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Abstract

This paper investigates the impact of floods on economic output and prices at the industry level for local authorities

in England using highly granular climate and economic data. We use precipitation z -scores as an instrument for

floods to deal with endogeneity stemming from adaptation capital and we obtain dynamic impulse responses to

the shock on GDP and inflation with a local projection approach (LP-IV). We find significant heterogeneities

across sectors in terms of size, timing and sign, with sectoral output (prices) declining (increasing) up to 20%

(250 bp) following a 1 sd flood shock. This evidence explains well the delayed response of GDP and inflation found

in the literature. Our estimates suggest that reduced investment can only partially explain the decline in output,

and only in manufacturing. The response of the number and value of real estate market transactions is instead

consistent with a wealth effect that is line with the demand-side behaviour in wholesale and retail trade. To shed

more light on the interaction among sectors, we use input-output tables and show that flood shocks propagate

through the production network. Using local authority expenditure on flood defences and a proxy for adaptation

capital, we further find that investments in adaptation strongly reduce the likelihood of flooding, but they are

less effective at mitigating economic damages once a flood hits, and only in some sectors. Our analysis highlights

the importance of disentangling the economic impact of climate change at the sectoral level and the importance

of adaptation.
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1 Introduction

Frequency and intensity of heavy precipitation events have increased over the last decades, especially in North

America, Europe and Asia, causing more frequent and severe flooding (IPCC, 2021). Moreover, hydrological

models project a larger fraction of land areas to be affected by an increase in floods. The European Commission

has estimated that floods are the most costly natural disaster in Europe, having caused more than €170 billions

in damages since 19801. In the UK, the focus of this paper, flooding has intensified significantly over the last 50

years (Figure 1), and there is evidence of more frequent and more extreme flooding and faster and more extreme

coastal erosion (Environment Agency, 2022). The 2018 UK climate change projections suggest that that there

could up to 35% more precipitation in winters by 2070, which will lead to even more river flooding. Rainfall

intensity will increase, which will lead to more surface water flooding.

The July-December 2023 semester was the wettest on record since 18902, putting pressure on the government’s

handling of floods3. Today, the UK government estimates that there are more than 3 million properties at risk from

surface water flooding and close to another 3 million at risk of flooding from rivers and sea (HMGovernment,

2022; Environment Agency, 2023). But England’s exposure to flooding is far from new. A map of all floods

recorded since the XVIIIth century (Figure 2) shows that roughly a third of the country has been flooded before.

Flooding represents a significant expenditure item on the UK government’s budget. It is estimated that around

£1.4bn are spent each year on damages from flooding (HMGovernment, 2023). Considerable amounts of money

are also disbursed towards flood and coastal risk erosion management: in 2021 expenditure reached more than £1

billion, twice as much as in 20064. In this paper we study how floods impact output and prices at the aggregate

and sectoral level.

Figure 1: Flooding in the UK: 1977-1999 vs. 2000-2022

Source: EA and NRW Recorded Flood Outline.
Note: Historical records for England and Wales.

Floods directly impact properties and business activities through the damages they can cause to their business

premises, inventory and machines (Crampton et al., 2024). These warrant repair costs, loss of inventory and,

at times, temporary suspension of business activities. Whether and how these direct impacts translate into

macroeconomic effects is less obvious. Through the damages to physical and human capital, flood events can

cause increased uncertainty and relocation of economic and human activity (Panwar and Sen, 2020), thus harming

1European Commission, see https://environment.ec.europa.eu/topics/water/floods en.
2The Guardian, January 6th, 2024, see https://www.theguardian.com/environment/2024/jan/06/warmer-winters-and-

more-flooding-will-be-the-norm-in-the-uk-scientists-warn.
3Financial Times, Janury 7th, 2024 see https://www.ft.com/content/78573e49-ee72-4140-807a-bc79a11aea8a.
4See here.
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local economic growth both in the short- and medium-run if, for instance, relocation becomes permanent or

reconstruction is not adequately supported (Fried, 2022). At the same time, destruction of physical assets as a

result of the disaster could lead to a “build back better” scenario (Hallegatte and Dumas, 2009), in which rapid

turnover of capital and earlier adoption of new technologies yield positive outcomes on potential and observed

growth. Theoretically, floods can have simultaneous effects on demand and supply (Cevik and Jalles, 2023), with

different consequences e.g. on prices.

Despite the growing concern over increasingly severe and frequent flooding, available evidence on the economic

impact of floods is scarce and inconclusive5 and it is lacking along three dimensions. First, most studies pool

together hundreds of countries from different climate zones and with different economic systems (see for example

Kabundi et al., 2022; Cevik and Jalles, 2023). This makes it hard to draw significant conclusions for any particular

country or group of similar countries. The only two exceptions focus on emerging economies (Panwar and Sen,

2020; Crofils et al., 2023). Flooding, however, is a problem also in advanced countries, where climate is more mild

and the economic system and the infrastructures are more developed. Against this backdrop, in this paper we

focus on local authorities in England, an advanced economy with a growing flooding issue.

Second, floods are often poorly measured. Because of the lack of comprehensive and easy to manipulate

data on recorded flood events, most studies resort to proxies such as fatalities, the number of people affected or

economic damages (e.g., Parker, 2018; Heinen et al., 2019). In most cases floods do not cause death, and the

number of affected people is not necessarily indicative of how severe a flood is but rather of where it happened.

Using these proxies overestimates the true impact of floods. Another approach is to use dummies for whether

an area was hit at least once by a flood in a given time span (see Barbaglia et al., 2023). This too leads to a

misestimation of the true impact of flooding, as one single flood has the same weight as 100. Departing from the

existing literature, in this paper we make use of a detailed dataset with all verified records of flooding in England.

This allows us to take into account small and large floods alike, thus providing more credible estimates.

Lastly, and perhaps most importantly, existing evidence so far always analyses the impact of floods at the

aggregate level. While we do not dismiss the importance of understanding how GDP and inflation react to

flooding, we believe that a more disaggregated, sectoral approach is more appropriate. Studying the response of

different industries to the same shock not only allows us to better understand the underlying drivers of aggregate

results, but it also reveals significant heterogeneities. The impact varies by sector and it is not trivial to determine

a priori. To the best of our knowledge, we are the first to study the impact of floods at such a disaggregated

level.

5Parker (2018); Panwar and Sen (2020); Crofils et al. (2023); Kabundi et al. (2022) for example, all find contradicting
results.
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Figure 2: Historical Map of Flood Events

Source: EA and NRW Recorded Flood Outline.
Note: Historical records starting in the 1700s for England and Wales.

Against this backdrop, this paper studies the impact of floods on output and prices at the aggregate and

industry level in local authorities in England. Several factors make an answer to this question empirically chal-

lenging. First, the probability of flooding is not entirely random at this level of geographical granularity and the

risk of flooding is heterogeneously distributed across regions. The presence of coasts and watercourses increases

the probability of flooding for a specific region (Environment Agency, 2009). But these “structural endowments”

also affect the historical economic growth trajectory observed at regional level (Andrew et al., 2000). For instance,

the presence of coasts or large and deep rivers has historically been associated with more trading opportunities.

Simply looking at the impact of floods on regional economic outcomes could therefore be biased by the fact that

regions more exposed to flooding respond differently because of structural economic differences. While structural

characteristics can be accounted for through fixed effects, there is increasing evidence of economic activity (e.g.,

intensive farming) altering river flows and worsening flooding.6

Investments in adaptation capital pose further endogeneity concerns. On the one hand, an increase in adap-

tation capital acts as a confounding factor. As it reduces the frequency of flood events, adaptation can increase

output through a simple multiplying effect and by reducing the economic damages caused by floods (Fried, 2022).

On the other, richer areas or areas with more dynamic economic activity might have more policy space or political

will to build up adaptation capital, that in turn can reduce flooding. The most popular approach adopted in

the climate literature rests on the identification of plausibly exogenous climate anomalies in the form of devia-

tions from long-term means (e.g., Kabundi et al., 2022; Crofils et al., 2023) or unanticipated climate events (e.g.,

Natoli, 2023). However, using weather anomalies shifts the focus on out of the ordinary weather events. While

increasingly frequent, at present these are not yet the most relevant economic shocks in developed economies.

A simple OLS regression of economic outcomes on floods, on the other hand, is likely to suffer from significant

downward bias and, at most, allow us to grasp a lower bound effect on output and prices. This offers a limited

insight, especially in light of an increase in vulnerabilities from climate change.

We adopt a local projection approach à la Jordà (2005) augmented with an instrumental variable (LP-IV à la

Jordà et al., 2015), and use rainfall as an instrument for floods. Rain is the main trigger of floods (Environment

Agency, 2009; IPCC, 2021). If, for example, heavy rainfall overwhelms an area’s local drainage capacity or an

already waterlogged catchment, it can lead to groundwater and river flooding. Generally, changes in extreme

precipitation are the main proxy for inferring changes in fluvial and urban flood patterns assuming there is no

additional structural change (i.e. flood mitigation measures, see IPCC, 2021). What causes flooding events is

thus an unusually large and unsustainable amount of rain, which can occur in the form of either or both heavy,

6See here.
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short-lived rainstorms and prolonged precipitation. Therefore, we construct rainfall z -scores as deviations from

each local authority’s average precipitation and use them as our instrument.

Our empirical identification rests on the assumption that precipitation can only impact economic growth and

prices through increased flood risk. While rain can have a direct impact on the economy through the agriculture

and energy sectors, evidence of this is limited only to developing countries subject to severe droughts (Miguel

et al., 2004; Barrios et al., 2010). Moreover, with only 0.7% of UK’s GDP coming from agricultural activity and

2.2% of its total generating capacity coming from hydroelectric power stations, this would most likely be a second

order issue. Other direct channels, such as livestock death (Röckert and Kraehnert, 2022), farmers’ changes in

behaviour (Di Falco et al., 2019), and land ownership (Bezabih et al., 2021; Murken et al., 2024) appear to be

also relevant only for developing countries.

We find that following a one standard deviation shock in the number of floods (which corresponds to around

17 floods), aggregate GDP drops by more than 1 percent after two years and is still 2 percent lower than its

initial level after five years. Prices fluctuate significantly, but the repeated positive and negative deviations make

it hard to determine whether, at the aggregate, floods are more akin to a demand or a supply shock. Our main

finding is that aggregate results hide significant sector heterogeneities not just in size, but also in timing and

sign. While in some sectors (manufacturing and trade in particular) output dampens immediately, in others

(such as construction and food and beverage services) it takes more to see an impact. Importantly, output in

accommodation services and civil engineering increases on impact. In all sectors, the variation in economic activity

is 3 to 6 times higher than what we observe at the aggregate level. Similarly, sectoral inflation shows significant

heterogeneities across sectors. Except for manufacturing of textiles, floods generally cause a reduction in inflation.

