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Abstract

This paper characterizes quantitatively the optimal capital income tax rate in an OLG economy with

uninsurable income risk, incomplete markets and endogenous Schumpeterian growth. Contrary to the most

recent literature, it is found that it is virtually never optimal to tax capital: under the optimal scheme, in

a series of cases, the highest proportional tax rate on capital is found to be less than 0.2%. The reason for

this result lies in the reduced GDP (and wage) growth rate stemming from a higher capital tax rate. In

General Equilibrium, the interest rate rises, and the increased cost of capital reduces the endogenous rate

of innovation, leading to a negative response of the growth rate. Although the equilibrium effect on the

growth rate is found to be quantitatively modest (approximately half a percentage point), it still has a first

order consequence on welfare. The results show that moving to the optimal income tax schedule entails

large welfare gains, approximately 5% in consumption equivalent. The results are robust along a number

of dimensions, including the specification of preferences. An alternative formulation of the utility function,

taken from a class consistent with a Balanced Growth Path, is calibrated to obtain an empirically plausible

value for the Frisch elasticity of 0.5, and confirms all the results, both qualitatively and quantitatively.
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1 Introduction

The marked rise in income and wealth inequality observed in several economies during the last four decades has

prompted a number of authors, most notably Piketty (2014), to propose taxing capital more heavily. This stand

on fiscal policy is also meant to partially undo the steady decrease in capital taxation that has been observed in

a number of economies, such as the U.S. and the U.K., Aoki and Nirei (2017). However, there is no consensus

on whether capital income should be taxed. The classical view, presented in the seminal contributions by Judd

(1985) and Chamley (1986), argued that this form of taxation should be avoided. A positive tax rate on capital

income implies a compounded distortionary effect, reducing the accumulation of a productive input, leading

to suboptimal allocations and welfare losses. More recently, Conesa, Kitao and Krueger (2009) challenged this

perspective. In their influential paper, featuring an incomplete markets model calibrated to match some salient

features of the U.S. labor income inequality, they found that in steady state comparisons welfare is highest

when the capital income tax is positive, irrespective of the lower capital stock. Perhaps surprisingly, their

results showed that the optimal proportional capital tax rate is large, being in the 20%− 35% range.

Peterman (2013) undertook a careful decomposition of the reasons behind a positive capital tax rate in

a framework similar to the model developed in Conesa, Kitao and Krueger (2009), finding that one margin

is especially important: the Frisch elasticity of labor supply. Although his results show that an alternative

specification with a Frisch elasticity that is constant over the life-cycle can lower the optimal capital tax rate,

one of the main findings is that the capital tax remains positive and remarkably far from zero.

The previous literature has mostly focused on the neoclassical growth model. In this paper I argue that a

key channel for the positive rate on capital is that the economic growth rate is unaffected by the chosen tax

schedule. Differently, I address the question of whether capital should be taxed in the context of an endogenous

growth model, with rich workers’ heterogeneity and technological progress that responds to different taxation

schemes. I extend the Schumpeterian growth model proposed by Howitt and Aghion (1998), embedding the

elements that might call for a positive tax on capital, namely a tight borrowing constraint, uninsurable income

risk and taxes that are non age-dependent. A key element of the framework is that Research and Development

(R&D) is capital intensive and any equilibrium effects on its cost are going to bring about endogenous responses

in the rate of technological change.1 At the core of the framework lies a trade-off between a suboptimal

equilibrium distribution of economic resources (both cross-sectionally and over the life-cycle) and a lower growth

rate. Quantitatively, I find that the foregone economic growth more than offsets the improved consumption

smoothing (or the lack thereof, due to the absence of complete markets) that a heavier capital taxation brings

about. Even with a modest capital income tax rate, the induced increase in the cost of capital reduces the rate

of innovation, leading to a negative response of the growth rate. Although the equilibrium effect on the growth

rate is found to be quantitatively modest, it still has a first order consequence on welfare. Contrary to the

1The representative agent version of this model has been used by Nuno (2011) to study the relationship between the optimal

R&D and the cost of business cycles and estimated by Cozzi, Pataracchia, Pfeiffer and Ratto (2017), showing that financial crises

are amplified by the endogenous innovation dynamics, partially explaining slow recoveries. The Schumpeterian growth model

without capital was used by Garcia-Penalosa and Wen (2008) to show that redistribution policies provide insurance to risk averse

entrepreneurs and increases the growth rate.
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most recent literature, I find that it is virtually never optimal to tax capital: under the optimal scheme, in a

series of cases, the highest proportional tax rate on capital is found to be less than 0.2%. Moreover, the results

show that moving to the optimal income tax schedule with an almost zero capital income tax rate entails large

welfare gains, approximately 5% in consumption equivalent (CEV).

My findings are in line with the more traditional view that capital taxation should be avoided, as argued

by Atkeson, Chari and Kehoe (1999) and by the New Public Finance literature, such as Golosov, Kocherlakota,

and Tsyvinski (2003). More recently, within the Schumpeterian framework, Aghion, Akcigit and Fernandez-

Villaverde (2013) used an innovation-driven endogenous growth model with a representative infinitely-lived

household, finding that it can be optimal to subsidize capital, depending on the size of the public expenditure

and the elasticity of labor supply. My results show that even in the presence of incomplete markets, rich life-

cycle dynamics, and realistic labor income risk, when capital is an input to R&D, the taxation of capital income

raises the cost of producing quality enhancing intermediate goods, which slows down both the economy’s growth

rate and the increase of consumption over the life-cycle. These in turn lead to a negative effect on welfare.

The results are robust along a number of dimensions, including the specification of preferences. An alternative

formulation of the utility function, taken from a class consistent with a Balanced Growth Path, is calibrated to

obtain an empirically plausible value for the Frisch elasticity of 0.5, and confirms all the results, both qualitatively

and quantitatively.

The rest of the paper is organized as follows. Section 2 presents the OLG model with endogenous growth.

Section 3 briefly presents the model calibration. Section 4 discusses the main results. Section 5 concludes.

Three appendices are also included: they discuss in more detail the model and the numerical methods used to

solve it.

2 An OLG Model with Incomplete Markets and Schumpeterian

Growth

The economy is a production economy with an endogenous asset distribution, where a government collects taxes

to finance an exogenously given stream of public expenditures, denoted by G.

I work with an Overlapping Generations (OLG) structure. Agents are ex-ante identical, while they differ

ex-post, due to idiosyncratic realizations of a series of shocks.

The model is an extension of the Huggett (1996) economy, appropriately modified to allow for endogenous

growth, for several sources of heterogeneity in labor income and a budget-neutral reform of the income tax

schedule, which introduces the possibility of taxing capital income separately from labor earnings.

Time is discrete. The economy is populated by finitely lived agents facing an age-dependent death probability

πdj . Age is denoted with j and there are J overlapping generations, each consisting of a continuum of agents.

