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Abstract. We propose a method to empirically decompose a cross-section of observed
belief revisions into components driven by individual and common information under weak
assumptions. We define a common signal as the single signal that if observed by all agents
can explain the maximum amount of belief revisions across agents. Individual signals are de-
fined to explain the residual belief revisions unaccounted for by the common signal. When
applied to probability forecasts from the Survey of Professional Forecasters we find that
individual signals account for more of the observed belief revisions than common signals.
There is a large cross-sectional heterogeneity in signal informativeness, and the fraction
of forecasters that observe individual signals that are more informative than the common
signal ranges from 0.5 - 0.9, depending on variable and measure of informativeness. Uncon-
ditionally, the informativeness of individual and common signals are positively correlated.
Inflation volatility, perceived stock market volatility and a high risk of recession are all fac-
tors associated with increased informativeness of both individual and common signals. We
discuss the implications of our findings for theoretical models of information acquisition and
we show how our procedure maps into alternative information structures.

1. Introduction

Decisions taken under uncertainty can be improved upon by having more information and
how, when, and for what purposes economic agents acquire information is the subject of a
large and active theoretical literature. From this literature, we know that information that
is common to many agents is more likely to affect economic aggregates and that whether
information is private or public is of particular importance in strategic environments.1 In
spite of these important distinctions, there is very little empirical work studying the rela-
tive importance of individual and common information acquisition outside highly structural
models. In this paper we aim to make two contributions to remedy this short-coming. First,
we propose a method that allows us to extract individual and common signals from repeated
fixed-event probability forecasts. Second, we demonstrate how the method can be used to
ask and answer new questions about the empirical properties of individual and common
information.
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The proposed procedure can be applied whenever we can observe how a cross-section
of probability forecasts about a fixed event changes over time. It contains two steps. In
the first step, we find the single signal that, if observed by all forecasters, can explain the
maximum amount of the cross-section of belief revisions. This signal is defined as the common
signal. In the second step, we invert Bayes rule to extract the implied individual signal for
each forecaster so that when combined with the common signal, the two types of signals
completely account for the observed cross-section of belief revisions. The method imposes
relatively weak assumptions, namely that forecasters update their beliefs using Bayes rule.
We impose neither that the observed beliefs are rational, follow a particular parametric
functional form, nor that the signal structure is stable over time.2

The proposed method allows us to measure how the perceived informativeness of indi-
vidual and common sources of information vary over time. As shown in Bassetti, Casarin
and Del Negro (2022), at short horizons, more precise beliefs correspond to a higher actual
precision of forecasts. When we apply the methodto probability forecasts from the Survey of
Professional Forecasters (SPF), we find that (i) individual signals are on average moreprecise
than common signals, and account for more of the observed belief revisions, (ii) there is a
large cross-sectional heterogeneity across forecasters, with about 1/3 of forecasters observing
individual signals that are less precise than the common signal, (iii) high inflation is asso-
ciated with more informative common signals but less informative individual signals, while
the informativeness of both individual and common signals increases strongly when inflation
is volatile, (iv) the precision of both types of signals tend to increase when the probability
of a recession is high or when the perceived volatility of stock prices is high.

In strategic settings, it is important to distinguish between common information and public
information, where the latter is not only known by all agents but also common knowledge.
Our approach does not allow us to distinguish between common and public information.
Since all public information is also common information, but not vice versa, we use the
weaker terms common information and common signals throughout.

To understand how the method works, it is helpful to first delve a little bit into the
structure of the SPF. The administrators of the survey collect both point and probability
forecasts and for this study we make use of the latter. The SPF asks respondents to assign
probabilities to different ranges (“bins”) of outcomes for GDP growth, the GDP deflator,
Personal Consumption Expenditure (PCE) inflation, Consumer Price Index (CPI) inflation
and unemployment. The bins are pre-specified by the SPF and occasionally redefined due to
changes in the long term means and variances of the variables. Both point and probability
forecasts are collected every quarter. However, unlike the point forecasts, the probability
forecasts are only elicited about calendar year outcomes, i.e. they are fixed-event rather than
fixed-horizon forecasts.

The fixed-event nature of the probability forecasts allows us to study how forecasters revise
their beliefs about a given event over time. In particular, since calendar year forecasts are
collected every quarter and for multiple calendar years at each survey wave, we can observe
how the cross-section of beliefs about a given calendar year changes quarter-to-quarter. For

2Giacomini, Skreta and Turen (2020) provides empirical support for the assumption that forecasters use
Bayes rule to update their beliefs.
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instance, survey respondents are asked to provide a probability forecasts for CPI inflation
for the calendar year 2015 every quarter from 2012:Q1 to 2015:Q4. Hence, we have 16
cross-sections of probability forecasts about CPI inflation for the calendar year 2015 and 15
observed cross-sections of revisions to these beliefs.

We use this structure to estimate the relative importance of common and individual infor-
mation in the observed belief revisions. The basic idea is the following. For a given change in
a forecaster’s probability forecast, we can invert Bayes rule to back out a signal that would
justify the change in his beliefs from t − 1 to t. If done individually for each forecaster, we
would end up with one signal for each forecaster at each point in time. However, we want
to separate out the component of each forecaster’s belief revision that is due to common
information from the component that is due to individual information. To do so, we ask
What is the single signal that, if observed by all forecasters, can explain the most of the belief
revisions of all the forecasters? We call this signal the common signal. To make the proce-
dure operational, we find the signal that minimizes the Kullback-Leibler divergence between
the observed cross-section of beliefs in period t and the hypothetical cross-section of beliefs
forecasters would have had, had they updated their prior based only on the common signal.

The extracted common signal will in general not by itself be enough to completely account
for how every forecaster updates his or her beliefs. However, by inverting Bayes rule, we can
back out an implied individual signal that when combined with the observed prior and the
common signal, completely account for a given forecaster’s observed belief revision.

To study the importance of individual and common signals and how it varies over time, we
propose three measures of signal informativeness. The belief update measure captures how
large a revision of an agent’s belief a signal leads to. While a natural measure of a signal’s
importance, the belief update measure depends on the prior of the agent and not only on the
properties of the signal. The negative entropy measure is independent of forecasters’ priors
and measures how much a signal reduces the entropy over possible outcomes from a starting
point of maximum entropy. The belief update and entropy measures are independent of the
numerical values associated with different outcomes and are thus not suited to measure the
precision of a signal. However, the precision measure of a signal, computed as the inverse of
the variance of the hypothetical posterior implied by combining the signal with a uniform
prior, allows us to evaluate the perceived precision of signals.

We document several empirical regularities about the extracted signals. First, the infor-
mativeness of individual and common information are positively correlated, regardless of
which measure of informativeness we use. Individual signals are for most agents more infor-
mative than the public signals, in the sense that the individual signals account for more of
the observed belief revisions and are perceived to be more precise. This is true in spite of
the fact that the procedure used to extract the common signal maximizes the importance of
the common signals. While the average informativeness of individual signals is higher than
that of the common signal, there is substantial cross-sectional heterogeneity. The fraction of
forecasters that observe individual signals that are more informative than the common signal
ranges from 0.5 - 0.9, depending on variable and measure of informativeness. There are thus
no variable for which the common signal is more informative for a majority of forecasters.

For some macro variables, the outcomes of the underlying variable that is being forecast
covary with the informativeness of the signals. For example, high inflation tends to be
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associated with more informative common signals about inflation. Volatile inflation tends
to be associated with both individual and common signals becoming more precise. This is
consistent with theories of agents rationally choosing how much attention to pay to inflation,
as analyzed in Pfauti (2023) and discussed by Federal Reserve chair Jerome Powell in a recent
speech.3 High levels of unemployment tend to be associated with more precise individual
and common signals. Interestingly, increases in unemployment tend to be associated with
both individual and common signals about unemployment being less precise.

Our measures of signal informativeness of both the individual and common signals are
positively correlated with the Philadelphia Fed’s Anxious Index, which measures forecasters’
subjective probability of a recession, as well as with the VIX index from the Chicago Board
Options Exchange. This finding suggests that in times of either increased probability of a
recession, or when there is a high level of perceived uncertainty about the stock market, the
incentives to acquire information by the survey participants may be particularly strong. This
finding is thus consistent with the mechanisms explored in Song and Stern (2020), Flynn
and Sastry (2022) and Chiang (2022), who all argue that firms have a stronger incentive to
acquire information in bad times. Flynn and Sastry (2022) further argue that this fact can
explain why we observe asymmetric business cycles with state-dependent dynamics. The
evidence here is also consistent with the empirical findings in Song and Stern (2020) and
Flynn and Sastry (2022) who both use a text-based approach to measure firms’ attention to
macroeconomic variables and find it to be counter-cyclical.

There exists a large empirical literature studying the Survey of Professional Forecasters.
One strand of this literature has focused on the accuracy of the forecasts, and in particular
their accuracy relative to alternative econometric forecasting models, e.g. Zarnowitz (1979),
Zarnowitz and Braun (1993), Diebold, Tay, and Wallis (1997), Clements (2006, 2018), Engel-
berg, Manski and Williams (2009) and Kenny, Kostka and Masera (2014). A second strand
has studied how to best combine individual survey forecasts to increase forecast accuracy,
e.g. Bonham and Cohen (2001) and Genre, Kenny, Meyler and Timmermann (2013). A
third strand has focused on testing theories of expectations formation, including the rational
expectations hypothesis, e.g. Zarnowitz (1985), Keane and Runkle (1990), Bonham and
Dacy (1991), Laster, Bennett and Geoum (1999) and Coibion and Gorodnichenko (2012,
2015).

Most of the literature using or studying the SPF focuses on the point forecasts, which
are available for a larger set of macro variables. Some exceptions that do make use of
the probability forecasts include Diebold, Tay and Wallis (1997), Clements (2006), Kenny,
Kostka and Masera (2014), Rossi, Sekhposyan, and Soupre (2016), Clements (2018), Ganics,
Rossi, and Sekhposyan (2020) Del Negro, Casarin and Bassetti (2022). These studies mostly
focus on the the accuracy of the forecasts. Rossi et al (2016) decompose SPF probability
forecasts into “Knightian uncertainty” and “risk” components, while Ganics et al (2020)
propose a method to construct fixed-horizon probability forecasts from fixed-event forecasts.

3In his August 26, 2022 speech on Monetsary Policy and Price Stability, Federal Reserve chair Jerome
Powell said “When inflation is persistently high, households and businesses must pay close attention and
incorporate inflation into their economic decisions. When inflation is low and stable, they are freer to focus
their attention elsewhere.”.
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The next section describes the structure of the probability forecasts in the SPF. Section 3
proposes a procedure to extract individual and common signals from a cross-section of belief
revisions. Section 4 presents three measures of signal informativeness. Section 5 presents
the empirical results and Section 6 characterizes the estimated signal and shows how it maps
into alternative information structures. Section 7 concludes.

2. The structure of the SPF probability forecast data

The Survey of Professional Forecasters (SPF) contains quarterly forecasts from practi-
tioners in industry, Wall Street, commercial banks and academic research centers about key
macroeconomic variables. Since 1990 it has been administered by the Federal Reserve Bank
of Philadelphia who took over the survey from the American Statistical Association and the
National Bureau of Economic Research. All participants produce forecasts as part of their
current jobs. The respondents are anonymous to users of the survey, but individual forecast-
ers can be tracked over time through an id number.4 The SPF collects both point forecasts
and probability forecasts. The point forecasts have been used widely to study properties
of expectations formation and as a benchmark for evaluating statistical forecasting models
and procedures. The probability forecasts, like the point forecasts, are collected every quar-
ter. However, the SPF only elicit probability forecasts for a subset of the macro variables
that they elicit point forecasts for, and all probability forecasts are fixed-event rather than
fixed-horizon forecasts.