Prices react immediately and temporarily in most sectors, with the exception of wholesale and retail trade.

We further investigate the drivers of our results by studying the impact of floods on investments and on the

real estate market. Our findings only show a contraction of investments in manufacturing, while in all other

sectors the investment channel does not seem to be at play. In line with the presence of a wealth effect, floods

significantly affect the number of real estate market transactions and their value. This is consistent with the

demand-side like behaviour of floods we observe in wholesale and retail trade, but it is harder to reconcile with

the more ambiguous response of output and prices in other sectors. To shed further light on the on the nature

of flood shocks, we investigate how they propagate through the production network. We find that input-output

linkages play a role in the propagation of flooding shocks, especially in sectors at the top and at the bottom of

the production network. While we are not able to determine whether floods are a pure supply or demand shock,

this exercise shows they are not an isolated shock and highlight the importance of focusing at the industry level.

Another important contribution of this paper is our assessment of adaptation policy. While it does not tackle

the issue of flooding at its core, namely climate change, adaptation capital is the most readily available tool to

local authorities and central governments to limit the damages of floods. To this day, however, there is still no

evidence as to the effectiveness of adaptation.7. We show that investing in adaptation does mitigate the impact

of flooding. This happens primarily because flood defences reduce the likelihood of floods, meaning they are ef-

fective at the extensive margin. On the other hand, we find some evidence that in certain sectors high adaptation

expenditure can limit the economic consequences of floods once a local authority is hit, meaning they might be

able to reduce the effects of flooding at the intensive margin too.

Related Literature. Our paper contributes to the growing body of literature studying the empirical effects on

economic activity of climate change-related natural disasters, and in particular floods.

While it is reasonable to assume a dampening of GDP following extreme weather events, the response of

7Two notable exceptions are Fried (2022) and Canova and Pappa (2022). However, the former introduces adaptation
capital in a heterogeneous agent model to show it can reduce the economic impact of floods, but does not test this assumption
empirically. The latter focuses on transfers from the federal government to flood affected areas in the aftermath of severe
flooding events, which is an ex-post, rather than ex-ante, intervention.
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inflation is a priori ambiguous and depends on the predominance of demand- or supply-side effects. Heinen

et al. (2019), for example, examine the impact of extreme weather on consumer prices by constructing a monthly

dataset of potential hurricane and flood destruction indices for 15 Caribbean islands. In the absence of reliable

flooding records, they proxy flooding with a weighted measure of the three-day moving sum of daily rainfall.

They find a large inflationary effect of hurricanes, while the increase in inflation from floods is smaller and rarely

significant. This approach has two limitations. First, while heavy precipitation is the main trigger of floods,

whether rainfall accumulation causes a watercourse to overflow depends on various other region- and time-specific

factors. The authors’ estimates are capturing the impact of high, prolonged precipitation rather than floods,

which could explain the low reaction of inflation. Secondly, and unlike other economic shocks, floods are more

localized. A high potential flood destruction index, on the other hand, can be driven by widespread precipitation

on the whole country which does not induce any flooding events at the local level.

An important dimension is that of geographical and sector heterogeneities. Parker (2018) finds that natural

disasters persistently increase inflation in developing economies, while their impact in advanced countries is

negligible. Compared to other natural events, floods have a more temporary effect on prices. Interestingly, they

are only relevant for headline inflation, while food, housing and energy inflation are not affected. Parker (2018)

computes an intensity index based on the fatalities caused and the number of people affected by each natural

disaster. This approach lies on the implicit assumption that floods affect prices solely through their impact on

people. However, flooding can occur in scarcely populated but economically relevant areas, such as agricultural

lands and industrial hubs. In other words, using casualties and affected population as measures of floods’ intensity

assumes a predomnantly demand-driven impact, thus underestimating the potential supply-side channels. In this

paper, we provide a more precise measure of flood events and find that floods can affect prices in advanced

economies as well. Moreover, we expand Parker (2018)’s analysis by focusing on a wide range on industries.

Kabundi et al. (2022) use a large sample of 183 countries over the period 1970 to 2018 and find that floods

tend to have a dampening impact on inflation, pointing to the predominance of demand shocks. Similarly to this

paper, they proxy flooding with a moving-average precipitation z -score. As already discussed, weather anomalies

have the advantage of identifying floods more precisely, but shift the focus purely on out of the ordinary weather

events. Moreover, taking the deviation from the moving average implies an almost immediate adaptation to floods

by agents, while it usually takes years to build up sufficient human and physical adaptation capital. Instead, we

construct our z -scores as deviations from the whole panel average, and use them as the instrument for our measures

of floods. Our results are also in line with Cevik and Jalles (2023), who report higher prices following droughts

and storms, although this effect varies nonlinearly depending on the state of the economy and the level of fiscal

space.

To the best of our knowledge, there are only two papers that study the impact of floods on output. Panwar

and Sen (2020) examine sector-specific impacts on growth dynamics in 24 Indian states over the period 1990-

2015. Results indicate that floods dampen growth in the short-term, except for the agricultural sector, where

the effects are observed to be positive. Like in other studies, the authors focus on the number of people affected

by floods, including casualties. Their industry analysis distinguishes between agricultural, manufacturing, and

services sector. We build on these results by bringing evidence for an advanced economy using a wider set of

sectors. From a more microeconomic point of view, Crofils et al. (2023) investigate the dynamic effect of weather

shocks in Peru, measured as excess heat or rain. They find a monthly decline of agricultural production by 5

percent up to four consecutive months. The response is time and space dependent, and varies based on the type

of crop.

The remainder of this paper is structured as follows: the next section introduces our various sources of data

and the construction of our instrument. Section 3 presents our empirical strategy and motivates the use of

precipitation z -scores as our instrument. In Section 4 we discuss our aggregate and sector level results. We

dedicate Section 5 to the analysis of our sectoral results. We focus on investments, real estate market transactions
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and production networks. In Section 6 we instead focus on adaptation policy. Finally, Section 7 concludes.

2 Data and Stylized Facts

This section provides a summary of the data sources used for the analysis. We provide summary statistics for the

most relevant variables in Table 1.

2.1 Flood Events

We retrieve flood events for England from the UK Environment Agency’s (EA) Recorded Flood Outlines database.

This dataset is a GIS layer, with 50×50m resolution, which shows all verified records of historic flooding extents

from rivers, the sea, groundwater and surface water. Each individual Recorded Flood Outline contains a consistent

list of information about the recorded flood, such as the start and end dates of flooding and the extension of the

area flooded. Records began in 1946, when predecessor bodies to the EA started collecting detailed information

about flooding incidents, although some flood events date back to the 18th century. We restrict our sample to the

years 1998-2021 due to availability of macroeconomic variables. More than 80% of the floodings start and end in

the same year. When this is not the case, we consider the starting year as the reference year.

When flood events data is available, the most common approach is to either use a binary variable that takes

value 1 if at least one flood event occurred (Barbaglia et al., 2023), or a continuous variable that proxies intensity

by the number of fatalities and the population affected (Parker, 2018; Panwar and Sen, 2020). The former strategy

is not able to capture floods’ severity and frequency, and is more of a proxy for flood risk than for floods themselves.

One the other hand, severe flood events can occur in scarcely populated but economically relevant areas, such

as agricultural lands or industrial hubs. Using casualties and affected population as measures of floods’ intensity

thus risks underestimating their economic impact. Hence, we depart from the existing literature and focus instead

on the number of floods in local authority i in year t.

We perform our analysis at the regional level. There are 309 local authorities in England (ITL3 regions,

broadly corresponding to NUTS3 in the EU). For each flood, we use its outline to assign it to a given local

authority. If a flood intersects more than one area, we assign it to all interested authorities (affecting the value

of the number of floods variable) and then compute each authority’s flooded area separately. Our final sample is

composed of 18,735 flood events. The average flood extends for 0.21 squared kilometers, which corresponds to

almost 30 football fields. The median is much lower (0.06 squared kilometers), denoting a highly right skewed

sample. On average, each authority gets flooded 2.31 times per year although the median number of floods is

0. Table 1 reports relevant summary statistics. We plot the total number of floods and flooded area by year in

Figure 3 below. Not surprisingly, more floods correspond to larger flooded areas. Floods are rather consistent

throughout the years, with a few relevant spikes (2000, 2002, and 2007 in particular).

8



Figure 3: England’s annual number of floods and total flooded area

Source: EA Recorded Flood Outlines and authors’ calculations.
Note: We treat each flood event as a single flood, and assign it to every ITL3 area hit and
compute the flooded area accordingly.

In Figure 4 we show the spatial distribution of floods across England’s local authorities (see Appendix Figure

16 for a zoom-in on Greater London’s authorities). We plot the total number of floods (left panel) and the average

flood extent (right panel) throughout the period under scrutiny. The map shows that floods are heterogeneously

distributed, with some areas on the eastern coast that were never flooded throughout the panel, and others, such

as Cornwall, that have been hit by more than 500 floods. The right panel reveals that more floods does not

necessarily mean more severe floods, as average flood extent is not perfectly correlated with the number of floods.

While we abstain from drawing causal conclusions here, we report that the number of floods seems to be larger in

areas with higher density of watercourse, while areas with a higher average extent seem to be protected by more

flood defences (see Appendix Figure 17).

Figure 4: Overall number of floods and average flood extent by local authority

(a) Number of floods (b) Average flood extent

Source: EA Recorded Flood Outlines and authors’ calculations.
Note: We treat each flood event as a single flood, and assign it to every ITL3 area hit and compute the flooded area
accordingly. Average flood extent is computed as each ITL3 area’s total area flooded over the panel divided by the total
number of floods.
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2.2 Rainfall Data

We obtain rainfall data from the ERA5 database of the European Centre for Medium-Range Forecasts (ECMWF).

The dataset has global coverage, including sea areas, at 30km×30km resolution since 1940. We retrieve hourly

precipitation data in millimetres for England for the years 1985 to 2022, and build a measure of hourly precipitation

at yearly frequency. The advantage of this data is that it is collected from satellite observations rather than from

weather stations. Rainfall records from weather stations are generally more precise, but only include observations

around the weather stations, thus failing to provide a comprehensive overview. We provide a detailed description

of how we aggregate rainfall data from grid to local authority level in the Appendix.

