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1 Introduction

Time scales for production and financing differ. Accordingly, financial intermediaries

have specialized in using short-term funds to finance illiquid long-term investments. In

the financial crisis of 2007/08, the fragility of many banks with regard to their reliance

on short-term funding was extreme, and their equity capital proved insufficient to avoid

insolvency—or at least market participants were no longer sure about the banks’ solvency

(Brunnermeier, 2009; Hellwig, 2009). More recently, the collapse of Silicon Valley Bank

(SVB) in the U.S. and the emergency takeover of Credit Suisse by UBS in Switzerland

have rocked the international banking system.

Figure 1: U.S. Commercial Banks’ Cash Ratio
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Source: Federal Reserve Release, H.8 data.

As is apparent from Figure 1, banks in the U.S. economized on cash asset holdings

after the regulatory focus shifted from liquidity to capital requirements in the early 1980s.

Financial institutions started to rely more on wholesale short-term investors to obtain

funding and performed significant maturity transformations, thus exposing themselves

to large-scale funding risk (Adrian and Shin, 2009). When panic withdrawals by such

investors set in during the weekend when Lehman Brothers collapsed, fire sales by banks

caused further distress and undermined access to new financing.

In the aftermath of the financial crisis, renewed awareness of liquidity risks led to calls

to introduce stricter liquidity requirements and to limit the banks’ appetite for short-term
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funding. Those regulations have been implemented mainly through a “Liquidity Cover-

age Ratio” (LCR) and a “Net Stable Funding Ratio” (NSFR) in the revised regulatory

frameworks known as Basel III. Exceptions and loopholes in the applicability of Basel III,

however, enabled mid-sized banks in the U.S. such as SVB to operate under significantly

lower regulatory requirements. In March 2023, SVB collapsed after it had failed to raise

new equity capital to cover a stated loss of about $1.8bn on its bond portfolio, which

caused a loss of confidence and a run on the bank by its deposit holders.

Conceptually, it remains unclear whether liquidity regulation is necessary for a stable

banking system or whether adequate capital requirements can also address liquidity is-

sues. After all, liquidity and refinancing problems in the banking sector are often thought

to be the consequence of doubts about solvency (see Pierret, 2015 and Schmitz et al.,

2019, for empirical evidence on the liquidity-solvency nexus). Thakor (2018) argues that

the financial crisis of 2007/08 was an insolvency risk crisis and therefore only capital

requirements, not liquidity regulation, should be used to address its causes. When reg-

ulatory authorities in the U.S. shut down SVB in March 2023, they cited “inadequate

liquidity and insolvency” as the cause, but it appears that liquidity problems became

imminent only after the bank’s solvency had been called into question. Similarly, the

emergency takeover of Credit Suisse by UBS brokered by the Swiss authorities was not

fundamentally about liquidity issues, but rather the consequence of a general loss of trust

and confidence in the bank’s overall viability.

In this paper, we study the interplay of capital and liquidity regulation in a general

equilibrium framework by focusing on future funding risks. We thereby take a comple-

mentary perspective to Diamond-Dybvig-style settings, which revolve around the risk of

depositors’ run. In our model there are no runs, but there is a risk that potential future

depositors might not be willing to replace current depositors and thus banks cannot re-

finance their short-term debt. More specifically, our model consists of a banking sector

with long-term illiquid investment opportunities that need to be financed by short-term

debt and by issuing equity. Reliance on refinancing long-term investment in the middle of

the life-time is risky, since the next generation of potential short-term debt holders may

not be willing to provide funding when the return prospects on the long-term investment

turn out to be bad. In this case, banks have to default and there is inefficient early
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liquidation of their long-term investments.

Main contribution. Our main insights are as follows: For large macroeconomic shocks

and in the absence of banking regulation, there is equilibrium bank default in the bad

state of the world. For more moderate shocks, bank default is a self-fulfilling prophecy in

the sense that there are multiple equilibria: one equilibrium with the possibility of bank

default, which is inefficient, and one equilibrium without bank default, which is first-

best. Banking regulation can help to avoid bank default and to implement the first-best.

More specifically, we consider capital regulation in the form of a minimum ratio of equity

capital to risky long-term investment and liquidity regulation in the form of a minimum

ratio of liquidity to short-term debt.

While the two types of regulation turn out to be equally capable of implementing the

first-best as an equilibrium outcome, the former is more powerful than the latter in ruling

out other inefficient equilibria. Moreover, if undesirable equilibria cannot be eliminated

without also eliminating the first-best, capital regulation ensures that allocations are

closer to the first-best than under liquidity regulation. Adding liquidity regulation to

optimal capital regulation is redundant. We view these insights as the main contribution

of the paper.

Model summary and detailed results. We consider a three-period economy with a

single homogeneous good and risk-neutral agents. Banks are set up via equity financing

from owners and they collect deposits from short-term debt holders. The banks can

invest their funds in risky long-term investment projects operated by entrepreneurs or

in short-term liquid assets. Since each generation of depositors lives only for one period,

banks have to refinance their debt in the second period and thus face funding risk.

Macroeconomic uncertainty about the returns on the long-term investment is resolved

just before the second-generation depositors decide on whether to provide the banks with

new funds.

We find that in the presence of small macroeconomic shocks, the banks’ voluntary

levels of equity capital and liquidity holdings are high enough for them never to default,

so no banking regulation is needed to achieve the first-best. In the presence of more severe

shocks, however, equilibrium bank equity is insufficient to absorb losses in the bad state of
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the world. Since bank equity holders are subject to limited liability, the initial short-term

debt holders demand an interest rate premium on any funds they provide to the banks if

they consider bank default an eventuality. The fact that a premium lets depositors earn

higher interest in the good state of the world implies lower expected returns on bank

equity, which makes raising equity funding more difficult. Additionally, banks have to

hold larger liquidity reserves to repay the initial depositors in the good state of the world.

As a result, the banks’ amount of long-term investment in the presence of default is lower

than in the first-best. If it eventually becomes clear that the return prospects on banks’

long-term investments are dire, short-term debt holders refuse to refinance banks which

they know will not be able to fully repay them later. Hence, banks become illiquid and

default. In default, banks are forced to liquidate their long-term investments early, which

generates high losses and is socially inefficient.

For moderate macroeconomic shocks, equilibria with and without bank default coex-

ist. Bank default then becomes a self-fulfilling prophecy. If banks and short-term debt

holders behave as if there were no possibility of default, meaning in particular that the

initial depositors do not demand a premium on the deposit rate, then banks will not

default in any state of the world. If, however, banks and depositors assume default in

the bad state of the world and act accordingly, i.e., the initial depositors demand a pre-

mium and banks act on their limited liability when making investment decisions, then

banks will indeed default in the bad state of the world. In this sense, a banking crisis

can result solely from the fear of a banking crisis and the attendant behavior of market

participants.1

Banking regulation helps to counteract market inefficiencies. If macroeconomic risk is

not too large, both liquidity regulation and capital regulation are capable of implementing

the first-best.2 Intuitively, capital regulation can also address funding risk. If the banks’

required capital ratio is high enough to make it clear that they will never default and

1We note that our focus will be on comparing capital regulation to liquidity regulation in their
power to eliminate undesirable equilibria. Since in the critical range capital regulation will eliminate
undesirable equilibria while liquidity regulation does not, our main results are robust to the use of
equilibrium selection methods such as the global games approach à la Goldstein and Pauzner (2015)
that assigns probabilities to each of the equilibria.

2For extreme shocks, the extent of the safety buffer required to avoid default in the bad state implies
that the amount of leftover funds is insufficient to achieve the efficient scale of long-term investment. In
this case, liquidity and/or capital requirements cannot implement the first-best.
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will be able to repay the funds provided to them in all states of the world, then they can

always refinance. Perhaps more surprisingly, liquidity requirements can, to some extent,

also address insolvency risk. The reason is that solvency issues arise in states of the world

where a negative macro shock hurts the returns on risky long-term investments in a way

that the banks will no longer be able to fully repay their depositors. Larger investment

in a safe asset, i.e., holding higher liquidity reserves, makes the banks’ asset side less

vulnerable to the macro shock and thereby reduces the risk of default.

Comparing capital regulation to liquidity regulation under substantially large macroe-

conomic risk, we find that the former is more powerful than the latter. While the two

forms of regulation are equivalent in implementing the first-best as an equilibrium, cap-

ital regulation is more capable of implementing it uniquely, i.e., of simultaneously ruling

out other inefficient equilibria. To understand this, we note that eliminating inefficient

equilibria with default requires stricter banking regulation than the one required for im-

plementing the first-best as just an equilibrium. For substantially large shocks, this

stricter regulation implies that there may be insufficient resources in the economy to still

achieve the efficient scale of long-term investment in the remaining equilibrium without

default. It follows that there are cases where it is possible to implement the first-best,

but it is not possible to do so uniquely. More precisely, under tighter liquidity regulation

the amount of total resources available in the economy may fall short of the amount of

resources needed to simultaneously meet the liquidity requirements and achieve the first-

best amount of long-term investment. Similarly, under tighter capital regulation there

may not be enough equity funding available in the economy to simultaneously meet the

regulatory capital ratio and achieve the first-best amount of risky long-term investment.

Now capital regulation, however, is more powerful than liquidity regulation because

the former has to be strengthened by less than the latter when aiming to rule out the

existence of equilibria with default as opposed to implementing the first-best as just an

equilibrium. As a consequence, for substantial but not extreme levels of macroeconomic

risk it is possible to uniquely implement the first-best through capital regulation, but

not through liquidity regulation. Moreover, capital regulation allows the economy to get

closer to the first-best than liquidity regulation if (uniquely) achieving the first-best is

not possible at all, i.e., if the macro shock is so severe that undesirable equilibria cannot
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be eliminated without also eliminating the first-best.

That capital regulation has to be strengthened by less than liquidity regulation when

aiming to rule out the existence of equilibria with default as opposed to implementing the

first-best as just an equilibrium, stems from the fact that the banks’ amount of long-term

investment in an equilibrium with default is smaller than in the efficient equilibrium. This,

in turn, means that for a given amount of funding, banks have larger investments in liquid

assets in the former equilibrium than in the latter. It follows that any additional liquidity

holdings required to rule out an equilibrium with default through liquidity regulation do

not have to be (fully) matched by more equity capital when ruling out an equilibrium

with default through capital regulation.

Related literature. The risk of a collapse of short-term funding (funding risk) plus

the risk that assets cannot be converted into cash without substantial losses in original

value (liquidity risk), have been major concerns throughout the history of banking. Since

the work of Diamond and Dybvig (1983), individual uncertainty about the timing of con-

sumption needs, coupled with financial intermediaries issuing claims that can be called at

any time, has been the focus of extensive analysis. Recent contributions analyzing the ef-

fects of liquidity and capital requirements in Diamond-Dybvig-style settings with a global

game structure are Diamond and Kashyap (2016) and Kashyap et al. (forthcoming).

Our approach is complementary to this literature—consumption needs in our model

are certain and financial intermediaries do not face the risk of depositors’ run, but they

do face the risk that future investors may not be willing to refinance banks. Further,

we focus on the comparison between capital regulation and liquidity requirements with

regard to their ability to rule out undesirable equilibria with bank default, rather than on

assigning probabilities to the occurrence of such equilibria via a global games approach.

In fact, our insights on how to efficiently eliminate such equilibria are independent of how

probabilities are assigned to the occurrence of different types of equilibria.

A number of other papers have pursued and applied different approaches to capture

the effects of liquidity regulation, also in combination with capital requirements (Vives,

2014; Calomiris et al., 2015; Walther, 2016; Macedo and Vicente, 2017; Cecchetti and

Kashyap, 2018; Dewatripont and Tirole, 2018; Kara and Ozsoy, 2019; Carletti et al.,
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2020).3 Their findings on whether liquidity and capital requirements are rather substi-

tutes or complements vary and they show that the economic circumstances and the way

in which banking regulation is implemented, matter.

Morris and Shin (2016) provide a clear theoretical distinction between insolvency risk

and illiquidity risk, the latter meaning that although in the absence of liquidity problems

the eventual realization of asset values would be sufficient to service all debt, runs by

short-term debt holders and the necessity of fire sales may diminish asset values and bring

about bank default. They emphasize that illiquidity risk is not typically independent

of insolvency risk: “The conclusion that there is no illiquidity risk without solvency

uncertainty is an intuitive one, but not present in many models and much discussion of

illiquidity risk” (p. 1137). Our model accounts for that fact: once uncertainty vanishes,

illiquidity can occur only as a consequence of looming insolvency.

