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Abstract

The standard linear-in-means model of peer effects assumes that the endogenous peer effect
parameter is homogeneous. We relax this assumption by allowing individuals to respond dif-
ferently to the outcomes of other group members depending on the identity of these members.
Specifically, we distinguish peer effects within members sharing the same identity and peer
effects between members of different identities. We propose a simple methodology to iden-
tify and estimate the model using partial population experiments (i.e. designs in which only
some individuals in a group are eligible for treatment) with variation in the share of eligible
individuals across groups. We discuss two cases: randomized experiments and differences-in-
differences. The estimation procedure builds on the Generalized Method of Moments. We are
able to quantify the direct effect on the eligibles, the indirect effect on the non-eligibles and the
population multipliers. We apply our methodology to study peer effects in school attendance
using a conditional cash transfer program targeting the poor in Mexico.
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1 Introduction

In the field of peer effects, applied economists often use the linear-in-means model. The model
postulates that individuals are influenced by the average outcome in a given reference group.
This is a way to formalize the concept of conformism: people incur a cost when their behavior
is different from the average behavior. An important parameter in this model is the endogenous
peer effect, which captures the change in the outcome of an individual in response to a change in
the group average outcome. The endogenous peer effect is assumed to be homogeneous, in the
sense that (i) all individuals in a reference group respond to the change in the same way, and (ii)
all individuals have the same weight in the group average.
This assumption fails to account for complex group dynamics, such as polarization, social distinc-
tion, or role models. Sociologists have long documented that the relevant reference group may
consist of several sub-groups who do not necessarily interact in a symmetric way. Some indi-
viduals may put more weight on their own sub-group; other individuals may put more weight
on the other sub-groups, either emulating them or opposing them. These dynamics depend on
what defines the identity of these sub-groups, their number and relative size, as well as the social
hierarchy.
In this paper, we relax the homogeneity assumption by allowing individuals to respond differ-
ently to changes in the outcomes of other group members depending on the identity of these
members. We distinguish peer effects within members sharing the same identity and peer effects
between members of different identities. We propose a methodology to identify and estimate these
parameters using experiments in which only a share of the population is eligible for treatment.
These designs are called partial population experiments. We discuss two cases: (i) controlled ex-
periments, where the treatment is randomly allocated to groups; and (ii) natural experiments,
more specifically differences-in-differences, where the treatment is allocated to different groups at
different times and the common trend condition holds.
First, we show that we can identify within and between peer effects when the share of eligibles
varies across groups; in theory, two values are enough for identification. Second, we propose a
simple estimation procedure building on the Generalized Method of Moments (GMM). In theory,
we rely on well-established results in this literature. In practice, we use packages provided by
standard statistical software. Third, we provide simulations showing that our procedure works
well when we observe around 500 groups. We show how to include covariates to improve pre-
cision if the number of groups is small, or to improve the plausibility of the common trend as-
sumption. We also discuss how many treated and control groups with a similar share of eligibles
are needed to get precise estimates. The procedure is not computationally intensive, making it
accessible to a wide audience.
Estimating endogenous peer effects is particularly important from a policy evaluation perspective
because they generate population multipliers. The treatment is a shock affecting the behaviors
of eligible individuals; then, non-eligibles respond to the change in eligibles’ behaviors; and the
shock propagates further (between and within sub-groups) until a new equilibrium is reached.
Our estimates are useful to quantify (i) the direct effect of the policy on the eligibles, (ii) the indirect
effect of the policy on the non-eligibles and (iii) the population multipliers, i.e. by how much the
direct and indirect effects are amplified by social interactions between and within sub-groups.
In contrast, research designs based on the random allocation of peers cannot separately identify
whether individuals are influenced by the behavior of their peers (endogeneous peer effects) or by
the characteristics of their peers (exogeneous peer effects). Separating both effects is crucial since
only the endogenous component gives rise to population multipliers.
We apply our methodology to explore peer effects in school attendance using a conditional cash
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transfer program in Mexico – Progresa. This program has been extensively studied: it was ran-
domly allocated across villages and it targeted poor households. Previous research finds a positive
effect on school attendance of the eligibles and a positive spillover effects on school attendance of
the non-eligibles belonging to the same group, defined as grade × village. For instance, Lalive and
Cattaneo (2009) estimate a direct effect of 3p.p.: in the absence of social interactions, school atten-
dance among the poor should increase by 3 percentage points in treated villages. They estimate
an homogeneous endogenous peer effect parameter of 0.5: the individual probability of attending
school increases by 5 percentage points when the average attendance in a group increases by 10
percentage points. When we allow for heterogeneity, we estimate a “between” peer effect of 0.6, a
“within” peer effect of 0.9, and a direct effect of 2p.p.. We derive two conclusions in this context.
First, conformism is extremely strong within social classes (poor and non-poor) and relatively
strong between social classes. Second, failing to account for heterogeneous peer effects leads to
underestimating the contribution of social interactions and overestimating the direct effect of the
policy.
Other potential applications cover important topics in education (e.g. estimate peer effects in
graduation rates using scholarships targeting some categories of students and variation across
majors), labor (e.g. estimate peer effects in parental leave take-up using collective agreements tar-
geting some professions and variation across neighborhoods), health (e.g. estimate peer effects in
contraception take-up using rules specific to minors and variation across classes), political econ-
omy (e.g. estimate peer effects in support for local authorities using public infrastructure devoted
to the elderly or to young children and variation across neighborhoods), and crime (e.g. estimate
peer effects in criminal activities using interventions targeting at-risk youth and variation across
classes). Our methodology is adequate in settings where the non-eligibles are affected by the treat-
ment only through changes in the eligibles’ outcomes. By assumption, we rule out any direct effect
on the non-eligibles.1

Our paper relates to the literature using partial population experiments to identify the endogenous
peer effect parameter in linear-in-means models (Moffitt et al. (2001); Bobonis and Finan (2009);
Brown and Laschever (2012); Hirano and Hahn (2010)). We contribute to this literature by allow-
ing for heterogeneous parameters. Relaxing the homogeneity assumption is important because
this assumption restricts the shape of the population multipliers: they have to be the same for
eligibles and non-eligibles, and they have to be linear in the share of eligibles (s). For instance, the
population multiplier is equal to 2s in Lalive and Cattaneo (2009) This restriction implies that the
total effect on the eligibles and the total effect on the non-eligibles should be linear in s, a predic-
tion which is not always verified in the data. By allowing for different “between” and “within”
parameters, we can rationalize diverse empirical patterns: convex or concave, increasing or de-
creasing, depending on the relative magnitudes and on the signs of the “between” and “within”
parameters. In the case of Progresa, we find that the total effects are increasing and convex, and
that the multiplier is larger for the non-eligibles than for the eligibles.
Our paper also relates to the literature on the estimation of spillover effects in experiments. Pre-
vious research has studied how the outcome of an individual is affected by the treatment sta-
tus of her peers in a non-parametric way (Hudgens and Halloran (2008), Tchetgen and Vander-
Weele (2012)). In particular, Vazquez-Bare (2023) discusses the case of heterogeneous spillover
effects in a flexible framework, allowing the treatment status of peers to have heterogeneous ef-
fects depending on the characteristics of the peers. The interpretation of the parameters in this

1For instance, in the case of Progresa, this assumption could be violated if cash transfers were shared with non-
poor households, or if they caused inflation in the village: the treatment would directly affect the non-eligibles’ budget
constraint. Lalive and Cattaneo (2009) provide arguments to rule out these possibilities.
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approach is reduced-form, in the sense that they capture different mechanisms: endogenous peer
effects, exogenous peer effects, general equilibrium effects through prices, etc. In contrast, our ap-
proach focuses on a specific mechanism. We can only study a subset of the questions explored in
the literature. However, for these questions, we have a structural interpretation of the parameters
and we learn something fundamental about the drivers of behaviors. We learn about how indi-
viduals weigh other members of their reference groups, whether they imitate some members in
particular, or try to distinguish themselves from other members. Our results are useful to deepen
our understanding of social influence, in particular to study dynamics going beyond plain con-
formism.

2 A Partial-Population Design

2.1 Randomized Experiment

We consider a setting inspired by Moffitt et al. (2001). We suppose that G reference groups are
observed. Group g has ng units (indexed by i); and a share sg of units are eligible for a binary
treatment, denoted Dg. Some groups are treated while others are not. Let Eig be the binary
variable indicating whether or not unit i in group g is eligible for the treatment and let Dig be
a binary variable indicating whether or not the unit has received the treatment. By construc-
tion, P(Dig = 1|Eig = 0) = 0. If the group is treated, all eligible units are effectively treated:
P(Dig = 1|Eig = 1, Dg = 1) = 1. Let nE

g = ∑
ng
i=1 Eig = sgng and nNE

g = ∑
ng
i=1(1 − Eig) = ng − nE

g be
the number of units that are respectively eligible and non-eligible for the treatment in group g. We
consider the case where eligibility Eig is not randomly determined: eligibility reflects an observ-
able characteristic, that we call ”identity”. For instance, in the case of Progresa, a reference group
is a grade level in a village, the treatment is a cash transfer, and eligibility is based on wealth.

We start from the commonly used linear-in-means (LIM) model of social interactions (Manski (1993),
Blume et al. (2011), Bramoullé, Djebbari, and Fortin (2009)), defined as

yig = αg + x′igη0 + z′gγ + δ0Dig + θ0 ×
1

ng

ng

∑
i=1

yig + ε ig (1)

where yig is individual i’s scalar outcome, zg is a vector of attributes characterising individual
i’s reference group g, including peer characteristics within the group, xig and ε ig are respectively
individual i’s observed (resp. unobserved) attributes that directly affect yig. If θ0 ̸= 0, this model
expresses an endogenous peer effect: individual i’s outcome varies with the mean of her peers in
group g’s outcomes. It is standard to rule out explosive trajectories by assuming that |θ0| < 1. The
vector (η0, δ0) captures the exogenous effects while αg captures the correlated effects, as defined
by Manski (1993). Moffitt et al. (2001) shows that all parameters, and thus all different types of
effects, are identified as long as δ0 ̸= 0.

