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1. Introduction

The Kalman filter is a highly effective recursive procedure for making inference about state vectors, which

can be used to compute the precise Gaussian likelihood function. The filter is optimal in the sense that it

minimizes the covariance matrix of one-step ahead prediction errors. Furthermore, the Kalman filter can be

executed swiftly and efficiently from an applied and computational standpoint. However, non-Gaussianity,

specifically skewness, characterizes many time series frequently employed for estimating linear state-space

models in real data applications. As a result, it is necessary to adjust the state-space modeling framework

and algorithms to accommodate skewness in the error term distribution.

In this context, the closed skew-normal (CSN) distribution proposed by González-Faŕıas et al. (2004b)

serves as an appropriate alternative, as it extends the Gaussian distribution by introducing skewness while

maintaining key properties of the normal distribution, see e.g. Azzalini & Capitanio (2014) and Genton

(2004) for excellent textbook introductions. Notably, this distribution encompasses both the normal distri-

bution and the widely-used skew-normal distribution of Azzalini (1985) and Azzalini & Dalla Valle (1996)

as special cases. Since the three fundamental tools for implementing the Kalman filter are closure under

linear transformation, summation, and conditioning, utilizing this distribution enables the development of

closed-form recursions that closely resemble the Gaussian Kalman filter (Naveau et al., 2005).

However, applications are usually limited to univariate settings and simplified model assumptions. We

posit that this is primarily due to a computational challenge we refer to as the curse of increasing skewness

dimensions, which we address in this paper. Essentially, the issue arises from the fact that the probability

density function (pdf) of the CSN distribution possesses two dimensions, resulting from the multiplication

of a Gaussian pdf by the ratio of two Gaussian cumulative distribution functions (cdf). While the Gaussian

pdf reflects resemblance to the normal distribution, the skewness dimension originates from the Gaussian

cdfs. Even though evaluating Gaussian cdfs is a well understood task, it can become numerically difficult,

if not infeasibe, if the dimension of the cdfs becomes very large, a point recently echoed by Amsler et al.

(2021) for the skew-normal distribution. And this manifests the core challenge intrinsic to the Skewed

Kalman Filter, as in state-space models this dimension grows swiftly and may even explode as the recursion

proceeds over many time steps. It does so, because the sum of two CSN distributed variables remains within

a CSN distribution, yet the resulting skewness dimension consists of the combined sum of the individual

dimensions of each variable.

To address this challenge, our primary contribution is to propose a computationally efficient method for

approximating the updating distribution of the skewed Kalman filter by reducing the skewness dimension at

each iteration. Our algorithm relies on the fact that a CSN distributed random variable can be represented

as a conditional distribution of two normally distributed variables. Intuitively, in this representation, the

correlation between the two random variables introduces asymmetry and skewness. When the correlation is
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high, the asymmetry of the conditional random variable, which is CSN distributed, is also large. However,

when the correlation is low, the symmetry is minimally affected, and the CSN distribution closely resembles

the Gaussian distribution. In the extreme case with no correlation, the conditional random variable will

be identical to a normally distributed one, causing the Skewed Kalman Filter to morph into the Gaussian

Kalman Filter. Our approach is hence based on a low threshold, such as 1% in absolute value, at which we

discard weakly correlated elements in the skewed Kalman filtering steps, as they do not substantially distort

symmetry. By doing this, we effectively decrease the overall skewness dimension by the number of pruned

variables, making the Skewed Kalman Filter applicable for multivariate state-space models without any

restrictive assumptions or constraints on the state-space system. We refer to this algorithm as the Pruned

Skewed Kalman Filter. Our second contribution is to analytically demonstrate how skewness propagates

through the system, providing motivation and derivation for the algorithm. Lastly, our third contribution is

to derive the Skewed Kalman Smoother. To our knowledge, we are the first to provide closed-form expressions

and, more importantly, to implement the smoothing steps using our pruning algorithm.

We find that our algorithm works well in practice in terms of accuracy, speed, and applicability. To this

end, we provide extensive Monte Carlo simulation evidence in both univariate and multivariate settings.

When data exhibits skewness, the Pruned Skewed Kalman algorithm (i) filters and smooths the unobserved

state vector more accurately than the conventional Kalman algorithm, (ii) requires only marginally more

time than the Gaussian Kalman filter to evaluate the likelihood function, and (iii) offers precise maximum

likelihood estimators for the shock parameters in finite samples.

We demonstrate the applicability of the Pruned Skewed Kalman Filter and Smoother by revisiting two

well-established macroeconometric estimation exercises: the multivariate dynamic Nelson-Siegel (DNS) term

structure model of Diebold et al. (2006) and the New Keynesian Dynamic Stochastic General Equilibrium

(DSGE) model of Ireland (2004). The first application is motivated by the fact that it has become standard

practice to analyze the term structure of interest rates through estimating DNS models with the conventional

Gaussian Kalman filter. However, the resulting estimates typically reveal mild to substantial skewness in the

smoothed error term distribution, which subsequently propagates through the state-space system, leading

to skewed estimated latent factors. This means that skewed shocks play a crucial role in explaining level,

slope and curvature changes in the yield curve, but this contradicts the assumption of either Gaussianity

or linearity of the state-space system. Recent evidence also suggests that skewness of the latent factors is a

significant indicator of the state of the economy, (not only but) particularly in the face of unprecedented low

interest rates (Bauer & Chernov, 2021; Ruge-Murcia, 2017). Furthermore, the negative skewness of stock

returns and its implications for asset pricing and investment management have been extensively documented

(Neuberger, 2012). The second application is motivated by recent estimates (with the Gaussian Kalman

smoother) that demonstrate significant asymmetry in structural shocks such as monetary policy, productiv-

ity, and uncertainty innovations (Lindé et al., 2016; Ludvigson et al., 2021; Ruge-Murcia, 2017). This once
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again challenges the validity of the Gaussian assumption when employing Kalman filtering techniques for

estimation. Therefore, we re-estimate both models using the Pruned Skewed Kalman Filter and Smoother

within a Maximum Likelihood framework on US data. In alignment with the aforementioned evidence, our

findings indicate that the data clearly favors a skewed distribution for the error term distribution of all

three yield curve factors in the DNS model. Similarly, in the estimated DSGE model, we discover that both

productivity and monetary policy shocks exhibit substantial asymmetry.

Our presentation and implementation of the Pruned Skewed Kalman Filter and Smoother maintain

a high degree of generality, closely mirroring the simplicity found in the normal Kalman filtering and

smoothing routines. As for modeling, empirical researchers can retain their linear state-space system while

introducing additional flexibility by assuming a CSN distribution for the error terms in the state transition

equation. In terms of computation, any estimation approach employing Kalman filtering techniques, be

it Bayesian or Frequentist, can be easily and seamlessly adapted by simply replacing the Kalman filtering

routine. Notably, we have already developed a preliminary implementation and interface to integrate the

Pruned Skewed Kalman Filter into Dynare, a toolbox for estimating DSGE models using both Maximum

Likelihood and Bayesian MCMC methods (Adjemian et al., 2022).1 To highlight this versatility, we provide

model-independent implementations of the Pruned Skewed Kalman Filter and Smoother in Julia, MATLAB,

Python, and R.2 Ultimately, our goal is to offer an accessible and intuitive tool for promoting empirical

research across a wide array of fields where skewness is a crucial and inherent aspect of the research agenda.

Related Literature

On the one hand, the (closed) skew-normal distribution has been applied in various disciplines, such

as property-liability insurance claims (Eling, 2012), growth-at-risk analysis (Adrian et al., 2019; Wei et al.,

2021; Wolf, 2022), mental well-being studies (Pescheny et al., 2021), modelling psychiatric measures (Counsell

et al., 2011), risk management (Vernic, 2006), stochastic frontier models (Chen et al., 2014; Zhu et al., 2022),

stock returns (Chen et al., 2003), and multivariate time series econometrics (Karlsson et al., 2023). On the

other hand, the Skewed Kalman Filter is seldom used in practice, despite its considerable potential and

simplicity of its implementation. Particularly, in economics and econometrics, the literature is very sparse,

with Cabral et al. (2014) examining UK gas consumption and Emvalomatis et al. (2011) estimating dynamic

efficiency measurements in agricultural economics as notable exceptions.

Naveau et al. (2005) and Cabral et al. (2014) formulate Skewed Kalman Filters based on the CSN dis-

tribution for linear state-space systems, but assume the CSN distribution for the initial state vector only.

Interestingly, in this scenario, the skewness dimension remains constant, allowing for a straightforward

derivation of the Kalman filtering steps without encountering the curse of increasing skewness dimensions.

1We plan to release this feature with Dynare 6.0.
2Code is available at https://github.com/gguljanov/pruned-skewed-kalman.
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However, we demonstrate that the impact of the initial distribution and the level of skewness dissipate

rapidly over time, which is not commonly observed in real data applications. Alternatively, Naveau et al.