Rain is the main trigger of floods (Environment Agency, 2009; IPCC, 2021). If, for example, heavy rainfall

overwhelms an area’s local drainage capacity or an already waterlogged catchment, it can lead to groundwater and

river flooding. Therefore, to instrument floods we are interested in unusually large and unsustainable amounts of

rain. This can either occur in the form of short, heavy rainstorms or prolonged precipitation. To better predict

flood events, we thus construct ITL3 area specific rainfall z -scores as deviations from the area’s norm. Let Pi,t

be total precipitation for area i in year t; P̄i the same area’s average precipitation over the 1985-2022 panel; and

σP
i its standard deviation. The z-score for ITL3 area i in year t is thus:

P z
i,t =

Pi,t − P̄i

σP
i

. (1)

Simply using total rainfall and fixed effects would give us the deviation in precipitation from the whole sample

mean, which might not always be a good predictor for floods. For example, an area that is subject to more

heavy rainfall than the country average could have better protection from flooding, for instance through better

drainage systems or maintenance or flood defences. If area fixed effects can’t absorb this feature (e.g., it does

not hold throughout the whole sample), rainfall is a biased predictor for floods. On the other hand, z-scores are

area specific, and thus account for any time varying, region specific unobservable factors. Moreover, Mendelsohn

(2016) and Kahn et al. (2021) highlight how weather models are non linear. Hence, fixed effects models do not

properly control for time-invariant variables and demeaning is necessary to estimate unbiased weather effects.

The mean z -score is positive and close to zero (0.21), implying that on average the amount of rainfall has

slightly increased compared to its historical mean. Figure 5 shows that the z -score is skewed to the right, which

suggests that heavy rainfall events are more severe than low precipitation events.

Figure 5: Precipitation z -score

Source: ERA5 and authors’ calculations.
Note: z -score is defined as in equation (1).
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2.3 Other Geospatial Data

For illustration purposes, we use data on flood defences and watercourse.

Flood defences. The Environment Agency releases a range of flood asset information as open data. The

AIMS Spatial Flood Defences data layer is the only comprehensive and up-to-date dataset in England that shows

flood defences currently owned, managed or inspected by the EA. Flood defences are any assets that provide flood

defence or coastal protection functions. They can be structures, buildings or parts of buildings. Typically, these

are earth banks, stone and concrete walls, or sheet-piling that is used to prevent or control the extent of flooding.

For each flood defence, AIMS provides information concerning e.g. its state, its length, the year in which it was

last refurbished and the date in which it started operating. This data, however, presents two major limitations.

Firstly, most of the flood defences in the dataset (more than 70%) are natural high grounds, which speak more to

the land structure of the area they protect rather than to the local authority’s adaptation to flooding. Secondly,

more than 90% of the flood defences in the data appear to have started operating between 2011 and 2013. This

is most likely due to the administrative changes following the approval of the Flood and Water Management Act

in 2010, which contained provisions to improve the management of local flood risk, and we thus cannot rely on

the temporal information of this dataset.

Watercourse data. We obtain watercourse data from OS Open Rivers, a free dataset showing the high-level

view of watercourses in Great Britain. OS Open Rivers GIS data contains over 144,000km of water bodies and

watercourses map data. These include freshwater rivers, tidal estuaries and canals.

2.4 Macroeconomic Data

GDP and inflation. Our dependent variables of interest are annual GDP and inflation at ITL3 level from the

UK’s Office of National Statistics (ONS). The ONS provides annual aggregate GDP at constant 2019 millions of

pounds for the 1998-2021 period. At the industry level, we use GVA estimates at constant 2019 prices. GVA

is a good proxy for GDP, and the use of time and region fixed-effects allows us to consider them as equivalent

measures of economic activity8. Inflation data is not directly available at the ITL3 level. For both aggregate and

industry estimates, the ONS derives implied GVA deflators from whole economy current price and chained volume

measure of GVA. We use them as proxies for CPI, and compute inflation as their yearly percentage change:

πi,t =
defli,t − defli,t−1

defli,t−1
× 100. (2)

Industry-level GDP and inflation are available for 3 macro-sectors (production, construction, and services) and 18

industries. The ONS further decomposes these industries into 43 different sub-groups of activities. We provide a

breakdown in the Appendix. In our analysis, we focus on the 10 sectors that, either directly or indirectly, are ar-

guably more subject to flood damages: i) agriculture, forestry, and fishing; mining and quarrying; ii) manufacture

of food, beverages and tobacco; iii) manufacture of textiles, wearing apparel and leather; iv) other manufacturing,

repair and installation; v) accommodation services; vi) food and beverage service activities; vii) civil engineering;

viii) construction of buildings; ix) wholesale trade; and x) retail trade. Importantly, for industry-level data the

ONS aggregates some local authorities that would not be relevant individually into larger economic areas. Hence,

the final sample when studying GDP and inflation by industry is composed of 133 regions.

Investments. To dig deeper into the potential mechanisms described in Section 4, we use a proxy for annual

investments from the ONS. The dataset presents experimental regional gross fixed capital formation estimates

8GDP is equivalent to GVA plus Value Added Tax (VAT) plus other taxes on products less subsidies on products. Fixed
effects thus absorb any year- and area-specific changes in taxation.
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for the years 1997 to 2020, both at the aggregate and industry level. Industries do not always match GDP and

inflation data. In particular, ONS distinguishes investments in the agriculture, forestry and fishing industry from

those in mining and quarrying. Moreover, it aggregates investments in wholesale and retail trade and in accom-

modation and food and beverage services.

Housing transactions. We verify whether floods are akin to a wealth effect by looking at how they im-

pact house prices. The HM Land Registry Price Paid Data tracks property sales in England at daily frequency

from 1995 to 2024. However, prices are in absolute terms and no information is provided concerning the square

footage of each property sold. We thus retrieve median square footage by postcode in England using the Energy

Performance of Buildings database of the Department for Levelling Up, Housing & Communities. We then assign

to each property in the Land Registry Data the median square footage of the postcode it belongs to and compute

the price per square metre. We remove the top and bottom 1% of the distribution from the sample.

Other data. To investigate the role of adaptation we make use of the data from the Ministry of Housing,

Communities & Local Government, which provides a summary of local authority revenue expenditure and fi-

nancing on cultural, environmental, regulatory and planning service for the fiscal years 2008-2009 to 2023-2024.

We focus on revenue expenditure for flood defence, land drainage and coast protection at constant prices.9 We

construct a proxy of adaptation capital by cumulating expenditure over time. For coastal and fluvial protection

we assume a depreciation rate of 0.02 (i.e., we assume flood defences to have an average life of 50 years), while

for land drainage we set the depreciation rate to 0.067 (i.e., 15 years).

We study the role of production networks in propagating flood shocks using UK industry by industry input-

output (IO) tables from the ONS. IO tables provide a highly disaggregated level of analysis. We thus aggregate

sectors to match output and inflation data. Throughout our analysis we control for population size, which we

also retrieve from the ONS.

9This data alone is not enough to solve the endogeneity issues discussed in Section 3. Firstly, the fact that expenditure
refers to fiscal years instead of calendar years makes it hard to assess when money is actually spent. Secondly, defence
spending data is only available starting in FY 2008-09, and including it in our estimates means losing almost half of the
observations. Third, it is not trivial to distinguish between locally and centrally financed spending. Lastly, and perhaps
most importantly, more than year-by-year investments, what matters for flood protection is the adaptation capital. How
much a local authority spends on flood protection in a given year is not necessarily indicative of its overall adaptation
capital.
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Table 1: Descriptive statistics for the main variables

Mean Median Std. deviation Min Max N. of obs.

Weather variables

N. of floods 2.31 0 17.49 0 723 8,101
Total precipitation 834.86 402.87 1,290.46 2.43 12,4399.13 7,725
Precipitation z -score 0.21 0.14 0.99 -2.48 2.89 7,725

Macroeconomic variables

GDP 5,201.6 3,723 6,098.57 965 88,432 7,416
Inflation 1.97 1.96 2.24 -35.3 17.4 7,107
Investments 2,068 1,578.32 1,616.64 173.7 17,136.88 3,036
Housing transactions 2,763.33 2,284.1 2,430.44 0.02 930,129 26,683,352
Adaptation expenditure 0.23 0.07 0.45 0 6.32 4,928

Note: Summary statistics of the main variables used in our analysis. Weather variables are summarized at the ITL3-year
level for the years 1998 to 2023. Flooded area is expressed in squared kilometres, total precipitation in millimetres. z -scores
are computed as defined in equation (1). GDP, investments and adaptation expenditure from the ONS are expressed in
constant 2019 million pounds. Inflation is expressed as the percentage change in the GVA deflators. We report the total
number of property transactions from the HM Land Registry Data for the years 1995 - 2023. Price/square metre expressed
in 2019 prices.

3 Methodology

3.1 Empirical Strategy

Our empirical analysis builds upon the local projections (LP) approach of Jordà (2005), which allows us to identify

the cumulated dynamic response of GDP and inflation to floods at the regional level. We use industry-level GDP

and inflation to explore heterogeneity across sectors.

We run a local projection model for h = {0; 5} of the form:

yi,t+h = αi + βhfi,t + γXi,t +Θyi,t−1 + λt + εi,t+h, (3)

where fi,t is the number of floods in local authority i in year t. In our robustness check, we weight the number of

floods by the flood’s extensions. In our baseline specifications, the dependent variable yi,t+h is in turn the natural

logarithm of GDP and inflation as defined in (2). βh is the cumulated impact of floods on annual GDP/inflation

in h years. Xi,t controls for population size, as more populated areas might be economically more performing,

but also harder hit in case of floods. To control for persistence of the dependent variable, we include one lag of

GDP/inflation on the left hand side. Unobserved characteristics specific to a local authority or year are absorbed,

respectively, by fixed effects αi and λt. Our sample includes 309 (133 when using industry-level data) local

authorities i and spans the years 1998 to 2021.

One concern with this specification is that flood events are not exogenous to economic activity. While it is

possible that areas that are historically subject to more floods have a structural economic disadvantage, this gets

absorbed by fixed effect αi. However, adaptation capital poses more serious endogeneity concerns. As it reduces

the frequency of flood events, adaptation capital can increase output through a simple multiplying effect and

by reducing the economic damages caused by floods (Fried, 2022). Moreover, richer areas or areas with more

dynamic economic activity might have more policy space or political will to build adaptation capital, that in turn

can reduce flooding. As long as these concerns are area-year specific, fixed effects are not be able to capture them

and there is room for an omitted variable bias and reverse causality. For this reason, we combine the standard

LP approach with IV methods as in Jordà et al. (2015). We use the precipitation z -score defined in equation (1)
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as an instrument for floods and estimate the following first stage:

fi,t = αi + λt + δP z
i,t + ϕXi,t +Θyi,t−1 + ξi,t, (4)

and plug the fitted values f̂i,t into (3).