The SPF currently collects probability forecasts about the GDP growth rate, the GDP
deflator inflation, CPI inflation, PCE inflation and the unemployment rate. The longest
sample is available for the GDP growth rate and the GDP deflator inflation, starting in
1968:Q4. However, until 1981:Q3, respondents were only asked to provide probability fore-
casts for the current calendar year. Since 1981:Q4 they have been asked to also provide
probability forecasts for the next calendar year, and since 2009:Q2 they have been asked to
forecast the next three calendar years in addition to the current one. Probability forecasts
for CPI inflation and PCE inflation have been included in the survey since 2007:Q2 and
probability forecasts for unemployment were added in 2009:Q2.

The probability forecasts for the variables added since 2007 include forecasts for the current
year, as well as forecasts for the next three calendar years. Respondents are asked to assign
probabilities to ranges (“bins”) of different outcomes, where the intervals defining each bin is
predefined by the administrators of the survey. The definitions of the bins have occasionally
been changed to reflect that the high-probability ranges of the macro variables have changed.
The survey responses and the bind definitions are illustrated in Figure 2.1 where we have
plotted the average probability forecasts for the next calendar year outcome of the five
macroeconomic variables. The x-axis denotes the quarter when the forecast was made. The
y-axis denotes the outcomes and horizontal dotted lines indicate bin boundaries. A vertical
line indicates a date when a redefinition of the bins occurred. These redefinitions have been
motivated by either a persistent change in the mean or variance of the probability forecasts
or, in the case of the redefinitions of the bins for unemployment and GDP growth during

4For a detailed description of the survey and how it has changed over time, see Croushore (1993) and
Croushore and Stark (2019).



6 YIZHOU KUANG, NATHAN MISLANG, AND KRISTOFFER NIMARK

Figure 2.1. Average density forecast for CPI, PCE, unemployment, GDP
price deflator and GDP growth. Dashed horizontal lines indicate bin bound-
aries, vertical solid lines indicate date of change for bin definitions.

2020, to address an abrupt change in the plausible range of outcomes. When extracting a
signal based on updates across a bin change, we convert each distribution into the coarsest
common bin definition before extracting the signal.

Respondents are asked to repeatedly, i.e. over several consecutive quarters, forecast a
given calendar year outcome. The fixed-event nature of the probability forecasts implies
that we can observe how a forecaster’s beliefs about a given calendar year outcome evolves
over time. This is illustrated in Figure 2.2 where we have plotted how the probability forecast
of Forecaster #570 about CPI inflation in 2021 changed quarter-to-quarter in 2020. When
COVID struck in 2020:Q2, the forecaster shifted the distribution to the right, increasing
the probability of high inflation outcomes and in subsequent quarter, he or she continued to
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Figure 2.2. Illustration of observed belief revisions for a single forecaster.
The panels show how the beliefs of Forecaster #570 about inflation in 2021
evolved over 2020 where the prior belief is the posterior from the previous
quarter.

shift even more probability mass to high inflation outcomes. In the last quarter, the revi-
sions changed directions and the forecaster then increased the probability of more moderate
inflation outcomes.

3. Extracting common and individual signals from probability forecasts

The SPF allows us to observe how a cross-section of individual forecasters’ beliefs about a
given event changes over time. We can use this cross-section of belief revisions to extract an
estimate of the information that is commonly observed by all forecasters in a given period.
The basic idea is to find the single signal that, if observed by all respondents, explains “the
most” of the observed belief revisions. Individual signals are then defined to explain any
residual revisions not accounted for by the common signal. We now describe how to make
this idea operational, but first a note on notation and terminology.

We index forecasters by j ∈ 1, 2, ..., J and time by t ∈ 1, 2, ..., T . We use x to denote a
generic macroeconomic outcome which can take values in n ∈ 1, 2, ..., N different intervals
(or bins) in X. The probability forecast of forecaster j in period t is denoted p(x | Ωj

t) where
Ωj

t denotes the information set available to forecaster j in period t.
It is natural to formulate the discussion below in terms of prior and posterior distributions,

where the posterior is obtained by combining the new information in the signal with the
information in the prior. However, it is worth remembering that given the fixed-event nature
of the forecasts, the prior in period t is simply the posterior inherited from period t− 1.

3.1. Bayes’ rule, belief updates and realized signals. A signal structure is a probability
distribution p (S | X) that associates a probability for each possible signal s ∈ S with each
possible outcome x ∈ X. We do not observe neither this signal structure, nor the realized
signals directly, but observing both the prior and the posterior allow us to infer the implied
relative probability of observing the realized signal in different states x ∈ X.
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To understand what we can learn about the properties of realized signals from observing
beliefs revisions, it is helpful to start with the mechanics of Bayesian updating. Denote the
prior of forecaster j as Ωj

t−1 and the signal observed in period t as st.
5 Bayes rule then tells

us that the posterior distribution of x is given by

p(x | Ωj
t−1, st) =

p(st | x)p(x | Ωj
t−1)

p(st | Ωj
t−1)

. (3.1)

Both the prior and the posterior are N dimensional probability simplices, i.e. they are N -
dimensional vectors with elements summing to 1. The likelihood function for the realized
signal p(st | x) ∈ (0, 1)N is also an N -dimensional object but it is not necessarily a simplex.6

However, the elements in p(st | x) are proportional to the ratio of the posterior and the prior
probabilities of each corresponding outcome xn ∈ X, i.e.

p(st | xn) ∝
p(xn | Ωj

t−1, st)

p(xn | Ωj
t−1)

. (3.2)

Since p(st | Ωj
t−1) in (3.1) is simply a normalizing constant that ensures that the posterior

probabilities over different states xn sum to one, the ratio of the posterior and prior proba-
bilities for each xn are sufficient to characterize the realized signal. From here on, when we
refer to a signal, we take that to mean the N -dimensional object proportional to p(st | x).
(Also, note that the label associated with the particular signal outcome is irrelevant.)

3.2. Extracting the common signal by minimizing Kullback-Leibler divergence.
We saw in the previous paragraph that it is possible to back out an implied signal that in
principle can account for the entire belief revision from Ωj

t−1 to Ωj
t for each forecaster j.

However, we want to estimate the conditional distribution p (st | x) of the common signal
available to every forecaster. In general, such a signal will not be able to explain the entire
belief revision of every forecaster in a given period, but we can estimate it by imposing that
it should explain the maximum amount of the cross-section of belief revisions. To make this
notion operational, we need to be specific about what “maximum amount” means.

For a given signal st and prior distribution p(x | Ωj
t−1) we can compute the Kullback-Leibler

divergence between the observed posterior distribution p(x | Ωj
t) and the hypothetical beliefs

p(x | Ωj
t−1, st) a forecaster would have after updating to the signal st as

KL(Ωj
t ,Ω

j
t−1, st) =

N∑
n=1

p(xn | Ωj
t) log

(
p(xn | Ωj

t)

p(xn | Ωj
t−1, st)

)
. (3.3)

We can then define the estimated common signal ŝt as

p (ŝt | x) = arg min
p(ŝt|x)∈(0,1)N

J∑
j=1

KL(Ωj
t ,Ω

j
t−1, st) (3.4)

5While stdenotes a generic signal in this subsection, with a slight abuse of notation, we will also use st to
denote the common signal in what follows.
6That is, while each element of p(st | x) is a probability, it is not generally the case that

∑N
n=1 p(st | xn) = 1.
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so that the estimate of the common signal st is the signal that minimizes the sum of KL-
divergences between the cross-section of observed posteriors and the cross-section of the
hypothetical beliefs forecasters would have if st was the only piece of additional information
available in period t.

Figure 3.1. Illustration of procedure to estimate common and individual
signals for a constructed example with N = 5. Beliefs are updated from left to
right following the arrows. Blue graphs indicate observed beliefs. Gray graphs
indicate signals. Green graphs indicate hypothetical intermediate beliefs im-
plied by the priors and the common signal. The common signal is chosen to
minimize the distance between the green intermediate beliefs and the observed
posteriors in the right hand column. The individual signals are defined so that
when the priors are updated with the common and respective individual sig-
nals, the implied posterior coincides with the observed posterior.

3.3. Extracting the residual individual signals by inverting Bayes rule. We define
the individual signal sjt of forecaster j as the signal, that when combined with the common
signal and the forecaster j’s observed prior, result in a posterior belief equal to his or her
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observed posterior in the SPF. It can be backed out by inverting Bayes rule as in (3.2) so
that for each xn ∈ X we have

p(sjt | xn) ∝
p(xn | Ωj

t−1, ŝt, s
j
t)

p(xn | Ωj
t−1, ŝt)

. (3.5)

The procedure is illustrated for a hypothetical cross-section of two forecasters in Figure
3.1. The blue distributions in the far left and far right columns are, respectively, the observed
prior and posterior beliefs that we obtain from the survey data. The top row corresponds to
the beliefs and signals of the first forecaster, the bottom row to that of the second. The first
step of the procedure is to find the common signal (gray, left-of-center column) such that
the sum of the Kullback-Leibler divergences between the implied intermediate beliefs (green,
center column) and the observed actual posteriors (blue, far right column) for each forecaster
are minimized. The second step uses the inverted Bayes rule (3.2) to find the individual
signals (gray, right-of-center column) so that when the updated hypothetical intermediate
beliefs are updated, each forecasters’ posterior coincides with the observed posteriors (blue,
far right column).

3.4. Realized signals vs signal structures. If we can observe how forecasters beliefs
about a given event evolve over τ consecutive periods, we can observe τ − 1 updates of these
beliefs and hence back out τ − 1 common signals about the event, as well as τ − 1 individual
signals for each participating individual forecaster. The procedure described above allow us
to identify the likelihood p(st | x) of the realized signals up to a constant of proportionality
cj = p(st | Ωj

t−1)
−1 for each period where we can observe a belief revision about x. Since

knowledge of any function proportional to the likelihood function, i.e. any function of the
form a × p(st | x) : a ∈ R+ , is sufficient to completely determine how agents update their
prior in response to the signal st, extracting the properties of the realized signal up to a
constant of proportionality is sufficient for our purposes. However, note that the procedure
does not allow us to characterize the properties of forecasters’ complete signal structure, i.e.
it does not allow us to infer anything about the properties of other possible but unrealized
signals st ∈ S, since doing so would require us to make assumptions about the invariance
of the signal structure over time. Our procedure relies only on the information contained in
the update between period t− 1 and t to extract the signals in period t.
Above we have used the language of information and signals to decompose the cross-section

of beliefs revisions and this language naturally connects to the theoretical literature. In
Section 6 below, we use the first order condition for the minimization problem (3.4) to derive
conditions on actual information structures that ensures that what the procedure extracts
indeed corresponds to individual and common signals. There, we also characterize what the
procedure finds under alternative modeling assumptions, for instance when different agents
interpret a common signal differently or when the true underlying information structure is
a standard linear Gaussian noisy rational expectations model.

4. Three measures of signal informativeness

We want to quantify the informativeness of common and individual information and study
their cyclical properties. For this purpose, we here define three measures capturing different
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aspects of signal informativeness. To facilitate comparisons, each measure is defined so that
a higher value indicates a more informative signal.

4.1. The belief update measure. A natural starting point is to find a measure that
quantifies how much a given signal changes a prior belief. One such measure is the belief
update measure, defined as the Kullback-Leibler divergence between the prior and posterior
distributions.

Definition 4.1. The belief update measure KL(Ωt−1, st) of the signal s is defined as

KL(Ωt−1, st) =
N∑

n=1

p(xn | Ωj
t−1) log

(
p(xn | Ωj

t−1)

p(xn | Ωj
t−1, st)

)
(4.1)

The belief update measure is large when the signal st results in a posterior distribution
that is very different from the prior. From Bayes rule,this measure depends on how different
the conditional signal probability ratios p(st | xn)/p(st | xm) are from the corresponding
prior ratios p

(
xn | Ωj

t−1

)
/p
(
xm | Ωj

t−1

)
. Hence, while it measures how much a signal affects

the forecasters’ beliefs, it depends not only on the signal but also on the forecaster’s prior
beliefs.

