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1. Introduction

Cyber risk encompasses a broad range of risks to information and information systems, such as

malware, ransomware, phishing, and system errors. It has recently become a major threat to the

economy and society, resulting in substantial losses. In 2007, the American department store chain

TJX discovered a data breach that exposed the credit card information of 94 million customers

(ABC News, 2007). This was the largest recorded data breach at the time and although it was

originally considered an outlier, such incidents soon became the new normal. Most notably, Yahoo

experienced a breach in 2013 that compromised 3 billion user accounts, setting a new record for

the scale of such incidents (Reuters, 2017). Not only are extreme events becoming more frequent,

but various studies also indicate rapid increases in the overall frequency and severity. FBI (2022)

reports a 127% increase in reported cybercrimes and a 281% increase in financial losses from 2018
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to 2022. The report by McAfee (2020) estimates the annual cost of global cybercrime at $1 trillion,

a more than 50% increase from the 2018 estimation.

This anecdotal evidence underscores the increasing importance and dynamic nature of cyber

risk, both of which have motivated the recent works in operational research. Eling and Wirfs (2019)

and Dacorogna et al. (2023) use methods from extreme value theory to estimate cyber losses, Zhang

et al. (2023) propose structural models for modeling cyber risk propagation process. There is also

a strand of literature on cybersecurity, cyber defense, and deterrence from the operational research

perspective (Khouzani et al., 2019; Cheung and Bell, 2021; Keith and Ahner, 2021; Welburn et al.,

2023). However, there is still limited empirical knowledge about how cyber risk evolves and how

it might affect optimal risk management. For example, the optimal security investment depends

on the estimated threat level, such as the frequency and severity of security breaches (Gordon and

Loeb, 2002). If the estimation is miscalculated due to the changing threat landscape, the optimal

investment would be biased and lead to inefficient resource allocation. We provide a comprehensive

analysis of cyber risk dynamics by using cyber incidents in the past two decades from three databases

and discuss the implications of our empirical results. We focus on two research questions. First,

what are the statistical properties of cyber risk and do they change over time? Second, what are

the implications for cyber risk management given the evolving cyber threat landscape?

For the first question, we focus on three dimensions of cyber risk: frequency, severity, and tail

risk. Before analyzing trends in frequency, we address the issue of report delay bias, which pertains

to the time lag between the accident date and the observation date of an event. This subject is

underexplored in the literature due to data limitations. Using the unique information in our data,

we correct this bias by extending the generalized Dirichlet-multinomial model from Stoner and

Economou (2020) to two delay stages. The results show that after accounting for report delay, the

trend of frequency is increasing much faster than what we see in raw data. Building on these results,

we study cyber risk frequency, especially to understand whether there have been fundamental shifts

over time. We use a recent statistical method to detect the unknown number of change points

in the time series data (Baranowski et al., 2019). The results show that malicious cyber risk has

undergone exponential growth in the past two decades with no significant structural change. In

contrast, other categories of cyber risk have grown more slowly.

We also analyze the dynamics of cyber risk severity. To ensure a comparable sample basis and

rule out results driven by changes in sample composition over time, we start by matching victim

firms each year. Then we proceed to the analysis of loss severity. Traditionally, the analysis of

loss severity focuses on the first moment of the distribution, but this leaves out useful information.

Following recent advances in statistics (Dubey and Müller, 2020), we consider the full distribution

of cyber loss, thereby offering a more comprehensive understanding. The results indicate financial

losses from malicious cyber incidents have shifted in a more severe direction after 2018. Given

the extreme nature of cyber risks and manifold discussions around their insurability (Biener et al.,

2015), the tail of the loss severity distribution requires a closer look. We apply two commonly used

methods to measure the tail index: Hill’s estimator and OLS log-log rank-size estimator, together
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with the specially selected optimal threshold selection method using simulations. Then we exploit

a change point detection method for the tail index (Ibragimov and Müller, 2016) and find that the

tail index is consistently around or below the threshold of 1, indicating extreme heavy-tailedness

with no finite mean or variance in the cyber loss distribution.

To address the second research question, we discuss the implications for cyber risk management

in light of the empirical evidence of cyber risk. We build upon and expand the classical model of

Ehrlich and Becker (1972) where insurance and self-protection are the standard risk management

options for a firm and incorporate two stylized properties of cyber risk: delayed information and

heavy-tailedness. Due to the issue of report delay, the firm may have less accurate and delayed

information compared to the insurer. This can lead to an underestimation of its risk level as

malicious cyber risk is increasing exponentially. In addition, extreme heavy-tailedness limits the

supply of cyber insurance (Ibragimov et al., 2009), and the tail exposure is borne by the firm. Based

on these features, we show that the volume of the cyber insurance market is reduced, consistent

with the evidence from Swiss Re (2022) that over 90% of cyber losses are not covered by insurance.

Furthermore, if report delays lead to severe underestimation of the risk level, the firm may invest

less than optimally in security, resulting in higher risk.

Overall, this paper investigates the time dynamics of cyber risk to improve decision-making for

this increasingly important risk type. It provides four contributions to the existing literature. First,

we uncover the empirical properties of cyber risk and estimate the dynamic trends of frequency,

severity, and tail risk using three different databases, advancing the understanding of cyber risk in

addition to the previous works in operational research (Eling and Wirfs, 2019; Dacorogna et al.,

2023) and applied statistics (Maillart and Sornette, 2010; Edwards et al., 2016). Second, we connect

the empirical evidence of cyber risk with the theoretical work on information security (Gordon and

Loeb, 2002; Böhme and Schwartz, 2010; Zhao et al., 2013) and show how the documented empirical

properties influence the optimal investment in risk management. Third, methodologically we extend

the framework of Stoner and Economou (2020) to two stages which better capture the delay structure

of cyber loss data. Also, we provide a combined approach with optimal threshold selection, tail

index estimation, and change point detection, which is specifically adjusted for the analysis of cyber

risk. Lastly, some related studies (Maillart and Sornette, 2010; Farkas et al., 2021) have questioned

the reliability of data, but there is still limited empirical evidence addressing this problem. The

most relevant works such as Sangari et al. (2023) and Avanzi et al. (2023) identify the existence of

report delays for cyber loss data, but we differ from their methods by including a two-stage delay

correction model while jointly modeling the delay mechanism and the total count number, which

provides higher accuracy for the corrected results.

The remainder of this paper is organized as follows. In the next section, we summarize the

recent literature on the statistical analysis of cyber risk and the works on information security and

insurance. Section 3 provides a description of our data and the categorization of cyber events.

Section 4 discusses the methodology of report delay and change point detection methods. Section

5 presents the empirical results on time dynamics of cyber risk. Section 6 provides a theoretical
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framework to discuss the implications of our empirical findings on cyber risk management. Lastly,

Section 7 concludes.

2. Related literature

We define cyber risk as “operational risks to information and technology assets that have conse-

quences affecting the confidentiality, availability or integrity of information or information systems”

(Cebula and Young, 2010). Therefore, we consider cyber risk as a subcategory of operational risk,

which enables us to distinguish cyber risk from other established risk categories (Eling and Wirfs,

2019). Our research relates to two broad strands of literature: statistical analysis of cyber risk

properties and the economics of information security.

2.1. Statistical analysis of cyber risk

The early stage of the empirical work focuses on the general statistical properties of cyber risk,

including correlation structure (Böhme and Kataria, 2006; Wang and Kim, 2009a; and Wang and

Kim, 2009b) and time trends (Maillart and Sornette, 2010; Wheatley et al., 2016; Edwards et al.,

2016; and Romanosky, 2016). Starting from Eling and Loperfido (2017), more and more studies

begin to study cyber risk frequency and severity by fitting existing statistical models (Eling and

Wirfs, 2019; and Woods et al., 2021) or proposing new frameworks to model cyber risk (Bessy-

Roland et al., 2021; Farkas et al., 2021; Sun et al., 2021; and Dacorogna et al., 2023). These works

have exploited the available databases to show the good performance of their models, and the basic

consensus is that the modeling of severity should be based on heavy-tailed (at least highly right-

skewed2) distributions, although the specific choice of the model is very diverse. More recently,

there are studies exploring the determinants of cyber risk (Aldasoro et al., 2022; Malavasi et al.,

2022).

The study on the time dynamics of cyber risk has been scarce and results are inconsistent

(Woods and Böhme, 2021). For example, using the data period from 2000 to 2008, Maillart and

Sornette (2010) show a strong non-stationary growth culminating in July 2006, followed by a stable

period. Edwards et al. (2016) find no evidence of an increasing trend for the size and frequency of

data breaches from 2005 to 2015. However, Romanosky (2016) indicates an increasing trend for the

number of cyber events in the same period. Wheatley et al. (2021) also observe an increasing trend

for both frequency and severity in a similar period, but only specific to hack-type events. Overall,

the results appear to be somewhat inconsistent and the difference may largely stem from different

datasets and methodologies. This inconsistency motivates us to reexamine the empirical properties

over a long horizon with the comparison of three cyber databases. We also note that none of the

above studies incorporates the bias problems inherent in all datasets.

2For example, the results of Woods et al. (2021) show the gamma distribution has better performance, which is
not heavy-tailed distribution but exhibits high skewness.
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2.2. The economics of information security and insurance

To deal with cyber risk, it is critical to invest in information security. Gordon and Loeb (2002)

is among the first to consider an economic model for optimal investment in information security

and shows that firms should prioritize information assets with midrange vulnerabilities as the cost

of increasing safety level can be nonlinear. However, information security does not only depend on

the efforts of one firm. There is an externality for the investment in security as the security level

depends on the minimum effort any firm makes in the same system (Anderson and Moore, 2006).

This interdependence among firms is a key feature in shaping the security of information systems.

Due to the complexity of the network structure in the system, game theory is a commonly used

tool to model the interactions among participants(Laszka et al., 2014).

Among the possible mechanisms for improving security and transferring financial risk, insurance

is the most studied remedy in the literature. Gordon et al. (2003) proposes a general framework

for cyber insurance by incorporating the typical information asymmetry issues related to insurance.