Quantitative analysis of optimal banking regulation using calibrated dynamic banking

models has been provided by Covas and Driscoll (2014), De Nicolo et al. (2014), Clerc

et al. (2015), Faia (2019), Van den Heuvel (2019), Cont et al. (2020), Corbae and

D’Erasmo (2021), Chiba (2022), and others. Finally, there is a long history of inquiries

into liquidity provision and maturity transformation, which we cannot summarize here

(see e.g., Freixas and Rochet, 2008).

The paper is organized as follows: Section 2 introduces the model. Section 3 defines

equilibrium and provides equilibrium considerations on bank default. Section 4 sets

up the Arrow-Debreu benchmark and determines the Pareto frontier. Section 5 solves

for equilibrium without banking regulation. Section 6 introduces liquidity and capital

requirements into the model. Section 7 concludes. Technical proofs can be found in the

appendix.

2 The Model

We consider a simple three-period economy (t = 1, 2, 3) with a single physical good. At

the center of the analysis are banks that compete for equity and debt and act as financial

intermediaries. There are three classes of risk-neutral agents: owners of banks, debt

3See Allen and Gale (2017) and Bouwman (2019) for reviews of the literature.
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holders, and entrepreneurs running investment projects. The details of the model are set

out in the subsections below.

2.1 Technologies

The model encompasses a short-term technology (henceforth “ST”) and a long-term

technology (henceforth “LT”).

Short-term technology. ST yields a constant output 1+ rs (rs ≥ 0) in period t+1 for

each unit of the physical good invested in period t, i.e., 1 + rs is the productivity of ST.

Hence, output for one unit of investment from t = 1 to t = 3 is given by (1 + rs)
2. The

short-term technology can be interpreted in two different ways. First, it may represent

a real production technology converting time t-goods into time t+ 1-goods. Second, ST

may represent investment in a money market fund with returns rs per period.
4

Long-term technology. LT yields output after two periods. It is subject to macroeco-

nomic risk and exhibits decreasing marginal returns. Specifically, if an aggregate amount

K is invested in period t = 1, output in period t = 3 is ηf(K), where η is an aggregate

shock:

η =

h (high) with probability p,

l (low) with probability 1− p,
(1)

where p and 1− p are the probabilities of high and low productivity shocks, respectively,

and l and h are real numbers satisfying 0 < l < h. We use m to denote the average

aggregate shock:

m = ph+ (1− p)l.

Throughout the paper, we will keep m fixed and vary l and h simultaneously to capture

more or less severe shocks. Then, the expected output in t = 3 is

E (ηf(K)) = f(K)(ph+ (1− p)l) = mf(K).

While all investors in the economy will have frictionless access to ST, access to LT will be

prohibitively costly except for financial intermediaries, who will thus be the sole investors

4The final investment of resources channeled into the fund has to be a real investment of the ST-type
or default-free short-term debt in another technology.
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in LT.

Inada conditions. We assume that the long-term technology exhibits decreasing marginal

returns, i.e., f ′(K) > 0, f ′′(K) < 0. Moreover, we assume that f(K) satisfies Inada Con-

ditions, i.e., limK→0 f
′(K) = ∞ and limK→∞ f ′(K) = 0. The assumptions on f(·) imply

that there exists a uniquely determined K̄ > 0, such that f ′(K̄)m = (1 + rs)
2. We note

that f ′(K)m < (1+ rs)
2, for all K > K̄, and f ′(K)m > (1+ rs)

2, for all K < K̄. We also

assume
∣∣∣f ′′(K)K

f ′(K)

∣∣∣ < 1, which is fulfilled by all production functions of the type f(K) = Kα

with 0 < α < 1. The production function f(K) = ln(1+K) meets all assumptions except

the Inada condition for K → 0.

Shock realization and early liquidation. The uncertainty about long-term invest-

ment returns is resolved in period t = 2, i.e., in t = 2 all market participants observe

η and learn whether it is high or low. We assume that the gross return of LT invest-

ment is zero if the investment is liquidated already in t = 2, which represents a strong

form of illiquidity. This assumption simplifies the analysis, but is not essential for our

results.5 To simplify notation, we denote the marginal productivity of LT as follows:

1 + rhL = hf ′(K), 1 + rlL = lf ′(K) and 1 + reL = p(1 + rhL) + (1− p)(1 + rlL) = mf ′(K).

2.2 Owners

There is a continuum of long-term investors of measure 1. They live for three periods

from t = 1 to t = 3. They are risk-neutral and are only concerned with consumption

when old in t = 3, i.e., they do not consume in t = 1 and t = 2. Henceforth, we simply

call them owners. Each owner is endowed with initial wealth w. The aggregate wealth of

owners in t = 1 is denoted byW . They have two opportunities to invest their endowment:

(i) bank equity capital, (ii) ST.6 The aggregate amount of investment in ST by owners

at t = 1 is denoted by LI .

5Liquidation will only occur when η = l. Clearly, LT has a liquidation value of zero if l = 0. In case
of l > 0, output may be less than lf(K) if production ends prematurely. For simplicity, we assume that
LT output and salvage value become zero upon early liquidation.

6Owners cannot invest in LT directly. As we will establish in Section 2.5, LT investment requires
intermediation by banks. There are many ways to justify why banks are needed to channel funds from
equity holders and depositors to investment projects (see, e.g., Diamond, 1984; Hellwig, 1998; Gersbach
and Uhlig, 2006). One example would be that such investments require access to monitoring technologies
that only banks have access to.

9



2.3 Debt holders

There is a continuum of investors with measure 2µ (µ > 0) who are born in t = 1 and live

for three periods. They are also risk-neutral and are called debt holders. Half of them

receive an endowment w in t = 1, the other half receive endowment w in t = 2. The first

half consumes in t = 2, the second half consumes in t = 3. Wealth can be transferred

between periods at the certain interest rate rs. Hence, we obtain two savings functions

St = µW (t = 1, 2). We note that the assumptions on debt holders ensure that banks

have access to the same measure of potential resources for short-term debt financing in

t = 1 and t = 2. Debt holders can also invest in ST.

2.4 Entrepreneurs

We assume that LT is operated by a representative third agent called an entrepreneur,

who collects the surplus on the risky illiquid investment and who is also risk-neutral. We

assume that the market for LT investment is competitive, so investors receive marginal

returns on investment.

2.5 Banks

We consider a competitive banking system with n banks indexed by i = 1, ..., n in t = 1.

Founding of banks. Banks start as a number (or name) only, and investors can offer

resources to a bank in exchange for equity contracts. An equity contract specifies that

the holder is entitled to obtain a share of dividends at time t = 3 in proportion to the

resources s/he has given to a particular bank. Equity holders are protected by limited

liability. By offering equity, investors thus become owners of the bank. The amount of

equity obtained by a bank is determined by the amount of resources offered by owners,

which, in turn, depends on the expected return on equity. If banks receive a positive

amount of equity from owners, they are set up and can operate.7

Liquidation of banks. If banks do not default earlier, they are liquidated in t = 3 and

equity holders receive the residual value. We use ei1 and ei3 to denote the equity capital

7In practice, banks need to attract a minimum level of equity capital in order to have the right to
operate. Such requirements can easily be introduced into our framework. In fact, the kind of capital
regulation proposed in Section 6.2 constitutes such a requirement.
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of bank i in t = 1 and t = 3, respectively. Aggregate equity in t = 1 and t = 3 is denoted

by E1 and E3, respectively.

Deposit contracts. Besides equity contracts, bank i offers short-term deposit contracts

in t = 1 in a competitive market at the (promised) deposit rate rd1 and receives an

amount di1 of deposits (i = 1, ..., n). The aggregate amount of deposits of the entire

banking system in the first period is denoted by D1.

Banks’ investment decisions. After receiving funds from debt holders and equity

holders, banks make their investment decision. We denote the amount of t = 1 invest-

ment by bank i in ST and in LT by liB and ki, respectively. The aggregate investment

amounts are given by LB =
∑n

i=1 l
i
B and K =

∑n
i=1 k

i. Banks offer state-contingent

credit contracts to entrepreneurs. Since the market for investment in LT is competitive,

a bank i that in t = 1 invests an amount ki in LT receives, depending on the state, either

(1 + rlL)k
i = lf ′(K)ki or (1 + rhL)k

i = hf ′(K)ki in t = 3. Since investment in ST has a

short economic life-time, it represents liquid assets. The amount liB that banks invest in

ST in the absence of regulation is called voluntary liquidity.

Refinancing. In t = 2, each bank has to pay back its first depositors. To collect

new funds, bank i offers the second-generation debt holders new deposit contracts in a

competitive market at the deposit rate rd2. The aggregate amount of deposits issued in

t = 2 is denoted by D2.

Bank default. Upon receiving the second-period deposits, bank i faces one of the

following two situations: either it is liquid, is able to pay back the first depositors, and

continues to operate, or it cannot fulfill its obligations and defaults. The condition for

survival in t = 2 is liB(1 + rs) + di2 ≥ di1(1 + rd1). If bank i survives in t = 2, it receives

the return on its LT investment in t = 3 and again faces one of two possible scenarios:

either its final return from LT and ST investment is sufficiently high to be able to pay

back the second depositors, or it has to default on its obligations. In the first case, bank

i fully repays its depositors and proportionally distributes the remaining funds among

equity capital owners. In the second case, bank i becomes insolvent and equity holders

receive nothing. The details of the insolvency procedure will be discussed in Section 3.2.

Bank profits. We denote the profits of bank i in t = 3 by πi
3, if it survives until that
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date. Hence,

πi
3 = ηf ′(K)ki − di2(1 + rd2) +

[
liB(1 + rs) + di2 − di1(1 + rd1)

]
(1 + rs),

if liB(1 + rs) + di2 ≥ di1(1 + rd1). Accounting for limited liability, the amount of equity of

bank i in t = 3 is given by

ei3 =

max {πi
3, 0} if liB(1 + rs) + di2 ≥ di1(1 + rd1),

0 if liB(1 + rs) + di2 < di1(1 + rd1).
(2)

The objective of banks in the interest of bank owners is to maximize the expected return

on equity:8

max
liB ,ki

E
[
ei3
ei1

]
.

Since ei1 (i = 1, ..., n) is given when investment decisions are made (in t = 1 and t = 2)

and since bank owners are risk-neutral, banks maximize E [ei3].

We illustrate the economy in Figure 2.

Figure 2: The model and sequence of events

t = 1 t = 2 t = 3
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8With ei3 given by Equation (2), this takes into account the limited liability characteristic of equity.
We neglect conflicts of interest between bank managers and bank owners.
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2.6 Regulatory environment and main assumptions

Throughout the paper, we make the following assumption that allows us to focus on the

economically interesting cases.

Assumption 1

W < K̄, (3)

W + µW > K̄ +
1 + rs − p

1 + rs
µW. (4)

We note that Assumption 1 implies W < K̄ < W +µW . The first part of the assumption

states that both owners and debt holders have to invest in LT in order to achieve the

amount K̄; the wealth of owners alone is not sufficient. The second part of the assumption

guarantees that the total aggregate wealth of owners and debt holders is sufficiently high

for the banking system to be able to invest an amount K̄ in LT and some resources in ST

to remain solvent in t = 2, at least in the good state of the world. In the basic version of

the model, there is no banking regulation.

3 Equilibrium Concept

3.1 Preliminary considerations

For ease of presentation in the derivation of equilibrium, we impose the tie-breaking rule

that debt holders invest in bank deposits if they are indifferent between investment in ST

and bank deposits. Then, we observe that the aggregate amount of deposits from debt

holders in the first and second period is given by D1 = S1 and D2 = S2, respectively, if

at least one bank survives in t = 2 and if expected returns on D1 and D2 are at least rs.

The initial situation of the economy can be described as follows: Banks are initially

identical in the eyes of potential shareholders, so each bank receives the same amount

of equity in the first period and thus ei1 = E1

n
(i = 1, ..., n).9 The same holds for debt

9This holds if one applies a suitable version of the law of large numbers and if owners randomize
between banks. It also holds if each shareholder buys an identical amount of equity of each bank or if
the set of owners is partitioned into n groups Gi of measure 1/n, where group Gi only buys shares of
bank i.
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holders in the first period, hence, di1 =
D1

n
.

In t = 1, bank i chooses the investments ki and liB, given its available resources

E1+D1

n
. We use Rη

t to denote the actual aggregate repayment of the banking system to

debt holders in period t (t = 2, 3) in states η = l and η = h. We use Re
t = E [Rη

t ] to

denote the expected aggregate repayment to debt holders.