Figure 4.1. The signal s with concentrated conditional probabilities p(s | x) (left panel) implies

a large belief revision if the prior is uniform (middle panel) but a smaller revision if the prior is already

concentrated (right panel), illustrating the dependence of the belief update measure on the prior distribution.

The role of the prior for the belief update measure is illustrated in Figure 4.1. The
uniform prior (middle panel), when combined with a signal that has most of the mass in the
tail regions of the distribution (left panel), implies a revision that re-allocates a lot of the
mass from the tail regions towards the central bin. This results in a large Kullback-Leibler
divergence between the prior and the posterior. A more concentrated prior (right panel)
that already has most of the mass in the central bin, would be only marginally updated
after the observation of the same signal leading to a correspondingly small Kullback-Leibler
divergence between prior and posterior. A given signal will according to the update measure
thus be considered more informative for a forecaster whose posterior changes a lot relative
to his or her prior.
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4.2. The negative entropy measure. Entropy is a measure of uncertainty, and for discrete
distributions it is maximized by a uniform distribution. Entropy, and hence uncertainty, is
minimized when there is only one possible outcome, i.e. for the degenerate distribution. We
define the negative entropy measure as the negative of the posterior entropy a (hypothetical)
agent with a uniform prior would have after having observed the signal.

Definition 4.2. The negative entropy measure H(st) of a signal st is defined as

H(st) =
N∑

n=1

p (xn | Ωu, st) log p (xn | Ωu, st) (4.2)

where Ωu denotes a uniform prior over outcomes in X.

The negative entropy measure is thus independent of forecasters’ beliefs and a function
only of the conditional signal probabilities p(s | x). It captures the notion that a signal that
is only likely to be observed in a specific state xn ∈ X is more informative than a signal that
is equally likely to be observed in many states.

4.3. The precision measure. The belief update and the entropy measures are independent
of the numerical labels associated with each outcome xn and would remain unchanged if we
reordered the outcome bins for the variable x. Hence, it does not distinguish between a
signal that assigns all the probability mass to two central bins and a signal that assigns
all the probability mass to two bins in the tails of the distribution. The precision measure
remedies this and allows us to talk about the precision of a signal.

Definition 4.3. The precision measure P (st) of a signal st is defined as

P (s) = var (x | Ωu, st)
−1 (4.3)

The measure P (st) is thus the inverse of the variance of the posterior beliefs of a (hypo-
thetical) agent with uniform prior have after having observed the signal. Defining it requires
us to assign numerical values for each outcome xn ∈ X. We do so by simply associating each
interior outcome with the mid-point of the interval as defined in the SPF. For one-sided open
boundary intervals we impose that the interval width is equal to the average interval length
for the period. (In the appendix we demonstrate that our results are robust to alternative
ways to assign values to boundary intervals.)

Figure 4.2 illustrates how the entropy and the precision measure captures different aspects
of the informativeness of a signal. Both signals imply that there are two bins that are much
more likely than the remaining four bins, and both signals would be considered equally
informative according to the entropy measure (4.2). However, the signal in the left panel
assigns large weights to the two central bins, thus resulting in a high precision measure,
while the signal in the right panel assign large weights to the boundary bins, resulting in a
low precision measure.

One widely used measure of signal informativeness that is central to the large rational
inattention literature that builds on the formalism proposed in Sims (1998, 2003), is mu-
tual information. The mutual information I(S;X) between two random variables S and
X measures how much the entropy of X is reduced by observing S. Computing it requires
knowledge of the entire conditional distribution p(S | X), i.e. we would need to need to know
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Figure 4.2. Illustration of the difference between entropy and variance measures of signal informa-

tiveness. From a uniform prior, the conditional probabilities of the signals in the left and right panel imply

posterior distributions with the same entropy since the entropy measure is independent of the ordering of

the bins. However, the signal in the left hand panel is more informative according to the precision measure.

p(sm | xn) for each sm ∈ S where m ∈ {1, 2, ...,M} indexes the labels of different signal real-
izations. As discussed above, estimating the entire signal structure would require imposing
additional restrictions on its time invariance and we do not pursue this in the current paper.
Below we will use the measures defined here to quantify how signal informativeness differs
over time, across variables and across individual and common signals.

5. Empirical properties of individual and common signals

To study how signal informativeness changes over time and in response to what events,
we apply the procedure described in Section 3 to the SPF probability forecasts. We extract
a common signal and an individual signal for each forecaster at each quarter about current
year outcomes of CPI inflation, unemployment, GDP growth, GDP deflator and PCE infla-
tion. Results are qualitatively similar for longer forecasts horizons, though there is generally
quantitatively less variation in signal informativeness about next and the-year-after-next
calendar year outcomes. In addition, Bassetti, Casarin and Del Negro (2022) shows that at
short horizons, the SPF survey respondents’ perceived precision of their forecasts corresponds
closely to with their actual forecasts accuracy, while at longer horizons, the relationship is
more tenuous or non-existent. A second reason to focus on current calendar year outcomes is
thus that our measures of the subjective precision of signals then also translates into actual
precision in forecasting. (The complete results are reported in the Appendix and are also
available through the replication files.)

Below, we study how the informativeness of both common and individual signals vary over
time and how informativeness covary with macro economic outcomes. We also document
the relative informativeness of common and individual signals and the degree to which the
informativeness of individual signals vary across forecasters. Finally, in this section we also
study how informativeness covary with forecasters’ subjective probability of a recession,
NBER dated recessions and an index of expected stock market volatility.
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Figure 5.1. Time series of informativeness of individual and common signals about CPI inflation,

unemployment and GDP growth.



INDIVIDUAL AND COMMON INFORMATION 15

5.1. Changes in signal informativeness during macroeconomic episodes. The pro-
cedure associates an N -dimensional vector of probabilities with each type of signal at each
point in time. As a summary of the informativeness of the common and individual signals
and how it varies over time, we compute the time series of each measure of informativeness
for the common signal together with the cross-sectional average informativeness of the in-
dividual signals. The corresponding time-series for CPI inflation, unemployment and GDP
growth are plotted in Figure 5.1.7

It is clear from the figure that for each macro variable, there is clear variation in the
magnitude of fluctuations in signal informativeness over time. A common pattern across
variables and measures is that signal informativeness increases during times of macroeco-
nomic volatility such as during the 2008-2010 financial crisis or during COVID. This pattern
is most pronounced for the update and neagative entropy measures, but to some degree is
also present in the precision measure. This suggests that the periods of high macroeconomic
volatility were not necessarily periods of high perceived uncertainty. On average, there is
also somewhat larger fluctuations in the informativeness of the individual signals than in the
informativeness of the common signals. Some patterns are specific to some macro variables.
For CPI inflation, the period of the financial crisis and the onset of the COVID pandemic are
associated with larger increases in the informativeness of the individual signals as compared
to the informativeness of the common signals. A substantial deviation from this pattern can
be observed in 2021, when the informativeness of the common signal about CPI inflation
increased sharply. This increase coincided with the sharp increase in actual CPI inflation
in the aftermath of the COVID pandemic. That this period is associated with a sharp in-
crease in all measures of informativeness is likely a consequence of the intense media focus
on inflation at the time.

For the informativeness of the signals about unemployment, the time around the financial
crisis does not stand out in the same way as it did for CPI inflation. However, the infor-
mativeness of the common signals about unemployment did also increase sharply during
the pandemic. Unlike for inflation though, this increase happened early in the pandemic,
reflecting that the increase in unemployment occurred much faster and more dramatically
than the increase in CPI inflation that occurred towards the tail end of the pandemic.

One interesting episode that the procedure picks up occurs in 2014:Q2. If one were to
only look at unemployment in that quarter, there is nothing to suggest that anything special
is going on. However, this is the quarter when unemployment fell below 6.5%, the level of
unemployment that the Federal Reserve had previously stated that they would not start
increasing interest rates until unemployment was below, see Federal Reserve Board of Gov-
ernors (2012). Hence, when this threshold was crossed, it received a large amount of media
attention, e.g. New York Times (2012).

For GDP growth, we can see that as for the other variables, the informativeness of signals
increases during both the financial crisis and during COVID. It also appears that there were
large fluctuations in informativeness throughout the 70 and well into 1980s. This should be
interpreted with a bit of caution though, since the number of respondent in the SPF was
lower then than it’s been from the 1990s and onward. The sharp spike in 1987 is likely not

7The corresponding graphs for GDP deflator and PCE inflation are reproduced in the Appendix.
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CPI inflation

πcpi
t πcpi

t−1 ∆πcpi
t

∣∣∆πcpi
t

∣∣ ∣∣∆πcpi
t−1

∣∣
Individual signals

KL -0.08 -0.13 0.08 0.48 0.45
H -0.20 -0.22 -0.03 0.36 0.35
P -0.17 -0.22 0.05 0.36 0.35

Common signals
KL 0.12 0.15 -0.03 0.23 0.44
H 0.25 0.21 0.14 0.45 0.53
P 0.02 0.04 -0.12 -0.06 0.29

Unemployment
ut ut−1 ∆ut |∆ut| |∆ut−1|

Individual signals
KL 0.27 0.38 -0.18 -0.06 -0.19
H 0.16 0.31 -0.24 0.07 -0.10
P 0.32 0.28 0.06 -0.11 -0.11

Common signals
KL 0.22 0.48 -0.41 0.38 0.14
H 0.20 0.40 -0.31 0.24 0.04
P 0.21 0.43 -0.35 0.31 0.12

Table 1. Correlation of information measures and inflation and unemploy-
ment outcomes.

a consequence of the poor data quality, but rather a response to the Black Monday stock
market crash which many forecasters expected to lead to a recession. However, the fact that
this is attributed to mostly individual signals is a consequence of that there was disagreement
among the forecaster to what degree the stock market crash would affect the real economy.

5.2. Correlations between signal informativeness and macroeconomic outcomes.
To document the relationship between macroeconomic outcomes and the signals more for-
mally, Table 1 reports the correlation between the informativeness of signals and outcomes
for CPI inflation and unemployment as well as the correlation with lagged outcomes and
measures of volatility, i.e. magnitude of absolute changes. High inflation tend to be asso-
ciated with more informative common signals, but less informative individual signals. The
strongest correlation overall is between informativeness and lagged absolute changes in infla-
tion, suggesting that forecasters become more informed from both individual and common
sources when inflation is more volatile. For individual signals, the correlation is also strong
between current absolute changes in inflation and all three measures of informativeness.

The fact that common, but not individual, signals are more informative when inflation is
high might suggest that the Federal Reserve, a de facto inflation targeter, communicates more
directly and effectively during such periods to reassure the public that they are addressing the
problem. Some of these correlations are driven by the high and volatile inflation following the
COVID pandemic. While the Federal Reserve did actively communicate during this period,
the high inflation outcomes also became an important news story and political talking point
at this time, e.g. Financial Times (2021). It is thus not clear that the Federal Reserve was
the main source of common information about inflation during this episode.

In 2 we have plotted the same correlation while excluding the COVID sample period, i.e.
2020:Q2-2023:Q2. The correlation between the informativeness of the common signal and
the level of inflation then becomes negative, and the correlation of the level of inflation and
the informativeness of the individual signals becomes substantially more negative than when
the COVID sample is included. Overall, excluding the COVID sample appears to reduce
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CPI inflation

πcpi
t πcpi

t−1 ∆πcpi
t

∣∣∆πcpi
t

∣∣ ∣∣∆πcpi
t−1

∣∣
Individual signals

KL -0.45 -0.13 -0.16 0.47 0.52
H -0.44 -0.38 -0.13 0.38 0.47
P -0.44 -0.41 -0.05 0.42 0.46

Common signals
KL -0.17 -0.12 -0.14 0.16 0.13
H -0.14 -0.09 -0.13 0.24 0.19
P -0.10 -0.06 -0.12 0.17 0.19

Unemployment
ut ut−1 ∆ut |∆ut| |∆ut−1|

Individual signals
KL 0.73 0.73 -0.08 0.13 0.14
H 0.50 0.51 -0.18 0.16 0.09
P 0.36 0.35 0.05 -0.07 0.04

Common signals
KL 0.31 0.32 -0.24 0.24 0.15
H 0.18 0.20 -0.31 0.35 0.08
P 0.11 0.14 -0.32 0.37 0.02

Table 2. Correlation of information measures and inflation and unemploy-
ment outcomes excluding COVID sample.

the correlation of the informativeness of the common signal more broadly with the outcome
variables.