We extend the standard model by allowing for heterogeneous endogenous peer effects. Units
may be differently influenced by their peers’ outcomes depending on whether they have the same
”identity” or not. Let Eg = {i ∈ {1, . . . , ng} : Eig = 1} be the set of individuals in group g whose
”identity” makes them eligible for the treatment. Let Og = {1, . . . , ng}\Eg be the set of individuals
in group g whose ”identity” makes them non-eligible for the treatment. In the following, for any

variable w, w̄E
g =

1
nE

g
∑

i∈Eg

wE
ig and w̄NE

g =
1

nNE
g

∑
i∈Og

wNE
ig . We make the following assumptions.
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Assumption 1 (Partial-Population Design with Heterogeneous Endogenous Effects). Within each
group g ∈ {1, . . . , G} of the i.i.d sample,

yE
ig = θw

0 sgȳE
g + θb

0(1 − sg)ȳNE
g + δ0Dig + eE

ig, i ∈ Eg (2)

yNE
ig = θb

0sgȳE
g + θw

0 (1 − sg)ȳNE
g + eNE

ig , i ∈ Og (3)

The parameters of interest are θb
0, θw

0 ∈ (−1, 1). They capture the “between” and “within” en-
dogenous peer effects. When the group average outcomes for both eligible and non-eligible are
increased by 1, an eligible unit’s outcome will increase by θw

0 sg + θb
0(1− sg), a weighted average of

the within and the between endogenous peer effects, weighted by the share of the eligible units.
To clarify the impact of (θw

0 , θb
0) and sg, consider a scenario where sg = 0.5, indicating an equal

number of eligible and non-eligible units within a group. Under this condition, a simultaneous
increase in ȳE

g and ȳNE
g by ∆E and ∆NE respectively, results in an increase in the eligible unit’s

outcome by 1
2 (θ

w
0 ∆E + θb

0∆NE). This demonstrates that (θw
0 , θb

0) quantifies the relative impact of
within-group and between-group peer effects. Conversely, when θw

0 = θb
0, the increase in an eli-

gible unit’s outcome depends linearly on the group composition, reflecting a stronger response to
peers’ average outcomes when they constitute a larger proportion of the group.
δ0 ∈ R∗ captures the direct effect of treatment on the eligible units, which is assumed to be a
constant across groups. For conciseness, the residual terms eE

ig and eNE
ig capture all the individual,

exogenous and correlated effects. One may think of these terms, for example, as

eE
ig = αE

g + x′igηE
0 + z′gγE

0 + εE
ig, i ∈ Eg

eNE
ig = αNE

g + x′igηNE
0 + z′gγNE

0 + εNE
ig , i ∈ Og

Because our focus is on θb
0 and θw

0 , we do not express explicitly all these effects in our baseline
model. From Assumption 1, we can average respectively yE

ig and yNE
ig among eligible (resp. non-

eligible) units in group g to get

ȳE
g = θw

0 sgȳE
g + θb

0(1 − sg)ȳNE
g + δ0Dg + ēE

g

ȳNE
g = θb

0sgȳE
g + θw

0 (1 − sg)ȳNE
g + ēNE

g

After some development, we get the following reduced forms

ȳE
g =

θb
0(1 − sg)

1 − θw
0 + sg(1 − sg)

[
(θw

0 )
2 − (θb

0)
2
] ēNE

g

+
1 − θw

0 (1 − sg)

1 − θw
0 + sg(1 − sg)

[
(θw

0 )
2 − (θb

0)
2
] ēE

g (4)

+ δ0

(
1 + sg.

θw
0 − (1 − sg)

[
(θw

0 )
2 − (θb

0)
2]

1 − θw
0 + sg(1 − sg)

[
(θw

0 )
2 − (θb

0)
2
])Dg

ȳNE
g =

1 − θw
0 sg

1 − θw
0 + sg(1 − sg)

[
(θw

0 )
2 − (θb

0)
2
] ēNE

g

+
θb

0sg

1 − θw
0 + sg(1 − sg)

[
(θw

0 )
2 − (θb

0)
2
] ēE

g (5)

+
δ0θb

0sg

1 − θw
0 + sg(1 − sg)

[
(θw

0 )
2 − (θb

0)
2
]Dg
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Then, we specify the treatment assignment across groups.

Assumption 2 (Randomized Experiment). The group level treatment Dg is randomly assigned, i.e.

(ēNE
g , ēE

g , sg) ⊥⊥ Dg (6)

Assumption 2 states that treatment is randomly assigned. In particular, groups receive the treat-
ment independently of their share of eligible units. We also impose a restriction on the support
of Dg conditional on the share of eligible units sg. Let S ⊆ (0, 1] be the support of shares that are
observed in the sample,

Assumption 3 (Common Support). For each s ∈ S ,

0 < P(Dg = 1|s) < 1 (7)

Assumption 3 states that for any share of eligible units that is observed in the population of refer-
ence groups, there exist some groups that are treated and some that are not.

2.2 Natural Experiment

In this section, we consider a panel extension of our baseline model. The G groups may be ob-
served over T time periods indexed by t. Group g treatment status for period t is given by Dgt.

For k ∈ {E, NE}, ȳk
gt =

(
nk

gt

)−1
∑

nk
gt

i=1 yk
igt where nk

gt is the number of units whose ”identity” is k at
time period t. Let Egt := {i ∈ {1, . . . , ngt} : Eigt = 1} and Ogt := {i ∈ {1, . . . , ngt} : Eigt = 0} be
respectively the set of eligible (resp. non-eligible) units in group g at time t.

Assumption 1′ (Panel Partial-Population Design with Heterogeneous Endogenous Effects). Within
each group g in {1,. . . , G} present in the i.i.d panel, for each time period t ∈ {1, . . . , T},

yE
igt = θw

0 sgtȳE
gt + θb

0(1 − sgt)ȳNE
gt + δ0Dgt + eE

igt, i ∈ Egt (8)

yNE
igt = θb

0sgtȳE
gt + θw

0 (1 − sgt)ȳNE
gt + eNE

igt , i ∈ Ogt (9)

Assumption 1′ is the counterpart of Assumption 1 in a panel data context. Note that we rule
out time dependence, in the sense that former own outcomes and former peers’ outcomes do not
directly influence current outcomes. As before, we can average the outcomes of eligible and non-
eligible units in group g for each time period t and develop to get the following reduced forms

ȳE
gt =

θb
0(1 − sgt)

1 − θw
0 + sgt(1 − sgt)

[
(θw

0 )
2 − (θb

0)
2
] ēNE

gt

+
1 − θw

0 (1 − sgt)

1 − θw
0 + sgt(1 − sgt)

[
(θw

0 )
2 − (θb

0)
2
] ēE

gt (10)

+ δ0

(
1 + sgt.

θw
0 − (1 − sgt)

[
(θw

0 )
2 − (θb

0)
2]

1 − θw
0 + sgt(1 − sgt)

[
(θw

0 )
2 − (θb

0)
2
])Dgt

ȳNE
gt =

1 − θw
0 sgt

1 − θw
0 + sgt(1 − sgt)

[
(θw

0 )
2 − (θb

0)
2
] ēNE

gt

+
θb

0sgt

1 − θw
0 + sgt(1 − sgt)

[
(θw

0 )
2 − (θb

0)
2
] ēE

gt (11)

+
δ0θb

0sgt

1 − θw
0 + sgt(1 − sgt)

[
(θw

0 )
2 − (θb

0)
2
]Dgt
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For the rest of the paper, we suppose that T = 2. However, the natural experiment setting we
consider could potentially be extended to multiple periods. In this setting, treatment assignment
may not be random but we make other restrictions on the distribution of the data.

Assumption 2′ (Stable Shares). For all (g, t) ∈ {1, . . . , G} × {1, 2},

sgt = sg

Assumption 2′ states that, for each group, the share of eligible units does not change from period 1
to period 2. It implies in particular that the composition of groups is not affected by the treatment.
This assumption is thus credible in designs where the time span between the 2 periods is short.

Assumption 3′ (Treatment Distribution).

Dg1 = 0 a.s and for all s ∈ S , 0 < P(Dg2 = 1|s) < 1 (12)

Assumption 3′ states, first, that no group is treated at the initial period. Second, for all the values
of shares of eligible units that are observed in the population, there are some treated groups and
some control groups.

Assumption 4′ (Conditional Common Trends). For any k ∈ {NE, E},

E[ek
g2 − ek

g1|sg, Dg2 = 1] = E[ek
g2 − ek

g1|sg, Dg2 = 0] (13)

Assumption 4′ is a common trend assumption conditional on the share of eligible units. Intu-
itively, we form pairs of treated and control groups with the same share of eligibles. For each pair,
we assume that, in the absence of the treatment, the average change in the aggregate outcome
among eligible units in treated groups would have been the same as the average change in the
aggregate outcome among eligible units in control groups. We make the same assumption regard-
ing the average change in aggregate outcome among non-eligible units. Note that the value of the
conditional trend may be different for the eligible and the non-eligible sub-populations.

3 Identification

In this section, we show how one can recover the direct and endogenous peer effects in the two
settings we have described.

3.1 Intuition

Figure 1 illustrates how the initial shock (the treatment received by the eligibles) propagates to the
whole group through social interactions.
δ0 is the direct effect of the treatment, loosely defined as the first step in the causal chain (the effect
of the treatment on the eligibles before any social interaction takes place).
δ0θb

0 is the indirect effect of the treatment, loosely defined as the second step in the causal chain
(the response of the non-eligibles to changes in the eligibles’ outcomes before any other social
interaction takes place).
ME(s) and MNE(s) are the population multipliers for the eligibles and non-eligibles, loosely defined
as the third step in the causal chain (the propagation of the initial shock through social interac-
tions).
With these definitions, the direct effect and the indirect effect are independent of population struc-
ture, while the intensity of the population multipliers depends on the population structure. In-
deed, s influences M in two ways:
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• Through the initial shock: the strength of the shock is proportional to the share of eligibles

• Through the propagation: the shock is amplified by social interactions in a non-linear way
that depends on the relative magnitudes of θb

0 and θw
0 . Intuitively, if θw

0 > θb
0 (within peer

effects are more intense than between peer effects), the amplification is stronger in homoge-
neous groups (low s and high s) than in mixed groups (s ≈ 1

2 ). Conversely, if θw
0 < θb

0, the
amplification is weaker is homogeneous groups than in mixed groups.