At age JR all agents that are still alive become retirees. The population grows at rate gn. Beside the workers,

there is a measure one of risk-neutral and infinitely lived entrepreneurs, whose consumption is denoted by Ce.
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Preferences: Agents’ preferences are assumed to be time-separable and represented by the utility function

U(.). Agents’ utility is defined over stochastic consumption {cj}Jj=1 and leisure sequences {lj}Jj=1: their aim

is to choose how much to consume (cj), how much to work (hj = 1− lj), and how much to save in an interest

bearing asset (aj+1) in each period of their lives, in order to maximize their objective function. The agents’

problem can be defined as:

max
{cj ,lj ,aj+1}J

j=1

E0U(c0, c1, ...; l0, l1, ...) = max
{cj ,lj ,aj+1}J

j=1

E0

J∑
j=1

βj−1

[
j∏
s=1

(
1− πds

)]
u(cj , lj)

where E0 represents the expectation operator over the idiosyncratic sequences of shocks, and β > 0 is the

subjective discount factor. In the benchmark formulation, I assume that u (cj , lj) =
(cηj l

1−η
j )

1−σ−1

1−σ , that is the

per-period utility function is strictly increasing in both consumption and leisure, strictly concave, satisfies the

Inada conditions, and has a relative risk aversion RRA= ση + 1 − η.2 The parameter η in the Cobb-Douglas

aggregator stands for the consumption share.

Endowments: Agents differ in their labor endowments ϵj,ε,f . There are four channels that contribute to the

determination of the total efficiency units that the workers supply in the labor market. First, there is an active

choice on the number of hours that the agents want to work, expressed as a share of their time endowment

(normalized to 1). Second, there is a deterministic age component ej , which is the same for all agents. Third,

there is a stochastic component ε, whose log follows a stationary AR(1) process: log εj = ρy log εj−1 + ξj , with

ξj ∼ N(0, σ2
y). Fourth, there is a fixed effect component f , with half of the agents being born with the highest

realization, and the other half with the lowest.3 The total efficiency units a worker is endowed with are the

product of the last three components, multiplied by the hours worked and the wage (w). It follows that labor

earnings are ywj = whjϵj,ε,f = w× hj × ej × ε× f . After the common retirement age JR, the labor endowment

drops to zero, and the agents receive a pension yR paid for with the contributions of the economically active

agents. The pension is a fixed replacement rate ϕR of the average labor earnings, and agents pay proportional

taxes (τR) to contribute to the balanced-budget pension scheme. They also finance the public expenditure G

with their income and consumption taxes, and receive a wealth transfer TR. Agents cannot insure against

their mortality risk. As a consequence, on average agents do not die with zero wealth and there are accidental

bequests TR that are uniformly re-distributed across all agents in a lump-sum fashion. Apart from the accidental

bequests, newborns enter the economy with a zero asset endowment and with the average realization of the

stochastic component of labor earnings, which is normalized to 1.

Schumpeterian growth: The model embeds Schumpeterian growth into a model of incomplete markets.

Endogenous growth is based on vertical innovations as in Howitt and Aghion (1998). Producers of final goods

use labor and a continuum of intermediate goods M as inputs. The final goods sector is modeled as a constant

returns to scale technology of the Cobb-Douglas form, which relies on aggregate labor L and the sum (i.e., the

2In Cozzi (2014), a related paper focusing on whether the welfare effects stemming from a policy change can be estimated reliably,

I found that heavy capital income taxation can be sub-optimal, even without an endogenous growth mechanism. However, in that

paper eliminating the capital income tax was found to be welfare improving because of the exogenous labor supply assumption.
3These two values are chosen to match the variance of the fixed effect σ2

f .
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integral) of all the intermediate goods Mi to produce the final output Y . The intermediate goods differ in their

productivity Ai,t and each of them is produced by a monopolistic competitive firm using capital as the only

input. The amount of capital necessary to produce each intermediate good is proportional to its productivity, and

more advanced products require increasingly capital-intensive techniques. In each period, there is a probability

that the productivity of an intermediate good jumps to the technology frontier owing to the R&D activities of

entrepreneurs. Entrepreneurs borrow resources and invest them in R&D trying to increase their probabilities

of making a discovery that is going to displace the current monopolist for a specific intermediate good. If a

discovery occurs, the successful entrepreneur introduces a new enhanced intermediate product in the relevant

sector and becomes the new monopolist until replaced (stochastically) by another entrepreneur. The technology

frontier (i.e., the productivity level of the most advanced sector) evolves endogenously as the result of positive

spillovers from innovation activities.

Technology: The homogeneous final good is produced under perfect competition using labor and a continuum

of intermediate products. Final output can be used interchangeably as a consumption good (Ct), a capital good

(Kt), or an input to innovation (RDt). The representative firm producing in the final good sector maximizes its

profits having access to a Cobb-Douglas production function. The inputs are aggregate labor (Lt), the quantity

of intermediate products of variety i (Mi,t), and the associated productivity index (Ai,t).

Yt = F
(
Lt, {Ai,t}i , {Mi,t}i

)
= L1−α

t

∫ 1

0

Ai,tM
α
i,tdi.

It follows that the profits πY in the final sector are given by:

πY = L1−α
t

∫ 1

0

Ai,tM
α
i,tdi−

∫ 1

0

Pi,tMi,tdi− wtLt.

Mi,t denotes the amount of intermediate product i, Pi,t their monopolistic prices, while Ai,t is a productivity

parameter embodied in the latest version of intermediate product i. wt is the wage rate and the price of the

final output is normalized to 1. Since the final good firm is a price taker, the first order conditions for profit

maximization lead to a system of demand equations Pi,t(Mi,t), one for each intermediate good variety, and are

given by:

Pi,t(Mi,t) = αAi,tL
1−α
t Mα−1

i,t ,∀i. (1)

Another first order condition delivers the labor demand schedule:

wt = (1− α)Yt/Lt.

Intermediate goods: Each intermediate product i is produced by an incumbent monopolist using a capital-

intensive production function (where Ki,t is the capital used in sector i at time t):

Mi,t = Ki,t/Ai,t. (2)
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Capital is divided by the technological index Ai,t to capture the phenomenon that successive vintages of the

intermediate product are produced by increasingly capital-intensive techniques. The model at the aggregate

level is deterministic, and the incumbent monopolist of each sector can correctly forecast the demand for the

intermediate good they are producing. Taking the demand function for their product as given, but understanding

the consequences of setting different prices, each incumbent monopolist has the following (after-tax) profit

function (where τf is the proportional tax rate on corporate profits):

(1− τf )π
f
i,t = (1− τf )[Pi,t(Mi,t)Mi,t − (rt + δ)Ki,t]. (3)

Capital depreciates at the exogenous rate δ and rt is the real rate of return to capital, so their sum (rt + δ) is

the user cost of capital. Substituting Eq. (1) and (2) into (3), the (after-tax) profit function can be rewritten

as:

(1− τf )π
f
i,t = (1− τf )

[
αAi,tL

1−α
t Mα

i,t − (rt + δ)Ai,tMi,t

]
= (1− τf )Ai,t

[
αL1−α

t Mα
i,t − (rt + δ)Mi,t

]
.