3.2 Definition of equilibrium

Given these preliminary considerations, we will be looking for competitive symmetric

equilibria defined as follows:

Definition 1 (Competitive equilibrium)

A competitive symmetric equilibrium is a sextuplet {K,E1, LB, LI , rd1, rd2}, such that

the following conditions hold:

(i) liB and ki solve max {E [ei3]} s.t. ki+liB ≤ E1+D1

n
, where K =

∑n
i=1 k

i, LB =
∑n

i=1 l
i
B

and liB = ljB, k
i = kj, for i ̸= j,

(ii) D1 + E1 = K + LB,

(iii) E1 + LI = W ,

(iv) nE [ei3] ≥ E1(1 + rs)
2, if E1 > 0,

(v) Re
2 ≥ D1(1 + rs) and D1 = S1 = µW ,

(vi) Rη
3 ≥ D2(1 + rs) and D2 = S2 = µW , if at least one bank survives in period t = 2,

state η ∈ {l, h}.

Condition (i) guarantees that given LT return expectations the investment choice by

bank i maximizes its expected return on equity. Condition (ii) represents the sav-

ings/investment balance of the banking system and of an individual bank, if we divide

both sides by the number of banks n. Condition (iii) represents the aggregate budget

constraint of owners. Condition (iv) guarantees that investing a positive amount E1 in

equity yields at least the same expected return as investing in ST. Otherwise, banks

would not be founded by owners. Conditions (v) and (vi) determine the amount of debt

banks can attract in both periods if they can offer sufficiently high expected returns.
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3.3 Default and work-out procedures

We next discuss bank default. Since the return of LT becomes known in t = 2, it

is already clear at that time whether banks will go bankrupt or not. This yields the

following property:

Early default. A bank i will not obtain new funding and defaults in t = 2 if there is no

di2 and deposit rate rd2 ≥ rs such that ei3 ≥ 0.

Hence, if in t = 2 bank i cannot obtain an amount of new deposits at rd2 = rs, which

guarantees its survival in t = 3, it will default in t = 2. Possibly, bank i is liquid in t = 2

while πi
3 = 0. In that case, the bank’s equity holders are indifferent between defaulting

and not defaulting in t = 2. For convenience, we assume that the firm does not default

in t = 2.

We observe that if a bank defaults in t = 2 at rd2 = rs, it would default at any higher

deposit rate rd2 > rs. The reason is that long-term investment has been made, returns

are known, and in t = 2 banks can invest any resources that they do not need to pay out

into ST at interest rate rs. Moreover, as returns are known in t = 2, new depositors at

t = 2 know whether banks will be able to pay back or not. Given equal funding of banks

in t = 1, this yields

Lemma 1

In any equilibrium, either all banks default in t = 2 and receive no new funds or they do

not default and receive new deposits at interest rate rd2 = rs.

We next observe that the following condition for investment in voluntary liquidity has to

hold:

Lemma 2

In any equilibrium,

liB ≥ lB :=
1

n(1 + rs)
[D1(1 + rd1)−D2] . (5)

Lemma 2 derives from the following considerations: First, banks can always ensure

E [ei3] = E1

n
(1 + rs)

2 by investing their entire resources in ST. A necessary condition

to generate positive payoffs for equity holders in t = 3 is that each bank is able to fulfill

its obligations towards the first depositors, otherwise bank i would go bankrupt in t = 2
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in state h as well as in state l. This condition is

liB(1 + rs) + di2 ≥
D1

n
(1 + rd1),

which is identical to Condition (5) if every bank survives and thus di2 =
D2

n
.

Bank profits. If bank i survives in t = 2, its final equity in state η is given by

ei3 = max
{
ηf ′(K)ki +

(
liB(1 + rs)−

D1

n
(1 + rd1) + di2

)
(1 + rs)

− di2(1 + rd2), 0
}
.

With rd2 = rs, this yields

ei3 = max

{
ηf ′(K)ki +

(
liB(1 + rs)−

D1

n
(1 + rd1)

)
(1 + rs), 0

}
.

We obtain the following lemma:

Lemma 3

In any equilibrium, a bank i will default in t = 2 if and only if η = l and

(1 + rlL)k
i +

(
liB(1 + rs)−

D1

n
(1 + rd1)

)
(1 + rs) < 0. (6)

Lemma 3 follows from the following logic: A bank i will never default in η = h in

equilibrium, as otherwise it would also default in η = l. Then, E[ei3] would be zero. As

bank i can always secure E[ei3] = E1

n
(1+ rs)

2 by investing all resources in ST, a default in

η = h cannot occur in equilibrium. Now, suppose first that Condition (6) holds. Then,

bank i would default in t = 3, η = l for any level of deposits di2 it received. Hence, it will

already default in t = 2, η = l. Suppose second that Condition (6) does not hold. Then,

as liB ≥ liB by Condition (5), bank i will survive in t = 2 for η = l and η = h for di2 =
D2

n
.

Bank i will be able to pay back depositors in both states of the world in t = 3 and thus

will never default—provided that rd2 = rs.

16



4 Pareto-efficient Allocations

Before we explore the properties of the economy with and without governmental inter-

vention, it is useful to characterize the allocation when no frictions are present. That is,

direct investment in both technologies is possible, no financial intermediation is needed,

and financial assets are complete in the extended sense of Arrow-Debreu: While not all

contingent claims are available at t = 1, a combination of a t = 1 portfolio and t = 2 trade

permits the achievement of any feasible allocation, in particular every Pareto-efficient al-

location. We proceed in two steps. First, we determine the Pareto-efficient Arrow-Debreu

equilibrium allocation. Second, we determine the much larger Pareto frontier of the econ-

omy.

4.1 Arrow-Debreu benchmark

To formulate the Arrow-Debreu system (henceforth AD), we assume that all agents can

directly invest the physical good in ST, 10 which simplifies the exposition. Entrepreneurs

issue long-term assets in t = 1, the price and amount of which are denoted by q1 and

aL, respectively. If an agent buys one unit of the asset, s/he receives the following state

contingent repayment in t = 3:

rη =

η = h : rh = h(1+rs)2

m
,

η = l : rl = l(1+rs)2

m
.

The expected repayment is (1+ rs)
2 and thus equivalent to investing one unit repeatedly

in ST. Long-term assets are traded in t = 1 as well as in a secondary market in t = 2 after

the state η has been revealed. We use qh2 and ql2 to denote the state-contingent prices of

the asset in period 2 in terms of the consumption good. All individuals are price takers.

Entrepreneurs’ optimization problem. An entrepreneur maximizes expected profits

and all types of investors maximize expected consumption, which in the latter case is

equivalent to maximization of expected wealth for the date at which the agent would like

10Equivalently, we could assume that real short-term assets for t = 1 (and t = 2) are available with
a repayment of 1 + rs in t = 2 (and t = 3) if one unit is bought. The equilibrium price of these assets
would be unity, and buying such assets is equivalent to directly investing in ST.
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to consume. To maximize expected profits, the entrepreneur solves

max
aL

{
p
[
hf(q1aL)− aLr

h
]
+ (1− p)

[
lf(q1aL)− aLr

l
]}

,

where rh and rl are the state-contingent repayments of the long-term asset. Profit max-

imization yields mf ′(q1aL)q1 = (1 + rs)
2. We will show below that q1 = 1, which then

implies aL = K̄. There is no default risk, since lf(K̄) > lf ′(K̄)K̄ = rlK̄.

Recall that Assumption 1 implies W < K̄ < W + µW and thus captures the case where

contributions by both groups of agents investing in t = 1 are needed to finance long-term

investment in the amount K̄. We use CD
2 , CD

3 , CO
3 , C

E
3 to denote the consumption levels

of debt holders in periods 2 and 3, owners in period 3, and entrepreneurs in period 3,

respectively. We obtain

Proposition 1

The AD equilibrium is characterized by

(i) âL = K̄ and q̂1 = 1.

(ii)

q̂η2 =

η = h : h(1+rs)
m

,

η = l : l(1+rs)
m

.

(iii) Owners invest their entire wealth in the long-term asset. They consume

ĈO
3 =

η = h : rhW,

η = l : rlW.

(iv) Debt holders who invest in t = 1 buy K̄−W long-term assets and invest the residual

wealth in ST. They consume

ĈD
2 =

η = h : (K̄ −W )q̂h2 + (µW +W − K̄)(1 + rs),

η = l : (K̄ −W )q̂l2 + (µW +W − K̄)(1 + rs).
(7)
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(v) Debt holders who invest in t = 2 do the same. They consume

ĈD
3 = µW (1 + rs),

independently of the state.

(vi) Entrepreneurs invest all resources they receive in LT and consume

Ĉe
3 =

η = h : hf(K̄)− rhK̄,

η = l : lf(K̄)− rlK̄.

The proof is in Appendix A. We note that the AD solution has two important charac-

teristics: first, an amount K̄ is invested in LT in t = 1, second, there is no default risk,

and thus no investment in LT is liquidated in t = 2. Together, these characteristics mean

that the AD solution maximizes expected aggregate intertemporal consumption defined

by

E
[
C2 +

1

1 + rs
C3

]
,

where C2 and C3 denote aggregate consumption in periods 2 and 3. The latter is given

by

C3 = CD
3 + CO

3 + CE
3 .

4.2 Pareto frontier

The AD equilibrium allocation depicted in Proposition 1 is but one of many Pareto-

efficient allocations. We now determine the entire Pareto frontier.

Suppose that, in period 1, K ∈ [0,W + µW ] is invested in LT and W + µW −K is

invested in ST. Then, in period 2, (1+rs)(W+µW−K)+µW is available for consumption

and investment. Let γη
2 and 1 − γη

2 denote the fractions allocated to consumption and

investment, respectively, in state η. Then, consumption in period 2 is Cη
S2 = γη

2 [(1 +

rs)(W + µW −K) + µW ]. Define γ2 := pγh
2 + (1− p)γl

2. The expected available amount

Y of goods in period 3 is given by

Y = E{ηf(K) + (1 + rs)(1− γη
2 )[(1 + rs)(W + µW −K) + µW ]}
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= mf(K) + (1 + rs)(1− γ2)[(1 + rs)(W + µW −K) + µW ]. (8)

Since each type of investor has only one consumption period, we can disregard discount-

ing. In t = 2, the short-term investors of period 1 have expected consumption CS2, given

by

CS2 = E{γη
2 [(1 + rs)(W + µW −K) + µW ]}

= γ2[(1 + rs)(W + µW −K) + µW ]. (9)

In t = 3, the short-term investors of period 2 and the long-term investors combined have

expected consumption Y .

The expected consumption levels CS2 and Y are determined by the choice of (γ2, K).

In particular, the pair (γ2, K) = (1, 0) maximizes CS2, yields Y = 0, and is a Pareto-

optimal choice. Apart from that, the pair (γ2, K) = (0, K̄) maximizes Y , yields CS2 = 0,

and is another Pareto-optimal choice. We obtain

Proposition 2

The Pareto-optimal choices of (γ2, K) are (1, K) with K ≤ K̄ and (γ2, K̄) with γ2 < 1.

The proof is in Appendix A. The intuition is the following: (i) Whenever K > K̄, shifting

resources from LT investment to ST investment while keeping time-2 consumption CS2

constant enables an increase of time-3 consumption Y . This is because for K > K̄, ST

investment yields higher expected returns than LT investment. Hence, K > K̄ cannot be

Pareto-optimal. (ii) For K < K̄ and γ2 < 1, a marginal increase in K can be offset by an

adequate increase in γ2 to keep CS2 constant, while at the same time Y increases. This is

because for K < K̄, LT investment yields higher expected returns than ST investment.

Hence, pairs (γ2, K) with γ2 < 1 and K ̸= K̄ cannot be Pareto-optimal. (iii) Finally,

pairs (γ2, K) with K < K̄ and γ2 = 1 are Pareto-optimal, as it is not possible to jointly

vary K and γ2 in such a way as to increase Y without decreasing CS2 or vice versa.

Remarks. Some remarks with regard to Proposition 2 are in order:

Remark 1: Even though state-dependent choices γl
2 and γh

2 are possible, risk neutrality

implies that only γ2 = pγh
2 + (1− p)γl

2 matters for expected welfare considerations.
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Remark 2: The social welfare function CS2 + Y is maximal at (0, K̄). The social welfare

function CS2 +
1

1+rs
Y is maximal at all (γ2, K̄) with γ2 ∈ [0, 1].

