booms is not offset by a decline in patenting during busts. This suggests that economic

booms can have a lasting impact on local innovation, and thereby potentially on local economic

development. The effects are stronger for commuting zones with more human capital and/or

a larger patenting intensity at the beginning of our sample period. In terms of innovation

by type, we find that patenting typically rises more strongly in technologies the commuting

zone is historically familiar with, indicating path dependence in innovation (see also Aghion

et al., 2016; Manso et al., 2023). We also test for several mechanisms that may explain the

procyclicality of local innovation, and identify positive agglomeration economies as the main

channel. Other potential mechanisms such as relaxed financial constraints are not found to

play an important role.

Our second contribution is to highlight heterogeneous effects across industries, which help

explain a much-debated puzzle in the literature on the cyclicality of innovation. Specifically,

theoretical work inspired by Schumpeter (1939) predicts that firms undertake productivity-

improving activities during recessions, because of temporarily lower opportunity costs (Davis

and Haltiwanger, 1990; Hall, 1991; Aghion and Saint-Paul, 1998). However, empirical studies

typically find that innovation is procyclical (Geroski and Walters, 1995; Comin and Gertler,

2006; Ouyang, 2011). While several papers have addressed this puzzle in different ways, our

identification strategy allows to empirically test – and confirm – the ‘opportunity cost theory’

in a novel, more direct, and more plausibly causal fashion. In particular, we find that sectors

that are more exposed to higher aggregate demand during exogenously determined local booms,

and thereby face a larger increase in their opportunity cost of innovation, either keep patenting

constant or reduce it. In contrast, sectors whose product demand is less affected by the local

boom significantly raise patenting. This shows that, contrary to earlier conjectures in the

literature, the procyclicality of innovation cannot be explained by a low empirical relevance of

varying opportunity costs of innovation over the business cycle.

We measure local economic booms through exogenous oil and gas shocks. These shocks are

defined as the interaction of a commuting zone’s initial oil and gas endowment with time-series

variation in national oil and gas employment. This shift-share approach is similar to Allcott

and Keniston (2018), who kindly shared their proprietary data on county-level oil and gas

3



endowment with us. Our long sample period covers the US oil boom of the late 1970s and early

1980s, a long ensuing bust until the late 1990s, and the recent fracking boom in the 2000s,

each of which created or destroyed hundred thousands of oil and gas jobs. Initial oil and gas

endowment is a function of geology – especially because it includes “undiscovered reserves” –

and does not correlate with other commuting zone characteristics. This makes our “shares”

much more exogenous relative to most other shift-share designs, but nonetheless we account

for recent methodological advances in this literature (Goldsmith-Pinkham et al., 2020).

While our shift-share interaction is unrelated to time-varying local confounders, it is a sig-

nificant driver of various outcome measures of local economic activity, and thereby serves as a

very good proxy for local economic booms. Specifically, in the commuting zone with an initial

oil and gas endowment of five million dollars per square mile, a doubling of national oil and gas

employment leads to a rise in population by 1.9%, employment by 3.7%, earnings per worker

by 2.2%, GDP by 5.4%, and local government revenue by 6.3%. In terms of innovation, the

total number of granted patents rises by 8.8%, which is equivalent to roughly one more patent

in the commuting zone with median patent activity. By using oil and gas shocks to proxy for

local business cycles, our approach is similar to Feyrer et al. (2017), who exploit local fracking

booms to study the geographic dispersion of local economic shocks.

The result of procyclical overall innovation masks substantial heterogeneity. First, we show

that local patenting in oil and gas – the industry most directly affected by the local boom –

is countercyclical. This is consistent with theory, since the higher prices or lower production

costs that have characterized national peaks of oil and gas employment imply larger profits for

local producers, thereby raising the opportunity cost of innovation.1 In contrast, we find that

patenting in non-oil and gas technology – which represents 98% of total patenting during our

sample period – is procyclical overall. However, the effect differs markedly across different sec-

tors of manufacturing, which jointly accrues for 97% of total patenting. Our sector distinction

here is guided by the extent to which a local boom affects the sector’s product demand, and

thereby its change in the opportunity cost of innovation. Firms in highly traded sectors mainly

sell at fixed prices outside the local commuting zone and thus hardly benefit from higher wages

1 Moreover, since booms are typically temporary, firms may not update their expectations regarding the
future state of the oil and gas sector, and thereby opt against raising innovation.
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and demand during the local boom, so their opportunity cost of innovation is largely unaf-

fected. Meanwhile, the boom may raise their innovative capacity, for instance due to positive

agglomeration economies (Moretti, 2021).2 In line with this reasoning, we find a statistically

significant increase in patenting by highly-traded goods producers during local booms. The

picture looks different for producers of relatively lowly-traded goods. These are able to raise

prices upon higher aggregate demand since they face low import competition, allowing them

to raise profits by raising production. Such producers thus face higher opportunity costs of

innovation during local economic upturns; but on the other hand, the factors that make highly

traded goods producers innovate more during booms may equally apply to lowly-traded sectors.

Consistent with these mixed predictions, we find no statistically significant change in patenting

by lowly-traded goods producers during local oil and gas booms.

To better understand why local innovation is procyclical overall, and to challenge the nar-

rative of the previous paragraph, we investigate various mechanisms. This analysis focuses on

patenting in non-oil and gas technologies. We start by testing for a financial channel, follow-

ing a literature showing that relaxed credit constraints can help explain procyclical innovation

(Ouyang, 2011; Aghion et al., 2012; Nanda and Nicholas, 2014). Using the method of Rajan

and Zingales (1998) to distinguish more versus less financially constrained industries, we do not

find heterogeneous innovation responses. However, we do find that within a technology class,

listed firms – which are typically less financially constrained – raise patenting by less than other

firms during booms, although the innovation response is positive and similar in magnitude for

both firm types. These results indicate that financial constraints may play a role, but cannot

fully explain our results. Second, we investigate whether the rise in non-oil and gas innovation

can be attributed to input-output linkages, given that the expansion of the oil and gas sector

during booms may represent a positive market size effect for local input suppliers. Classifying

industries as either upstream or downstream to oil and gas and evaluating heterogeneous effects,

we find that input-output linkages are unlikely to drive our results.

Our findings do reveal two mechanisms that contribute to explaining our results. First, we

2 Note that upward wage pressure from the booming oil and gas sector might induce highly-traded goods
producers to shed some production workers, but Allcott and Keniston (2018) only find weak evidence for
this. More importantly, such effects are unlikely to occur in the market for inventors, given our evidence
of reduced innovation in oil and gas technology during booms.
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find that local oil and gas booms raise the number of college graduates and creative class work-

ers in a commuting zone, which is consistent with positive agglomeration economies that raise

inventor productivity. Second, we show that innovation in technologies more closely related

to oil and gas experiences a stronger response during boom periods compared to less related

technologies. This indicates a redirection of innovation from oil and gas to related technologies

during boom times.3

Contribution to the literature

This paper contributes to several literatures. First, we add to a literature on local innovation.

This body of work has studied topics such as the impact of socio-economic conditions on local

patenting (Crescenzi and Rodŕıguez-Pose, 2013; Hasan et al., 2020), local innovation spillovers

(Jaffe et al., 1993; Audretsch and Feldman, 1996; Matray, 2021), the importance of spatial

proximity (Roche, 2020; Xiao et al., 2021), the effects of place-based policies (Glaeser and

Hausman, 2020; Tian and Xu, 2022), or the benefits of local innovation in terms of regional

economic development (Moretti and Wilson, 2014; Akcigit et al., 2017). Little attention has

been paid to the cyclicality of innovation at the local geographic level. Considering the large

body of work on innovation’s cyclicality at the industry level, this appears surprising; however, it

is likely explained by data constraints and the difficulty of identifying exogenous local economic

shocks. We solve these issues and thereby contribute to the literature by showing that innovation

responds very locally to economic booms, by highlighting heterogeneous effects across different

types of regions and sectors, and by identifying mechanisms.

Second, we add to a small literature which has tried to reconcile the diverging results on the

cyclicality of R&D spending and innovation across theory and practice. Aghion et al. (2012)

demonstrate the role of relaxed financial constraints during booms; Bernstein et al. (2021)

show that inventors become less productive during recessions due to negative household wealth

shocks; and Manso et al. (2023) show that during recessions, firms take more risk by patenting

in technologies they are less familiar with, which they attribute to lower opportunity costs.

Assuming that inventors take their R&D projects to market very quickly, Barlevy (2007) the-

3 This result raises the question of whether the stronger effects for highly traded goods sectors merely reflects
that these sectors tend to patent in technologies that are more closely related to oil and gas. We empirically
dispel this concern in Section 4.6.
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orizes that R&D – and its ensuing commercialization – are less profitable during recessions,

and benefits competitors during the next boom. Fabrizio and Tsolmon (2014) show consis-

tent empirical evidence that R&D and patenting are more procyclical in industries with faster

obsolescence or a larger threat of imitation. Overall, the above studies thus typically explain

procyclical innovation or R&D by introducing an additional factor that may outweigh higher

opportunity costs, and test for the factor’s relevance by exploiting its heterogeneity across firms

or industries. We contribute to resolving the conundrum by instead exploiting heterogeneity

across the opportunity cost of innovation across different industries within a given boom and

locality, thereby testing for the opportunity cost theory more directly. Our boom measure is

also less prone to endogeneity compared to a majority of the above studies which proxies in-

dustry cycles via aggregate industry output, thereby prohibiting causal inference (Manso et al.,

2023). While Barlevy (2007) asks, “is the simple opportunity cost model inappropriate when it

comes to R&D?”, our results on patented innovations provide plausibly causal evidence against

this hypothesis.

Third, we add to the ongoing discussion about the relationship between natural resources

and economic development, which has been studied extensively both theoretically (Corden

and Neary, 1982; van Wijnbergen, 1984; Mehlum et al., 2006) and empirically (e.g. Auty,

1993; Sachs and Warner, 2001; Sala-i Martin and Subramanian, 2013; Aragón and Rud, 2013;

Caselli and Michaels, 2013; Allcott and Keniston, 2018; De Haas and Poelhekke, 2019; Pelzl and

Poelhekke, 2021). This body of work has largely focused on relatively short-run movements in

employment, revenue, and population, rather than the drivers of long-run growth (except for

total factor productivity). Our contribution is to show that natural resource booms lead to an

increase in local non-resource patenting, which speaks against a “resource curse” in innovation.

The remainder of the paper is structured as follows. Section 2 outlines our empirical strategy,

Section 3 discusses data sources, Section 4 presents our results, and Section 5 concludes.

2 Identification

We set out to estimate plausibly causal effects of local business cycles on innovation at the

local level over 1969-2012. Our empirical strategy is to exploit aggregate oil and gas shocks
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as exogenous source of local business cycles. The idea is that these aggregate shocks are more

relevant for commuting zones with larger oil and gas endowment, such that the co-occurrence

of a large aggregate shock and large local endowment captures a local economic boom that is

unrelated to local developments. This approach is implemented via a “shift-share instrument”

in the spirit of Bartik (1991). Following Allcott and Keniston (2018), we define exogenous local

oil and gas booms as the interaction between cross-sectional variation in initial (1960) oil and

gas reserves at the local level (“share”) and time series variation in oil and gas employment at

the national level (“shift”). National oil and gas employment varies greatly across our sample

period, reflecting the booms of the late 1970s and the 2000s and a bust period in-between

(see Figure 1).4 The endowment measure is largely a function of geology, especially because it

includes “undiscovered” reserves, which are unrelated to exploration efforts (see Section 3 for

details). In line, we find that initial oil and gas reserves do not correlate with other commuting

zone characteristics (see Table A3 in the Appendix). This greatly eases identification concerns,

given that the recent shift-share literature has found that exogeneity of the shares (conditional

on controls) is sufficient to establish causality. We further discuss identification assumptions

and how we deal with them after presenting our empirical specification next.

Since our main dependent variables are local patent counts, which potentially includes zeros,

we use a Poisson specification. We estimate the following model,5 where the geographic unit of

observation is a commuting zone:

Yc,τ = exp
(
β1[Initial Oil&Gas Reservesc × ln(National Oil&Gas Employmentτ )]

+ δc,T + δc,T ∗ τ + γs,τ

)
+ ϵc,τ (1)

Yc,τ equals the total number of granted patents in commuting zone c and period τ . Depending

on the specification, “total” refers to either the universe of patents or a specific subset. τ

4 A potential alternative shift variable would be global oil and gas prices. However, this is not as good a
proxy of US oil and gas booms because declining natural gas prices towards the end of our sample period
(see Figure 2) do not indicate a gas bust, but rather reflect increased shale gas supply during the fracking
boom. That said, Figure 1 shows that national oil and gas employment and the oil price follow very similar
trajectories during our sample period, and our results are robust to using the oil price as a shift variable
(see Table 8, column 6).

5 For estimate purposes, we use the ppmlhdfe command from (Correia et al., 2020), which makes it possible
to estimate Poisson regression models with high-dimensional fixed effects.
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stands for three-year periods, given that innovation takes time and the full impact of booms on

patenting would be observed with some lag.6 National Oil&Gas Employmentτ is computed as

the average over the three-year period. Initial Oil&Gas Reservesc equals oil and gas endowment

as of 1960 divided by commuting zone area, to account for its size. Following Allcott and

Keniston (2018), from 2001 onwards, the measure includes endowment that is recoverable using

hydraulic fracturing (“fracking”) techniques.7 For ease of interpretation of β̂1, we scale initial

oil and gas reserves by the standard deviation of (pre-fracking) endowment, which equals $4.5

million per square mile (see Table A1). γs,τ are state times (three-year) period fixed effects8, and

δc,T are commuting zone times period T fixed effects, where T={1969-2000 ; 2001-2012}. The

inclusion of δc,T implies intuitively that we demean the equation separately, once for 1969-2000

and once for 2001-2012. This allows us to estimate one regression over the whole sample period

rather than splitting the sample, and yet isolates the resource endowment that is relevant for a

particular time frame (1969-2000 versus 2001-2012).9 δc,T ∗τ stands for commuting zone-specific

linear trends, where for each commuting zone we estimate one linear slope for the pre-fracking

period and one for the fracking period.