Since the demand functions are symmetric, and the user cost of capital is the same for every intermediate

producer, each intermediate product is produced in the same amount Mt. Aggregate quantities are the integral

with respect to all intermediate products, namely the average productivity across all sectors is At =
∫ 1

0
Ai,tdi,

and aggregate capital is obtained as the product of average productivity times the average intermediate good:

Kt =

∫ 1

0

Ki,tdi = AtMt.

One of the convenient features of this model is that in equilibrium the final goods sector displays the familiar

Cobb-Douglas aggregate production function in capital, labor and technological progress:

Yt = F (Lt, At,Kt/At) = Kα
t (AtLt)

1−α.

However, because of the monopolistic price distortions and the presence of profits in the intermediate good

sector, the equilibrium interest rate has a different formula:

r = α2 Yt
Kt

− δ. (4)

Notice how in Eq. (4) the term α2 replaces α in the corresponding version for the marginal product obtained

in the neoclassical growth model with a Cobb-Douglas aggregate production function.

In terms of the functional distribution of income, the share (1 − α) of GDP belongs to labor earnings, the

share α2 to capital earnings (including depreciation), and the share α(1 − α) to profits. The flow of after-tax

profits that each incumbent in the intermediate goods sector earns in every period is then:

(1− τf )π
f
i,t = (1− τf )α(1− α)

Ai,tYt
At

. (5)

Innovation and Technological Change: Innovations result from entrepreneurship activities that advance

technological knowledge. At any date there is a technology frontier that represents the most advanced technology

across all sectors:

Amaxt =Max
i
Ai,t. (6)
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In each period there is an endogenous probability pi,t that the productivity Ai,t of an intermediate good in

sector i jumps to the technology frontier. In order to achieve this goal, entrepreneurs in this sector have to

undertake costly R&D activities (RDi,t). Entrepreneurs invest resources RDi,t in an attempt to increase their

probabilities of making a discovery and replace the current incumbents. If a discovery occurs, the successful

entrepreneur introduces a new enhanced intermediate product in that sector and becomes the new monopolist,

until another entrepreneur will create an even better version of that intermediate product. At the level of a single

sector the evolution of the productivity index is stochastic. With probability pi,t the R&D activity is successful

and the productivity jumps to Ai,t+1 = Amaxt . With probability 1− pi,t the R&D activity is unsuccessful, the

incumbent is not replaced by a new monopolist, and the productivity stays at its current value Ai,t+1 = Ai,t.
4

Entrepreneurs incur R&D costs and the probability of a successful innovation is assumed to be:

pi,t = 1− e
−

RDi,t
λAmax

t (7)

where λ represents an efficiency parameter of R&D. A higher value of λ results in a less effective expenditure

in R&D, because a given investment RDi,t corresponds to a lower probability of a successful innovation. The

amount spent on R&D is also adjusted by the technology frontier variable Amaxt . This is meant to capture in

a parsimonious way the increasing complexity of progress: as technology advances, the resource cost of further

improvements increases proportionally. Notice also how this formulation guarantees that the probability of

an innovation is always well behaved (i.e., 0 ≤ pi,t < 1,∀(i, t)), and that R&D investments are essential for

innovations to occur (i.e., pi,t = 0 when RDi,t = 0). Furthermore, it is parsimonious, as it entails only one

parameter (λ) that needs to be assigned a value in the quantitative implementation of the model.5

Entrepreneurs: The presence of monopoly power gives the incumbent in each intermediate good variety the

prospect of earning some profits over the duration of their technological advantage. The value of being the

incumbent in period t in sector i with current productivity level A is denoted with Vi,t(A), and satisfies the

following Bellman equation:

Vi,t(A) =Max
Mi,t

{
(1− τf )π

f
i,t +

(
1− pi,t
1 + rt

)
Vi,t+1(A)

}
(8)

Vi,t(A) is the expected discounted flow of net profits that the incumbent is expected to obtain, given that

the intermediate good variety it managed to develop has an associated (and fixed) productivity equal to A.

It takes into consideration the process of creative destruction, as it internalizes the fact that the monopolistic

position might be lost to a competitor with probability pi,t (hence the complement probability 1 − pi,t stands

for the incumbent’s chances of survival). Following the literature, I focus on the case where there is a single

entrepreneur in each period and sector that tries to replace the incumbent by developing an improved version

of the related intermediate good. Since entrepreneurs are assumed to be risk neutral, and can borrow the

4After a successful innovation, the entrepreneur enters into Bertrand competition with the previous incumbent in that sector.

Since the old intermediate good is of inferior quality, the incumbent exits. The appendix in Howitt and Aghion (1998) provides

more details on how the strategic interaction unfolds.
5Notice also that the value Amax

t = 0 can never be obtained in a growing economy, as long as Amax
0 > 0.
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resources needed to finance the R&D from a competitive banking sector at the interest rate rt, they maximize

the expected discounted value of becoming an incumbent in their sector of operation i in the next period:

Max
RDi,t

{
−RDi,t +

(
pi,t (RDi,t)

1 + rt

)
EtVi,t+1(A

max
t )

}
(9)

Notice how in Eq. (9) the optimal value function V (.) representing the expected value of becoming an incumbent

is evaluated at Amaxt > A, as the entrepreneur’s innovation brings the associated productivity to the technology

frontier. Let’s define ρt ≡ RDt

λAmax
t

. The first order conditions lead to a non-linear equation in ρt:

−ρt = log

[
λAmaxt

EtVt+1(Amaxt )

]
= log

[
RDt

ρtEtVt+1(Amaxt )

]
(10)

[Figure 1 about here]

Figure (1) plots the optimal entrepreneurs’ choices regarding the (normalized) R&D investment ρ. The plot

shows that the non-linear equation has only one solution, as the relationship is monotonically increasing in ρ.

The left panel displays the effect of changing the parameter λ. As λ increases, R&D expenditures become less

effective, and this leads to a reduction in their equilibrium value. Also, this plot shows that this parameter is

uniquely identified: data on R&D expenditures (or a monotonic transformation, such as the firms’ exit rate)

allow to pin down its value. The right panel shows the response of ρ to changes in the interest rate, for a fixed

value of λ. The lower r, the higher the discounted value of future profits as a monopolist, and the lower the

costs of borrowing to finance innovation. These two effects combined expand the optimal investment in R&D

when the equilibrium interest rate falls: this channel will be at play when considering a fiscal policy reform that

decreases the capital income tax rate. To conclude with, notice how the optimal ρ∗ is always strictly positive.

This will have implications for the equilibrium growth rate.