Remark 3: The AD allocation obtained in Proposition 1 is part of the Pareto frontier

as described by Proposition 2. The fact that in Proposition 1 ĈD
2 satisfies 0 < ĈD

2 <

µW + (1 + rs)(µW + W − K̄), η ∈ {l, h}, corresponds to γ2 ∈ (0, 1) in Proposition 2.

The AD allocation further requires K = K̄.

Remark 4: The characterization of Proposition 2 shows that the equilibrium allocation

with bank default that we will obtain in Section 5.2 Proposition 4 is not Pareto-optimal.

5 Equilibria without Regulation

We next characterize equilibrium when no banking regulation is present. For this purpose,

we will vary l (and h) while keeping m fixed. This allows us to distinguish between low

or high macroeconomic risk, keeping expected output at the scale K̄ constant. We

distinguish two cases: no bank default and bank default. Later, we identify the conditions

under which these cases are indeed equilibria.

5.1 No bank default

Suppose for the moment that banks do not default in either state of the world. In this

case, rd1 = rs, as repayment of deposits is certain. Moreover, rd2 is also equal to rs as

debt holders will be paid back in both states in t = 3.

Banks’ optimization problem. The maximization problem of bank i in t = 1 is given

by

max
liB ,ki

{
E
(
ei3
)}

= max
liB ,ki

{
(1 + reL)k

i +

(
liB(1 + rs)−

D1

n
(1 + rs) + di2

)
(1 + rs)

− di2(1 + rs)
}
. (10)

Using liB = E1+D1

n
− ki, we rewrite Equation (10) as

max
ki

{
E
(
ei3
)}

= max
ki

{
(1 + reL)k

i +

(
E1

n
− ki

)
(1 + rs)

2
}
. (11)
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Bank i chooses its investment amount ki, given 1 + reL = mf ′(K), recognizing that

liB = E1+D1

n
− ki ≥ lB.

We obtain the following lemma:

Lemma 4

In any equilibrium without regulatory intervention in which banks do not default in state

l (and h), 1 + reL = (1 + rs)
2 and K = K̄.

The proof is in Appendix A. In aggregate, banks hold voluntary liquidity LB at least

equal to LB (= n liB), i.e., at least the minimum amount necessary to be able to pay

back the first-period depositors in t = 2. Owners are indifferent between investing the

remaining funds, given by W +D1− K̄−LB, in ST themselves or through banks. Hence,

in equilibrium, LB ∈ [LB,W +D1 − K̄], with

LB = D1 −
D2

1 + rs
=

rsµW

1 + rs
.

Existence of a no-bank-default equilibrium. Next, we examine the conditions under

which banks do not default (ei3 ≥ 0) for liB = lB, so that rd1 = rs, ki = K̄
n
, and

liB ∈
[
lB,

W+D1−K̄
n

]
do indeed constitute an equilibrium. According to Lemma 3 and

Lemma 4, if bank i chooses minimum liquidity liB = lB, it will default in t = 2 in state

η = l if and only if

(1 + rlL)k
i +

(
lB(1 + rs)−

D1

n
(1 + rs)

)
(1 + rs) < 0.

That is, bank i will default if the return on investment in LT in state l is sufficiently low

and the bank’s liquidity is not high enough to absorb the losses, so that the obligations

towards the second depositors cannot be fulfilled. In this case, bank i does not obtain

new deposits in t = 2 and defaults immediately.

We use lmin to denote the critical threshold for the size of the negative shock at which

a bank only just survives. For the situation described in Lemma 4, it is defined by

lminf ′(K̄)
K̄

n
− (1 + rs)

D2

n
= 0, (12)
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which yields

lmin =
(1 + rs)D2

f ′(K̄)K̄
. (13)

So, if l ≥ lmin andK = K̄, a bank with liquidity holdings liB = lB will never default. Since

it will also not default for any liquidity holdings greater than the minimum ones, and

since rd1 = rs and K = K̄ imply E
(

ei3
ei1

)
= (1+ rs)

2 for all liB > lB, owners are indifferent

between investing any remaining resources in ST themselves or through banks.

Using equality f ′(K̄)(ph+(1−p)l) = (1+rs)
2, we obtain the corresponding threshold

level for the size of the positive shock, denoted by hmax:

hmax =
(1 + rs)

2 − (1− p)lminf ′(K̄)

pf ′(K̄)

=
(1 + rs)

2K̄ − (1− p)(1 + rs)D2

pf ′(K̄)K̄
. (14)

Non-existence of a no-bank-default equilibrium. We note that for l < lmin, there

is no equilibrium in which banks do not default. For suppose there were an equilibrium

in which banks do not default and thus K = K̄, rd1 = rs and mf ′(K̄) = (1 + rs)
2.

Clearly, by the definition of lmin, banks with liB = lB would default—a contradiction.

Now suppose that bank i held sufficient voluntary liquidity liB = l̂iB (with l̂iB > lB) to

just avoid default in η = l.11 Then its expected profits are given by

E(ei3) = p

[
hf ′(K̄)ki +

(
l̂iB − lB

)
(1 + rs)

2 − D2

n
(1 + rs)

]
+ (1− p) · 0, (15)

where ei3 = 0 for η = l, since the bank holds voluntary liquidity to only just survive in the

bad state. If instead the bank decides to hold only voluntary liquidity lB and to default

in state η = l, its expected profits are given by

E(ei3) = p

[
hf ′(K̄)

(
ki + l̂iB − lB

)
− D2

n
(1 + rs)

]
+ (1− p) · 0, (16)

where ei3 = 0 for η = l, as the bank is protected by limited liability in case of default.

Since hf ′(K̄) > mf ′(K̄) = (1+rs)
2, Expression (16) is greater than Expression (15), and

11Note that, for an individual bank, holding voluntary liquidity liB > l̂iB is never strictly better than

liB = l̂iB , since investing in LT has to be at least as profitable as investing in ST. We will explore
regulatory liquidity requirements in Section 6.1.
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thus the bank prefers default in η = l. Hence, for l < lmin an equilibrium without bank

default does not exist.

Summary. We summarize our results within the following proposition:

Proposition 3

A.) Suppose that l ≥ lmin (h ≤ hmax). Then there exists a no-bank-default equilibrium

without regulatory intervention, with

(i) K = K̄,

(ii) LB ∈ [LB,W +D1 − K̄],

(iii) E1 = K̄ + LB − µW ,

(iv) LI = W − E1,

(v) rd2 = rs,

(vi) rd1 = rs.

B.) For l < lmin, there exists no equilibrium in which banks do not default.

We note that for l ≥ lmin we obtain an equilibrium with a first-best allocation regarding

the investment in LT and ST and regarding the expected utility of debt holders, owners,

and entrepreneurs. The amount of equity banks can attract is sufficient to survive if the

negative shock is not too large.

5.2 Bank default

We next examine equilibria with bank default. Suppose for the moment that banks

default in state η = l in t = 2. The time-2 liquidation value of LT is zero. For banks to

survive in t = 2 in state η = h, they must be able to fulfill their obligations towards the

first depositors. As stated in Lemma 2, this requires liquidity holdings of at least lB.

Equilibrium deposit rate and liquidity holdings. In t = 2, each bank has funds

liB(1 + rs) from investment in ST in the previous period. In case of a bank default in

t = 2, η = l, these funds are distributed among the debt holders. Therefore, the expected

aggregate repayment to debt holders is given by

Re
2 = p(1 + rd1)D1 + (1− p)LB(1 + rs).
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The expected repayment on deposits must at least equal 1+ rs for debt holders to invest

in deposits in t = 1. This yields the following equilibrium condition:

Re
2

D1

= 1 + rs = p(1 + rd1) + (1− p)
LB(1 + rs)

D1

;

1 + rd1 =
1 + rs

p
− (1− p)

p

LB(1 + rs)

D1

. (17)

Banks’ optimization problem. The expected equity of bank i in t = 3 is given by

E
(
ei3
)
= p

[
(1 + rhL)k

i +

(
liB(1 + rs)− (1 + rd1)

D1

n
+ di2

)
(1 + rs)

− (1 + rs)d
i
2

]
. (18)

Using liB = E1+D1

n
− ki, the optimization problem of bank i is as follows:

max
ki

{
E
(
ei3
)}

= max
ki

{
p

(
(1 + rhL)k

i +

(
E1

n
− ki

)
(1 + rs)

2

+
D1

n
(1 + rs)(rs − rd1)

)}
. (19)

Bank i acts competitively and chooses its investment amount ki, taking returns as given

and recognizing that liB = E1+D1

n
− ki ≥ lB.

We obtain the following lemma:

Lemma 5

In any equilibrium without regulatory intervention in which banks default in state η = l,

(i) p(1 + rhL) = (1 + rs)
2 and

K = (f ′)−1

(
(1 + rs)

2

ph

)
=: K∗. (20)

(ii) liB = µW
n

(
1− p

1+rs

)
=: l∗B and

rd1 = rs + 1− p =: r∗d1. (21)

The proof is in Appendix A. The result in the first part of the lemma is intuitive. In

expected terms, banks pay back (1 + rs)
2 to debt holders and equity holders from t = 1
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to t = 3. As long-term investments are liquidated in state l (with zero liquidation

value), expected payoff per unit of investment in LT is equal to phf ′(K∗). Hence, in

equilibrium, phf ′(K∗) = (1 + rs)
2. The second part of the lemma establishes that banks

hold the minimum amount of liquidity required to survive in t = 2, η = h. We note that

equilibrium aggregate equity is then given by

E1 = K∗ − D2p

(1 + rs)
. (22)

Equilibrium scale of LT investment. Now consider the equilibrium scale of LT

investment K∗ as a function of l, with K∗(l) given by Equation (20). We note that

l < m and that, for m constant, ph = m− (1− p)l. The following lemma establishes the

properties of K∗(l):

Lemma 6

Suppose there is equilibrium bank default in state η = l. Then

(i) K∗(l) exists and is uniquely determined,

(ii) K∗(l) < K̄,

(iii) dK∗(l)
dl

< 0.

The proof is in Appendix A. The fact that, according to Part (ii) of the lemma, LT

investment is lower when there is bank default in the bad state is intuitive. Since depos-

itors demand an interest rate premium and equity returns in case of default are zero, an

amount of LT investment smaller than K̄ ensures sufficiently high marginal returns in

the good state to make investment in bank equity attractive compared to ST investment.

Part (iii) reflects the fact that banks are protected by limited liability, i.e., banks’ returns

on equity feature a zero lower bound. Thus, varying values of l do not affect them in

the bad state if they default anyway. For m constant, however, smaller values of l imply

correspondingly higher values of h, which positively affects banks’ returns if the good

state materializes. This makes investing in bank equity more attractive and increases the

scale of LT investment.
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Conditions for bank default. We next derive the conditions under which banks will

actually default if η = l, and thus indeed rd1 = r∗d1, k
i = K∗

n
, and liB = l∗B in equilibrium.

For the situation described in Lemma (5), bank i defaults in t = 2 in state η = l if

ei3 = lf ′(K∗(l))
K∗(l)

n
− D2

n
(1 + rs) < 0. (23)

We obtain

Lemma 7

A.) For l < lmin,

s(l) := lf ′(K∗(l))K∗(l)−D2(1 + rs) < 0. (24)

B.) It holds that s(0) < 0 and s′(0) > 0. Further, assume that

−f ′′(K)K

f ′(K)
− f ′′′(K)K

−f ′′(K)
≥ −1. (25)

Then, s(l) has at most one extremum, which constitutes a maximum.

C.) Assume Condition (25) holds. There is a unique solution to s(l) = 0 if and only if

K∗(m)− D2p

1 + rs
> 0. (26)

The proof is in Appendix A. Part A.) of the lemma establishes that for l < lmin, Condition

(23) holds and thus banks default. Part B.) elaborates on the existence and uniqueness

of a value for l such that Condition (23) holds with equality. We note that Condition

(25) as stated in Part B.) is sufficient but not necessary. It is met by all production

functions of the type f(K) = Kα with 0 < α < 1 as well as by a logarithmic production

function f(K) = ln(1+K). Assumption (25) implies that there are at most two solutions

to s(l) = 0 within the interval (lmin,m).12 If they exist, we use lmin∗ and lmin∗∗ (lmin <

lmin∗ < lmin∗∗ < m) to denote them. If neither lmin∗ nor lmin∗∗ exist, Condition (23)

always holds. If lmin∗ exists but lmin∗∗ does not, then s(l) < 0 for all l < lmin∗, but

s(l) ≥ 0 for all l ≥ lmin∗. If both lmin∗ and lmin∗∗ exist, then s(l) < 0 for all l < lmin∗ and

l > lmin∗∗, but s(l) ≥ 0 for all lmin∗ ≤ l ≤ lmin∗∗.

