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Abstract

This paper presents a rare application in the real-estate context of the bunching methodology
widely used in other areas of applied microeonomics. The application is building-height regu-
lation in New York City, where several costly actions allow a developer to exceed the regulated
height for his parcel. The paper aims to use the observed bunching pattern near a regulated
height to estimate the marginal-cost penalty for exceeding that height, thus capturing the size
of the cost-function kink faced by developers. Our approach reverses the usual application of
the bunching methodology, under which the kink size (often the increment to a marginal tax
rate) is known and the goal is to estimate a behavioral parameter (often a labor-supply elastic-
ity). By contrast, our behavioral parameter (the exponent in a housing production function)
has been reliably estimated, and we use its value to identify the unknown size of a cost-function
kink. We also use our estimates to predict the increase in floor space in our sample that would
result from eliminating height regulation.



Bunching in Real-Estate Markets: Regulated Building Heights
in New York City

by

Jan K. Brueckner, David Leather, Miguel Zerecero†

1. Introduction

The bunching methodology introduced by Saez (2010) has been widely used in a variety

of applications, usually to estimate the value of an unknown behavioral parameter. In these

applications, consumers or firms bunch at a kink point of some function that enters their

optimization problem, and the extent of the bunching can be used to estimate the value of

an unknown parameter of interest. Saez (2010), for example, uses the extent of bunching at

an income-tax schedule’s kink point, where the slope changes discontinuously, to estimate the

elasticity of labor supply, and Chetty et al. (2011) carry out a similar exercise. As explained

in the recent surveys by Kleven (2016) and Bertanha et al. (2023), the method has also been

applied in many other taxation contexts as well as in research on financial markets, health

care, environmental regulation, education and energy demand.

In most studies, the size of the kink faced by optimizing agents is known (the increase in a

marginal tax rate, for example), while the behavioral parameter that influences the extent of

bunching is the unknown quantity. Alternatively, however, it is possible to use Saez’s method to

estimate the unknown size of a kink faced by optimizers, provided that the relevant behavioral

parameters have been specified.1 The present paper carries out this type of exercise, with a

focus on the real-estate market. In particular, we study bunching due to regulated building

heights for residential housing, using data from New York City. The only other studies of

† We thank David Agrawal, Gilles Duranton, Teju Velayudhan, Mazhar Waseem, and especially Jinwon Kim
for helpful comments and discussions. The usual disclaimer applies.

1 After an hearing an explanation of our approach, Mazhar Waseem described it as “reverse engineering.”
Although they do not use Saez’s (2010) methodology, Garicano, Lelarge and Van Reenen (2016) carry out
an excercise somewhat similar to ours in their study of the French labor market. French firms are subject to
additional regulations when their employment exceeds 50 workers. As the impact of these regulations on firm
employment is hard to quantify, the paper estimates the tax equivalent of the regulations by exploiting the
bunching pattern of firms at the threshold. Like us, they rely on external estimates of production parameters
to generate their tax-function estimates.
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real-estate bunching of which we are aware are Kopczuk and Munroe (2015) and Slemrod,

Weber and Shan (2017), who study transfer taxes.2 But our focus on building heights and

their regulation follows a growing literature in urban economics.3

In New York and most other US cities, heights are regulated via limits on a building’s

floor-area ratio, or FAR, which equals the square feet of floor space in the building divided by

the lot size. If the building fully covers the entire lot, the FAR is simply equal to the number

of floors. FAR limits vary across parcels, being low in some locations and high in others,

depending on the decisions of the local planning authority.

In New York, however, several costly options allow developers to build beyond FAR, the

parcel’s FAR limit. For example, under the Privately Owned Public Spaces (POPS) program,

a developer is granted a maximum FAR above FAR in return for devoting a portion of the

lot to open space with public access.4 Because some of the developer’s land goes unused in

the production of floor space, reliance on the POPS program raises the cost of that space.

Alternatively, a developer can purchase “air rights” from a nearby existing building whose

FAR value is below its limit. When this building is contiguous to the developer’s lot, air rights

are acquired through a “zoning lot merger,” which allows the unused FAR to be transferred

to the new building, with compensation to the existing building’s owner. Air rights from a

noncontiguous property can be bought under a different mechanism. Weinberger (2023) offers

a fuller explanation of these rules while also stating that the cost of air rights in NYC ranges

between $100 and $300 per square foot of floor space.

Thus, these two options allow the developer to build above FAR, but at a cost. In effect,

they raise the marginal cost of floor space beyond FAR, creating a kink in the cost function.

Since a parcel’s FAR is observed, the location of the kink is known. However, its size is

2 Since transfer taxes only apply above a large sales-price threshold, the taxes generate a “notch,” a dis-
continuous jump in the tax burden, rather than a continuous kink. Kleven and Waseem (2013) developed an
estimation method for notches analogous to Saez’s kink methodology. Like Kopczuk and Munroe (2015) and
Slemrod et al. (2017), applications in the research areas mentioned above often involve notches rather than
kinks.

3 See Bertaud and Brueckner (2005), Brueckner and Sridhar (2012), Brueckner and Singh (2020), Ahlfeldt
and McMillen (2018), Ahlfeldt and Barr (2022), Barr and Jedwab (2023), among others.