As formally shown in the next section, the treatment effects and the population multipliers for the
eligibles and the non-eligibles can be written as follows:

τE(s) = δ0ME(s) and τNE(s) = δ0θb
0 MNE(s)

and

ME(s) = 1 + sPE(s) and MNE(s) = sPNE(s)

Where PE(s) and PNE(s) capture the strength of the propagation in the eligible and non-eligible
sub-populations. These functions have a U-shape when θw

0 > θb
0 and an inverted-U shape when

θw
0 < θb

0. They are different in the eligible and non-eligible sub-populations because their situa-
tions are not symmetric: e.g. a low s implies a lot of “between” interactions for eligibles and a lot of
“within” interactions for non-eligibles. By contrast, in the homogeneous case where θw

0 = θb
0 = θ,

these functions are identical for the eligibles and the non-eligibles, and they do not depend on s:
we have PE = PNE = 1

1−θ . As a consequence, the population multiplier is linear in s.
The shapes of τE(s) and τNE(s) are informative about δ0, θb

0, θw
0 . As an illustration, Figure 2 plots

τE(s) and τNE(s) as a function of s in the case when θw
0 > θb

0 and in the case when θw
0 < θb

0. We
can get an intuition of the identification by looking at the limits:

τE(s) → δ0 τE(s) → δ0

1 − θw
0

τNE(s) → δ0θb
0

1 − θw
0

s → 0 s → 1 s → 1

First, looking at eligibles in groups with a very low fraction of eligibles is informative about the
direct effect. Second, looking at eligibles in groups with a very high fraction of eligibles is infor-
mative about “within” peer effects. Third, looking at non-eligibles in groups with a very high
fraction of eligibles is informative about “between” peer effects.
In practice, we observe few eligibles in groups with low s and few non-eligibles in groups with
high s. That is why our procedure exploits the whole distribution of s, and not only the lim-
its. The next section derives the formulas for τE(s) and τNE(s) and discusses more formally the
identification in the case of randomized experiments and in the case of natural experiments.

3.2 Randomized Experiment

This subsection presents how the treatment effects and population multipliers can be recovered in
the randomized experiment setting described in section 2.1.
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Proposition 1. Provided Assumptions 1, 2 and 3 hold and all the mentioned conditional expectations are
well-defined, we have

τE(s) = E

[
ȳE

g |sg = s, Dg = 1
]
− E

[
ȳE

g |sg = s, Dg = 0
]

= E

[
Dg − Pr(Dg = 1)

Pr(Dg = 1)(1 − Pr(Dg = 1))
.yE

g

∣∣∣sg = s
]

(14)

= δ0

(
1 + s.

θw
0 − (1 − s)

[
(θw

0 )
2 − (θb

0)
2]

1 − θw
0 + s(1 − s)

[
(θw

0 )
2 − (θb

0)
2
]) (15)

and

τNE(s) = E

[
ȳNE

g |sg = s, Tg = 1
]
− E

[
ȳNE

g |sg = s, Dg = 0
]

= E

[
Dg − Pr(Dg = 1)

Pr(Dg = 1)(1 − Pr(Dg = 1))
.yNE

g

∣∣∣sg = s
]

(16)

=
δ0θb

0s
1 − θw

0 + s(1 − s)
[
(θw

0 )
2 − (θb

0)
2
] (17)

Hence,

PE(s) :=
θw

0 − (1 − s)
[
(θw

0 )
2 − (θb

0)
2]

1 − θw
0 + s(1 − s)

[
(θw

0 )
2 − (θb

0)
2
] (18)

PNE(s) :=
1

1 − θw
0 + s(1 − s)

[
(θw

0 )
2 − (θb

0)
2
] (19)

Proof. See Appendix

Proposition 1 shows that the treatment effect and the functional form of the population multiplier
for the eligible (respectively non-eligible) population can be recovered by looking at the difference
of the averages of aggregated outcomes within treated groups and within non-treated groups
that have exactly the same share s of eligible units. This difference of averages between treated
and untreated groups can be expressed as a single average of a weighted outcome, as shown by
equations (14) and (16), whose weights are based a transformation process à la Abadie (2005). This
alternative formulation leads to some natural conditional moment conditions, as expressed by the
following corollary.

Corollary 1 (Conditional Moment Conditions - Randomized Experiment). Let I be an interval on
R\{0} and λ0 = (δ0, θw

0 , θb
0) ∈ Θ := I × (−1, 1) × (−1, 1), be the true value of the parameters. For

any s ∈ (0, 1), provided Assumptions 1, 2 and 3 hold and all the mentioned conditional moments are
well-defined,

E

[
uR(yE

g , yNE
g , Dg, sg; λ0)|sg = s

]
=

 E

[
uR,E(yE

g , Dg, sg; λ0)|sg = s
]

E

[
uR,NE(yNE

g , Dg, sg; λ0)|sg = s
] = 0 (20)

where for all λ ∈ Θ,

uR,E(yE
g , Dg, sg; λ) = ρR(Dg)yE

g −
δ
(
1 − θw(1 − sg)

)
1 − θw + sg(1 − sg) [(θw)2 − (θb)2]

uR,NE(yNE
g , Dg, sg; λ) = ρR(Dg)yNE

g −
δθbsg

1 − θw + sg(1 − sg) [(θw)2 − (θb)2]
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and ρR(Dg) =
Dg − P(Dg = 1)

P(Dg = 1)(1 − P(Dg = 1))

Proof. It is an immediate consequence of Proposition 4 since the right-hand sides of equations (15)
and (17) are functions of s.

3.3 Natural Experiment

In this subsection, we show that similar results can be obtained in the natural experiment setting
we have described in Section 2.2. In the following, for all k ∈ {E, NE}, we use the conventional
notation for first differenced variables:

∆yk
g = yk

g2 − yk
g1

Proposition 2. Suppose Assumptions 1′, 2′, 3′, and 4′ hold and that all the mentioned conditional expec-
tations are well-defined. Then, we have

τE(s) = E

[
∆ȳE

g |sg = s, Dg = 1
]
− E

[
∆ȳE

g |sg = s, Dg = 0
]

= E

[
Dg2 − Pr(Dg2 = 1|sg = s)

Pr(Dg = 1|sg = s)(1 − Pr(Dg = 1|sg = s))
.∆yE

g

∣∣∣sg = s
]

(21)

= δ0

(
1 + s.

θw
0 − (1 − s)

[
(θw

0 )
2 − (θb

0)
2]

1 − θw
0 + s(1 − s)

[
(θw

0 )
2 − (θb

0)
2
]) (22)

and

τNE(s) = E

[
∆ȳNE

g |sg = s, Tg = 1
]
− E

[
∆ȳNE

g |sg = s, Dg = 0
]

= E

[
Dg2 − Pr(Dg2 = 1|sg = s)

Pr(Dg2 = 1|sg = s)(1 − Pr(Dg2 = 1|sg = s))
.∆yNE

g

∣∣∣sg = s
]

(23)

=
δ0θb

0s
1 − θw

0 + s(1 − s)
[
(θw

0 )
2 − (θb

0)
2
] (24)

Proposition 2 is the counterpart of Proposition 1 in the natural experiment setting. Note the two
main differences. First, the outcomes of interest here are the first differenced aggregated outcomes
for the eligible and non-eligible subpopulations. Second, the weighting function is now a function
of both the treatment assignment variable and the share of eligible units in the group. Indeed,
in this setting, treatment assignment is allowed to be correlated with the share of eligible units.
Similarly, immediate conditional moment conditions arise, as stated by the following corollary.

Corollary 2 (Conditional Moment Conditions - Natural Experiment). Let I be an interval on R\{0}.
Let λ0 = (δ0, θw

0 , θb
0) be the true value of the parameters with λ0 ∈ Θ := I × (−1, 1) × (−1, 1). For

any s ∈ (0, 1), provided Assumptions 1′, 2′, 3′ and 4′ hold and all the mentioned conditional moments are
well-defined,

E

[
uDiD(∆yE

g , ∆yNE
g , Dg2, sg; λ0)|sg = s

]
=

 E

[
uDiD,E(∆yE

g , Dg2, sg; λ0)|sg = s
]

E

[
uDiD,NE(∆yNE

g , Dg2, sg; λ0)|sg = s
] = 0 (25)

10



where for all λ ∈ Θ,

uDiD,E(∆yE
g , Dg2, sg; λ) = ρDiD(Dg2, sg)∆yE

g −
δ
(
1 − θw(1 − sg)

)
1 − θw + sg(1 − sg) [(θw)2 − (θb)2]

uDiD,NE(∆yNE
g , Dg2, sg; λ) = ρDiD(Dg2, sg)∆yNE

g −
δθbsg

1 − θw + sg(1 − sg) [(θw)2 − (θb)2]

and ρDiD(Dg2, sg) =
Dg2 − P(Dg2 = 1|sg)

P(Dg2 = 1|sg)(1 − P(Dg2 = 1|sg))

Proof. Immediate consequence from Proposition 2

3.4 Sufficient Conditions for Identification

The following proposition provides some sufficient conditions to ensure the identification of λ0,
the vector of the true parameters, quantifying the direct treatment effect and the within and be-
tween endogenous effects.

Proposition 3 (Sufficient Conditions for Identification of λ0). Provided δ0 ̸= 0 and θb
0 ̸= 0, if Assump-

tions 1, 2 and 3 hold OR if Assumptions 1′, 2′, 3′ and 4′ hold and if one of the two following conditions is
satisfied

1. there exist at least 2 shares s1, s2 ∈ (0, 1), s1 ̸= s2 that have positive probability mass and for which
both τNE and τE are well-defined

2. there is a continuum of shares Is ⊆ (0, 1] such that P(s ∈ Is) > 0 and both τNE(s) and τE(s) are
well-defined, for any s ∈ Is

then λ0 is the unique vector defined on Θ that satisfies equation (20)

Proof. See Appendix

3.5 Extension - Including Covariates

One may want to include covariates in the model to either improve precision or the plausibility
of the common trends assumption in the case of a natural experiment setting. In Appendix B.1,
we provide alternative moment conditions that are based on a new conditional common trends
assumption. Intuitively, we compare treated and control groups that have the same share of eli-
gible units and that experience the same evolution of their observed covariates from period 1 to
2. Then, we assume that, in the absence of the treatment, the average change in the aggregate
outcome among eligible units in treated groups would have been the same as the average change
in the aggregate outcomes among eligible units in control groups. We make the same assumption
regarding the change in group average outcome among non-eligible units.