3.2 Rainfall as an Instrument for Floods

Relevance. The most common forms of floods in England are river, surface water, and groundwater flooding.

These events occur for a combinations of factors, among which land conformation and wind, but are all triggered

by heavy rainfall (Environment Agency, 2009). Surface water flooding, for example, happens when heavy rainfall

overwhelms the drainage capacity of the local area. Since changes in extreme precipitation are the main proxy

for inferring changes in fluvial and urban floods assuming there is no additional change in the surface condition

(IPCC, 2021), multiple studies use rainfall as a proxy for floods. Heinen et al. (2019), in the absence of a

complete flood event database to run a hydrological model for the Caribbean, perform flood detection based

solely on precipitation data. Akyapi et al. (2022) use the maximum amount of rainfall over different intervals in a

year to capture short but intense precipitation that may cause a flood. Kabundi et al. (2022) use precipitation z-

scores as their weather shock for flood events, and Crofils et al. (2023) proxy floodings with deviations of monthly

rainfall with respect to their average.

Hence, we argue that our instrument is a relevant predictor of floods. Appendix Table 3 reports first-stage

regressions results, where we regressthe number of floods on our instrument P z
i,t. Following Jordà et al. (2015),

we report both the F-statistics and the Kleibergen-Paap rank test statistics (Kleibergen and Paap, 2006). The

results provide tangible intuition about the strength of the instrument.

Exclusion restriction. Although we have no formal way of confirming the exclusion restriction, we argue

that floods are the only channel through which extreme rainfall can impact economic activity. Barrios et al. (2010)

show that precipitation has a direct impact on the economy through the agriculture and energy sectors. However,

they show that this result only holds for countries in sub-Saharan Africa, and not for developed economies. Miguel

et al. (2004) reach a similar conclusion, and find that rainfall affects economic growth in Africa through better

agricultural production.

We believe these channels are not at play in England for various reasons. Firstly, the impact of rain on

agricultural production is related to a decrease in droughts. Droughts can occur in England, but they do not

yet represent as big of a threat to agricultural production as in dryer and less-developed countries such as those

considered by Miguel et al. (2004) and Barrios et al. (2010). Secondly, the agriculture sector is negligible in

the UK’s economy. According to World Bank data, it only accounted for 0.7 percent of UK’s GDP in 2022,

and never for more than 0.9 percent in our period of reference. Thus, we argue that the droughts channel, if

present, is not relevant enough to undermine identification. Third, rainfall can impact the energy sector directly

through increased hydroeletric energy production. Across the UK, however, hydroelectric power stations currently

generate around 1.65GW of energy, which accounts for less than 2 percent of national capacity. Once again, we

argue that the energy channel, if present, is negligible.

In a recent paper, Mellon (2023) argues that the use of rain as an instrument for several independent variables

is by itself proof of the violation of the exclusion restriction. While we refrain from addressing each potential

violation here, we believe that all the channels he identifies that might lead to an exclusion violation (namely

crime, elections turnout, wages and health) are shut down in our environment. Other studies relate extreme

rainfall events to economic growth, but the channels are only reasonable in developing economies, e.g. livestock

death (Röckert and Kraehnert, 2022), farmers’ behaviours (Di Falco et al., 2019), land ownership (Bezabih et al.,

2021; Murken et al., 2024).

One potential threat is posed by spatial correlation. A local authority’s z -score is correlated to that of its
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neighbours, as rain is a geographically consistent factor. This means that a high z -score in region imight indirectly

be correlated with a positive number of floods in region i’s neighbours. If floods in neighbouring regions impact

output and prices in local authority i, the esxclusion restriction would be violated. We test this by regressing

the response of sectoral output and inflation in ITL3 area i to the number of floods in all of the ITL3 areas with

which i shares at least a border. The specification is the same we have introduced earlier in this Section, but we

control for P z
i,t to make sure neighbours floods are not a proxy of floods in i. Overall, results in Figures 18 - 19

in the Appendix confirm that the exclusion restriction holds.

Lead-lag exogeneity. Lastly, Stock and Watson (2018) identify a third condition for instruments’ validity

that only applies to LP-IV settings, namely “lead-lad exogeneity” (LLE). It requires the instrument to be uncor-

related with past and future error terms. The key idea is that yi,t+h generally depends on the entire history of

shocks. If the instrument is to identify the effect of the shock at time t alone, it must be uncorrelated with all

shocks at all leads and lags. In other words, we need P z
i,t to be uncorrelated to flooding measures in years t + j

for j ̸= 0. Our z -scores should satisfy this condition. While precipitation partly depends on geographical factors

(e.g., air pressure, altitude etc.) that are immutable and hence the amount of rainfall in a given area might not be

orthogonal year by year, z -scores capture unusual precipitation occurrences, and should be uncorrelated over time

by definition. Moreover, including fixed effects is usually enough to ensure LLE (Stock and Watson, 2018). It is

possible, however, that a high z -score is driven by heavy rainfall concentrated in the last part of the year, which

could cause flood events in the upcoming year. In this case, P z
i,t would be correlated to flooding in t+ 1. While

we have no way of controlling for this, Stock and Watson (2018) argue that the requirement that the instrument

be uncorrelated with future shocks is not restrictive.

4 Main Results

This section presents the main empirical results. First, we provide evidence for aggregate GDP and inflation,

showing that floods cause a delayed yet persistent decrease in economic activity and subsequent deviations in

prices. We then show that an industry-level analysis reveals significant heterogeneities and explains well the

aggregate results.

4.1 Aggregate Analysis

We begin with the analysis on aggregate economic activity. Figure 6 and 7 plot, respectively, the impulse response

functions for GDP and inflation to a one standard deviation shock in the number of floods. We report LP-OLS

coefficients, for comparison, in the Appendix.

Floods have a delayed and persistent dampening effect on economic growth (Figure 6). In terms of size, the

economic impacts can be quantified as follows: a one standard deviation increase increase in the number of floods

(around 17 floods) significantly reduces GDP by more than 1 percent after two years and 3 percent after three

years. Five years after the shock, GDP is still 2 percent lower than in the absence of floods. Our results confirm

the negative impact of adverse weather events on GDP (e.g., Akyapi et al., 2022; Natoli, 2023). In line with

the temperature shock of Cevik and Jalles (2023), we find the impact of floods to be delayed and persistent10.

Compared to other studies (and to our LP-OLS estimates) finding a dampening effect of flooding (e.g., Kahn

et al., 2021), our results are strongly significant. We believe this might be due to the more precise measurement

and identification of flood events.

10Acevedo et al. (2020) find a similar pattern, but not for advanced economies.
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Figure 6: GDP Response to Floods

Note: Dynamic impulse response functions of GDP to a one standard deviation increase
in the number of floods. All specifications include ITL3 and year fixed effects. Controls
include population size and one lag of GDP. Standard errors are clustered at the ITL3
level. Shaded areas denote 68% and 90% confidence bands.

Similarly to what we find for GDP, prices react only two years after the shock (Figure 7). A one standard

deviation increase in the number of floods causes an increase in inflation of around 50 basis points, followed by a

deflationary shock of similar size two years later. Five years after the shock prices are still around 75 basis points

higher than their steady state. The repeated positive and negative deviations in prices make it hard to determine

whether floods are more akin to demand or supply shocks. The existing evidence on weather shocks is similarly

inconclusive. For example, Cevik and Jalles (2023) find no significant impact of storm shocks on headline inflation

in advanced economies, while in developing countries headline and core inflation respond in opposite directions.

On the other hand, Kabundi et al. (2022) find an aggregate negative impact of floods on prices in the short-run

which in advanced economies turns positive for food prices.

Figure 7: Inflation Response to Floods

Note: Dynamic impulse response functions of inflation to a one standard deviation
increase in the number of floods. All specifications include ITL3 and year fixed effects.
Controls include population size and one lag of inflation. Standard errors are clustered
at the ITL3 level. Shaded areas denote 68% and 90% confidence bands.

Our estimates reveal major economic effects capable of dampening potential output. While 17 floods represent
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a much larger shock compared to the average shock in the sample (on average a local authority is flooded 2.34

times every year), we are abstaining from potential non-linear effects. Throughout this paper, we effectively scale

up the linear effect of smaller shocks: in presence of non-linearities, the impact might be larger than what we

predict in our model.

Moreover, the delayed impact on GDP and inflation raises some questions. Flooding dampens economic

activity by destroying physical and human capital (Fried, 2022) and by damaging properties and business activities

(Crampton et al., 2024). These impacts are immediate, and can cause second round effects in the longer run such

as increased uncertainty and relocation of human activity (Panwar and Sen, 2020). However, it is not uncommon

in the literature to find delayed reactions of economic activity to weather shocks (see for example Bilal and Känzig,

2024). Because flooding is a rather local shock which can affect different areas and industries in different ways,

we argue that an aggregate analysis is not best suited to disentangle the economic impact of adverse weather

eventsd. Instead, the focus should be at the sector level as not all sectors are affected in the same way. For

example, Panwar and Sen (2020) argue that agriculture can benefit from increased flooding through higher land

productivity. As our aggregates results combine the different reactions of individual sectors, we now turn our

attention to the industry-level.

4.2 Exploring Industry Heterogeneity

We have documented that floods dampen economic activity and cause fluctuations in prices. We now investigate

the underlying responses at the sector level. Our goal is to explore how different sectors react to the same shock,

which will help make sense of the delayed responses at the aggregate level. Figure 8 plots the IRFs of real GVA

for agriculture, forestry and fishing; manufacture of food, beverages and tobacco; manufacture of textiles, wearing

apparel and leather; other manufacturing, repairs and installation; accommodation services; food and beverage

services; civil engineering; construction of buildings; wholesale trade; and retail trade. We plot the corresponding

IRFs for inflation in Figure 9. For representativeness reasons we aggregate inflation measures for wholesale trade

and retail trade (wholesale and retail trade), accommodation services and food services (accommodation and food

services) and civil engineering and construction of buildings (construction). In the Appendix (Figures 22-23) we

provide the responses of GVA and inflation for the main 18 sectors (i.e., the 18 sections within the UK SIC07

classification code).