β1 indicates the effect of local oil and gas booms on a commuting zone’s patent count

relative to commuting zones that experience a smaller or no oil and gas boom. β1 is an unbiased

estimator of this effect if, conditional on our rich fixed effect structure, the interaction term does

not correlate with unobserved economic trends. While our long sample period covers multiple

national oil and gas booms such as during the 1970s and 2000s, and national busts such as

during the 1980s and 1990s, national oil and gas employment correlates with national GDP,

and potentially also other variables. This per se is not a threat to identification: only if such

6 Taking three-year averages also addresses the issue of serial correlation in the errors, since the averaging
over periods ignores time-series information (see Bertrand et al., 2004). Note that since we update reserves
starting from 2001, the last pre-fracking period consists of two years, 1999 and 2000.

7 Our results are robust to using either of the two endowment measures (early endowment versus total
endowment including fracking reserves, both as of 1960) for the entire sample period (see Table 8, columns
4-5).

8 Some commuting zones span across multiple states. Following previous literature (Autor and Dorn, 2013),
in these cases we assign a commuting zone to the state containing the largest share of its population in
1969.

9 Demeaning across the whole sample period would mean that in every period we subtract, from the current
realization of our key interaction term, the average value across 1969-2012 of endowment × national oil
and gas employment. Since this average is driven upwards by the larger fracking reserves starting from
2001, this would imply that for the pre-fracking period, we subtract a value that is influenced by a later
change in endowment that is completely irrelevant at the time.
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national-level variables affect patenting in commuting zones with more oil and gas endowment

differently than patenting in other commuting zones in the same state, then β1 is biased.

While this appears unlikely, one might be concerned that oil and gas endowment is correlated

with other local characteristics such as average income per capita, and changes in national

GDP might in turn affect richer commuting zones differently than others. Therefore, as a first

step, we evaluate the correlation of initial oil and gas endowment with multiple commuting

zone characteristics. The results (see Table A3) show that endowment is uncorrelated with all

included variables. This is supportive evidence that the shares in our shift-share design are

exogenous. Nonetheless, we address the described identification concern in yet another way.

Following Goldsmith-Pinkham et al. (2020), the idea is that to ensure a causal interpretation of

the estimated coefficient β̂1, it is sufficient that the shares are exogenous conditional on controls.

Therefore, we add interactions of national oil and gas employment with all commuting zone

characteristics used in Table A3 to Equation (1), although our evidence indicates that they

are not (statistically significantly) correlated with oil and gas endowment. The results are very

robust to this alternative specification (see Table 8, column 2).

Table A2 shows that our measure of local oil and gas booms has a statistically significant

and positive impact on local population, employment, earnings per worker, GDP, and local

government revenue. This can be interpreted as strong evidence on a conceptual first stage of

our reduced-form approach. Note that we do not apply a two-stage least squares IV estimator

because the boom effect likely operates via multiple of the above variables, rather than only via

population, for instance. As a consequence, the exclusion restriction would likely be violated

in any type of IV setup.

3 Data

In this section we describe our sample and the data on oil and gas endowment and patenting.

Details and other data sources are described as they become relevant throughout the text,

and/or in the Online Data Appendix (see Section OA3).

Our sample covers the lower 48 states. We start our analysis in 1969 since data on most

variables are not available for earlier years, and we end in 2012 due to patent data availability.
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We aggregate all data from the county to the commuting zone level, mainly because commuting

zones better represent local labor markets.10 Several counties split over our sample period, and

the Bureau of Economic Analysis (BEA) merges selected counties in its regional data reporting.

We address these data issues by defining commuting zones that are consistent over 1969-2012.

There are 759 such commuting zones in our sample. Table A1 reports descriptive statistics.

3.1 Oil and gas endowment

We obtain county-level data on economically recoverable oil and gas reserves as of 1960 from

Allcott and Keniston (2018), which we aggregate to the commuting zone level. The data are

not publicly available but have been generously shared by the authors for this project. “Eco-

nomically recoverable” depends on the available extraction technology. In the early 2000s, the

combination of horizontal drilling with hydrofracturing (“fracking”), as pioneered by Mitchell

Energy in Texas’ Barnett Shale (Hinton, 2012), made large amounts of existing reserves eco-

nomically recoverable. Following Allcott and Keniston (2018), we account for this by defining

two distinct endowment measures: pre-fracking endowment equals reserves as of 1960 that are

economically recoverable using conventional extraction methods, and total endowment equals

1960 reserves that are economically recoverable using conventional or fracking techniques. In

our empirical analysis, endowment equals pre-fracking reserves until the year 2000 and total

reserves from 2001 onwards (see Section 2).

There are no county-level estimates of oil and gas endowment reaching back to the 1960s.

Therefore, reserves are simply computed as the sum of remaining reserves in year T>1960 and

total production between 1960 and T, where T=1995 for pre-fracking endowment and T=2011

for total endowment. Dividing by a commuting zone’s area (including both land and water

area) to account for its size, the endowment measure looks as follows11:

10 Feyrer et al. (2017) show that the wider regional impact of fracking booms on jobs and income is three
times as large as the immediate county effect, which suggests that a county is too small a unit to capture
the full effect of oil and gas booms on local innovation.

11 Oil and gas production data come from a novel dataset that relies mostly on information from private
data provider DrillingInfo; proven reserves data are from the non-publicly available Survey 23L data from
the Energy Information Administration (EIA); and undiscovered reserves are estimated by the United
States Geological Survey (USGS) based on expected oil, gas, and natural gas liquid yield using current
technologies, including estimated future discoveries throughout the next 30 years. See Allcott and Keniston
(2018) for more details.
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Oil&Gas Reservesc,1960 =
Proven Reservesc,T + Undisc. Res.c,T +

∑T
t=1960 Productionc,T

Area in Square Milesc

As shown by the formula, Allcott and Keniston (2018) include undiscovered reserves in their

endowment measure, which represents a novelty compared to previous literature. Undiscovered

reserves are “postulated from geologic knowledge and theory to exist outside of known fields”

(Schmoker and Klett, 1999, p.1). Their inclusion makes the reserves measure more closely

related to geology and thus more exogenous to economic outcomes.

In order to add up oil and gas units and ease the interpretation of our results, we follow

Allcott and Keniston (2018) and transform physical measures to dollar values using average

(real 2010) prices over 1960-2011: $34.92 per barrel of oil and $3.2 per million British thermal

units (MMBtu) of natural gas. This step also allows us to quantify the relative importance

of oil versus gas in national oil and gas endowment: oil accounts for 42% of total endowment

(including fracking reserves), while gas accounts for 58%.

595 of the 759 commuting zones in our sample have nonzero pre-fracking endowment (Rearly
c >

0), and 613 commuting zones have nonzero total endowment (Rtotal
c > 0). These statistics re-

flect the wide geographic spread of oil and gas endowment across the country. The average

pre-fracking endowment across all commuting zones equals $1.5 million per square mile, and

the standard deviation equals $4.6 million; for Rtotal
c , the average and standard deviation equal

$2.9 and $7 million, respectively. At the national level, undiscovered reserves make up 35% of

Rtotal. 153 commuting zones have undiscovered oil reserves but do not produce oil over 1960-

2011, and 255 commuting zones have undiscovered gas reserves yet no gas production. These

statistics illustrate that the endowment measure does not simply include producing commuting

zones, which mitigates identification concerns. As we motivate in Section 2, our measure of

local oil and gas booms is the interaction of initial commuting zone-level oil and gas endowment

(we use Rearly
c until 2000 and Rtotal

c thereafter) with national oil and gas employment over time,

which we obtain from the Bureau of Economic Analysis (BEA).
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3.2 Patents

We measure innovation using patent data. Patents are typically highly correlated with R&D

and other indirect measures of innovation (Griliches, 1990). Our main data source is the Euro-

pean Patent Office’s (EPO) Worldwide Patent Statistical Database (PATSTAT).12 PATSTAT

contains the population of all patents filed globally since the mid-1960s. For each application,

PATSTAT collects a wide range of information, including bibliographic information, technol-

ogy fields, family links, citations, etc. We merge these data with information on disambiguated

inventors’ addresses from PatentsView (1976-2012) and HistPat (1969-1975).

We leverage these rich data to construct a novel panel data set of patenting by technology

field and geographic unit over more than four decades. We measure the innovative activity in a

technology class j in commuting zone c and year t as the number of granted patents filed in year

t and class j by inventors located in commuting zone c. We proceed as follows. First, we identify

the research team behind a patent and the inventors’ location at the time of patent filing. This

allows us to assemble the population of all inventors residing in the United States, compute

their innovation output in the period of analysis, and flexibly map it to the geographic unit of

interest.13 Second, we observe the filing and granting dates for each patent office where a patent

is submitted. These data enable us to date patents based on their earliest filing date (“priority

date”), which most closely approximates when the innovation project was conducted. Third,

we observe technology fields, which are categorized by the patent office based on the patent’s

technical characteristics following the Cooperative Patent Classification (CPC) scheme.14

In our analysis, a patent corresponds to a unique invention. This means that if the same

invention is patented in multiple countries, it is counted only once. When a patent comprises

several technology codes, we count the patent fractionally, with a weight proportional to the

frequency of each technology code. Similarly, if inventors are located in more than one com-

12 We use the 2018 version.
13 The inventor address reported on a patent document is usually the professional address of the inventor and

therefore is a better indication of where the innovation takes place than the address of the applicant, who
may not be located where the R&D takes place (OECD, 2009).

14 In each version of PATSTAT, the most recent and detailed CIPC technical codes are assigned to all
previously filed patents. This enables us to consistently track patent technologies over time.
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muting zone, we count the patent fractionally.15 Our sample consists of all patents filed in

the period 1969-2012 and granted by the USPTO, with at least one inventor based in the US,

and non-missing CPC technology codes. While the literature has discussed extensively the

advantages and disadvantages of using patent data,16, it is the only source of information that

enables an analysis of innovation by technology field and at the local level over our long sample

period.

Following the Derwent World Patents Index (DWPI; Clarivate Analytics, 2020), we classify

the technology classes C10G, C10L, C10M, and E21B as oil and gas classes. This classification

is frequently used in the academic literature (see e.g. Duch-Brown and Costa-Campi, 2015) and

yields total oil and gas patent counts that are comparable to those reported in non-academic

outlets.17 We define a patent as oil and gas patent if it contains at least one of the oil and gas

technology codes. Oil and gas patents make up around 2% of all patents on average over our

sample period.

Patent quality is known to be highly heterogeneous. We address this in two ways. First,

our sample consists of granted patents at the USPTO, which are considered highly valuable

inventions in the empirical innovation literature. Second, we use citations as a proxy for patent

quality because highly valuable inventions are more extensively cited than low value patents

(Harhoff et al., 1999).

The annual number of patents varies greatly across space, with 5% of commuting zones being

responsible for almost three quarters of patenting throughout our sample period. The number

of patents in oil and gas rich commuting zones (which we define as those with above-median

reserves across all 759 commuting zones) over 1969-2012 averages to 76 per year, while in oil

and gas poor commuting zones the average equals 71. The medians are much smaller, being

equal to 4.1 and 4.5, respectively. Patents per capita (evaluated as patents per 100,000 persons)

average to around 9.1 (median = 5.7) and 9.5 (median = 6.1) across oil and gas rich and oil

15 For example, suppose that the patent office assigns technology codes A01B and A01C to patent P; then we
count 0.5 patents in technology A01B and 0.5 patents in technology A01C. Suppose further that there are
four inventors, three residing in county A and one residing in county B; then we have 0.5 ×0.75 patents
in technology A01B and 0.5 ×0.75 in technology A01C in county A, and 0.5 ×0.25 patents in technology
A01B and 0.5 ×0.25 patents in technology A01C in county B.

16 See for example Griliches (1990), OECD (2009), and Nagaoka et al. (2010).
17 For example, Reuters reports 2,188 oil and gas patents filed in the US in 2013 (see https://www.reuters.

com/article/us-energy-shale-research-idUSKBN0F411B20140629), while applying the DWPI defini-
tion to our data results in 2,513 oil and gas patents in the same year.

14

https://www.reuters.com/article/us-energy-shale-research-idUSKBN0F411B20140629
https://www.reuters.com/article/us-energy-shale-research-idUSKBN0F411B20140629


and gas poor commuting zones, respectively.

4 Results

We structure the presentation of our results as follows. First, we briefly discuss the impact

of oil and gas booms on measures of local economic activity, in order to empirically justify the

chosen boom measure (see Table A2). In Section 4.1, we then present the effects on total patent

activity at the local level, as well as patenting in oil and gas versus non-oil and gas technolo-

gies (see Table 1). After discussing mechanisms behind our results on oil and gas patenting,

we devote the remainder of Section 4 to studying non-oil and gas patenting in more depth.

Sections 4.2 and 4.3 document heterogeneous effects across different types of commuting zones

and across booms and busts, respectively (Table 2). In Section 4.4, we explore a wide range of

mechanisms that may explain the rise in non-oil and gas patenting during boom times (Tables

3-5). In Section 4.5, we show evidence of path dependence in innovation (Table 5). The con-

clusions we derive from Section 4.4 help guide our analysis of patenting by highly-traded versus

lowly-traded goods producers (Section 4.6, Table 6), whose opportunity cost of innovation is

differently affected by the local boom. Finally, Section 4.7 discusses boom effects on innovation

quality and green versus non-green innovation (Table 7), and Section 4.8 presents a wide range

of robustness checks (Table 8).

Oil and gas booms correlate with measures of local economic activity

Table A2 shows that local oil and gas booms significantly raise the level of economic activity in

a commuting zone. In particular, in the commuting zone with an initial oil and gas endowment

equal to one standard deviation (approximately five million dollars per square mile), a doubling

of national oil and gas employment between two three-year periods leads to a rise in population

by 1.9%, employment by 3.7%, earnings per worker by 2.2%, and GDP by 5.4%. Data for

these variables are obtained from the Regional Economic Accounts database provided by the

Bureau of Economic Analysis (BEA). Moreover, column 5 shows a 6.3% rise in own-source local

government revenue (thus excluding state and federal transfers, and including property taxes,

for instance) during booms. We obtain these five-yearly data from the Census of Governments,
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aggregate the data across all county governments in the commuting zone, and adjust Equa-

tion (1) to account for the different data frequency. These results show that our shift-share

interaction term is a very good proxy for the local business cycle.