The advancement of the technology frontier Amaxt is the mechanism that drives the aggregate economic

growth. Innovations induce knowledge spillovers, because at any point in time the technology frontier is available

to any successful innovator. This publicly available knowledge grows at a rate proportional to the aggregate

rate of innovations, and each innovation moves the technology frontier by a factor 1 + γ > 1. At any point in

time, and across different varieties of intermediates, some entrepreneurs are going to be successful at innovating,

while others are going to fail. Taking this into account, together with the assumption that the likelihood of

success of an innovation is independent across intermediate varieties, a law of large numbers guarantees that at

the aggregate level the average productivity will evolve according to the following equation:

At+1 =

∫ 1

0

{p (ρt) (1 + γ)Ai,t + [1− p (ρt)]Ai,t} di = (1 + γ) p (ρt)At + [1− p (ρt)]At = [1 + p (ρt) γ]At (11)

The first term in the integral represents the probability that an innovation is going to occur for a given

variety, multiplied by the implied increase in the related productivity index (1+ γ)Ai,t. The second term in the

integral represents the probability that an innovation is not going to occur, hence the productivity of all these
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intermediates is going to stay at their current level. Thanks to the symmetry in the R&D investments across

all varieties, also the probabilities of a successful innovation are the same across all varieties.

Eq. (11) can be manipulated to represent how the aggregate productivity is going to grow over time. Along

a BGP ρt = ρ, ∀t, as both the R&D and the technology frontier will grow at the same rate. The (average)

growth rate g is then determined as:

g =
At+1

At
− 1 = p (ρ) γ (12)

This equation shows how the growth rate is equal to the spillover effect weighted by the probability of an

innovation. In this framework, the spillover effect γ is an exogenous parameter. Without a strictly positive

knowledge spillover the economy cannot grow over time. The second element in the formula is p (ρ), which is an

endogenous outcome, affected also by public policy: different taxation schemes are going to have an impact on

the scaled expenditure on R&D, which in turn is going to affect the likelihood of an innovation, and ultimately

the growth rate g.

Taxes and Public Expenditure: The government carries out public expenditure G. In order to finance the

cost of these purchases, consumption is taxed at rate τc and firms’ profits at rate τf . Moreover, households’

total income is taxed according to a generalization of the functional form proposed by Gouveia and Strauss

(1994) and used by Conesa, Kitao and Krueger (2009). Given taxable income y, total taxes T are given by

T = κ0

[
y −

(
y−κ1 + κ2(1 + g)κ1t

)−1/κ1
]

(13)

The κ0 and κ1 parameters are set exogenously, relying on the estimates obtained by Gouveia and Strauss (1994),

while κ2 is set residually to guarantee a balanced budget. Notice that, in a growing economy, the term (1+g)κ1t

is needed to ensure the stationarity of both detrended taxes and detrended after-tax income.

Other market arrangements: There are no state-contingent markets to insure against the labor income

risk, but workers can self-insure by saving into the risk-free asset. The households also face an exogenous

borrowing limit, denoted as b, which is set to b = 0.6

3 Calibration

The economy has several parameters that need to be assigned a value. I rely on a mix of (reduced-form)

estimation and calibration (in equilibrium) methods. The initial BGP is calibrated to mimic selected long-run

features of the U.S. economy. Table 1 reports the full list of the calibrated parameters with their values and

empirical targets.

[Table 1 about here]

6This is a fairly common assumption in the literature, made also by Conesa, Kitao and Krueger (2009), which I retain for

comparability. It avoids capital income taxes turning into subsidies for agents in debt (without complicating the decision problem

of the agents), and prevents the possibility of some households dying in debt.
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Demographics: The first set of parameters are related to the demographics/life-cycle aspects: JR, J, gn, π
d
j , ej .

These are in line with the assumptions made in other studies in the calibration of OLG models. Agents become

economically active at age 21, retire at age JR = 66, and they can live up to J = 101 years. These are fairly

conventional and innocuous assumptions. The population growth rate is set to its long-run average in the data

since the early 1970’s, which is equal to gn = 0.011. The survival probabilities πdj are taken from Bell and Miller

(2002), and the age profile for the efficiency units ej from Hansen (1993).

Preferences: The discount factor β is chosen to match an equilibrium interest rate of 5%. The corresponding

value is β = 1.012. The consumption share in the Cobb-Douglas aggregator is set to η = 0.357, which matches

an average share of time devoted to market activities equal to 0.33. The risk aversion is set to σ = 3.80, which

matches an elasticity of intertemporal substitution of 0.5.

Technology: The labor share is taken from the Penn World Tables 9.0 (PWT9.0), and implies α = 39%. Also

the capital depreciation rate is taken from the Penn World Tables 9.0, and it is equal to δ = 0.0493.

Income process and pensions: The baseline parameterization of the exogenous component in the stochastic

income process relies on the values for the Panel Study of Income Dynamics reported by Guvenen (2009). His

estimates are ρy = 0.988 and σ2
y = 0.015 for the persistent component, and σ2

f = 0.058 for the fixed effect. The

pension replacement rate is obtained residually and its value ϕR = 0.4 is close to the related statistic of 39.4%

reported in OECD (2011).

Taxes and Government: In the initial (pre-reform) BGP, the income tax schedule parameters are taken

from Gouveia and Strauss (1994), whose estimates are: κ0 = 0.258, κ1 = 0.768. κ2 is instead set to satisfy

the balanced-budget requirement.The consumption tax rate is τc = 0.05, which is the estimate reported by

Mendoza, Razin, and Tesar (1994). The payroll tax rate used to finance the pensions is set to its empirical

value of τR = 0.124. The tax rate on corporate profits is set to τf = 0.12, which matches the average ratio of

Corporate taxes/GDP of 2.7% found in the U.S. data in the 1970-2017 period. The related series are plotted

in Figure (2).

[Figure 2 about here]

The calibrated value for τf might seem low, given that the typical corporate tax rate is in excess of 25%.

However, the effective corporate tax rate is substantially lower than the statutory one, likely because of tax

elusion and sophisticated accounting practices implemented to reduce the tax base. Notice also how, since the

early 1980’s, the Corporate taxes/GDP ratio does not exhibit a trend. Finally, The government consumption

is set to match a public expenditure/GDP ratio of 17%, which leads to G = 3.60.

Economic Growth: The productivity of R&D is set to a value that matches a firm exit rate of 9%, which

is obtained from firm dynamics data in the 1995-2007 period: λ = 29.6. The equilibrium growth rate is chosen
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to match its value from the Penn World Tables 9.0, and it is equal to g = 0.018. Given the probability of a

successful innovation of about 9%, this is obtained with a spillover effect equal to γ = 0.1998.

4 Results

This section presents the main results. First, I discuss the fit of the model, which is followed by the characteri-

zation of the welfare optimizing income tax schedule.