4 Estimation

In this section, we show how the vector of true parameters λ0 := (δ0, θw
0 , θb

0) can be estimated
(in a scenario without covariates). Both the randomized and natural experiment settings lead to
conditional moment restrictions of the form

E
[
u(Zg; λ0)|sg

]
= 0

11



where u(Zg; λ) is a 2-dimensional vector of known functions of the i.i.d random vector of observed
variables Zg and λ ∈ Θ. Let f be a 4 × 2 matrix such that, for any s ∈ (0, 1]

f (s) =


s 0
0 s
s2 0
0 s2


We consider the class of Generalized Method of Moments (GMM) estimators of the form

λ̂ := arg min
Θ

[m(λ)]′WGm(λ) (26)

where m(λ) =
1
G

G

∑
g=1

f (sg)û(Zg; λ) for some 2-dimensional vector û of known functions of Zg

and λ that depend on the design and WG is a non-negative definite, symmetric matrix such that
WG

p−→ W0.

4.1 Randomized Experiment

In the randomized experiment setting, since P(Dg = 1) is supposed to be known,

û(Zg; λ) = uR(Zg; λ) =


ρR(Dg)yE

g −
δ
(
1 − θw(1 − sg)

)
1 − θw + sg(1 − sg) [(θw)2 − (θb)2]

ρR(Dg)yNE
g −

δθbsg

1 − θw + sg(1 − sg) [(θw)2 − (θb)2]

 (27)

Then, we have the following result

Proposition 4 (GMM Estimator in the Randomized Setting). Let (Zg)g=1,...,G be an i.i.d sample of G
groups, where Zg = (yE

g , yNE
g , Dg, sg). Supposing that

1. Assumptions 1, 2 and 3 hold and identification of λ0 is ensured

2. Θ := I1 × [−K, K]× [−K, K] where I is a compact subset of R with 0 /∈ I and K ∈ (0, 1)

3. E[|yE
g |2] < +∞ and E[|yNE

g |2] < +∞

Then

λ̂∗ =

 δ∗

θw∗

θb∗

 := arg min
Θ

[m(λ)]′V̂−1
G m(λ) (28)

where V̂G
p−→ V0 := E

[
f (sg)u(Zg; λ0)u(Zg; λ0)′ f (sg)′

]
is a consistent estimator of λ0, whose asymp-

totic distribution is √
G(λ̂∗ − λ0)

d−→ N
(

0,
[

M′
0V−1

0 M0

]−1
)

(29)

with λ0 := (δ0, θw
0 , θb

0) and M0 := E

[
f (sg)

∂uR(Zg; λ0)

∂λ′

]
Proof. See Appendix

Since the estimator reaches the parametric rate of convergence, a sample of a hundred groups
can already provide quite accurate estimates of the direct effect of the treatment and of the two
endogenous peer effects.

12



4.2 Natural Experiment without Covariates

In the natural experiment setting, we consider

û(Zg; λ) =


ρ̂DiD(Dg2, sg)∆yE

g −
δ
(
1 − θw(1 − sg)

)
1 − θw + sg(1 − sg) [(θw)2 − (θb)2]

ρ̂DiD(Dg2, sg)∆yNE
g −

δθbsg

1 − θw + sg(1 − sg) [(θw)2 − (θb)2]


with

ρ̂DiD(Dg2, sg) =
Dg2 − P̂(Dg2 = 1|sg)

P̂(Dg2 = 1|sg)(1 − P̂(Dg2 = 1|sg))

and

P̂(Dg2 = 1|sg) =
∑G

j=1 KhG(sg − sj)Dj2

∑G
j=1 KhG(sg − sj)

where, for any s ∈ (0, 1], KhG(s) =
1

hG

G

∑
j=1

K
(

s
hG

)
with K, a kernel of order (at least) 1 and hG a

bandwidth sequence that depends on the total number of groups in the sample. The main differ-
ence compared to the previous situation is that, now, P(Dg = 1|sg) has to be nonparametrically
estimated first. This first stage estimation is going to change the asymptotic variance of the GMM
estimator. However, based on results from Newey and McFadden (1994) (section 8.3), we con-
jecture the following inference results. Simulations presented in the following sections tend to
support this conjecture.

Conjecture 1 (GMM Estimator in the Natural Experiment Setting). Let (Zg)g=1,...,G be an i.i.d sample
of G groups, where Zg = (∆yE

g , ∆yNE
g , Dg, sg). Supposing that

• Assumptions 1′, 2′, 3′ and 4′ hold and identification λ0 is ensured

• Θ := I1 × [−K, K]× [−K, K] where I is a compact subset of R with 0 /∈ I and K ∈ (0, 1)

• E[|yE
g |2] < +∞ and E[|yNE

g |2] < +∞

• The bandwidth for the nonparametric first stage is such that hG ∝ G− 1
3

Then
λ̂∗ := arg min

Θ
[m(λ)]′V̂−1

G m(λ) (30)

where V̂G
p−→ V0 := E

[
f (sg)uDiD(Zg; λ0)uDiD(Zg; λ0)′ f (sg)

]
is a consistent estimator of λ0 and it is

asymptotically normal with convergence rate G− 1
2 .

5 Simulations

We illustrate our estimation strategy in both the randomized and natural experiment settings with
simulations. For each simulation, a sample of 500 i.i.d groups are generated. Let

λ0 =

 δ0
θw

0
θb

0

 =

 5
0.5
0.2
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5.1 Randomized Experiment

For the randomized setting, we consider the following DGP. For each group g, we observe a vector
Zg = (yE

g , yNE
g , sg, Dg) such that{

yE
g = (αE

g + zE
g βE) + θw

0 sgyE
g + θb

0(1 − sg)yNE
g + δ0Dg

yNE
g = (αNE

g + zNE
g βNE) + θb

0sgyE
g + θw

0 (1 − sg)yNE
g

with (
βE

βNE

)
=

(
−1
−2

)
sg ∼ U(0,1]

Dg ∼ B(1/2)
αNE

g
αE

g
zNE

g
zE

g

 ∼ N




8
4
−3
2

 ,


4 1 0 0
1 4 0 0
0 0 4 −4.2
0 0 −4.2 9




This DGP is consistent with Assumption 1 with

eE
g = αE

g + zE
g βE

eNE
g = αNE

g + zNE
g βNE

Moreover, Dg ⊥⊥ (sg, zE
g , zNE

g , αE
g , αNE

g ), so Assumption 2 is also satisfied. Assumption 3 is also
satisfied with probability one. For each simulation, the estimator presented in Proposition 4 is
computed. Figure 3 plots the distribution of λ̂∗ that is obtained from 500 simulations. The dashed
red lines correspond to the true value of the coefficients. As expected, the GMM estimator is
consistent and is asymptotically normal.

5.2 Natural Experiment

For the natural experiment setting, the following DGP has been considered. For each group g, we
observe a vector Zg = (∆yE

g , ∆yNE
g , sg, Dg) such that

yE
g1 = (αE

g + εE
g1) + θw

0 sgyE
g1 + θb

0(1 − sg)yNE
g1

yE
g2 = (αE

g + λEsg + εE
g2) + θw

0 sgyE
g2 + θb

0(1 − sg)yNE
g2 + δ0Dg2

yNE
g1 = (αNE

g + εNE
g1 ) + θb

0sgyE
g1 + θw

0 (1 − sg)yNE
g1

yNE
g2 = (αNE

g + λNEs2
g + εNE

g2 ) + θb
0sgyE

g2 + θw
0 (1 − sg)yNE

g2

14



with (
λE

λNE

)
=

(
1
−3

)

εg =


εE

g1
εE

g2
εNE

g1
εNE

g2

 ∼ N (0, Σε)

sg ∼ F−1
U(0,1]

(V1
g )

Dg2 ∼ F−1
B(1/2)(V

2
g )

αE
g

αNE
g

V1
g

V2
g

 ∼ N (0, Σα,V)

where Σε and Σα,V are 4 × 4 positive definite symmetric matrices whose eigenvalues are respec-
tively 2 and 1 (resp. 1, 4 and 5). By construction, Assumptions 1′ and 2′ are satisfied with

eE
g1 = αE

g + εE
g1

eNE
g1 = αNE

g + εNE
g1

eE
g2 = αE

g + λEsg + εE
g2

eNE
g2 = αNE

g + λNEs2
g + εNE

g2

Note that

E

[
eE

g2 − eE
g1

∣∣∣sg, Dg2 = 1
]
= E

[
eE

g2 − eE
g1

∣∣∣sg, Dg2 = 0
]
= λEsg

E

[
eNE

g2 − eNE
g1

∣∣∣sg, Dg2 = 1
]
= E

[
eNE

g2 − eNE
g1

∣∣∣sg, Dg2 = 0
]
= λNEs2

g

so Assumption 4′ is also satisfied: conditional on sg, treated and control groups have the same time
trend, and this trend is potentially different for eligibles and non-eligibles. Finally, Assumption 3′

holds with probability 1. For each simulation, we compute the estimator presented in Conjecture
1. For the estimator’s first step, the Nadaraya-Watson estimator of the conditional expectation
E(Dg2|sg) was computed using a gaussian kernel and hG = 500−

1
3 . Figure 4 plots the distribution

of λ̂∗ that is obtained from 500 simulations. The dashed red lines correspond to the true value of
the coefficients. As conjectured, the estimator seems to be consistent and asymptotically normal.

5.3 Natural Experiment with Common Trends Conditional on Covariates

In Appendix B.2, we provide some preliminary results on ways of estimating λ0 when Assump-
tion 4′ fails but Assumption 3′′ is satisfied.