Later on, Böhme and Schwartz (2010) provides a more comprehensive framework for considering

all the peculiarities of cyber risk: interdependent security, correlated risk, and information asym-

metries. In this framework, there has been extensive literature on the optimal security level with

insurance, such as cyber insurance as an incentive (Bolot and Lelarge, 2009), competitive market

and security level (Shetty et al., 2010), self-insurance and self-protection (Johnson et al., 2011),

managed security services (IT security outsourcing) as an alternative (Zhao et al., 2013), and fines

and rebate corrective treatment (Naghizadeh and Liu, 2014), etc. 3

However, there is little research connecting the theoretical work on information security with

the empirical work on cyber risk. This motivates us to fill the gap by first documenting the em-

pirical properties of cyber risk and then discussing the implications for cyber risk management and

information security.

3. Data

3.1. Cyber loss data

Directly measuring cyber risk is challenging. In this paper, we analyze cyber risk using its

realizations, that is, cyber incidents that have actually occurred. We look at three sources of data

and all data focus on events that occur to legal entities (firms, public, and non-profit institutions)

rather than to individuals. We examine two types of losses. The first type is the volume of

information, measured by the number of affected records or accounts. The second type is the

monetary losses arising from the incident. This includes first-party losses, such as the value of the

lost records or the cost of business interruption, as well as third-party losses, which encompass

payments to affected customers and fines in case of regulatory violations.

Our first data source is Advisen, whose database collects information from multiple publicly

available sources such as government websites, official court documents, and other online resources.

3See Marotta et al. (2017) for a more comprehensive summary of cyber insurance literature.
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This data has been increasingly analyzed in the academic context (Aldasoro et al., 2022; Malavasi

et al., 2022). The magnitude of the observations in the database is over 150,000, while more than

80% of the cases are from the U.S. and the rest are from 177 countries. Although the magnitude

of cyber events in this database is large, the information on financial loss is relatively scarce. After

cleaning the data and using the sample from 2001 to 2021,4 we have 5,789 incidents with known

financial loss and 90,821 incidents with the known number of affected units.

The second one is SAS OpRisk Global data, the world’s largest database on publicly reported

operational losses. This database contains more than 35,000 operational events with losses above

US$ 100,000 for various countries and industries. However, there is no classification for cyber

incidents, so we cannot extract these directly from the data. We follow Eling and Wirfs (2019) and

exploit text mining to extract cyber-related events. This resulted in 2,123 observations of cyber

events and 18,287 observations of non-cyber operational events from 2001 to 2021.

The third source of data is the non-profit organization Privacy Rights Clearinghouse (PRC), a

database that has been frequently used in the literature (Kamiya et al., 2021; Sun et al., 2021; Farkas

et al., 2021). It collects information about breach events from government agencies and verifiable

news sources in the U.S. starting from 2005. This data contains 6,733 records (with non-zero ID

losses) up to the end of 2019.5 The major difference from the previous two sources is that this

database focuses only on data breaches and does not provide information about financial losses.

Although there are three databases, all of them gather information on cyber incidents. We study

these databases separately as we aim to find the general pattern of cyber risk that is persistent across

sources and categories. For example, the SAS dataset exhibits a bias toward incidents involving large

losses; the PRC dataset is skewed toward data breaches. Among the three, the Advisen dataset is

the most comprehensive but often includes incidents for which only limited information is available.

A comparison could provide robust results on the dynamics of cyber risk, which contributes to the

literature as all previous studies consider only one dataset to our best knowledge.

3.2. Categorization and descriptive statistics

To differentiate various categories of cyber incidents, we consider four categories, building upon

and expanding the literature such as Edwards et al. (2016). The first category, “malicious”, encom-

passes malicious cases, defined as cyber incidents initiated with harmful intent against victims, such

as hackers infiltrating the system of the victim firms or internal employees illicitly profiting from

stolen confidential information. The second category, “negligent”, covers negligent cases, which are

cyber incidents without malicious third parties, such as system errors or accidental disclosure of

consumer information. The third category focuses on privacy violations, hereafter referred to as

“privacy”. This category includes incidents where a firm intentionally mishandles clients’ informa-

tion. While not causing direct damage to the firms, such incidents may lead to lawsuits and fines

4Since the database creates separate records for different kinds of losses arising from one incident such as direct
damage and legal costs, we aggregate the original data for analysis. We restrict the sample to the period from 2001
given the scarcity of data from the 20th century. This also applies to other data sources.

5This data has a shorter end period due to maintenance issues.
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for legal violations. The fourth category, “others”, encompasses all other cyber incidents, including

those of unknown cause or those triggered by external factors like natural events or physical damage.

Further details are provided in Appendix A.

Table 1 summarizes key statistics of each category of cyber incident across three databases. In

Advisen, fewer than 10% of incidents in each category have known financial loss information, while

information on the affected count is available for around 80% of incidents. The financial loss of

malicious cases is more severe than that from negligent cases, but the affected counts are higher for

negligent cases than for malicious ones.

In SAS, the magnitude of losses is higher than in Advisen. This arises because SAS only includes

cases with losses exceeding US$ 100,000. Negligent cases lead to higher loss severity than malicious

cases, in contrast to Advisen data. This might be explained by the composition of the two samples,

as the Advisen sample includes more incidents related to unintentional disclosure which results in

lower financial losses.

In the PRC data, malicious cases have a higher number of records lost or affected than negligent

cases. This is different from the Advisen data as the PRC data focuses on data breaches and thus

has a higher loss related to the number of records.6 Despite differences in size and types of losses

across the three databases, the loss distributions are all heavily skewed as the median and mean

values are significantly different.

4. Methodology

4.1. Report delay

Reliable data are crucial for analyzing cyber risk, yet existing databases may be biased. Con-

sequently, empirical studies without bias correction could yield incomplete or even incorrect con-

clusions. We aim to extend recent methods from the field of statistics to identify and correct the

potential bias in the data before conducting further analysis. One main problem is report delay7—-

the period before the total number of observable events becomes available. In the interim, we can

only observe incomplete data, which may adversely affect our understanding of time dynamics and

lead to misinterpretation of the actual number of events. In the realm of cyber risk, this problem is

prevalent since many events are noticed and made public after a long time. Also, a delay may occur

when the data provider cannot update the records in time due to limited maintenance resources.

To model report delay, we follow Stoner and Economou (2020) and extend their framework to

include two stages that are unique in the Advisen dataset. The Advisen dataset is the focus of this

section because it provides the detailed timeline of each incident, from the accident date to the date

of first notice (first stage), until the date of creation in the database (second stage). This unique

6The terms “affected counts” and “number of records” are used separately in Advisen and PRC, but they are
practically the same in our context.

7There may be other possible biases, but our data does not provide sufficient information for direct correction. For
example, selection bias, where certain types of cyber losses are more likely to be reported, can be a concern for cyber
severity analysis. We attempt to control for this indirectly in Section 5.3.
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Table 1: Summary statistics of three databases

Sample
size

Number of
cases with
known losses

First
quartile

Mean Median Third
quartile

Standard
deviation

Advisen-loss amount ($Million)
Malicious 53317 2476 0.02 17.83 0.15 1.11 271.39
Negligent 17845 357 0.02 15.21 0.12 0.61 123.01
Privacy 36285 2738 0.01 6.68 0.05 1.26 117.01
Others 9607 218 0.02 13.72 0.18 0.83 169.52

Advisen-affected counts (Million)
Malicious 53317 38985 0.00 1.17 0.00 0.00 33.54
Negligent 17845 14500 0.00 1.81 0.00 0.00 84.89
Privacy 36285 29270 0.00 0.25 0.00 0.00 14.53
Others 9607 8066 0.00 0.08 0.00 0.00 1.43

SAS-loss amount ($Million)
Malicious 1451 1451 0.40 27.21 1.23 4.34 260.86
Negligent 516 516 0.48 57.21 2.70 16.30 247.94
Privacy 80 80 0.80 20.48 4.48 21.22 35.42
Others 76 76 0.36 40.69 1.26 6.80 214.42

PRC-number of records (Million)
Malicious 3207 2011 0.00 3.63 0.00 0.02 70.15
Negligent 1861 1553 0.00 1.69 0.00 0.01 36.61
Others 3858 3169 0.00 0.14 0.00 0.01 2.63

Note: This table presents the summary statistics of different cyber categories from three databases. The dollar
value is adjusted for inflation with 2021 as the reference year.

feature allows us to capture two delay mechanisms.8 The reason we choose Stoner and Economou

(2020) is that they provide high accuracy by jointly modeling the delay mechanism and the total

count number. Traditionally, the task of correcting delayed reporting has been treated separately

from the task of forecasting, overlooking the joint uncertainty in the incidence of the total count

and the presence of delay. For example, a low number of cyber cases in month t may have resulted

from a temporal decreasing trend or a low reported number in this period or both. Therefore, it is

important to jointly model these two processes.

Let yt be the total observable count at time t and after some delay unit (months in our case) a

proportion of yt, zt,d, has been reported in this period, where d is the number of months delayed. This

means that
∑D

d=1 zt,d gets close to yt as the total number of months D increases. The generalized

Dirichlet-multinomial framework with hazard model (GDM hazard) is defined by:

yt ∼ NB(λt, θ); log(λt) = ι+ αt + ηt;

zt | yt ∼ GDM(νt,ϕ, yt); log(
νt,d

1− νt,d
) = ψd + βt,d,

where NB is a negative binomial distribution, λt is the expected rate of occurrences and θ allows

8SAS OpRisk database only has the accident date (the year when the incident started) and the date of creation,
while the PRC database contains only the accident date. Therefore, we choose Advisen data for the main analysis
and SAS data for comparison.
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for overdispersion. αt is a penalized cubic spline to capture nonseasonal variation, ηt is a penalized

cyclic cubic spline to capture within-year temporal effect, νt,d is the expected proportion of counts

that will be reported at delay d out of those which are yet-to-be-reported and βt,d allows for temporal

changes of delay mechanism. In addition, ϕ controls for dispersion, ι and ψd are fixed effects. In

this model, the delay mechanism is modeled through the difference of temporal structure in the

proportion of reported cases across delay levels. A discussion of model performance is provided in

Appendix B.