(2005) devise an extended univariate state-space model by dividing the state vector into linear and skewed

components, enabling filtering without an explosion in the skewness dimension. Kim et al. (2014) later

extend this approach for mixtures of skewed Kalman filters. Nonetheless, general state-space models, like

the reduced-form representations of structural economic models, cannot be transformed into this extended

format, and it is also subject to the curse of increasing skewness dimensions. Moreover, they only provide

numerical examples in univariate settings, whereas we provide real data applications in multivariate frame-

works. Another approach proposed by Arellano-Valle et al. (2019) is to incorporate the CSN distribution

into the measurement equation, while still modeling state transition shocks as normally distributed. How-

ever, ample evidence in economics suggests that skewness primarily originates from innovations rather than

measurement errors, rendering their approach unsuitable for broader contexts. Finally, Rezaie & Eidsvik

(2014, 2016) develop Skewed Unscented Kalman Filters for nonlinear state-space systems and discuss com-

putational aspects. They contend that, for practical purposes, one must either assume simplified conditions

or refit the updated distribution. In this paper, we specifically choose to employ the latter strategy.

The structure of this paper is as follows: Section 2 provides an overview of the CSN distribution’s

representations and properties, which are essential for filtering and smoothing. Section 3 outlines the

closed-form expressions and the forward and backward recursion steps for the Skewed Kalman Filter and

Smoother. In Section 4, we initially demonstrate how skewness propagates through the state-space system

over time and subsequently derive our pruning algorithm. In Section 5, we present a summary of our Monte

Carlo results, with detailed results available in an online appendix. Sections 6 and 7 concentrate on our two

empirical applications. Finally, we offer concluding remarks in Section 8.

2. Closed skew-normal distribution

In this section, we summarize the definition and properties of the CSN distribution. The exposition and

notation follow closely González-Faŕıas et al. (2004a), González-Faŕıas et al. (2004b), Grabek et al. (2011)

and Rezaie & Eidsvik (2014). Let E1 ∼ Np(0,Σ) and E2 ∼ Nq(0,∆) be independent multivariate normally

distributed random vectors. The p × p covariance matrix Σ is positive semi-definite, the q × q covariance

matrix ∆ is positive definite. Let µ and ν be real vectors of length p and q, respectively, and Γ a real q × p

matrix. Define

W = µ+ E1

Z = −ν + ΓE1 + E2.
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Then  W

Z

 ∼ Np+q

 µ

−ν

 ,
 Σ ΣΓ′

ΓΣ ∆ + ΓΣΓ′

 . (1)

Let the random vector X have the same distribution as W |Z ≥ 0. Then X has a closed skew-normal (CSN)

distribution

X ∼ CSNp,q(µ,Σ,Γ, ν,∆).

The moment generating function (mgf) of X is

MX(t) = Φq(ΓΣt; ν,∆ + ΓΣΓ′)
Φq(0; ν,∆ + ΓΣΓ′) exp(t′µ+ 1/2t′Σt)

for t ∈ Rp and Φq(·;m,S) is the cdf of the multivariate normal distribution with expectation vector m and

covariance matrix S. If the covariance matrix Σ is non-singular, then X has the probability density function

fX(x;µ,Σ,Γ, ν,∆) = Φq(Γ(x− µ); ν,∆)
Φq(0; ν,∆ + ΓΣΓ′)ϕp(x;µ,Σ) (2)

where ϕp is the pdf of a multivariate normal distribution. We do not, however, impose non-singularity in

general.

Figure 1 illustrates the pdf of a univariate CSN distribution with parameters µ = 0, Σ = 1, ν = 0 (or

ν = −8), ∆ = 1 and different values for the shape parameter Γ. We see that, in the univariate case, the

distribution is left-skewed if Γ is negative, and right-skewed if it is positive. For Γ = 0 one obtains the

(symmetric) standard Gaussian distribution. Similarly, we illustrate a bivariate CSN distribution with left-

and right-skewed marginals in figure 2 with the following parametrization:

X ∼ CSN2,2

0

0

 ,
 1 0.7

0.7 1

 ,Γ, ν,
1 0

0 1


Note that the mean and covariance ofX differ from µ and Σ unless Γ = 0 in which case the probability density

of the CSN distribution reduces to the Gaussian one. Another special case is given by CSN1,1(0, 1, γ, 0, 1)

which corresponds to the well-known univariate standardized skew-normal distribution of Azzalini (1985). To

summarize, µ and Σ are called the location and scale parameters of “normal dimension” p, while the dimen-

sion q is labelled “skewness dimension”. Accordingly, Γ regulates skewness continuously from the normal pdf

(Γ = 0) to a half normal pdf, with the skewness coefficient being bounded by ±
√

2(π−4)/(π−2)3/2 ≈ ±0.995.

The other skewness parameters ν and ∆ are somewhat open to interpretation; however, as we outline below,

they allow to establish closure of the CSN distribution under conditioning (ν), marginalization (∆) and
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summation (as Φq(0; ν,∆ + ΓΣΓ′) is a constant).
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Figure 1: Density functions of univariate CSN distributions with different skewness parameters Γ and ν; other parameters are
µ = 0, Σ = 1 and ∆ = 1.

One can see from (1) that the asymmetric deviation of the CSN distribution from the symmetric Gaussian

distribution results from the covariance between W and Z; in other words, it is this correlation that adds

skewness to the Gaussian distribution. Hence, the CSN distribution can be regarded as a generalization

of the normal distribution and as such inherits several of its properties. In the following, we review those

properties that are of special interest for the Skewed Kalman Filter and Smoother. Proofs can be found in

González-Faŕıas et al. (2004a) and González-Faŕıas et al. (2004b).

Property 1 (Linear transformation, full row rank).

Let X ∼ CSNp,q(µx,Σx,Γx, νx,∆x) and F be a real r × p matrix of rank r ≤ p such that FΣxF
′ is non-

singular, then

Y = FX ∼ CSNr,q(µy,Σy,Γy, νy,∆y)

with µy = Fµx, Σy = FΣxF
′, νy = νx, Γy = ΓxΣxF

′Σ−1
y , and ∆y = ∆x + ΓxΣxΓ′

x − ΓxΣxF
′Σ−1

y FΣxΓ′
x.

In other words, the CSN distribution is closed under linear transformations. If F is p× p square and if both

F and Σx have full rank p, the expressions for Γy and ∆y simplify to Γy = ΓxF
−1 and ∆y = ∆x.

Property 2 (Linear transformation, full column rank).

Let X ∼ CSNp,q(µx,Σx,Γx, νx,∆x) and F be a real r × p matrix with r > p and rank(F ) = p, then

Y = FX ∼ CSNr,q(µy,Σy,Γy, νy,∆y)
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Figure 2: Density functions of bivariate CSN distributions with different skewness parameters:

(a) Γ =
[

6 0
0 6

]
, ν =

[
0
0

]
, (b) Γ =

[
6 0
0 −6

]
, ν =

[
0
0

]
, (c) Γ =

[
6 6
6 6

]
, ν =

[
0
0

]
, (d) Γ =

[
6 0
0 6

]
, ν =

[
−6
−6

]
.

has a singular distribution with µy = Fµx, Σy = FΣxF
′, Γy = Γx(F ′F )−1F ′, νy = νx and ∆y = ∆x.

Property 3 (Joint distribution).

Let X ∼ CSNpx,qx
(µx,Σx,Γx, νx,∆x) and Y ∼ CSNpy,qy

(µy,Σy,Γy, νy,∆y) be independent random vectors.

Then

Z =

 X

Y

 ∼ CSNpz,qz
(µz,Σz,Γz, νz,∆z)

with dimensions pz = px + py, qz = qx + qy and parameters

µz = (µ′
x, µ

′
y)′ Σz =

 Σx 0

0 Σy

 Γz =

 Γx 0

0 Γy

 νy = (ν′
x, ν

′
y)′ ∆z =

 ∆x 0

0 ∆y

 .

The joint distribution of independent CSN distributions is CSN again. Together with property 1 this implies

that sums of independent CSN random vectors (with compatible dimensions) are CSN.

Property 4 (Summation).

Let X ∼ CSNp,qx
(µx,Σx,Γx, νx,∆x) and Y ∼ CSNp,qy

(µy,Σy,Γy, νy,∆y) be independent random vectors.
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Then

Z = X + Y ∼ CSNp,qz
(µz,Σz,Γz, νz,∆z)

with dimensions p and qz = qx + qy and parameters

µz = µx + µy, Σz = Σx + Σy, Γz =

 ΓxΣxΣ−1
z

ΓyΣyΣ−1
z

 , νz =

 νx

νy

 , ∆z =

 ∆xx ∆xy

∆′
xy ∆yy


where ∆xx = ∆x+ΓxΣxΓ′

x−ΓxΣxΣ−1
z ΣxΓ′

x, ∆yy = ∆y+ΓyΣyΓ′
y−ΓyΣyΣ−1

z ΣyΓ′
y, and ∆xy = −ΓxΣxΣ−1

z ΣyΓ′
y.

Note that the skewness dimension q increases when two closed skew-normal random vectors are added.