Our estimates highlight significant heterogeneities among industries not just in terms of magnitude, but also

in terms of timing and sign. In manufacturing of textiles, wearing apparel and leather and in wholesale trade real

GVA declines by more than 10% one year after a one standard deviation increase in the number of floods and

goes back to its initial level by the fourth year. Similarly, retail trade’s output immediately declines by around

3% and remains below its initial level for three years. On the other hand, real GVA of manufacturing of food,

beverages and tobacco exhibits a one-off decline of about 17% two years after the shock, while other manufacturing,

repairs and installation shows a temporary 10% decrease only in t + 4. The flood shock affects output of food

and beverage services and construction of buildings outputs negatively and permanently (-6% and -10% to -12%

respectively), but the impact takes three years to emerge. Interestingly, real GVA in the accommodation services

and civil engineering sectors increase on impact by 10%. In the former case output exhibits a U-shaped response,

while in the latter the impact turns negative after three years. The rise in output of accommodation activities

is most likely due to displacements following the shock, which damages or destroys private properties forcing

people to find temporary solutions. The positive impact on civil engineering’s GVA is driven by reconstruction

and repair efforts. The civil engineering sectors includes new work, repair, alteration and addition activities

for civil engineering works such as motorways, streets, bridges, tunnels, railways, airfield, harbours, irrigation

systems, sewerage systems, industrial facilities etc. When a flood shock hits, efforts to mitigate the damage to

civil infrastructures lead to a temporary increase in output. This surge is cyclical rather than structural, and

GVA quickly dampens alongside the rest of the construction sector. Lastly, unlike previous evidence seemed to
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suggest (Panwar and Sen, 2020; Crofils et al., 2023), floods do not significantly affect GVA in the agricultural

sector.

Taking together industry-level estimates helps explain aggregate results. The response of GVA on impact is

highly heterogeneous: while some sectors exhibit a decline, others are not affected until one or two years later,

and some experience temporary growth. In the medium to long run, on the other hand, GVA declines in most

sectors. This translates into the delayed impact we find at the aggregate level, and highlights the importance of

disentangling sector-level dynamics.

Figure 8: GVA Response to Floods

Note: Dynamic impulse response functions of GVA to a one standard deviation increase in the number of floods. Estimates are
based on LP-IV. All specifications include ITL3 and year fixed effects. Controls include population size and one lag of GVA.
Standard errors are clustered at the ITL3 level. Shaded areas denote 68% and 90% confidence bands.

What happens to inflation? Our estimates show that deviations in output are not always accompanied by

variations in prices. For example, the flood shock does not significantly impact inflation in the manufacturing of

food, beverages and tobacco and in the construction sectors. On the other hand, a one standard deviation shock

to the number of floods causes a 70 basis point decline in inflation on impact in the other manufacturing, repairs

and installation sector, and a 40bp decline in accommodation and food services activities. In both cases it is not

trivial to draw conclusions with respect to supply and demand channels. While both GVA and prices drop in

other manufacturing, repairs and installation, they do so at different time horizons. Similarly, prices decline in

the accommodation and food services sector along with an increase in GVA in accommodation. When output

decreases in the food services sector, however, prices have already gone back to their steady state.

In the wholesale and retail trade sector floods are akin to a demand shock. Prices drop alongside GVA by

around 25bp after two years, and are still 75bp lower than their initial level five years after the shock. In the

manufacturing of textiles, wearing apparel and leather sector the increase in GVA is preceded by a 300bp rise in

inflation, suggesting a supply-side mechanism is at play.
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Figure 9: Inflation Response to Floods

Note: Dynamic impulse response functions of inflation to a one standard deviation increase
in the number of floods. Estimates are based on LP-IV. All specifications include ITL3 and
year fixed effects. Controls include population size and one lag of inflation. Standard errors
are clustered at the ITL3 level. Shaded areas denote 68% and 90% confidence bands.

In sum, we have shown that aggregate GDP and inflation responses to flood events hide significant heterogeneity

among industries. Sectors react differently not just in terms of size, but also in terms of timing and sign. Sector-

level heterogeneity explains well aggregate evidence, and highlights the importance of disentangling the economic

impact of weather shocks. Intuitively, weather affects the economy through a reduction in the capital stock,

wealth, and income, which should have immediate impacts on both GDP and inflation. However, most of the

available evidence finds delayed responses (e.g., Kabundi et al., 2022; Bilal and Känzig, 2024; Eickmeier et al.,

2024). We argue that focusing on industries solves this puzzle.

Our sectoral estimates reveal that one cannot simply label floods as a supply- or demand-side type of shock.

In the next Section we investigate two potential channels explaining our results, namely investments and real

estate prices. While we do not attempt to provide a definitive answer, we show that a wealth effect is most likely

at play. Moreover, we find that the flood shock propagates through the production network. This is in line with

the idea that a demand (supply) shock in one sector can turn into a supply (demand) shock in another.

5 What Lies Behind the Industry Results?

5.1 Investments

One of the channels through which flooding can dampen output is investments. Following an extreme weather

event, firms might suffer damages to their business premises, inventories and machines that warrant repair costs,

loss of inventory and, at times, temporary suspension of business activities (Crampton et al., 2024). These can

in turn hinder access to credit and more generally crowd out investments. For example, Natoli (2023) finds that

investments react much more strongly to temperature shocks than consumption, driving the decline in GDP.

In the medium- and long-run, however, investments can rebound pushed by a rapid turnover of capital and an

increase in climate adaptation investments.

We estimate the response of investments using the empirical specification introduced in equation (3) and (4),

where yi,t+h is now the log of (industry) investments in 2019 prices. We plot our estimates for aggregate and sector-
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level investments in Figure 10 and Figure 11, respectively. At the aggregate level, we find a borderline significant

(p-value = 0.095) and temporary reduction in investments of 4.5% the year following a one standard deviation

shock in the number of floods. This might partly explain the decrease in aggregate GDP the following year, but

cannot fully account for the persistently lower level of output in the following periods. A large enough one-off

decline in investments, if spread throughout the whole economy, can negatively affect potential output. However,

Figure 11 shows that aggregate results are driven solely by a decline in investments in the manufacturing sector,

while investments in all other sectors are not significantly affected. This suggests that, albeit critical, investments

alone cannot explain the dampening impact of floods on economic activity.

Figure 10: Aggregate Investments Response to Floods

Note: Dynamic impulse response functions of investments to a one standard deviation
increase in the number of floods. All specifications include ITL3 and year fixed effects.
Controls include population size and one lag of investments. Standard errors are clus-
tered at the ITL3 level. Shaded areas denote 68% and 90% confidence bands.

When measuring capital formation the ONS aggregates sectors at the SIC07 section level. We thus lose the

categorization of the different manufacturing activities (now grouped into a unique manufacturing sector), ac-

commodation services and food services (accommodation and food services), civil engineering and construction of

buildings (construction) and wholesale trade and retail trade (wholesale and retail trade).11 This does not allow

us to draw straightforward comparisons between sector-level investments and GVA.

Our estimates show that investments contract only in manufacturing. This explains at least partially the

decline in GVA that we find in the various subcategories of manufacturing, suggesting that firms, either voluntarily

or because they are credit constrained, choose to forego investments in the aftermath of an adverse climate shock.

In all other sectors flooding does not significantly impact investments. Among the many other factors that could

explain the reduction in output in these industries, in the next Sections we focus on two. First, we explore demand

side channels by investigating the impact of floods on real estate market transactions. Second, we look at whether

the flood shock propagates upstream and downstream along the production network.

11We report the IRFs for all the main sectors in the economy in the Appendix.
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Figure 11: Investments Response to Floods by Industry

Note: Dynamic impulse response functions of investments to a one standard deviation in-
crease in the number of floods. Estimates are based on LP-IV. All specifications include
ITL3 and year fixed effects. Controls include population size and one lag of investments.
Standard errors are clustered at the ITL3 level. Shaded areas denote 68% and 90% confi-
dence bands.

5.2 Real Estate Market Transactions

We now focus on real estate market transactions. Floods can cause temporary or permanent damages to private

properties, causing a loss in the wealth of households which would be consistent with a demand-side type of shock.

If households have to incur unexpected expenses to repair or protect their properties or higher insurance premia,

they will reduce or postpone consumption which in turn can generate a decline in economic activity and in prices.

Moreover, as damaged properties decrease in value, households might temporarily lose access to credit and the

possibility to smooth consumption.

We investigate this channel by looking at how a flood shock impacts the median transaction value and the

number of transactions in the real estate market. We estimate the following model:

yi,t+h = αi + βhf̂i,t +Θyi,t−1 + λt + εi,t+h. (5)

We perform our analysis at the quarterly frequency for the period 1996q1-2022q2, and set h = 20 to match

the 5 year time horizon used so far. Because data for GDP, inflation and population is not available at the

ITL3-quarter frequency, we limit our controls to 4 lags (i.e., 1 year) of the dependent variable. This, combined

with local authority (αi) and quarter (λt) fixed effects, should take care of underlying macroeconomic conditions.

Our dependent variables are in turn the natural logarithm of the median transaction price expressed in real 2019

£/square metre and the natural logarithm of the number of transactions in local authority i and quarter t. f̂i,t

is the fitted value of the number of floods from the first stage. We plot our estimates in Figure 12.
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Figure 12: Real Estate Market Transactions Response to Floods

Note: Dynamic impulse response functions of median transaction value (panel (a)) and
number of transactions (panel (b)) to a one standard deviation increase in the number of
floods. Estimates are based on LP-IV. All specifications include ITL3 and year fixed effects.
Controls include 4 lags (1 year) of the dependent variable. Standard errors are clustered at
the ITL3 level. Shaded areas denote 68% and 90% confidence bands.

The impact of a one standard deviation shock on median transaction value (panel (a)) is strong and highly

significant. Median price increases in the quarter immediately after the shock, and remains above its initial level

for around 10 quarters, with a peak of slightly more than 5%. Transaction prices start to decline entering the

third year, and are still decreasing and around 7.5% lower than their initial level 5 years after the shock. At the

same time, the number of transactions (panel (b)) drops by 10% immediately after the shock. In the following

quarters transactions fluctuate significantly, but stabilise at 5% below their initial level up until 5 years later.

The intuition is as follows. Floods cause damages to private properties, thus reducing supply in the real estate

market in the short run (i.e., the number of transactions declines). At the same time, despite their high level of

geographical granularity, ITL3 regions are vast areas that often encompass multiple towns. Therefore, floods will

only affect a portion of the stock of housing. This is likely enough to generate a wealth effect at the local authority

level, as the number of people affected by the flood event is large. However, in the short run households unaffected

by floods will still be active in the real estate market, but with a reduced supply. As a consequence, prices increase

in the first two years akin to a supply-side shock. As time goes by, more channels start to emerge. In particular,

increased perceived flood risk can lead to relocation (Siders, 2019; Seebauer and Winkler, 2020) and economic

uncertainty (Panwar and Sen, 2020). Concurrently, households affected by floods still face the consequences of

unexpected expenses to repair the damages or pay the increased insurance premia, and their consumption remains

low. Moreover, the intrinsic value of properties in flood-risk areas declines, reducing households ability to borrow

(Harrison et al., 2001; Beltrán et al., 2019; Zhang and Leonard, 2019). The wealth effect is now predominant,

and prices decline.