This model provides a flexible way of modeling delay structures for cyber risk, but how to

connect two delay stages in our data remains a problem. Given that the available data represent

the results after two delay stages, we can back-trace the original trend starting from the second

stage and then proceeding to the first stage. In the second stage, assume that for the time of first

notice t, the number of total cases is at but not available. Suppose after D months all the cases will

be included in the database, but we have data only for D′ < D months. Therefore, after applying

the GDM hazard method, we can estimate the number of total cases as

ât =
D′∑
1

at,d +
D∑

D′+1

ˆat,d,

where at,d is the number of cases reported in delay time d, while ˆat,d is the estimated number of

cases in delay time d.

Additionally, the correction ratio qt is defined as the estimate of the actual total number divided

by the available number at time t:

qt = ât/
D′∑
1

at,d.

This correction ratio can be further applied to the first stage. When considering the delay structure

between the accident date and the first notice date, the number of cases reported bt,d is biased

due to the delay in the second stage. Therefore, we can adjust this bias with the correction ratio:
ˆbt,d = bt,d ∗ qt+d. After the adjustment, we apply the GDM hazard model to account for first-stage

bias and obtain corrected results.

4.2. Time dynamics of loss frequency

We study loss frequency and in this context focus on the estimation of change points over the

period since it is of interest to understand whether the cyber risk has undergone certain fundamental

changes in the past two decades. There is extensive literature on change points detection methods

(Truong et al., 2020), which can be categorized based on their cost functions, search methods,

and constraints. However, the literature mostly focuses on the problem under the assumption of

piecewise-constant parameters but cyber loss frequency is not likely to follow this assumption due

to the increasing trend.

Therefore, we consider one newly proposed generic approach of detecting an unknown number
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of features occurring at unknown locations, narrowest-over-threshold detection (Baranowski et al.,

2019). 9 This method shows low computational complexity, ease of implementation, and accuracy

in the detection of the feature locations while allowing for non-constant time trends.

In this method, consider the model

Yt = ft + σtϵt, t = 1, ...T,

where ft is the signal, σt is the noise’s standard deviation at time t, and ϵt follows standard normal

distribution. We further assume that (ft, σt) can be divided into q + 1 segments with q unknown

unique change points 0 = τ0 < τ1 < ... < τq < τq+1 = T . The structure of (ft, σt) is modeled

parametrically by a local real-valued d-dimensional parameter vector Θj , where d is known and

typically small.

In the first step, we randomly draw subsamples such as (Ys+1, ..., Ye)
′, where (s, e) is drawn

uniformly from the set of pairs of indices in {0, ..., T − 1} × {1, ...T}. The generalized likelihood

ratio statistic for all potential single change points within the subsample is

Rb
(s,e] = 2log[

supΘ1,Θ2{l(Ys+1, ..., Yb; Θ
1)l(Yb+1, ..., Ye; Θ

2)}
supΘl(Ys+1, ...Ye; Θ)

],

where l(Ys+1, ...Ye; Θ) is the likelihood of Θ given (Ys+1, ..., Ye)
′. Based on this statistic, we pick the

maximum R(s,e](Y ) = maxb∈{s+d,...e−d}Rb
(s,e].

In the next step, all R(sm,em](Y ) for m = 1, ...M is tested against a given threshold and among

the significant results, the one corresponding to the interval (sm∗ , em∗ ] with the smallest length will

be chosen. This step can be repeated recursively to find all the possible change points.

4.3. Time dynamics of loss severity

Dubey and Müller (2020) considers a sequence of independent random objects Yt taking values

in a metric space (Ω, d) rather than in R as in traditional methods (Niu et al., 2016). As in most

practical situations, the differences in distributions are mostly in location or in scale. Therefore, this

method aims to detect differences in means and variances which are in Fréchet type and provides a

generalization of the notion of location and scale to metric spaces.

The test statistic for the change point can be written as:

Tn(b) =
b(1− b)

σ̂2
{(V̂[0,b] − ˆV[b,1])

2 + ( ˆV[0,b]
C − ˆV[0,b] + ˆV[b,1]

C − V̂[b,1])
2},

where b is the possible value of the change point, σ̂ is the asymptotic variance of the empirical

Fréchet variance, ˆV[i,j] is the estimated Fréchet variance and lastly, ˆV[i,j]
C

is the “contaminated”

version of Fréchet variance obtained by plugging in the Fréchet mean from the complementary data

segment. Based on this test statistic, Dubey and Müller (2020) further provides an inference method

9We compare the results of alternative methods in Appendix C and show the main method is robust.
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for the identification of change points in a sequence of distributions and we can use the bootstrap

approximation to calculate critical values.

4.4. Time dynamics of tail risk

Tail risk is an important part of the analysis for cyber risk, especially in the sense that extreme

tail risk or heavy-tailedness has many unfavorable properties such as inducing non-diversification

trap (Ibragimov et al., 2009).10 In models considering a heavy-tailed risk, the variable of interest

r, cyber loss in our case, is usually assumed to have a distribution with power tails, such that

P (r > x) ∼ C
xζ , C > 0, as x→ +∞. The parameter ζ is the tail index. This index characterizes the

heaviness of the tail of the distribution and the smaller the index, the greater the probability mass

in the tail. The tail index is linked to the existence of the moments. For example, the variance of r

is finite if and only if ζ > 2, and the mean is finite if and only if ζ > 1.11 In this section, we provide

a combined approach that incorporates multiple stages of tail estimation for cyber risk analysis.

Estimation of tail index: We first consider two basic non-parametric methods that are widely

used in the literature. The first one is Hill’s estimator as follows (Hill, 1975):

ζ(k) = {1
k

k∑
j=1

ln(x(n− j + 1))− ln(x(n− k))}−1,

where x(i) is the ith-order statistic such that x(i) ≥ x(i − 1) for i = 2, ...n and k is the chosen

threshold.

The second method is the OLS log-log rank-size regression (OLS estimator). We use the revised

version proposed by Gabaix and Ibragimov (2011) which is consistent in small samples:

log(i− 1/2) = a− ζlog(x(i)).

The two methods above are applied to the tail of the distribution for the estimation, but a key

issue remains: the selection of the threshold for the tail. As there is no consensus on the choice of

the threshold selection method, we conduct a simulation analysis based on the stylized properties of

cyber losses to compare the in-sample performance of various methods. We consider the R package

“tea” from Ossberger (2020), which includes 12 approaches. The simulation results show that

two methods (“dAMSE” and “hall”) provide better performance than the others in the package.

However, there is a downward bias in these two methods and we find using the OLS estimator

significantly reduces that bias (details in Appendix D). Therefore, we use these two methods in

combination with the OLS estimator for the estimation of the tail index.

10When risk distributions have heavy left tails and insurance providers have limited liability, insurance providers
may choose not to offer insurance for catastrophic risks and not to participate in reinsurance markets, even though
there is a large enough market capacity.

11The definition of the tail index may differ from other papers, as this value is the inverse of the shape parameter in
generalized Pareto distribution. To make sure both Hill and OLS log-log rank-size estimator report the same value,
we define the tail index in this manner.
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Change point detection: To analyze the trend or potential change points in the extreme

value index, we exploit the method from Ibragimov and Müller (2016). The empirical strategy is

to partition the sample into two periods: before and after a possible break point. Then we divide

each period into q groups chronologically (in this paper we use four groups), and compute the

Behrens-Fisher (BF) statistic:

BF =
ζ̂1 − ζ̂2√

(s1)2

q1
+ (s2)2

q2

,

where ζ̂i = q−1
i

∑qi
j=1 ζi,j , (si)

2 = (qi−1)−1
∑qi

j=1(ζi,j− ζ̂i)2, ζi,j is the tail estimator for period i and

group j with i = 1, 2 and j = 1, 2, 3, 4. We then compare the BF statistic with the critical value of

the Student-t distribution with min(q1, q2)−1 degrees of freedom. This allows us to detect whether

there is a change point for the time series data. Together with the optimal threshold selection

methods, we can identify the possible change points for the tail index of cyber risk.

5. Empirical results

5.1. Report delay

To understand the problem of report delay, we first briefly compare our three databases. To

ensure their comparability, we have restricted the period to 2005 and onwards and focus only on the

malicious category in the U.S. (the PRC data starts from 2005 and covers only U.S. data). Various

sources and reports (Accenture, 2021; Allianz, 2021) indicate that cyber risk has been increasing

quickly over the years, but as shown in Appendix Figure 1, this trend is not as significant as we

would expect. For example, the data from SAS show a steady trend, while the other two indicate

an increasing trend during the early stage and then a steady pattern in recent years. The sudden

drops in the number of cases in 2018 for PRC and in 2020 for Advisen indicate that the problem

of report delay may be one reason. To look more closely at the problem of report delay, we use the

date of creation in Advisen to show how the trend has evolved over the years in Appendix Figure

2. We plot the evolution of cyber risk based on four creation dates (every four years from 2009 to

2021) so that each graph shows only cyber events before the creation date. This provides a clear

comparison of different points in time and shows that at each point there is a clear decreasing trend

which undoubtedly relates to delayed report.

We apply the two-stage method with the GDM hazard framework introduced in the methodology

section to the whole sample period. The result is shown in Figure 1. The increasing trend for the

malicious, negligent, and “others” categories is clear, although the number of malicious and negligent

cases is increasing much faster compared to the “others” category. The exception is the privacy

category. There is a peak around 2017 and then the number of cases decreases significantly. A more

detailed analysis of the trends and change points will be presented in the following section. After

correcting the report delay problem, we can find for most of the cases the increasing trend becomes

apparent compared to the raw data, indicating the necessity of our bias correction procedure. We

also apply the same procedure to the SAS data and find similar results (see Appendix B).
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Figure 1: Bias correction for the Advisen data

Note: This figure shows the forecast results of cyber incidents with the 95% confidence interval after adjusting the
report delay problem for different categories in the Advisen data.
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Figure 2: Change points for loss frequency (Malicious)

Note: This figure reports the results of the change point detection method for malicious cyber incidents in the Advisen
data. The grey vertical lines are the dates of change points and the black dots are the monthly number of malicious
cyber incidents based on the forecast estimation after correcting the report delay problem. The red lines are the
predicted linear trends for different periods.

5.2. Time dynamics of loss frequency

To better understand the dynamics of cyber loss frequency, we apply the narrowest-over-threshold

method to the bias-adjusted time series data in Advisen. The top left graph in Figure 2 plots the

dynamics of cyber incidents of the malicious category with change points as the grey vertical lines.