While this does not matter theoretically, it turns out to be a severe numerical problem since evaluating the

density function of the sum involves calculating the cdf of a higher dimensional normal distribution. For

practical applications it is therefore indispensable to find a good approximation with a lower q-dimension,

such as we propose in section 4.

A special case of property 4 is adding a CSN random vector X ∼ CSNp,qx(µx,Σx,Γx, νx,∆x) to a normal

random vector Y ∼ N(µy,Σy) = CSNp,qy (µy,Σy, 0, νy,∆y) of length p. For the normal distribution, the

skewness parameter is Γy = 0 (and νy and ∆y are irrelevant). Since all elements of the rows in Γz that

belong to the normal distribution are zero, the q-dimension can be adjusted. The resulting formulas for

the skewness parameters are: Γz = ΓxΣxΣ−1
z , νz = νx and ∆z = ∆x + ΓxΣxΓ′

x − ΓxΣxΣ−1
z ΣxΓ′

x. Hence,

qz = qx, i.e. the dimension does not increase when a normal distribution is added to a CSN distribution.

Property 5 (Conditioning).

Let X ∼ CSNp,q(µ,Σ,Γ, ν,∆) be partitioned into X1 of length p1 and X2 of length p2, such that X =

(X ′
1, X

′
2)′. The parameters are partitioned accordingly,

µ =

µ1

µ2

 , Σ =

Σ11 Σ12

Σ21 Σ22

 , Γ =
(

Γ1 Γ2

)

Then

X1|2 = (X1|X2 = x2) ∼ CSNp1,q(µ1|2,Σ1|2,Γ1|2, ν1|2,∆1|2)

with µ1|2 = µ1 +Σ12Σ−1
22 (x2 −µ2), Σ1|2 = Σ11 −Σ12Σ−1

22 Σ21, Γ1|2 = Γ1, ν1|2 = ν−(Γ2 +Γ1Σ12Σ−1
22 )(x2 −µ2),

and ∆1|2 = ∆.

This property establishes that conditioning some elements of a CSN random vector on its other elements in

turn yields a CSN-distributed random variable.

To sum up, the CSN distribution has very attractive theoretical properties; however, its practical appli-

cability is limited to cases where the skewness dimension q is small or moderate (say, q < 25). If q is large
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one has to evaluate the cdf of a high-dimensional multivariate normal distribution which is computationally

very demanding.3 For example, in the filtering algorithm (to be presented in the next section) the skewness

dimension q naturally grows in each period of the observation window. This implies that the expressions

cannot be numerically evaluated after a couple of periods since they involve multivariate normal distribu-

tions with possibly hundreds of dimensions. We will suggest a new approximation method to reduce the

skewness dimension q in section 4, but first we outline the Kalman filtering and smoothing steps based on

the CSN distribution.

3. Skewed Kalman Filter and Smoother

Linear state-space models are commonly used to describe physical and dynamical systems in economics,

engineering and statistics. Since many real-world data applications exhibit skewness, we adapt the canonical

linear state-space model by assuming that the innovations ηt in the transition equation of the state variables

originate from the CSN distribution:

xt = Gxt−1 + ηt, ηt ∼ CSNp,qη (µη,Ση,Γη, νη,∆η) (3)

yt = Fxt + εt, εt ∼ N(µε,Σε) (4)

where xt is the vector of (unobserved) state variables and yt the vector of observed variables at equally spaced

time points t = 1, . . . , T . The vector of observation errors εt is assumed to be normally distributed and

independent of the CSN-distributed state variable shocks ηt. Moreover, we focus on a stable dynamic system,

i.e. the characteristic roots of the parameter matrix G are inside the unit circle. In addition, we assume that

the initial state x0 (or its distribution) is known. These assumptions allow us to focus on the increasing

dimensions problem in the Kalman recursions for the state variables. The pruning algorithm developed in

section 4 could be easily extended to a more general initialization step, time-varying parameters, and even to

a scale mixture class of closed skew-normal distributions as in Kim et al. (2014). Likewise, CSN-distributed

measurement errors can always be included as a structural innovation by adding an auxiliary state variable

to equation (3). In fact, this simplified framework is the one that is most commonly used for the analysis of

economic phenomena such as the ones we study in sections 6 and 7.

We denote the information set at time t by Ft, i.e. it includes all observations up to time t and is therefore

the σ-algebra generated by the observed variables Ft = σ(yt, yt−1, . . . , y1). The conditional distribution xs|t

of the state variable vector xs given the information set Ft is described by its CSN parameters which are

denoted by µs|t, Σs|t, Γs|t, νs|t and ∆s|t. Recursive expressions for these parameters can be derived in closed

3MATLAB R2022b’s mvncdf function requires that the number of dimensions must be less than or equal to 25. We rely
instead on the Mendell & Elston (1974) method to evaluate the log cdf function which is quite fast and accurate, but also
suffers from the curse of increasing skewness dimension.

9



form. Rezaie & Eidsvik (2014) summarize the recursion steps which were originally developed – and coined

the Skewed Kalman Filter – by Naveau et al. (2005). For the sake of completeness, we briefly review the

prediction, updating and smoothing equations. An online appendix provides the derivation of the smoothing

step, which is new to the literature on skewed Kalman filters.

Prediction step:

Assume that xt−1|t−1 ∼ CSNp,qt−1(µt−1|t−1,Σt−1|t−1,Γt−1|t−1, νt−1|t−1,∆t−1|t−1) is given. The innovations

ηt ∼ CSNp,qη (µη,Ση,Γη, νη,∆η) are independent from xt−1|t−1. The state transition equation (3) in con-

junction with closure with respect to linear transformations (properties 1 and 2) and summation (property

4) yields the one-step predictive distribution:

xt|t−1 ∼ CSNp,qt−1+qη
(µt|t−1,Σt|t−1,Γt|t−1, νt|t−1,∆t|t−1) (5)

where

µt|t−1 = Gµt−1|t−1 + µη

Σt|t−1 = GΣt−1|t−1G
′ + Ση (6)

Γt|t−1 =

Γt−1|t−1Σt−1|t−1G
′Σ−1

t|t−1

ΓηΣηΣ−1
t|t−1

 (7)

νt|t−1 =

νt−1|t−1

νη


∆t|t−1 =

 ∆11
t|t−1 ∆12

t|t−1

(∆12
t|t−1)′ ∆22

t|t−1

 (8)

with

∆11
t|t−1 = ∆t−1|t−1 + Γt−1|t−1Σt−1|t−1Γ′

t−1|t−1 − Γt−1|t−1Σt−1|t−1G
′Σ−1

t|t−1GΣt−1|t−1Γ′
t−1|t−1

∆22
t|t−1 = ∆η + ΓηΣηΓ′

η − ΓηΣηΣ−1
t|t−1ΣηΓ′

η, ∆12
t|t−1 = −Γt−1|t−1Σt−1|t−1G

′Σ−1
t|t−1ΣηΓ′

η

Updating step:

From the prediction step, it is known that xt|t−1 is CSN distributed. The measurement equation (4) implies

that the conditional distribution of yt given Ft−1 is also CSN distributed since it is the sum of a linear

transformation of xt|t−1 and a normal distribution. Due to property 5 (closure with respect to conditioning),
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the updated distribution xt|t (i.e. the distribution of xt given Ft−1 and also yt, or in short, given Ft) is

xt|t ∼ CSNp,qt
(µt|t,Σt|t,Γt|t, νt|t,∆t|t) (9)

where qt = qt−1 + qη and

µt|t = µt|t−1 + Σt|t−1F
′(FΣt|t−1F

′ + Σε)−1(yt − Fµt|t−1 − µε)

Σt|t = Σt|t−1 − Σt|t−1F
′(FΣt|t−1F

′ + Σε)−1FΣt|t−1 (10)

Γt|t = Γt|t−1 (11)

νt|t = νt|t−1 − Γt|t−1Σt|t−1F
′(FΣt|t−1F

′ + Σε)−1(yt − Fµt|t−1 − µε)

∆t|t = ∆t|t−1. (12)

The updating step consists of two parts, (i) a Gaussian part which updates µt|t and Σt|t using the Gaussian

Kalman Gain KGauss
t−1 = Σt|t−1F

′(FΣt|t−1F
′ + Σε)−1 and (ii) a skewed part which updates the skewness

parameters using the Skewed Kalman Gain KSkewed
t−1 = Γt|t−1K

Gauss
t−1 . In our setting the only skewness

parameter that is updated in the updating step is νt|t−1, the parameters Γt|t−1 and ∆t|t−1 are not affected

because the measurement errors are Gaussian. Again we see that Γ regulates skewness continuously. Without

skewness, Γt|t−1 = 0 and KSkewed
t−1 = 0, the prediction and updating steps are equivalent to the ones from

the conventional Gaussian Kalman filter. With skewness, however, we see that the skewness dimension qt

in (5) and (9) increases in each period, because two CSN distributed random variables are added.

This means that the skewness dimension explodes as the recursion proceeds over many time steps.

As a result the matrix dimensions grow, parameter estimation gets more complicated, sampling is

harder, and so on. Thus, for practical purposes we need to assume simplified conditions (Rezaie

& Eidsvik, 2014, p. 5).