4.1 Main Results

Table 1 reports the estimated effect of oil and gas booms on local innovation. Column 1

shows that in a commuting zone with an oil and gas endowment of five million dollars per

square mile, a doubling of national oil and gas employment leads to an increase in the total

patent count by around 8.3%. Column 3 shows a significant increase of similar magnitude for

non-oil and gas patents. Table OA1 in the Online Appendix shows the effect on non-oil and

gas patenting by two-digit technology class. In column 5 of Table 1 we study innovation in

the oil and gas sector, and find that the number of oil and gas patents significantly decreases

during oil and gas booms.18 Table 8 shows that these key results are robust to a wide range

of modifications to the baseline specification, such as using the oil price as shift variable or

accounting for recent work in the shift-share literature.

Given the significant changes to the oil and gas industry due to the fracking revolution and

its strong impact on local economies (Feyrer et al., 2017), we also analyze whether the above

results differ across the pre-fracking and the fracking period. To this end, in columns 2, 4 and

6 of Table 1, we include an interaction of the boom variable with a dummy that equals one

starting from the three-year period 2001-2003. The coefficient signs suggest that if anything,

the documented effects become stronger after 2000, but the interaction terms are not statisti-

cally significant.

Reasons for countercyclical oil and gas innovation

The result of countercyclical oil and gas innovation may be explained by at least two factors.

First and foremost, the oil and gas sector’s opportunity cost of innovation is higher during

boom periods. Figures 1 and 2 show that national oil and gas employment closely co-moves

18 Note that the number of observations is smaller in column 5. This is because the command ppmlhdfe
(Correia et al., 2020), which we use to estimate our Poisson regressions, drops separated observations to
avoid statistical separation issues, and these omissions occur more frequently in the presence of many zeros
in the dependent variable.
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with the oil price, which implies higher profits for oil producers during boom times. For natural

gas producers, the same holds true before 2000; thereafter, the rise in national employment is

mainly shaped by a reduction in production costs due to the fracking revolution. This implies

that throughout our sample period, times of high national oil and gas employment are times of

high profits for both oil and gas producers, leading firms to prioritize extraction and sales (as

evidenced by a rise in local oil and gas activity during boom times, see Online Appendix Table

OA2) rather than innovation. In this sense, our results provide strong empirical evidence of

the opportunity cost theory: oil and gas, facing the most apparent rise in the opportunity cost

of innovation, reduces patenting during booms, while other sectors that are less central to the

boom increase patenting.

A second reason why oil and gas innovation is not procyclical may be that the incentives

to innovate do not depend on the current state of the oil and gas sector – such as current

oil prices – but on the expected future state of the industry. If firms consider booms to be

(very) temporary, they may not adjust their expectations, in which case innovation is unlikely

to increase.

4.2 Heterogeneity across commuting zone characteristics

An important question is whether our results are driven by a particular type of commuting

zone, for instance large metropolitan commuting zones or those with a high patent activity.

We study such sources of heterogeneity in Table 2 by either restricting our sample or adding

interaction terms with our boom variable, and focus on innovation in non-oil and gas tech-

nologies as outcome variable. In column 1, we repeat the baseline results from column 3 of

Table 1. In column 2, we restrict the sample to commuting zones with an average of less

than 20 patents (of any kind) per three-year period over 1969-2012, which is true for 60% of

commuting zones. The results are very similar for this restricted sample, which indicates that

a high patenting activity is not a prerequisite for experiencing positive effects on innovation

during economic upswings. In column 3, we test for heterogeneous effects across more or less

urban commuting zones. For this purpose we use the Rural-Urban Continuum Codes published
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by the US government’s Economic Research Service (ERS).19 The results show that compared

to metropolitan commuting zones, non-oil and gas patenting in non-metropolitan commuting

zones rises by about twice as much during local economic booms. In column 4, we distinguish

non-metropolitan commuting zones into more versus less urban ones.20 We observe that the

effects are in fact largest overall for commuting zones that are non-metropolitan but relatively

urban. In column 5, starting from the specification of column 4 we add interaction terms with

several other variables: initial patenting intensity, computed as total patents over 1960-1969

divided by population in 1969; human capital, measured as the share of population aged 25 or

older with at least one year of college education, as of the year 1970; and college density, which

we define as the number of employees in colleges, universities, and professional schools divided

by total population, as of 2018.21 In order to interpret the non-interacted boom coefficient

as the effect in the average commuting zone across the five sources of heterogeneity we test

for, we demean the urban-rural dummies and the three additional variables before performing

the regression. The results show that commuting zones with a higher initial patent activity

experience a significantly larger rise in patenting during boom times. This suggests that booms

reinforce existing innovation capacity rather than create it from scratch. The coefficients on

the human capital and college density interactions are not statistically significant.22 In column

6, we test for heterogeneous effects within the sample of urban non-metropolitan commuting

19 Each county is assigned a value from 0 to 9, ranging from “Central county of metro areas of 1 million
population or more” (Code=0) to “Completely rural or less than 2,500 urban population, not adjacent to
a metro area”. Counties with value 4 to 9 are classified as “non-metropolitan”. We bring this classification
to the commuting zone level by taking the average value across all counties within a commuting zone, based
on the 1974 edition of the data (earlier data are unavailable). We define commuting zones with an average
value of 4 or larger as non-metropolitan, which is true for 90% of commuting zones.

20 We define a commuting zone as urban non-metropolitan if 4≤rural-urban code<8 (see also footnote 19).
These 496 commuting zones produce around 80 patents per three-year period on average. Rural non-
metropolitan commuting zones are those with a code≥8. These 190 commuting zones produce an average
of around 6 patents.

21 County-level education data, which we aggregate to the commuting zone level, are available from the ERS.
Note that these data do not contain information on the number of residents who actually obtained a college
degree. Our definition of college density is inspired by Valero and Van Reenen (2019), who use a region’s
number of universities per capita in their analysis. Given that we have information on a college’s number
of employees, we are able to account for heterogeneity in college size across space, thereby refining their
measure. Data are only available for the academic year 2018-19, and are obtained from the Homeland
Infrastructure Foundation-Level Data (HIFLD).

22 While recent literature shows that local patenting is positively affected by local university presence (An-
drews, 2023) and innovation (Hausman, 2022), our results suggest that local universities do not mediate
the impact of local economic booms on patenting.
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zones, given that these experience the largest overall effects. The coefficient on initial patenting

remains unchanged in magnitude, but turns insignificant due to a larger standard error in this

restricted sample. Interestingly, the coefficient on human capital is now positive, larger in size,

and statistically significant, indicating that a well-educated population is key for innovation to

respond to economic booms in urban non-metropolitan areas. Overall, the findings in columns

5 and 6 resonate with the proposal of Gruber and Johnson (2019) to increase research fund-

ing in local innovation clusters with sufficient human capital – although the 102 places the

authors recommend “for jump-starting America” are mostly (but not exclusively) located in

metropolitan commuting zones.

4.3 Booms versus busts

While a rise in local innovation during boom times is good news for a locality, the question

arises whether these effects are reversed by a decline in innovation during bust periods. We

test for this question by restricting our sample to a time frame that is characterized by a

continuous decline in national oil and gas employment from one three-year period to the next:

over 1981-2000, the variable halved from one million employees to a mere 510,000 (see also

Figure 1). If the coefficient on our key interaction term remains positive and significant using

this subsample, then this is evidence that oil and gas busts lead to a decline in local non-oil

and gas patenting. However, the results (see Table 2, column 7) do not show this pattern: the

coefficient is not statistically significant, and in fact negative. To scrutinize the conclusion that

booms drive our results, in column 8 we restrict our sample to a time frame in which national

oil and gas employment continually rose. This occurred over 2001-2012 during the fracking

boom, when US oil and gas employment bounced back from 510,000 to 1.25 million. Although

the sample period is shorter than in column 7 which negatively affects statistical power, we find

a positive and statistically significant effect. Taken together, these effects suggest that the rise

in innovation during local boom periods tends to be sustained, rather than only short-lived.
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4.4 Mechanisms behind the procyclicality of non-oil&gas innovation

In this section, we examine underlying mechanisms that may contribute to the rise in non-

oil and gas innovation during economic upswings. We evaluate the importance of relaxed

financial constraints, input-output linkages, agglomeration effects, public finance, household

wealth effects, strategic patent timing, and a redirection of local innovation from oil and gas to

non-oil and gas technologies.

4.4.1 Relaxed financial constraints?

Several studies show that credit constraints have a negative impact on innovation (Ouyang,

2011; Aghion et al., 2012; Amore et al., 2013; Gorodnichenko and Schnitzer, 2013; Nanda and

Nicholas, 2014; Akcigit et al., 2017). Given these findings, the rise in non-oil and gas patenting

may be explained by relaxed credit constraints in boom times. We test for this potential channel

in two ways. First, we exploit the widely-applied notion of Rajan and Zingales (1998) that the

degree of financial constraints typically differs by industry. To do so, we first map patent

technology classes to four-digit industries based on the Standard Industrial Classification (SIC)

system. Mapping technologies to industries has been challenging. Existing techniques based on

text similarities, such as Lybbert and Zolas (2014), have a limitation in distinguishing between

producing and using industries. To address this limitation, we employ a two-step approach.

First, we use the fact that for each patent in our dataset, we know whether it was filed by a

firm included in the Compustat database, and if so, in which four-digit SIC industry the firm

operates. By examining these patents filed by Compustat firms, which account for 34% of all

patents in our sample, we can infer the association between certain manufacturing industries

and specific technologies. For instance, if firms in a particular industry tend to file patents in

technologies X and Y, we can map that industry to technologies X and Y. The advantage of this

method is that we can subsequently map all patents to industries, irrespective of whether the

patent is filed by a Compustat firm or not. This allows us to map the complete set of patents

in our analysis to the corresponding SIC industry. We then compute a measure of dependence

on external finance for each of the 20 two-digit SIC manufacturing industries following the
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procedure of Rajan and Zingales (1998)23, and correlate it with the industry’s patent activity

over the local business cycle. We do so by estimating Equation (1) at the commuting zone

– industry level, where we replace commuting zone fixed effects with commuting zone times

industry fixed effects, and further include industry times three year period fixed effects. The

results (see Table 3, column 2) suggest that firms in more financially constrained industries

do not raise patenting by more than others during boom times, which is not supportive of the

finance channel hypothesis.

Since the validity of this conclusion hinges on the extent to which we can plausibly map

technologies to industries, we perform a second test. This test exploits that all firms in Com-

pustat are publicly listed and are thus typically less financially constrained than other firms

(Saunders and Steffen, 2011), implying that a smaller rise in patenting by those firms would

be consistent with a finance channel. To account for the possibility that Compustat firms tend

to patent in technology classes that are differently affected by local oil and gas booms, we

estimate a specification at the commuting zone – technology class level, with commuting zone

times technology class fixed effects and technology class times three year period fixed effects.

The results (see Table 3, column 4) indicate that patenting by Compustat firms rises by sig-

nificantly less in boom times, but the overall effect on these firms is still positive and similar

in size to the baseline coefficient (see column 3). These findings suggest that relaxed financial

constraints during booms may play a role in explaining our results, but are unlikely to fully

explain them.24

4.4.2 Input-output linkages

Next, we study whether the increase in local innovation in non-oil and gas technologies is

driven by input-output linkages. We do so mainly by testing whether patents in industries that

23 External finance dependence is computed as Capital expenditure–−cash flow from operations
capital expenditure . We first compute

this ratio at the firm level, averaging both the numerator and the denominator over 1971-2012 (earlier data
are unavailable) and then taking the ratio of the two, and then define the industry’s realization as the
median observation across all firms in the industry.

24 Note that the results in columns 1 and 3 of Table 3 also address the potential identification concern
that changes in national oil and gas employment might be correlated with shocks to specific sectors or
technology classes. If this were the case, and these specific sectors or technology classes were over- or
under-represented in oil and gas-rich commuting zones, then our baseline results would be biased; however,
given that columns 1 and 3 include sector-period and technology class-period fixed effects, respectively,
and their results confirm the baseline result of column 3 of Table 1, such concerns are invalidated.
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are upstream to the oil and gas sector increase patenting by more than others. The key idea

is that “the amount of invention is governed by the extent of the market” (Schmookler, 1966,

p.104), and the expansion of the oil and gas sector during booms represents a market size effect

for input suppliers if local oil and gas producers increase their demand for intermediate inputs.

Using the Input-Output tables from the Bureau of Economic Analysis for the year 1987,

we first calculate the direct and indirect share of an industry’s output sold to the oil and gas

sector25. Following Allcott and Keniston (2018), an industry is defined as “upstream” if the

sum of direct and indirect oil and gas output share is larger than 0.1%, and “downstream”

if the direct input share exceeds 0.1%.26 Industries that do not fall into either category are

classified as “non-linked”. Subsequently, we aggregate non-oil and gas patents into patents by

upstream, downstream, and non-linked industries and use these are left-hand side variables in

Equation 1.

The results presented in columns 5-7 of Table 3 suggest that the input-output linkages

channel is unlikely to account for the rise in local non-oil and gas innovation. While we find

a positive and significant elasticity of innovation in upstream industries to oil and gas shocks,

the elasticity is even larger in non-linked industries. Furthermore, the effect on innovation in

downstream industries is small and imprecisely estimated.27

4.4.3 Agglomeration effects

The above results indicate that weakened financial constraints and input-output linkages

cannot (fully) explain the rise in non-oil and gas innovation during local booms. Moreover, in

Section 4.4.5 we rule out public finance, household wealth effects, and strategic patent timing

as important drivers of our results. This evidence, and a literature highlighting the importance

of agglomeration for innovation (Carlino and Kerr, 2015; Moretti, 2021), suggest the presence

of agglomeration economies as a possible mechanism behind our results. Perhaps inventors

move to the booming commuting zone and patent there, and/or their move makes incumbent

25 The direct output share is the share of an industry’s output purchased by the oil and gas sector. The
indirect share is the share of output purchased by the oil and gas sector through an intermediate industry.
We do not consider higher distance linkages.