Given that we are working with time series data, serial dependence can be a concern as it may

induce bias for the estimation of the variance of noise and thus the accuracy of the change point

detection. Therefore, following Baranowski et al. (2019), we add additional IID Gaussian noise to

the original data with a mean of 0. The standard deviation is chosen to be the standard deviation

of the residuals after fitting the original data as the noise generated in this manner is sufficient to

remove the serial dependence of the residuals. The top right graph of Figure 2 plots the result after

adjusting serial dependence and the overall pattern is consistent with the original results.

However, the current results assume a linear pattern, but the fact that there are multiple phases

with increasing slopes in previous results indicates that the trend of cyber risk may follow a non-

linear pattern. As the method is not designed for non-linear change points, we transform the original

data into the log scale and then present the results of change points in the bottom left graph. There
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is a nearly linear increase in cyber risk in the log scale, which means that cyber risk has undergone

exponential growth. To control for the potential bias from serial dependence, we add additional IID

Gaussian noise with zero mean as in the previous case. Since the noise is random, there might be

different results depending on the actual values of the Gaussian noise in simulations. We consider

the most conservative results with the fewest change points among different possibilities. This is

shown in the bottom right graph of Figure 2, providing further evidence that the linear pattern

assumption is not likely to hold and that cyber risk of the malicious category has in fact undergone

exponential growth in the past two decades. There might be certain disturbances such as from

March 2018 to December 2019 as shown in the bottom left graph, but these disturbances do not

significantly alter the overall pattern.

To quantify the growth rate of malicious cyber events, we estimate the slope of the fitted line and

find the frequency is increasing following the exponential form e0.025t+3.85, where t is the month of

concern since October 2007. For example, the monthly malicious events by January 2025 would be

8,518 cases, up from 2,565 in January 2021 if the pattern continues. This rapid growth is related to

the exponential increase in the usage of IT technologies and the exploitation of their vulnerabilities.

For other categories of cyber risk in Advisen, we present the results in Figure 3 with log trans-

formation and serial dependence adjustment. The top left graph is the result for the malicious

category. The top right graph presents the possible change points for the negligent category. After

trying different simulations of Gaussian noise to the data, the decreasing phase between August 2014

and January 2017 is still present. Therefore, for the negligent category, the exponential growth is

not continuous but subject to certain disruptions. In the recent period, the monthly frequency of

negligent cases follows the pattern e0.054t+4.45, where t starts from January 2017.

For the privacy category, the time pattern is significantly different. The number of cases began

to increase rapidly after April 2015 and peaked around the beginning of 2017. Then there is a

significant drop in the number of cases that has continued to date. In the data, the incidents are

mainly related to the violation of two acts (Telephone Consumer Protection Act and Fair Debt

Collection Practices Act) by contacting the consumers without their permission. The declining

trend after 2017 might be driven by the possibility that more and more firms comply with the acts

after a significant number of lawsuits are filed by consumers. Furthermore, the European Union

adopted the General Data Protection Regulation in April 2016, which enhances individuals’ control

and rights over their personal data. This also might contribute to the decline in the number of cases

related to the violation of privacy in our data.

For the “others” category, there is also a clear exponential growth over time but the growth

rate is much lower than for the malicious and negligent categories. Therefore, we will not focus on

this category in the following analysis. The comparison of different categories indicates that the

malicious category is the biggest threat as the number of malicious incidents is growing exponentially

and shows no sign of slowing down in the observed period.
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Figure 3: Change points for loss frequency by category

Note: This figure reports the results of the change point detection method for different kinds of data after log
transformation and serial dependence adjustment, based on the forecast estimation when correcting the report delay
problem. The red lines are the predicted linear trends for different periods.
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5.3. Time dynamics of loss severity

In addition to cyber loss frequency, the severity of cyber losses is another key dimension for

measuring cyber risk. However, when we compare the loss distributions across different years, it

might be difficult to draw conclusions due to potential selection bias. For example, cyber incidents

affecting public firms might be more likely to be reported prior to mandatory disclosure, and thus

a perceived declining trend of severity could occur when more losses from private firms become

reported. To control for such selection bias, we first estimate the propensity score of firms for each

year based on characteristics such as revenue, number of employees, and industry category. Then

we exploit inverse probability weighting to adjust the weights of different types of firms so that we

have comparable samples across different years.

Figure 4 presents the annual density plot for the weight-adjusted cyber losses sample. As the

adjustment method requires additional information for each record, we focus on the Advisen and

SAS data from 2006 due to limited data.12 The upper panel in Figure 4 compares the financial losses

from malicious cases in Advisen and SAS and there is a common pattern in which the distribution

is shifting to the right in the recent period, meaning the severity of cyber incidents is increasing

over time. The lower panel depicts the distribution of the number of affected records or accounts

per event. There are no easily discernible trends for malicious or negligent cases.

To identify the structural change in loss distributions, we apply the method in Section 4.3.

Figure 5 shows the loss distribution before and after the identified change point. For financial

losses of malicious cyber incidents, the structural change occurred in 2018. After this change, the

distribution shifted to the right, which confirms the observation in Figure 4. Quantitatively, the

empirical average loss per event increased from $162,832 to $1,250,783 in Advisen, while the average

loss rose from $1,617,173 to $2,947,771 in SAS after transforming the log scale back to the linear

scale. The loss numbers are much lower than the mean in descriptive statistics (Table 1) because the

weights are adjusted in our sample and very likely large firms with large losses are overrepresented

in the raw data. Still, this change indicates that malicious cyber losses are becoming more severe

over time for the same set of firms.

The lower panel in Figure 5 shows that the distribution of affected records or accounts has a

slight shift after the change point for both malicious and negligent cases. More specifically, the

empirical average decreased from 976 (malicious) and 572 (negligent) to 458 (malicious) and 232

(negligent) affected records per event after 2007. The numbers are again lower than those presented

in Table 1, a difference likely attributed to weight adjustments. Taking the results together, the

general pattern is that the financial losses are increasing for malicious cyber incidents but not

non-financial losses. Still, for extreme cases, a closer examination of the tail of the distribution is

necessary.

12In Appendix E, we provide analysis without adjusting the weights so that the trends of all categories of cyber
losses are presented. The results for malicious cases are consistent with the adjusted results. For negligent cases, the
results suggest a decrease in severity, but it is difficult to conclude without matching.
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Figure 4: Comparison of loss distributions

Note: This figure presents the comparison of distributions for the financial losses and affected counts (log scale) in
Advisen and SAS. The density plot is based on the weight-adjusted sample. As the events in SAS have losses of at
least $100,000, the distribution is located to the right compared to the distribution in Advisen.

18



0.00

0.05

0.10

0.15

0.20

0.25

0 5 10 15 20 25
log(Loss amount)

de
ns

ity period

2006 to 2018
After 2018

Loss amount−Advisen (Malicious)

0.00

0.05

0.10

0.15

0.20

0.25

0 5 10 15 20 25
log(Loss amount)

de
ns

ity period

2006 to 2018
After 2018

Loss amount−SAS (Malicious)

0.00

0.05

0.10

0.15

0.20

0.25

0 5 10 15 20 25
log(Affected counts)

de
ns

ity period

2006 to 2007
After 2007

Affected counts−Advisen (Malicious)

0.00

0.05

0.10

0.15

0.20

0.25

0 5 10 15 20 25
log(Affected counts)

de
ns

ity period

2006 to 2007
After 2007

Affected counts−Advisen (Negligent)

Figure 5: Change points of loss distributions

Note: This figure presents the comparison of distributions before and after the identified change point for different
categories of cyber incidents. The red line shows the density plot before the change point and the blue line shows the
density plot after the change point.
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5.4. Time dynamics of tail risk

5.4.1. Estimation of cyber tail index

We first provide a detailed comparison of the tail index in Table 2 using two methods (“dAMSE”

and “hall”) mentioned in the previous section with two tail estimators (Hill’s and OLS estimator).

Although these two methods are chosen using small sample simulations, they also provide good

performance for a large sample. Consistent with the simulation results, the tail estimation with the

OLS estimator provides higher values, as a result of correcting the downward bias. Therefore, we

focus on the estimation results with the OLS estimator afterward. 13

The estimation in Table 2 shows that different kinds of cyber risk all yield severe heavy-

tailedness, with a tail index lower than 1 for most cases. This is a serious concern as there is

no finite mean for cyber loss distributions. This also confirms the results from the literature (Eling

and Wirfs, 2019; Farkas et al., 2021) that cyber loss distribution should be modeled by heavy-tailed

distributions. Furthermore, the monetary losses exhibit a less heavy tail compared to the non-

monetary losses such as the number of records breached. This is reasonable given the rapid increase

in data storage capacity in recent years, and thus the number of records affected by a single cyber

incident can be extremely high. Consequently, the tail for non-monetary losses can be heavier than

that for monetary losses.

5.4.2. Change point detection

As the tail of cyber risk exhibits extreme heavy-tailedness, it is of special interest to understand

whether this is a stable or dynamic feature. Figure 6 plots the rolling window estimation of the tail

index for financial loss of cyber incidents and shows the most probable change point in the time

period using the aforementioned approach. For malicious cases in Advisen and SAS, the tail index

becomes slightly higher and more volatile after the change point, which means that the tail for cyber

financial losses is getting less heavy. However, for the negligent cases, the general trend is relatively

stable. Figure 7 presents the results for the cyber loss as measured by the number of records or

accounts affected. For the malicious cases, there is mixed evidence as the trend from Advisen and

PRC is different, which is likely related to the differences between the two data sources. But the tail

index remains below 1 over time. For the negligent cases, there is a clear and consistent declining

trend after 2016, despite the differences between the two databases. This leads to an even heavier

tail for negligent cyber risk. Appendix F provides more details of the comparison before and after

the change point.