However, instead of simplifying the conditions or imposing more stringent assumptions on the state-space

system, we suggest an approximation method to shrink the skewness dimension in section 4.

Smoothing:

Often, we are not only interested in the filtered distributions (xt|t) but also in the smoothed distributions

(xt|T ), i.e. estimates of the state variables that take into consideration all available observations y1, . . . , yT .

In the last period the filtered and smoothed distributions obviously coincide. The smoothed distributions

for t = T − 1, . . . , 1 can be calculated in a backward recursion. Chiplunkar & Huang (2021) present

recursion formulas for a special case involving a non-stationary (random walk) latent variable. Adapting

their approach, we present recursion formulas for the general state-space model (3) and (4) with CSN

distributed innovations. As far as we know, we are the first to do so in this general setting. For ease of
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notation we define the following abbreviations:

Mt = Σt+1|T Σ−1
t+1|tGΣt|tΣ−1

t|T

Nt = −ΓηG+ ΓηMt.

Further, let OT −1, OT −2, . . . be a sequence of matrices of increasing row dimensions, such that OT −1 = NT −1

and, for t = T − 2, T − 3, . . . , 1,

Ot =

 Nt

Ot+1Mt

 .
The CSN parameters of xt|FT ∼ CSNp,qT

(µt|T ,Σt|T ,Γt|T , νt|T ,∆t|T ) for t = T − 1, . . . , 1 are

µt|T = µt|t + Σt|tG
′Σ−1

t+1|t(µt+1|T − µt+1|t)

Σt|T = Σt|t + Σt|tG
′Σ−1

t+1|t(Σt+1|T − Σt+1|t)Σ−1
t+1|tGΣt|t

Γt|T =

Γt|t

Ot


νt|T = νT |T

∆t|T =

∆t|t 0

0 ∆̃t

 .

with

∆̃t =

∆η 0

0 ∆̃t+1

 +

 Γη

Ot+1

 (Σt+1|T −MtΣt|TM
′
t)

 Γη

Ot+1

′

for t = T − 2, T − 3, . . . , 1 and ∆̃T −1 = ∆η + Γη(Σt+1|T −MtΣt|TM
′
t)Γ′

η. The proof is sketched in the online

appendix. Notice that the skewness dimension remains constant (at qT ) during the backward recursion. In

particular, the skewness parameter νt|T is always equal to νT |T for all t. At each iteration, the row dimension

of Γt|t decreases. This decrease is offset by an increase in the row dimension of Ot. In a similar fashion, the

top left block of the block-diagonal matrix ∆t|T gets smaller in each iteration, while the bottom right matrix

inflates such that the dimension of ∆t|T does not change. Similarly to filtering, whether or not smoothing

is computationally feasible, depends largely on the overall skewness dimension. Hence, a way to reduce it is

also important from a smoothing perspective.
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4. Pruning the skewness dimension

Our approach to reduce the skewness dimension is motivated by the characterization (1) of the CSN

distribution. Evidently, if there is no correlation between W and Z, the CSN distribution is equal to

a Gaussian distribution and the skewed Kalman filter morphs into the Gaussian one. Therefore if some

elements of Z are only weakly correlated with the elements of W , we can prune, i.e. dispose of those

elements in Z, as there is no palpable effect on the skewness behavior. Algorithm 1 outlines the pseudo-code

of our pruning algorithm.

Algorithm 1 (Pruning Algorithm). The algorithm consists of the following steps, given skewness parameters

Σ, Γ, ν, ∆ and pruning threshold tol.

1. Construct and partition the covariance matrix

P =

P1 P ′
2

P2 P4

 =

 Σ Σ · Γ′

Γ · Σ ∆ + Γ · Σ · Γ′

 (13)

2. Transform P into a correlation matrix R =

R1 R′
2

R2 R4


3. Find the maximum absolute value along each row of abs(R2). Save it as vector max val.

4. Delete the rows of
(
P2 P4

)
and columns of

P ′
2

P4

 corresponding to (max val < tol). Save as P̃ .

5. Compute pruned ν by removing rows corresponding to (max val < tol).

6. Compute pruned Γ = P̃2Σ−1.

7. Compute pruned ∆ = P̃4 − ΓP̃ ′
2.

8. Return pruned skewness parameters Γ, ν, and ∆.

To illustrate the procedure numerically consider the following univariate example:

xt,t−1 ∼ CSN

0, 1,

 6

0.1

 ,

0

0

 ,

 1 −0.1

−0.1 1

 (14)

with a skewness dimension of 2. Applying pruning algorithm 1 with a (rather large) pruning tolerance

tol = 0.1, we get

R =


1.0000 0.9864 0.0995

0.9864 1.0000 0.0981

0.0995 0.0981 1.0000


13



Clearly 0.9864 > tol, but 0.0995 < tol, so we can reduce the skewness dimension by 1. Recomputing the

new skewness parameters (ν = 0, Γ = 6 · 1−1, ∆ = 37 − 6 · 6), we get the approximating distribution

CSN(0, 1, 6, 0, 1). Figure 3 depicts the pdf and cdf of the original and the approximating distributions; the

difference is hardly discernible despite the rather large pruning threshold of 0.1.
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Figure 3: Probability density functions and cumulative distribution functions of a CSN distributed random variable with two
skewness dimensions (skewness parameters as given in (14), solid lines) and the approximating CSN(0, 1, 6, 0, 1) distribution
with one skewness dimension (dashed lines).

Of course, the skewness dimension can only be reduced if the correlation coefficients are sufficiently small.

We now proceed to show that the added skewness dimensions induced by the prediction steps of the Skewed

Kalman Filter will fade away over time. In other words, even though the skewness dimension grows over

time, many of the dimensions will eventually be redundant and can be removed when the density function

(or the log-likelihood function) needs to be numerically evaluated. Assume that the recursion is anchored

at a given initial distribution with parameters µ0|0, Σ0|0, Γ0|0, ν0|0, ∆0|0. We first focus on the recursion

for the skewness parameter Γt|t−1 in (7) and (11), with Σt|t−1 as given in (6). Since Γt−1|t−1 appears in the

upper row in (7), the number of rows increases at each step. For instance, in period t = 4 we would obtain

Γ4|4 =



Γ0|0Σ0|0G
′Σ−1

1|0Σ1|1G
′Σ−1

2|1Σ2|2G
′Σ−1

3|2Σ3|3G
′Σ−1

4|3

ΓηΣηΣ−1
1|0Σ1|1G

′Σ−1
2|1Σ2|2G

′Σ−1
3|2Σ3|3G

′Σ−1
4|3

ΓηΣηΣ−1
2|1Σ2|2G

′Σ−1
3|2Σ3|3G

′Σ−1
4|3

ΓηΣηΣ−1
3|2Σ3|3G

′Σ−1
4|3

ΓηΣηΣ−1
4|3


.

This matrix has dimension (4qη + q0) × p where p is the number of state variables, qη is the skewness

dimension of the state shocks and q0 is the skewness dimension of the initial distribution. To find a general
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expression for any period t, define Lt ≡ Σ−1
t|t−1Σt|tG

′. Then,

Γt|t =



Γ0|0Σ0|0G
′ ∏t−1

j=1 Lj

ΓηΣη

∏t−1
j=1 Lj

ΓηΣη

∏t−1
j=2 Lj

...

ΓηΣη

∏t−1
j=t Lj


Σ−1

t|t−1 (15)

where the empty product in the last row is defined as
∏t−1

j=t Lj ≡ 1. The matrices Lt are closely related to

the updating step: multiplying both sides of (10) by G from the left and by Σ−1
t|t−1 from the right, we obtain

the transpose of Lt:

GΣt|tΣ−1
t|t−1 = G−GΣt|t−1F

′(FΣt|t−1F
′ + Σε)−1F

As t → ∞, the sequence GΣt|tΣ−1
t|t−1 converges to a constant matrix with all eigenvalues inside the unit circle

(Hamilton, 1994, prop. 13.1 and 13.2). The same is true for Lt as it is just the transpose of GΣt|tΣ−1
t|t−1.

This implies that the product terms
∏

j Lj in (15) will fade away as new rows are appended at the bottom

in every period. The rows at the top (i.e. those relating to older shocks) will fade away more quickly. Hence,

the impact of the shocks on the skewness parameter Γt|t (which according to (11) also equals Γt|t−1) is not

persistent.

Next, we turn to the skewness parameter ∆t|t, which is equal to ∆t|t−1 according to (12). The recursions

in (8) imply that the dimension of ∆t|t grows each period. The top left element of the partitioned matrix

(7) shows that the matrix

Γt−1|t−1Σt−1|t−1Γ′
t−1|t−1 − Γt−1|t−1Σt−1|t−1G

′Σ−1
t|t−1GΣt−1|t−1Γ′

t−1|t−1

= Γt−1|t−1Σ1/2
t−1|t−1(I − Σ1/2

t−1|t−1G
′Σ−1

t|t−1GΣ1/2
t−1|t−1)Σ1/2

t−1|t−1Γ′
t−1|t−1 (16)

is added to ∆t−1|t−1 in each iteration. To show that it is positive definite consider the matrix

S ≡

 I Σ1/2
t−1|t−1G

′

GΣ1/2
t−1|t−1 Σt|t−1

 .