4.1 Model Fit

The four panels in Figure (3) plot the cross-sectional profiles obtained in the benchmark model. The model is

capable of capturing some salient features of the data, such as the distribution of the average wealth holdings

across different age groups, the drop in consumption at retirement, and the hump-shaped profile of labor

earnings. Similarly, Figure (4) shows that the model generates a substantial increase in (log-)earnings inequality,

as captured by their variance, which jumps from 0.058 at age 21 to 0.999 at age 65. The endogenous growth

channel does not seem to play an important role in shaping these outcomes, as similar behaviors have been

documented in the literature, e.g. by Storesletten, Telmer and Yaron (2004) and Conesa, Kitao and Krueger

(2009). It is worth noting that the model predicts that (on average) the agents are going to start de-cumulating

assets before retirement. This is due to the fact that the labor earnings peak early in life, and the individuals rely

on assets and asset income to finance a fast consumption growth. Another well-known feature of the data that

is replicated by the model is the drop in consumption expenditure upon retirement. Even though individuals

accumulate assets, these are not enough to smooth consumption around the retirement period, as the drop in

income is substantial, and the agents find optimal to adjust their expenditure in a non-smooth fashion only

once during their lives. Furthermore, the discrete increase in leisure enjoyed by the agents transitioning into

retirement allows them to optimally spend less in consumption goods without experiencing a decrease in their

lifetime welfare. After the quite drastic drop at model age 45, consumption expenditures in the cross-section

continue to decrease monotonically, but at a lower pace. The fourth panel shows the implication of working

with a Cobb-Douglas utility aggregator over consumption and leisure. The labor supply is not flat: younger

individuals tend to work for longer hours, which start decreasing for older workers, and this decrease accelerates

after model age 20. This behavior, coupled with the exogenous productivity profile over the life-cycle, explains

the evolution of labor earnings, plotted in the third panel.

[Figures 3 and 4 about here]

Notice that the labor supply is stationary across generations, because it is not affected by the income growth

rate. Only for this variable the cross-sectional profiles and the life-cycle profiles are identical. The other variables

in Figure (3) do display different profiles, depending whether we are considering the cross-sectional ones or the

life-cycle ones. Since this is going to be important for the interpretation of the welfare effects, Figure (5) reports
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the life-cycle profiles of the consumption expenditures. The Figure shows that consumption expenditure tends

to rise as individuals age, but the drop at retirement is still present. The solid line represents the benchmark

case, namely the pre-reform equilibrium. The dashed lines show how the counterfactual economies (i.e., with

the optimal tax schedule), imply a faster consumption growth over the life cycle. The two panels refer to

two different cases: the left panel focuses on a case where in the counterfactual economy the level of public

expenditure is kept fixed at its pre-reform value. Differently, the right panel focuses on a case where the

counterfactual economy has a fixed public expenditure/GDP ratio.

[Figure 5 about here]

4.2 Income Tax Schedule Reform

The equilibrium of the model is computed several times. The first time under the current policy regime, i.e.

for pre-reform values of the triplet {κ0, κ1, G}. The other times under a counterfactual economy, i.e. after

a policy change represented by the same public expenditure (either in level or as a percentage of GDP), and

different income tax schedule parameters {κnew0 , κnew1 , τnewk }.7 Namely, the income tax schedule reform is such

that capital income is taxed at the proportional rate τnewk , and labor earnings yw are taxed according to the

same formula above, Eq. (13), but with different parameters (and κ2 is still set to balance the budget):

Tw = κnew0

[
yw −

(
(yw)

−κnew
1 + κ2(1 + g)κ

new
1 t

)−1/κnew
1

]
. (14)

4.2.1 Optimal Capital and Labor Taxes

Starting from the baseline tax schedule, a numerical optimization routine is used to characterize the optimal

tax code {κ∗0, κ∗1, τ∗k}. This procedure leads to a set of parameters for the labor income tax function and for the

capital income proportional tax rate. Table 2 reports the list of tax parameters for different cases. The Status

quo is characterized by κ0 = 0.258, κ1 = 0.768, while the optimal tax function computed by Conesa, Kitao and

Krueger (2009) is κ∗0 = 0.23, κ∗1 = 7.0, with a sizable capital income tax rate τ∗k = 0.36%

[Table 2 about here]

Regarding the capital income tax rate, the Schumpeterian endogenous growth model implies strikingly

different results. With a fixed G/Y , κ∗0 = 0.285, κ∗1 = 7.89, coupled with an virtually zero capital income tax

7The welfare effects are going to compare two different BGP’s. I consider both the percentage change in expected utility, and a

consumption equivalent (CEV) welfare measure, denoted as ϖ. The former consists of either the ex-ante welfare of the households

(i.e., the normalized value function V (.) integrated with respect to the normalized stationary distributions, see equations (17) and

(18) in Appendix A), or the Social Welfare (for its definition, see 19 in Appendix A). For the CEV welfare measure, see equations

(20) and (21) in Appendix A.
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rate τ∗k = 0.09%. With a fixed G, the values of the parameters of the optimal tax function are κ∗0 = 0.237,

κ∗1 = 6.73, and an infinitesimal capital income tax rate τ∗k = 0.00006%. This represents the main result of the

paper: under the optimal tax schedule, the capital income tax rate is trivially small.

[Figure 6 about here]

To confirm this finding, the panels 1 and 3 in Figure 6 show the response of two welfare measures to changes

in the capital income tax rate around the optimal labor income tax function. Both the ex-ante welfare measure

and the aggregate (social) welfare are negatively affected by an increasing capital income tax rate. Moreover,

the welfare losses of imposing a larger capital income tax rate are substantial. Moving from the optimal zero tax

rate to an empirically common value of 40% reduces the ex-ante welfare by almost 10% and the social welfare by

9.5%. Moreover, the CEV gains of moving from the Status quo to the optimal scheme are between ϖ = 4.76%

and ϖ = 4.82%, depending on the assumption on the public expenditure. It goes without saying that these

welfare effects are sizable, especially when compared to the corresponding figure of ϖ = 1.3% obtained by

Conesa, Kitao and Krueger (2009).

4.2.2 Income Tax Functions: Status quo Vs. Optimal

It is worth inspecting the mechanism behind such large welfare gains. The first reason is the increased pro-

gressivity of the labor income tax schedule, which is easily detected in Figures 7 and 8. Figure 7 is related to

the case with a fixed G, while Figure 8 to the case with a fixed G/Y ratio. In the two Figures, the left panels

present the tax rate as a function of income, while the right panels the total income taxes. Compared to the

Status quo, the optimal scheme warrants an extended region with almost zero labor income taxes for the agents

with the lowest labor income. Given that these agents are on average young and asset poor, they have a very

high marginal utility of consumption. A more pronounced progressivity delivers a less unequal allocation of

consumption, leading to an aggregate welfare gain. Notice also that the status quo and the optimal tax functions

intersect. Interestingly, the intersection occurs at a value of labor income that is close to the average individual

labor earnings. On the one hand, the lost tax revenues from taxing capital income have to be compensated

with higher tax rates on the labor income rich. On the other hand, shifting away from capital taxes increases

both the equilibrium profits and the aggregate consumption, leading to a lower need of taxing labor income. In

other words, with a fixed public expenditure, the increased revenues from corporate profits and consumption

taxes partially compensates the fall in revenues stemming from the almost absent capital taxes.

[Figures 7 and 8 about here]

When the public expenditure is not fixed, the results are quite similar, as Figure 8 reveals. The main

difference is that when in the counterfactual economy the G/Y ratio is fixed, there is an increased need to

collect tax revenues, as in the economy with the optimal tax scheme GDP is higher. In this case, the rise in
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both corporate and consumption taxes do not finance the increase in public expenditure. It follows that the

income tax code becomes even more progressive and the marginal tax rate for the income rich is much larger

than in the benchmark economy.