13For most of the cases, the results using two threshold selection methods (“dAMSE” and “hall”) are reasonably
close, but there is a sizeable difference for the tail index with the Advisen data with respect to the affected counts.
This is driven by a large discrepancy between the optimal thresholds selected by these two methods. “hall” chooses a
higher threshold for the malicious case compared to “dAMSE”, but an extremely lower threshold for the negligent case
compared to “dAMSE”. To address this issue, we consider the next two best methods in the pool of threshold selection
methods: “eye” and “mindist”. For the malicious case, the tail index is 0.84 and 1.29, respectively. Therefore, the
estimation from “hall” is more consistent with the rest. For the negligent case, the tail index is 0.62 and 0.88 using
“eye” and “mindist”, respectively. Hence, the result from “dAMSE” is more reliable. In the following analysis, we
will focus on the results from “hall” with the OLS estimator (except the negligent case in Advisen (affected counts)
where “dAMSE” with the OLS estimator is used).
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Table 2: Comparison of tail index

Hill’s estimator OLS estimator

Sample Number
after trun-
cation

Tail index 95% CI
(lower)

95% CI
(higher)

Tail index 95% CI
(lower)

95% CI
(higher)

Advisen (loss amount)–Malicious
hall 85 0.87 0.69 1.06 0.90 0.63 1.18
dAMSE 156 0.76 0.64 0.88 0.85 0.66 1.04

Advisen (loss amount)–Negligent
hall 36 0.55 0.37 0.73 0.63 0.34 0.92
dAMSE 61 0.45 0.33 0.56 0.54 0.35 0.73

SAS (loss amount)–Malicious
hall 67 0.86 0.66 1.07 0.97 0.64 1.29
dAMSE 136 0.70 0.58 0.82 0.84 0.64 1.04

SAS (loss amount)–Negligent
hall 48 1.11 0.79 1.42 1.14 0.68 1.59
dAMSE 27 1.06 0.66 1.46 1.18 0.55 1.80

Advisen (affected counts)–Malicious
hall 310 0.64 0.57 0.71 0.85 0.71 0.98
dAMSE 687 0.52 0.48 0.56 0.64 0.57 0.71

Advisen (affected counts)–Negligent
hall 2054 0.39 0.37 0.40 0.38 0.36 0.41
dAMSE 27 0.68 0.42 0.93 0.74 0.35 1.14

PRC (number of records)–Malicious
hall 535 0.43 0.39 0.46 0.43 0.38 0.49
dAMSE 166 0.43 0.36 0.49 0.48 0.38 0.59

PRC (number of records)–Negligent
hall 1217 0.50 0.47 0.53 0.50 0.46 0.54
dAMSE 172 0.48 0.41 0.56 0.44 0.35 0.53

Note: This table presents the tail index estimation of different cyber categories from three databases.
The truncation is made for the right tail based on the threshold selected by “hall” and “dAMSE”. The
number after truncation indicates the sample size of observations used for the estimation of the tail index.
The estimated tail index and 95% confidence interval (CI) are provided for each estimation method.
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Figure 6: Change points for tail index (loss amount)

Note: This figure presents the possible change point together with the rolling window estimation of the tail index
for financial loss data in Advisen and SAS. The black area in each graph is the estimated tail index with a two-year
rolling window and the “hall” method for threshold selection. The red dots are the BF values from Ibragimov and
Müller (2016). The blue line is the point with the highest BF value, which indicates the most possible change point
in the whole period.

Overall, the results across different databases indicate that the cyber tail index has remained

relatively stable, consistently around or below the threshold of 1, even with changes over the past

two decades. Therefore, tail risk will remain a critical aspect of cyber risk management for the

foreseeable future.

6. Implications for risk management

One distinct feature of cyber risk is its dynamic nature, which poses a serious challenge for risk

management. We document exponential growth for malicious cyber risk after adjusting report delay.

This is significantly different from the trend shown in the raw data. Therefore, depending on the

ability to collect and analyze data, the perception and estimation of cyber risk can vary substantially

among different parties. In a basic setting of a firm and an insurer, the insurer is likely to hold an

information advantage since it specializes in risk management. Furthermore, insurers routinely deal

with report delays as part of their standard procedures for calculating claim reserves. However, the

decision-makers in firms may have more information about their own vulnerability related to cyber
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Figure 7: Change points for tail index (number of records)

Note: This figure presents the possible change point together with the rolling window estimation of the tail index for
the number of records affected in Advisen and PRC. The black area in each graph is the estimated tail index with
a two-year rolling window and the “hall” method for threshold selection (except for the negligent cases in Advisen,
where we rely on the “dAMSE” method). The red dots are the BF values from Ibragimov and Müller (2016). The
blue line is the point with the highest BF value, which indicates the most possible change point in the whole period.
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risk but lack expertise in analyzing the trend of cyber risk. Thus, there can be an information gap

between the firm and the insurer, which leads to diverging estimates of cyber risk probabilities.

In addition to the problem of delayed information, we provide evidence for the extreme heavy-

tailedness of cyber risk. As mentioned earlier, Ibragimov et al. (2009) have shown this feature might

induce the non-diversification trap, resulting in no market for cyber risk insurance. In practice,

the insurance market exists and has been increasing, but insurers tend to offer contracts with

low coverages to avoid extreme scenarios that might severely undermine their financial stability.

Although this strategy can be useful for protecting insurers from extreme tail risk, this level of

coverage falls short in supporting businesses with increasingly high exposure to cyber risk and

consequently limits the value of insurance as a risk management tool.

To understand how the feature of delayed information and tail risk affect the optimal decision of

cyber risk management, we adopt the widely used framework from Ehrlich and Becker (1972). We

consider the situation where the firm has delayed information about the level of cyber risk and thus

has a downward biased belief about its risk probability. Consider the firm with initial wealth w0.

The firm assumes the probability of cyber loss is p0 < 1, while the true probability is p1 > p0. We

introduce tail risk by considering a small probability ϵp of bankruptcy for the firm. Therefore, in

the event of cyber loss, there is a probability ϵp that the loss exceeds the initial wealth, Lm >> w0,

and a probability (1− ϵ)p that the loss L is medium such that 0 < L < w0. The firm has a standard

utility function u (u′ > 0 and u′′ < 0). The concavity of the function comes from the imperfect

capital market and tax reasons (Froot and Stein, 1998).

The options for cyber risk management for the firm include market insurance and self-protection.

The price of insurance π(p) = p is actuarially fair and thus the premium with the coverage level α

is απ(p)L, where 0 ≤ α ≤ 1. The insurance coverage is L since the insurer does not insure the tail

risk due to the non-diversification trap. Therefore, in this bankruptcy case, the remaining value of

the firm will be zero even with full insurance. The firm could reduce the probability of cyber risk

by implementing self-protection measures such as improving the defense system with a cost x > 0.

The relationship between the risk probability and the self-protection cost is a convex function, with

p′(x) < 0, p′′(x) > 0 and limx→∞ p(x) = 0. p(p1, x) and p(p0, x) denote the true probability and

the perceived probability by the firm after self-protection. Hence, the maximization problem of the

firm is

EU = (1− p(p0, x))u(w0 − x− απ(p(p1, x))L)

+ (1− ϵ)p(p0, x)u(w0 − x− L+ αL− απ(p(p1, x))L) + ϵpu(0),

where ϵpu(0) = 0 and π(p(p1, x)) = p(p1, x).

Therefore, the first-order condition (FOC) with respect to the optimal coverage α is

∂EU

∂α
= (1− p(p0, x))u

′
1(·)(−p(p1, x)L) + (1− ϵ)p(p0, x)u

′
2(·)(1− p(p1, x))L = 0,

where u′1(·) = u′(w0 − x− αp(p1, x)L) and u
′
2(·) = u′(w0 − x− L+ αL− αp(p1, x)L).
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Rearranging the equation, we have

u′1(·)
u′2(·)

=
(1− ϵ)p(p0, x)

1− p(p0, x)
· 1− p(p1, x)

p(p1, x)
.

The right-hand side is smaller than 1 as p(p0, x) < p(p1, x). Therefore, to ensure the equality

of FOC, u′1 < u′2 holds. In the standard model without tail risk and delayed information, we

have u′1 = u′2, which means the state with insurance and without insurance is equal and thus full

insurance is optimal. But with additional features, the results indicate the firm opts for only partial

insurance.

For optimal self-protection, FOC is shown as

∂EU

∂x
= −p′(p0, x)u1(·) + (1− p(p0, x))u

′
1(·)(−1− αp′(p1, x)L)

+ (1− ϵ)p′(p0, x)u2(·) + (1− ϵ)p(p0, x)u
′
2(−1− αp′(p1, x)L) = 0.

Simplifying the equation yields

1 + αp′(p1, x)L

u1 − (1− ϵ)u2
=

−p′(p0, x)
(1− p(p0, x))u′1(·) + (1− ϵ)p(p0, x)u′2(·)

.

To understand the result, we first consider the case where p(p0, x) = p(p1, x). In this case,

the only difference is the term 1 − ϵ when compared with the standard result without additional

features. The right-hand side is larger than the standard result because (1 − ϵ)p(p0, x) < p(p0, x)

and the left-hand side is smaller because u1 − (1− ϵ)u2 > u1 − u2. Therefore, the optimal x should

be adjusted upward to ensure the equality of FOC. Next, we consider the change in the probability

that p(p1, x) > p(p0, x). This change does not affect the left-hand side but the right-hand side.

Due to the convexity of p(x), we have −p′(p0, x) < −p′(p1, x). The denominator is also lower for

p′(p0, x) as u′1 < u′2 and ϵ is sufficiently small. Therefore, when delayed information is severe, the

change in the nominator dominates the change in the denominator and the right-hand side is lower

than before. This means that the optimal protection x becomes lower. Overall, there are different

effects from delayed information and tail risk for the optimal self-protection level. The reason is

that delayed information leads to a lower estimation of risk by the firm and thus invests less than

optimal for self-protection, while tail risk reduces the value of insurance and incentivizes the firm

to increase self-protection.

This basic model illustrates how the empirical properties of cyber risk influence the demand for

cyber insurance and the optimal investment in self-protection. In particular, we show how delayed

information and tail risk reduce the demand for insurance, which is consistent with the evidence

from Swiss Re (2022) that more than 90% of the cyber loss is not covered by insurance. Previous

work such as Böhme and Schwartz (2010) has discussed some of the special properties of cyber risk,

we provide further empirical evidence on this and connect these features to the standard insurance

economics model for understanding their impacts on risk management.
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7. Discussion and conclusion

This paper leverages data from three databases to probe the fundamental empirical properties of

cyber risk, an emergent and critical risk category. We first deal with the problem of report delay that

is inherent to the datasets used in empirical research. Then we analyze the frequency and severity

of cyber risk using state-of-art statistical methods for the detection of structural changes. We show

that malicious cyber risk has been growing exponentially in the past two decades and its financial

loss distribution has shifted to the right, resulting in higher severity per event. Other cyber risk

categories such as negligent incidents have lower growth rates in frequency. Moreover, we explore

the dynamics of tail risk and find that all categories of cyber losses exhibit heavy-tailedness and this

pattern remains consistent over time. Based on these results, we incorporate two empirical features

(delayed information and tail risk) into the risk management framework with self-protection and

insurance. The results indicate that these additional features lead to significantly lower insurance

demand and potentially lower self-protection, thus increasing the risk level of the firm.