Our estimates confirm the presence of a wealth effect of flooding. While in the real estate market it seems to

be dominating more in the longer run12, it is likely large enough to be consistent with the demand-side type of

shock we observe in some industries, e.g. wholesale and retail trade.

5.3 Production Networks

Our sector-level analysis does not provide a definitive answer as to the nature of a flooding shock. In some sectors,

such as wholesale and retail trade, floods hit economic activity and prices as a demand-side shock. In others,

such as manufacturing of textiles, wearing apparel and leather, they are akin to a supply shock. On the other

12Figure 23 further proves that floods cause an inflationary surge in the real estate sector, followed by persistent deflation.
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hand, for some industries (e.g., accommodation and food services) we are not able to determine whether one effect

dominates the other.

Recent studies have shown that demand shocks can originate from sectoral supply shocks that spillover to

other sectors via a Keynesian supply mechanism, what Cesa-Bianchi and Ferrero (2021) and Guerrieri et al. (2022)

define as “Keynesian supply shocks”. The shutdown of a sector (in our case following a flood event) changes the

set of goods available to consumers. If the intertemporal elasticity of substitution is larger than the elasticity

of substitution across sectors, overall spending becomes less attractive and consumers are induced to postpone

spending to the future. Moreover, the shutdown of a sector can cause income losses for the workers. In presence

of incomplete markets and limited capacity to borrow, this translates into a depression of spending in the rest of

the economy. Both these elements contribute to the rise of Keynesian supply shocks.

However, this mechanism is best suited to explain how a supply shock in one sector causes aggregate demand

deficiency. Our estimates, on the other hand, point more towards simultaneous supply and demand effects in

different sectors and an ambiguous response at the aggregate level. At the same time, we cannot dismiss the

fact that sectors are highly connected through the production network. The amplification and propagation of

small, localized shocks through the economy via the network of input-output linkages has been widely studied

both theoretically (Foerster et al., 2011; Gabaix, 2011) and empirically (Barrot and Sauvagnat, 2016; Acemoglu

et al., 2016; Carvalho et al., 2021). In a setting somewhat similar to ours, for example, Carvalho et al. (2021)

find that the Great East Japan Earthquake of 2011 resulted in a decline in the growth rate of firms with disaster-

hit suppliers and customers, which then propagated to their transactions partners, their transactions partners’

partners and so on.

While it is beyond the scope of this paper to fully disentangle the propagation of our flood shock through

the production network, in this Section we investigate whether network effects exist and how they impact our

sector-level estimates. We obtain an industry breakdown of input-output linkages from the ONS input-output

analytical tables (IOATs), which we aggregate to match the sectors analysed thus far.13 We first compute input-

output weights as the proportion of total expenditure of firms in sector k on intermediate inputs that goes to

intermediate inputs produced in sector j (upstream weights ukj) and the proportion of total output produced by

firms in sector k that is used as input from firms in sector j (downstream weight dkj)
14:

uij =
PkjIkj
PkIk

, ∀k, j; dij =
PkjYkj

PkYk
, ∀k, j. (6)

From here, we follow the empirical corollaries and specification derived by Ghassibe (2021) and adapt our

IV-LP methodology to estimate both full and direct effects at all horizons. Hence, we first estimate the cumulated

full effect of our flood shock:

yki,t+h = αi + βF
k,hf̂i,t + γXi,t +Θyki,t−1 + λt + εFi,t+h, (7)

where βF
h is the usual coefficient of interest. Secondly, we estimate an upper bound of the direct effect of floods,

i.e. the impact of floods on sector k’s output not considering its interactions with other sectors through the

production network:

yki,t+h = αi + βD
k,hf̂i,t +

T∑
τ=0

ψτ
k,J,N

J∑
j=1

ukj

∑
r∈N

yjr,t−τ +
T∑

τ=0

ϕτ
k,J,N

J∑
j=1

dkj
∑
r∈N

yjr,t + γXi,t + λt + εDi,t+h. (8)

13IOATs contain a 105 industry breakdown, which we aggregate based on the classification provided by the ONS for
GVA and prices data. For 17 out of the 18 UK SIC07 sections IOATs provide a more disaggregated level of analysis. The
construction sector, however, is considered as a whole and we cannot distinguish between civil engineering and construction
of buildings.

14One drawback of this approach is that the ONS does not provide a time series of IOATs, hence we assume our weights
to be constant over time.
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We multiply the upstream and downstream weights ukj and dkj introduced in equation (6) by the sum of real

GVA in sector j at time t−τ produced in local authority i and all its neighbouring regions (we define as N the set

of regions neighbouring with i, which includes i itself). Because of the geographical granularity of our sample, we

must assume that firms can easily switch suppliers and customers. For example, if a firm’s supplier shuts down

because of a flood event, the firm will most likely be able to change supplier by going to the next nearest economic

centre of activity. We therefore include GVA from all neighbouring regions in our analysis. ψτ
k,J,N measures the

sensitivity of sector k’s output to that of its suppliers at time t − τ , whereas ϕτ
k,J,N measures it with respect to

its customers. Xi,t controls for population size, and we maintain 1 lag of the upstream and downstream exposure

throughout (i.e., T = 1). The coefficient βD
h represents an upper bound of the cumulated direct effect of the flood

shock. It follows that (βF
k,h − βD

k,h) gives a lower bound of the cumulated production network effect at horizon h.

In other words, if |βF
k,h| > |βD

k,h| the propagation of the shock through input-output linkages amplifies the initial

direct effect of floods on sector j’s output, and viceversa. We plot our estimates for βF
k,h and βD

k,h in Figure 13.

In what follows, we limit our analysis to sectoral GVA.

Figure 13: Full and Direct Response to Floods by Industry

Note: Dynamic impulse response functions of GVA to a one standard deviation increase in
the number of floods: full (blue line, βF

k,h) and direct (red line, βD
k,h) effects. The difference

between the two gives a lower bound of the cumulated production network effect. Estimates
are based on LP-IV. All specifications include ITL3 and year fixed effects. Controls include
population and one lag of GVA for the full effect; population, current and lagged upstream
and downstream exposure to other sectors’ GVA in i and all its neighbouring regions for
the direct effect. Standard errors are clustered at the ITL3 level. Shaded areas denote 90%
confidence bands around the full effect.

Our results suggest that input-output linkages play a role in the propagation of a flooding shock depending on the

sector. In relatively upstream sectors, such as manufacturing, the point estimates for full and direct effects are

considerably different. As we move downstream the production network, input-output linkages still cause direct

and full effects to diverge, but by a smaller margin (i.e, βF
k,h − βD

k,h is closer to 0).

In particular, the direct effect in manufacturing of food, beverages and tobacco and in other manufacturing,

repairs and installation is smaller in absolute value compared to the full effect. This means that in these sectors

production networks amplify the initial direct impact of a flood shock. On the other hand, input-output linkages

significantly dampen the direct effect of floods in manufacturing of textiles, wearing apparel and leather in the

first three years.

In wholesale trade and retail trade the full effect is slightly larger in absolute terms compared to the direct
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effect, which likely relates to the flood shock hitting upstream industries and propagating downstream to the

trade sector. Notably, production networks do not seem to strongly affect GVA response in food and beverage

services and in construction, while they initially amplify the positive impact of floods in the accommodation

services sector. Lastly, in the agriculture sector the full effect is smaller than the direct effect, but remains not

significantly different from 0.

In the Appendix (Figure 25) we compare these results to the same analysis including upstream and downstream

GVA within local authority i only. We show that the direct effect does not change significantly when we do not

consider neighbouring regions. On the one hand, this might partially depend on the large spatial correlation

between industry GVAs: adding GVA of neighbours to the equation could simply not add much information.

However, this evidence also suggests that a large part of the production network amplification of a flood shock

comes from within-region input-output linkages. This is relevant, for example, with respect to the adaptation

debate we introduce in the next Section. If the propagation of a shock through the production network is highly

localized, adaptation investments might be even more effective.

Because we focus on a single, fairly small and well connected country, we should not expect production

networks to impact sector-level economic output majorly. There would need to be nation-wide disruptions to cause

severe interruptions in the production network. Nevertheless, our findings highlight the presence of propagation

mechanisms through input-output linkages among sectors. Importantly, we see the largest difference between full

and direct effect in sectors that are at the top (manufacturing) and at the bottom (wholesale and retail trade)

of the production network. While our estimates do not allow us to determine with certainty whether or not

flooding is akin to a (Keynesian) supply or demand shock, they underline once more the importance of focusing

on industry rather of aggregate figures.

6 The Role of Adaptation Policy

Having established that floods cause a reduction in sectoral output and fluctuations in prices, in this section we

focus on adaptation policy. While investments in adaptation do not tackle the issue of flooding at its core, namely

climate change, they represent the most readily available tool for central governments and local authorities to try

and reduce the impact of floods. Despite this, there is to date no empirical evidence assessing the effectiveness

of adaptation policies. Fried (2022) uses a heterogeneous-agent model with adaptation capital that incorporates

damages from storms as the realization of idiosyncratic shocks and finds that adaptation can significantly reduce

the damage of climate change by approximately one-third. These conclusions, however, have not yet been tested

empirically.

This is not merely an academic exercise, but also a policy relevant experiment as governments are increasingly

pressured to take action.15 During the most recent flooding season in the UK, in late fall and early winter of

2023, the poor state of flood defences has been deemed responsible for the rising number of people affected by

flood events.16 The National Audit Office has found that the number of properties to receive better protection

from flooding by 2027 has been cut by 40%, and 500 of 2,000 new flood defence projects have been abandoned.17

Canova and Pappa (2022) analyse the role of fiscal policy and find that when U.S. states enjoy larger federal

transfers on the onset of a climate disaster they display a more positive medium term output response. While

essential, government intervention in the aftermath of a flood shock only mitigates the impact ex-post and is

strongly dependent on countries’ fiscal positions. Adaptation capital (i.e., flood defences), on the other hand, can

potentially protect infrastructures and people from flooding itself, thus tackling the problem ex-ante.