6 Application: Conditional cash transfers in Mexico (Progresa)

Progresa is a conditional cash transfer (CCT) program introduced in Mexico in 1997 and aimed
at developing the human capital of poor households. The program conditioned cash payments
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on children regularly attending school and health checkups at clinics. The program was means
tested, with a two-step targeting procedure. First, the poorest villages were identified using socio-
economic characteristics in census data. Second, within a village, the poorest households were
identified using a specific survey collecting data on assets and demographic composition. Only
the poorest households were eligible for the program.
Progresa has been widely studied for two reasons. First, it was one of the earliest CCT imple-
mented at a large scale; since then, similar programs spread around the world. Second, the imple-
mentation of the program was experimental during the first 18 months. In the spring 1998, among
the 506 poorest villages, 320 were randomly chosen to participate in the program and eligible
households started receiving transfers. The program was extended to the 186 control villages at
the end of 1999, and then gradually to a larger set of villages. The randomization was exploited
by several studies to estimate the short-term impact on education (see Parker and Todd (2017) for
a review). Most studies focus on eligible households. A few others also estimate the treatment
effect on the non-eligibles, taking advantage of the fact that post-program evaluation surveys in-
terviewed all households, including non-eligible households, in treated and control villages.
Of particular interest for us is a study by Lalive and Cattaneo (2009) who use Progresa as a partial-
population design to study peer effects in school attendance. They define the reference group as all
children living in the same village who have reached the same grade level. Using the interaction
between treatment and share of eligibles as an instrument for average group attendance in October
1998, they estimate an endogenous peer effect parameter of θ = 0.5 (95% CI=[0;1]). This implies
that increasing the average attendance in a child’s group by 10 percentage points will raise her
likelihood to attend school by 5 percentage points. The population multiplier is equal to 1

1−θ s = 2s.
Furthermore, they estimate a direct effect of δ0 = 0.03 (95% CI=[0;0.06]), which represents a 4%
increase compared to the control mean of 0.69.
We use the same data and implement our procedure allowing for heterogeneous θ. Figure A3
in Appendix plots the distribution of s, by treatment status. The support for the share of poor
ranges from 0.1 to 1. We observe both treated and control groups in all bins, except (0.25, 0.30]
and (0.90, 1]. In total, we observe 663 groups. Estimates are reported in Table 1 (computation of
standard errors in progress). We find a “between” peer effect of θb

0 = 0.6, close to the homogeneous
θ estimated by Lalive and Cattaneo (2009). This makes sense because their instrumental variable
strategy exploits the response of non-eligible children to the introduction of Progresa in the peer
group. In other words, their identification of θ comes from “between” interactions.
In addition, our methodology gives us an estimate of “within” peer effects: we find that θw

0 = 0.9.
Endogenous peer effects are therefore stronger within social classes than between social classes.
Poor children do influence non-poor children, and this is picked up by the instrumental variable
strategy of Lalive and Cattaneo (2009). But poor children influence even more other poor children.
Conformism is therefore very strong in this context. For example, suppose that one poor child
drops out of school in a group of 12 children (the average group size in our sample). In the rest
of the group, the likelihood that a child attends school decreases by 1

12 × 0.9 = 7.5 percentage
points among the poor and by 1

12 × 0.6 = 5 percentage points among the non-poor.2. This is the
effect ceteris paribus, looking at the response of a given child and holding the attendance of other
children constant.
These magnitudes can be compared with the direct effect of Progresa. We find that δ0 = 0.02,

2In this example, the total effect is independent of s because two effects cancel out: when s is large, (i) a change in
the average attendance of poor children matters more, and (ii) the average attendance of poor children changes less
in response to one poor dropping out. Going back to structural equations, the change in yE

i is equal to θw
0 s −1

12s and the
change in yNE

i is equal to θb
0s −1

12s .
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which implies that, in a group with only one poor child, receiving cash transfers would increase
her school attendance by 2 percentage points. Combined with the estimate of θb

0, we find an
indirect effect of 0.02 × 0.6 = 0.012. This implies that, in a group with only one poor child and
one non-poor child, the school attendance of the non-poor child would increase by 1.2 percentage
points in response to the change in the school attendance of the poor child once she receives cash
transfers (ceteris paribus). We discuss the magnitude of population multipliers below.
Our estimate of δ0 is lower than the estimate of Lalive and Cattaneo (2009) (although it belongs
to their confidence interval). This suggests that, in this context, the homogeneity assumption
leads to an attenuation bias. Our explanation is the following: θ is identified through “between”
interactions; since θb

0 < θw
0 , the homogeneity assumption leads to underestimating the strength of

peer effects, and consequently to underestimating the total effect when s is very high and “within”
interactions matter a lot; therefore, the procedure overestimates δ0 in order to fit the data (recall
that τE(s = 1) = δ0

1−θw
0

).
In terms of policy evaluation, Figure 5 represents the total effects and the population multipliers
as a function of s. Figure (a) plots the estimates of τE and τNE. In groups with a very low share of
poor children (s → 0), Progresa raises school attendance by 2 percentage points for the (very rare)
poor children and this is not enough to trigger any response by non-poor children. As the fraction
of poor increases, the effects on poor and non-poor increase in a convex way. In groups with a very
high share of poor children (s → 1), Progresa raises school attendance by 20 percentage points for
poor children and by 12 percentage points for the (very rare) non-poor children. The population
multipliers are equal to 1

1−θw
0
= 10 when s = 1. The dotted line plots the total effect of the policy:

sτE + (1 − s)τNE. Magnitudes range from 0 when s = 0 to 20 percentage points when s = 1. The
total effect for the average s in our sample (roughly 62.6%) is equal to 6p.p. for eligible children
and 3.5p.p. for non-eligible children. We conclude that the policy effect is strongly magnified by
peer effects.
To better understand why the total effects are convex, Figures (b) and (c) plot the population mul-
tipliers, M(s), for the non-eligibles and for the eligibles, respectively. Recall that the population
multipliers are the products of two components: the first one, s, captures the strength of the initial
shock; the second one, P(s), is not linear in s and captures the propagation of the shock. In the case
of Progresa, P(s) have a U-shape because θw

0 > θb
0. The intuition is the following. In mixed groups,

when s ≈ 0.5, there are a lot of “between” interactions. If θb
0 is low, the propagation rapidly loses

momentum: PE and PNE are low. In homogeneous groups, there are a lot of “within” interactions.
If θw

0 is high, they generate a snowball effect within the majority group, which also propagates to
the minority group. We can distinguish two cases: low s and high s. Both cases are symmetric for
the non-eligibles: either they respond a lot to a small propagation within eligibles (low s) or they
respond little to a large propagation within eligibles (high s). PNE is equally large in both cases.
In contrast, there is no symmetry for the eligibles because their own snowball effect is a first order
mechanism. PE is the largest when s is high.

7 Conclusion

We propose a simple methodology to estimate heterogeneous endogenous peer effects using par-
tial population experiments. We discuss the case of randomized experiments and differences-
in-differences. The procedure requires the following conditions: (i) there is no direct effect of the
treatment of the non-eligibles; (ii) there is sufficient variation in the share of eligibles across groups
and common support in the distribution by treatment status; (iii) there is a sufficient number of
groups. Intuitively, we match treated and control groups with a similar share of eligibles. For each
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pair, we estimate the treatment effect on the eligibles and the treatment effect on the non-eligibles.
The relationship between the treatment effects and the share of eligibles is informative about the
propagation of the initial shock through peer effects.
Our methodology provides an estimate of (i) the endogenous peer effects “between” the sub-
populations of eligibles and non-eligibles; (ii) the endogenous peer effects “within” each sub-
population; (iii) the direct effect of the policy; (iv) the population multipliers. These estimates are
useful in two ways. First, they help us understand how social influence works: who is influenced
by whom, and how much. Second, we can compute the policy effect and decompose the total
effect into a direct effect and an indirect effect generated by peers. Models with homogeneous
peer effects strongly restrict the relationship between the policy effects and the share of eligibles,
while our model with heterogeneous peer effects is less restrictive.
The estimation procedure relies on GMM. It is easy to implement with standard statistical software
and is not computationally intensive. Therefore, we think that our methodology has the potential
to be used broadly by applied economists interested in peer effects and/or policy evaluation.

18



References

Abadie, Alberto (2005). “Semiparametric difference-in-differences estimators”. In: The review of
economic studies 72(1), pp. 1–19.

Blume, Lawrence E et al. (2011). “Identification of social interactions”. In: Handbook of social eco-
nomics. Vol. 1. Elsevier, pp. 853–964.

Bobonis, Gustavo J. and Frederico Finan (2009). “Neighborhood Peer Effects in Secondary School
Enrollment Decisions”. In: Review of Economics and Statistics 91, pp. 695–716.
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Figures and Tables

Figure 1: Intuition: initial shock and propagation

Note: The top figure illustrates how the initial shock to eligibles propagates through peer effects. First, the eligibles
respond to the treatment: yE changes by δ (direct effect). Second, the non-eligibles respond to the change in yE: yNE

changes by θb × δ (indirect effect). Third, these initial changes lead to a cascade process, in which eligibles and non-
eligibles keep responding to each other (in proportion to θb) and also respond to other members of their own sub-group
(in proportion to θw).
The bottom figure illustrates how the process intensity varies with the share of eligibles, s. First, the initial shock is
proportional to s: the total direct effect on the group average is equal to δ × s. Second, the propagation depends on
s: arrows originating from yE are proportional to s while arrows originating from yNE are proportional to (1 − s).
“Between” and “within” interactions therefore matter more or less depending on s, and for a given s, differently for
eligibles and non-eligibles.
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Figure 2: Treatment effects on eligibles and non-eligibles

Note: The figure plots the total effect on the eligibles τE(s), in black, and the total effect on the non-eligibles τNE(s), in
gray, as a function of s. The graph on the left illustrates the case when θb < θw and the graph on the right illustrates the
case when θb > θw. As shown in section 3, τE(s) = δME(s) and τNE(s) = δθb MNE(s), where:

ME(s) = 1 + sPE(s), MNE(s) = sPNE(s), PE(s) =
θw − (1 − s)