12We note that, by definition, l cannot exceed m. Hence, we have implicitly assumed lmin < m. If
lmin ≥ m, then there obviously is a unique bank default equilibrium for all l (l ≤ m).
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Case selection. To avoid case distinctions, we focus in what follows on the case where

lmin∗ exists but lmin∗∗ does not, i.e., we focus on the case where Condition (26) as stated

in Lemma 7 C.) holds.13 We note that

lmin∗ =
(1 + rs)D2

f ′(K∗(lmin∗))K∗(lmin∗)
> lmin. (27)

We obtain the following proposition:

Proposition 4

A.) Suppose l < lmin∗. Then there exists an equilibrium where banks default in t = 2,

η = l, with

(i) K = K∗ = (f ′)−1
(

(1+rs)2

ph

)
,

(ii) E1 = K∗ − D2p
1+rs

=: E∗
1 ,

(iii) LB = L∗
B = D1 − D2p

1+rs
=

r∗d1µW

1+rs
,

(iv) LI = W −K∗ + D2p
1+rs

,

(v) rd1 = r∗d1 = rs + 1− p.

B.) For l ≥ lmin∗, there exists no equilibrium with bank default.

The proof is in Appendix A. In contrast to the no-bank-default equilibrium in Proposition

3, LB and E1 in the equilibrium with bank default are uniquely determined. The reason

is the following: Because of limited liability, it is optimal for an individual bank to invest

only the minimum amount l∗B in liquidity to survive in t=2, η = h, and to invest the rest

in LT. If banks invest more thanK∗ in LT, however, the expected return on bank equity is

lower than the return on investment in ST. Thus, owners provide only E1 = K∗+L∗
B−µW

of aggregate bank equity.

We note that, in equilibrium, the amount of LT investment is K = K∗ (< K̄) and

second generation debt holders invest in ST if η = l in t = 2. With regard to Proposition

2, we thus have K < K̄ and γ2 < 1, which implies that the equilibrium allocation is not

Pareto-optimal. Two types of inefficiency are associated with bank default: first, there is

early liquidation of long-term investment, second, the scale of long-term investment falls

short of its optimum K̄.

13There are model specifications where this condition obtains, as we show in Section 6.4.
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5.3 Summary

We can now summarize the findings from the previous two subsections. This will also

allows us to comment on the uniqueness of equilibrium.

Since Proposition 3 B.) established that there is no equilibrium without bank default

for l < lmin and Proposition 4 A.) established the existence of an equilibrium with bank

default for l < lmin∗, and knowing that lmin < lmin∗, we can conclude that for l < lmin,

there is a unique equilibrium with bank default. Similarly, Proposition 3 A.) together

with Proposition 4 B.) and the fact that lmin < lmin∗ implies that for l ≥ lmin∗ there is a

unique equilibrium without bank default.

For lmin < l < lmin∗, equilibria with and without bank default coexist. To see this,

first suppose that banks do not default and thus K = K̄. Then, according to Condition

(12) an individual bank that holds minimum liquidity liB will not default, since l > lmin.

Second, suppose that banks default in state η = l and thus K = K∗. Then, according to

Condition (23) an individual bank will default, since l < lmin∗ implies s(l) < 0.

The following theorem summarizes our results:

Theorem 1

There exist critical levels lmin, lmin∗, satisfying

lmin =
(1 + rs)D2

f ′(K̄)K̄
,

lmin∗ =
(1 + rs)D2

f ′(K∗(lmin∗))K∗(lmin∗)
,

with lmin < lmin∗, such that

(i) For l ≥ lmin∗, the unique equilibrium is characterized by Proposition 3 A.). The

allocation is first-best.

(ii) For l < lmin, the unique equilibrium is characterized by Proposition 4 A.). There

is inefficient early liquidation and an inefficient scale of long-term investment.

(iii) For lmin ≤ l < lmin∗, an equilibrium without bank default as characterized by

Proposition 3 A.) and an equilibrium with bank default as characterized by Propo-

sition 4 A.) coexist.
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The intuition for these findings is as follows. First, for small macroeconomic shocks, i.e.,

when l is larger than lmin∗ (and h is correspondingly lower), the amount of equity banks

attract is sufficient to buffer such shocks. Banks invest the socially optimal amount in

LT. They invest in an amount of liquidity that enables them to refinance in t = 2.

Second, for large macroeconomic shocks, i.e., when l is lower than lmin (and h is

correspondingly higher), banks default in case of η = l. This implies the possibility of

inefficient early liquidation of the LT investment. Moreover, banks must pay an interest

rate premium to first-period debt holders, as these debt holders anticipate the possibility

of default. Banks have to take this premium into account when considering the amount of

liquidity required to repay the first depositors in case of η = h, i.e., banks have to invest

more in ST. The fact that debt holders receive higher interest rates in the good state

also has a negative effect on the attractiveness of investing in bank equity. This requires

larger good-state marginal returns from LT investment, if investing in bank equity is to

stay attractive compared to ST investment. As a consequence, the equilibrium amount

of LT investment in case of bank default is below the efficient scale K̄ of LT investment

in the absence of default.

Last, for moderate macroeconomic shocks, i.e., for l ∈ [lmin, lmin∗), the two types

of equilibria just described coexist. Bank default occurs as a self-fulfilling prophecy. If

agents hold a positive outlook on banks’ solvency and thus depositors do not demand

a premium on the deposit rate and banks do not expect to default, then we obtain the

equilibrium without bank default. If, however, there are doubts about banks’ solvency

and agents act accordingly, then there is indeed equilibrium bank default.

6 Banking Regulation

We will now discuss whether and how regulatory intervention can alleviate the ineffi-

ciencies we have identified so far. In particular, we investigate whether liquidity and/or

capital regulation can prevent bank default and implement the first-best.
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6.1 Liquidity requirements

We start with liquidity requirements. Let ζ (0 < ζ < 1) denote a regulatory liquidity

ratio in the spirit of Basel III’s LCR, i.e., ζ denotes the amount of liquidity relative to

deposits that bank i is obliged to hold in t = 1:

liB
di1

≥ ζ.

As banks are initially identical, i.e., liB = LB/n and di1 = D1/n, regulation need not

differentiate across banks. Let us suppose for the moment that ζ is at a level where

banks do not default.

Banks’ optimization problem. The maximization problem of bank i, given regulatory

policy ζ, is

max
ki

{
E
(
ei3
)}

= max
ki

{
(1 + reL)k

i +

((
E1 +D1

n
− ki

)
(1 + rs)

− (1 + rs)
D1

n
+ di2

)
(1 + rs)− (1 + rs)d

i
2

}
= max

ki

{
(1 + reL)k

i +

(
E1

n
− ki

)
(1 + rs)

2
}
, (28)

subject to
liB
di1

= E1+D1

D1
− ki

di1
≥ ζ.14

Mandatory liquidity. The regulator has to stipulate ζ, which prevents bankruptcy of

bank i in state η = l. Then, according to Lemma 3, the regulatory liquidity ratio ζ has

to satisfy the following condition:

(1 + rlL)k
i +

(
ζdi1(1 + rs)− (1 + rs)

D1

n

)
(1 + rs) ≥ 0,

which yields

ζ ≥ 1− (1 + rlL)k
i

(1 + rs)2
D1

n

.

As we have observed in Section 5.1, an equilibrium in which banks do not default implies

an amount of LT investment K̄. The same argument applies here. We obtain

14We note that the maximization problem under liquidity requirements, assuming that no default
occurs, is identical to the maximization problem in the no-bank-default case without governmental
intervention (cf. Section 5.1), except that liB has to be larger than ζdi1.
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Proposition 5

Let l < lmin, so that in the absence of banking regulation a no-bank-default equilibrium

does not exist. There exists a critical level for l, given by

lcrit =
(K̄ −W )(1 + rs)

2

f ′(K̄)K̄
= m

(
1− W

K̄

)
, (29)

such that

A.) If l ≥ lcrit, a regulatory liquidity ratio ζreg given by

ζreg = 1− lf ′(K̄)K̄

(1 + rs)2D1

= 1− l

m

K̄

µW
(30)

ensures that there is a no-bank-default equilibrium with

(i) K = K̄,

(ii) LB ∈
[
ζregµW,W + µW − K̄

]
,

(iii) E1 = K̄ + LB − µW ,

(iv) LI = W − E1,

(v) rd2 = rs,

(vi) rd1 = rs.

B.) If l < lcrit, there exists no regulatory liquidity ratio such that banks do not default

and aggregate efficient investment K̄ occurs in LT.

The proof is in Appendix A. By Assumption 1, ζreg < 1 for l ≥ lcrit. We note that liB

has not only to comply with liquidity regulation ζreg, but must also ensure that there is

enough liquidity to repay the first depositors in t = 2. Thus, LB must be at least equal

to max{LB, ζ
regµW}, which, however, comes down to just ζregµW for l < lmin.

By Equation (13), lmin = (mµW )/((1+ rs)K̄). We obtain lcrit < lmin, since Equation

(29) and Assumption 1 yield

1− W

K̄
<

µW

(1 + rs)K̄
;

W +
µW

1 + rs
> K̄.
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For l < lcrit, there are not enough resources available at t = 1 to simultaneously achieve

the efficient scale of LT investment K̄ and hold enough liquidity to avoid default in t = 2

if η = l. Hence, liquidity regulation can implement the first-best when l ∈ [lcrit, lmin),

but not when l < lcrit.

Uniqueness of equilibrium. We note that Proposition 5 A.) does not establish a no-

bank-default equilibrium as the unique equilibrium. For uniqueness, i.e., to rule out the

existence of an equilibrium with bank default for l < lmin∗, making use of Lemma 3 with

K = K∗ and rd1 according to Equation (17) we require stronger liquidity regulation:

ζ ≥ 1− plf ′(K∗)K∗

(1 + rs)2µW
= 1− l

h

K∗

µW
:= ζreg∗ (> ζreg) . (31)

Implementability of the first-best as the unique equilibrium. With liquidity

regulation ζreg∗, it is possible to achieve the efficient scale of LT investment K̄ only for

values of l for which W + µW ≥ ζreg∗µW + K̄, which we can write as

s2(l) := lf ′(K∗(l))K∗(l)− (K̄ −W )(1 + rs)
2

p
≥ 0. (32)

Clearly, s2(0) < 0. Furthermore, s2(l) < 0 for all l < lcrit, since K∗(l) < K̄ by Lemma 6

(ii) and since
∣∣∣f ′′(K)K

f ′(K)

∣∣∣ < 1. Comparing Expression (32) to Expression (24) immediately

shows s′2(l) = s′(l). Hence, Lemma 7 B.) applies, and again we focus on the case where

a unique l within (lcrit,m) solves Condition (32) with equality, which as in Lemma 7 C.)

is the case if and only if

K∗(m)− (K̄ −W ) > 0. (33)

Denote this unique solution to Equation (32) by lcrit∗. We note that

lcrit∗ =
(K̄ −W )(1 + rs)

2

pf ′(K∗(lcrit∗))K∗(lcrit∗)
(> lcrit). (34)

It follows that, for lcrit∗ ≤ l < lmin∗, liquidity regulation ζreg∗ implements a unique no-

bank-default equilibrium with LB at least equal to max{L∗
B, ζ

reg∗µW} = ζreg∗µW and

LT investment K at its efficient scale K̄. We note that ζreg∗ < 1, for l ≥ lcrit∗.

Feasibility of the first-best as the unique equilibrium. We note that lcrit∗ < lmin∗.

By comparing Equations (27) and (34), this follows from Assumption 1. Hence, there is

33



indeed a range of parameter values l ∈ [lcrit∗, lmin∗) for which liquidity regulation ζreg∗ is

feasible and effective in implementing the first-best as the unique equilibrium.

6.2 Capital requirements

We next consider a regulatory capital ratio ρ (0 < ρ < 1) which stipulates that the equity

financing of a bank i has to satisfy
ei1
ki

≥ ρ.

Let us suppose for the moment that ρ is at a level where banks do not default. Then

owners will supply bank equity capital to the amount of at least E1 = ρK̄, and we obtain

rd1 = rs, K = K̄. It follows that banks will indeed not default if

(1 + rlL)K̄ + [LB(1 + rs)−D1(1 + rs)] (1 + rs) ≥ 0.

With the balance sheet E1 +D1 = K̄ + LB and E1 = ρK̄, this yields

lf ′(K̄)K̄ +
(
ρK̄ − K̄

)
(1 + rs)

2 ≥ 0

and thus

ρ ≥ 1− lf ′(K̄)

(1 + rs)2

= 1− l

m
.