4 See this NY Deparment of City Planning website for more information: https://www.nyc.gov/site/plan-
ning/plans/pops/pops.page. Evidently, the amount of additional FAR is negotiated with the city.
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unknown. The goal of the paper is to estimate the size of this cost kink using Saez’s (2010)

methodology. To do so, we must impose a value for the capital exponent in a Cobb-Douglas

housing production function, which plays the role of the unknown behavioral parameter in

our model. A recent and reliable exponent estimate is drawn from Combes, Duranton and

Gobillon (2021), who estimate the production function using French data.

We proceed by dividing residential parcels in NYC into different FAR groups, of which five

have enough observations (at least 1000) to be usable for our purposes. For example, one group

has FAR= 2.0, while another has FAR= 0.9. Within each group, we drop buildings constructed

prior to the year 2000, so that observed FAR values have been set relatively recently. Then,

within each FAR group, we apply our adaptation of Saez’s method to estimate the increase

in the marginal cost of floor space above FAR, expressed as a proportion of the cost below

FAR. We estimate the standard error of our marginal-cost penalty, and thus its 95% confidence

interval, by the bootstrap method, using 500 draws with replacement.

Glaeser et al. (2005) and Brueckner and Singh (2020) study the stringency of land-use

regulation in NYC and other cities, and the latter paper’s methodology allows the free-market

FAR to be estimated, showing that NYC’s regulated FAR values lie well below it. This result

appears to confirm the allegations of many observers (including Glaeser and his coauthors)

that, despite its high density, New York is not dense enough, with more housing and thus

taller buildings needed. Our results allow us to advance this debate by computing the extra

floor space that would be generated by removing the FAR limit in any of our FAR groups.

While this exercise is carried out in section 5 of the paper, section 2 shows how Saez’s

methodology can be applied to the building-height case. Section 3 describes our data sources,

and section 4 presents the estimation results. Section 6 offers conclusions.

2. Saez’s analytics adapted to building heights

2.1. Housing production

Emmanuel Saez’s (2010) bunching methodology can be adapted to a developer’s choice of

building height. This section explains the adaptation, drawing in detail on Saez’s analyis.

To start, we depict the production of housing floor space. Let Q denote output of floor

3



space, which is produced with inputs of capital K (building materials) and land ` using the

CRS production function H(K, `). Floor space per acre of land, denoted F , is given by

F = H(K, `)/` = H(K/`, 1) = H(S, 1) ≡ f(S), where S = K/` is capital per acre. The

developer’s profit per acre of land, exclusive of land cost, is then pf(S) − S, where p is the

rental price per square foot floor space and the price of capital is normalized to 1. The first-

order condition for choice of S is pf ′(S) = 1 (note that f ′′ < 0).

Floor space per acre, F , is commonly known as FAR (the floor-area ratio), and the devel-

oper can be depicted as choosing it rather than S, which is more convenient for our purposes.

Making a change of variable from S to F yields S = f−1(F ). The developer’s capital cost per

acre can then be written S = f−1(F ) ≡ C(F ). Profit per acre is then pF − C(F ), and the

first-order condition is p = C ′(F ). The two approaches using S and F are, of course, equiva-

lent. If H takes a Cobb-Douglas form with capital exponent ρ < 1, then f(S) is proportional

to Sρ and C(F ) is proportional to F 1/ρ ≡ F γ, where γ = 1/ρ > 1.

For notational simplicity, let F instead of FAR denote the regulated FAR. Then suppose

that the marginal cost C ′(F ) is larger above F than below it, as would be the case if air

rights need to be purchased to set F above F . To capture this behavior, let C(F ) include a

multiplicative factor that equals α/γ below F and (α + β)/γ above it, as follows:

C(F ) =

{
αF γ/γ if F ≤ F

(α + β)F γ/γ − βF
γ
/γ if F > F .

(1)

Note that the βF
γ
/γ term in the second line of (1) ensures that C(F ) is continuous at F .

Using (1), the previous first-order condition p = C ′(F ) for F can be written as

p =

{
αF λ if F ≤ F

(α + β)F λ if F > F, where λ ≡ γ − 1 = 1/ρ − 1 > 0.
(2)

It is easily seen from (2) that 1/λ is the elasticity of F with respect to p, both below and above

F . While (2) applies when the developer purchases air rights to set F above F , the appendix

shows that the same first-order conditions apply when the developer secures a higher FAR

limit by creating public open space.
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2.2. Bunching

Inspection of (2) shows that the optimal F equals F when p = αF
λ
≡ p∗ and also when

p = (α+β)F
λ
≡ p∗∗. For p values in the range (p∗, p∗∗), the optimal F also equals F , although

neither of the tangency conditions in (2) is satisfied. In this case, for a range of p values, the

highest profit is reached at the kink in the C function without a tangency occurring, leading to

the bunching of optimal F values at F . Figure 1 provides an illustration, with the two dotted

lines in the figure, having slopes p∗ and p∗∗, being tangent to the two separate portions of

C(F ) at the kink. A line with an intermediate slope would touch the kink without a tangency.

We consider a large group of land parcels sharing a common F , but the price p is assumed

to differ across the parcels in a manner described by the density function t(p). Therefore,

optimal values of F differ across parcels depending on the relevant p values. Since F , not p,

is observed, we need to derive the density of F over the relevant ranges. Since p = αF λ holds

below F , the density of F in this range can be derived by using the change-of-variable formula

on p’s density t(p). Doing so, the density of F for F < F is given by

t(αF λ)αλF λ−1 ≡ h0(F ), (3)

where h0 denotes F ’s density in this range. Note that p as a function of F is substituted in

t, with result multiplied by the derivative of this relationship. The resulting transformation

changes the density’s scale on the horizontal axis as well as its height.