[
(θw)2 − (θb)2

]
1 − θw + s(1 − s)

[
(θw)2 − (θb)2

] , PNE(s) =
1

1 − θw + s(1 − s)
[
(θw)2 − (θb)2

]
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Figure 3: Distribution of λ̂∗ in the Randomized Setting
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Note: The Figure plots the distribution of the GMM estimator λ∗ defined in the Estimation section (Randomized Exper-
iment subsection), based on 500 simulations of the DGP described in the Simulations Section (Randomized Experiment
subsection). The dashed red lines indicate the true value of the parameter.
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Figure 4: Distribution of λ̂∗ in the Natural Experiment Setting
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Note: The Figure plots the distribution of the GMM estimator λ∗ defined in the Estimation section (Natural Experiment
subsection), based on 500 simulations of the DGP described in the Simulations Section (Natural Experiment subsection).
The dashed red lines indicate the true value of the parameter.
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Figure 5: Results: Progresa

(a) Total effect on eligibles and non-eligibles

(b) Population multipliers for non-eligibles

(c) Population multipliers for eligibles

Note: The figure shows the total effects and population multipliers based on the Progresa estimates reported in Table 1.
Graph (a) plots the total effect on the eligibles τE(s), in black, and the total effect on the non-eligibles τNE(s), in gray,
as a function of s. The dotted line plots the total effect of the policy in the peer group.
Graph (b) (resp. graph (c)) plots the population multiplier M(s), in dashed lines, the propagation function P(s), in solid
lines, and the 45-degree line for non-eligibles (resp. eligibles) as a function of s. See formulas in the note below Figure 2.
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Table 1: Estimation results: Progresa

θb 0.60
θw 0.90
δ 0.02

N of groups 663
N of obs. 15,292

Note: The table reports the estimates of our three parameters of interest: the “between” peer effect parameter θb, the
“within” peer effect parameter θw, and the direct effect δ. We implement the procedure described in section 4 using
Progresa evaluation data. The computation of standard errors is in progress.
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Appendix A Proofs

Appendix A.1 Reduced Forms in the Randomized Experiment Setting

Let’s start from the aggregated model, based on Assumption 1

ȳE
g = θw

0 sgȳE
g + θb

0(1 − sg)ȳNE
g + δ0Dg + ēE

g

ȳNE
g = θb

0sgȳE
g + θw

0 (1 − sg)ȳNE
g + ēNE

g

Plugging-in the expression of ȳE
g into the one of ȳNE

g , we get

yNE
g =

θb
0sg

1 − θw
0 sg

(
θb

0(1 − sg)ȳNE
g + δ0Dg + ēE

g

)
+ θw

0 (1 − sg)ȳNE
g + ēNE

g

Rearranging terms, we get[
1 − θw

0 + sg(1 − sg)((θ
w)2 − (θb)2)

]
yNE

g = θb
0sg(δ0Dg + ēE

g ) + (1 − θw
0 sg)ēNE

g

Hence,

yNE
g =

1 − θw
0 sg

1 − θw
0 + sg(1 − sg)

[
(θw

0 )
2 − (θb

0)
2
] ēNE

g

+
θb

0sg

1 − θw
0 + sg(1 − sg)

[
(θw

0 )
2 − (θb

0)
2
] ēE

g

+
δ0θb

0sg

1 − θw
0 + sg(1 − sg)

[
(θw

0 )
2 − (θb

0)
2
]Dg

Now, plugging-in the reduced form expression of ȳNE
g into ȳE

g and developping, we get

ȳE
g =

1 − θw
0 (1 − sg)

1 − θw
0 + sg(1 − sg)

[
(θw

0 )
2 − (θb

0)
2
] ēE

g

+
θb

0(1 − sg)

1 − θw
0 + sg(1 − sg)

[
(θw

0 )
2 − (θb

0)
2
] ēNE

g (31)

+
δ0(1 − θw

0 (1 − sg))

1 − θw
0 + sg(1 − sg)

[
(θw

0 )
2 − (θb

0)
2
]Dg

=
θb

0(1 − sg)

1 − θw
0 + sg(1 − sg)

[
(θw

0 )
2 − (θb

0)
2
] ēNE

g

+
1 − θw

0 (1 − sg)

1 − θw
0 + sg(1 − sg)

[
(θw

0 )
2 − (θb

0)
2
] ēE

g

+ δ0

(
1 + sg.

θw
0 − (1 − sg)

[
(θw

0 )
2 − (θb

0)
2]

1 − θw
0 + sg(1 − sg)

[
(θw

0 )
2 − (θb

0)
2
])Dg
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Appendix A.2 Proposition 2

Suppose Assumptions 1, 2 and 3 are satisfied. For any k ∈ {E, NE} and any s ∈ S ,

τk(s) =E

[
ȳk

g|Dg = 1, sg = s
]
− E

[
ȳk

g|Dg = 1, sg = s
]

This quantity exists as long as Assumption 3 holds and the relevant conditional expectations are
well-defined. Let’s show first that

τk(s) =E

[
ρR(Dg)ȳk

g|sg = s
]

with ρR(Dg) =
Dg − P(Dg = 1)

P(Dg = 1)(1 − P(Dg = 1))

E

[
ρR(Dg)ȳk

g|sg = s
]
= E

[
Dg − P(Dg = 1|sg = s)

P(Dg = 1|sg = s)(1 − P(Dg = 1|sg = s))
ȳk

g|sg = s
]

= P(Dg = 1|sg = s)E

[
Dg − P(Dg = 1|sg = s)

P(Dg = 1|sg = s)(1 − P(Dg = 1|sg = s))
ȳk

g|sg = s, Dg = 1
]

+ P(Dg = 0|sg = s)E

[
Dg − P(Dg = 1|sg = s)

P(Dg = 1|sg = s)(1 − P(Dg = 1|sg = s))
ȳk

g|sg = s, Dg = 0
]

=
P(Dg = 1)(1 − P(Dg = 1))
P(Dg = 1)(1 − P(Dg = 1)) E

[
ȳk

g|sg = s, Dg = 1
]

−
(1 − P(Dg = 1))P(Dg = 1)
P(Dg = 1)(1 − P(Dg = 1)) E

[
ȳk

g|sg = s, Dg = 0
]

= E

[
ȳk

g|sg = s, Dg = 1
]
− E

[
ȳk

g|sg = s, Dg = 0
]

= τk(s)

The second equality is obtained using the law of iterated expectations and Assumption 2, in par-
ticular the fact that Dg ⊥⊥ sg. The third and forth equalities are algebra. Now,

E

[
ȳE

g |sg = s, Dg

]
=

θb
0(1 − s)

1 − θw
0 + s(1 − s)

[
(θw

0 )
2 − (θb

0)
2
] E

[
ēNE

g |sg = s
]

+
1 − θw

0 (1 − sgt)

1 − θw
0 + sgt(1 − sgt)

[
(θw

0 )
2 − (θb

0)
2
] E

[
ēE

g |sg = s
]

+ δ0

(
1 + sg.

θw
0 − (1 − sg)

[
(θw

0 )
2 − (θb

0)
2]

1 − θw
0 + sg(1 − sg)

[
(θw

0 )
2 − (θb

0)
2
])Dg

Since, by Assumption 2, Dg ⊥⊥ (ēE
g , ēNE

g ). It follows that

τE(s) = δ0

(
1 + sg.

θw
0 − (1 − sg)

[
(θw

0 )
2 − (θb

0)
2]

1 − θw
0 + sg(1 − sg)

[
(θw

0 )
2 − (θb

0)
2
])

Similarly, one can show that

τNE(s) =
δ0θb

0sg

1 − θw
0 + sg(1 − sg)

[
(θw

0 )
2 − (θb

0)
2
]

Finally, equations (18) and (19) are immediately identified, based on the definition of the popula-
tion multipliers.
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Appendix A.3 Proposition 2

From Assumption 1′, using the same steps as in Appendix A.1, we get

ȳE
gt =

θb
0(1 − sgt)

1 − θw
0 + sgt(1 − sgt)

[
(θw

0 )
2 − (θb

0)
2
] ēNE

gt

+
1 − θw

0 (1 − sgt)

1 − θw
0 + sgt(1 − sgt)

[
(θw

0 )
2 − (θb

0)
2
] ēE

gt

+
δ0
(
1 − θw

0 (1 − sgt)
)

1 − θw
0 + sgt(1 − sgt)

[
(θw

0 )
2 − (θb

0)
2
]Dgt

ȳNE
gt =

1 − θw
0 sgt

1 − θw
0 + sgt(1 − sgt)

[
(θw

0 )
2 − (θb

0)
2
] ēNE

gt

+
θb

0sgt

1 − θw
0 + sgt(1 − sgt)

[
(θw

0 )
2 − (θb

0)
2
] ēE

gt

+
δ0θb

0sgt

1 − θw
0 + sgt(1 − sgt)

[
(θw

0 )
2 − (θb

0)
2
]Dgt

Using Assumptions 2′ and the first part of 3′, we get

∆ȳE
g =

θb
0(1 − sg)

1 − θw
0 + sg(1 − sg)

[
(θw

0 )
2 − (θb

0)
2
] (ēNE

g2 − ēNE
g1 )

+
1 − θw

0 (1 − sg)

1 − θw
0 + sg(1 − sg)

[
(θw

0 )
2 − (θb

0)
2
] (ēE

g2 − ēE
g1)

+
δ0
(
1 − θw

0 (1 − sg)
)

1 − θw
0 + sg(1 − sg)

[
(θw

0 )
2 − (θb

0)
2
]Dg2

∆ȳNE
g =

1 − θw
0 sg

1 − θw
0 + sg(1 − sg)

[
(θw

0 )
2 − (θb

0)
2
] (ēNE

g2 − ēNE
g1 )

+
θb

0sg

1 − θw
0 + sg(1 − sg)

[
(θw

0 )
2 − (θb

0)
2
] (ēE

g2 − ēE
g1)

+
δ0θb

0sg

1 − θw
0 + sg(1 − sg)

[
(θw

0 )
2 − (θb

0)
2
]Dg2

Then, since there are supposed to be well-defined, we can take the conditional expectations of