We obtain the following proposition:

Proposition 6

Let l < lmin, so that in the absence of banking regulation a no-bank-default equilibrium

does not exist. Then

A.) If l ≥ lcrit, the capital requirement ρreg given by

ρreg = 1− lf ′(K̄)

(1 + rs)2
= 1− l

m
(35)

ensures that there is a no-bank-default equilibrium with
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(i) K = K̄,

(ii) E1 ∈ [ρregK̄,W ],

(iii) LB = E1 + µW − K̄,

(iv) LI = W − E1,

(v) rd2 = rs,

(vi) rd1 = rs.

B.) If l < lcrit, there exists no capital requirement ensuring that banks do not default

and aggregate efficient investment occurs in LT.

The proof is in Appendix A. The proposition is analogous to Proposition 5 in the previous

subsection. We note that E1 has not only to comply with capital regulation ρreg, but must

also be large enough to allow for enough liquidity holdings to repay the first depositors

in t = 2. Thus, E1 has to equal at least max
{
ρregK̄, K̄ + LB − µW

}
, which, however,

comes down to just ρregK̄ for l < lmin.

Uniqueness of equilibrium. We note that Proposition 6 A.) does not establish a

no-bank-default equilibrium as the unique equilibrium. Ruling out the existence of an

equilibrium with bank default for l < lmin∗ requires stronger capital regulation, as we will

show next. If agents expect banks to default under a regulatory capital ratio ρ, owners

will supply bank equity capital to the amount E1 = ρK∗, and we obtain K = K∗ and rd1

according to Equation (17). Making use of Lemma 3, ruling out the existence of such an

equilibrium with bank default requires

lf ′(K∗)K∗ + ρK∗ (1 + rs)
2

p
−K∗ (1 + rs)

2

p
≥ 0,

that is, a regulatory capital ratio that satisfies

ρ ≥ 1− plf ′(K∗)

(1 + rs)2

= 1− l

h
=: ρreg∗. (36)

Comparing Equation (36) to Equation (35) shows that ρreg∗ > ρreg, i.e., the regulatory

capital ratio required to implement the first-best as the unique equilibrium is stronger
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than the one required to implement it as an equilibrium.

Implementability of the first-best as the unique equilibrium. If LT investment

is to achieve its efficient scale K̄, banks’ capital ratios will only satisfy ρreg∗ (> ρreg) if

E1/K̄ ≥ ρreg∗, which in turn is only possible if

W

K̄
≥ ρreg∗;

l ≥ h

(
1− W

K̄

)
. (37)

Obviously, there is a unique value of l (< m) that solves Condition (37) with equality.

We denote this value by lcrit
′
and note that

lcrit
′
=

(K̄ −W )(1 + rs)
2

pf ′(K∗(lcrit′))K̄
(> lcrit). (38)

For l ≥ lcrit
′
, capital regulation ρreg∗ rules out an equilibrium with bank default and estab-

lishes a no-bank-default equilibrium with E1 equal to at least max{K̄+LB−µW, ρreg∗K̄}

and LT investment K at its efficient scale K̄.

Feasibility of the first-best as the unique equilibrium. We note that since K∗(l) <

K̄ for all l (< m), comparing Expression (38) to Expression (34) yields lcrit
′
< lcrit∗ (<

lmin∗). It follows that there is indeed a range of parameter values l ∈ [lcrit
′
, lmin∗) for

which capital requirements ρreg∗ are feasible and effective in implementing the first-best

as the unique equilibrium.

6.3 Comparing liquidity and capital regulation

Comparing the results from Section 6.1 to those in Section 6.2, we obtain

Theorem 2

Let l < lmin∗. Then

(i) For l ≥ lcrit, both liquidity regulation ζreg and capital regulation ρreg can implement

the first-best as an equilibrium outcome.

(ii) For l ≥ lcrit∗ (> lcrit
′
> lcrit), both liquidity regulation ζreg∗ and capital regulation

ρreg∗ can implement the first-best as the unique equilibrium outcome.
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(iii) For (lcrit <) lcrit
′ ≤ l < lcrit∗, only capital regulation ρreg∗ can implement the first-

best as the unique equilibrium outcome.

Overall, Theorem 2 states that to guarantee a Pareto-optimal outcome, capital regulation

is necessary in Case (iii). In Case (ii), either form of regulation will suffice. We note that

for l < lcrit
′
, neither form of regulation can uniquely implement the first-best, and for

l < lcrit, neither form of regulation can implement the first-best at all. However, if the

main goal of regulation is to definitely rule out default, then capital regulation is superior

to liquidity regulation for all l < lcrit
′
in that it allows LT investment to be closer to its

efficient scale in the remaining equilibrium without default.15

If they are to implement the first-best, both capital and liquidity regulation have to

establish an equilibrium without bank default that still leaves banks with enough funds

available to achieve the efficient scale of long-term investment K̄. Liquidity regulation,

on the one hand, achieves this by ensuring that banks hold an amount of safe liquid

assets (relative to deposits) that reduces the banks’ vulnerability to the macro shock to

a level where they can always at least repay their depositors, thereby ruling out default.

Without the risk of default, LT investment and bank equity investment dominate ST

investment as long as K < K̄. Hence, owners will provide banks with enough equity

capital to achieve K = K̄. On the other hand, capital regulation requires banks to have

a certain amount of equity E1 relative to LT investment. Banks can only attract equity

capital if they can offer a return on equity that dominates the return on ST investment.

As the regulatory capital ratio constrains the banks’ amount of LT investment for any

given amount of equity, they will voluntarily invest in an amount of liquid assets high

enough to rule out default, which in turn allows for excess returns on bank equity until

an amount of LT investment K̄ has been reached.

Combining liquidity and capital regulation. Although liquidity and capital require-

ments work in different ways, they can achieve similar outcomes. This becomes clear if

we note that Proposition 6 entails that the optimal capital regulation ρreg to implement

a no-bank-default equilibrium already implies liquidity holdings LB that match those im-

15In case the first-best cannot be uniquely implemented, a global games approach could help to further
investigate whether it is better to have strict regulation that definitely rules out default or to have weaker
regulation that allows LT investment to be closer to its efficient scale in the no-default equilibrium.
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plied by the corresponding optimal liquidity regulation ζreg in Proposition 5. Vice versa,

liquidity regulation ζreg already implies an amount of equity capital E1 that matches that

of the corresponding optimal capital regulation ρreg. Since ρreg and ζreg also feature the

same threshold value for l, i.e., they can both implement the first-best only for l ≥ lcrit,

we can immediately state the following corollary:

Corollary 1

Capital and liquidity requirements are perfect substitutes in implementing the first-best

as an equilibrium outcome.

In particular, this means that with regard to implementing the first-best as an equilibrium

outcome, combining capital regulation with liquidity regulation cannot yield benefits over

using only one of the two.

Capital regulation is more powerful. The reason why capital regulation is superior to

liquidity regulation in implementing the first-best as the unique equilibrium outcome, as

established in Theorem 2, can be set out as follows: Since the banks’ time-3 revenues from

long-term assets in an equilibrium with default are smaller than in the equilibrium without

default (i.e., f ′(K∗)K∗ < f ′(K̄)K̄), a larger amount of liquidity holdings is required for

the banks to still be able to repay the late depositors. Therefore, ruling out equilibria with

bank default through liquidity regulation requires stricter liquidity requirements than the

ones required for implementing the first-best as just an equilibrium, i.e., ζreg∗ > ζreg.

These additional liquidity requirements, however, do not have to be (fully) matched by

more equity when using capital regulation instead. The reason is that the amount of

LT investment in an equilibrium with default is smaller than in the equilibrium without

default (i.e., K∗ < K̄), which implies that for a given amount of equity capital banks hold

more liquid assets. The fact that the regulatory capital ratio still has to be strengthened,

i.e., ρreg∗ > ρreg, is because in order to achieve the same amount of regulatory equity

capital E1, the required ratio of equity capital to LT investment K has to increase,

since K∗ < K̄. Importantly, however, capital regulation has to be strengthened by less

than the corresponding liquidity regulation. In other words, a regulatory capital ratio

that rules out the existence of an equilibrium with default leaves banks more room than

the corresponding liquidity regulation to achieve the efficient scale of LT investment in
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the remaining equilibrium without default. We illustrate this finding in the numerical

example below. The following corollary restates the result:

Corollary 2

Capital regulation is more powerful than liquidity regulation in implementing the first-

best as the unique equilibrium outcome.

As an addition to Corollary 2, we note that if uniquely implementing the first-best is

not possible at all, ruling out equilibria with default through capital regulation, rather

than through liquidity regulation, allows LT investment to be closer to the first-best in

the remaining no-default equilibrium. In combination, Corollaries 1 and 2 imply that

optimal banking regulation can be achieved through capital regulation alone. Adding

liquidity requirements to optimal capital regulation is redundant. This result is intuitive

also from a different perspective: Since ruling out bank default immediately eliminates

any liquidity risk as well, the goal of both capital and liquidity regulation actually is to

address solvency risk. Unsurprisingly, capital regulation is overall superior in this regard.

Finally, we note that banking regulation harms neither owners nor debt holders. In

equilibrium, they earn an expected return 1 + rs in each period both with and without

regulation. Since banking regulation restores the first-best, the entrepreneurs will then

benefit.

6.4 Numerical example

We conclude the section with a simple example. Suppose f(K) = ln(1 + K). The

production function satisfies the Inada condition at infinity, but not at 0. The latter is

not a problem as long as ph > (1 + rs)
2 is assumed. We note that

∣∣∣f ′′(K)K
f ′(K)

∣∣∣ = K
1+K

< 1

and Condition (25) in Lemma 7 holds: −f ′′(K)K
f ′(K)

− f ′′′(K)K
−f ′′(K)

= − K
1+K

≥ −1.

Suppose further that rs = 0.02, p = 0.7, m = 15, W = 10 and µ = 1.25. Since we

keep m fixed, ph = m− (1− p)l. We obtain K̄ = 13.42, and Assumption 1 holds. Since

Conditions (26) and (33) hold, we obtain unique values for lmin∗, lcrit∗ and lcrit
′
. Figure 3

illustrates the necessity of banking regulation and the capabilities of capital and liquidity

regulation, depending on the magnitude of macro-risk.

Figure 4 illustrates the liquidity and capital requirements that rule out bank default
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Figure 3: Implementability of a no-bank-default equilibrium as a function of l

and implement the first-best as functions of l. Intuitively, Figure 4a shows that the

liquidity holdings LR := ζregµW implied by the regulatory liquidity ratio ζreg, which

implements the no-bank-default equilibrium as an equilibrium outcome, exceed LB for

l < lmin. Furthermore, the liquidity holdings L∗
R := ζreg∗µW implied by ζreg∗, which

implements the no-bank-default equilibrium as the unique equilibrium, exceed L∗
B for l <

lmin∗. Analogously, Figure 4b shows that the capital ratio ρreg required to implement the

no-bank-default equilibrium as an equilibrium exceeds Ē1

K̄
for l < lmin. The capital ratio

ρreg∗ that implements the no-bank-default equilibrium as the unique equilibrium exceeds

E∗
1

K∗ for l < lmin∗. We can further show that ζreg∗∆ (l) := ζreg∗−ζreg

ζreg
> ρreg∗−ρreg

ρreg
=: ρreg∗∆ (l) for

lcrit < l < lmin∗. This is in line with our argument that in order to rule out the existence

of an equilibrium with default, regulation has to be strengthened by more (in relative

terms) if one relies on liquidity requirements rather than on a regulatory capital ratio.

For instance, ζreg∗∆ (5) = 0.17 > 0.11 = ρreg∗∆ (5).