26 Including indirect shares in the downstream measure computation would be overly affected by the electricity
intensity of a sector.

27 We cannot reasonably evaluate the effects on industries that are downstream and not upstream, because
all but two downstream industries are also upstream.
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inventors more productive; or, more generally, high-skilled workers in creative occupations

immigrate and promote the local creation of new ideas. While it is impossible to identify

inventors’ movements unless they file a patent, we can test the relevance of the high-skilled

workers hypothesis by analyzing immigration by type of worker. We start by studying the

impact of local oil and gas booms on the number of residents with and without a college

degree. Data on county-level educational attainment are only available from the years 1990

and 2000 via the Population Census, and thereafter as moving five-year averages via the annual

American Community Survey (ACS), starting with 2006-2010.28 On the left-hand side, we use

these three data points and the 2011-15 ACS average, and aggregate to the commuting zone

level; on the right-hand side, we evaluate our key interaction term in 1990, 2000, as average over

2006-10, and as 2011-15 average. The results (see Table 4) show that oil and gas booms raise

not only total adult population (column 1), but also both college- and non-college educated

population (columns 2-3). The coefficient is in fact larger for college-educated population, but

the difference to the non-college coefficient is not statistically significant.

Given the low data frequency, one might be concerned that the rise in college graduates

during boom times does not reflect migration, but educational choices of the native population.

However, column 4 of Table 4 shows that total population does respond (positively) to oil and

gas booms measured at annual frequency; and Cascio and Narayan (2022) show that oil and

gas booms typically have a negative impact on residents’ schooling, both of which speak against

this alternative hypothesis.

One limitation of studying population by educational attainment is that college graduates

may not necessarily work in creative occupations that are close to the local innovation process.

We therefore perform an additional test in which we analyze the number of ‘creative class work-

ers’ at the local level over time. While this concept was first introduced and defined by Florida

(2002), we use an improved classification by the ERS, which excludes from the original measure

“many occupations with low creativity requirements and those involved primarily in services

to the residential community”. The list of included occupations features for instance Com-

puter and Mathematical, Architecture and Engineering, or Life, Physical, and Social Science

28 The census data are made available by the ERS, and the ACS data are obtained from data.census.gov. The
ACS has insufficient coverage for a reliable county estimate in any given year, but the five-year averages
are representative and can be compared to the census data (compare e.g. Weber, 2014).
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occupations, but also Management occupations. The ERS provide county-level data for 1990,

2000, and the average over the 2007-11 ACS rounds, which we aggregate to the commuting

zone level. Averaging the creative class share across all available data points reveals that 17%

of workers belong to the creative class (median=16%). The results in column 5 of Table 4 show

that oil and gas booms lead to a statistically significant rise in the local number of creative

class workers. This suggests that during booms, there is a larger amount of people working in

occupations that are relatively close to local innovation processes, which implies agglomeration

economies that are fruitful to local innovation and likely help explain our results. Also inventors

in particular are well-represented in the creative class definition we use, based on evidence by

Akcigit and Goldschlag (2023) that 50% of inventors are in the technical occupations listed

further above, and 26% are in managerial occupations.

4.4.4 Innovation redirected from the oil and gas sector to related technologies

As innovation in oil and gas decreases during boom times, inventors from the oil and gas

industry may transition to firms working on non-oil and gas technologies. Although oil and gas

patenting only accounts for a small share of total patenting, this could partly explain the rise

in non-oil and gas innovation during boom times. If such a mechanism plays a role, non-oil and

gas innovation should increase relatively more in technologies that are closely related to the oil

and gas sector. We can test for this by building a measure of technological relatedness to oil and

gas based on technology co-classification information contained in patent documents, inspired

by previous literature (e.g. Kogler et al., 2013). Intuitively, the more often a certain non-oil

and gas technology class is listed together with an oil and gas technology, the closer it is to oil

and gas in the technology space.29 The result is a value between zero and one for each two-digit

technology class indicating its relatedness to oil and gas technology. We then use this measure

in a specification that features, as dependent variable, the number of non-oil and gas patents in

29 We define the relatedness of technology class k to oil and gas technologies as follows:

ROG
k =

∑t=2013
t=1969 ωikp

OG
ik

POG

where ωik denotes the relative importance of technology class k in patent i, pOG
ik = 1 if patent i lists

technology class k and is an oil and gas patent, and POG denotes the total number of oil and gas patents
filed and granted globally in the sample period. k denotes a 2-digit IPC code.
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a given two-digit technology class in a given commuting zone in a given three-year period, ykc,τ .

In particular, in column 1 of Table 5, we estimate our baseline specification at the two-digit IPC

class by commuting zone level, augmented by an interaction of our standard boom variable with

the relatedness measure. Given our focus on non-oil and gas innovation, we remove oil and gas

patents from an IPC class’ total patent count whenever applicable. The specification contains

two-digit IPC class times commuting zone times century fixed effects, state times three-year

period fixed effects, two-digit IPC class times three-year period fixed effects, and controls for

differential commuting zone-specific patenting trends across the pre-shale gas period (1969-

2000) and the shale gas period (2001-2012). In column 2, we also add an interaction of our

boom measure and a variable indicating the general importance of the IPC class, measured as

total patents in the IPC class over 1969-2012 divided by all patents in 1969-2012. This addition

controls for the possibility that technologies that are close to oil and gas are generally more

(or less) common, and, during booms, firms patent disproportionally more (or less) in common

technology classes. The results show a positive and statistically significant (at the 10% level)

coefficient on the relatedness interaction, which is consistent with innovation being redirected

from oil and gas to non-oil and gas technologies.30 That said, the non-interacted coefficient is

also positive and significant, indicating that non-oil and gas patenting also rises in technology

classes that are unrelated to oil and gas.

4.4.5 Public finance, household wealth effects, and strategic patent timing

In this subsection we discuss a number of other potential channels which turn out to be

unlikely drivers of our results.

County governments receive a share of locally derived oil and gas revenue, which varies

across states (ranging from 0.1% in Ohio to 2.3% in Alaska) and is primarily accrued via

property taxes on oil and gas reserves, production, or related equipment (Newell and Raimi,

2018). Consistently, Table A2 shows that total own-source revenue of county governments

rises during oil and gas booms.31 This raises the question on the existence of a public finance

30 In line with this evidence, we find that out of all nine two-digit technology classes that experience a
statistically significant rise in patenting during booms (see Online Appendix Table OA1), only one is in
the least related tercile (which constitutes only 1% of the relatedness mass; see Figure OA1).

31 Unreported regressions show a positive effect of similar magnitude on own-source revenue specifically de-
rived from local property taxes.
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channel, through which local county governments in booming commuting zones use oil and gas

windfalls to support local innovation. However, this channel is very unlikely to play a role: local

governments spend oil and gas revenue mostly on public services such as primary education,

as well as infrastructure projects that often become necessary as local oil and gas activity

increases (Newell and Raimi, 2015, 2018). Nonetheless, we test the public finance hypothesis

by exploiting the variation in counties’ oil and gas revenue participation across states. The

results (see Section OA1.3) show that commuting zones located in states with a larger county

government “take” on oil and gas revenue do not raise patenting by more than others, which

speaks against a public finance channel.

Local oil and gas booms may increase incumbent inventors’ wealth, for instance via raising

house prices. In turn, inventor wealth has been documented to affect productivity: Bernstein

et al. (2021) show that inventors who experience a negative housing wealth shock during the

Great Recession produce fewer and less important patents thereafter, and attribute this to

resource constraints and/or psychological or financial distress. Since our results are driven by

positive boom effects rather than negative bust effects (see Section 4.3), the question arises

whether a reduction in distress during booms can raise inventors’ productivity. Bernstein et al.

(2021) find evidence against this: repeating their analysis during the housing boom period

between 2002 and 2007, they find no impact of house price increases on inventors’ patent

output. Moreover, in fact we do not find strong evidence that local oil and gas booms raise

local house prices in the first place (see Section OA1.3). These findings suggest that wealth

effects are unlikely to explain the rise in non-oil and gas innovation during boom times.

Alternatively, our results might be explained by firms’ decision to delay the implementation

of innovation projects or the filing of patent applications to periods of high demand (Shleifer,

1986; Barlevy, 2007; Fabrizio and Tsolmon, 2014). Given our focus on local economic booms,

such effects should be stronger for producers of locally-sold products, as they face a larger rise

in demand during boom times. However, we find that the procyclicality of innovation is less

pronounced for lowly-traded goods producers compared to producers of highly-traded goods

(see Section 4.6), which speaks against this channel.
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4.5 Path dependence

The rise in non-oil and gas patenting may reflect innovation in novel technological areas

for a commuting zone or areas in which the commuting zone already has prior experience. To

examine this, we calculate commuting zone c’s relative historical experience in each two-digit

technology class as the ratio of patents in the two-digit IPC code to total patents in the period

before our analysis (1960-1969). We then proceed by estimating Equation 1 at the two-digit

IPC class by commuting zone level, including an interaction with the boom variable and the

technology’s share in total patents in the pre-period. The findings are presented in column

3 of Table 5. In column 4, we additionally control for differential patenting in more or less

common technology classes during boom times. The findings indicate that the rise in non-

oil and gas patenting is not exclusively driven by technology classes the commuting zone is

historically familiar with. However, these familiar technology classes do experience a larger

rise in patenting in percentage terms. We interpret this as evidence for path dependence of

innovation, consistent with Aghion et al. (2016) and Manso et al. (2023).

4.6 Different sectors, different opportunity costs of innovation

In Section 4.1, we showed that innovation in oil and gas – a sector that clearly experiences

a rise in the opportunity cost of innovation during local oil and gas booms – is countercyclical.

In contrast, firms in other sectors, which (at least on average) experience a smaller rise in

the opportunity cost of innovation during local booms, raise innovation. In this section we

provide an additional test of the opportunity cost theory, by studying heterogeneous effects on

non-oil and gas innovation across highly- and lowly-traded goods producers. We do so because

of these sectors’ varying exposure to higher local demand during the boom, and thus their

different change in the opportunity cost of innovation. Highly traded goods producers mainly

sell outside of the local market, which implies a low or zero change to their product demand,

and thus at best a small increase in their opportunity cost of innovation. In contrast, lowly

traded goods producers can raise prices and sales upon higher local demand, which implies

higher opportunity costs of innovation during the boom. We classify a four-digit SIC sector in

manufacturing as relatively highly traded if it has a below median distance elasticity. The latter
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equals the percentage change in trade volume as distance increases by one percent, as calculated

by Holmes and Stevens (2014) using industries’ average shipment distance reported in the US

Commodity Flow Survey. Ready-mixed concrete and ice have the highest distance elasticity,

while 14 industries including watches, x-ray equipment, and aircraft parts have the lowest.

Having classified industries into highly- and lowly-traded, we map industries to technology

classes as described above, and allocate patents into the two categories of tradedness. The

results (see Table 6, column 1) show that lowly-traded goods producers do not significantly

raise patenting in boom times. This is consistent with two opposing forces offsetting each

other: a negative effect on innovation due to larger opportunity costs, but a positive effect

due to agglomeration economies (see the results of Table 4, and consistent evidence by Moretti,

2021). In contrast, and consistent with theory, highly traded goods producers significantly raise

patenting in boom times, at similar magnitude as our baseline effect (column 2).

As a robustness check, we divide industries into tradedness terciles. If the results in columns

1-2 can indeed be explained by varying exposure to local aggregate demand, then we should see

the weakest impact for the least traded tercile, stronger effects for the intermediate tercile, and

the strongest impact on the most traded tercile. This is exactly what we observe in columns

3-5 of Table 6.

While this result is reassuring, one might be concerned that the strongest effects on patenting

by highly-traded goods producers merely reflects that these firms innovate in technological

areas that are more related to oil and gas, given that these see a larger rise in patenting during

booms (see Table 5). We test for this possibility by analyzing the correlation between the

number of patents in highly traded sectors and the number of patents in oil and gas-related

technologies, at the commuting zone level over time. We define ‘highly traded patents’ as those

filed by industries in the highest tradedness tercile, and ‘highly oil and gas-related patents’

consistently as those filed in technology classes in the highest relatedness tercile. Given that

both of these variables rise in oil and gas-endowed commuting zones during booms, estimating

their relationship based on the full sample could easily indicate a spurious positive correlation.

To test whether oil and gas-related patents are typically filed by firms in more traded sectors,

it is therefore more constructive to use the sample of commuting zones without oil and gas

reserves. Regressing highly traded sectors’ patents on highly related patents and including the
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same fixed effects as in Equation (1) yields a negative and insignificant correlation (results are

available upon request), which speaks against the described concern.

4.7 Innovation quality and green versus non-green innovation

4.7.1 Innovation quality

During boom periods, resource-rich regions that experience increased wealth may prioritize

incremental innovations to improve existing products or processes rather than focusing on new

innovations. If this holds true, patent quality may decline in boom periods, as found by Makridis

and McGuire (2023). To examine this hypothesis, we measure the average quality of patents

using two indicators and examine whether average quality tends to deteriorate during booms.

Our first proxy for quality is based on the number of forward citations. We use citations

because high-value inventions are more extensively cited than low-value patents (Harhoff et al.,

1999). We calculate the average quality of patents in each period as follows. Let qicτ denote

the number of forward citations five years after a patent i was filed. The cumulative sum in

commuting zone c in period τ is:

Qct =
∑
i∈c

qicτ

where Pcτ is the total number of patents filed in period τ in commuting zone c. The average

quality of patents filed each period is then calculated as Q̄cτ = Qcτ/Pcτ .

Our second proxy is a measure of generality. This measure captures the importance of

patents for later developments and the number of fields they influence (Hall et al., 2001) . We

define the generality of patent i filed in year t:

git = 1−
∑
k∈K

(
citik
citi

)2

,

where citik is the number of (5-year) citations from patents of technology class k to patent i, and

citi =
∑

k citik denotes the total number of (5-year) citations to patent i. This measure resem-

bles a Herfindahl–Hirschman index. A patent has high generality when it is cited by subsequent

patents in various fields, whereas low generality occurs when citations are concentrated in a

few specific fields. A high generality index suggests that the patent had a significant influence
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on future innovations across a wide range of fields. We scale the generality measure with the

average generality of patents filed in the same year and technology classes to account for the

fact that patent generality may increase over time. We then compute the average generality of

patents in commuting zone c and period τ .32

We proceed by using the average quality and generality of patents in each commuting zone

and period as the dependent variable and estimate our baseline model again. Note that in

this case, the sample includes all commuting-zone-period observations with at least one patent.