Our results have several implications for cyber risk management. First, we show that the cyber

risk landscape is in constant flux and the time trends differ across various categories of cyber

risk. It is of paramount importance to diligently monitor these changes to ensure updated and

timely responses. As shown in our model, delayed information can induce the underestimation

of threat level and thus suboptimal investments in security. A centralized cyber research center

could facilitate real-time threat analysis and disseminate this information to organizations, thereby

incentivizing better security investments (Zhuang et al., 2020). Second, the analysis indicates

the heavy-tailedness of cyber losses, implying a greater probability of extreme losses compared to

normal distributions. More broadly, heavy-tailed distributions are prevalent in economics, finance,

and other areas (Ibragimov et al., 2015). This emphasizes the importance of studying the tail

properties of cyber losses and tailoring the security investments accordingly to reduce the impacts

of extreme scenarios. Third, our model examines the option of cyber insurance and finds that

insufficient coverage reduces its demand. This implies that firms are susceptible to potential financial

consequences arising from cyber incidents, particularly those of a severe nature. However, the

insurers are reluctant to provide higher coverages due to the non-diversification trap from heavy-

tailedness. Government intervention by providing backup to insurers, akin to a lender-of-last-resort

in the banking sector, could alleviate this challenge (Drechsler et al., 2016).

Our work has several limitations, which might open avenues for future research. First, although

we apply different statistical methods for correcting data biases, there is potential for other forms

of bias to affect our findings. The bias arises partly from organizations’ reluctance to disclose

information about cyber incidents, and partly from the challenging detection and quantification

of cyberattacks. Future studies would benefit from increased data sharing and standardization in

cyber incident reporting. Second, although we connect our empirical findings with the theoretical

framework, the link depends on several assumptions. For example, we hypothesize report delays

could create an information gap between firms and insurers. While this assumption is plausible, it

is not directly confirmed in our data. Future studies could empirically validate this link.
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There are also other promising directions for future research. For example, one statistical

aspect of cyber risk that is not emphasized in our paper is the correlation structure of cyber events,

although there are several studies on this topic (Böhme and Kataria, 2006; Zhang et al., 2023), the

dynamic trend of correlation structure is still under-explored empirically. Furthermore, given the

evolving nature of cyber threats, future work could develop new frameworks for optimal security

management, incorporating factors like information delay and risk uncertainty.
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A. Categorization of cyber incidents for three databases

A.1. Risk type in Advisen

In the paper, we classify cyber events into four categories: malicious, negligent, privacy, and

others. The risk types in Advisen are more granular and thus we aggregate them into these four

categories. The malicious category includes the risk types such as “Data - Malicious Breach”,

“Phishing, Spoofing, Social Engineering”, “Skimming, Physical Tampering”, “Cyber Extortion”,

and “Identity - Fraudulent Use/Account Access”; the negligent category includes “Data - Uninten-

tional Disclosure”; the privacy category includes “Privacy - Unauthorized Contact or Disclosure”

and “Privacy - Unauthorized Data Collection”. In addition, there are several types that are not

easily distinguishable such as “Industrial Controls & Operations”, “Network/Website Disruption”,

“IT - Configuration/Implementation Errors”, and “IT - Processing Errors”. These types either

belong to the malicious or negligent category, depending on whether there is any malicious party

involved. To differentiate these two types, we consider a list of keywords and use this to locate the

malicious cases.2 Finally, the incidents that do not belong to the categories above are classified as

“others”.

A.2. Risk type in PRC

In the PRC data, we rely on the variable “type of breach” for classification. The type of breach

of each incident is indicated with a four-letter abbreviation.

- CARD: Fraud involving debit and credit cards not via hacking (skimming devices at point-of-

service terminals, etc.)

- HACK: Hacked by an outside party or infected by malware

- INSD: Insider (employee, contractor, or customer)

- PHYS: Physical (paper documents that are lost, discarded, or stolen)

- PORT: Portable device (lost, discarded, or stolen laptop, PDA, smartphone, memory stick,

CDs, hard drive, data tape, etc.)

1Corresponding author.
Email addresses: martin.eling@unisg.ch (M. Eling); i.rustam@imperial.ac.uk (R. Ibragimov); dingchen.ning@unisg.ch
(D. Ning)

2The keyword includes attack, malware, infect, infiltrate, hack, phish, spam, virus, worm, and breach.

https://www2.cloud.editorialmanager.com/ejor/viewRCResults.aspx?pdf=1&docID=76089&rev=0&fileID=1750072&msid=4bcacda7-05aa-46f9-95a1-a59c8a5030bb
https://www2.cloud.editorialmanager.com/ejor/viewRCResults.aspx?pdf=1&docID=76089&rev=0&fileID=1750072&msid=4bcacda7-05aa-46f9-95a1-a59c8a5030bb


- STAT: Stationary computer loss (lost, inappropriately accessed, discarded, or stolen computer

or server not designed for mobility)

- DISC: Unintended disclosure not involving hacking, intentional breach, or physical loss (sen-

sitive information posted publicly, mishandled, or sent to the wrong party via publishing online,

sending in an email, sending in a mailing or sending via fax)

- UNKN: Unknown (not enough information about the breach to know how exactly the infor-

mation was exposed)

Based on this categorization and the procedure in Advisen data, we allocate the incidents that

belong to “HACK”, “INSD”, and “CARD” to the malicious category, and the incidents that belong

to “DISC” to the negligent category, and the rest are categorized into “others”. There is no “privacy”

category in this database.

A.3. Risk type in SAS

The categorization of operational risk in SAS is based on the Basel categorization table from the

Bank of International Settlement (BIS, 2001). There are three levels in this categorization: event

risk type (level 1), sub-risk type (level 2), and activity (level 3). Level 1 and 2 in this table are at

a high level and not suitable for the categorization of cyber risk. Therefore, in the first step, we

allocate the level 3 activities to our risk categories as follows.

The malicious category includes the following: “Account Takeover”, “Credit fraud”, “Embez-

zlement”, “Extortion”, “Fraud”, “Insider trading”, “Making worthless deposit”, “Misappropriation

of asset”, “Money laundering”, “Computer-related fraud”, “Hacking damage”, “Conducting unau-

thorized transaction”, “Theft of information (w/monetary loss)”, “Transaction fraud”, “Provision

of unapproved access to account”, “Insurance fraud”, “Forgery”, “Hacking damage (if not physical

damage)”.

The negligent category: “Hardware failure”, “Software failure”, “Telecommunications failure”,

“Utility outage/disruption”, “Failure in obligation to client”, “Improper trade/market practice”,

“Exceeding client exposure limit”, “Market manipulation”, “Overcharging”, “Sale of faulty prod-

uct”, “Anti-competitive action (non-antitrust)”, “Commercial right infringement”, “Failure in duty

to shareholders”, “False or incomplete reporting”, “Illegal trade”, “Improper accounting practice”,

“libel”, “Obstruction of investigation”, “Poaching”, “Regulation breach/avoidance (non-antitrust)”,

“Theft of trade secret”, “Model error”, “Product defect”, “Service error”, “Accounting error/entity

attribution error”, “Billing error”, “Data entry, maintenance or loading error”, “Delivery failure”,

“Miscommunication”, “Missed deadline or responsibility”, “Reference data maintenance failure”,

“Task misperformance”, “Failure in mandatory reporting obligation”, “Delivery of inaccurate ex-

ternal report”, “Recording of incorrect client record”, “Damaging of client asset”, “Data security

failure”, “Loss of client data”, “Mismarking of position (intentional)”.

The privacy category: “Breach of privacy”, “Misuse of confidential client information”, “Suit-

ability/disclosure failure”, “Legal document missing/incomplete”.
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The “others” category: “Check kiting”, “Non-physical damage abuse”, “Theft”, “Fire”, “Natu-

ral catastrophe”, “Violence against person”, “Violence against property”.3

In the next step, to make sure we capture all the malicious cases, we use the keyword list above

to search for incidents in the negligent, privacy, and “others” category. After this procedure, the

categories for cyber incidents in SAS are comparable to the ones in Advisen and PRC.

In addition, the operational incidents in SAS (excluding cyber incidents) are good benchmarks

for studying cyber risk, therefore we also categorize these incidents. To simplify the procedure, we

broadly classify operational incidents into malicious and negligent cases. The malicious category

includes only ”Internal Fraud” and ”External Fraud”, and the rest are allocated into the negligent

category.

B. Report delay

B.1. Figures for time trend (Figure 1 and 2)

B.2. Alternative models for report delay

To show the method we use in the paper has the best performance for our case, we compare the

in-sample performance of our method with two other models: a generalized linear model (GLM)

(Salmon et al., 2015), and a generalized Dirichlet-multinomial survivor model (GDM survivor)

(Stoner and Economou, 2020).4 In this section, we first briefly introduce two other models.

The model based on the GLM framework starts with a negative-binomial (NB) distribution for

yt:

yt ∼ NB(λt, θ); log(pt,d) = g(t, d),

where λt is the expected rate of occurrences and θ allows for overdispersion, the multinomial prob-

ability pt,d, which is the expected proportion of yt that will be reported at delay d, is modeled

via a log-link, and g(t, d) represents a combination of covariate effects. Therefore, the marginal

distribution for zi is also NB:

zt,d ∼ NB(µt,d = pt,dλt, θ); log(µt,d) = ι+ αt + ηt + ψd + βt,d,

3The risk types above are not the complete list in the activity level from the Basel categorization table since not
every type has cyber incidents.