28



these quantities with respect to (Dg2, sg), we get

E

[
∆ȳE

g

∣∣∣Dg2, sg

]
=

θb
0(1 − sg)

1 − θw
0 + sg(1 − sg)

[
(θw

0 )
2 − (θb

0)
2
] E

[
ēNE

g2 − ēNE
g1

∣∣∣Dg2, sg

]
+

1 − θw
0 (1 − sg)

1 − θw
0 + sg(1 − sg)

[
(θw

0 )
2 − (θb

0)
2
] E

[
ēE

g2 − ēE
g1

∣∣∣Dg2, sg

]
+

δ0
(
1 − θw

0 (1 − sg)
)

1 − θw
0 + sg(1 − sg)

[
(θw

0 )
2 − (θb

0)
2
]Dg2

E

[
∆ȳNE

g

∣∣∣Dg2, sg

]
=

1 − θw
0 sg

1 − θw
0 + sg(1 − sg)

[
(θw

0 )
2 − (θb

0)
2
] E

[
ēNE

g2 − ēNE
g1

∣∣∣Dg2, sg

]
+

θb
0sg

1 − θw
0 + sg(1 − sg)

[
(θw

0 )
2 − (θb

0)
2
] E

[
ēE

g2 − ēE
g1

∣∣∣Dg2, sg

]
+

δ0θb
0sg

1 − θw
0 + sg(1 − sg)

[
(θw

0 )
2 − (θb

0)
2
]Dg2

Now,

E

[
∆ȳE

g

∣∣∣Dg2 = 1, sg

]
− E

[
∆ȳE

g

∣∣∣Dg2 = 0, sg

]
=

δ0
(
1 − θw

0 (1 − sg)
)

1 − θw
0 + sg(1 − sg)

[
(θw

0 )
2 − (θb

0)
2
]

E

[
∆ȳNE

g

∣∣∣Dg2 = 1, sg

]
− E

[
∆ȳNE

g

∣∣∣Dg2 = 0, sg

]
=

δ0θb
0sg

1 − θw
0 + sg(1 − sg)

[
(θw

0 )
2 − (θb

0)
2
]

using Assumption 4′. Then, using the same steps as in the proof for Proposition 4, one can show
that, for any k ∈ {E, NE} and any s ∈ S ,

τk(s) =E

[
ρDiD(Dg2, sg)∆ȳk

g|sg = s
]

with ρDiD(Dg2, sg) =
Dg2 − P(Dg2 = 1|sg)

P(Dg2 = 1|sg)(1 − P(Dg2 = 1|sg))

Appendix A.4 Proposition 3

Let s1, s2 be two elements of (0, 1), such that s1 ̸= s2. Whether Assumptions 1, 2 and 3 hold
together or Assumptions 1′, 2′, 3′ and 4′ hold together, we have the following conditions

τE(s1) =
δ0 (1 − θw

0 (1 − s1))

1 − θw
0 + s1(1 − s1)

[
(θw

0 )
2 − (θb

0)
2
] (32)

τNE(s1) =
δ0θb

0s1

1 − θw
0 + s1(1 − s1)

[
(θw

0 )
2 − (θb

0)
2
] (33)

τE(s2) =
δ0 (1 − θw

0 (1 − s2))

1 − θw
0 + s2(1 − s2)

[
(θw

0 )
2 − (θb

0)
2
] (34)

τNE(s2) =
δ0θb

0s2

1 − θw
0 + s2(1 − s2)

[
(θw

0 )
2 − (θb

0)
2
] (35)

29



where equations (32) and (34) are written in the reduced form, as derived in (31). Note that for
any s ∈ (0, 1) and for any (x1, x2) ∈ (−1, 1)× (−1, 1),

1 − x1 + s(1 − s)
[
(x1)

2 − (x2)
2] > 0

Dividing (33) by (32) and (35) by (34), we get

τNE(s1)

τE(s1)
=

θb
0s1

1 − θw
0 (1 − s1)

(36)

τNE(s2)

τE(s2)
=

θb
0s2

1 − θw
0 (1 − s2)

(37)

Since it is supposed that θb
0 ̸= 0, (36) can be divided by (37), and we get

κ =

τNE(s1)
τE(s1)

τNE(s2)
τE(s2)

=
s1(1 − θw

0 (1 − s2))

s2(1 − θw
0 (1 − s1))

(38)

From there, it is clear that if there is a unique θw
0 that solves (38), then there is a unique λ0 that

solves the system defined by (32), (33), (34) and (35). Let’s suppose there exists θ̃w ∈ (−1, 1),
θ̃w ̸= θw

0 such that

s1(1 − θw
0 (1 − s2))

s2(1 − θw
0 (1 − s1))

=
s1(1 − θ̃w(1 − s2))

s2(1 − θ̃w(1 − s1))

which can be re-expressed as

(1 − θw
0 (1 − s2))(1 − θ̃w(1 − s1)) = (1 − θw

0 (1 − s1))(1 − θ̃w(1 − s2))

=⇒ − θ̃w(1 − s1)− θw
0 (1 − s2) = −θ̃w(1 − s2)− θw

0 (1 − s1)

=⇒ (θ̃w − θw
0 )(s2 − s1) = 0

Since s1 ̸= s2 and θ̃w ̸= θw
0 , this leads to a contradiction so necessarily, θ̃w = θw

0 . Consequently, the
whole vector λ0 is identified

Appendix A.5 Proposition 4

Let

λ̂∗ =

 δ∗

θw∗

θb∗

 := arg min
Θ

[m(λ)]′V̂−1
G m(λ)

with

Zg := (yE
g , yNE

g , Dg, sg)

m(λ) =
1
G

G

∑
g=1

f (sg)û(Zg; λ)

û(Zg; λ) =


ρR(Dg)yE

g −
δ
(
1 − θw(1 − sg)

)
1 − θw + sg(1 − sg) [(θw)2 − (θb)2]

ρR(Dg)yNE
g −

δθbsg

1 − θw + sg(1 − sg) [(θw)2 − (θb)2]
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and V̂G
p−→ V0 := E

[
f (sg)u(Zg; λ0)u(Zg; λ0)′ f (sg)′

]
. According to Theorem 2.6 of Newey and

McFadden (1994), if

1. V0 is positive semi-definite and V0 E
[

f (sg)û(Zg; λ)
]
= 0 only if λ = λ0

2. Θ is compact

3. f (sg)û(Zg; λ) is continuous at each λ ∈ Θ almost surely

4. E

[
sup
λ∈Θ

|| f (sg)û(Zg; λ)||
]
< +∞

Then, λ̂∗ is a consistent estimator of λ0.

By assumptions, Conditions 1 and 2 are satisfied (1 holds for instance when the conditions of
Proposition 3 are met). Since û is differentiable with respect to λ on Θ, it is also continuous with
respect to λ. So Condition 3 is also satisfied. Finally, since for k ∈ {E, NE}, E

[
|yk|
]
< +∞ and

sg ∈ (0, 1], there exists κ ∈ R+ such that for any λ ∈ Θ,

δ × max(θbsg, 1 − θw(1 − sg))

1 − θw + sg(1 − sg) [(θw)2 − (θb)2]
< κ

which implies that E

[
sup
λ∈Θ

|| f (sg)û(Zg; λ)||
]
< +∞ so Condition 4 is also satisfied. As a conclu-

sion, λ̂∗ is a consistent estimator of λ0. Then, according to Theorem 3.4 of Newey and McFad-
den (1994), if

1. λ0 ∈ Int(Θ)

2. f (sg)û(Zg; λ) is continuous differentiable in a neighborhood of λ0, almost surely

3. E
[

f (sg)û(Zg; λ0)
]
= 0 and E

[
|| f (sg)û(Zg; λ0)||2

]
< +∞

4. E

[
sup
λ∈Θ

||∇λû(Zg; λ)||2
]
< +∞

5. M′
0V−1

0 M0 is non-singular with M0 := E

[
f (sg)

∂uR(Zg; λ0)

∂λ′

]
Then,

√
G(λ̂∗ − λ0)

d−→ N
(

0,
[

M′
0V−1

0 M0

]−1
)

By assumption, Condition 1 holds. Since û(Zg; λ) is twice differentiable with respect to λ on Θ, it

is continuously differentiable, so condition 2 holds as well. Since, for k ∈ {E, NE}, E

[
|yk|2

]
< +∞

and sg ∈ (0, 1], then Assumption 3 holds as well. Points 4 and 5 hold as well, due to the restriction
on the distribution of yk, on the support of sg and on Θ.
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Appendix B Extension - Including Covariates

In this section, we show how the model can be adapted, in the natural experiment setting, so as to
make the common trends assumption more plausible.