This is because we want to distinguish true zeros, i.e. situations when citations or generality

are zero, from situations where the quality and generality measures are undefined because there

are no patents. The results are reported in columns 2 and 3 of Table 7 and suggest that there

is no significant decrease in the average quality or generality of patents. Hence, the increase

in non-oil and gas innovation does not seem to be driven by the deterioration of innovation

quality.

4.7.2 Green innovation

In this section, we examine the effect of oil and gas booms on green innovation. The under-

lying motivation is recent theoretical work suggesting that increased oil and gas activity during

the fracking boom crowded out green innovation (Acemoglu et al., 2019). Green patents are

defined as those including one or more technology classes capturing “climate change mitigation

technologies” (C/IPC in the Y02 class), following previous literature (see e.g. Angelucci et al.,

2018). We estimate equation (1) using the number of green patents and the share of green within

total non-oil and gas patents as dependent variables. The findings, presented in columns 4 and

5 of Table 7, indicate a positive response of green innovation to oil and gas booms. However,

there is a decline in the share of green patents. This aligns with the findings of Acemoglu et al.

(2019), who observed a similar decline in green patents following the fracking revolution in the

US. Notably, our results indicate that this decline begins earlier than the fracking revolution.

32 Details on how we compute this measure at the local level are provided in Online Appendix Section OA2.
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4.8 Robustness Checks

In Table 8 we carry out several robustness checks. Panel I reports results for non-oil and

gas innovation, while Panel II reports equivalent robustness checks for oil and gas innovation.

Column 1 repeats the baseline results of Table 1 as reference. In column 2 we add interactions

of national oil and gas employment with commuting zone-level population density, personal

income per capita, and population, respectively, all measured in 1969. This addresses the

concern that initial oil and gas reserves per square mile may be correlated with these variables,

thus making the shares in our shift-share design endogenous (see Goldsmith-Pinkham et al.,

2020). In column 3 we add an interaction of 1960 coal reserves at the commuting zone level

with national coal employment to control for the impact of local coal booms. In column 4

we use pre-fracking reserves as of 1960 for the entire sample period, while in column 5 we

use endowment in 1960 including fracking reserves. In column 6 we show that the baseline

results are robust to using the oil price rather than national oil and gas employment in our key

interaction term. The magnitude of the coefficient is smaller, which arguably reflects that a

doubling of the oil price is a smaller shock than a doubling of national oil and gas employment,

as indicated by Figure 1. Overall, the results reported in Table 8 show that our baseline results

are robust to a wide range of modifications to our baseline specification.

5 Conclusion

In this paper we asked several basic questions about the responsiveness of innovation to

changes in the level of economic activity at the local geographic level. Exploiting nationwide

oil and gas shocks as exogenous source of local business cycles in oil and gas-endowed commuting

zones, we find novel evidence that patent activity responds very locally, and positively so, to

economic booms. The results are strongest in non-metropolitan yet relatively urban areas.

Importantly, we do not find that the effects are reversed by a decline in patenting during bust

periods, suggesting that the effects tend to be permanent rather than only short-lived. In terms

of mechanisms, we find that relaxed financial constraints and input-output linkages are unlikely

to explain our findings. In contrast, we show evidence consistent with positive agglomeration

economies that raise the productivity of local innovative firms.
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Our findings inform the recent academic and policy debate on the spatial distribution of

innovation across the US. Gruber and Johnson (2019) advocate a stronger geographic dispersion

of research finding to local innovation clusters outside of large metropolitan areas, in order to

revitalize US economic growth across geographies. Regarding the local consequences of such

policies, Glaeser and Hausman (2020) argue that “[p]erhaps cases exist where a modest “big

push” would propel a region into perpetual growth, but we do not know how to identify these

cases in the United States today.” (p.264). In that regard, our findings of procyclical local

patenting could be seen as evidence that a local stimulus has the potential to promote local

innovation permanently, and thereby potentially also local economic development.

As a second contribution, this paper highlights heterogeneous effects on local innovation

across economic sectors, which help explain the puzzle that innovation is typically procyclical

despite higher opportunity costs during economic upswings. Specifically, we show that sectors

whose opportunity cost of innovation rises the most in boom times do not raise patenting during

oil and gas booms: for producers of locally-sold products, we observe no significant change in

patenting, and patenting in oil and gas – the industry at the center of the boom – actually

declines. This indicates that contrary to earlier conjectures in the literature, a low empirical

relevance of varying opportunity costs of innovation across the business cycle cannot explain

the procyclicality of innovation.
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Table 1: Local booms and patent activity

Dependent Variable → # Patents
# Non-oil&gas

patents
# Oil&gas
patents

(1) (2) (3) (4) (5) (6)

ln(National oil&gas employment) × endowment 0.083∗∗∗ 0.081∗∗∗ 0.088∗∗∗ 0.086∗∗∗ -0.084∗∗ -0.083∗∗∗

(0.028) (0.027) (0.034) (0.033) (0.033) (0.032)
ln(Nat. O&G empl.) × endowment × Shale period 0.084 0.076 -0.091

(0.077) (0.082) (0.174)

Observations 11,097 11,097 11,097 11,097 7,748 7,748
Sample period 69-12 69-12 69-12 69-12 69-12 69-12

Notes : In this table we analyze the impact of local economic booms, proxied by localized oil and gas shocks (see
Table A2), on patent activity at the commuting zone level. We only consider applications which result in granted
patents later on. The sample period is 1969-2012. In columns 1-2 we consider patents in all technology classes. In
columns 3-4 we only include oil and gas patents (classes C10G, C10L, C10M and E21B), while in columns 5-6 we
exclude those four classes. We aggregate the number of patents over a period of three years, except for the period
1999-2000 which constitutes a two-year period. endowment equals initial oil&gas reserves and is scaled by the
standard deviation of this variable across all commuting zones. Endowment is updated to include fracking reserves
from 2001 onwards. In all columns we estimate Equation (1) using Poisson pseudomaximum likelihood regressions.
All regressions include commuting zone times century fixed effects and state times three year period fixed effects,
and control for differential commuting zone-specific patenting trends across the pre-shale gas period (1969-2000) and
the shale gas period (2001-2012). Standard errors in parentheses are clustered at the state level. ∗∗∗Significant at
1% level; ∗∗Significant at 5% level; ∗Significant at 10% level.
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Table 2: Heterogeneous effects across commuting zone types and booms/busts

Dependent Variable → # Non-oil&gas patents

Sample → All
<20

patents
All

Urban
non-metro
c-zones

Long
bust
spell

Long
boom
spell

(1) (2) (3) (4) (5) (6) (7) (8)

ln(National oil&gas employment) × endowment 0.089∗∗∗ 0.075∗∗∗ 0.072∗∗∗ 0.072∗∗∗ 0.106∗∗ 0.108∗∗∗ -0.229 0.174∗

(0.034) (0.024) (0.028) (0.028) (0.046) (0.016) (0.147) (0.105)
ln(N. O&G E.) × endowment × Non-metropolitan 0.070∗∗∗

(0.027)
ln(N. O&G E.) × endowment × Urban non-metro 0.070∗∗∗ 0.123∗∗∗

(0.027) (0.045)
ln(N. O&G E.) × endowment × Rural non-metro 0.032 0.054

(0.134) (0.162)
ln(N. O&G E.) × endowment × Ini. pat-intensity 0.056∗∗ 0.054

(0.023) (0.053)
ln(N. O&G E.) × endowment × Human capital 0.031 0.137∗∗

(0.035) (0.068)
ln(N. O&G E.) × endowment × College density -0.040 -0.040

(0.029) (0.032)

Observations 11,097 6,445 11,097 11,097 11,097 7,363 5,173 2,880
Sample period 69-12 69-12 69-12 69-12 69-12 69-12 81-00 01-12

Notes : In this table we analyze heterogeneous effects on non-oil and gas patenting across different commuting zone types and across
boom versus bust periods. In each column, we estimate Equation (1) (columns 1,2,7,8) or depart from it and add one or more interactions
of the boom variable with a commuting zone-specific variable (columns 3-6). In column 2, we restrict the sample to commuting zones
with an average of less than 20 patents per three-year period over 1969-2012. Non-metropolitan is originally defined at the county level
and takes one of ten values defined as Rural-Urban Continuum Codes by the U.S. Department of Agriculture’s Economic Research
Service. The values rise with ruralness and classify the county as non-metropolitan if the county’s value is four or larger. In column
2, Non-metropolitan is a dummy that equals one if the average value as of the year 1974 across all counties in the commuting zone is
larger or equal four. In column 4, Urban micro equals one for a commuting zone average between (including) 4 and (excluding) 8, and
Rural micro equals one for a commuting zone average larger or equal to 8. Initial patent intensity equals total number of patents over
1960-69 divided by population in 1969, scaled by the variable’s standard deviation. Human capital equals the share of the commuting
zone’s population aged 25 or more with at least one year of college education, as of 1970, scaled by its standard deviation. College
density equals the fraction of residents employed in “colleges, universities, and professional schools” that are located in the commuting
zone, as of 2018. In columns 5 and 6, before performing the regressions, we demean the commuting zone characteristics that feature in
the triple interaction terms. This allows us to interpret the non-interacted boom coefficient as the effect in the average commuting zone
across the sources of heterogeneity we test for. Standard errors in parentheses are clustered at the state level. ∗∗∗Significant at 1% level;
∗∗Significant at 5% level; ∗Significant at 10% level.
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Table 3: Mechanisms I: finance, input-output linkages

Dependent Var.: # Non-oil&gas patents by... → All industries
Up-

stream
industries

Down-
stream

industries

Non-
linked

industries

Unit of observation → Commuting zone
– industry

Commuting zone
– technology class

– firm type
Commuting zone

(1) (2) (3) (4) (5) (6) (7)

ln(National oil&gas empl.) × endowment 0.065∗∗ 0.064∗∗ 0.061∗∗ 0.065∗∗ 0.066∗∗∗ -0.009 0.090∗∗∗

(0.028) (0.026) (0.029) (0.026) (0.024) (0.024) (0.033)
ln(N. O&G E.) × endowm. × Ext. finance dep. 0.000

(0.003)
ln(N. O&G E.) × endowm. × Compustat firms -0.015∗∗∗

(0.007)

Observations 221,684 221,684 305,906 305,906 11,097 11,082 11,097

Notes : In this table we test different potential mechanisms behind the baseline results in column 5 of Table 1. In column 2, we
test whether two-digit SIC industries that are more financially constrained (Rajan and Zingales, 1998) are differently affected
by a local oil and gas boom in terms of their patenting behavior. In column 4, we test whether within a given IPC2 technology
class, firms that are included in Compustat (and are thus publicly listed and less financially constrained, on average) are affected
differently. The sample period in columns 3-4 starts with the three-year period 1975-1977 because the relevant data are only
available from 1975 onwards. In column 5 we study the number of patents in industries that are upstream to the oil and gas
sector, and not downstream. In column 6 we study patents by industries that are downstream to oil and gas (and potentially
upstream). In column 7 we study patents in industries that are neither upstream nor downstream. In all columns we estimate
Equation (1) or adjusted specifications using Poisson pseudomaximum likelihood regressions. The regressions in columns 1-2
contain commuting zone times century times two-digit SIC industry fixed effects, which implies 20 dummies per commuting zone
for the pre-fracking period (1969-2000), and 20 for the fracking period (2001-2012); two-digit industry times period fixed effects;
state times three year period fixed effects; and commuting zone-specific patenting trends, one for the pre-fracking period and
another for the fracking period. In columns 3-4 we use the same fixed effects structure, but with technology class rather than
industry fixed effects. Standard errors in parentheses are clustered at the state level. ∗∗∗Significant at 1% level; ∗∗Significant at
5% level; ∗Significant at 10% level.
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Table 4: Mechanisms II: Agglomeration

Dependent Variable → ln()...
Adult

Population

Adult
Population,
College

Adult
Population,
Non-College

Adult
Population

Creative
Class

Workers

Data Frequency → 1990, 2000, 2006-10, 2011-15
Annual,
’69-’12

’90, ’00,
’07-’11

(1) (2) (3) (4) (5)

ln(National oil&gas empl.) × endowment 0.013∗∗∗ 0.016∗∗∗ 0.012∗∗∗ 0.013∗∗∗ 0.018∗∗

(0.004) (0.006) (0.004) (0.003) (0.008)

Observations 3,024 3,024 3,024 33,264 2,267
Sample period 90-15 90-15 90-15 69-12 90-11

Notes : In this table we mainly study the impact of local oil and gas booms on college- versus non-college
educated population (columns 2-3), and on the number of ‘creative class workers’ (column 5). To ease the
interpretation of the results in columns 2 and 3, in column 1 we use total adult population as dependent variable.
College-educated refers to a completed college degree, and “adult” refers to age 25+. Data on educational
attainment are from the 1990 census, the 2000 census, and the American Community Survey (ACS), from
which we use the five-year averages across 2006-2010 (earlier data are unavailable) and 2011-2015. On the
right-hand side, we evaluate national oil and gas employment in 1990, in 2000, as average across 2006-2010,
and as average across 2011-2015. In column 4, we study total population on an annual basis, over 1969-2012.
Creative Class Workers in column 5 are obtained from the Economic Research Service (ERS), which refined
the original definition of Florida (2002) by excluding “many occupations with low creativity requirements and
those involved primarily in services to the residential community”. Standard errors in parentheses are clustered
at the state level. ∗∗∗Significant at 1% level; ∗∗Significant at 5% level; ∗Significant at 10% level.
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Table 5: Mechanisms III: Local redirection of innovation, and path dependence