4The problem of report delay is closely related to the claims reserves problem in actuarial science. Two of the most
common methods in the area are the distribution-free chain-ladder model (Mack, 1993), and the overdispersed Poisson
model (Renshaw and Verrall, 1998). A more detailed summary of the literature in actuarial science can be found
in Taylor (2019). There are many works generalizing these two models, and it is easy to reach the GLM model we
mention later from Mack’s work (Mack, 1993). Therefore, the two areas are connected, but there are also differences.
One of them is that the focus of actuarial science is on the aggregate claim amount which is the multiplication of the
number of claims and severity of claims, while the report delay problem mostly focuses on the number or frequency
of the events/cases. In our case, the information on the financial loss of the events is scarcer than the information on
the number of events, thus we only focus on the report delay issue for the frequency data.
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Figure 1: Different datasets of cyber risk

Note: This figure reports the monthly frequency of malicious cyber events in three main databases. The abnormal
and periodic peaks in the Advisen data are related to the inaccuracy of the accident date. For an event with only a
known accident year, the database assigns the first day of the year as its estimated date.
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Figure 2: Different dates in Advisen (Malicious)

Note: This figure reports the monthly frequency of malicious cyber events in Advisen. The creation date is the date
when the record of the cyber event was created in the database. For example, the creation date until 2021 means all
the events that were recorded in the database before 2021 are included.
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where αt is a penalized cubic spline to capture nonseasonal variation, ηt is a penalized cyclic cubic

spline to capture within-year temporal effect, βt,d is intended to allow for temporal changes of delay

mechanism, and ι and ψd are fixed effects.

Different from the GLM framework, the models based on GDM are designed to account for

heterogeneity in the delay mechanism and appropriately separate variability and uncertainty in the

delay mechanism from the model of count number. The GDM survivor model applies a different

way of modeling the delay mechanism from the GDM hazard model:

yt ∼ NB(λt, θ); log(λt) = ι+ αt + ηt;

zt | yt ∼ GDM(νt,ϕ, yt); probit(St,d = ψd + βt);

νt,d =
St,d − St,d−1

1− St,d−1
,

where St,d is the expected value of the cumulative proportion of cases at time t for delay level d.

Compared with the hazard model that considers a structure for each delay level, this method models

the delay structure for each time point, which allows for any number of delay levels.

B.3. In-sample comparison

The data of Advisen contains multiple abnormal peaks due to inaccurate information. To

understand the true trend of cyber risk, it is necessary to deal with such abnormal data points.

Traditionally, the literature tackles this issue by estimating the overall trend and replacing the

abnormal points with estimated results (Wang et al., 2021). However, for our data, the problem is

more related to the misallocation of cyber cases, which means that we cannot simply replace the

extreme number with a lower and smoother one. To correct this anomaly, we assume the date of

cyber events without accurate time follows a normal distribution and replace the original date with

a more accurate one. Based on this method, we can smooth the time trend of cyber risk in our

dataset. In the following analysis, we will present results with both the original and adjusted data.

For the modeling of delay structure, we have three models available: GLM, GDM hazard, and

GDM survivor. Therefore, it is useful to test which model performs the best for the in-sample

forecast. Since Advisen began to collect data on cyber risk in 2007, we need to exclude all cases

that occurred before 2007 to avoid inherent bias in the database. Therefore, we have 163 months

from October 2007 to April 2021, and naturally, the longest possible delay period for training is

163 months. But in this case, we would have no data for in-sample forecast, hence it is necessary

to select a period when we assume all cyber cases are counted.

As an example, we compare the cumulative proportion of cases reported for different maximum

delay periods in Figure 3 (the delay between the accident date and the first notice date). Although

there is an increasing trend in each graph due to more missing values in recent times, we can still

find the differences across different maximum delay periods. There is a trade-off between sample

size and accuracy for the selection of the maximum delay period. For our case, we choose the period

of 60 months since it includes at least 75% of all observable cases and also provides a sample of 104

months for in-sample analysis.
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Figure 3: Cumulative proportion reported

Note: This figure plots the cumulative report percentage with different delay periods of 12 to 72 months. For each
graph, every dot represents the percentage of cases reported in the delayed period out of the whole cases in the data
for a specific month of the accident. Therefore, the increasing trend within each graph indicates the issue of report
delay for recent periods. However, the pattern across graphs shows how a longer period increases the percentage of
reported cases.
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Figure 4: In-sample cyber forecast comparison

Note: This figure presents the forecast results of three methods: GDM Hazard, GDM Survivor, and GLM. The
adjusted data are the original data after smoothing the abnormal peaks due to unknown dates.

Given the maximum delay period of 60 months and the available sample of 104 months, we choose

the 92nd month (so that we can forecast the following year) as the hypothetical present time, which

means we only have observations up to this date. Then we censor the data accordingly, apply

the models to this incomplete sample, and compare their results with the actual number. Figure

4 shows the results of the median estimated number for original and adjusted data of malicious

events, with 95% posterior predictive interval. Among the three models, GDM hazard has the most

accurate confidence interval while GLM performs worst. Figure 5 provides the sample estimates of

Cov[zt,d, z
′
t,d] by density plots of mean bias and the logarithm of the mean squared error between

replicated and observed covariances. This further confirms that GDM hazard is the least biased

and GDM survivor comes second for both samples. Therefore, for the out-of-sample analysis, we

will focus on the GDM hazard framework.

B.4. Two stages of data reporting

In general, the process of collecting data related to cyber risk can be divided into two stages.

The first stage is from the event date to the date of the first notice. This period can be short

for some categories of events, such as cyber extortion or malfunction of devices, which the victims

would notice almost immediately. But for other categories including data breaches, the firms may

take as long as months or years to find out that their data have been compromised. In general, the

mean days of delay is 182 and the median is 33 days in the Advisen data.

The second stage starts with the date of the first notice and ends with the creation date in

the database of concern. The delay in this stage is primarily attributable to the data provider’s

efficiency. While in some instances the staff may update the data immediately, it is more common

to encounter moderate delays. In the Advisen data, the delay in this stage is much more severe

than the first stage, with mean and median delayed days of 836 and 538. The major reason for this

delay is that although the Advisen database began to collect data in 2007, the majority of their

events were created in recent years, especially during 2016-2018.
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Note: This figure compares the sample estimates of Cov[zt,d, z
′
t,d] from three methods by density plots of mean bias

and the logarithm of the mean squared error between replicated and observed covariances.
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Figure 6: Bias correction for the SAS data

Note: This figure shows the forecast results of cyber incidents with the 95% confidence interval after adjusting the
report delay problem for different categories in the SAS data.

B.5. Report delay in SAS

The main analysis of the report delay problem is based on the Advisen data since it has detailed

information on the time dimension. To validate the results from this database, we apply our method

to the SAS dataset. However, since SAS data only have information at the yearly level about the

accident date, we use this data as a robustness check only. As shown in Figure 6, only the malicious

cyber cases exhibit a clearly increasing pattern, while the negligent cyber cases are relatively stable.

This is different from the results we see in Advisen, and the possible reason is that there are more

incidents of unintentional disclosure in Advisen which are on the rise and affect the overall trend.

In addition, we find the trend of operational risk is decreasing even after the bias correction, which

is in sharp contrast to the emerging cyber risk.

Overall, the results from SAS suggest the increasing trend we observe in Advisen data is not

unique and data specific. Since the SAS data only include events with loss amounts higher than

$100,000, this also shows the increasing trend is not solely driven by a large number of incidents

with small losses.
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C. Time dynamics of cyber frequency: Comparison of methods

In this section, we compare the results of the method from Baranowski et al. (2019) with other

alternatives to show the robustness and advantage of the method we choose. As the increasing

trend is clear in our data, some methods that deal with constant mean are not suitable. Therefore,

we consider two alternatives that we can find in the literature. The first one is the methodology

proposed by Bai and Perron (2003), which was implemented in R by Zeileis et al. (2022) (denoted as

B&P). The change points are estimated by minimizing the residual sum of squares using dynamic

programming. The second approach is the trend filtering from Kim et al. (2009), implemented in

R by Arnold and Tibshirani (2020) (denoted as TF). This method is not designed for the detection

of change points but rather for the performance of trend filtering. Still, the results are comparable

when we consider piecewise linear signals.

Figure 7 shows the results of these methods, where TF1 and TF2 are based on different thresholds

for change points. The main method and B&P detect similar breakpoints, but the TF method

identifies more change points. This is also consistent with the simulation results from Baranowski

et al. (2019), that B&P provides similar results while the TF approach is more sensitive and detects

more change points.5 Overall, all the results are consistent with respect to the location of change

points but different for the number of change points. This provides validation for the method we

use in the main analysis and the conclusions we draw from the results.

5In addition, the main method is much faster than other approaches, more details can be found in Baranowski
et al. (2019).
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Figure 7: Comparison of methods for change points of frequency

Note: This figure compares the results of different change point detection methods for cyber risk frequency after bias
correction.
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D. Optimal threshold selection for tail index estimation

As the first step of detecting change points for tail risk, the reliable estimation of tail risk is

crucial. One key issue about tail risk estimation is the choice of threshold. Therefore, we consider

the R package “tea” from Ossberger (2020), which contains 12 different ways of selecting the optimal

threshold for the estimation of tail risk. There are four methods that are not used in our simulation

as they are either not designed for small sample estimation or the running time is significantly

longer than other methods due to the coding structure.

To find out which ones to use, we have done the simulation to compare the 8 methods from the

package. The basic idea of the simulation is to first generate a heavy-tailed distribution similar to

the real data of cyber risk. We use two common distributions, the generalized Pareto distribution

(GPD) and the Fréchet distribution. As the original cyber data show extreme heavy-tailedness, we

use 0.5, 1, and 1.5 as the tail index, and run 10,000 simulations for each case. In addition, we face

the problem of small samples when estimating the rolling window tail index, therefore the sample

size (N) of each simulation is set to be 100 and 500 to reflect the special characteristic of our data.

We report the mean bias between the estimated and actual index and its variance.

Table 1 reports the results when the sample size equals 100, and Table 2 reports the results

when N = 500. In both cases, two methods provide better results: “dAMSE” (Caeiro and Gomes,

2015) and “hall” (Hall, 1990). The first method is based on the concept of minimizing the aver-

age mean squared error (AMSE) criterion with respect to k (the optimal number of upper-order

statistics). The second one uses the bootstrap procedure to simulate the AMSE criterion of the

Hill estimator. The unknown theoretical parameter of the inverse tail index gamma is replaced by

a consistent estimation using a tuning parameter for the Hill estimator. Minimizing this statistic

gives a consistent estimator of the sample fraction k/n with k.