Since both I and Σt|t−1 − GΣ1/2
t−1|t−1I

−1Σ1/2
t−1|t−1G

′ = Ση (see (6) in the prediction step) are positive

definite, so is S (Horn & Johnson, 2017, theor. 7.7.7). Using Gallier (2011, prop. 16.1) we can conclude

that (I − Σ1/2
t−1|t−1G

′Σ−1
t|t−1GΣ1/2

t−1|t−1) is also positive definite. Hence, matrix (16) is also positive definite.

As positive definite matrices have strictly positive diagonal elements, the diagonal elements of ∆t|t keep

growing over time. Algorithm 1 reduces the skewness dimension based on the covariances in the bottom
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left (or top right) partition of the covariance matrix P in (13), i.e. P2 ≡ Γt|tΣt|t. We focus on the (i, j)-th

element P ij
2 , the corresponding correlation is

Rij
2 = P2

ij√
Σii

t|t

√
∆jj

t|t

.

As we have shown above, each element of Γt|t matrix decreases as t increases. Further, it is a standard

result of the (steady-state) Kalman filter that each element of Σt|t converges (rather quickly) to a constant.

Therefore, P ij
2 decreases as t increases. But, ∆jj increases as time passes due to our previous calculations.

All these results lead to a shrinkage of Rij
2 over time. The same line of thought can also be applied to the

parameters of the prediction step, i.e. to P2 ≡ Γt|t−1Σt|t−1 and Rij
2 = P2

ij√
Σii

t|t−1

√
∆jj

t|t−1

. To summarize, the

algorithm is guaranteed to reduce the skewness dimension after sufficiently many periods.

5. A Monte Carlo Study

We conduct a thorough Monte Carlo study to evaluate the performance of the Pruned Skewed Kalman

Filter and Smoother in terms of accuracy and speed. To this end, we consider both univariate as well

as multivariate state-space models as data-generating processes (DGP). The Online Appendix provides a

thorough description of the parameters of the different DGPs and the detailed outcomes of the Monte Carlo

analysis. Overall, we find that the Pruned Skewed Kalman Filter and Smoother perform very well in terms of

accuracy, speed and finite sample properties of Maximum Likelihood estimates of the error term parameters.

In what follows we briefly summarize the key lessons.

Accuracy. We assess how accurate the filter and smoother estimate the value of the underlying state variables

by considering different loss functions and corresponding optimal point estimators; namely, the expectation,

the median and the quantiles of both filtered and smoothed states.4 We simulate 2400 sample paths for

xt and yt of different length (40, 80, 110) plus a burn-in phase, where the shocks ηt are drawn from the

CSN distribution and the measurement errors εt from the normal distribution. We compute the expected

losses for both the Gaussian as well as Pruned Skewed Kalman Filter and Smoother by averaging over

all replications. Three things are worth pointing out. First, the Skewed Kalman Filter and Smoother are

superior to the Gaussian Kalman Filter and Smoother in all cases. Even though the better performance

is rather small in the univariate case, it becomes really measurable in the multivariate case. Second, our

pruning algorithm is very accurate and numerically almost equivalent to the non-pruned Skewed Kalman

Filter (up to the twelfth digit in the univariate case and up to the 5th digit in the multivariate case). Third,

4Note that in the multivariate case, there is no consensus on multivariate extensions of quantiles (see e.g. Jeong (2023,
footnote 3)), so there we focus only on the quadratic loss function.
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the pruning threshold does not matter measurably in the univariate case and makes only a small numerical

difference in multivariate settings.

Speed. We compare the time required to compute 1000 evaluations of the log-likelihood function for different

sample sizes across filters and smoothers. Clearly, the Gaussian Kalman Filter is the speed champion: it is

roughly ten times faster than our proposed algorithm, but we are on the order of milliseconds here. Other

approaches to evaluate the likelihood, such as Sequential Monte Carlo, are typically much slower by a factor

of several hundred or thousand. More importantly, while the computational time and memory requirement

of the non-pruned Skewed Kalman Filter increases exponentially and explodes in multivariate models rather

quickly, our proposed Pruned Skewed Kalman Filter does not suffer from this and performs very well for

both univariate and multivariate settings. It is only slightly affected by a growing sample size; relatively

speaking, it behaves just as the conventional Kalman filter in this regard. That is, the relative time increase

between a sample size of 50 and 250 is approximately 4 both for the Gaussian as well as our Pruned Skewed

Kalman Filter. Regarding the choice of pruning threshold, the average time needed to compute the likelihood

once is at least twice as fast when using a pruning threshold of 10−2 compared to 10−5. Combined with

the accuracy results, we therefore suggest that a threshold of 1% seems to be a good compromise between

accuracy and speed for multivariate models, in univariate models this can be easily lowered to a very tight

pruning threshold of say 10−5.

Maximum Likelihood Estimation Of Skewness Parameters. We simulate a multivariate DGP with three

shocks (one is left-skewed, one is right-skewed and one is Gaussian) a large number of times and estimate

the underlying shock parameters with Maximum likelihood. Overall the estimates using the Pruned Skewed

Kalman Filter are convincingly good for both a very low and a rather large pruning threshold. Most mass

is centered around the true values and the distribution becomes narrower with larger sample sizes. The

Pruned Skewed Kalman Filter successfully uncovers the skewed distribution of the first two shocks, but also

Gaussianity of the last shock. The Gaussian Kalman filter completely misses the skewed distribution of ηt;

which is evident in biased and inflated estimates of µη and Ση (which in the Gaussian case are estimates of

E[ηt] and V [ηt]).

6. Estimating the US yield curve using the dynamic Nelson-Siegel exponential components

model

A yield curve is a graphical representation of the so-called term structure of interest rates, i.e. the rela-

tionship between the residual maturities of a homogeneous set of financial instruments and their computed

interest rates. In practice, however, yield curves are not observed, but need to be estimated from observed

market prices for the underlying financial instruments, typically government bonds that are traded on stock
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exchanges. Diebold & Rudebusch (2013) provide an excellent textbook introduction and Wahlstrøm et al.

(2022) a recent discussion of the computational challenges to construct yield data.

Following the canonical contribution of Diebold & Li (2006), it has become standard practice to use the

dynamic Nelson & Siegel (1987) (DNS) model to forecast yields at different maturities. Forecasting is crucial

for bond portfolio management, derivatives pricing, risk management, but also for monetary policy decisions

and financial stability analysis. Intuitively, the entire yield curve can be modelled by three dynamic factors,

commonly labeled Level (Lt), Slope (St), and Curvature (Ct). The DNS model then achieves dimensionality

reduction via a tight structure on the factor loadings. The model is not only simple and intuitive, but also

parsimonious and very flexible in its ability to match changing shapes of the yield curve. Moreover, its

out-of-sample forecasting performance is often second to none. So having a well estimated DNS model is of

great importance.

Of particular interest to us is that Diebold et al. (2006) show how to formulate the DNS model as a

linear state-space model which can be estimated by the Kalman filter. In more detail, let y(τ) denote the set

of yields where τ denotes the maturity. The cross-section of yields at any discrete point in time t = 1, ..., T

is given by the DNS curve:

yt(τ) = Lt + St

(
1 − e−λτ

λτ

)
+ Ct

(
1 − e−λτ

λτ
− e−λτ

)
(17)

Diebold & Li (2006) highlight the intuitiveness of the factor loadings. First, the level factor Lt is long-term

as it has an identical loading of 1 at all maturities. This means that all yields are equally affected by a

change in the level and there is no decay to zero in the limit τ → ∞. Second, the loading on the slope

factor St starts at 1 and decays monotonically and quickly to zero. An increase in St increases short yields

more than long ones; hence, it is a short-term factor and governs the slope of the yield curve. Third, the

medium-term factor Ct has a loading that starts at 0 (no short term), increases at first and then decays

back to 0 (no long term). An increase in Ct has little effect on very short and very long yields, but increases

the medium-term yields; hence, it changes the curvature of the yield curve. The parameter λ governs the

exponential decay rate and it determines the maturity at which the loading on the medium-term achieves

its maximum (e.g. 0.0609 at exactly 30 months).

The latent factors Lt, St and Ct are assumed to be time-varying according to a first-order vector autore-

gressive process: 
Lt − µL

St − µS

Ct − µC

 =


G11 G12 G13

G21 G22 G23

G31 G32 G33



Lt−1 − µL

St−1 − µS

Ct−1 − µC

 +


ηL

t

ηS
t

ηC
t

 (18)

Obviously, equation (18) is a state transition equation as in (3). To get a corresponding measurement
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equation as in (4), we relate a set of N yields to the three latent factors according to (17):


yt(τ1)

yt(τ2)
...

yt(τN )

 =


1 1−e−λτ1

λτ1
1−e−λτ1

λτ1
− e−λτ1

1 1−e−λτ2

λτ2
1−e−λτ2

λτ2
− e−λτ2

...
...