Dependent Variable → # Non-oil&gas patents

Unit of observation → Commuting zone – technology class

(1) (2) (3) (4)

ln(National oil&gas empl.) × endowment 0.060∗∗∗ 0.053∗∗∗ 0.048∗∗∗ 0.049∗∗

(0.016) (0.019) (0.017) (0.021)
ln(Nat. oil&gas empl.) × endowment × IPC2’s relatedness to O&G 0.088∗ 0.085∗

(0.049) (0.051)
ln(Nat. O&G empl.) × end. × IPC2’s share in total c-zone patents, 1960-69 0.181∗∗∗ 0.184∗∗∗

(0.039) (0.052)
ln(Nat. O&G empl.) × end. × IPC2’s share in total US patents 1969-2012 0.075 -0.011

(0.059) (0.085)

Observations 181,661 181,661 180,822 180,822
Sample period 69-12 69-12 69-12 69-12

Notes : In this table we continue to test different potential mechanisms behind the baseline results in column 5 of Table 1.
The unit of observation equals two-digit IPC technology classes in a given commuting zone, thus there are 23 observations
per commuting zone and time period. Whenever applicable, we remove oil and gas patents from the total patent count
in a two-digit IPC class, thereby focusing on non-oil and gas patenting. In columns 1 and 2 we test whether the rise in
non-oil and gas patenting during booms is dis-proportionally driven by technology classes that are related to oil and gas.
IPC2’s relatedness to O&G equals the share of oil and gas patents for which the specific non-oil and gas IPC2 class is also
among the listed technology classes of the patent. These ratios are computed based on all oil and gas patents globally
over 1969-2012. In columns 3 and 4 we test whether the rise in non-oil and gas patenting is dis-proportionally driven by
two-digit IPC classes that the county is historically focusing on. In columns 2 and 4 we control for the general relevance
of a two-digit IPC class, over 1969-2012. In all columns we estimate Poisson pseudomaximum likelihood regressions. All
regressions include two-digit IPC class times commuting zone times century fixed effects, state times three year period
fixed effects, two-digit IPC class times three-year period fixed effects, and control for differential commuting zone-specific
patenting trends across the pre-shale gas period (1969-2000) and the shale gas period (2001-2012). Note that the number
of observations in columns 3-4 is smaller than in columns 1-2 because there are commuting zones that do patent at least
once during 1969-2012 but do not patent during 1960-1969. Standard errors in parentheses are clustered at the state
level. ∗∗∗Significant at 1% level; ∗∗Significant at 5% level; ∗Significant at 10% level.
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Table 6: Heterogeneity across different sectors

Dependent Variable → # Non-oil&gas patents

Included Industries → Lowly
Traded

Highly
Traded

Least
Traded
Tercile

Inter-
mediate
Tercile

Most
Traded
Tercile

(1) (2) (3) (4) (5)

ln(National oil&gas empl.) × endowment 0.044 0.092∗∗∗ 0.017 0.068∗ 0.093∗∗∗

(0.037) (0.027) (0.031) (0.035) (0.029)

Observations 11,097 11,097 11,097 11,097 11,097
Sample period 69-12 69-12 69-12 69-12 69-12

Notes : In this table we estimate Equation (1) on different sub-samples in order to study
heterogeneous effects on non-oil and gas innovation across sectors producing highly- versus
lowly-traded goods. Industries’ tradedness is measured by their distance elasticity to trade as
calculated by Holmes and Stevens (2014); in columns 1-2, we measure highly traded indus-
tries as those with a below-median distance elasticity, across all four-digit SIC manufacturing
sectors. In columns 3-5, we aggregate patents into those filed by firms in sectors in the first,
second, and third tercile, respectively, in terms of tradedness. Standard errors in parentheses
are clustered at the state level. ∗∗∗Significant at 1% level; ∗∗Significant at 5% level; ∗Significant
at 10% level.
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Table 7: Patent quality and green innovation

Dependent Variable →
# Non-
oil&gas
patents

Average #
FWcitations,
non-O&G
patents

Average
Generality,
non-O&G
patents

# Green
Patents

# Green
Patents /
# Total
Patents

(1) (2) (3) (4) (5)

ln(National oil&gas empl.) × endowment 0.087∗∗∗ 0.010 -0.026 0.065∗∗∗ -0.315∗∗

(0.034) (0.027) (0.024) (0.018) (0.148)

Observations 10,340 9,591 9,306 9,423 9,163
Sample period 69-09 69-09 69-09 69-12 69-12

Notes : In this table we study patent quality measures (columns 2-3) and green patenting during oil and gas
booms (columns 4-5). In column 2, the dependent variable equals the total number of forward citations of
all non-oil&gas patents over the following five years, divided by the total number of non-oil&gas patents.
This ratio proxies for the average quality of patents filed (and later granted) in a given three-year period.
In column 3, the dependent variable equals the average (and normalized) generality score across all non-
oil&gas patents. In columns 2 and 3 we only include commuting zone – three year periods with at least
one patent. The sample period in columns 2 and 3 omits the final period (2010-2012) as we cannot
evaluate forward citations of patents in this period. Green Patents are those classified into the CPC class
Y02. In all columns we estimate Poisson pseudomaximum likelihood regressions. All regressions include
commuting zone times century fixed effects and state times three year period fixed effects, and control
for differential commuting zone-specific patenting trends across the pre-shale gas period and the shale
gas period. Standard errors in parentheses are clustered at the state level. ∗∗∗Significant at 1% level;
∗∗Significant at 5% level; ∗Significant at 10% level.
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Table 8: Robustness Checks

Nature of Robustness Check → Base-
line

Control
for: Xc

× O&G
Empl.

Control
for
coal

booms

Pre-frack.
endowm.
in all
years

Total
endowm.
in all
years

Shift
variable =
Oil price

Panel I :
Dependent Variable → # Non-oil&gas patents

(1) (2) (3) (4) (5) (6)

ln(Nat. O&G empl.) × endowment 0.088∗∗∗ 0.086∗∗ 0.088∗∗ 0.111∗∗ 0.088∗∗

(0.034) (0.037) (0.034) (0.054) (0.045)
ln(Oil price) × endowment 0.031∗∗∗

(0.006)

Observations 11,097 11,097 11,097 11,119 11,119 11,097

Panel II :
Dependent Variable → # Oil&gas patents

(1) (2) (3) (4) (5) (6)

ln(Nat. O&G empl.) × endowment -0.084∗∗ -0.078∗∗ -0.083∗∗∗ -0.078∗∗ -0.047∗

(0.033) (0.037) (0.032) (0.033) (0.026)
ln(Oil price) × endowment -0.032∗∗

(0.016)

Observations 7,748 7,748 7,748 7,748 7,748 7,748

Notes : In this table we carry out several robustness checks on the results of column 3 (Panel I) and column
5 (Panel II) of Table 1, respectively. In both panels, column 1 repeats the relevant baseline results. In
column 2 we add interactions of national oil and gas employment with county-level population density,
personal income per capita, and population, respectively, all measured in 1969. In column 3 we add an
interaction of 1960 coal reserves at the commuting zone level and national coal employment. In column
4 we use pre-fracking reserves for the entire sample period, and in column 5 we use total reserves for the
entire sample period. In both columns, we demean the equation based on the full sample period rather
than separately for 1969-2000 and 2001-2012 as in the baseline. In column 6 we use the oil price rather
than national oil and gas employment in our key interaction term. Standard errors in parentheses are
clustered at the state level. ∗∗∗Significant at 1% level; ∗∗Significant at 5% level; ∗Significant at 10% level.
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Figure 1: Oil Price and National Oil and Gas Employment 1969-2013
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Figure 2: Oil Price and Natural Gas Price 1969-2013
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Table A1: Summary Statistics

Mean Median Min Max sdev N

Panel I: Commuting zone - year level variables

# Patents 215.43 12.17 0 28,517 994.30 11,385
# Oil and gas patents 5.48 0 0 2,996 53.69 11,385
# Non-oil and gas patents 209.95 12 0 28,472 978.49 11,385
...in Metropolitan CZs 1639 671.68 4 28,472 2,690 1,095
...in Urban non-metropolitan CZs 78.07 16.33 0 5,962 259.31 7,440
...in Rural non-metropolitan CZs 5.39 2 0 89.08 9.06 2,850
...in Upstream industries 35.09 2.72 0 2,332 135.64 11,385
...in Downstream industries 9.29 0.60 0 524.07 35.91 11,385
...in Non-linked industries 158.59 7.86 0 25,401 809.23 11,385
...by Compustat firms 100.03 1.60 0 19,866 539.30 9,867
...by non-Compustat firms 121.07 9.50 0 27,175 597.46 9,867
...by highly traded industries (highest tercile) 134.64 5.31 0 24,278 735.73 11,385
...by medium-traded industries (medium tercile) 44.12 3.80 0 2,896 164.53 11,385
...by lowly-traded industries (lowest tercile) 24.20 1.98 0 1,313 89.16 11,385
# Forward citations per non-oil and gas patent 6.13 4.42 0 160.73 6.33 9,677
Patent generality 0.36 0.37 0 0.90 0.16 9,404
# Green patents 9.86 0 0 1,789 51.05 11,385
Green patent share, in % 4.72 1.73 0 100 9.76 10,397
Earnings per worker (in ’000, real 2010 dollars) 31.84 31.31 15.81 80.53 5.92 11,385
Adult population (25+ ; in ’000) 245.60 61.45 0.28 12,001 696.59 3,036
...with completed college degree (in ’000) 63.69 9.32 0.03 3,517 215.30 3,036
...without completed college degree (in ’000) 181.91 51.13 0.20 8,484 488.17 3,036
# Creative class workers (in ’000) 41.26 6.21 0.00 2,174 135.41 2,276

Panel II: Commuting zone level variables

O&G reserves / Area, 1960 (excl. shale; mill.$) 1.48 0.03 0 56.96 4.58 759
O&G reserves / Area, 1960 (incl. shale; mill.$) 2.86 0.18 0 73.76 7.05 759
# Non-O&G pat. 1960-69 / Pop. 1969, in ’000 4.43 1.99 0 63.58 7.06 759
Percentage of adult pop. with ≥1y college, 1970 16.72 16.08 6.19 47.60 5.39 759
Percentage of pop. employed in local colleges etc. 3.10 0.95 0 59.40 5.70 759

Notes : This table provides summary statistics on the variables used in our analysis. Values larger than
1,000 are rounded to the nearest integer. Upstream industries refers to industries that are upstream
to the oil and gas sector, but not downstream. Downstream industries refers to industries that are
downstream to oil and gas and may also be upstream, given that “pure” downstream industries are very
rare. Non-linked means neither upstream nor downstream. The distinction into patents by Compustat
versus non-Compustat firms is based on the period 1975-2012, since earlier data do not permit this
distinction. Data on adult population by educational attainment are based on data from the 1990 and
the 2000 population census, and on the five-year averages over 2006-2010 and 2011-2015, respectively,
from the American Community Survey (ACS). Data on the number of creative class workers are based on
the 1990 and 2000 census and the 2007-2011 ACS average. Colleges etc. refers to “colleges, universities,
and professional schools”, and local colleges refers to institutions located in the commuting zone. #
Forward citations per non-oil and gas patent equals the total number of forward citations of all non-
oil&gas patents over the following five years, divided by the total number of non-oil&gas patents. The
concept of patent generality is explained in Section 4.7.
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Table A2: Oil and gas booms and local economic activity

Dependent Variable → ln()... Population Employment
Earnings

per
Worker

GDP
Local

Government
Revenue

(1) (2) (3) (4) (5)

ln(National oil&gas empl.) × endowment 0.019∗∗∗ 0.037∗∗∗ 0.022∗∗∗ 0.054∗∗ 0.063∗∗∗

(0.006) (0.007) (0.003) (0.025) (0.011)

Observations 11,340 11,340 11,340 3,024 6,791
Sample period 69-12 69-12 69-12 01-12 72-12

Notes : In this table we analyze the impact of oil and gas booms on various measures of local economic
activity. For each variable we use the average realization over the three-year period. Data on county-level
GDP is only available from 2001 onwards. Local Government Revenue equals total revenue collected by the
commuting zone’s county governments from its own sources, and excludes state and federal transfers. The
variable is available at five-yearly intervals: we use data from the years 1972, 1977, 1982, 1987, 1992, 1997,
2002, 2007, and 2012. Given this frequency pattern, we simply drop all other years and evaluate also the key
interaction term based on the years stated above. Intuitively, we thus analyze for instance how the change
in county-level revenue between 1982 and 1987 is affected by the change in national oil&gas employment
between 1982 and 1987, interacted with initial oil and gas endowment at the county level. endowment equals
initial oil&gas reserves and is scaled by the standard deviation of this variable across all commuting zones.
Endowment is updated to include fracking reserves from 2001 onwards. In all columns we estimate Equation
(1) using OLS. All regressions include commuting zone times century fixed effects and state times three year
period fixed effects, and control for differential commuting zone-specific patenting trends across the pre-shale
gas period (1969-2000) and the shale gas period (2001-2012). Standard errors in parentheses are clustered
at the state level. ∗∗∗Significant at 1% level; ∗∗Significant at 5% level; ∗Significant at 10% level.
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Table A3: Correlation of oil and gas endowment with other local characteristics

Dependent Variable → Pre-fracking endowment
(Rearly

c )
Total endowment

(Rtotal
c )

(1) (2) (3) (4)

Urban non-metropolitan commuting zone -0.074 -0.043
(0.165) (0.229)

Rural non-metropolitan commuting zone -0.111 -0.063
(0.169) (0.249)

Personal income per capita 1969 0.091 0.095 0.104 0.104
(0.067) (0.063) (0.093) (0.087)

Human capital 1970 -0.030 -0.029 0.001 -0.000
(0.040) (0.038) (0.082) (0.080)

Population 1969 0.021 0.020
(0.030) (0.040)

Observations 757 757 757 757
State FE Yes Yes Yes Yes

Notes : In this table we test the correlation between initial oil and gas endowment and other
commuting zone characteristics. Endowment is scaled by commuting zone size, as in our
baseline specification. Human capital equals the share of the commuting zone’s population
aged 25 or more with at least one year of college education, as of 1970. The dependent
variables are scaled by the standard deviation of pre-fracking endowment. The explanatory
variables are scaled by their respective standard deviations. Robust standard errors are in
parentheses. ∗∗∗Significant at 1% level; ∗∗Significant at 5% level; ∗Significant at 10% level.
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OA1 Additional Results

OA1.1 Oil and gas booms and patenting by 2-digit technology class (Table OA1)

In Table OA1 we study the impact of oil and gas booms on patenting in all 23 two-digit

technology classes. Otherwise, the specification is equivalent to Equation (1). While the results

show positive effects in multiple one-digit technology classes, the effects are most pronounced

in classes F (Engineering, broadly defined), G (Instruments, Physics), and H (Electricity). We

also see that positive boom effects tend to be stronger in technology classes that are more

related to oil and gas (compare Figure OA1).