Figure 5 sheds further light on why capital regulation is more powerful than liquidity

regulation. It compares the banks’ minimum amount of equity capital required under

capital regulation to the banks’ implicitly required minimum amount of equity capital

under liquidity regulation, both as a function of l. Figure 5a considers regulation aimed

at implementing the first-best as an equilibrium outcome. The amount of equity capital

under capital regulation, given by ρregK̄, is equal to the implied amount of equity capital

under liquidity regulation, given by K̄ + ζregµW − µW via the balance sheet, for all

l. Implementing the first-best as an equilibrium outcome is not possible for l < lcrit,

since the (implied) capital holdings required to rule out bank default and implement LT

investment at its efficient scale K̄ exceed the maximum available amount of equity capital

that owners can provide: ρreg(l)K̄ > W = 10, for l < lcrit. Figure 5b considers regulation
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Figure 4: Banking regulation as a function of l

(a) Liquidity regulation (b) Capital regulation

Figure 5: (Implied) regulatory equity capital

(a) Equilibrium without bank default exists (b) Equilibrium without bank default is unique
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aimed at implementing the first-best as the unique equilibrium outcome. Strikingly,

the implicitly required amount of equity capital under liquidity regulation, given by

K̄ + ζreg∗µW − µW , is larger than the required equity capital ρreg∗K̄ under capital

regulation, for any given l. This means that in order to uniquely implement the first-

best, the implicitly required amount of equity capital under liquidity regulation ζreg∗ is

larger than the amount of equity that banks need to have under capital regulation ρreg∗.

As a consequence, only capital regulation can implement the first-best as the unique

equilibrium for lcrit
′ ≤ l < lcrit∗. The fact that capital regulation is more efficient than

liquidity regulation in imposing equity requirements on the banks hardly comes as a

surprise, since capital regulation directly targets equity capital while liquidity regulation

can do so only indirectly.

7 Conclusion

We propose a simple general equilibrium model to study the interplay of capital and

liquidity regulation by focusing on future funding risks of banks. Banks, protected by

limited liability, may hold insufficient amounts of capital or liquidity to prevent default.

Once it becomes clear that a bank will encounter solvency issues in the future, it ex-

periences refinancing problems straightaway. This insight matters for any assessment of

whether a troubled bank is insolvent or just illiquid. Even if a bank is not currently in-

solvent, liquidity problems can still be related to solvency issues. Doubts about solvency

in the future are sufficient to cause liquidity problems already in the present.

If macroeconomic shocks are not too large, banking regulation can help to avoid

bank default and implement the efficient allocations. Capital regulation turns out to be

more powerful than liquidity requirements in implementing the first-best as the unique

equilibrium. Capital regulation also addresses illiquidity risk, since well-capitalized banks

are not at risk of defaulting in the future and thus can always refinance. To some extent,

liquidity requirements can also address insolvency risk, since they require banks to hold

larger amounts of safe short-term assets. This decreases the banks’ vulnerability to shocks

and thereby decreases the likelihood of default in a bad state of the world. From this

perspective, capital and liquidity requirements are substitutes rather than complements.
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In terms of policy, equilibrium multiplicity in the sense of self-fulfilling expectations

highlights the fact that (re)building investors’ and depositors’ trust in the resilience of

the banking system is complementary to actual banking regulation. In the presence of

potentially large macro-shocks, policy faces a trade-off since banking regulation then

cannot rule out bank default in all future states of the world while at the same time

leaving banks with sufficient funds to achieve their efficient scale of long-term investment.

Regulation then has to either accept the possibility of bank default in very bad states of

the world or strongly limit banks’ scale of long-term investment in all states of the world.

If strictly ruling out bank default is the priority, capital regulation is superior to liquidity

regulation in that it allows long-term investment to be closer to the first-best. Adding

liquidity requirements to optimal capital regulation is redundant, since under optimal

capital regulation banks will already hold sufficient amounts of voluntary liquidity.
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A Proofs

Proof of Proposition 1

Proposition 1 follows from the following considerations: First, at equilibrium prices, buy-

ing long-term assets by owners and debt holders in t = 1 and t = 2 must be as profitable

as (repeatedly) investing in ST in order to maximize their expected consumption. Debt

holders who buy long-term assets in t = 2 achieve a return

rη

qη2
=

η(1+rs)2

m

qη2
,

which equals the one-period return from ST investment if and only if qη2 = q̂η2 , for η ∈

{l, h}. Table 1 shows asset demand and supply in t = 2. For qη2 > q̂η2 , ST investment

dominates the returns from buying the asset, and thus asset supply exceeds demand. For

qη2 < q̂η2 , holding the asset is more profitable than selling it and investing in ST instead.

Thus, owners do not supply the asset to the market. Late debt holders, however, would

like to acquire assets. Since K̄ − W < µW by Assumption 1, asset demand exceeds

supply. It follows that market clearing is possible only for qη2 = q̂η2 , η ∈ {l, h}.16

Table 1: Supply and demand for long-term assets in t = 2

Price Supply Demand

qη2 > q̂η2 K̄ 0

qη2 = q̂η2 K̄ −W any value in [0, µW ]

qη2 < q̂η2 K̄ −W µW

To determine q1, we note that, in period t = 1, the expected payoff in t = 3 of one unit

of the long-term asset is prh + (1 − p)rl = (1 + rs)
2. Anticipating equilibrium prices in

t = 2, the payment that first-period debt holders can expect from selling one long-term

asset in t = 2 is

pq̂h2 + (1− p)q̂l2 = 1 + rs.

16At qη2 = q̂η2 , owners are indifferent between selling their long-term assets, investing in ST, and holding
the assets. Without loss of generality, we assume they continue to hold their assets for qη2 = q̂η2 . However,
any distribution of long-term asset holdings in t = 2 among owners and late debt holders constitutes an
equilibrium if it satisfies the wealth constraint.
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Considering further that ST investment yields a return (1 + rs) per period, asset market

clearing in t = 1 implies q1 = q̂1 = 1. Profit maximization by entrepreneurs then yields

aL = âL = K̄.

Finally, we observe that the consumption plans given by Equation (7) are feasible.

Since q̂h2 > q̂l2, we know that ĈD
2 (η = h) > ĈD

2 (η = l). With Assumption 1 we obtain

ĈD
2 (η = l) > 0. Furthermore, Assumption (1) together with m > ph implies that

(1 + rs)
h
m
(K̄ −W ) < µW and thus

ĈD
2 (η = h) = (K̄ −W )q̂h2 + (µW +W − K̄)(1 + rs)

=
h(1 + rs)

m
(K̄ −W ) + (µW +W − K̄)(1 + rs)

< µW + (1 + rs)(µW +W − K̄),

where µW + (1 + rs)(µW +W − K̄) is the total amount of resources available at t = 2.

This completes the proof. □

Proof of Proposition 2

We prove the Proposition in two steps. In Step 1, we show that no pair except (γ2, K̄)

with γ2 ∈ [0, 1) and (1, K) with K ≤ K̄ can be Pareto-optimal. In Step 2, we will show

that the pairs referred to here are Pareto-optimal.

Step 1. We can immediately state that no pair (γ2, K̄) with K > K̄ can ever be

Pareto-optimal, since in that case ST investment yields higher expected returns than LT

investment. A marginal decrease in K, i.e., a shift in resources from LT investment to

ST investment, accompanied by an adequate decrease in γ2, would then obviously allow

for a Pareto improvement. Thus, for the rest of Step 1, let K ≤ K̄. We consider three

cases: γ2 = 0, γ2 ∈ (0, 1), and γ2 = 1.

Case (i): γ2 = 0

For γ2 = 0, expected period-2 consumption is zero. Then, no K that does not maximize

expected period-3 consumption can be Pareto-optimal. Hence, the only candidate for a

Pareto-optimum is (0, K) with LT investment at its efficient scale K = K̄.

Case (ii): γ2 ∈ (0, 1)
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From Equations (8)-(9), we obtain

∂CS2

∂K
= −γ2(1 + rs) < 0,

∂Y

∂K
= mf ′(K)− (1− γ2)(1 + rs)

2 > 0.

Clearly, CS2 is decreasing in K. For K ≤ K̄, period-3 consumption Y is certainly

increasing in K. Furthermore,

∂CS2

∂γ2
= (1 + rs)(W + µW −K) + µW > 0,

∂Y

∂γ2
= −(1 + rs)[(1 + rs)(W + µW −K) + µW ] < 0.

If the CS2-indifference curve and the Y -indifference curve in (γ2, K)-space are not tangent

at (γ2, K), then (γ2, K) cannot be Pareto-optimal. Hence, let us turn to the tangency

condition, which is

(1 + rs)(W + µW −K) + µW

γ2(1 + rs)
=

(1 + rs)[(1 + rs)(W + µW −K) + µW ]

mf ′(K)− (1− γ2)(1 + rs)2
.

This implies γ2(1 + rs)
2 = mf ′(K)− (1− γ2)(1 + rs)

2 or mf ′(K) = (1 + rs)
2 or K = K̄.

Hence, for γ2 ∈ (0, 1), only pairs (γ2, K) with K = K̄ are candidates for Pareto-optima.

Case (iii): γ2 = 1

Third-period consumption in case of γ2 = 1 is simply given by Y = mf(K), which is

increasing in K. As already set out, pairs with K > K̄ cannot be Pareto-optimal. Hence

only pairs (1, K) with K ≤ K̄ qualify as candidates for Pareto-optima.

Step 2. It remains to be shown that all pairs (γ2, K̄) with γ2 ∈ [0, 1) and all pairs (1, K)

with K ≤ K̄ are Pareto-optimal. A pair (γ2, K) is Pareto-optimal if it is not (weakly)

Pareto-dominated by some other pair (γ′
2, K

′).

First, consider the pair (γ2, K) = (0, K̄), which implies CS2 = 0 and Y = mf(K̄) +

(1+rs)
[
(1 + rs)(W + µW − K̄) + µW

]
. Any pair (γ′

2, K
′) with γ′

2 > 0 or K ′ ̸= K̄ would

yield Y ′ < Y . It follows that no other pair Pareto-dominates the pair (0, K̄), which

accordingly is Pareto-optimal.

Next, consider a pair (γ2, K̄) with γ2 ∈ (0, 1). Suppose this pair is not Pareto-optimal,
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i.e., there exists a pair (γ′
2, K

′) that Pareto-dominates it. In Step 1 we already established

that this would require K ′ = K̄. But any (γ′
2, K̄) with γ′

2 < γ2 decreases CS2, while any

(γ′
2, K̄) with γ′

2 > γ2 decreases Y . It follows that no other pair Pareto-dominates the pair

(γ2, K̄) with γ2 ∈ (0, 1). Hence, such a pair is Pareto-optimal.

Last, consider a pair (1, K) with K ≤ K̄, which gives rise to CS2 = (1 + rs)(W +

µW − K) + µW and Y = mf(K). Any pair (γ′
2, K

′) with γ′
2 ≤ 1 and K ′ ≥ K yields

C ′
S2 ≤ CS2. Any pair (1, K ′) with K ′ < K yields Y ′ < Y . Finally, any pair (γ′

2, K
′)

with γ′
2 < 1 and K ′ < K necessarily yields C ′

S2 < CS2 or Y ′ < Y , since K ′ < K implies

moving (further) away from the efficient scale of LT investment K̄. We have thus shown

that no other pair Pareto-dominates the pair (1, K) with K ≤ K̄, which accordingly is

Pareto-optimal. □

Proof of Lemma 4

We prove 1+reL = (1+rs)
2 by showing that neither 1+reL > (1+rs)

2 nor 1+reL < (1+rs)
2

can hold in equilibrium.

Step 1. First, suppose that 1 + reL > (1 + rs)
2. This implies that the aggregate amount

of LT investment K satisfies K < (f ′)−1
(

(1+rs)2

m

)
= K̄. Then,

E(ei3) = (1 + reL)k
i +

(
E1

n
− ki

)
(1 + rs)

2

> (1 + rs)
2ki +

(
E1

n
− ki

)
(1 + rs)

2 =
E1

n
(1 + rs)

2,

i.e., the return on equity is higher than the return on investment in ST. This cannot be

optimal, since by Assumption 1 and rd1 = rs, D1 = D2 = µW , there are enough resources

in the economy for a minimum ST investment LB to ensure the banks’ survival in t = 2

and an LT investment at its efficient scale K̄:

W +D1 > D1 −
D2

1 + rs
+ K̄

= LB + K̄.

Hence, as long as 1 + reL > (1 + rs)
2, owners would increase their investment in bank

equity, and banks would channel these additional funds into LT investment. This yields
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a contradiction to 1 + reL > (1 + rs)
2.

Step 2. Second, suppose that 1 + reL < (1 + rs)
2. Then,

E(ei3) < (1 + rs)
2ki +

(
E1

n
− ki

)
(1 + rs)

2 =
E1

n
(1 + rs)

2.

This means that the owners would not invest in bank equity since the return on investment

in ST is higher. Therefore we obtain a contradiction to 1 + reL < (1 + rs)
2.

Step 3. Combining our results from Step 1 and Step 2, we find that in any equilibrium

1 + reL = (1 + rs)
2.