...

1 1−e−λτN

λτN

1−e−λτN

λτN
− e−λτN



Lt

St

Ct

 +


εt(τ1)

εt(τ2)
...

εt(τN )

 (19)

where εt(τ) is the measurement error for yield maturity τ . In a nutshell, the DNS model forms a linear

state-space system with a VAR(1)-type transition equation for the dynamics of the latent factors.

We follow standard practice and assume a Gaussian white noise process for the vector of measurement

errors with a diagonal covariance matrix Σε and which is independent of the vector of state transition

disturbances ηt = (ηL
t ηS

t ηC
t )′. So far we have been silent on the distribution of ηL

t , ηS
t and ηC

t . Typically,

as in Diebold et al. (2006), ηt is also assumed to be a Gaussian white noise process, but allowing for ηL
t ,

ηS
t and ηC

t to be contemporaneously correlated. However, Gaussianity of ηt implies that Lt, St and Ct

must be also normally distributed, which is in stark contrast to the empirics. For instance, the usual

proxies for the three latent factors – (y(3) + y(24) + y(120))/3 for the level, y(3) − y(120) for the slope and

2y(24)−y(120)−y(3) for the curvature factor – typically display mild to strong skewness. In our sample (i.e.

the one used by Diebold et al. (2006)) the empirical skewness coefficients are, respectively, equal to 1.14, 0.56

and 0.10. We also get similar non-symmetric coefficients for different time periods using the yield data of

Liu & Wu (2021). Thus, when estimating the linear state space model with the conventional Kalman filter,

we expect (and indeed find) that both the filtered and smoothed residuals are non-symmetric (see figure 4

for a preview of our estimation results). From a theoretical point of view, this is a sign of misspecification of

the underlying model. Therefore, we assume a CSN(µη,Ση, νη,Γη,∆η) distribution for ηt, which is flexible

enough to capture both skewed as well as symmetric patterns in ηt. Due to identifiability issues, we set

νη = 0 and ∆η = I and fix µη = −f(Ση,Γη), where f(·) is a correction function to make E[ηt] equal to zero

according to Domı́nguez-Molina et al. (2003, sec. 2.4.). While we do allow for a non-diagonal Ση matrix, we

assume that Γη is diagonal, in order to assess whether it is a single innovation that drives the skewness (one

nonzero diagonal element in Γη and a diagonal Ση matrix) or the combined effect of several skewed shocks

(multiple nonzero diagonal elements in Γη and a non-diagonal Ση matrix).

To be close to the canonical work of Diebold et al. (2006), we use the same dataset, i.e. yields for 17

maturities (3, 6, 9, 12, 15, 18, 21, 24, 30, 36, 48, 60, 72, 84, 96, 108 and 120 months) to estimate the following

number of parameters: 9 parameters in the (3×3) transition matrix G; 3 level parameters µL, µS , and µC ; 1

scalar decay rate λ that determines the measurement matrix F ; 17 measurement variances in Σε; 3(3 + 1)/2

parameters in the scale matrix Ση; and 3 diagonal elements in Γη. In sum, 39 free parameters that we

estimate by minimizing the negative log-likelihood function, which can be computed by using our proposed
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Pruned Skewed Kalman Filter. Based on our Monte Carlo evidence, we prune the skewness dimensions at

a threshold level of 1%. The initial distribution for the prediction-error decomposition of the likelihood

is set to a normal one with an initial covariance matrix with 10 on the diagonal. We do a sophisticated

search for initial parameter values (as recently emphasized by Wahlstrøm et al. (2022)) and use a sequence

and mixture of gradient-based and simulation-based optimization routines to minimize the negative log-

likelihood function.5 In more detail, we impose non-negativity on λ and the variances in Σε by using a log

transform during the optimization. Similarly, we focus on estimating the Cholesky factor of Ση instead of

Ση directly. Moreover, the likelihood is penalized if the Eigenvalues of G are outside the unit circle or the

covariance matrices of ηt or ϵt are not positive semi-definite. Asymptotic standard errors are obtained by

computing the inverse of the negative log-likelihood. For the transformed parameters we compute standard

errors according to the delta method and report results for the re-transformed estimates.

Tables 1, 2 and 3 contain the estimation results. We particularly contrast the results based on the

Pruned Skewed Kalman Filter (PSKF) with the ones using the conventional Gaussian Kalman filter (KF)

to illustrate the usability of the CSN distribution in multivariate state-space settings.

KF PSKF KF PSKF KF PSKF KF PSKF
Lt−1 St−1 Ct−1 µ

Lt 0.9957
(0.008)

1.0004
(0.009)

0.0285
(0.009)

0.0253
(0.009)

−0.0222
(0.011)

−0.0218
(0.011)

8.2506
(1.086)

6.5516
(3.445)

St −0.0303
(0.016)

−0.0015
(0.014)

0.9385
(0.018)

0.9767
(0.019)

0.0395
(0.021)

0.0399
(0.020)

−1.3786
(0.499)

−1.3411
(0.925)

Ct 0.0244
(0.023)

0.0085
(0.024)

0.0232
(0.026)

−0.0005
(0.027)

0.8428
(0.031)

0.8491
(0.030)

−0.3647
(0.383)

−0.3324
(0.476)

Table 1: Parameter estimates of G, µL, µS , and µC . Left side of a double column corresponds to estimates obtained with the
conventional Kalman filter (KF), right side to estimates obtained with the pruned skewed Kalman filter (PSKF). Asymptotic
standard errors appear in parenthesis.

KF PSKF KF PSKF KF PSKF KF PSKF
Lt St Ct Γη

Lt 0.0948
(0.008)

0.1906
(0.046)

−0.0140
(0.011)

−0.0668
(0.052)

0.0436
(0.019)

0.1648
(0.105)

0 −3.4648
(0.683)

St 0.3823
(0.030)

0.7546
(0.115)

0.0092
(0.034)

0.0565
(0.142)

0 −1.9895
(0.244)

Ct 0.8019
(0.081)

1.6045
(0.354)

0 1.2147
(0.225)

Table 2: Parameter estimates of Ση and Γη . Left side of a double column corresponds to estimates obtained with the
conventional Kalman filter (KF), right side to estimates obtained with the pruned skewed Kalman filter (PSKF). Asymptotic
standard errors appear in parenthesis.

5Our choice of gradient-based optimizers include two different BFGS Quasi-Newton methods (fminunc in MATLAB R2022b
and csminwel of Christopher Sims (1999)) and two different simulation based methods (the Nealder-Mead simplex search
method of Lagarias et al. (1998) implemented as fminsearch in MATLAB R2022b and the covariance matrix adaptation
evolution strategy (CMA-ES) of Hansen et al. (2003)).
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Decay Standard deviation of measurement error for maturity
λ 3 6 9 12 15 18 21 24

KF 0.07776
(0.002)

26.83
(8.68)

7.55
(3.66)

9.03
(2.85)

10.45
(3.11)

9.91
(2.96)

8.65
(2.65)

7.86
(2.45)

7.21
(2.24)

PSKF 0.07783
(0.002)

26.54
(8.51)

7.35
(3.57)

9.11
(2.85)

10.48
(3.11)

9.93
(2.96)

8.65
(2.65)

7.85
(2.45)

7.19
(2.23)

Standard deviation of measurement error for maturity
30 36 48 60 72 84 96 108 120

KF 7.27
(2.28)

7.91
(2.44)

10.30
(3.00)

9.26
(2.80)

10.04
(3.02)

11.18
(3.37)

10.70
(3.40)

15.07
(4.55)

17.28
(5.12)

PSKF 7.29
(2.29)

7.93
(2.45)

10.30
(3.01)

9.25
(2.80)

10.03
(3.02)

11.14
(3.37)

10.71
(3.40)

15.13
(4.56)

17.29
(5.12)

Table 3: Parameter estimates of decay parameter λ and of standard deviations of measurement errors, expressed in basis points,
i.e. 100

√
diag(Σϵ). KF denotes the conventional Kalman filter and PSKF the pruned skewed Kalman filter. Asymptotic

standard errors appear in parenthesis.

Overall, the estimates of the transition matrix G (given in the columns labeled Lt−1, St−1 and Ct−1 of

table 1) are very similar across the two filters used and in line with the results of Diebold et al. (2006). That

is, first, the eigenvalues of G are inside the unit circle, so we have a stable and covariance-stationary system.

Second, we see high persistence of Lt, St and Ct on its own lagged dynamics, whereas most of the off-

diagonals appear insignificant. While the coefficient of St−1 on Ct has a different sign for the KF compared

to the PSKF, both coefficients are not significantly different from zero. Next, we do see different estimates

of the mean factors µ (last two columns of table 1), indicating how the estimates with the conventional

Kalman filter adapt to the neglected skewness in ηt. Ση (first six columns of table 2) is estimated with

reasonable precision for both filters. There is only one marginally significant covariance term between ηL
t

and ηC
t for the KF, whereas in the PSKF case Ση appears to be diagonal. Note that a direct comparison

of Ση between filters is not correct, as in the KF case Ση is the covariance matrix of η, but for the PSKF

it is just a scale matrix and the covariance is a function of the skewness parameters Ση, Γη, ∆η and νη.