Similarly, to find the density of F for F ≥ F , p = (α + β)F
λ

is substituted into t(p),

yielding

t((α + β)F λ)(α + β)λF λ−1 ≡ h1(F ), (4)

where h1 denotes F ’s density in this range.

Let h(F ) give the overall density of F , which equals h0(F ) below F and h1(F ) above

F . In addition, let the limits of h(F ) as F approaches F from below (above) be denoted

h(F )− ≡ h0(F ) and h(F )+ ≡ h1(F ), respectively. From (3) and (4), it is clear that these

limits are unequal, so that a density discontinuity exists at F .
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To relate all this information to the extent of bunching at F , recall that developers facing

p values in the interval [p∗, p∗∗] = [αF
λ
, (α + β)F

λ
] bunch at F . Intuitively, for a given λ,

the range of p values leading to bunching, and thus the number of developers who bunch, is

larger the greater is the ratio (α + β)/α and thus the larger is the marginal-cost penalty for

exceeding F .

We can derive the size of this group of bunching developers using the density h0(F ), which

applies in the range below F . To do so, suppose for a moment that the marginal-cost kink at

F did not exist, with the density h0(F ) applying for all F values. To use this density, note

that the developer with p = p∗∗ = (α + β)F
λ

facing the marginal-cost factor α would choose

F = [(α + β)/α]1/λF , as can be seen from setting p = p∗∗ in the first line of (2). Therefore,

the number of developers in the [p∗, p∗∗] interval would be the number of developers choosing

F between F and F = ((α + β)/α)1/λF in the absence of the marginal-cost kink. Let the last

expression be written as F + ∆F , where

∆F =

[(
α + β)

α

)1/λ

− 1

]
F. (5)

Then, the number of bunchers B is equal to the integral of the density h0(F ), which applies

in the absence of the kink, between these two values:

B =

∫ F+∆F

F
h0(z)dz. (6)

This integral can be approximated by the area of a trapezoid with its corners on h0(F ) at the

limits of integration, yielding

B = ∆F
h0(F ) + h0(F + ∆F )

2
. (7)

The problem, though, in operationalizing (7) is that we do not observe h0(F +∆F ), given

that h0 in the presence of the marginal-cost kink only applies up to F and not above it. But
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we can use the relationship between h0 and h1 implied by (3) and (4) to replace h0(F +∆F) by

expression involving the (observable) density h1, circumventing this obstacle. Doing so yields

h0(F + ∆F ) = t[α(F + ∆F )λ] αλ(F + ∆F )λ−1

= t


α

((
α + β

α

)1/λ

F

)λ

αλ

[(
α + β

α

)1/λ

F

]λ−1

= t((α + β)F
λ
)αλ

(
α + β

α

)(λ−1)/λ

F
λ−1

=

(
α + β

α

)−1/λ

t(α + β)F
λ
)(α + β)λF

λ−1

=

(
α + β

α

)−1/λ

h1(F ). (8)

The first line of (8) uses (3), the second line uses the definition of ∆F in (5), the third line

simplifies the second line, the fourth line further implies the third line, and the last line uses

the definition of h1 in (4).

Substituting (8) along with h0(F ) = h(F )− and h1(F ) = h(F )+ into (7), while recalling

the definition of ∆F in (5), (6) can be written as5

B = ∆F
h(F )− + ((α + β)/α)−1/λ h(F )+

2

= (θ − 1)F
h(F )− + (1/θ) h(F )+

2
, (9)

where

θ ≡

(
α + β

α

)1/λ

. (10)

Note that θ equals the ratio of the marginal-cost parameters just above and below C(F )’s kink,

which is then raised to a power equal to the price elasticity of F , equal to 1/λ from above.

5 Eq. (9) corresponds to eq. (5) in Saez (2010). In Saez’s case, θ = [(1 − t0)/(1 − t1)]
e, where t0 and t1 are

the income-tax rates below and above the kink in the net-of-tax earnings schedule and e is the compensated
elasticity of earnings with respect to 1 minus the tax rate.
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Since B, h(F )−, and h(F )+ can be measured in the data, (9) can be used to solve for θ.

With a θ estimate, denoted θ̂, in hand, the marginal-cost ratio (α+β)/α can be estimated via

̂(α + β)/α = θ̂ λ, (11)

using an independent value of λ.

As explained in Saez (2010), the elements in (9) can be generated by creating three FAR

intervals around F , defined by a width factor δ. One interval is centered at F , consisting of

observed FAR values satisfying F ∈ [F − δ, F + δ]. Two additional intervals lie just below

and just above this interval, consisting of FAR values satisfying F ∈ [F − 2δ, F − δ) and

F ∈ (F + δ, F + 2δ]. These intervals yield an estimate of the extent of bunching, captured by

the excess mass in the middle interval relative to the masses in the two outer intervals (mass

being the number of F observations). In addition, the latter masses allow estimates of h(F )−

and h(F )+.

Specifically, let N denote the number of FAR observations in the central interval, H−

denote the number of observations in the lower outer interval, and H+ denote the number of

observations in the upper outer interval. Then the estimated magnitude of bunching equals

B̂ = N−H−−H+. The estimated average height of the density h− below F equals ĥ− = H−/δ,

and the estimated average height of the density h+ above F equals ĥ+ = H+/δ. In each case,

the average density height equals the number of FAR observations in each interval divided by

its width. This discussion is illustrated below in a diagram for the F = 2.0 case.