The right hand side of Table 1 reports that high levels of unemployment tend to be
associated with both individual and common signals being more informative and precise.
Interestingly, while high levels of unemployment tend to be associated with more informative
signals, increases in unemployment tend to be associated with less informative and less precise
signals. One possible interpretation of this result is that in a recession, when unemployment
increases rapidly, there is an increased uncertainty about how high unemployment will go
before it peaks.

Excluding the COVID sample substantially increases the correlation the correlation be-
tween the informativeness of the individual signals and the both current and lagged unem-
ployment outcomes. It also somewhat reduces the negative correlation between the informa-
tiveness of both types of signals and the increase in unemployment.

5.3. Cross-sectional heterogeneity in signal informativeness. To evaluate whether
individual or common signals are on average more informative, we first compute the time-
average of the informativeness of the common signal. We then compare this to the time-
average informativeness of the forecasters’ individual signals. The result of this is illustrated
in Figure 5.2, where have plotted the average informativeness of the common signal (vertical
red line) together with the histogram of the cross-section of the time-average informativeness
of forecasters’ individual signals.

From the figure, it is clear that a large majority of forecasters observe individual signals
that are more informative than the common signal, regardless of which measure of informa-
tiveness that is used. This is particularly noteworthy since the procedure to estimate the
common signal by construction maximizes its importance relative to the individual signals.8

The finding that individual signals are found to be more informative and precise than the
common signal is to some degree surprising, and contrary to some views expressed in the
existing literature. For context, consider the following quote of Svensson (2006), who argued

8How this fact may affect our estimates of precision is discussed in more detail in Section 6 below.



18 YIZHOU KUANG, NATHAN MISLANG, AND KRISTOFFER NIMARK

that “Central banks allocate many more resources to collecting, processing, and analyzing
data about the economy than any individual agent. It therefore seems extremely unlikely that
the amount of noise in central-bank information should be more than eight times that in the
individual information of an individual agent.” The quote appear to suggest that it is unlikely
that any individual signals should be more informative than the common signal given how
much resources central banks allocate to analyzing and communicating about the economy.
However, we find that more than two-thirds of all SPF respondents observe signals that they
perceive to be more precise than the common signal. Now, this could be either because
most professional forecasters actually do have access to more precise individual information.
Alternatively, the Federal Reserve may have been unable to communicate this information
clearly to outsiders, in spite of having access to very precise information internally.9

We are unaware of any papers that have focused on empirically estimating the relative
informativeness of common and individual signals. However, there exists a small number of
structural models that feature both private and public signals, and that have either been
calibrated or estimated to match the dynamics of macroeconomic aggregates, e.g. Lorenzoni
(2009) and Nimark (2014). While not the main focus of these papers, the relative informa-
tiveness of common and individual (or public and private) signals are addressed indirectly. A
careful quantitative comparison of our results would be quite involved, but these papers have
generally used (or found) parameter values that imply that agents’ private signals are more
informative than the public signals. One reason such a comparison is not straightforward
is that the type of models used in Lorenzoni (2009) and Nimark (2014) impose substan-
tial structure on the data that implies that there may be a feedback from the dynamics of
macro aggregates to the estimated parameter values. However, our results are qualitatively
consistent with the relative magnitudes of the parameter values in these papers.10

While the individual signals appear to both be more precise and explain more of forecasters
belief revisions than the common signals, there is substantial cross-sectional heterogeneity.
To get a sense of the magnitude of this heterogeneity, we can translate the precision measure
into a measure of uncertainty by computing the implied posterior standard deviation of
a hypothetical agent with a uniform prior who have observed a typical individual signal.
The cross-sectional range between the 5th and 95th percentile of this measure is 0.70-1.42%
for CPI inflation, 0.86-1.85% for unemployment and 1.57-3.77% for GDP growth. There is
little existing theoretical work that either attempts to explain heterogeneity in information
precision, or to study its consequences, with one interesting exception being Broer, Kohlhas,
Mitman and Schlafman (2022)

9The relative precision of individual versus public information may matter for how more precise information
affect welfare. In an influential paper, Morris and Shin (2002) argued that if private signals are sufficiently
precise, more precise public information may be detrimental to welfare. The quote from Svensson (2006)
is from a short paper where he argued that the conditions required for more precise public information to
be detrimental to welfare is unlikely to hold in practice. Svensson’s argument was quantitative, taking the
framework of Morris and Shin (2002) as given. In related work, Angeletos, Iovino and La’O (2016) pointed
out that the detrimental effect of more precise public information hinges on the assumption in Morris and
Shin (2002) that there is no social value in coordination.
10One issue that complicates such a direct comparison is that agents in these models observe multiple private
signals, that these signals are partly about exogenous variables, and that a single signal is to different degrees
informative about several different endogenous variables.
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Figure 5.2. Cross-section of informativeness of individual signals relative to
the common signal.pequals to the fraction of individual signals more informa-
tive than the common signal.

5.4. The correlation between individual and common signal informativeness. We
can use our decomposition of belief updates to ask whether the informativeness of individual
and common signals covary together or in opposite directions. Table 3 below reports the
correlation between the cross-sectional average informativeness of the individual signals and
the informativeness of the common signal for each measure and each variable.

CPI inflation unemployment GDP growth GDP deflator PCE inflation

KL 0.64 0.09 0.19 0.58 0.77
H 0.55 0.55 0.76 0.82 0.62
P 0.28 0.20 0.10 0.67 0.15

Table 3. Correlation between mean informativeness of individual signal and
informativeness of common signals.

The numbers in Table 3 indicate that the informativeness of the individual and common
signals are strongly and positively correlated, and that this holds uniformly across the dif-
ferent measures of informativeness and across all variables. The table reports the correlation
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between the average informativeness of the individual signals and the informativeness of the
common signal. This masks substantial heterogeneity in correlations. As illustrated in Fig-
ure 5.3, for each measure and for each variable, a substantial fraction of forecasters observe
individual signals whose informativeness is negatively correlated with that of the common
signal.

Figure 5.3. Cross-section of correlations between informativeness of individ-
ual and common signals.

Most of the the theoretical literature that have studied endogenous information acquisi-
tion allowing for both private and public information have found that more accurate public
information crowds out individual information acquisition, e.g. Wong (2008) and Colombo,
Femminis and Pavan (2014). Such a mechanism would suggest a negative correlation be-
tween the informativeness of individual and common signals. Taken at face value, our results
would then suggest that private and public information acquisition are complements for most
forecasters. However, there are at least two reasons why this is a too simple interpretation
of our results.

First, the reported correlations are unconditional moments. If the incentives to acquire
information, regardless of whether it is private or public, varies over time, this may induce a
positive correlation that could swamp the effect from complementarities or substitutability
of different types of information. We also saw in Table 1 that conditionally on being in
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a period with high inflation, there is negative correlation between the informativeness of
individual and common signals. This may indeed be driven by the kind of effect studied in
Wong (2008), where more precise public information endogenously leads agents to acquire
less precise private signals.

Second, and as we discuss in more detail in the next section, our procedure maximizes the
informativeness of the extracted common signal. Because of this, what is in fact an increase
in the precision of a private signals may be interpreted by our procedure as in increase in
the informativeness of the common signal (though not the other way around). The positive
correlation may thus at least partly be an artifact of the estimation procedure.

5.5. Signal informativeness, the business cycle and financial indicators. Informa-
tion about the macro economy does not exist in a vacuum, but is generated and acquired
jointly with economic outcomes. Above, we saw that the informativeness of the signals
about CPI inflation and unemployment were strongly correlated with the outcomes of these
variables. It is also plausible that economic conditions affects how much news media focus
on the economy, e.g. Nimark (2014) and Chahrour, Nimark and Pitschner (2021) as well as
how much and in what manner central banks communicate about the economy, e.g. Herbert
(2021). To analyze how the informativeness of signals depend on the business cycle and
market conditions, we here compute the correlations of our measures with the Philadelphia
Fed’s Anxious Index, NBER dated recessions and the Chicago Board Options Exchange VIX
Index.

The Anxious Index. The Federal Reserve Bank of Philadelphia, who administers the SPF,
computes the so-called Anxious Index which measures the SPF respondents’ subjective prob-
ability of a recession. The survey asks panelists to estimate the probability that real GDP
will decline in the quarter in which the survey is taken and in each of the following four quar-
ters. The anxious index is the average reported probability of a decline in real GDP in the
quarter after a survey is taken. As shown in Table 4, for almost all measures and variables,
this index is positively correlated with each of our measures of signal informativeness.

CPI inflation unemployment GDP growth GDP deflator PCE inflation

Individual signals
KL 0.20 0.06 0.27 0.23 0.24
H 0.15 0.24 0.27 0.17 0.24
P 0.13 -0.20 -0.02 -0.06 0.23

Common signals
KL 0.16 0.72 0.18 0.08 0.19
H 0.26 0.45 0.24 0.14 0.17
P 0.03 0.58 0.04 -0.10 0.04

Table 4. Correlation between the Philadelphia Fed’s Anxious Index and the
measures of informativeness.

The Anxious Index captures forecasters’ subjective probabilities of a recession. It is also
the subjective probability of a recession that should matter for incentives for acquiring more
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precise information. The correlations between the informativeness of the signals and actual
NBER dated recessions are generally weaker, and the sign of these correlations are not
uniform across either measures or variables.

The VIX index. With the exception of the precision of signals about inflation in the GDP
deflator index, all measures of signal informativeness are positively correlated with the VIX
Index from the Chicago Board Options Exchange, as shown in Table 5. This indicates that
when there is a high level of perceived uncertainty about the stock market, the incentives to
acquire information by the survey participants are also particularly strong.

CPI inflation unemployment GDP growth GDP deflator PCE inflation

Individual signals
KL 0.29 0.36 0.25 0.12 0.22
H 0.29 0.30 0.20 0.10 0.23
P 0.32 0.03 0.17 -0.02 0.19

Common signals
KL 0.12 0.26 0.22 0.15 0.17
H 0.25 0.16 0.22 0.12 0.22
P 0.02 0.10 0.17 -0.07 0.05

Table 5. Correlation between VIX Index and measures of informativeness.

There exists theoretical models that predict that recessions are times of reduced signal
informativeness if economic activity by itself help generate information, e.g. Chalkley and
Lee (1998), Veldkamp (2005), Van Nieuwerburgh and Veldkamp (2006), Ordoñez (2013),
Fajgelbaum, Shaal and Taschereau-Dumouchel (2017). Other models, e.g. Chiang (2022),
Song and Stern (2022) and Flynn and Sastry (2022), instead point point out that incentives
to acquire information is stronger during recessions when the marginal utility of consump-
tion is high and mistakes are more costly. More specifically, Flynn and Sastry (2022) find
that empirically, firms that appear to pay more attention to macroeconomic varaibles make
smaller mistakes in hiring.. This is consistent with our evidence that signal informativeness
is positively correlated with the Philadelphia Fed’s Anxious Index as well as with the VIX
Index from the Chicago Board Options Exchange. The fact that the informativeness of the
signals co-move positively with the VIX index is also not surprising considering that the
SPF participants are to large extent drawn from banks and other financial firms. It makes
sense that the value of more precise information for such firms should be increasing in the
perceived uncertainty of financial markets.