Together with 1 + reL = mf ′(K) it immediately follows that the equilibrium aggregate

investment in LT is K̄. □

Proof of Lemma 5

We first prove that p(1+ rhL) = (1+ rs)
2 by showing that neither p(1+ rhL) > (1+ rs)

2 nor

p(1 + rhL) < (1 + rs)
2 can hold in equilibrium. Then we argue that this implies liB = l∗B.

Step 1. First, suppose that p(1 + rhL) > (1 + rs)
2. This implies that aggregate LT

investment K satisfies K < (f ′)−1
(

(1+rs)2

ph

)
< (f ′)−1

(
(1+rs)2

m

)
= K̄. Using Equations

(17) and (18) yields

E(ei3) = p(1 + rhL)
K

n
+ p

(
LB

n
(1 + rs)− (1 + rd1)

D1

n
+

D2

n

)
(1 + rs)− p(1 + rs)

D2

n

= p(1 + rhL)
K

n
+ p

LB

n
(1 + rs)

2 − (1 + rs)
2D1

n
+ (1− p)(1 + rs)

2LB

n

= p(1 + rhL)
K

n
+

LB

n
(1 + rs)

2 − (1 + rs)
2D1

n

> (1 + rs)
2

(
K

n
+

LB

n
− D1

n

)
= (1 + rs)

2E1

n
.

The return on equity is higher than the return on investment in ST. Assumption 1 implies

W + µW > µW − pµW

1 + rs
+ K̄

> µW

(
1− p

1 + rs

)
+ (f ′)−1

(
(1 + rs)

2

ph

)
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= L∗
B + (f ′)−1

(
(1 + rs)

2

ph

)
.

This means that either (a) the banks’ voluntary liquidity must exceed minimum liquidity

L∗
B := nl∗B, which cannot be optimal as p(1 + rhL) > (1 + rs)

2 implies that LT investment

yields a higher return, or (b) owners must be investing some of their resources in ST,

which cannot be optimal as bank equity yields a higher return. Hence we obtain a

contradiction to p(1 + rhL) > (1 + rs)
2.

Step 2. Second, suppose that p(1 + rhL) < (1 + rs)
2. Then, we obtain

E
(
ei3
)
= p(1 + rhL)

K

n
+

LB

n
(1 + rs)

2 − (1 + rs)
2D1

n

< (1 + rs)
2

(
K

n
+

LB

n
− D1

n

)
= (1 + rs)

2E1

n
,

which implies that owners would not invest in bank equity since the return on investment

in ST is higher. Hence, we obtain a contradiction to p(1 + rhL) < (1 + rs)
2.

Step 3. Combining our results from Step 1 and Step 2, we find that in any equilibrium

p(1 + rhL) = (1 + rs)
2. (A.1)

From p(1 + rhL) = phf ′(K) and Equation (A.1) it immediately follows that K∗ =

(f ′)−1
(

(1+rs)2

ph

)
.

Step 4. Finally, we argue that p(1 + rhL) = (1 + rs)
2 implies liB = l∗B. Because of

limited liability, the expected marginal return of an individual bank from investing in

LT is p(1 + rhL), while the bank’s expected marginal return from repeatedly investing in

liquid assets is p(1 + rs)
2. Since p(1 + rhL) = (1 + rs)

2 > p(1 + rs)
2, the bank holds only

the minimum amount of liquidity required to survive in t = 2, η = h. Equation (21)

follows from substituting LB = nlB = µW
1+rs

rd1 into Equation (17). With rd1 = r∗d1 follows

liB = l∗B. □

Proof of Lemma 6

Step 1. We first establish existence and uniqueness. From the assumption of concavity of
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f(K), there exists a uniquely determined K for every f ′(K), i.e., there exists a uniquely

determined K∗ for all l (< m).

Step 2. From Equation (20) we obtain

K∗ = (f ′)−1

(
(1 + rs)

2

m− (1− p)l

)
< (f ′)−1

(
(1 + rs)

2

m

)
= K̄.

Therefore K∗ < K̄ has to hold for all l (< m).

Step 3. We rewrite Equation (20) as

f ′(K∗) =
(1 + rs)

2

m− (1− p)l
.

We differentiate both sides with respect to K∗ and l and obtain

dK∗

dl
=

(1− p)(1 + rs)
2

[m− (1− p)l]2f ′′(K∗)
< 0. (A.2)

□

Proof of Lemma 7

Part A. For Part A.) of the lemma, we note that for l < lmin,

lf ′(K∗(l))K∗(l) < lminf ′(K∗(l))K∗(l)

< lminf ′(K̄)K̄

= D2(1 + rs),

where the second inequality follows from Lemma 6 (ii) and the assumption
∣∣∣f ′′(K)K

f ′(K)

∣∣∣ < 1.

Part B. We next prove Part B.). Obviously, s(0) = −D2(1 + rs) < 0. Taking the

derivative of s(l) yields

s′(l) = f ′(K∗)K∗ + l [f ′′(K∗)K∗ + f ′(K∗)]
∂K∗

∂l
.

With ∂K∗/∂l according to Equation (A.2) and (m − (1 − p)l)f ′(K∗) = (1 + rs)
2, we
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obtain

s′(l) =
(1 + rs)

2

m− (1− p)l
K∗ + l [f ′′(K∗)K∗ + f ′(K∗)]

(1− p)(1 + rs)
2

f ′′(K∗)(m− (1− p)l)2

=
(1 + rs)

2K∗

m− (1− p)l

[
1 +

(1− p)l

(m− (1− p)l)

(
1 +

f ′(K∗)

f ′′(K∗)K∗

)]
=

(1 + rs)
2K∗

m− (1− p)l

[
(m− (1− p)l) + (1− p)l

(m− (1− p)l)
+

(1− p)l

(m− (1− p)l)

f ′(K∗)

f ′′(K∗)K∗

]
=

(1 + rs)
2K∗

(m− (1− p)l)2︸ ︷︷ ︸
=:A

[
m+ (1− p)l

f ′(K∗)

f ′′(K∗)K∗

]
︸ ︷︷ ︸

=:B

.

We immediately see that s′(0) = Am > 0. Since A > 0, the FOC is given by B = 0. We

show that B is strictly decreasing, which implies that if a solution to the FOC exists,

then it is unique and yields a maximum. Taking the derivative:

∂B

∂l
= (1− p)

[
f ′(K∗)

f ′′(K∗)K∗

+ l

[
f ′′(K∗)

f ′′(K∗)K∗ − f ′(K∗)

[f ′′(K∗)K∗]2
[f ′′′(K∗)K∗ + f ′′(K∗)]

]
∂K∗

∂l

]
.

This derivative is smaller than zero if

1 +
l

K∗
∂K∗

∂l

[
f ′′(K∗)K∗

f ′(K∗)
− 1

f ′′(K∗)
[f ′′′(K∗)K∗ + f ′′(K∗)]

]
> 0;

1 +
l

K∗
∂K∗

∂l

[
f ′′(K∗)K∗

f ′(K∗)
− f ′′′(K∗)K∗

f ′′(K∗)
− 1

]
> 0;

1− l

K∗
∂K∗

∂l
− l

K∗
∂K∗

∂l

[
−f ′′(K∗)K∗

f ′(K∗)
− f ′′′(K∗)K∗

−f ′′(K∗)

]
> 0.

The fact that ∂K∗/∂l < 0 and that by assumption the term in brackets is greater than

−1 completes the proof.

Part C. Last, we prove Part C.). From Part B.) we know that a unique solution l ∈

(lmin,m) to the problem s(l) = 0 exists if and only if s(m) > 0, i.e., if and only if

mf ′(K∗(m))K∗(m)−D2(1 + rs) > 0;

m
(1 + rs)

2

m− (1− p)m
K∗(m)−D2(1 + rs) > 0;
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K∗(m)− D2p

1 + rs
> 0.

□

Proof of Proposition 4

Part A. We show that for l < lmin∗, there is an equilibrium with default. To see this,

suppose that banks default in equilibrium in state η = l and thus K = K∗, rd1 = rs+1−p

and phf ′(K∗) = (1 + rs)
2. Then, by the definition of lmin∗, a bank with liB = l∗B will

default. Now suppose that bank i deviates by holding sufficient voluntary liquidity liB =

l̂i∗B (l̂i∗B > l∗B) to just avoid default in η = l. Then its expected profits would be given by

E(ei3) = p

[
hf ′(K∗)ki +

(
l̂i∗B − l∗B

)
(1 + rs)

2 − D2

n
(1 + rs)

]
+ (1− p) · 0, (A.3)

where ei3 = 0 for η = l, since the bank holds voluntary liquidity to only just survive in

the bad state. If instead the bank holds only voluntary liquidity l∗B and defaults in state

η = l, its expected profits are given by

E(ei3) = p

[
hf ′(K∗)

(
ki + l̂i∗B − l∗B

)
− D2

n
(1 + rs)

]
+ (1− p) · 0, (A.4)

where ei3 = 0 for η = l, as in case of default the bank is protected by limited liability.

Since hf ′(K∗) > phf ′(K∗) = (1 + rs)
2, Expression (A.4) is greater than Expression

(A.3), hence the bank prefers to hold minimum liquidity l∗B and default in state η = l.

Accordingly, for l < lmin∗ there is an equilibrium with bank default.

We further observe that the amount of resources owners invest in ST is given by

LI = W − E1 and the equilibrium values of rd1, l
i
b, K and E1 are given according to

Lemma 5 (ii) and Equations (20) and (22).

Part B. An equilibrium with bank default does not exist for l > lmin∗. To see this,

suppose there was an equilibrium with bank default and thus K = K∗, rd1 = rs + 1− p

and phf ′(K∗) = (1+rs)
2. Then Condition (23) is violated for a bank that holds minimum

liquidity l∗B and thus the bank will not default—a contradiction.

□
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Proof of Proposition 5

Step 1. It is instructive to look first at the second part of the proposition. Suppose that

l = 0. Then ζreg = 1. The maximum amount of resources of the banking system in t = 1

is W + µW . Since ζreg = 1 implies LB = µW , the banking system can invest at most W

in LT. As W < K̄, it is impossible to achieve the efficient scale K̄ in LT.

Step 2. We note that ζreg is monotonically decreasing in l (holding m constant). For

l = m, ζreg = 1 − K̄
µW

and thus ζregµW + K̄ = µW < µW +W . Together with Step 1,

it follows that there exists a unique critical value lcrit ∈ (0,m) such that ζregµW + K̄ =

W + µW . For all l < lcrit, it is impossible to achieve the efficient scale K̄ in LT.

Step 3. We finally show that there exists an equilibrium in which no bank will default

if l ∈ [lcrit, lmin). By construction, all banks survive if η = l occurs. Since banks never

default, debt holders always receive 1 + rs per unit of invested resources, and we obtain

1 + reL = (1 + rs)
2 and K = K̄. The expected equity of all banks in t = 3 is given by

E[E3] = K̄(1 + reL) + [LB(1 + rs)−D1(1 + rs)] (1 + rs)

= (K̄ + LB −D1)(1 + rs)
2

= E1(1 + rs)
2.

Hence, the portfolio choice of owners maximizes their expected utility as they earn the

return (1 + rs)
2 over two periods on both types of investment (bank equity and ST).

Finally, since return expectations on LT and ST are the same, the investment choices of

banks in LT and ST are optimal. □

Proof of Proposition 6

Step 1. The proof of the proposition is analogous to the proof of Proposition 5. Again,

we look at the second part of the proposition first. Suppose that l = 0. Then ρreg = 1.

The maximum amount of equity financing is W . Since W < K̄ by Assumption 1, it is

impossible to achieve ρreg = 1 if investment in LT is to be at the efficient scale K̄.

Step 2. As ρreg is monotonically decreasing in l and becomes zero for l = m, there exists

a critical value for l such that W/K̄ = 1− l/m. It is given by lcrit according to Equation

(29). For all l < lcrit, the same observation applies as for l = 0.
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Step 3. We finally show that there exists an equilibrium in which no bank will default

if l ∈ [lcrit, lmin). By construction, all banks survive for η = l. With l ≥ lcrit, there are

enough resources to achieve K̄ in LT:

W + µW − LB = W +
l

m
K̄ ≥ W + K̄ −W = K̄.

Since banks never default, 1 + reL = (1 + rs)
2 and K = K̄. The expected equity of all

banks in t = 3 is given by

E(E3) = (1 + reL)K̄ + [LB(1 + rs)−D1(1 + rs)] (1 + rs)

= (K̄ + LB −D1)(1 + rs)
2

= E1(1 + r2s).

Hence, owners maximize expected utility as they earn the same expected return on both

types of investment (bank equity and ST). □
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