These estimated values are substituted into (9), and the equation is then solved to yield θ̂,

the estimate of θ. Note that after multiplying through by θ, (9) becomes a quadratic equation

in θ, which can be solved by the quadratic formula. Given θ̂, we use the existing estimate

of λ from Combes, Duranton and Gobillon (2021) to yield θ̂ λ, the estimate of the marginal-

cost ratio from (11). That paper provides a recent and reliable estimate of the parameters

of the Cobb-Douglas housing production function based on French data. Their estimate of

the capital exponent is 0.65, which (using the second line of (2)) translates into a λ value of

(1/0.65) − 1 = 0.54.
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Bootstrapping, based on repeated sampling with replacement from the data set (using 500

draws), generates a mean θ̂ value along with a standard error and confidence interval. In

addition, our θ estimate, and hence the estimate of (α + β)/α, obviously depend on the value

of the interval parameter δ, and this dependence can be appraised via sensitivity analysis.

3. Data

The Primary Land Use Tax Lot Output (PLUTO) dataset (Release 17v1.1) provided by

the New York City Department of City Planning is used as our analysis dataset. The sample

year is 2017. PLUTO contains information on the physical dimensions of the tax lot and the

building(s) that sit on the lot, the economic uses of the tax lot, the year when the building was

built along with the years of the last major alterations, the zoning designation(s) that pertain

to the lot, and the assessed value of the property and land, amongst other fields. The initial

dataset has 859,225 observations. The geography of New York City is spread across the five

boroughs: Brooklyn (32.23% of tax lots), Bronx (10.64%), Manhattan (5%), Queens (37.77%),

and Staten Island (14.48%).

We apply several filters to the data to ensure a clean focus. We drop any observation

that has more than one zoning designation, is zoned as a special purpose district, a historical

district, a limited-height district, or where no zoning designation or year built is indicated. We

drop any tax lot that does not contain a single building, and we drop buildings in building

class categories that are not of interest.6 These filters exclude 403,176 observations, or roughly

46.92% of the initial sample. We also filter out zoning designations for which we either do

not have adequate information on height restrictions, or whose rules are governed by “height-

factor” zoning regulations, which confound our analysis.7

6 These categories are “Garages or Gasoline Stations,” “Hospitals and Health,” “Theatres,” “Loft Build-
ings,” “Churches, Synagogues, etc.,” “Asylums and Homes,” “Places of Public Assembly (Indoor) and Cul-
tural,” “Condominium Buildings,” “Outdoor Recreation Facilities,” “Transportation Facilities,” “Utility Bu-
reau Properties,” “Vacant Land,” “Educational Structures,” “Selected Government Installations,” and “Misc”
which contains uses such as tennis courts, court houses, public parking areas, the post office, and the United
Nation buildings.

7 Height-factor zoning regulations confound our analysis, since the developer can increase the FAR limit by
providing more open space, building a taller skinnier building, as under the POPS program. The problem is
that FAR varies with open space according to a complicated formula, with no regular FAR limit stated. To
further confound the analysis of these properties, in 1987 “The Quality Housing Program” (QHP) was initiated,
and developers were to choose between height-factor zoning and the QHP, which imposed a number of design
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We also drop commercially and industrially zoned buildings from our sample, leaving only

residential parcels. Most commercial zoning designations in NYC have a residential equivalent

zone. This feature allows any commercially zoned building with a residential equivalent to

be treated as a mixed-use building that is assigned an FAR limit equal to a combination of

the FAR limits on commercial and residential space. This mixture is problematic as it creates

many FAR limits, and since there are few commercially zoned buildings in the city, they do not

provide a sample size large enough to run our analysis. This filter removes 10,060 observations,

or 1.17% of the initial sample.

We then generate values for FAR limits using the PLUTO’s “Zoning Data Tables,” keeping

only FAR values that pertain to at least 1,000 tax lots. This final filter results in five subsamples

with FAR limits of 0.5, 0.6, 0.9, 1.25, and 2.0. The final analysis dataset consists of 22,381

properties, or roughly 2.6% of the initial sample. Of these properties, 2,631 (11.75%) are in

the Bronx, 4,089 (18.27%) are in Brooklyn, 8,881 (39.68%) are in Queens, and 6,779 (30.29%)

are in Staten Island. Only a single parcel lies in Manhattan. Compared to the initial sample,

our analysis sample is more heavily weighted to the boroughs of Staten Island and the Bronx,

slightly less representative of Queens, and much less representative of Brooklyn and especially

Manhattan.

4. Results

4.1. Summary statistics

As just mentioned, the data we use consist of parcels with five different F values, as shown

in Table 1 along with the number of observations for each group and the zoning categories

they contain. The table also shows the average number of floors in each group, as well as the

average value of the floors/FAR ratio. These numbers show that the parcels in our sample

do not contain the very tall buildings for which NYC is famous. The number of observations

in those categories is just too small for the application of our method. In addition, recall

that, if a building fully covers its lot, FAR is equal to the number of floors. With the average

floors/FAR ratio exceeding 1, it follows that, on average, buildings in our sample do not cover

restrictions while allowing for wider buildings more in line with the historic character of the neighborhoods.
These filters remove an additional 65,680 observations, or 7.64% of the initial sample.
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their lots. For the FAR = 1.25 and 2.00 groups, the ratio value of approximately 2 indicates

that lot coverage is around 50% for these groups, with the fraction lower in the groups with

smaller FAR values (and higher ratios).

Figures 2-6 show FAR histograms for the 5 different groups, with the group’s FAR value

shown by the vertical line. It is important to note that, with more than 1000 observations

in each group, these histograms do not capture much of the detail in the FAR distributions.