6. Properties of the estimated signals and alternative information
structures

Above we reported the empirical properties of the individual and common signals ex-
tracted from the SPF probability forecasts. In this section we first provide a theoretical
characterization of the signals that the proposed estimation procedure delivers in terms of
sample moments. These results help our intuition for what the procedure will designate as



INDIVIDUAL AND COMMON INFORMATION 23

common and individual information, and for how the mechanics of Bayesian updating deter-
mine how much the extracted common signal tilts beliefs towards different outcomes. The
theoretical results presented here also allow us to characterize what the procedure finds under
alternative information structures. In particular, we derive the theoretical counterparts to
the estimated individual and common signals in settings where (i) different agents interpret
a common signal differently and (ii) the information structure is of a linear-Gaussian form
commonly used in the theoretical imperfect information literature.

6.1. Properties of the estimated signals. The estimated common signal is found by
minimizing the sum of Kullback-Leibler divergences (3.4) between the beliefs it induces and
the observed posteriors. In general, there is no common signal that will make these two sets
of beliefs exactly equal for each forecaster. However, the following proposition characterizes
the estimated common signal ŝt in terms of the posterior beliefs it induces relative to the
observed average cross-section of posteriors.

Proposition 1. The estimated common signal ŝt from 3.4 induces average beliefs equal to
the average observed posterior distribution, i.e.

1
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)
: n = 1, 2, ..., N. (6.1)

Proof. In the Appendix. □

The proposition shows that the cross-sectional average beliefs induced by the common
signal will in fact match the observed cross-sectional average posteriors. The logic of the proof
is as follows. First, we show that the first order condition of (3.4) is sufficient to characterize
the common signal ŝ that minimizes the sum of Kullback-Leibler divergences. The desired
result then follows directly from manipulation of the first order condition. Corollary 1
characterizes the belief updates induced by the corresponding individual signals.

Corollary 1. The estimated individual signals induces belief updates that average to zero
across agents, i.e.
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The corollary follows simply from the fact that the average beliefs induced by the common
signal matches the average observed posteriors. The average update to the individual signals
must then average to zero across agents, since by construction, the individual signals are
defined as the signals that, when combined with the common signal, induces the observed
posterior beliefs.

Another way of understanding this result is to consider if, contrary to the corollary, the
individual signals shifts the average posteriors towards a state xn. This would imply that a
different common signal s∗t could achieve a smaller KL-divergence between the induced beliefs

and the posteriors than the extracted common signal ŝt by setting p (s
∗ | xn) /

∑N
m=1 p (ŝt | xm)

> p (ŝt | xn) /
∑N

m=1 p (ŝt | xm), implying that p (ŝt | x) cannot be the solution to the mini-
mization problem (3.4).
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The information in the common signal st influences the posterior only through the like-
lihood function p(st | x). If the observed posteriors attach a higher average probability to
state n than to state m relative to the observed priors, in order for Proposition 1 to hold,
the extracted common signal must tilt beliefs towards state n relative to state m. To better
understand what determines how much the common signal needs to favor one state over
another, it is helpful to define the mean-posterior-over-mean-prior odds ratio of state n and
m as follows.

Definition 1. The mean-posterior-over-mean-prior odds ratio Rn
m is defined as

Rn
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The ratio Rn
m captures how much period t information shifts average beliefs in favor of

state n relative to state m. As the following proposition shows, the ratio Rn
m serves as a

baseline that captures how much more weight the extracted common signal puts on state n
relative to state m in the special case when all agents share the same prior beliefs.

Proposition 2. If the prior beliefs of all forecasters coincide, the relative probability of
observing ŝt in states n and m equals the mean-posterior-over-mean-prior odds ratio so that

p (ŝt | xn)

p (ŝt | xm)
= Rn

m. (6.4)

Proof. In the Appendix. □

In the special case of common priors, the relative likelihood of observing the common
signal in states n and m are simply equal to how much more likely, on average, state n is
perceived to be relative to state m after agents have observed period t information.

It is difficult (and we have been unable) to derive general results for when the equality (6.4)
should be replaced with an inequality for arbitrary priors. However, the following two-agent
example provides some intuition for why (6.4) fails to hold generally, and what determines
the direction of the inequality that replaces it when agents have heterogeneous priors.

Proposition 3. For j ∈ {1, 2}, the extracted common signal puts more weight on state n
relative to state m, compared to the common prior baseline so that

p (ŝt | xn)

p (ŝt | xm)
> Rn

m. (6.5)

if the agent who a priori thinks state n is relatively more likely, i.e.

p
(
xn | Ω1

t−1

)
p
(
xm | Ω1

t−1

) >
p
(
xn | Ω2

t−1

)
p
(
xm | Ω2

t−1

) (6.6)

is also the agent who thinks the realized signal ŝt is more likely, i.e.

p
(
ŝt | Ω1

t−1

)
p
(
ŝt | Ω2

t−1

) > 1. (6.7)

.
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Proof. In the Appendix. □

The intuition for this result mirrors the motivation of Shannon’s (1948) definition of the
quantity of information as the inverse of the probability of observing a signal. Bayesian
updating implies that a less probable, and hence a more informative signal, changes beliefs
more than a more probable signal, all else equal. A Bayesian agent will thus update his or
her beliefs less, the higher his or her prior probability was of observing the realized signal.
The proof follows from that this effect is concave in the probability of observing the signal.
The signal then needs to be substantially more likely to be observed in state n than in state
m, in order to move the prior beliefs of both agents sufficiently for the average posterior
odds ratio of state n and m to shift by the factor Rn

m relative to the prior average odd ratio.

6.2. Conditions for asymptotic convergence between extracted and true signals.
For discrete beliefs and information structures it is possible to derive conditions that ensures
that the extracted common and individual signals asymptotically converge to the true signals
as the number of agents become large.

Proposition 4. Let p (sj | xn) be a random variable with support [0, 1] and mean µj
n. The

estimated signal converges in probability to the true common signal, i.e. ŝ
p→ s as J → ∞, if

µj
m = µk

n for each m,n ∈ {1, 2, ..., N} and j, k ∈ {1, 2, ..., J} and if p (sj | xn) is independent
of p

(
xm | st,Ωj

t−1

)
for each m,n ∈ {1, 2, ..., N}.

Proof. In the Appendix. □

The proof follows from that these conditions ensure that the average update to the indi-
vidual signal of the probability of each state averages to zero across agents. From Corollary
1, we know that this is a consequence of the first order condition (6.1), which in turn is
sufficient to characterize the extracted signals.

The conditions in Proposition 4 are quite stringent, and it is easy to think of settings
where they are not satisfied. For instance, if all agents observe a perfectly precise individual
signal, so that p (sj | xm) = 0 if m ̸= n for some n ∈ {1, 2, ..., N}, then the procedure will
attribute the implied degenerate posteriors as being caused by a perfectly precise common
signal. This example violates the both the condition that µj

m = µk
n and that p (sj | xn) should

be independent of p
(
xm | st,Ωj

t−1

)
for each m,n ∈ {1, 2, ..., N}.

A less extreme example is when the individual signals on average tilt beliefs towards some
state xn so that 1

J

∑
j p(s

j | xn) >
1
J

∑
j p(s

j | xm) for n ̸= m. The condition that µj
m = µk

n

is then not satisfied and the common component in the individual signals will be attributed
to the common signal by our procedure. It is thus only under special circumstances that
the individual and common signals can be interpreted as literally being different signals. In
settings where these conditions are not satisfied, the appropriate interpretation is that the
procedure extracts individual and common components of the new information available to
agents in a given period that can be characterized as if they were single signals.

6.3. Different agents interpret a common signal differently. In a rational expecta-
tions model, all agents have model consistent expectations and hence share the same model.
In such a setting, all agents also interpret a common signal the same way. However, in a
world where different agents may use different models, agents may use different likelihood
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functions to update their beliefs even to a common signal. To allow for different agents using
different models, all we need to do is to treat the likelihood function each agent associates
with the common signal as agent-specific, rather than the signal itself. Agent j’s posterior
is then given by

pj(x | Ωj
t−1, st) =

pj(ŝt | x)p(x | Ωj
t−1)

p(st | Ωj
t−1)

(6.8)

where the key notational difference is the j index on the likelihood function and the posterior.
The special case with common priors is again helpful, since the extracted common signal is
then a simple function of the cross-sectional averages of the agent specific likelihood functions.

Corollary 2. With agent specific likelihood functions but a common prior, the estimated
common signal satisfies

p (ŝt | xn)

p (ŝt | xm)
=

1
J

∑J
j=1 pj(st | xn)

1
J

∑J
j=1 pj(st | xm)

(6.9)

for each pair n,m ∈ 1, 2, ..., N.

The proof follows from taking the ratio of the averages of (6.8) across agents for state n
and m and then combining it with Proposition 1. In the case of heterogeneous priors, the
expressions are again more complicated, but the logic and intuition of 2 and 3 above apply
also to the case when a single common signal is interpreted differently.

6.4. Linear Gaussian signal extraction. Dating back to the classic papers of Lucas
(1972), Grossman and Stiglitz (1976), Hellwig (1980) and Admati (1985), a large theoretical
literature has used linear-Gaussian information structures to study economic decisions in
settings where agents have private information.11 The key advantage of this structure is its
tractability, yielding closed form solutions for agents’ posteriors. Given its continuing pop-
ularity and prominence in the theoretical imperfect information literature it is of interest to
ask what our method would find if the observed survey data was generated by an underlying
linear-Gaussian information structure. To study this question, we here first describe the
standard linear-Gaussian set up and what it implies for agents’ beliefs.

Denote the prior beliefs of agent j as x | Ωj
t−1 ∼ N

(
µj, σ2

)
and let the dispersion of prior

means be normally distributed so that µj ∼ N
(
µ, σ2

µ

)
. All agents observe the common signal

st that is the sum of the true x and a common noise shock η

st = x+ η : η ∼ N
(
0, σ2

η

)
(6.10)

as well as an individual signal sjt of a similar form

sjt = x+ εj : εj ∼ N
(
0, σ2

ε

)
(6.11)

but where the noise shock εj is agent specific. The next lemma, which simply summarizes
well-known results, characterizes the posterior beliefs implied by this structure.

11See for instance the literature overviews in Veldkamp and Baley (2022) or Angeletos and Lian (2022).
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Lemma 1. In the linear-Gaussian information structure, the posterior of agent j is given
by a Gaussian distribution such that

E
(
x | Ωj

t−1, st, s
j
t

)
= gµµ

j + gsst + gjs
j
t (6.12)

var
(
x | Ωj

t−1, st, s
j
t

)
=
(
σ−2 + σ−2

η + σ−2
ε

)−1
(6.13)

where

gµ =
σ−2

σ−2 + σ−2
η + σ−2

ε

, gs =
σ−2
η

σ−2 + σ−2
η + σ−2

ε

, gj =
σ−2
ε

σ−2 + σ−2
η + σ−2

ε

. (6.14)

The next proposition characterizes the estimated common signal ŝ in terms of primitives,
if the true information structure is of the form (6.10) - (6.11).

Proposition 5. Up to the discrete approximation, the estimated common signal ŝ has con-
ditional distribution

ŝ | x ∼ N
(
x, σ̂−2

η

)
(6.15)

with estimated realized signal value given by

ŝ = (1− ĝ)−1
[
(gµ − ĝ)µ+ gss+ gjx

]
(6.16)

where ĝ = σ−2

σ̂−2
η +σ−2 and σ̂−2

η solves the equation

g2µσ
2
µ + g2jσ

2
ε +

(
σ−2 + σ−2

η + σ−2
ε

)−1
= ĝ2σ2

µ +
(
σ−2 + σ̂−2

η

)−1
. (6.17)

Proof. In the Appendix. □

While algebraically somewhat involved, the proof strategy is conceptually quite simple. It
only requires finding a realized ŝt and a likelihood function p (ŝ | x) such that the first order
condition

∫
j
p
(
x | ŝt,Ωj

t−1

)
dj =

∫
j
p
(
x | st, sjt ,Ω

j
t−1

)
dj holds. It is possible to solve (6.17) for

σ̂−2
η explicitly, but the resulting expression is not very informative. The following corollaries

summarizes the key properties of p (ŝt | x) and σ̂−2
η .