OA1.2 Oil and gas booms and local oil and gas activity (Table OA2)

The BEA’s Regional Economic Accounts data provides county-level information on employ-

ment in the “mining” sector. Besides the oil and gas sector, “mining” also comprises metals

mining, coal mining, and mining and quarrying of nonmetallic minerals (except fuels). How-

ever, oil and gas represents more than two thirds of total mining employment at the national

level during our sample period.

We aggregate the county-level data on “mining” employment to the commuting zone level

and use them to study local oil and gas activity during oil and gas booms. As shift variable,

we use the oil price rather than national oil and gas employment to avoid simultaneity. We

control for initial coal endowment, given that coal mining is the second-largest component of

overall mining employment. The results show that local employment in oil and gas and other

mining rises during local oil and gas booms (see Table OA2).

Note that we do not use local oil and gas production as dependent variable since US pro-

duction has typically taken more than three years to substantially respond to price changes

(Konrad, 2012), while employment data capture production- and sales-enhancing activities

that respond with a much smaller time lag.

OA1.3 Testing for public finance and wealth effects (Table OA3)

Public finance

In Table OA3 we explore potential mechanisms that appear to have a low likelihood of ex-
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plaining our results (see also Section 4.4.5). In column 2 we test for a potential public finance

channel, although local governments typically spend oil and gas revenue on other items such as

education or infrastructure (Newell and Raimi, 2015, 2018). We do so by regressing the number

of non-oil and gas patents on our boom variable and an interaction of our boom variable with

the share of oil and gas revenue accrued by counties in the producing commuting zone. This

share varies by state (but not within a state) and is documented by Newell and Raimi (2018)

for 16 US states, which jointly produce more than 97% of US oil and natural gas. In our

sample, we therefore include all commuting zones in these 16 states (except for Alaska, which

is excluded from our baseline regressions), and further add commuting zones with zero (pre-

fracking and fracking) oil and gas endowment. As control variables, we include all interaction

terms from the specification in column 5 of Table 2. The results show that in commuting zones

where the local county governments receive a larger share of local oil and gas revenue, local oil

and gas booms have a smaller impact on non-oil and gas patenting (the coefficient is statisti-

cally significant at the 10% level). This clearly speaks against the hypothesis that local county

governments in booming commuting zones use oil and gas windfalls to support local innovation.

Wealth effects

In columns 3 and 4 of Table OA3, we test whether oil and gas booms lead to a rise in local house

prices. We do so because rising housing prices might give rise to a household wealth-related

mechanism driving our results – although Bernstein et al. (2021) find that positive wealth shocks

do not affect inventor productivity (unlike negative shocks). We use a county-level house price

index for our analysis, which reaches back as far as 1975 for some counties. The index is based

on all transactions in a given year and is made available by the Federal Housing Finance Agency

(FHFA). Our chosen unit of observation is a county, since the index nature of the data and

varying index base years across counties make it impossible to meaningfully aggregate to the

commuting zone level. In column 3 of Table OA3, we estimate Equation (1) with the dependent

variable being the average index realization over a three-year period, as in our baseline analysis.

In column 4, we use the original, annual data. The results suggest a positive effect of relatively

small magnitude: in the commuting zone with oil and gas endowment equal to one standard

deviation, a doubling of national oil and gas employment leads to an increase of local house

3



prices by 0.5%. The coefficient is only (marginally) statistically significant if we use annual

data (which increases statistical power). Taken together with the evidence of Bernstein et al.

(2021), these results speak against inventor wealth effects as an important driver of our results.
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Table OA2: Aggregate oil and gas booms and local oil and gas employment

Dependent Variable → # Employees in oil&gas,
mining and quarrying

(1)

ln(Oil price) × oil and gas endowment 1960 0.021∗∗

(0.010)
ln(Coal price) × coal endowment 1960 0.094

(0.062)

Observations 10,682
Sample period 69-12

Notes : In this table we analyze the impact of oil and gas booms on employment in
oil and gas (and other mining) at the commuting zone level. We estimate Equation
(1) but use the oil price rather than national oil and gas employment as shift variable,
to avoid simultaneity. Data on the dependent variable are from BEA’s Regional
Economic Accounts. Standard errors in parentheses are clustered at the state level.
∗∗∗Significant at 1% level; ∗∗Significant at 5% level; ∗Significant at 10% level.
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Table OA3: Testing for additional mechanisms

Dependent Variable → # Non-oil&gas patents ln(House Price Index)

Unit of observation → Commuting zones,
three-year periods

Counties,
annual

Sample →
CZs in states with O&G
revenue sharing info, and

CZs without O&G endowm.

All counties
with

available data

(1) (2) (3) (4)

ln(National oil&gas empl.) × endowment 0.088∗∗ 0.111∗∗ 0.005 0.005∗

(0.035) (0.056) (0.004) (0.003)
ln(N. O&G E.) × endowm. × O&G revenue share -0.100∗

(0.059)
ln(N. O&G E.) × endowm. × Urban non-metro 0.102∗∗

(0.040)
ln(N. O&G E.) × endowm. × Rural non-metro 0.078

(0.196)
ln(N. O&G E.) × endowm. × Ini. pat-intensity 0.039∗

(0.023)
ln(N. O&G E.) × endowm. × Human capital 0.013

(0.034)
ln(N. O&G E.) × endowm. × College density -0.040

(0.030)

Observations 6,137 6,137 24,507 67,892
Sample period 69-12 69-12 75-12 75-12

Notes : In this table we explore potential public finance (column 2) and inventor wealth effects (columns
3-4). Fixed effects and the clustering of standard errors are equivalent to Equation (1). For comparison, in
column 1 we use the same sample as in column 2 and repeat the specification of Table 1, column 3. O&G
revenue share is scaled by the variable’s standard deviation. Standard errors in parentheses are clustered at
the state level. ∗∗∗Significant at 1% level; ∗∗Significant at 5% level; ∗Significant at 10% level.
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Figure OA1: Relatedness to oil and gas
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OA2 Details on patent data computations

OA2.1 Patent technology codes and technology classes

We use C/IPC codes to identify the technological characteristics of patents.

C/IPC classification system

The C/IPC codes form a hierarchical classification system; most patents have several of them.

The structure of the C/IPC classification is as follows:

• Section: Sections are the highest level of hierarchy of the Classification. Each section is

designated by one of the capital letters A through H.

• Class: Each section is subdivided into classes which are the second hierarchical level of the

Classification. Each class symbol consists of the section symbol followed by a two-digit

number, e.g. H01.

• Subclass: Each class comprises one or more subclasses which are the third hierarchical

level of the Classification. Each subclass symbol consists of the class symbol followed by

a capital letter, e.g. H01S.

• Group: Each subclass is broken down into subdivisions referred to as ”groups”, which are

either main groups (i.e. the fourth hierarchical level of the Classification) or subgroups

(i.e. lower hierarchical levels dependent upon the main group level of the Classification).

Each main group symbol consists of the subclass symbol followed by a one- to three-digit

number, the oblique stroke and the number 00, e.g. H01S 3/00.

– Subgroups form subdivisions under the main groups. Each subgroup symbol consists

of the subclass symbol followed by the one- to three-digit number of its main group,

the oblique stroke and a number of at least two digits other than 00, e.g. H01S 3/02.

In the following, we refer to sections, classes, subclasses, and main groups as 1-digit, 3-digit,

4-digit, and 6-digit codes respectively.

Fractional count

The patent office assigns one or (usually) several technology codes to each patent. When a

9



patent comprises n different technology codes, we assign a weight to each technology code and

we count the patent fractionally with a weight to each of the n technology codes.

We consider C/IPC 6-digit and C/IPC 4-digit codes, and we denote them as l and k respec-

tively. Define the technology code vector for patent i filed in year t, pit, as Lit = {li1, li2, ..., lin}.

The weight of patent i’s technology code k is:

ωik =

∑
l IPCikl∑
l IPCil

, (2)

with
∑

k ωik = 1. For example, suppose the 6-digit IPC codes vector for patent i filed in year

t, pit, is Lit = {A01B1, A01B3, A01B5, A01C1}. The 4-digit IPC codes vector for patent pit is

Kit = {A01B,A01C}. Then, the weights of patent i’s 4-digit IPC codes, Kit, are: ωiA01B = 3/4

and ωiA01C = 1/4.

OA2.2 Patent producing region

We use the inventor address of a patent to identify where a patent is invented. Using the

inventor address gives a better approximation of where innovation is produced compared to

using the applicant/assignee address (CIT OECD).

Fractional count

Patents have one or (usually) more than one inventor. When a patent has inventors in different

regions, we count patents fractionally. Let i denote patents and r regions (counties). Ideally,

we compute weights as

ωir =
Iir
Ii

(3)

where Iir is the number of patent i’s inventors in region r, Ii is the total number of patent i’s

inventors, and
∑

r ωir = 1.

However, in the earliest years of our sample, we only observe the location of the inventor,

but not the number if inventors in each region r, therefore, we assign equal weight to each

region r where the patens has inventors:
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ωir =
1

#r
(4)

where
∑

r ωir = 1.

OA2.3 Patent generality

Denote:

• i: cited patent

• j: citing patent

• k: patent technology class

Let citik =
∑

j ωjkcitij be the number of (5-year) citations from patents of technology class k

to patent i; and citi =
∑

k citik denote the total number of (5-year) citations to patent i. We

count citations fractionally and ωjk is the weight of patent j’s technology class k defined in (2).

We define generality of patent i filed in year t as:

git = 1−
∑
k∈K

(
citik
citi

)2

, (5)

Note that the git is undefined if patents i is never cited.1

Normalization: Generality tends to be positively correlated with the number of citations a

patent receives. To account for the fact that patent generality may increase over time, we

scale the generality with the weighted average generality of patents filed in the same year and

technology classes. We normalize the generality index as follows:

gnormit =
git
ḡt
, (6)

where ḡt =
∑

k∈Ki
ωikgkt∑

k∈Ki
ωik

is the weighted average generality of class k patents filed in year t and

set of technology classes k ∈ Ki; Ki is the set of patent i’s technology classes, and gkt =
∑

i ωikgik∑
i ωik

1 This can occur in two cases: if patent i is never cited, such that citi = 0, or if patent i is cited by patents
with non-available technology codes because citik is undefined for all k ∈ Kj .
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is the average generality score of class k patents filed in year t. For example, suppose the gen-

erality of patent pit is git = 0.5, and that, as in the above example, the 4-digit IPC codes vector

for patent pit is Kit = {A01B,A01C}, with weights ωiA01B = 0.75 and ωiA01C = 0.25. Suppose

further that the weighted average generality of patents of technology class A01B and A01C

filed in year t are gA01Bt = 0.6 and gA01Ct = 0.3. Then ḡt = 0.75× 0.6 + 0.25× 0.3 = 0.525 and

the normalized generality score of patent i is gnormit = 0.5
0.525

= 0.95.

Notes on practical implementation: Sample selection

Cited patents: all patents with at least one inventor based in the US and with non-NA O&G

classification (baseline DWPI classification). Note that patents can be filed to the USPTO

and/or other patent offices, although, in practice, patents by US inventors are rarely filed to

foreign patent offices only.

Citing patents: all patents with non-NA C/IPC codes, excluding Y codes (regardless of where

they are filed or where inventors and assignee are located). Note: Y codes are excluded because

they are not a category on it’s own, but an additional category added by EPO to identify green

patents. Patents with Y codes and non-Y codes are kept, but Y codes dropped; patents with

Y codes only are dropped.

Region aggregation

We compute the average generality of patents in region r as the weighted average generality of

patents filed in year t by inventors based in region r:

ḡtr =

∑
r ωirgitr∑

r ωir

(7)

We compute this measure separately for O&G and non-O&G patents. Note that this regional

aggregation excludes patents with missing generality.
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OA2.4 Oil and gas patents by region

The number of O&G patents produced in US region r in year t is

pOG
rt =

∑
i

ωirpat
OG
it (8)

The number of non-O&G patents produced in US region r in year t is computed analogously.

OA2.5 Patents by technology and region

Let patikrt denote a technology class k patent invented in region r in year t. We distinguish

between O&G, patOG
ikrt, and non-O&G patents, patnOG

ikrt . The number of technology class k non-

O&G patents produced in region r in year t is

pnOG
krt =

∑
1

ωikωirpat
nOG
ikrt (9)

We can compute pOG
krt in the same way. pnOG

krt + pOG
krt = pkrt is the total number of technology

class k patents produced in region r in year t.

OA3 Online Data Appendix

This section complements Section 3, where we focused on our key variables: local oil and gas

endowment and local patenting. We describe other data sources and variable computations,

dataset by dataset, below.

National oil and gas employment

Data are provided by the Bureau of Economic Analysis (BEA), via SAEMP25: Total full-

time and part-time employment by industry.2 The BEA classifies industries according to the

Standard Industrial Classification (SIC) from 1969-2000, and according to the North American

Industry Classification System (NAICS) from 2001 onwards. In the SIC, we use employment

in industry 13 = oil and gas extraction, which contains 131=crude petroleum and natural gas,

2 https://apps.bea.gov/itable/?ReqID=70&step=1eyJhcHBpZCI6NzAsInN0ZXBzIjpbMSwyOSwyNSwz
MV0sImRhdGEiOltbIlRhYmxlSWQiLCIzMCJdLFsiTWFqb3JfQXJlYSIsIjAiXV19
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132=natural gas liquids, and 138=oil and gas field services. Note that SIC industry 138 does

not map 1:1 to NAICS, since NAICS combines support activities for oil and gas extraction and

support activities for mining in its subcategory 213. Following Allcott and Keniston (2018), we

therefore define post-2000 oil and gas employment as the sum of employment in NAICS=213

and NAICS 211=oil and gas extraction. A comparison of SIC and NAICS data, which is pos-

sible for the years 1998-2000, reveals that this is a minor issue because employment in support

activities for mining is comparatively very small.