However, they are easier to read than more disaggregated histograms while adequately captur-

ing the bunching patterns around the FAR values, which tend to be striking. Figure 7 shows

a map of the sample parcel locations, which must be read on the screen. As can be seen,

parcels are lacking in Manhattan, which partly accounts for the absence, on average, of tall

buildings. However, note that the F = 2.0 group is closest to Manhattan, accounting for its

taller buildings relative to other groups.

4.2. Main results

Table 2 shows the θ and (α + β)/α estimates for the different FAR groups along with the

assumed δ values used in their computation. The bootstrap confidence intervals for θ as well as

the mean θ̂ from the bootstrap are shown, along with the implied confidence intervals for the

marginal-cost ratio (α + β)/α. It is important to note that the δ interval value for each FAR

group is chosen by careful examination of a detailed histogram of the FAR distribution for

the group (more detailed than those in Figures 2-6), so as to reasonably capture the bunching

area. The sensitivity analysis presented below shows how the θ̂ values are affected by the δ

choices.

Consider first the FAR = 2.0 group. The θ̂ value equals 1.119, which yields a ̂(α + β)/α

value of 1.063, indicating that the marginal cost of additional floor space is about 6% higher

above FAR than below it, a moderate cost penalty. At 1.121, the average bootstrap θ̂ is very

close to the sample θ estimate, and the distribution of the bootstrap θ̂ values around this mean

is fairly symmetric, as shown in Figure 8. The 95% confidence interval for θ, also shown in the

table, ranges between 1.08 and 1.16, while the implied confidence interval for the marginal-cost

ratio (α + β)/α ranges between 1.042 and 1.085.

Figure 9 illustrates the areas used to compute the extent of bunching, with the width of
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the cells equal to δ. While the areas are illustrated using a kernel density that approximates

the FAR distribution, the numerical computations use the actual distribution. As explained

above, B is equal to the area under the density between the second and fourth vertical lines

(reading from the left) minus the sum of the areas between the first and second lines (H ) and

between the fourth and fifth vertical lines (H+). This difference can be decomposed into the

the area between lines 2 and 3 minus H (the left red area) plus the area between lines 3 and

4 minus H+ (the right red area).

Turning to the FAR = 1.25 group, the θ̂ value of 1.034, and the associated ̂(α + β)/α value

of 1.018, indicate that the cost penalty above FAR is now much smaller, at only about 2%.

The mean bootstrap θ̂ is again close to the sample estimate, and the θ̂ distribution (not shown)

is again quite symmetric.

Results for the FAR = 0.9 and 0.6 groups are very similar, with the θ̂ estimate now larger

at about 1.06 and the implied cost premia just above 3%. The average bootstrap θ̂ values are

again close to the sample estimates, and the θ̂ distributions are symmetric.

The FAR = 0.5 group has a larger θ̂ like that of the 2.0 group. It equals θ̂ = 1.123, yielding

an implied a cost penalty of more than 6%. The other previous features of the bootstrap results

remain present.

Recall that the extent of bunching (the number of developers with p values between p∗

and p∗∗) depends on the magnitude of the marginal-cost penalty for exceeding F , given by

(α + β)/α. This relationship is evident in the F histograms in Figures 2-6. The estimated

values of the penalty are largest in the F = 2.0 and F = 0.5 cases, and inspection of the figures

shows that bunching appears to be most prominent in these cases, confirming the expected

association.

The results in Table 2 thus show that a marginal-cost penalty exists above FAR in each

of the groups, roughly ranging between 2% and 6%. Moreover, in all groups, the θ̂ confidence

intervals never cover θ = 1.0, which would indicate the absence of a penalty. Therefore, our

findings confirm that, if they pay an additional cost, developers in NYC can build above the

regulated FAR value for their parcel. For most FAR groups, this extra cost is modest but

noteworthy.
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4.3. Sensitivity analysis

While we use a reliably estimated value of λ equal to 0.54, based on a Cobb-Douglas

capital exponent ρ of 0.65, larger estimated values of (α + β)/α emerge from larger λ values.

For example, if λ = 1, corresponding to ρ = 0.5 (see (2)), the estimate of the marginal-cost

penalty is equal to θ̂ itself, as seen in (11). In this case, the penalty ranges between 3% and

12% rather than between 2% and 6%, as can be seen from the θ̂ column of Table 2. However,

empirical support for such a low ρ value appears to be lacking.

As discussed above, the θ̂ estimate for an FAR group, and the implied estimate of the

marginal-cost ratio, depend on the assumed value of the interval parameter δ. Table 3 shows

sensitivity analysis, with the first line within each group showing our assumed δ value and θ̂

values from Table 2, and the second and third lines showing the θ̂ estimates using smaller and

larger δ values. As can be seen, the θ̂ estimates vary somewhat with the value of δ. But the

only striking change occurs in the FAR = 0.9 group, where raising δ from the assumed value

of 0.15 to 0.175 increases θ̂ from 1.065 all the way to 1.237. Overall, the sensitivity analysis

does not change the conclusion that building above FAR is costly for developers.