Therefore, we also compute and compare the estimated covariance matrices:

ĈOV [ηt]KF =


0.0948 −0.0140 0.0436

−0.0140 0.3823 0.0092

0.0436 0.0092 0.8019

 , ĈOV [ηt]P SKF =


0.0943 −0.0181 0.0453

−0.0181 0.3716 0.0223

0.0453 0.0223 0.8076


We see that the variances of ηL

t and ηS
t are estimated slightly lower with the PSKF, but the differences

are negligible. The overall estimation is quite accurate according to table 3, as the standard deviations

of the measurement errors are very small (reported in basis points) and do not differ across the filters.

The same holds true for the estimate of the decay parameter λ, which would imply the loading on the

curvature factor to be maximized at a maturity of 23.06 months for the KF and 23.04 months for the
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PSKF. Finally, we turn towards the estimates of the diagonal elements in Γη (last two columns of table 2).

The estimation with the PSKF indeed reveals significant left-skewness in the underlying distributions of ηL
t

and ηS
t , whereas ηC

t is right-skewed. We use the proposed Pruned Skewed Kalman Smoother to compute

the smoothed values for ηt|T in figure 4. As far as we know, we are the first to actually report smoothed

(and not filtered) innovations using the CSN distribution in a multivariate state-space setting. There is a

clear skewed pattern for all error term distributions, but also some bulging dents, which are both in clear

contradiction to a symmetric distribution.6 Theoretically speaking, this indicates a misspecification of the

linear state-space model when using the Gaussian assumption for ηt, whereas the CSN distribution is flexible

enough to incorporate the skewed shapes in the estimation. Accordingly, since the Skewed Kalman Filter

nests Gaussianity as a restriction (Γη = 0), we perform a likelihood ratio test and obtain a high test statistic

of 28.86. In summary, on the basis of our estimation results, the data strongly favors a skewed error term

distribution for ηt.
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Figure 4: Histogram of smoothed innovations ηL
t|T , ηS

t|T and ηC
t|T .

7. Asymmetric shocks in a New Keynesian DSGE model for US data

Estimating the structural parameters of DSGE models with Maximum Likelihood is generally not a

common approach in the literature, due to the dilemma of absurd parameters and pile-up phenomena on the

6A negative sign of Γη indicates left-skewness, while a positive sign indicates right-skewness. Note, however, that the
magnitude of the estimates of Γη do not directly translate into the same magnitude of the empirical skewness coefficient, as it
is a function of both Γη and Ση .
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boundary of the theoretically admissible parameter space (An & Schorfheide, 2007; Andreasen, 2010; Morris,

2017). Nevertheless, Ireland (2004) is one of the few papers that successfully employs Maximum Likelihood

for structural estimation of a log-linearized New Keynesian DSGE model to asses which shocks are the major

drivers of aggregate fluctuations in post-war US data. In what follows, we revisit this estimation exercise

but use our proposed Pruned Skewed Kalman Filter for estimation. The log-linearized model equations are

given by:

x̂t = ŷt − ωât (20)

ĝt = ŷt − ŷt−1 + ẑt (21)

x̂t = αxx̂t−1 + (1 − αx)Etx̂t+1 − (r̂t − Etπ̂t+1) + (1 − ω)(1 − ρa)ât (22)

π̂t = β (αππ̂t−1 + (1 − απ)Etπ̂t+1) + ψx̂t − êt (23)

r̂t − r̂t−1 = ρππ̂t + ρxx̂t + ρg ĝt + ηr,t (24)

ât = ρaât−1 + ηa,t, êt = ρeêt−1 + ηe,t, ẑt = ηz,t

where all hat variables are in log deviations from their non-stochastic steady-state. These equations are based

on the optimal behavior of utility-maximizing households and profit-maximizing firms within a staggered

price setting framework. Specifically, the first equation (20) defines the output gap, x̂t, which measures

the deviation of actual output, ŷt, from its natural level, ωât, in the absence of nominal rigidities. ω is a

parameter related to the Frisch elasticity of labor and ât is an autoregressive preference shifter process with

persistence parameter ρa and subject to preference shocks ηa,t. The second equation (21) defines the growth

rate ĝt of output subject to productivity shocks ηz,t. The third equation (22) describes the New Keynesian

IS curve, which relates the output gap to the expectations of a future expected output gap, the ex-ante

real interest rate – defined as the difference between the nominal interest rate r̂t and expected inflation

Etπ̂t+1 – and the exogenous preference shock. The parameter αx allows for some additional flexibility for

the lagged output gap to play a role in determining xt, e.g. due to consumption habit formation. The fourth

equation (23) is a forward-looking New Keynesian Phillips curve, which implies that the output gap drives the

dynamics of inflation relative to expected inflation. The parameter β is the discount factor, ψ the slope of the

curve (influenced by the strength of nominal rigidities) and απ allows for a backward-looking component,

e.g. due to nominal wage rigidities or indexation of prices and wages to past inflation. The equation is

subject to a cost-push process êt which evolves according to an autoregressive process with parameter ρe.

A decrease in êt lowers the elasticity of demand for each intermediate good and hence increases markups of

the monopolistically competitive firms; hence, ηe,t is a negative cost-push shock. Finally, in equation (24)

monetary policy is described by a feedback rule that determines the change in the nominal interest rate,

based on deviations from inflation, output gap, and output growth from their steady-state targets. ρπ, ρx
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and ρg are the sensitivity parameters of systematic monetary policy and ηr,t captures any non-systematic

deviation from the rule. Due to rational expectations all agents know the exact model equations and the

statistical distribution of the white noise process ηt = [ηa,t, ηe,t, ηz,t, ηr,t]′ for all t. Accordingly, Et is the

expectation operator conditional on the information set in period t; namely, the state of the economy (all

variables up to and including t−1) and the values of current shocks ηt. Subject to restrictions on the space of

model parameters θ = (β, ψ, ω, αx, απ, ρπ, ρx, ρg, ρa, ρe) that yield stable and unique trajectories (Blanchard

& Kahn, 1980) a stochastic solution is characterized by a recursive decision rule, so-called policy function,

which for a log-linearized model (i.e. a perturbation solution at first order) resembles a linear state-space

form as in equations (3) and (4):

Xt = G(θ)Xt−1 +R(θ)ηt

Yt = FXt

where Xt = [x̂t, ŷt, ĝt, ẑt, π̂t, ât, êt, r̂t]′ is the vector of all endogenous and Yt = [ĝt, π̂t, r̂t]′ collects the

observable variables. We consider the same set of quarterly macroeconomic time series for the 1980Q1-

2003:Q1 period as originally used in Ireland (2004):7 (1) Demeaned quarterly changes in seasonally adjusted

real GDP, converted to per capita values by dividing by the civilian noninstitutional population aged 16

and over, are used to measure output growth ĝt. (2) Demeaned quarterly changes in the seasonally adjusted

GDP deflator provide the measure of inflation π̂t. (3) Demeaned quarterly averages of daily values of the

three-month U.S. Treasury bill rate provide the measure of the nominal interest rate r̂t. While F is simply

a matrix of zeros and ones, the reduced-form parameters G and R are nonlinear functions of the structural

model parameters θ, which we recover for any candidate θ using Dynare’s first-order perturbation solution

algorithm as described in Villemot (2011).

From the 10 underlying structural parameters in the model, two are held fix, β = 0.99 and ψ = 0.1, and

are not estimated. Hence, our interest centers around the other 8 model parameters plus the parameters of

the distribution of ηt, which we will estimate by minimizing the negative log-likelihood function. Common

practice is to assume that the shocks ηt are distributed as multivariate normal; we, however, assume that

each follows an independent univariate skew-normal distribution, i.e. ηj,t ∼ CSN(µηj
,Σηj

,Γηj
, 0, 1) for

j ∈ {a, e, z, r}. As all ηj are independent of each other, we make use of univariate closed-form formulas

for the standard error and skewness coefficient and accordingly estimate stderr(ηj,t) and skew(ηj,t) instead

of Σηj
and Γηj

. This enables us to calculate standard errors directly, equivalent robustness results with

estimated Σηj
and Γηj

are available in the replication codes. Similarly, µηj
is an endogenous parameter

which, given Σηj
and Γηj

, needs to be set to ensure E[ηj ] = 0.

7The same model and dataset is used by Chib & Ramamurthy (2014) to illustrate estimating DSGE models with Student’s
t distributed shocks.
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Some computational remarks are noteworthy. First, for DSGE models G is typically a singular matrix.