Corollary 3. The estimated common signal ŝt coincides with s for all realizations if and
only if σ2

ε → ∞.

The corollary states that it is only when the individual signals are completely uninforma-
tive that the extracted common signal generally coincides with the true realized signal. To
understand this result, consider when both the common and individual signals are informa-
tive. Clearly, the common signal will shift the location of the average posterior. However, if
the individual signals are informative, they will also shift the average posterior towards the
true value of x. In order for the average posterior induced by the estimated common signal
to coincide with the observed average, the estimated common signal need to shift beliefs in
way that accounts for both the true common signal and the average shift towards towards
the true value of x induced by the individual signals.

Corollary 4. If the true common signal is uninformative
(
σ2
η → ∞

)
, then the estimated

common signal is of the form ŝ = α(x− βµ) with α ≥ 1 and β ≤ 1 with estimated precision

σ̂−2
η ≥ 0.
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If the true common signal is uninformative, the procedure will attribute the part of the
shift in in the location of the posterior driven by the average individual signal as being caused
by the estimated common signal.

Corollary 5. The estimated precision σ̂−2
η is increasing in both σ−2

ε and σ−2
η .

The corollary states that the precision of the estimated common signal is increasing in the
precision of both the common and individual true signals. This implies that if the underlying
information structure is Gaussian, our procedure will attribute increases in precision of the
individual signals as partly being due to a more precise common signal. The formal proof is
in the Appendix, but the result follows from the fact that both sides of the equation (6.17)
are average posterior forecast errors. Both must be decreasing in the precision of all types
of signals. From this, the results then follows from the implicit function theorem.

Corollary 6. The estimated private signals ŝj have precision

σ̂−2
ε = σ−2

ε −
(
σ̂−2
η − σ−2

η

)
(6.18)

and sample mean given by ∫
ŝjdj = gµµ+ gss+ gjx. (6.19)

The corollary follows from that when combined, the estimated individual and common
signals imply a posterior that is equal to the true posterior. Since the individual signals
cannot change the cross-sectional average distribution relative to the beliefs implied by the
common signal, the mean individual signal must equal the average expected value of x
conditional on the common signal. The variance in (6.18) is simply given by equating the
posterior variance implied by s and sj with the posterior variance implied by ŝ and ŝj.

It is clear from the definition (3.4) that our procedure is designed to maximize the impor-
tance of the common signal. What we have shown here is what this implies for what the
procedure finds under alternative underlying information structures. It is only under special
conditions that what the procedure labels common and individual signals match with true
underlying population objects with the same interpretation. The procedure thus provides
an upper bound for the importance of the common signal, both in terms of how precise it is
estimated to be and how much of the first-moments of the observed belief revisions that it
can explain.

7. Conclusions

We have proposed a method that can be used to extract individual and common signals
from a cross-section of belief revisions while imposing only weak assumptions. When applied
to probability forecasts from the Survey of Professional Forecasters, we find that individual
signals account for more of the observed belief revisions than common signals. There is a
large cross-sectional heterogeneity in signal precision, with about 2/3 of forecasters observ-
ing individual signals that are more precise than the common signal. Unconditionally, the
informativeness of individual and common signals are positively correlated. Inflation volatil-
ity, perceived stock market volatility and a high risk of recession are all factors associated
with increased informativeness and precision of both individual and common signals. Our
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findings lend support to papers by Song and Stern (2020), Flynn and Sastry (2022) and
Chiang (2022) who argue that incentives to gather information are counter-cyclical.

In addition to the empirical findings from the Survey of Professional Forecasters, we also
characterized the general properties of the extracted common and individual signals. While
one advantage of our approach is that it is model-agnostic, these latter results are helpful for
researchers that have a specific model in mind and want to compare that model’s theoretical
properties with the data along the dimensions analyzed here.

A useful analogy for our results is principal component analysis (PCA). PCA is often used
to identify the factors that can explain the most of the variance of a cross-section of time
series. Similarly to PCA, our method allow us to characterize the common and idiosyncratic
component in a cross-section of probability forecast revisions. As with principal component,
there may be an underlying theoretical objects that correspond exactly to the first principal
component. However, even when that is not the case, PCA often provides a useful summary
of the co-movement of time series. Similarly, our method extracts summary statistics of the
co-movement of probability forecast revisions that theoretical models should match to be
consistent with the data.

An alternative approach to the one we have pursued in the present paper would be to
do likelihood based inference on the distributions of the signals, similar to the one taken
by Bassetti, Casarin and Del Negro (2022) to model the beliefs underlying the survey data.
Such an approach would have the advantage of allowing us to make probabilistic inference
about the distribution of both the common and individual signals. However, a drawback
would be that it would be harder to characterize what such an approach would find when
applied to data generated by alternative information structures.
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Appendix A. Proofs

A.1. Proof of Proposition 1. We want to prove that the first order condition (6.1) is
sufficient to identify the probabilities p (ŝt | x) ∈ (0, 1)N that minimizes (3.4). The logic of
the proof is as follows. Since the function to be minimized is smooth and defined on a closed
set, its minimum will either be at the boundary or at an interior point where the first order
condition (FOC) holds.. We will show that near the boundary, the function tends to infinity,
so that the minimum must be at an interior point. We then show that at all interior points
where the FOC holds, the function is convex. Hence, the FOC identifies a unique minimizing
signal, up to a the normalizing constant..

To find the FOC, use that the log of a ratio is equal to the differences in logs, we can
rewrite the minimization problem (3.4) as

p (ŝt | x) = arg min
p(ŝt|x)∈(0,1)N

J∑
j=1

N∑
n=1

p(xn | Ωj
t )

[
log
( N∑
i=1

p (ŝt | xi) p(xi | Ωj
t−1)

)
− log

(
p (ŝt | xn) p(xn | Ωj

t−1)
)]

(A.1)

The first order conditions w.r.t. p (ŝt | xn) is then given by

J∑
j=1

N∑
m=1

p(xm | Ωj
t)

p(xn | Ωj
t−1)∑N

i=1

(
p(xi | Ωj

t−1)p (ŝt | xi)
) − J∑

j=1

p(xn | Ωj
t)

p(xn | Ωj
t−1)

p(xn | Ωj
t−1)p (ŝt | xn)

= 0

(A.2)
which can be rearranged to the desired expression

1

J

J∑
j=1

p(xn | Ωj
t) =

1

J

J∑
j=1

p (ŝt | xn) p(xn | Ωj
t−1)∑N

i=1

(
p(xi | Ωj

t−1)p (ŝt | xi)
) (A.3)

=
1

J

J∑
j=1

p(xn | Ωj
t−1, ŝt). (A.4)

From FOC we have the Jacobian of the objective function,

∇f =

[∑J
j=1

p(x1|Ωj
t−1)∑N

i=1(p(xi|Ωj
t−1)p(ŝt|xi))

−
∑J

j=1 p(x1|Ωj
t )

p(ŝt|x1)
· · ·

∑J
j=1

p(xN |Ωj
t−1)∑N

i=1(p(xi|Ωj
t−1)p(ŝt|xi))

−
∑J

j=1 p(xN |Ωj
t )

p(ŝt|xN )

]′
(A.5)

implying that element k, l of the Hessian Hf is given by

hf,k,l =
J∑

j=1

−p(xk | Ωj
t−1)

2(∑N
i=1 p(xi | Ωj

t−1)p (ŝt | xi)
)2 +

J∑
j=1

p(xk | Ωj
t)

p (ŝt | xk)
2 if k = l (A.6)

hf,k,l =
J∑

j=1

−p(xk | Ωj
t−1)p(xk | Ωj

t−1)(∑N
i=1 p(xi | Ωj

t−1)p (ŝt | xi)
)2 if k ̸= l (A.7)

If Hf was a positive definite matrix everywhere, the FOC would be both necessary and
sufficient to characterize the minimum. However, while this is not the case, Hf is a positive
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semi-definite matrix at all points where first order conditions hold. To see that,

λ′Hfλ =

J∑
j=1

N∑
i=1

p(xi | Ωj
t )

λi

p (ŝt | xi)2
−

J∑
j=1

(∑N
i=1 p(xi | Ω

j
t−1)λi

)2
(∑N

i=1 p(xi | Ω
j
t−1)p (ŝt | xi)

)2 (A.8)

=
J∑

j=1

N∑
i=1

p(xi | Ωj
t−1)λ

2
i

p (ŝt | xi)
(∑N

k=1 p(xk | Ωj
t−1)p (ŝt | xk)

) −
J∑

j=1

(∑N
i=1 p(xi | Ω

j
t−1)λi

)2
(∑N

i=1 p(xi | Ω
j
t−1)p (ŝt | xi)

)2
(A.9)

=
J∑

j=1

N∑
i=1

p(xi | Ωj
t−1)

2λ2
i

p(xi | Ωj
t−1)p (ŝt | xi)

(∑N
k=1 p(xk | Ωj

t−1)p (ŝt | xk)
) −

J∑
j=1

(∑N
i=1 p(xi | Ω

j
t−1)λi

)2
(∑N

i=1 p(xi | Ω
j
t−1)p (ŝt | xi)

)2
(A.10)

≥ 0 (A.11)

for any positive vector λ. The first equality come from simply multiplying through with
λ. The second equality comes from substituting in the FOC (6.1). The inequality is im-

plied by Sedrakyan’s lemma,
∑n

i=1
u2
i

vi
≥ (

∑n
i=1 ui)

2∑n
i=1 vi

, with ui = p(xi | Ωj
t−1)λi,and vi = p(xi |

Ωj
t−1)p (ŝt | xi)

(∑N
k=1 p(xk | Ωj

t−1)p (ŝt | xk)
)
. The last line holds with equality only when

λi is proportional to p (ŝt | xi)
(∑N

k=1 p(xk | Ωj
t−1)p (ŝt | xk)

)
. The minimizing signal is thus

only unique up to a normalization of the prior probability of observing the realized sig-
nal. Stated differently, there are many signals that obtains the minimum, but the ratios
p (ŝt | xi) /p (ŝt | xk) are uniquely determined. Since the KL-divergence between two dis-
tributions tend to infinity if either distribution tend to the degenerate one, the objective
function tend to inifinity near the boundary points of the simplex and is thus always greater
at the boundary than at an interior critical point. The interior local minimum must then in
fact also be the global minimum.