We study the role of adaptation policy along both the extensive and the intensive margin. While we expect

flood defences to be effective in reducing flood risk (the extensive margin), whether they can help once a flood

15See here.
16See here.
17See here and here.
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hits (the intensive margin) is less obvious. Data on local authority expenditure on flood defences does not provide

information on the adaptation capital built over time. Moreover, because it is only available starting in fiscal

year 2008-09, our panel is not long enough to introduce a sufficient amount of lags of adaptation expenditure that

can account for the building up of flood defences capital. This is crucial, as large expenditure in one year does

not necessarily reflect higher adaptation capital but might be a reaction to very low expenditure in the past, or

more simply a one-off investment. As it is adaptation capital, more than adaptation expenditure, that matters for

protection against floods, we build a proxy by cumulating expenditure over time:

kadapt.i,t = expadapt.i,t + δkadapt.i,t−1 . (9)

For coastal and fluvial protection we assume an average life of 50 years (δ = 0.02), while for land drainage

investments we set the depreciation rate to 15 years (δ = 0.067).18 We plot the time series for both adaptation

expenditure and adaptation capital in Figure 14. Adaptation expenditure by local authorities has been steadily

declining, but the opposite is true for the central government as a big part of expenditure in the UK is sustained

by the Environment Agency.

Figure 14: Adaptation Expenditure and Capital

Note: The figure plots the time series of adaptation expenditure (left axis) and adaptation
capital (right axis) in England’s local authorities as a percentage of their GDP for fiscal
years 2009-09 to 2023-24 (real 2019 £). The dotted segments represent projected figures,
as GDP values at the ITL3-level are not available after 2021. We proxy capital formation
by cumulating adaptation expenditure over time using δ = 0.02 for coastal and fluvial
protection expenditure and δ = 0.067 for land drainage protection expenditure.

6.1 Extensive Margin

We start our analysis by looking at whether adaptation policy is effective at reducing flood risk. We estimate the

following model:

fi,t+h = αi + βhP z
i,t+h + defi,t(γ + ϕpronei) + ΘXi,t−1 + λt + εi,t+h, (10)

where defi,t is in turn adaptation expenditure (expadapt.i,t ) and our proxy for adaptation capital (kadapt.i,t ) taken as

percentages of GDP. We define the dummy pronei to be equal to 1 if local authority i is a flood prone area, i.e.

if on average it has been subject to more floods than the national average over the panel (pronei = 1 if f i > f).

18Fried (2022) uses a depreciation rate of 0.03, which corresponds to an average life of 33 years. Various technical sources,
however, suggest that 50 and 15 years are more appropriate life-spans for these types of investments. Floods potentially
affect the rate of depreciation of adaptation capital, but we have no way of determining whether a given flood causes
damages to flood defences (and to what extent). Hence, for the sake of this analysis we abstain from any assumptions as
to the depreciation of adaptation capital following a flood.
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Hence, γ measures how an increase in adaptation expenditure or capital affects flooding in a non-flood prone local

authority, and ϕ tells us how this relationship changes when a local authority is flood prone.19 We control for

population size, our precipitation z -score, 1 lag of GDP and 3 lags of the dependent variable, that is the number

of floods fi,t. We summarise results in Table 2.

Table 2: Adaptation Policy: Extensive Margin

Dep: n. of floods (1) (2) (3) (4) (5) (6)
t t+1 t+2 t+3 t+4 t+5

expi,t -0.231 -0.791 -1.952 -3.879 -11.19** -9.467
(-0.14) (-0.41) (-0.79) (-1.02) (-2.50) (-1.61)

expi,t × pronei -8.187 -43.26 -74.51**** -1.762 -6.449 -12.14
(-0.20) (-1.30) (-4.03) (-0.04) (-0.14) (-0.39)

kadapt.i,t -0.127 0.0195 -0.415 -0.877 0.0938 0.855

(-0.26) (0.04) (-0.72) (-1.15) (0.09) (0.93)

kadapt.i,t × pronei -23.56* -33.29** -20.17*** -21.03** -45.02** -40.85***

(-1.78) (-2.48) (-3.04) (-2.31) (-2.45) (-2.94)

Obs. 4,326 4,326 4,017 3,708 3,399 3,090
ITL3 FE Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes

Note: Dependent variable is the number of floods in local authority i at time t + h. In the

first two rows the independent variable of interest is adaptation expenditure expadapt.
i,t . In the

third and fourth row the independent variable of interest is our proxy for adaptation capital

kadapt.
i,t defined in equation (9). pronei is a dummy = 1 if local authority i is flood prone,

i.e. if in an average year it is hit by more floods than the country average over the panel. We
include three lags of the dependent variable, population size and 1 lag of GDP. All regression
include ITL3 and year fixed effects, and standard errors clustered at the ITL3 level. t-statistics
in parentheses.
* p < 0.1, **p < 0.05,*** p < 0.01, **** p < 0.001

Our estimates suggest that adaptation strongly reduces the likelihood of being hit by a flood in flood prone

areas, especially if built up over time. In particular, a 1 percentage point increase in adaptation expenditure as

percentage of GDP reduces the number of floods by 11.19 units after four years in non flood prone areas, and

by 76,46 units after two years in flood prone ares. We should highlight two caveats. First, the delayed effect of

adaptation is in line with the idea that expenditure itself does not necessarily reduce flooding. What matters

is adaptation capital, and capital takes time to build up. Secondly, a 1 percentage point increase in adaptation

expenditure is far off what we observe in the data. The median expenditure is 0.002% of GDP, meaning that the

median flood prone local authority will reduce the number of floods by 0.15 units.20

The third and fourth row summarise the effect of adaptation capital. We find that an increase in adaptation

capital in flood prone areas is effective at reducing the risk of flooding at all horizons, while it does not significantly

reduce the number of floods in non flood prone areas. Unsurprisingly, unlike for adaptation expenditure, the

impact of capital does not take years to materialize. In particular, a 1 percentage point increase in the stock

adaptation capital as a percentage of GDP is associated to 23.7 fewer floods in year t, 33.3 in year t + 1, 20.6

in t + 2, 21.9 in t + 3, 44.9 in t + 4 and 40.8 in t + 5. As median adaptation expenditure is 0.002 of GDP and

capital depreciates at rate δ, we never observe a 1 pp increase in adaptation capital over GDP and should scale

our coefficients by at least 500.21 Nevertheless, our results strongly support the idea that investing in adaptation

is an effective way to deal with flooding. Investments should be aimed at building up and maintaining a sufficient

stock of adaptation capital.

19The impact of adaptation policy in a flood prone area is instead given by γ + ϕ.
20To get the decrease in the number of floods for a local authority spending the median amount on adaptation, we simply

divide the coefficients in Table 2 by 1
0.002

.
21Net of depreciation, the median local authority has a stock of adaptation capital worth 0.019% of GDP in 2021, the

last year in our sample.
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6.2 Intensive Margin

We now turn to the intensive margin. The question is whether, once a flood happens, spending more on adaptation

can reduce economic damages. While we find that investing in adaptation can prevent flooding, this could

mean that in well protected areas only extremely severe conditions trigger a flood, potentially causing significant

damages. Therefore, a priori this is not a straightforward question to answer.

We estimate a state-dependent IV-LP model along the lines of Auerbach and Gorodnichenko (2011) and

Auerbach and Gorodnichenko (2012), where instead of determining the state through a transition function F(.)

we follow Ramey and Zubairy (2018) and use a regime-switching dummy:

yi,t+h = Ii,t−1

[
αi + βh

H f̂i,t + γXi,t +Θyi,t−1 + λt

]
+ (1− Ii,t−1)

[
αi + βh

Lf̂i,t + γXi,t +Θyi,t−1 + λt

]
+ εi,t+h

(11)

where

Ii,t−1 =

1 if expi,t−1 > exp

0 otherwise
(12)

Our empirical strategy is the same introduced in equations (3) and (4), but we now allow the coefficients of the

model to vary according to the state of the economy. In other words, βh
H is the cumulative impact of floods

on sectoral GVA in a high adaptation expenditure state, while βh
L is the cumulative impact in a low adaptation

expenditure state. We compute mean adaptation expenditure (as a percentage of GDP) over the whole sample,

and let local authority i in year t be in a high adaptation expenditure state if it spent more than the average

in year t − 1. Following Ramey and Zubairy (2018), local authorities inherit their state from year t − 1. As it

builds up over time, we are unable to define the state based on the stock of adaptation capital. Doing so would

be tantamount to comparing the impact of floods in the first and last years of our panel. We plot the IRFs for

GVA in Figure 15. We leave the corresponding figures for sectoral inflation and aggregate measures of output

and prices in the Appendix.

With the exception of the construction of buildings and manufacturing of textiles, wearing apparel and leather

sectors, the difference in the point estimates is sizeable. However, confidence bands suggest that this difference is

rarely significant. Nevertheless, we point out that the positive impact on GVA we found in the accommodation

sector and in civil engineering seems to be driven by local authorities in the low adaptation expenditure state.

Similarly, the decrease in GVA observed in wholesale trade and in food and beverage services comes mostly from

local authorities that do not invest enough in adaptation. The interpretation is simple: when a flood happens,

these regions are less protected and sustain larger economic losses. Having invested more in flood defences likely

reduces the destructive power of floods by limiting the overflow of water or simply delaying it, thus giving enough

time to people and businesses to prepare.

In sum, we have shown that investing in adaptation does mitigate the impact of flooding. This happens

primarily because flood defences reduce the likelihood of a flood happening, meaning they are effective at the

extensive margin. On the other hand, we find some evidence that in certain sectors high adaptation expenditure

can limit the economic consequences of floods once a local authority is hit, meaning they might be able to reduce

the effects of flooding at the intensive margin too. This has important consequences for the policy debate, and

indicates that adaptation is an effective way to protect the economy.
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Figure 15: State Dependent Response of GVA to Floods by Industry

Note: Dynamic impulse response functions of GVA to a one standard deviation increase in
the number of floods: high (blue line, βH

h ) and low (red line, βL
h ) adaptation expenditure

state. The state is defined in equation (12) using a regime-switch dummy as in Ramey and
Zubairy (2018). The model we estimate is reported in equation (11). Estimates are based on
LP-IV. All specifications include ITL3 and year fixed effects. Controls include population
and one lag of GVA. Standard errors are clustered at the ITL3 level. Shaded areas denote
90% confidence bands.

7 Conclusions

Flooding has intensified significantly in the last decades, and its frequency and severity is expected to get worse.

We study the economic and inflationary effects of floods in England, where already today flooding represents

a significant expenditure item on the UK government’s budget both in terms of damages and in flood risk

management. Departing from the existing literature, we employ a precise measurement of flood events and a

rigorous econometric specification that instruments for floods using precipitation z -scores. Our most important

result is the heterogeneity of the economic response to floods at the sector level, which helps explain seemingly

puzzling aggregate results.