However, these two methods have a systemic downward bias, as shown in Table 1 and 2. In

other words, these two methods tend to estimate lower tail indices than the actual value, especially

when the true value is high (see the case when the tail index is 1.5). This is partly related to

the small sample issue in our data. As all the methods in the package use Hill’s estimator for the

estimation of the tail index which is not suitable for the small sample, we consider changing the

estimation method to the OLS estimator (Gabaix and Ibragimov, 2011) that is specially adjusted for

small sample bias. Table 3 presents the comparison of simulation results for “dAMSE” and “hall”

based on both Hill’s estimator and the OLS estimator. It can be seen that there is a significant

improvement when using the second method, especially when the sample is generated by the Fréchet

distribution.

E. Time dynamics of loss severity: additional results

In the main paper, we only report the comparison of loss distributions of part of our data due

to the extra requirements of firm information when adjusting weights. To provide the full picture

of our data, we present the results of all categories of cyber losses without adjusting the weights.

Therefore, we need to be cautious when interpreting the results.
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Table 1: Comparison of optimal threshold selection methods (N=100)

Tail index Value dAMSE eye GH hall Himp HW PS mindist

GPD
1.5 Mean bias -0.3165 0.0817 0.0559 -0.2798 0.9716 -0.3833 -0.5355 0.0261

Variance 0.0771 0.9135 2.2626 0.0844 517.4994 0.3413 0.0748 0.2554

1 Mean bias -0.1018 0.1443 0.1526 -0.0723 0.2365 -0.0445 -0.2451 0.1493

Variance 0.0433 0.5027 3.2748 0.0480 11.9436 0.3962 0.0327 0.1652

0.5 Mean bias 0.0012 0.1211 0.1063 0.0119 0.0719 0.2083 -0.0497 0.1521

Variance 0.0109 0.1819 0.4037 0.0141 1.8916 4.2911 0.0074 0.0677

Fréchet
1.5 Mean bias -0.0774 0.2341 0.2808 -0.0327 0.2207 0.0049 -0.2337 0.2186

Variance 0.0928 1.2333 6.1720 0.1187 32.4339 12.6251 0.0530 0.3447

1 Mean bias -0.0477 0.1691 0.2045 -0.0192 0.4161 0.1761 -0.1614 0.1821

Variance 0.0412 0.5501 5.3721 0.0529 231.9303 10.2856 0.0238 0.1814

0.5 Mean bias -0.0255 0.1277 0.1029 -0.0110 0.6179 0.4850 -0.0865 0.1436

Variance 0.0102 0.1951 0.6882 0.0134 1406.7142 66.6224 0.0060 0.0687

Note: The table reports the comparison of 8 methods for optimal threshold selection. The sample size is 100 for
each simulation. Two distributions (GPD, Fréchet) and three tail indices are used.

Table 2: Comparison of optimal threshold selection methods (N=500)

Tail index Value dAMSE eye GH hall Himp HW PS mindist

GPD
1.5 Mean bias -0.2033 0.0103 0.2035 -0.1708 -0.1339 -0.2310 -0.4608 -0.0632

Variance 0.0300 0.2537 2.5362 0.0420 4.8221 0.1361 0.0264 0.0483

1 Mean bias -0.0605 0.0715 0.1926 -0.0392 -0.0341 -0.0293 -0.1997 0.0531

Variance 0.0163 0.1512 1.6429 0.0219 1.4480 0.0315 0.0108 0.0402

0.5 Mean bias -0.0054 0.0642 0.1181 0.0042 -0.0043 0.1551 -0.0415 0.0927

Variance 0.0029 0.0517 0.6448 0.0052 0.0038 28.7445 0.0017 0.0243

Fréchet
1.5 Mean bias -0.0699 0.0899 0.3548 -0.0228 -0.0560 -0.0273 -0.1978 0.0737

Variance 0.0261 0.3050 4.9652 0.0502 0.1587 0.3037 0.0156 0.0610

1 Mean bias -0.0494 0.0773 0.2277 -0.0164 -0.0408 0.0780 -0.1399 0.0669

Variance 0.0116 0.1526 2.5970 0.0223 0.1063 6.2950 0.0068 0.0410

0.5 Mean bias -0.0240 0.0640 0.1019 -0.0080 -0.0204 0.1549 -0.0769 0.0923

Variance 0.0029 0.0509 0.3327 0.0055 0.0042 5.1581 0.0017 0.0251

Note: The table reports the comparison of 8 methods for optimal threshold selection. The sample size is 500
for each simulation. Two distributions (GPD, Fréchet) and three tail indices are used.
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Figure 8 shows the dynamics of financial loss distributions (log-transformed) for malicious and

negligent cases in Advisen and SAS. There are gaps among distributions in the top right graph

as there are not enough data points for the density plot. We can find a common pattern in these

two databases: the distribution for the malicious cases is shifting to the right (consistent with the

main results), while the distribution for the negligent cases is shifting to the left. In Figure 9, the

distribution of the number of records over the years is presented. The malicious cases appear to

lead to higher losses than the negligent cases.

Figure 10 compares the average distribution of financial loss before and after the change point.

The left panel shows the distributions for malicious cyber risk and the results are consistent with

the main results. The only difference is that the change point is different for the SAS data. In

contrast, the loss distribution for negligent cases in the right panel shows a consistent pattern that

the distribution is shifting to the left after the change point. In general, the results in Figure 10

show the financial loss distributions from malicious cases and negligent cases are moving in the

opposite direction. However, as we cannot match the firms in the negligent sample, it is difficult to

estimate whether the shift is driven by selection bias or other factors.

Figure 11 presents the results for the distributions of the number of records or affected counts.

For the Advisen data, we can find that the distribution is shifting to the left after the change point,

which is consistent with the main results, although the exact shape of the distribution is different.

For the PRC data, the detection method shows no significant change. The density plots in the

figure use the most probable change point, with the distributions converging towards the center

following this potential change. Again, this result might be driven by potential bias in the data.

F. Time dynamics of tail risk: additional results

To better understand the change in the tail index, we plot the distributions of the estimated

tail index before and after the change point. As the tail index estimator follows normal distribution

(Gabaix and Ibragimov, 2011), we use the estimated index and the standard deviation to simulate

the whole distribution of the tail index at each time point. Then we combine all the simulation

results before the change point to compute the empirical density of the sample. Similarly, we can

get the density distribution for the sample after the change point.

Figure 12 presents the results for financial loss data. Consistent with the graphical illustration in

the paper, the tail index for malicious cyber losses has a higher mean and variance after the change

point. More specifically, the empirical average increases from 0.61 to 0.86 for Advisen data and

from 0.70 to 1.09 for SAS data. However, the results for negligent cyber losses are mixed and the

estimation from SAS yields a higher value than the one from Advisen. This might be related to the

sample composition issue we discuss in the descriptive statistics section. As there are many more

small losses in Advisen than in SAS, the discrepancy between small and large losses contributes to

the pronounced skewness of the distribution and also drives up the heaviness of the tail. In addition,

negligent cases have fewer observations than malicious cases in both datasets, which can lead to

less accurate and divergent estimation. The comparison of the tail index for non-financial losses
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Figure 8: Dynamics of distributions (loss amount)

Note: This figure presents the dynamics of distributions for financial loss (log scale) in Advisen and SAS. The left
panel shows the results for malicious cases, and the right panel shows the results for negligent cases. There are several
years with no plotted distribution due to limited data points. As the events in SAS have losses of at least $100,000,
the distribution is located to the right compared to the distribution in Advisen.
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Figure 9: Dynamics of distributions (number of records)

Note: This figure presents the dynamics of distributions for the loss of personal records (log scale) in Advisen and
PRC. The left panel shows the results for malicious cases, and the right panel shows the results for negligent cases.
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Figure 10: Change points of distributions (loss amount)

Note: This figure presents the comparison of distributions (log scale) for financial loss in Advisen and SAS. The left
panel shows the results for malicious cases, and the right panel shows the results for negligent cases.
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Figure 11: Change points of distributions (number of records)

Note: This figure presents the comparison of distributions for the loss of personal records (log scale) in Advisen and
PRC. The left panel shows the results for malicious cases, and the right panel shows the results for negligent cases
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Figure 12: Comparison of tail index distribution (loss amount)

Note: This figure presents the distribution of the tail index before and after the detected change point for the
estimation of monetary losses in Advisen and SAS.

is shown in Figure 13. The results for malicious cases are mixed from Advisen and PRC, but the

estimation predominantly falls in the range of 0.4 to 0.5. The pattern for negligent cases is clearer,

as there is a common trend of declining tail index after the change point. The empirical average

drops to 0.34 in Advisen and 0.37 in PRC. The results also indicate that negligent losses are more

heavy-tailed than malicious losses. The reason that negligent incidents lead to more extreme losses

might be that the negligent behaviors are unexpected and arise from the internal process that affects

a wide range of data in the system, while the malicious attacks typically have a pre-defined target

and focus on a specific set of data rather than all the data in a firm. This is consistent with the

extensive literature that considers the employees’ misbehaviors as a key challenge to information

security (Bulgurcu et al., 2010).
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Salmon, M., Schumacher, D., Stark, K., and Höhle, M. (2015). Bayesian outbreak detection in the

presence of reporting delays. Biometrical Journal, 57(6):1051–1067.

Stoner, O. and Economou, T. (2020). Multivariate hierarchical frameworks for modeling delayed

reporting in count data. Biometrics, 76(3):789–798.

Taylor, G. (2019). Loss reserving models: Granular and machine learning forms. Risks, 7(3):82.

Wang, G., Gu, Z., Li, X., Yu, S., Kim, M., Wang, Y., Gao, L., and Wang, L. (2021). Comparing

and integrating us covid-19 data from multiple sources with anomaly detection and repairing.

Journal of Applied Statistics, pages 1–27.

Zeileis, A., Leisch, F., Hornik, K., Kleiber, C., and Hansen, B. (2022). Package ‘struccha-

nge’: Testing, monitoring, and dating structural changes. https://CRAN.R-project.org/ pack-

age=strucchange. Accessed January 23, 2024.

23