A.2. Proof of Proposition 2. We want to prove that if the prior beliefs of all forecasters
coincide, the relative probability of observing ŝt in states n and m equals the mean-posterior-
over-mean-prior odds ratio so that

p (ŝt | xn)

p (ŝt | xm)
= Rn

m. (A.12)

Start by taking the ratio of the posterior probabilities of state n and m induced by the signal

1
J

∑J
j=1 p(xn | Ωj

t)
1
J

∑J
j=1 p(xm | Ωj

t)
=

1
J

∑J
j=1

p(ŝt|xn)p(xn|Ωj
t−1)∑N

i=1(p(ŝt|xi)p(xi|Ωj
t−1))

1
J

∑J
j=1

p(ŝt|xm)p(xm|Ωj
t−1)∑N

i=1(p(ŝt|xi)p(xi|Ωj
t−1))

. (A.13)
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Since by assumption, p(ŝ | Ωj
t−1) = p(ŝ | Ωk

t−1) for all j, k ∈ {1, 2, ..., J} this can be simplified
to ∑J

j=1 p(xn | Ωj
t)∑J

j=1 p(xm | Ωj
t)

=

∑J
j=1 p (ŝt | xn) p(xn | Ωj

t−1)∑J
j=1 p (ŝt | xm) p(xm | Ωj

t−1)
. (A.14)

which after the rearranging yields the desired result since by definition

Rn
m =

(
1
J

∑J
j=1 p

(
xn | Ωj

t

)
1
J

∑J
j=1 p

(
xm | Ωj

t

)) /

(
1
J

∑J
j=1 p

(
xn | Ωj

t−1

)
1
J

∑J
j=1 p

(
xm | Ωj

t−1

)) . (A.15)

A.3. Proof of Proposition 3. For j = 1, 2, the FOC implies

p (ŝt | xn)

p (ŝt | xm)
=

p (xn | Ω1
t ) + p (xn | Ω2

t )

p (xm | Ω1
t ) + p (xm | Ω2

t )
×

p(xm|Ω1
t−1)

p(s|Ω1
t−1)

+
p(xm|Ω2

t−1)
p(s|Ω2

t−1)
p(xn|Ω1

t−1)
p(s|Ω1

t−1)
+

p(xn|Ω2
t−1)

p(s|Ω2
t−1)

(A.16)

and the desired inequality

p (ŝt | xn)

p (ŝt | xm)
> Rn

m (A.17)

hence holds if

p(xm|Ω1
t−1)

p(s|Ω1
t−1)

+
p(xm|Ω2

t−1)
p(s|Ω2

t−1)
p(xn|Ω1

t−1)
p(s|Ω1

t−1)
+

p(xn|Ω2
t−1)

p(s|Ω2
t−1)

>
p
(
xm | Ω1

t−1

)
+ p

(
xm | Ω2

t−1

)
p
(
xn | Ω1

t−1

)
+ p

(
xn | Ω2

t−1

) . (A.18)

To derive the conditions in the proposition, start by multiplying the term on the left hand
side by p

(
s | Ω1

t−1

)
to get

p
(
xm | Ω1

t−1

)
+ p

(
xm | Ω2

t−1

) p(s|Ω1
t−1)

p(s|Ω2
t−1)

p
(
xn | Ω1

t−1

)
+ p

(
xn | Ω2

t−1

) p(s|Ω1
t−1)

p(s|Ω2
t−1)

>
p
(
xm | Ω1

t−1

)
+ p

(
xm | Ω2

t−1

)
p
(
xn | Ω1

t−1

)
+ p

(
xn | Ω2

t−1

) . (A.19)

Since this expression holds with equality if the ratio of prior probabilities of observing the

signal
p(s|Ω1

t−1)
p(s|Ω2

t−1)
equals 1, the desired inequality holds if the derivative of the left hand side of

(6.6)with respect to
p(s|Ω1

t−1)
p(s|Ω2

t−1)
is positive. Define the function f as

f

(
p
(
s | Ω1

t−1

)
p
(
s | Ω2

t−1

)) =
p
(
xm | Ω1

t−1

)
+ p

(
xm | Ω2

t−1

) p(s|Ω1
t−1)

p(s|Ω2
t−1)

p
(
xn | Ω1

t−1

)
+ p

(
xn | Ω2

t−1

) p(s|Ω1
t−1)

p(s|Ω2
t−1)

. (A.20)
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The quotient rule then gives

f ′ =
p
(
xm | Ω2

t−1

) (
p
(
xn | Ω1

t−1

)
+ p

(
xn | Ω2

t−1

)
y
)
− p

(
xn | Ω2

t−1

) (
p
(
xm | Ω1

t−1

)
+ p

(
xm | Ω2

t−1

)
y
)(

p
(
xn | Ω1

t−1

)
+ p

(
xn | Ω2

t−1

) p(s|Ω1
t−1)

p(s|Ω2
t−1)

)2

(A.21)
so that f ′ > 0 if

p
(
xm | Ω2

t−1

)(
p
(
xn | Ω1

t−1

)
+ p

(
xn | Ω2

t−1

) p (s | Ω1
t−1

)
p
(
s | Ω2

t−1

))−
p
(
xn | Ω2

t−1

)(
p
(
xm | Ω1

t−1

)
+ p

(
xm | Ω2

t−1

) p (s | Ω1
t−1

)
p
(
s | Ω2

t−1

)) > 0 (A.22)

which can be simplified to

p
(
xm | Ω2

t−1

)
p
(
xn | Ω2

t−1

) >
p
(
xm | Ω1

t−1

)
p
(
xn | Ω1

t−1

) . (A.23)

This implies that if we increase the ratio
p(s|Ω1

t−1)
p(s|Ω2

t−1)
starting from 1, then the desired inequality

follows if conditions (6.6) and (6.7) hold. (If only one of the conditions hold, the inequality
switches direction.)

A.4. Proof of Proposition 4. From the first order condition (6.1) we know that

1

J

J∑
j=1

p(xn | ŝt,Ωj
t−1) =

1

J

J∑
j=1

p(xn | sj, s,Ωj
t−1) ∀n. (A.24)

i.e. the average beliefs conditional on the extracted common signal equals the average poste-
riors. We need to derive conditions on the distributions of p (sj | xn) such that in the limit,
as the number of agents become large,

lim
J→∞

1

J

J∑
j=1

p(xn | ŝt,Ωj
t−1) =

1

J

J∑
j=1

p(xn | s,Ωj
t−1) ∀n. (A.25)

That is, we want to derive conditions that ensure that p (ŝt | xn) converges to p (st | xn) as
j → ∞.

Note that the average posterior equals the average beliefs induced by the extracted signal
ŝt so that

1

J

J∑
j=1

p(sj | xn)p(xn | s,Ωi
t−1)

p(sj | Ωi
t−1)

=
1

J

J∑
j=1

p(xn | ŝt,Ωj
t−1). (A.26)
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We thus need to show that the conditions in the proposition ensures that in the limit as
j → ∞

lim
j→∞

E

[
1

J

J∑
j=1

p(sj | xn)p(xn | st,Ωi
t−1)

p(sj | st,Ωi
t−1)

]
=

1

J

J∑
j=1

p(xn | st,Ωj
t−1) (A.27)

We then have that

lim
J→∞

1

J

J∑
j=1

p(sj | xn)p(xn | st,Ωi
t−1)

p(sj | st,Ωi
t−1)

=
E [p(sj | xn)]

E
[
p(sj | st,Ωi

t−1)
]p(xn | st,Ωi

t−1) (A.28)

= p(xn | st,Ωi
t−1) (A.29)

since by the assumption of independence of p (sj | xn) from the priors, the expectation
of the ratio simplifies to the ratio of expectations. The last line then follows from that
E [p(sj | xn)] = µn = µm = µ for any m,n = 1, 2, ..., N so that E [p(sj | xn)] = E [p(sj | xm)]
since

E
[
p(sj | st,Ωi

t−1)
]
=

N∑
n=1

E
[
p(sj | xn)p(xn | st,Ωi

t−1)
]

(A.30)

= µ. (A.31)

A.5. Proof of Proposition 5. The strategy of the proof is to first derive the cross-sectional
average posterior distribution for the linear Gaussian information structure. We then use
that the first order condition from the KL-minimization problem states that this should
equal the cross-sectional average posterior implied by the estimated common signal ŝ. This
reduced the problem to matching coefficients across distributions.

The linear-Gaussian filtering problem described by (6.10)- (6.11) implies that agent j’s
posterior is given by p

(
x | s, sj, µj

)
= N (µ̄j, σ̄2) where

µ̄j =
σ−2

σ−2 + σ−2
η + σ−2

ε

µj +
σ−2
η

σ−2 + σ−2
η + σ−2

ε

s+
σ−2
ε

σ−2 + σ−2
η + σ−2

ε

sj (A.32)

and
σ̄2 =

(
σ−2 + σ−2

η + σ−2
ε

)−1
. (A.33)

The cross-sectional average distribution is the integral of the compound distribution of two
normal distributions, which again is a normal distribution and given by∫

j

p
(
x | s, sj, µj

)
p
(
sj, µj

)
dj = N

(
gµµ+ gss+ gjx, g2µσ

2
µ + g2jσ

2
ε +

(
σ−2 + σ−2

η + σ−2
ε

)−1
)

(A.34)
where

gµ =
σ−2

σ−2 + σ−2
η + σ−2

ε

, gs =
σ−2
η

σ−2 + σ−2
η + σ−2

ε

, gj =
σ−2
ε

σ−2 + σ−2
η + σ−2

ε

. (A.35)

To prove the proposition, we need to find a signal ŝ with conditional distribution p (ŝ | x)
such that the implied average posterior is equal to (A.34) above. If

ŝ = x+ η̂ : η̂ ∼ N
(
0, σ̂−2

η

)
(A.36)
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then the posterior belief of agent j is given by

p
(
x | ŝ, µj

)
= N

(
σ−2

σ−2 + σ̂−2
η

µj +
σ̂−2
η

σ−2 + σ̂−2
η

ŝ,
(
σ−2 + σ̂−2

η

)−1
)

(A.37)

implying an average and that

µj = µ+ εj : εj ∼ N
(
0, σ2

µ

)
(A.38)

so that we can write

x = gµ+ (1− g) ŝ+ gεj + δ : δ ∼ N
(
0,
(
σ−2 + σ̂−2

η

)−1
)

(A.39)

so that

x | ŝ ∼ N
(
ĝµ+ (1− ĝ) ŝ, ĝ2σ2

µ +
(
σ−2 + σ̂−2

η

)−1
)

(A.40)

=

∫
j

p
(
x | ŝ, µj

)
dj (A.41)

where

ĝ =
σ−2

σ−2 + σ̂−2
η

. (A.42)

Equating the two cross-sectional average posteriors∫
j

p
(
x | s, sj, µj

)
p
(
sj, µj

)
dj =

∫
j

p
(
x | ŝ, µj

)
dj (A.43)

we get a system of two equations and two unknowns

gµµ+ gss+ gjx = ĝµ+ (1− ĝ) ŝ (A.44)

g2µσ
2
µ + g2jσ

2
ε +

(
σ−2 + σ−2

η + σ−2
ε

)−1
= ĝ2σ2

µ +
(
σ−2 + σ̂−2

η

)−1
(A.45)

Rearranging these expressions gives the desired result.

Alternative derivation. If

µj ∼ N(µ, σ2
µ), µ is a constant, (A.46)

x | s, µj ∼ N
(
aµj + (1− a)s, σ2

x

)
(A.47)

then, x | s ∼ N
(
ĝµ+ (1− ĝ)s, σ2

x + ĝ2σ2
µ

)
.

p(x | s, µj) =
1√
2πσx

e
(x−ĝµj−(1−ĝ)s)

2

2σ2
x , (A.48)

p(x | s) =
∫
R
p(x | s, µj)p(µj | s)dµj =

∫
R
p(x | s, µj)p(µj)dµj (A.49)

because the prior distribution does not depend on s.
The following is an alternative derivation to the one above, which yields the same end result.