[Figure 9 about here]

Figure 9 provides six plots presenting the equilibrium response of a set of aggregate outcomes. The top two

panels refer to the growth rate and the interest rate. The interest rate increases monotonically in the capital

tax, as the households want to be partially compensated for the lost rate of return. For the considered range

of capital income tax rates, the interest rate increases by more than a percentage point, moving from 4.4% to

5.5%. In turn, this leads to more costly R&D activities, with the end result of a reduced growth rate. A stark

finding is that the fall in the growth rate is limited in size, but it is indeed sufficient to cause a decrease in

welfare. For the two extreme capital tax rate values of 0% and 40% the related growth rates are 1.873% and

1.571%, respectively. Finally, from the households’ point of view, the after-tax interest rate is lower with a

positive capital income tax: this makes saving a less effective instrument to self-insure against the labor income

risk. As far as the behavior of aggregate Output, Consumption and Capital, they all decrease monotonically

in the capital tax rate, with quantitatively large responses. Differently, the labor input virtually does not have

any response (as expected, given the assumed preferences).

5 Robustness Analysis

Although routinely used in quantitative work, the CRRA/Cobb-Douglas utility function assumed in the bench-

mark analysis fails to satisfy one of the properties outlined by King, Plosser and Rebelo (1988) and King, Plosser

and Rebelo (2002) to be consistent with a Balanced Growth Path. Hence, in this section I rely on an alternative

formulation of the utility function, taken from the King, Plosser and Rebelo (2002) and Jaimovich and Rebelo

(2009) class of functions.8 Another advantage of this utility function is that it does not feature the unit elasticity

embedded in the Cobb-Douglas utility function. In this formulation, I assume that u (cj , lj) =
[cj(1−ψhθ

j)]
1−σ−1

1−σ ,

and now the per-period utility function implies a relative risk aversion RRA= σ. Its two parameters ψ and θ

can be calibrated to match the average share of time devoted to market activities, as above, but also a Frisch

elasticity of 0.5 (a value that is in line with the micro-econometric evidence on this parameter).9 This parameter

8Peterman (2013) undertakes a careful decomposition of the reasons behind a positive capital tax on capital, including additively

separable preferences, because they feature a constant Frisch elasticity over the life-cycle. It is worth pointing out that the usual

shortcut of introducing a scaling factor in additively separable preferences is not credible in the current framework. Because of

the endogenous determination of the technological progress, the scaling factor would be policy dependent. In order to achieve

consistency with balanced growth I would need to assume that people’s preferences react to the chosen tax policy, as a different

scaling factor would be needed for any equilibrium growth rate. In other words, I would need to assume that the parameters are

not structural.
9The formula for the individual-level Frisch elasticity (εFrisch

i ) is εFrisch
i = σ

(
1− ψhθi

)
/
[
(θ − 1)σ

(
1− ψhθi

)
− ψθhθi

]
. In the

calibration, I target the average Frisch elasticity for the working-age agents.
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is important as it governs how rigid is the individual labor supply response to changes in the wage rate (in turn

stemming from changes in the tax code). Table 2 lists the values of the parameters re-calibrated in equilibrium.

The new discount factor is equal to β = 1.008, the RRA parameter is σ = 2.0. The disutility of work parameter

is set to ψ = 8.9, and the convexity of the disutility of work parameter to θ = 3.45. All the other parameters

are kept fixed at their benchmark values.10

[Table 3 about here]

The panels in Figures 3 and 4 also plot the cross-sectional and life-cycle profiles implied by the version

of the model with this utility function. This case is denoted with the KPR label, and plotted with the blue

dashed line. The profiles are qualitatively very similar to the corresponding ones obtained in the benchmark

case. Quantitatively, two important differences arise. First, the average wealth holdings have more pronounced

dynamics. Moreover, as expected, the most noticeable difference pertains the behavior of the labor supply, which

is substantially more rigid than in the benchmark case. In the KPR case, the hours worked are almost flat until

the retirement age. Similarly, the individuals have flatter labor earnings and their average asset holdings peak

later in life, reaching a value that is more than 10% higher than in the benchmark case. The combined behavior

of the labor supply and increased wealth around the retirement age implies that the drop in consumption when

agents leave the labor force is substantially less drastic. In terms of the optimal tax code, also in this case the

optimal one displays an almost zero capital income tax rate τ∗k = 0.2%. The optimization procedure now leads

to the following parameters for the labor income tax function κ∗0 = 0.287, κ∗1 = 7.93, which are remarkably

similar to the values found for the benchmark case. As far as the welfare response to capital income taxes is

concerned, the panels 2 and 4 in Figure 6 show the response of two welfare measures to changes in the capital

income tax rate around the new optimal labor income tax function. The drop in either measure of welfare is

striking and seems to be monotonic. However, even though it cannot be visually detected, it is worth mentioning

that the capital income tax rate that maximizes welfare is slightly above zero, but trivially small. To conclude

with, the optimal income tax schedule with an almost zero capital income tax rate entails even larger welfare

gains, which are now 5.8% in consumption equivalent.

6 Conclusions

In this paper I have embedded a Schumpeterian endogenous growth mechanism into a life-cycle model with

incomplete markets and rich heterogeneity. The calibrated version of the model shows that it is virtually never

optimal to set a positive tax rate on capital income. At most, the tax rate that maximizes welfare is less

than 0.2%. This finding is in stark contrast with what Conesa, Kitao and Krueger (2009) found in a similar

economy with an exogenous growth rate and without technological progress. The results are robust along several

dimensions, such as the welfare metric, the size of the public expenditure and the behavior of the Frisch elasticity

10Notice that the parameters related to the R&D and the spillover effects do not need to be recalibrated, as the aggregate labor

supply in the initial BGP is the same, and the discount factor is recalibrated to achieve the same interest rate. These ensure that

the growth rate is the same as in the benchmark economy (1.8%), and so is the firms’ exit rate (9%).
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over the life-cycle. Although technically challenging, it would be interesting to extend the model to include risk

averse entrepreneurs, in order to match the concentration of wealth observed in the U.S. economy. I leave these

extensions and modifications for future work.
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Figure 1: Optimal entrepreneurs’ choices on R&D investment. The optimal ρ∗ corresponds to the root of these

functions.
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Figure 3: Average Cross Sectional profiles of Asset Holdings, Consumption, Labor Earnings, and Hours Worked.