Derwent World Patents Index (DWPI)

We identify oil and gas patents with the help of the DWPI classification system. Class H in

the classification refers to petroleum, and identifies the relevant IPC codes. The data can be

accessed here:

https://clarivate.com/derwent/wp-content/uploads/sites/3/dlm_uploads/2019/08/DWPI-Classification-Guide-2020.pdf.

The DWPI classifies four IPC classes as oil and gas technology classes. These codes provide

a comprehensive coverage of all aspects of the oil and gas industry, excluding competitive

products such as coal and peat. They identify activities such as obtaining crude oil and natural

gas (C01G, E21B), unit operations (C10G), transportation and storage, petroleum processing

(C10G), refining and engineering, gaseous and liquid fuels (C10L), lubricants and lubrication

(C10M), and petroleum products other than fuels and lubricants (C10M). Below are the detailed

descriptions of each code:

• C10G: Cracking hydrocarbon oils; production of liquid hydrocarbon mixtures, e.g. by

destructive hydrogenation, oligomerization, polymerization; recovery of hydrocarbon oils

from oil-shale, oil-sand, or gases; refining mixtures mainly consisting of hydrocarbons;

reforming of naphtha; mineral waxes.

• C10L: Fuels not otherwise provided for; natural gas; synthetic natural gas obtained by

processes not covered by subclasses C10G or C10K; liquefied petroleum gas; use of addi-

tives to fuels or fires; fire-lighters.

• C10M: Lubricating compositions; use of chemical substances either alone or as lubricating

ingredients in a lubricating composition.
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• E21B: Earth or rock drilling; obtaining oil, gas, water, soluble or meltable materials or a

slurry of minerals from wells.

Population, Employment, Earnings per worker, Personal income per capita, GDP, Oil and gas

employment

These county-level data items are obtained from the Bureau of Economic Analysis’ (BEA)

Regional Economic Accounts (previously referred to as Regional Economic Information System

(REIS)). The data can be accessed at https://apps.bea.gov/regional/downloadzip.cfm or

https://apps.bea.gov/itable/?ReqID=70&step=1.

For employment, we use the variable “Total employment (Number of jobs)”, which is avail-

able in the data set CAEMP25, or in CAINC4. Earnings per worker is computed as “Wages and

salaries” divided by “Wage and salary employment”. Both are available in CAINC4, same as

population (number of persons) and personal income, which we divide by population to arrive

at personal income per capita. GDP, in “thousands of chained 2012 dollars”, is obtained via

CAGDP1. Unlike all other variables, which are available from 1969 onwards, GDP data are

only available from 2001 onwards.

Oil and gas employment is not available as separate data item in the Regional Economic

Accounts. It is included in the broader “mining” item (SIC industry B, NAICS industry 21),

which also includes metals mining, coal mining, and mining and quarrying of non-metallic min-

erals (except fuels). We use these data (obtained from CAEMP25 ) to measure local oil and

gas employment over time. This is meaningful, because national data reveals that the oil and

gas sector represents more than two thirds of total US mining employment during our sample

period. Note that oil and gas employment is not reported for some counties and years, to avoid

disclosure of confidential information. When aggregating from the county to the commuting

zone level, we treat those observations as being equal to zero. The results are robust to instead

using the median value across all counties in the particular year.

County government revenue

Panel data on county government revenue are collected via the five-yearly Census of Gov-

ernments. The data can be downloaded at https://www.census.gov/programs-surveys/

gov-finances/data/historical-data.html. We use the years 1972, 1977, 1982, 1987, 1992,
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1997, 2002, 2007, and 2012. Total revenue is the sum of i) tax revenue (which includes prop-

erty tax revenue, for instance), ii) intergovernmental transfers (IG), and iii) other, non-tax and

non-IG revenue. Own-source revenue is the sum of i) and iii).3

Classifying commuting zones into metropolitan versus non-metropolitan etc.

The Economic Research Service (ERS) publishes the Rural-Urban Continuum Codes, which

provide information on how urban versus rural a certain US county is. They were originally

developed in 1974 and have been updated each decennial since (1983, 1993, 2003, 2013). We

use the 1974 classification since it reflects most closely the county’s urban- versus rural-ness

at the beginning of our sample period. The data can be accessed at https://www.ers.usda.

gov/data-products/rural-urban-continuum-codes/.

Each county is assigned a value from 0 to 9, ranging from “Central county of metro areas of

1 million population or more” (Code=0) to “Completely rural or less than 2,500 urban popu-

lation, not adjacent to a metro area” (see Figure X). Counties with value 4 to 9 are classified

as “non-metropolitan”. We bring this classification to the commuting zone level by taking the

average value across all counties within a commuting zone, and define commuting zones with

an average value of 4 or larger as non-metropolitan. We define a commuting zone as urban

non-metropolitan if 4≤rural-urban code<8. Rural non-metropolitan commuting zones are those

with a code≥8.

3 See for example the 2012 questionnaire: https://www2.census.gov/govs/forms/2012/f28_12.pdf
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Figure OA2: Rural-Urban Continuum Codes

Notes: This figure describes the classification of counties into the 10 different Rural-Urban Con-
tinuum Codes, as of the 1974 edition of the data (See https://www.ers.usda.gov/data-products/

rural-urban-continuum-codes/documentation/#RevisionHistory) for a description of changes which make
pre-2003 data not perfectly comparable to later data) Figure source: https://wayback.archive-it.org/5923/
20110914000642/http://www.ers.usda.gov/Briefing/Rurality/RuralUrbCon/priordescription.htm
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Adult population by educational attainment

Until the 1980 round of the decennial population census, no question on actual college de-

gree obtainment was included; instead, years of schooling was asked. Therefore, to measure

local human capital at the beginning of our sample period (as used in Table 2), we compute

the fraction of adults (age 25+) with at least one year of college education as of 1970. The

data are obtained from the Economic Research Service (ERS) at https://www.ers.usda.gov/

data-products/county-level-data-sets/download-data/. More specifically, we take the

sum of the two variables “Some college (1-3 years)” and “Four years of college or higher”.

In our analysis of agglomeration economies, we want to study local adult population by

educational attainment over time. We use the more recent census data for this purpose, specif-

ically data from 1990 and 2000. The data are accessible at the same link as above, and are

contained in the variable “Number of adults (age 25+) with bachelor degree or higher”. Start-

ing from 2010, the census no longer includes questions on education. Therefore, we must resort

to data from American Community Survey (ACS). We downloaded ACS data from the Census

website data.census.gov.4 Note that ACS has “insufficient coverage for a reliable county esti-

mate in one year” (Weber, 2014), so we use the five-year rather than the one-year data, where

the five-year data is an average over the indicated year and the previous four years. We use

ACS2010 5Y, which represents averages across 2006-2010, and ACS2015 5Y, which represents

averages across 2011-2015.5

College density

In a global sample, Valero and Van Reenen (2019) define college density as the number of

universities by capita. However, as the authors point out, “A disadvantage of the “university

density” measure is that it does not correct for the size (...) of the university.” (p.55) We are

able to correct for college size because we have college-level data on the number of employees.

Therefore, we define college density as the ratio of college employees to local population, at the

commuting zone level.

College-level employment data are provided in the data setHomeland Infrastructure Foundation-

4 Specifically, see https://data.census.gov/cedsci/table?q=american%20community%20survey%

20education&tid=ACSST1Y2019.S1501
5 Comparing values across the census and five-yearly ACS averages is feasible, see for example Weber (2014).
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Level Data (HIFLD), which can be accessed at https://hifld-geoplatform.opendata.arcgis.

com/datasets/colleges-and-universities/explore. These data are collected by the U.S.

Department of Homeland Security. The data set is composed of all Post Secondary Education

facilities in the academic year 2018-19, as defined by the Integrated Post Secondary Education

System (IPEDS), National Center for Education Statistics, US Department of Education (see

https://www.sciencebase.gov/catalog/item/4f4e4acee4b07f02db67fb39). The data set

contains 6,559 institutions, which are classified into the following NAICS sectors (in paren-

theses we report the number of institutions): Business and Secretarial Schools (29), Colleges,

Universities, and Professional Schools (2,579), Computer Training (20), Cosmetology and Bar-

ber Schools (1,178), Educational Support Services (71), Fine Arts Schools (34), Flight Training

(13), Junior Colleges (1,562), Other Technical and Trade Schools (1,073). In our analysis, we

only consider “Colleges, Universities, and Professional Schools” (NAICS code 611310), since

this category appears most relevant for local innovation. The data set contains a variable indi-

cating the county in which the college is located, which enables us to compute total employment

in NAICS=611310 institutions at the commuting zone level.

Note that employment data are missing for several colleges. When aggregating from the

county to the commuting zone level, we treat these observations as being equal to zero. The

results are robust to instead using the median number of college employees.

Creative class workers

The concept of creative class workers was originally defined by Florida (2002). We use a refined

classification by the Economic Research Service (ERS), which is accessible at https://www.

ers.usda.gov/data-products/creative-class-county-codes/. The data lists “population

employed in occupations that require “thinking creatively.”” The ERS provide county-level

data for 1990, 2000, and the average over the 2007-11 ACS rounds, which we aggregate to the

commuting zone level.

Classifying industries as upstream versus downstream to oil and gas

We use the 2007 U.S. Input-Output tables of the Bureau of Economic Analysis (BEA) to

identify upstream plants. The data set distinguishes 362 industries (BEA codes) within the
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manufacturing sector. The data can be accessed at

https://www.bea.gov/industry/historical-benchmark-input-output-tables, in the zip-

file 1987 Benchmark I-O Table Six-Digit Transactions, where we use TBL2-87 = “The use of

commodities by industries”.

Following Allcott and Keniston (2018), we classify four BEA industries as belonging to the

oil and gas sector: 80000 (Crude petroleum and natural gas); 110601 (Petroleum and natural

gas well drilling); 110602 (Petroleum, natural gas, and solid mineral exploration); and 120215

(Maintenance and repair of petroleum and natural gas wells). For each industry j in the input-

ouput table, we compute its ‘upstreamness’ to the oil and gas sector as the ratio of the sum of

its direct and indirect sales to the oil and gas sector (as defined above) and its total sales:

Upstreamj =
Salesj,OG∑

j Salesj
+
∑
−J

[
Salesj,−j∑

j Salesj
× Sales−j,OG∑

j Sales−j,j

]
∈ [0, 1]

where −J denotes the set of all industries apart from j.

We then walk from the BEA code to the four-digit SIC87 code using a concordance table

provided in the above-mentioned zip-file. Note that while a certain BEA industry sometimes

maps to multiple SIC87 industries, each SIC87 industry maps to one unique BEA industry.

We then define a four-digit SIC87 industry as upstream to oil and gas if Upstreamj > 0.01,

following Allcott and Keniston (2018).

Classifying industries into highly- versus lowly-traded

For each of 457 four-digit SIC-1987 manufacturing industries, Holmes and Stevens (2014) es-

timate a (constant) distance elasticity, which equals the percentage reduction in trade volume

as distance increases by one percent. For this purpose the authors use data from the 1997

U.S. Commodity Flow Survey (CFS), which documents the destination, product classification,

weight and value of a broad sample of shipments. Holmes and Stevens (2014) estimate the

distance elasticity via a standard log-log specification. The higher the trade costs of a specific

industry, the shorter its optimal average shipment distance (equivalently, the higher its distance

adjustment). Ready-Mix Concrete (4.2), Ice (3.0) and Asphalt (2.9) have the highest estimated

distance elasticity. 29 industries have an estimated distance elasticity of zero, including Semi-
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conductors, Analytical laboratory instruments and Aircraft, in which transportation costs are

very low relative to product value. The data can be obtained at http://users.econ.umn.

edu/~holmes/data/plantsize/description_of_supplementary_files.html.
6

Based on the 456 sectors that are represented in our patent-by-industry data (see Section

4.4.2) and in the Holmes-Stevens data, we compute the median distance elasticity. This median

equals 0.58. Industries with a below-median value are classified as relatively highly-traded, while

all others are classified as relatively lowly-traded. In another exercise, we classify industries into

a most-traded tercile, an intermediate tercile, or a least-traded tercile. The cutoff for the most-

traded tercile lies at a distance elasticity of 0.77. This value is close to 0.8, which corresponds

to an average shipment distance of approximately 500 miles (and equals the cutoff chosen by

Allcott and Keniston, 2018). Industries in the least-traded tercile thus have an average shipment

distance of below 500 miles, while industries in the medium- and highly-traded tercile have a

larger average shipment distance.

Note that it is for a reason that we do not apply Allcott and Keniston’s cutoff in our analy-

sis. The reason is that there is relatively little patenting activity in industries with a distance

elasticity larger than 0.8. This could imply that if we defined a highly- and a lowly-traded in-

dustry group using this cutoff, and evaluated heterogeneity in terms of patenting during booms,

our results might merely reflect differences in statistical variation within the highly- versus the

lowly-traded bin. It is better to define the median cutoff, which includes more industries in the

lowly-traded bin, or to define terciles, which essentially splits Allcott and Keniston’s highly-

traded bin into two separate bins, where the variation in patenting across the most-traded and

the medium-traded bin is not overly distinct.

House prices

We use a county-level house price index in our analysis, which reaches back as far as 1975 for

some counties. The index is based on all transactions in a given year and is made available by

the Federal Housing Finance Agency (FHFA). The data can be accessed at https://www.fhfa.

gov/DataTools/Downloads/Pages/House-Price-Index-Datasets.aspx#qexe, underAdditional

Data → Annual House Price Indexes → Counties.

6 Note that SIC1992 in the data corresponds to SIC 1987; see https://guides.loc.gov/

industry-research/classification-sic.
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County splits

Data on county splits are obtained from https://www.census.gov/programs-surveys/geography/

technical-documentation/county-changes.1980.html.
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