5. Gains in housing floor space from eliminating FAR regulation

As explained in the introduction, FAR regulation reduces the amount of housing that

can be produced in NYC, a city that many observers view as under-supplying housing floor

space. Our analysis allows us to compute the extra housing floor space that could be gained

by eliminating the regulation.8

To understand how our procedure works, focus on the theoretical model of section 2, and

consider first a developer who chooses some F = Fnow > F under the current limitations (in

other words, “now”). The price p faced by this developer, denoted p̃, satisfies p̃ = (α+β)F λ
now,

with Fnow = (p̃/(α + β))1/λ > F . With FAR regulation eliminated, the α + β factor becomes

α, and this developer would instead choose a new F value satisfying p̃ = αF λ
new, or Fnew =

8 Peng (2023) carries out a related exercise by using an estimated structural model to predict housing supply
increases resulting from a reform that relaxed some FAR limits prior to our sample year.
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(p̃/α)1/λ. The ratio between the new and current FAR values is given by

Fnew

Fnow
=

(p̃/α)1/λ

(p̃/(α + β))1/λ
=

(
α + β

α

)1/λ

= θ (12)

The chosen FAR thus rises by the factor θ with elimination of FAR regulation. Using (12),

the new supply of floor space from the developer’s lot is given by

Fnew × ` = ` θ Fnow, (13)

where ` is the lot size (recall that F equals floor space per acre). Thus, new floor space equals θ

times the current FAR times lot size. Note that this discussion assumes that existing buildings

that are constrained by FAR regulation would be replaced. By contrast, the current amount

of floor space equals `Fnow. These expressions can be summed across all parcels with F > F

to get total floor space above F , both before and after the elimination of FAR regulation. It

is important to note that the floor-space gain depends on θ, which equals the marginal-cost

ratio raised to a power, not directly on the ratio itself.

Turning to bunching developers, recall that in the theoretical model, developers who bunch

at F have p values in the range [p∗, p∗∗] = [αF
λ
, (α+β)F

λ
]. In the absence of FAR regulation,

the developer facing p = αF
λ

would choose F = F , while a developer facing p = (α + β)F
λ

would choose F = ((α + β)/α)1/λF = θF . Approximating based on an average of these

endpoint values, bunching developers on average would thus choose F equal to (F + θF )/2 =

(1/2)(1 + θ)F .

Therefore, for current bunchers, the average floor space in the absence of FAR regulation

would equal ` × [(1 + θ)/2] × F , assuming ` is the same for all bunchers. The current floor

space for bunchers equals `F . Both these expressions would be summed across bunchers to

get the total floor space with and without FAR regulation.

The online appendix shows how to calculate the change in floor space for a marginal

increase in F rather than for a complete elimination of FAR regulation. As above, there are

multiple groups to consider. The calculation is again complicated, but in the end, it leads
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to an intuitive conclusion: the rate of increase of total floor space when F increases by an

infinitesimal amount ε is just equal to the total amount of space bunched at the original F .

F for each of these buildings increases by ε, so that they become bunched at the marginally

higher F . Dividing the FAR gain by ε to evaluate the derivative, the result is simply B, the

original amount of bunching (multiplying by lot size gives the floor-space gain). The online

appendix also generates formulas for a non-marginal increase in F .

In taking the theoretical formulas to the data, we must recognize that, unlike in the model,

bunching is viewed as occurring over a range of F values instead of at the single point F . While

this difference can be handled for the case of full removal of FAR regulation, it prevents clean

calculations for the case of a non-marginal increase in F . Hence, we present numbers only for

the full-removal case.

In the previous computations, the bunching range has been set at [F−δ, F +δ]. As a result,

we view developers who breach the FAR limit as those who set F above F + δ. Developers

who bunch are those in the bunching interval, but to be consistent with the model, we treat

these developers as choosing F = F rather than the values near F that they actually choose.

With these amendments, both the total existing floor space and the floor space that would be

produced in the absence of FAR regulation can be computed for each of the five F groups.

Letting i denote the parcel and 1 denote an indicator function, total current floor space

for a given F group is given by9

SPACEnow =
∑

i

{`i Fi×1[Fi < F−δ] + `i F×1[F−δ < Fi < F+δ] + `i Fi×1[Fi > F+δ]}.

(14)

Recall that, as explained above, a parcel’s floor space in the bunching range is set equal to `iF

rather than `iFi.
10 Total floor space without FAR regulation is given by

SPACEnew =
∑

i

{`i Fi × 1[Fi < F − δ] + 0.5(1 + θ) `i F × 1[F − δ < Fi < F + δ]

9 While lot size for bunchers was, for simplicity, assumed equal in the theoretical discussion above, (13) allows
it to differ across parcels
10 This choice will have little effect given that the average of Fi over the bunching range will be close to F .
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+ θ `i Fi × 1[Fi > F + δ]}. (15)

Note that, following the discussion above, floor space in the bunching range is inflated by the

factor 0.5(1 + θ), while floor space above F + δ is inflated by the factor θ. Floor space below

F − δ is unchanged.11

The results of computing (14) and (15) for each of the FAR groups are shown in Table

4. The largest percentage gains in floor space from the elimination of FAR regulation are in

the FAR = 2.0 and 0.5 groups, where gains are 6.8% and 9.5% respectively. The gains for the

other groups are smaller, in the 2-4% range. The results show that, even focusing on FAR

groups containing buildings that are relatively short by NYC standards, the floor-space gains

from the removal of FAR regulation can be appreciable.