Benchmark model (solid line) and KPR preference specifications (dashed line).
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Parameter Value Target

Model Period Year Frequency of PSID Data

J - Maximum Age 81 Certain death at age 100

JR - Maximum Working Age 46 Retirement at age 65

πdj - Death probability - Bell and Miller (2002)

gn - Population growth 0.011 Data

β - Rate of time preference 1.01213 Pre-tax Interest rate ≈ 5%

η - Consumption share 0.357 Average hours = 0.33

σ - Risk Aversion 3.80 Elasticity of Intertemporal Substitution = 0.5

δ - Capital depreciation rate 0.0493 Capital depreciation estimates - PWT9.0

λ - Weight in prob. of successful innovation 29.6 Firms exit rate ≈ 9%

γ - Spillover Effect 0.1998 Growth rate 1.8% - PWT9.0

α - 1-Labor share 0.39 Labor share of output = 61% - PWT9.0

σ2
y - Var. of the temporary income shocks 0.015 Guvenen (2009)

ρy - Persistence of the temp. income shocks 0.988 Guvenen (2009)

σ2
f - Var. of the fixed effect 0.058 Guvenen (2009)

ξ - Government Consumption 0.17 G/GDP = 17%

κ0 - Marginal Income Tax 0.258 Gouveia and Strauss (1994)

κ1 - Progressivity Income Tax 0.768 Gouveia and Strauss (1994)

τc - Consumption Tax Rate 0.05 Mendoza, Razin, and Tesar (1994)

τf - Profits Tax Rate 0.12 Corporate Taxes/GDP ≈ 2.7%

τR - Payroll Tax Rate 0.124 Data

b - Borrowing limit 0 No borrowing allowed

Table 1: Calibration, Benchmark Model
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Case κ0 κ1 τk CEV (%)

Status quo 0.258 0.768 − −
Fixed G 0.237 6.734 0.0000006 4.821

Fixed G/Y 0.285 7.891 0.0008659 4.761

KPR 0.287 7.929 0.0023872 5.795

CKK AER 2009 0.23 7.0 0.36 1.330

Table 2: Tax Schedules Parameters and Welfare changes from the Status quo to the Optimal tax schedule.
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Parameter Value Target

β - Rate of time preference 1.00811 Pre-tax Interest rate ≈ 5%

ψ - Disutility of work 8.9 Average hours = 0.33

σ - Risk Aversion 2.0 Elasticity of Intertemporal Substitution = 0.5

θ - Convexity disutility of work 3.45 Frisch elasticity = 0.5

Table 3: Calibration in Equilibrium, KPR Model
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Appendix A - The OLG Model and its Recursive Representation

7 Stationary Equilibrium

In this Section, first the problem of the agents in their recursive representation is defined, then I provide a

formal definition of the equilibrium concept used in this model, the recursive competitive equilibrium. The

individual state variables are: age j ∈ J = {1, ..., J}, the fixed effect f ∈ F = {−σf ,+σf}, the persistent shock
component of the labor endowment ε ∈ E = {εmin, ..., ε, ..., εmax} and asset holdings a ∈ A = [−b, a]. Notice

that ε is discretized with the Rouwenhorst method, using a 7-state Markov chain. The transition function

of the labor endowment shocks is represented by the matrix Π (ε′, ε) = [π (v, z)] , where each element π (v, z)

is defined as π (v, z) = Pr {εj+1 = z|εj = v} , v, z ∈ E . In every period the exogenous labor endowments are

given by ϵj,ε,f = ejεf . The stationary distribution of working-age agents is denoted by µj (a, ε, f) while that of

retirees with µRj (a). Φj denotes the share of each cohort j in the total population. These satisfy the recursion

Φj+1 =

(
1−πd

j

1+gn

)
Φj , and are normalized to add up to 1.

7.1 Problem of the agents

Since in equilibrium the economy is growing along a BGP, the dynamic programming problem is non-stationary.

Every non stationary variable needs to be transformed into their stationary counterpart. This is achieved

dividing a generic variable Xt at time t by the average technological index At, x̃t ≡ Xt/At, where the tilde

denotes the transformed variable.

The model is solved backwards, starting from the terminal age J and with the assumption that the terminal

utility value is zero, i.e. VJ+1 = 0.

7.1.1 Problem of the retirees

The value function of an age-j retired agent whose current detrended asset holdings are equal to ã is denoted

with V Rj (ã). The problem of these agents can be represented as follows:

V Rj (ã) = max
c̃,ã′

{
c̃η(1−θ)

1− θ
+ β(1 + g)η(1−θ)

(
1− πdj

)
V Rj+1(ã

′)

}
(15)

s.t.

c̃+ (1 + g)ã′ = (1 + r) ã+ ỹR + t̃r

c̃ ≥ 0, ã′ ≥ 0

In the budget constraint notice the presence of the common (detrended) pension payment ỹR. Retired agents

also receive a detrended accidental bequest t̃r, which is a lump-sum transfer.
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7.1.2 Problem of the workers

The value function of a working-age agent whose current asset holdings are equal to a, whose current efficiency

units shock is ε and whose fixed effect is f is denoted with Vj (ã, ε, f). The problem of these agents can be

represented as follows:

Vj (ã, ε, f) = max
c̃,l,ã′

{
c̃η(1−θ)l(1−η)(1−θ)

1− θ
+ β(1 + g)η(1−θ)

(
1− πdj

)∑
ε′

π (ε′, ε)Vj+1 (ã
′, ε′, f)

}
(16)

s.t.

c̃+ (1 + g)ã′ = (1 + r) ã+ (1− τR)(1− l)w̃ϵj,ε,f + t̃r − T (ỹ)

ã0 = 0, c̃ ≥ 0, ã′ ≥ 0, ỹ = rã+ ỹw

Non-retired agents have to set optimally their consumption/savings and labor supply plans. They enjoy utility

from consumption and leisure, and face some uncertain events in the future. In the next period they can still

be alive, and with probability π (ε′, ε) they transit from their current efficiency units ε to the value ε′. These

agents pay total (detrended) income taxes T (ỹ). They also pay a proportional tax τR on their labor earnings to

finance the pension scheme. Finally, they are born with the average shock ε, with no wealth, but they receive

the lump-sum accidental bequest t̃r, and are subject to an exogenous borrowing constraint, b = 0.

7.2 Recursive Stationary Equilibrium

Definition 1 For given public policies {τc, τf , τR, κ0, κ1, G} a recursive stationary equilibrium is a set of (trans-

formed) decision rules,
{
cj (ã, ε, f) , lj (ã, ε, f) , a

′
j (ã, ε, f)

}JR−1

j=1
and

{
cRj (ã) , aR′

j (ã)
}J
j=JR

, value functions, {Vj (ã, ε, f)}JR−1
j=1

and
{
V Rj (ã)

}J
j=JR

, prices {P, r, w̃} , normalized R&D expenditure ρ, endogenous growth rate g = (1 − e−ρ)γ,

and a set of stationary distributions, {µj (ã, ε, f)}JR−1
j=1 and

{
µRj (ã)

}J
j=JR

, such that:

� Given relative prices {r, w̃}, taxes and pension benefits ỹR, the individual policy functions{
cj (ã, ε, f) , hj (ã, ε, f) , a

′
j (ã, ε, f)

}JR−1

j=1
,
{
cRj (ã) , aR′

t (ã)
}J
j=JR

solve the household problems (15)-(16),

and {Vj (ã, ε, f)}JR−1
j=1 ,

{
V Rj (ã)

}J
j=JR

are the associated value functions.