To overcome the numerical issues in the prediction step, we compute, filter and smooth the parameters

of the joint distribution of [x′
t, η

′
t]′ instead of xt. Similarly, the pre-multiplication of ηt with R in the

state transition equation is without loss of generality, as we can use Property 2 and work with the linearly

transformed distribution (Rηt). Second, the initial distribution for the prediction-error decomposition of the

likelihood is set to a normal one with mean zero and initial covariance matrix of the error of the forecast set

equal to the unconditional variance of the state variables. The likelihood is penalized if the Blanchard &

Kahn (1980) conditions are violated (i.e. a DSGE specific generalization of Eigenvalues of G being outside

the unit circle) or the covariance matrix of ηt is not positive semi-definite. Third, based on our Monte

Carlo evidence, we prune the skewness dimensions at a threshold level of 1%. Fourth, to impose bounds

on the estimated parameters we apply a change of variables to ensure that variables are bound within their

natural domain using a scaled and translated log-odds transform. For instance, if x > 0, we estimate log(x).

Similarly, if x must be between 0 and 1 we estimate logit(x) = log x
1−x . Fifth, when computing standard

errors via the inverse Hessian method the transformations are reversed such that reported standard errors

are for the actual model parameters. The Hessian is computed using a standard two-sided finite difference

approach; however, when an estimated parameter is on the boundary, we follow Ireland (2004) and use one-

sided finite differences for this parameter. Sixth, we do a sophisticated search for initial parameter values.

In more detail, we use the values reported in Ireland (2004) as our starting point for the model and standard

error parameters. Next, we create an evenly spaced grid of the skewness parameters for all four shocks, while

keeping the variance constant to the Gaussian estimates. For each combination of variance and skewness, we

recover the corresponding Σηj and Γηj combinations analytically and compute the negative log-likelihood

of each value on the grid. In this way, we examine the likelihood surface for over 50000 combinations for

all shocks having either positive, negative, high, mild, low, or no skewness in their distribution. We then

take the best three combinations and use these as initial values to optimize over both standard error as

well as skewness parameters (while keeping model parameters fixed) with the Pruned Skewed Kalman filter.

The best estimates for the shock parameters are then combined with the Gaussian estimates for the model

parameters to arrive at our chosen initial values for the actual estimation. Finally, equipped with these initial

values, we run various gradient-based and simulation-based optimization routines (in parallel) to minimize

the negative log-likelihood function with respect to all parameters, see Andreasen (2010) for a discussion of

appropriate optimizers in the context of maximum likelihood estimation of DSGE models. Table 4 contains

the final estimation results.

Overall, using the CSN distribution instead of the Gaussian one is preferred by the data as indicated by

the increase in the value of the maximized log-likelihood function. To support this claim, a likelihood ratio

test was conducted – as the Skewed Kalman filter nests Gaussianity – yielding a test statistic of 16.55 and

a p-value of 0.0024. Examining the model parameters, the estimates of αx and απ are similar and close to
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Model Parameters Shock Parameters
KF PSKF KF PSKF

ω 0.0581
(0.0877)

0.1536
(0.0157)

skew(ηa) 0 −0.2132
(0.0264)

αx 0.0000
(0.0043)

0.0000
(0.0025)

skew(ηe) 0 −0.2221
(0.0273)

απ 0.0000
(0.0025)

0.0000
(0.0020)

skew(ηz) 0 −0.9499
(0.1613)

ρπ 0.3865
(0.1273)

0.2729
(0.0271)

skew(ηr) 0 0.8099
(0.0482)

ρg 0.3960
(0.0650)

0.3399
(0.0228)

stderr(ηa) 0.0302
(0.0166)

0.0249
(0.0015)

ρx 0.1654
(0.0615)

0.2838
(0.0057)

stderr(ηe) 0.0002
(0.0001)

0.0002
(0.0001)

ρa 0.9048
(0.0596)

0.9155
(0.0183)

stderr(ηz) 0.0089
(0.0015)

0.0079
(0.0012)

ρe 0.9907
(0.0155)

0.9816
(0.0302)

stderr(ηr) 0.0028
(0.0004)

0.0028
(0.0002)

Value of maximized Log-Likelihood function: 1207.56 1215.84

Table 4: Parameter estimates. KF denotes the conventional Kalman filter and PSKF the pruned skewed Kalman filter.
Asymptotic standard errors appear in parenthesis.
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Figure 5: Estimated Probability Density Functions

Notes: solid lines are estimated CSN distributions and dashed lines are estimated Gaussian distributions.

zero, suggesting that backward-looking behavior of consumers and firms is not important in both the New

Keynesian IS and Phillips curve. Notably, the policy parameters ρπ, ρg, and ρx differ, indicating that the

Federal Reserve’s systematic policy is more responsive to movements in output gap than output growth.
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Furthermore, the rule-based inflation sensitivity parameter is smaller than the Gaussian estimate, though

still within the confidence band. While estimates of the persistence parameters ρa and ρe of the preference

and cost-push shocks are not different across filters, the estimate of ω is. This has two implications: First, in

the underlying theoretical model, a higher value of ω implies a more elastic labor supply schedule. Second,

in the empirical model, the impact of the preference shock on the efficient level of output is estimated to be

larger.

Turning towards the shock parameters, the estimates for the standard errors of the cost-push and mone-

tary policy shocks are nearly identical, while the Gaussian filter slightly overestimates the standard errors of

the preference and productivity shocks. Interestingly, statistically significant skewness coefficients are found

for all shocks, with particularly strong skewness observed for the productivity and monetary policy shocks.

To illustrate these differences, we depict the estimated probability density functions in figure 5. The CSN

distribution (solid line) of the monetary policy shock has less mass in the left tail and more mass in the right

tail than the estimated normal distribution with the same standard deviation (dashed line). This reflects

the Federal Reserve’s unanticipated hawkish policies during Paul Volcker’s tenure as chairman. Accord-

ingly, combined with the evidence of slightly less systematic monetary policy, suggests that large surprises

of monetary tightening are more likely than large monetary easing ones. Analogously, the distribution of

the productivity shock has more mass in the left tail and less mass in the right tail than the estimated

normal distribution with (almost) the same standard deviation (dashed line). This pattern for productivity

is consistent with the estimates of Ruge-Murcia (2017) and captures events like the dot-com bubble in the

sample. The preference and (negative) cost-push shocks are estimated to have mild negative skewness.

Finally, we investigate the consequences of a one-time monetary policy shock on the model variables as

depicted in Figure 6. Solid lines represent estimates using the Pruned Skewed Kalman filter (column PSKF

in Table 4), while dashed lines correspond to Gaussian Kalman filter estimates (column KF in Table 4). It is

essential to differentiate between positive and negative shocks in the presence of asymmetry. Consequently,

we adhere to the standard practice, defining the size of a typical shock as ±1 standard deviation. This aligns

with the empirical rule, which equates to the 16th and 84th percentiles of the normal distribution. Thus,

we employ the 16th percentiles of the estimated normal and CSN distributions as typical negative shocks,

while the 84th percentiles are used for typical positive shocks. Even though the systematic parameters are

estimated slightly different, the shape of the impulse-response function is qualitatively the same, so we refer

to Ireland (2004) for a discussion of the economic transmission channels. However, we underscore that, even

in a linear model, size and direction matter for conducting monetary policy, as the transmission channels

of typical monetary easing versus monetary tightening shocks are asymmetric. In a broader context, the

presence of skewed shocks leads to the propagation of asymmetry through differently amplified transmission

channels, ultimately resulting in asymmetric business cycles.
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Figure 6: Impulse Responses: Monetary Policy Shock

8. Conclusion

The Skewed Kalman Filter is an analytical recursive method for inferring the state vector in linear

state-space systems and can be used to compute the exact likelihood function when innovations originate

from the CSN distribution. Intriguingly, the Skewed Kalman Filter encompasses both Gaussianity and the

skew-normal distribution as special cases. Applying this filter to data demands substantial computational

resources or is even unfeasible for multivariate models or large sample sizes because it involves the evaluations

of high-dimensional multivariate normal cdfs of growing dimensions. We introduce a fast and intuitive

pruning algorithm for the filter’s updating step, overcoming this curse of increasing dimensions. We provide

theoretical evidence for its validity across any dataset and parameter values. Our Pruned Skewed Kalman

Filter and Smoother operate effectively and efficiently in practice, as demonstrated in our comprehensive

Monte Carlo study and two multivariate real data applications.

Naturally, there are several other methods and algorithms for statistical inference of time series with

asymmetric distributions. For example, sequential Monte Carlo methods can be easily adapted to skewed

distributions, although the computational complexity and runtime of these filters increase rapidly with the

state dimension. Skewness can also be modeled using a mixture of normal distributions, for which numerous
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filtering algorithms exist. However, as recently noted by Nurminen et al. (2018), Gaussian mixtures have

exponentially decaying tails and can be overly sensitive to outlier measurements, while the computational

cost of a mixture reduction algorithm is substantial. Bayesian methods are often tailored to specific modeling

frameworks and assumptions, enabling fine-tuning of certain sampling algorithms, such as combining a Gibbs

sampler with Metropolis-Hastings stages, as exemplified in Karlsson et al. (2023) for Vectorautoregressive

models. We do not assert that the Pruned Skewed Kalman Filter inherently outperforms these approaches,

but we contend that its ease of use and compatibility with existing toolboxes and standard estimation

methods will promote its adoption across various disciplines.
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