6. Conclusion

This paper has presented a rare application in the real-estate context of the bunching

methodology widely used in other areas of applied microeonomics. The application is to

regulated building heights in New York City, where several costly actions allow a developer to

exceed the regulated height for his parcel. The goal of the paper is to use the observed bunching

pattern near a regulated height to estimate the marginal-cost penalty for exceeding that height,

thus capturing the size of the cost-function kink faced by developers. Our approach reverses the

usual application of the bunching methodology, under which the kink size (often the increment

to a marginal tax rate) is known and the goal is to estimate a behavioral parameter (often

a labor-supply elasticity). By contrast, our behavioral parameter (the exponent in a housing

production function) has been reliably estimated, and we use its value to identify the unknown

size of a cost-function kink.

Our results show a modest increase in the marginal cost of floor space above a parcel’s

regulated building height. We use these estimates to gauge the extent of the increase in floor

space that would result from the removal of building-height regulation in NYC. This exercise

11 The percentages of parcels contained in the bunching intervals [F − δ, F + δ] equal 20, 21 and 24% for the
1.25, 2.0, and 0.6 FAR groups, respectively, but are larger for the remaining groups, equal to 31 and 38% for
the 0.5 and 0.9 FAR groups, respectively.
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is circumscribed by our focus on a limited number of zoning categories, but the results suggest

that New York could secure notably more housing through lighter regulation.
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Appendix

Suppose that the developer devotes a fraction 1−φ of his lot to public open space in order

to secure a more generous FAR limit, denoted F os > F . Profit exclusive of land cost under the

Cobb-Douglas assumption then equals pKρ(φ`)1−ρ−K, with land under the building equal to

φ`. Dividing Kρ(φ`)1−ρ by `, FAR based on the entire lot area is thus given by F = φ1−ρSρ,

where S again equals K/`. As a result, S = (F/φ1−ρ)1/ρ ≡ C(F ), and cost then equals

C(F ) = µF φ, where φ = 1/ρ and µ ≡ φ(1−ρ)/ρ > 1.

Thus, cost exceeds F φ, the C(F ) expression in the absence of open space, for all allowable

values of F when open space is provided. This outcome contrasts with the air-rights case,

where extra costs are incurred only above F . Despite this difference, the first-order condition

for choice of F will involve a multiplicative factor (1 vs. µ) that jumps to a higher value above

F , just as in (2). Crucially, if his chosen F is below F , the developer will not provide open

space, so that the lower cost function, and its smaller multiplicative factor of 1 < µ, is relevant

for the first-order condition over this range.

However, since the shift to the open-space regime that occurs at F applies to the entire

range of F values, it generates a discontinous increase in cost, in contrast to the continuity

of the cost function under the purchase of air rights, as captured in (1). As a result, the

open-space regime generates a “notch” in the developer’s profit function along with a change

in its slope, which would require a different empirical method than the one we use (Kleven and

Waseem, 2013). However, since a simple purchase of air rights appears to be an easier (and

presumably much more common) path to exceeding F than provision of open space, our use

of the kink rather than the notch methodology appears to be appropriate.
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Table 1: FAR groups

FAR Observations Floors Floors/FAR Zoning categories

2.0 2549 3.20 1.83 R5D, R6B, M1-2, M1-4, M2-1, M2-3, M3-1, M3-2

1.25 3509 2.84 2.26 R5

0.9 5295 2.39 2.59 R4, R4-1, R4-A, R4-B

0.6 9694 2.09 3.31 R3-1, R3-2, R3-A, R3-X

0.5 1334 2.02 3.84 R1-1, R1-2, R1-2A, R2, R2-A

Table 2: Estimated θ values and confidence intervals

FAR Observations δ θ̂ Confidence int. avg. θ̂ ̂(α + β)/α Confidence int.

2.0 2549 0.15 1.119 [1.080, 1.163] 1.121 1.063 [1.042, 1.085]

1.25 3509 0.10 1.034 [1.013, 1.058] 1.035 1.018 [1.007, 1.031]

0.9 5295 0.15 1.065 [1.036, 1.095] 1.066 1.035 [1.019, 1.050]

0.6 9694 0.04 1.061 [1.047, 1.075] 1.061 1.032 [1.025, 1.040]

0.5 1334 0.04 1.123 [1.073, 1.176] 1.125 1.065 [1.039, 1.091]

θ̂ is the estimated value of ((α + β)/α)1/λ, generated by assuming the given value of the interval
parameter δ. The 95% confidence interval for θ is based on a standard error generated through a
500-draw boostrap procedure with replacement, and the average θ̂ generated by the bootstrap is also
shown. The marginal-cost ratio (α + β)/α is estimated by θ̂λ, using λ = 0.54, and its confidence
interval (based on the θ interval) is also shown.
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Table 3: Sensitivity analysis

FAR δ θ̂

2.0 0.15 1.119

0.10 1.075

0.20 1.128

1.25 0.10 1.035

0.05 1.041

0.15 1.016

0.9 0.15 1.065

0.125 1.030

0.175 1.237

0.6 0.04 1.061

0.03 1.037

0.05 1.106

0.5 0.04 1.123

0.03 1.076

0.05 1.144

Table 4: Floor space gain without

FAR regulation

FAR SPACEnow SPACEnew % gain

2.0 16,477,906 17,602,509 6.8%

1.25 12,194,765 12,466,904 2.2%

0.9 14,611,072 15,233,868 4.3%

0.6 17,718,632 18,404,479 3.9%

0.5 3,997,145 4,377,899 9.5%
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Figure 2: FAR Distribution for P = 2.0 
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Figure 4: FAR Distribution for P = 0.9 
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Figure 6: FAR Distribution for P = 0.5 
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Figure 9: Bunching Areas 
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Online Appendix

Bunching in Real-Estate Markets: Regulated Building
Heights in New York City

Jan K. Brueckner, David Leather, and Miguel Zerecero

We can ask how much floor space would increase if the FAR limit F were to increase marginally.