� Given relative prices {P, r, w̃} and public policies, K̃/L solves the final good sector firm’s problem.

� Given relative prices {P, r, w̃} and public policies, ρ solves the entrepreneur’s problem.

� The labor market is in equilibrium, and the labor input L corresponds to the total supply of labor efficiency

units

L =

JR−1∑
j=1

Φj

∫
A×E×F

hj (ã, ε, f) ϵj,ε,fdµj (ã, ε, f)
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� The asset market clears

(1 + g)(1 + gn)K̃ =

JR−1∑
j=1

Φj

∫
A×E×F

a′j (ã, ε, f) dµj (ã, ε, f) +

J∑
j=JR

Φj

∫
A

aR′
j (ã) dµRj (ã)

� The goods market clears

Ỹ = C̃+Ĩ+G̃+R̃D =

JR−1∑
j=1

Φj

∫
A×E×F

cj (ã, ε, f) dµj (ã, ε, f)+

J∑
j=JR

Φj

∫
A

cRj (ã) dµRj (ã)+C̃e+(δ + gn)K+G̃+R̃D

� The government’s budget is balanced, that is tax revenues from (capital and labor) income taxation,

consumption taxes and taxes on profits are equal to the government purchases G

G = TAXES

� Total accidental bequests TR are equal to wealth holdings of the individuals that die

� The stationary distributions
{
µj (ã, ε, f) , µ

R
j (ã)

}
satisfy

µj+1 (ã
′, ε′, f) =

∫
ν (ã, ε, f, j, ã′, ε′) dµj (ã, ε, f) (17)

µRj+1 (ã
′) =

∫
νR (ã, j, ã′) dµRj (ã) (18)

In equilibrium the measure of agents in each state is time invariant and consistent with individual decisions,

as given by the above two equations (17)-(18), where ν (.) and νR (.) are the transition functions.

� The social welfare measure WS is utilitarian, i.e. it weights the agents’ lifetime utilities by their mass

along a BGP

WS =

JR−1∑
j=1

Φj

∫
A×E×F

Vj (ã, ε, f) dµj (ã, ε, f) +

J∑
j=JR

Φj

∫
A

V Rj (ã) dµRj (ã) +

(
1 + r

r

)
C̃e (19)

� The consumption based welfare measure ϖ (ϖKPR for the KPR case) is the percentage increase in con-

sumption in all states of the world that makes welfare in the counterfactual economy W 1 (ϖ) equal to

welfare in the baseline one W 0

W 0 = W 1 (ϖ)

ϖ =

(
W 1

W 0

) 1
η(1−σ)

− 1 (20)

ϖKPR =

(
W 1
KPR

W 0
KPR

) 1
1−σ

− 1 (21)
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Appendix B - Computation

� All codes solving the model economies and simulating samples of agents were written in the FORTRAN 95

language, relying on the Intel Fortran Compiler, build 17.1 (with the IMSL library). They were compiled

selecting the O2 option (maximize speed), and without automatic parallelization. They were run on

different 64-bit PC platforms, all running Windows 10 Professional, either with an Intel i7− 6700k Quad

Core processor clocked at 4.6 Ghz, or with an Intel i7− 2600k Quad Core processor clocked at 4.4 Ghz.

� For either version of the OLG model, the optimization with respect to the tax schedule parameters takes

up to 14 hours to complete. The procedure is initialized with different guesses running in parallel, and

refined starting from the local maxima. Typically from 15 to 35 iterations on the endogenous variables

are needed to find each equilibrium, and the Nelder-Mead algorithm converges in 50 to 80 iterations.

� In the actual solution of the models I need to discretize the continuous state variable a. I rely on an

unevenly spaced grid, with the distance between two consecutive points increasing geometrically. This is

done to allow for a high precision of the policy rules at low values of a, where the change in curvature

is more pronounced. I use 101 points, as increasing the number of points does not affect the results

considerably. The lowest value is the borrowing constraint b and the highest one being a value amax high

enough not to be binding.

� In the model, ε is discretized with the Rouwenhorst method, using a 7-state Markov chain. This method

has several desirable properties, especially when working with highly persistent processes.

� The model is solved with a backward recursion on the Bellman equations. I start from the terminal

value V RJ+1 = 0, and at each age, for every point in the state space, I solve the constrained maximization

problem. I retrieve the policy functions, a′j (ã, ε, f), a
R′
j (ã), and h′j (ã, ε, f). Notice that I do not restrict

the agents’ asset holdings to belong to a discrete set and I solve for the optimal decision rules relying on

the Euler equations. As for the approximation method, I rely on a linear approximations of the policy

functions, when evaluated at the relevant wealth value.

� The stationary distributions are computed relying on their definitions (17)-(18). I rely on these recursions

and compute numerically the transition functions.

� The asset market is in equilibrium when the current guess for the interest rate r0 achieves a capital excess

demand which is less than 0.1% of the market size. In turn, this implies that the excess demand in the

final good market is always less than 0.1% of the market size.

� The welfare measures W , and WS are just the newborns value functions, and the numerical integral of

the value functions (integrated with respect to the steady state distributions) plus the consumption of the

entrepreneurs.
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Appendix C - Solution Algorithm
This algorithm represents the computational procedure used to solve the OLG model:

1. Generate a discrete grid over the asset space [−b, ..., amax].

2. Generate a discrete grid over the income shocks with the Rouwenhorst method [εmin, ..., εmax].

3. Generate a discrete grid over the fixed effect f .

4. Set the values of the tax schedule parameters (κ0, κ1 or κnew0 , κnew1 , τnewk ).

5. Guess the interest rate r0.

6. Guess the accidental bequest TR0.

7. Guess the labor supply L0.

8. Guess the pension benefits yR,0.

9. Guess the income tax schedule parameter κ2,0.

10. Get the capital demand K0 and wages w0.

11. Find the monopolists’ profits π0.

12. Find the optimal rescaled R&D expenditure ρ0.

13. Get the growth rate g0.

14. Transform the HH’s problem into its stationary version.

15. Get the (transformed) saving functions a′j (ã, ε, f) , a
R′
j (ã), the labor supply functions hj (ã, ε, f) and the

value functions Vj (ã, ε, f) , V
R
j (ã) .

16. Get the (transformed) stationary distributions µj (ã, ε, f) , µ
R
j (ã).

17. Get the equilibrium income tax schedule parameter κ2,1.

18. Get the aggregate capital supply and check the asset market clearing; Get r1.

19. Get the aggregate labor supply and check the labor market clearing; Get L1.

20. Update r′0, TR
′
0, L

′
0, y

′
R,0, κ

′
2,0(with a relaxation method).

21. Iterate until asset market clearing, labor market clearing, balanced budget, and aggregate consistency of

the accidental bequests and pensions.

22. Get the consumption functions cj (ã, ε, f) , c
R
j (ã) and check the final good market clearing.

23. Compute the ex-ante welfare W and the social welfare WS .

24. Find the welfare maximizing tax schedule κ∗0, κ
∗
1, τ

∗
k with the Nelder-Mead method, repeating steps 4-23

at each iteration.
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