Appendix B.1 Identification

Let ∆Xg denote a vector of observed changes of some of group g’s exogenous characteristics and
let X denote the support of ∆Xg. Let’s suppose Assumption 4′ does not hold but, instead, the
following condition is satisfied

Assumption 3′′ (Extended Conditional Common Trends). For any k ∈ {E, NE},

E
[
ek

g2 − ek
g1|sg, ∆Xg, Dg2 = 1

]
= E

[
ek

g2 − ek
g1|sg, ∆Xg, Dg2 = 0

]
Intuitively, we are going to compare pairs of treated and control groups with the same share of
eligible units and the same evolution of the covariates X from period 1 to 2. Then, we assume
that, in the absence of the treatment, the change in the average aggregate outcome among eligible
units in treated groups would have been the same as the change in the average aggregate outcome
among eligible units in control groups. We make the same assumption regarding the change in
group average outcome among non-eligible units. Finally,

Assumption 4′′ (Extended Conditional Common Support). For every (g, t) ∈ {1, . . . , G} × {1, 2},

Dg1 = 0 a.s and for all s ∈ S and x ∈ X , 0 < P(Dg2 = 1|s, x) < 1

Then, the previous results can be adapted to this new context

Proposition 5 (Conditional Moment Conditions - Natural Experiment with Covariates). Let I be
an interval on R\{0}. Let λ0 = (δ0, θw

0 , θb
0) be the true value of the parameters with λ0 ∈ Θ := I ×

(−1, 1)× (−1, 1). For any s ∈ (0, 1), provided Assumptions 1′, 2′, 3′′ and 4′′ hold and all the mentioned
conditional moments are well-defined,

E

[
uDiDX(Zg; λ0)|sg = s, ∆Xg = x

]
=

(
E
[
uDiDX,E(Zg; λ0)|sg = s, ∆Xg = x

]
E
[
uDiDX,NE(Zg; λ0)|sg = s, ∆Xg = x

]) = 0

where Zg := (∆yE
g , ∆yNE

g , Dg2, sg, ∆Xg) and for all λ ∈ Θ,

uDiDX,E(Zg; λ) = ρDiDX(Dg2, sg, ∆Xg)∆yE
g −

δ
(
1 − θw(1 − sg)

)
1 − θw + sg(1 − sg) [(θw)2 − (θb)2]

uDiDX,NE(Zg; λ) = ρDiDX(Dg2, sg, ∆Xg)∆yNE
g −

δθbsg

1 − θw + sg(1 − sg) [(θw)2 − (θb)2]

and ρDiDX(Dg2, sg, ∆Xg) =
Dg2 − P(Dg2 = 1|sg, ∆Xg)

P(Dg2 = 1|sg, ∆Xg)(1 − P(Dg2 = 1|sg, ∆Xg))
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Proof. Provided they are well-defined, the conditional expectations of ∆yE
g and ∆yNE

g with respect
to (Dg2, sg, ∆Xg) are

E

[
∆ȳE

g

∣∣∣Dg2, sg, ∆Xg

]
=

θb
0(1 − sg)

1 − θw
0 + sg(1 − sg)

[
(θw

0 )
2 − (θb

0)
2
] E

[
ēNE

g2 − ēNE
g1

∣∣∣Dg2, sg, ∆Xg

]
+

1 − θw
0 (1 − sg)

1 − θw
0 + sg(1 − sg)

[
(θw

0 )
2 − (θb

0)
2
] E

[
ēE

g2 − ēE
g1

∣∣∣Dg2, sg, ∆Xg

]
+

δ0
(
1 − θw

0 (1 − sg)
)

1 − θw
0 + sg(1 − sg)

[
(θw

0 )
2 − (θb

0)
2
]Dg2

E

[
∆ȳNE

g

∣∣∣Dg2, sg, ∆Xg

]
=

1 − θw
0 sg

1 − θw
0 + sg(1 − sg)

[
(θw

0 )
2 − (θb

0)
2
] E

[
ēNE

g2 − ēNE
g1

∣∣∣Dg2, sg, ∆Xg

]
+

θb
0sg

1 − θw
0 + sg(1 − sg)

[
(θw

0 )
2 − (θb

0)
2
] E

[
ēE

g2 − ēE
g1

∣∣∣Dg2, sg, ∆Xg

]
+

δ0θb
0sg

1 − θw
0 + sg(1 − sg)

[
(θw

0 )
2 − (θb

0)
2
]Dg2

Now,

E

[
∆ȳE

g

∣∣∣Dg2 = 1, sg, ∆Xg

]
− E

[
∆ȳE

g

∣∣∣Dg2 = 0, sg, ∆Xg

]
=

δ0
(
1 − θw

0 (1 − sg)
)

1 − θw
0 + sg(1 − sg)

[
(θw

0 )
2 − (θb

0)
2
]

E

[
∆ȳNE

g

∣∣∣Dg2 = 1, sg, ∆Xg

]
− E

[
∆ȳNE

g

∣∣∣Dg2 = 0, sg, ∆Xg

]
=

δ0θb
0sg

1 − θw
0 + sg(1 − sg)

[
(θw

0 )
2 − (θb

0)
2
]

using Assumption 3′′. Finally, using the same steps as in the proof for Proposition 4, one can show
that, for any k ∈ {E, NE},

E

[
ρDiDX(Dg2, sg, ∆Xg)∆ȳE

g |sg, ∆Xg

]
= E

[
Dg2 − P(Dg2 = 1|sg, ∆Xg)

P(Dg = 1|sg, ∆Xg)(1 − P(Dg = 1|sg, ∆Xg))
∆ȳk

g|sg, ∆Xg

]
=

P(Dg2 = 1|sg, ∆Xg)(1 − P(Dg2 = 1|sg, ∆Xg))

P(Dg2 = 1|sg, ∆Xg)(1 − P(Dg2 = 1|sg, ∆Xg))
E

[
∆ȳk

g|sg, ∆Xg, Dg2 = 1
]

−
(1 − P(Dg2 = 1|sg, ∆Xg))P(Dg2 = 1|sg, ∆Xg)

P(Dg2 = 1|sg, ∆Xg)(1 − P(Dg2 = 1|sg, ∆Xg))
E

[
∆ȳk

g|sg, ∆Xg, Dg2 = 0
]

= E

[
∆ȳk

g|sg, ∆Xg, Dg2 = 1
]
− E

[
ȳk

g|sg, ∆Xg, Dg2 = 0
]

Appendix B.2 Estimation

In this section, we present preliminary results on a practical way of estimating λ0 := (δ0, θw
0 , θb

0)
in a natural experiment setting where Assumption 4′ fails but Assumption 3′′ holds. We consider
the following GMM estimator
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λ̂X := arg min
Θ

[m(λ)]′m(λ) (39)

with Zg := (∆yE
g , ∆yNE

g , Dg2, sg, ∆Xg), m(λ) =
1
G

G

∑
g=1

f (sg)û(Zg; λ),

û(Zg; λ) =


ρ̂DiDX(Dg2, sg, ∆Xg)∆yE

g −
δ
(
1 − θw(1 − sg)

)
1 − θw + sg(1 − sg) [(θw)2 − (θb)2]

ρ̂DiDX(Dg2, sg, ∆Xg)∆yNE
g −

δθbsg

1 − θw + sg(1 − sg) [(θw)2 − (θb)2]


and

ρ̂DiDX(Dg2, sg, ∆Xg) =
P̂(Dg2 = 1|sg, ∆Xg)

P̂(Dg2 = 1|sg, ∆Xg)(1 − P̂(Dg2 = 1|sg, ∆Xg))

where P̂(Dg2 = 1|sg, ∆Xg) is estimated, in a first step, using a probit regression of Dg2 on a con-
stant, sg and the vector ∆Xg.

We evaluate this estimation procedure via simulations, using the following DGP. For each group
g, we observe a vector Zg = (∆yE

g , ∆yNE
g , sg, Dg, ∆XE

g , ∆XNE
g ) such that

yE
g1 = (αE

g + εE
g1) + θw

0 sgyE
g1 + θb

0(1 − sg)yNE
g1

yE
g2 = (αE

g + λEsg + βE∆XE
g + εE

g2) + θw
0 sgyE

g2 + θb
0(1 − sg)yNE

g2 + δ0Dg2

yNE
g1 = (αNE

g + εNE
g1 ) + θb

0sgyE
g1 + θw

0 (1 − sg)yNE
g1

yNE
g2 = (αNE

g + λNEs2
g + βNE∆XNE

g + εNE
g2 ) + θb

0sgyE
g2 + θw

0 (1 − sg)yNE
g2

with (
βE

βNE

)
=

(
−1
−2

)
(

λE

λNE

)
=

(
1
−3

)

εg =


εE

g1
εE

g2
εNE

g1
εNE

g2

 ∼ N (0, Σε)

sg ∼ F−1
U(0,1]

(V1
g )

Dg2 ∼ F−1
B(1/2)(V

2
g )

αE
g

αNE
g

V1
g

V2
g

∆XE
g

∆XNE
g


∼ N (0, Σα,V,X)
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where Σε and Σα,V,X are positive definite symmetric matrices whose eigenvalues are respectively
2 and 1 (resp. 1, 2, 3, 4 and 5). By construction, Assumptions 1′ and 2′ are satisfied with

eE
g1 = αE

g + εE
g1

eNE
g1 = αNE

g + εNE
g1

eE
g2 = αE

g + λEsg + βE∆XE
g + εE

g2

eNE
g2 = αNE

g + λNEs2
g + βNE∆XNE

g + εNE
g2

Note that

E

[
eE

g2 − eE
g1

∣∣∣sg, Dg2 = 1, ∆Xg

]
= E

[
eE

g2 − eE
g1

∣∣∣sg, Dg2 = 0, ∆Xg

]
= λEsg + βE∆XE

g

E

[
eNE

g2 − eNE
g1

∣∣∣sg, Dg2 = 1, ∆Xg

]
= E

[
eNE

g2 − eNE
g1

∣∣∣sg, Dg2 = 0, ∆Xg

]
= λNEs2

g + βNE∆XNE
g

so Assumption 3′′ is also satisfied: conditional on sg and ∆Xg = (∆XE
g , ∆XNE

g ), treated and control
groups have the same time trend, and this trend is potentially different for eligibles and non-
eligibles. Finally, Assumption 4′′ holds with probability 1.

Figure A1 plots the distribution of λ̂X from 500 simulations. Meanwhile, Figure A2 plots the
distribution of λ̂∗, the baseline estimator in a natural experiment setting. As expected, λ̂∗ ap-
pears to be biased. Interestingly, even though we don’t use a nonparametric first step to estimate
P(Dg2 = 1|∆Xg, sg), we significantly manage to reduce the bias when controlling for covariates
using a logitistic regression.
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Appendix C Additional Figures and Tables

Figure A1: Distribution of λ̂X in the Natural Experiment Setting with Conditional Common Trends
- Controlling for Covariates
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Note: The Figure plots the distribution of the GMM estimator λ∗ defined in the Simulations section (Implementation
Challenges), based on 500 simulations. The dashed red lines indicate the true value of the parameter.
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Figure A2: Distribution of λ̂∗ in the Natural Experiment Setting with Conditional Common Trends
- not Controlling for Covariates
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Note: The Figure plots the distribution of the GMM estimator λ∗ defined in the Estimation section (Natural Experiment
subsection), based on 500 simulations, while Assumption 4′ does not hold but Assumption 3′′ is satisfied. The dashed
red lines indicate the true value of the parameter.
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Figure A3: Progresa: distribution of s, by treatment status
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