Drawing on highly granular regional economic data and weather observations, we find that the delayed decrease

in aggregate GDP and the positive and negative fluctuations in aggregate prices are explained by sectors reacting

heterogeneously in terms of size, timing and sign. Our estimates show that investments cannot explain all of the

variation in sector level output. Transactions in the real estate market, on the other hand, are consistent with a

wealth effect that would explain the demand-side behaviour of floods in wholesale and retail trade.

We further check the role of production networks, and find that input-output linkages propagate flood shocks

both upstream and downstream. While this result does not help us identify the true nature of flood shocks, it

highlights the deep connections between sectors and the importance of working at a more disaggregated level.

Lastly, we investigate the effectiveness of adaptation policy. Our estimates show that expenditure in adaptation

and building up of adaptation capital can strongly reduce the likelihood of flooding. Once a flood happens,

however, flood defences are only partly able to limit economic damages. These results stress the importance for

local authorities and central governments of increasing investments in adaptation policy.
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A Appendix

Data

Aggregating grid data. ERA5 provides each rainfall observation as the centroid of a 30km×30km grid. We

construct around each centroid a buffer, i.e. a 15km-radius circle with the centroid as its focus. The total rainfall

of a circle in year t is given by the annual sum of the hourly precipitation observations of its centroid. We then

intersect each circle with the 309 local authorities in England. If a circle intersects more than one area, we assign

to each area the share of rainfall corresponding to the share of the circle it intersects. For example, let a circle

intersect local authority A with 75% of its area and local authority B with the remaining 25%. If, in year t, total

precipitation amount in the circle is 1,000 millimetres, we assign 7,500mm to A and 2,500mm to B. One minor

drawback of this approach is that we neglect to account for the space enclosed between the circumferences of

the circles. One could avoid this issue by using squares instead of circles as buffers. However, given the level of

geographical and time aggregation, our approach should be accurate enough for our scope.

Tables and Figures

Figure 16: Overall number of floods and average flood extent by local authority (London)

(a) Number of floods (b) Average flood extent

Source: EA Recorded Flood Outlines and authors’ calculations.
Note: We treat each flood event as a single flood, and assign it to every ITL3 area hit and compute the flooded area
accordingly. Average flood extent is computed as each ITL3 area’s total area flooded over the panel divided by the total
number of floods.
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Figure 17: Map of watercourse and flood defences

Source: OS Open Rivers, AIMS Spatial Flood Defences, and authors’ calculations.
Note: We map watercourse and flood defences by matching the nodes and links in the data
with shapefiles for England.

Figure 18: Confirming the Exclusion Restriction - GVA and Neighbouring Floods

Note: Dynamic impulse response functions of GVA in region i to a one standard deviation increase in the number of floods in all
of i’s neighbouring regions. Estimates are based on LP-IV. All specifications include ITL3 and year fixed effects. Controls include
population size, P z

i,t and one lag of GDP. Standard errors are clustered at the ITL3 level. Shaded areas denote 68% and 90%
confidence bands.
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Figure 19: Confirming the Exclusion Restriction - Inflation and Neigh-
bouring Floods

Note: Dynamic impulse response functions of inflation in region i to a one standard deviation
increase in the number of floods in all of i’s neighbouring regions. Estimates are based on
LP-IV. All specifications include ITL3 and year fixed effects. Controls include population
size, P z

i,t and one lag of inflation. Standard errors are clustered at the ITL3 level. Shaded

areas denote 68% and 90% confidence bands.

Figure 20: GDP Response to Floods - LP OLS

Note: Dynamic impulse response functions of GDP to a one standard deviation increase
in the number of floods . All specifications include ITL3 and year fixed effects. Controls
include population size and one lag of GDP. Standard errors are clustered at the ITL3
level. Shaded areas denote 68% and 90% confidence bands.
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Figure 21: Inflation Response to Floods - LP OLS

Note: Dynamic impulse response functions of inflation to a one standard deviation
increase in the number of floods. All specifications include ITL3 and year fixed effects.
Controls include population size and one lag of inflation. Standard errors are clustered
at the ITL3 level. Shaded areas denote 68% and 90% confidence bands.

Figure 22: GVA Response to Number of Floods by Industry (Main Industries)

Note: Dynamic impulse response functions of GDP to a one standard deviation increase in the number of floods. Estimates are
based on LP-IV. All specifications include ITL3 and year fixed effects. Controls include population size and one lag of GDP.
Standard errors are clustered at the ITL3 level. Shaded areas denote 68% and 90% confidence bands.
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Figure 23: Inflation Response to Number of Floods by Industry (Main Industries)

Note: Dynamic impulse response functions of inflation to a one standard deviation increase in the number of floods. Estimates are
based on LP-IV. All specifications include ITL3 and year fixed effects. Controls include population size and one lag of inflation.
Standard errors are clustered at the ITL3 level. Shaded areas denote 68% and 90% confidence bands.

Figure 24: Investments Response to Number of Floods by Industry (Main Industries)

Note: Dynamic impulse response functions of investments to a one standard deviation increase in the number of floods. Estimates
are based on LP-IV. All specifications include ITL3 and year fixed effects. Controls include population size and one lag of invest-
ments. Standard errors are clustered at the ITL3 level. Shaded areas denote 68% and 90% confidence bands.
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Figure 25: Full and Direct Response to Floods by Industry - An Extension

Note: Dynamic impulse response functions of GVA to a one standard deviation increase
in the number of floods: full (blue line, βF

k,h) and direct (βD
k,h) effects. We compare the

direct effect including both i and its neighbours’ GVA (red solid line), and i’s only (dashed
black line). The difference between the full and the direct effects gives a lower bound of
the cumulated production network effect. Estimates are based on LP-IV. All specifications
include ITL3 and year fixed effects. Controls include population and one lag of GVA for
the full effect; population, current and lagged upstream and downstream exposure to other
sectors’ GVA in i and all its neighbouring regions (when applicable) for the direct effect.
Standard errors are clustered at the ITL3 level. Shaded areas denote 90% confidence bands
around the full effect.
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Figure 26: State Dependent Response of GDP and Inflation to Floods

Note: Dynamic impulse response functions of GDP and inflation to a one standard deviation increase in the number of floods: high
(blue line, βH

h ) and low (red line, βL
h ) adaptation expenditure state. The state is defined in equation (12) using a regime-switch

dummy as in Ramey and Zubairy (2018). The model we estimate is reported in equation (11). Estimates are based on LP-IV. All
specifications include ITL3 and year fixed effects. Controls include population and one lag of the dependent variable. Standard
errors are clustered at the ITL3 level. Shaded areas denote 90% confidence bands.
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Figure 27: State Dependent Response of Inflation to Floods by Industry

Note: Dynamic impulse response functions of inflation to a one standard deviation increase in the number of floods: high (blue line,

βH
h ) and low (red line, βL

h ) adaptation expenditure state. The state is defined in equation (12) using a regime-switch dummy as in
Ramey and Zubairy (2018). The model we estimate is reported in equation (11). Estimates are based on LP-IV. All specifications
include ITL3 and year fixed effects. Controls include population and one lag of inflation. Standard errors are clustered at the ITL3
level. Shaded areas denote 90% confidence bands.

Table 3: LP-IV: First-stage regression of floods measures on the instrument

(1)

N. of floods

IV coefficient 3.705****
(0.603)

F-statistic 37.75
Kleibergen-Paap 34.12
Observations 7,107

Note: The Table reports the first stage
regression of the aggregate LP-IV anal-
ysis - we use the natural logarithm of
GDP as our y. The dependent variable
is the number of floods. We report the
F-statistics and the Kleibergen-Paap
rank test statistics.W include ITL3
and year fixed effects. Controls in-
clude population size and one lag of
the dependent variable. Standard er-
rors clustered at the ITL3 level are re-
ported in parentheses.
* p < 0.1, **p < 0.05,*** p < 0.01,
**** p < 0.001
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Table 4: Breakdown of industries

Macro sector Industry code Industry name Macro sector Industry code Industry name

Production AB (1-9) Agriculture, forestry and fishing; mining and quarrying Services G (45-47) Wholesale and retail trade; repair of motor vehicles
C (10-33) Manufacturing 45 Motor trades
CA (10-12) Manufacture of food, beverages and tobacco 46 Wholesale trade
CB (13-15) Manufacture of textiles, wearing apparel and leather 47 Retail trade
CC (16-18) Manufacture of wood and paper products and printing H (49-53) Transportation and storage
CD-CG (19-23) Manufacture of petroleum, chemicals and other minerals 49-51 Land, water and air transport
CH (24-25) Manufacture of basic and fabricated metal products 52 Warehousing and transport support activities
CI-CJ (26-27) Manufacture of electronic, optical and electrical products 53 Postal and courier activities
CK-CL (28-30) Manufacture of machinery and transport equipment I (55-56) Accommodation and food service activities
CM (31-33) Other manufacturing, repair and installation 55 Accommodation
DE (35-39) Electricity, gas, water; sewerage and waste management 56 Food and beverage service activities

Construction 41 Construction of buildings J (58-63) Information and communication
42 Civil engineering 58-60 Publishing; film and TV production and broadcasting
43 Specialised construction activities 61-63 Telecommunications; information technology

K (64-66) Financial and insurance activities
64 Financial service activities
65-66 Insurance, pension funding and auxiliary financial activities
L (68) Real estate activities
68IMP Owner-occupiers’ imputed rental
68 Real estate activities, excluding imputed rental
M (69-75) Professional, scientific and technical activities
69 Legal and accounting activities
70 Head offices and management consultancy
71 Architectural and engineering activities
72-73 Research and development; advertising and market research
74 Other professional, scientific and technical activities
75 Veterinary activities
N (77-82) Administrative and support service activities
77 Rental and leasing activities
78-80 Employment activities; tourism and security services
81 Services to buildings and landscape activities
82 Office administration and business support activities
O (84) Public administration and defence
P (85) Education
Q (86-88) Human health and social work activities
86 Human health activities
87 Residential care activities
88 Social work activities
R (90-93) Arts, entertainment and recreation
90-91 Creative, arts, entertainment and cultural activities
92-93 Gambling and betting; sports and recreation activities
S (94-96) Other service activities
94 Activities of membership organisations
95 Repair of computers, personal and household goods
96 Other personal service activities
T (97-98) Activities of households

Source: Office for National Statistics (ONS).
Note: The three main sectors of activity are production, construction, and services. Each sector is composed of different industries, which are assigned a letter code. Each industry is
further categorized into sub-industries, labeled with an alphanumeric code.
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