The benefit of this second derivation is that it shows explicitly why the compound distribution
consisting of a continuum of normal distributions with normal distributed means is also a normal
distribution.
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Start by expanding the integral (A.49) to get

p(x | s) =
∫

1√
2πσx

e
(x−ĝµj−(1−ĝ)s)

2

2σ2
x

1√
2πσµ

e

(µj−µ)
2

2σ2
µ dµj (A.50)

and combine the two product of the two exponential terms

p(x | s) =
∫

1

2πσxσµ
e

σ2
µ(x−ĝµj−(1−ĝ)s)

2
+σ2

x(µj−µ)
2

2σ2
xσ2

µ dµj . (A.51)

Expand the squared terms

p(x | s) =
∫

1

2πσxσµ
e

(ĝ2σ2
µ+σ2

x)µj
2−(2ĝxσ2

µ−2ĝ(1−ĝ)sσ2
µ+2µσ2

x)µj+(σ2
µx2+σ2

µ(1−ĝ)2s2−2(1−ĝ)sxσ2
µ+σ2

xµ2)

2σ2
xσ2

µ dµj

and isolate the constants and divide by 2σ2
xσ

2
µ so that

p(x | s) = e

(
(σ2

µx2+σ2
µ(1−ĝ)2s2−2(1−ĝ)sxσ2

µ+σ2
xµ2)

2σ2
xσ2

µ

) ∫
1

2πσxσµ
e

(µj)
2
−

(2ĝxσ2
µ−2ĝ(1−ĝ)sσ2

µ+2µσ2
x)

(a2σ2
µ+σ2

x)
µj

2σ2
xσ2

µ

(a2σ2
µ+σ2

x)


dµj

This can be rearranged to be a Gaussian density for µj

p(x | s) = 1
√
2π
√
ĝ2σ2

µ + σ2
x

e

(
(σ2

µx2+σ2
µ(1−ĝ)2s2−2(1−ĝ)sxσ2

µ+σ2
xµ2)

2σ2
xσ2

µ
−

(ĝxσ2
µ−ĝ(1−ĝ)sσ2

µ+µσ2
x)2

2σ2
xσ2

µ(ĝ2σ2
µ+σ2

x)

)
(A.52)

×
∫

1√
2π

√
ĝ2σ2

µ + σ2
x

σxσµ
e


(
µj−

(ĝxσ2
µ−ĝ(1−ĝ)sσ2

µ+µσ2
x)

(ĝ2σ2
µ+σ2

x)

)2

2σ2
xσ2

µ

(ĝ2σ2
µ+σ2

x)


dµj (A.53)

i.e. the previous expression is of the form of the form 1√
2πσ

exp
(µj−µ)

2

2σ2 . To simplify, merge the

constants

p(x | s) = 1
√
2π
√
ĝ2σ2

µ + σ2
x

e

(
(σ2

µx2+σ2
µ(1−ĝ)2s2−2(1−ĝ)sxσ2

µ+σ2
xµ2)

2σ2
xσ2

µ
−

(ĝxσ2
µ−ĝ(1−ĝ)sσ2

µ+µσ2
x)2

2σ2
xσ2

µ(ĝ2σ2
µ+σ2

x)

)
(A.54)

Combine the terms in the exponential

p(x | s) = 1
√
2π
√
ĝ2σ2

µ + σ2
x

e

(
x2−2((1−ĝ)s+ĝµ)+ĝ2µ2+(1−ĝ)2s2−2ĝ(1−ĝ)sµ

2(ĝ2σ2
µ+σ2

x)

)
(A.55)

and simplify to get

p(x | s) = 1
√
2π
√

ĝ2σ2
µ + σ2

x

e

(
(x−((1−ĝ)s+ĝµ))2

2(ĝ2σ2
µ+σ2

x)

)
(A.56)

What we have in (A.56) is then the pdf of a normal distribution with mean (1 − ĝ)s + ĝµ and
variance ĝ2σ2

µ + σ2
x .
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A.6. Proof of Corollary 2. Take the ratio of the averages of (6.8) across agents for state
n and m, drop the indices for the prior information set,

∑J
j=1 pj(xn | Ωt−1, st)∑J
j=1 pj(xm | Ωt−1, st)

=

∑J
j=1(pj(st | xn)p(xn | Ωt−1))∑J
j=1(pj(st | xm)p(xm | Ωt−1))

(A.57)

=

∑J
j=1 pj(st | xn)∑J
j=1 pj(st | xm)

p(xn | Ωt−1)

p(xm | Ωt−1)
(A.58)

Rewrite the equality to get

∑J
j=1 pj(st | xn)∑J
j=1 pj(st | xm)

=

∑J
j=1 pj(xn|Ωt−1,st)

p(xn|Ωt−1)∑J
j=1 pj(xm|Ωt−1,st)

p(xm|Ωt−1)

(A.59)

From (A.3) in the proof of Proposition 1, we can write

p (ŝt | xn)

p (ŝt | xm)
=

∑J
j=1 p

(
xn | Ωj

t

)∑J
j=1 p

(
xm | Ωj

t

)
∑J

j=1

p(xm|Ωj
t−1)∑N

i=1(p(xi|Ωj
t−1)p(ŝt|xi))∑J

j=1

p(xn|Ωj
t−1)∑N

i=1(p(xi|Ωj
t−1)p(ŝt|xi))

(A.60)

=

∑J
j=1 p(xn|Ωj

t)
p(xn|Ωt−1)∑J
j=1 p(xm|Ωj

t)
p(xm|Ωt−1)

(A.61)

That gives us the desired equality because in the heterogeneous likelihood case, the factual
posterior p

(
xn | Ωj

t

)
equals pj(xn | Ωt−1, st) .

A.7. Proof of Corollary 3. We want to show that when σ2
ε → ∞, ŝ → s and σ̂2

η→ σ2
η.

From (6.14) we then have that

gµ → σ−2

σ−2 + σ−2
η

, gs →
σ−2
η

σ−2 + σ−2
η

, gj → 0, (A.62)

as σ2
ε → ∞. Plug in (6.17)

(
σ−2

σ−2 + σ−2
η

)2 · σ2
µ + (σ−2 + σ−2

η )−1 = (
σ−2

σ−2 + σ̂−2
η

)2 · σ2
µ + (σ−2 + σ̂−2

η )−1 (A.63)

Notice that σ̂2
η = σ2

η is one solution to this equation. It is also the unique solution because

the right hand side of (A.63)is increasing in σ̂2
η, while the left hand side is fixed.

Thus, ĝ → σ−2

σ−2
η +σ−2 , and ŝ = (1− ĝ)−1

[
(gµ − ĝ)µ+ gss+ gjx

]
→ s.

Now we show the other direction. From 6.16 we can see that ŝ = s for all realizations of s,if
and only if (1− ĝ)−1gs = 1, and (1− ĝ)−1

[
(gµ − ĝ)µ+ gjx

]
= 0.
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(1− ĝ)−1gs = 1 gives

σ̂−2
η =

σ−2
η

σ−2
ε + σ−2

η + σ−2
(σ−2

η + σ−2)

Since the mean of the prior dispersion µ and true state x are not restricted, we can infer

from (1 − ĝ)−1
[
(gµ − ĝ)µ+ gjx

]
= 0 that gµ = ĝand gj = 0. Combining all the conditions

gives us σ2
ε = ∞.

A.8. Proof of Corollary 4. If the true common signal is uninformative, i.e., σ2
η → ∞,then

gµ → σ−2

σ−2 + σ−2
ε

, gs → 0, gj →
σ−2
ε

σ−2 + σ−2
ε

, (A.64)

as σ2
ε → ∞. Plug in (6.17)

(
σ−2

σ−2 + σ−2
ε

)2 · σ2
µ + (

σ−2
ε

σ−2 + σ−2
ε

)2 · σ2
ε + (σ−2 + σ−2

ε )−1 = (
σ−2

σ−2 + σ̂−2
η

)2 · σ2
µ + (σ−2 + σ̂−2

η )−1

(A.65)
Again this equation has a unique solution for σ̂2

η, note also this solution must be σ̂2
η > σ2

ε by

monotonicity of the right-hand side of (A.65) in σ̂2
η. Therefore, gµ = σ−2

σ−2+σ−2
ε

< σ−2

σ−2+σ̂−2
η

= ĝ.

From (6.16) we then have the desired result

ŝ = (1− ĝ)−1
[
(gµ − ĝ)µ+ gss+ gjx

]
(A.66)

= (1− ĝ)−1gj

[
gµ − ĝ

gj
µ+ x

]
(A.67)

= α(x− βµ) (A.68)

where α = (1− ĝ)−1gj, β = ĝ−gµ
gj

, and α > (1− gµ)
−1gj = 1, β < 1−gµ

gj
= 1, αβ < 1.

A.9. Proof of Corollary 5. To show the estimated precision σ̂−2
η is increasing in σ−2

ε and

σ−2
η , we apply the Implicit Function Theorem to 6.17.

We start by showing that ∂σ̂−2
η /∂σ−2

η > 0. The derivative of the right-hand side of 6.17with

respect to the precision of the estimated common signal σ̂−2
η is

∂RHS

∂σ̂−2
η

=
∂
(
( σ−2

σ−2+σ̂−2
η
)2 · σ2

µ + (σ−2 + σ̂−2
η )−1

)
∂σ̂−2

η

(A.69)

=
∂
(
( σ−2

σ−2+σ̂−2
η
)2 · σ2

µ

)
∂σ̂−2

η︸ ︷︷ ︸
<0

+
∂
(
(σ−2 + σ̂−2

η )−1
)

∂σ̂−2
η︸ ︷︷ ︸

<0

(A.70)

< 0 (A.71)
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and the derivative of the left-hand side w.r.t. the precision of the true common signal σ−2
η is

∂LHS

∂σ−2
η

=
∂
(
g2µσ

2
µ + g2jσ

2
ε +

(
σ−2 + σ−2

η + σ−2
ε

)−1
)

∂σ−2
η

(A.72)

=
∂g2µσ

2
µ

∂σ−2
η︸ ︷︷ ︸

<0

+
∂g2jσ

2
ε

∂σ−2
η︸ ︷︷ ︸

<0

+
∂
(
σ−2 + σ−2

η + σ−2
ε

)−1

∂σ−2
η︸ ︷︷ ︸

<0

(A.73)

< 0 (A.74)

To show the estimated precision σ̂−2
η is increasing in σ−2

ε , we again apply the Implicit
Function Theorem to 6.17, but with more arduous algebra.
The derivative of the right-hand side is the same as above. For the left-hand side, the
derivative with respect to the precision of the private signal σ−2

ε is

∂LHS

∂σ−2
ε

=
∂
(
g2µσ

2
µ + g2jσ

2
ε +

(
σ−2 + σ−2

η + σ−2
ε

)−1
)

∂σ−2
ε

(A.75)

=
∂g2µσ

2
µ

∂σ−2
ε︸ ︷︷ ︸

<0

+
∂
(
g2jσ

2
ε +

(
σ−2 + σ−2

η + σ−2
ε

)−1
)

∂σ−2
ε

(A.76)

=
∂g2µσ

2
µ

∂σ−2
ε︸ ︷︷ ︸

<0

+
∂
[(
σ−2 + σ−2

η + 2σ−2
ε

) (
σ−2 + σ−2

η + σ−2
ε

)−2
]

∂σ−2
ε

(A.77)

=
∂g2µσ

2
µ

∂σ−2
ε︸ ︷︷ ︸

<0

+
−2σ−2

ε(
σ−2 + σ−2

η + σ−2
ε

)3︸ ︷︷ ︸
<0

(A.78)

< 0 (A.79)

A.10. Proof of Corollary 6. We want to find the estimated private signal follow a condi-
tional Gaussian distribution

ŝj | x ∼ N
(
x, σ̂2

ε

)
(A.80)

Intuitively, the estimated private signal should fill the gap between the true posterior and
the posterior implied by the estimated common signal.
The true individual posterior follows a Gaussian distribution

N
(
gµµ

j + gss+ gjs
j,
(
σ−2 + σ−2

η + σ−2
ε

)−1
)

(A.81)

On the other hand, based on (A.37) the individual posterior implied only by the estimated
common signal is

N
(
ĝµj + (gµ − ĝ)µ+ gss+ gjs

j,
(
σ−2 + σ̂−2

η

)−1
)

(A.82)
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Therefore, to match the variance

σ̂−2
ε =

(
σ−2 + σ−2

η + σ−2
ε

)
−
(
σ−2 + σ̂−2

η

)
(A.83)

=
(
σ−2
η − σ̂−2

η

)
+ σ−2

ε (A.84)

To match the mean, we apply the Bayesian updating formula

gµµ
j + gss+ gjs

j =
σ−2 + σ̂−2

η

σ−2 + σ̂−2
η + σ̂−2

ε

·
(
ĝµj + (gµ − ĝ)µ+ gss+ gjs

j
)
+

σ̂−2
ε

σ−2 + σ̂−2
η + σ̂−2

ε

· ŝj

(A.85)

Plug in σ̂−2
ε and reorganize the terms, we have

ŝj = gµµ+ gss+ gjs
j (A.86)

The variance in (6.18) is simply given by equating the posterior variance implied by s and
sj with the posterior variance implied by ŝ and ŝj.