First, recall that the optimal choice of FAR as a function of F is

F(p, F ) =



(p/α)1/λ if p < αF
λ
,

F if p ∈
[
αF

λ
, (α+ β)F

λ
]
,

(p/(α+ β))1/λ if p > (α+ β)F
λ
.

We can compute what would be the change in the chosen FAR after F is increased by a small

amount ε ≤ (θ − 1)F . The increases are given by

F(p, F + ε)−F(p, F ) =



0 if p < αF
λ
,

(p/α)1/λ − F if p ∈
[
αF

λ
, α
(
F + ε

)λ]
,

ε if p ∈
(
α
(
F + ε

)λ
, (α+ β)F

λ
)
,

F + ε− (p/(α+ β))1/λ if p ∈
[
(α+ β)F

λ
, (α+ β)

(
F + ε

)λ]
,

0 if p > (α+ β)
(
F + ε

)λ
.

The equation above spells out five relevant groups. For the first and last groups, the change

does not affect their FAR choice. The second group corresponds to buildings that were bunched

under the old F but not under the new one, F + ε. The third group contains buildings that were

bunched under the old restriction and bunch at the higher F under the new restriction. The fourth

group consists of building that were not bunched before, being above F , but choose to bunch under

the new restriction.
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To obtain the total change in FAR we need to integrate the individual changes over the entire

distribution of prices p, which has a density function t(p). We can integrate separately for each of

the relevant subsets of the support of p, starting with the new non-bunchers:

D1(ε) ≡
∫ α(F+ε)

λ

αF
λ

[
(p/α)1/λ − F

]
t(p)dp.

As we did previously, we do a change of variable. Defining z = (p/α)1/λ, we have that dp =

αλzλ−1dz. Recall that t(αzλ)αλzλ−1 ≡ h0(z). Then, we get

D1(ε) =

∫ F+ε

F

(
z − F

)
h0(z)dz.

Approximate this integral with the area of a trapezoid yields

D1(ε) = ε

(
Fh0(F ) +

(
F + ε

)
h0(F + ε)

2
− F

h0(F ) + h0(F + ε)

2

)
=

ε2

2
h0(F + ε).

For the always-bunchers we have:

D2(ε) = ε

∫ (α+β)F
λ

α(F+ε)
λ

t(p)dp = ε

∫ F+∆F

F+ε
h0(z)dz = ε

(
∆F − ε

)(h0(F + ε) + h0(F +∆F )

2

)
,

where the last equality uses the trapezoid approximation.

For the new-bunchers, doing the same change of variable, we have:

D3(ε) =

∫ (α+β)(F+ε)
λ

(α+β)F
λ

[
F + ε− (p/(α+ β))1/λ

]
t(p)dp =

∫ F+∆F+θε

F+∆F

[
F + ε− θ−1z

]
h0(z)dz.

Using again the trapezoid approximation, we get the following expression

D3(ε) = θε
(
F + ε

)(h0(F +∆F ) + h0(F +∆F + θε)

2

)

− θε

θ

(
(F +∆F )h0(F +∆F ) + (F +∆F + θε)h0(F +∆F + θε)

2

)

=
θε

2

[
h0(F +∆F )

(
F + ε−

(
F +∆F

θ

))
+ h0(F +∆F + θε)

(
F + ε−

(
F +∆F + θε

θ

))]
.

As F +∆F = θF we can simplify the expression above to

D3(ε) =
θε2

2
h0(F +∆F ).
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Denote the total change of FAR after increasing the limit by ε as D(ε). It equals

D(ε) = D1(ε) +D2(ε) +D3(ε)

=
ε2

2
h0(F + ε) + ε

(
∆F − ε

)(h0(F + ε) + h0(F +∆F )

2

)
+

θε2

2
h0(F +∆F )

= ε∆F

(
h0(F + ε) + h0(F +∆F )

2

)
+

ε2 (θ − 1)

2
h0(F +∆F ).

From the expression above, we can calculate the derivative of total FAR with respect to the FAR

limit F . By definition, this derivative is equal to

lim
ε→0

D(ε)

ε
= ∆F

(
h0(F ) + h0(F +∆F )

2

)
+ lim

ε→0

(
ε (θ − 1)

2
h0(F +∆F )

)
= B.

Therefore, the derivative of total FAR with respect to the FAR limit is equal to the amount of

bunching. The derivative of total floor space with respect the limit is B times lot size.

However, this derivative is only informative for marginal increments to the FAR limit F , which

might not be of importance in a potential practical implementation of a reform. Thus, we are also

interested in how much total FAR would change when ε is not small.

We can rearrange D(ε) to be a function of B by adding and subtracting some terms:

D(ε) = ε∆F

(
h0(F ) + h0(F +∆F )

2

)
+

ε2 (θ − 1)

2
h0(F +∆F )− ε∆F

(
h0(F )− h0(F + ε)

2

)

= εB +
ε2 (θ − 1)

2
h0(F +∆F )− ε∆F

(
h0(F )− h0(F + ε)

2

)
.

This formula is useful, as we can then use the amount of bunching, which is observable, to calculate

D(ε). However, there are still obstacles. As explained in Section 2, we do not observe h0 for values

above F . For h0(F +∆F ), equation (8) already gives us that this is equal to θ−1h1(F ). However,

now that we have an estimate for θ we can create a correspondence between h0 and h1 for any

value F .

To see this point, recall the definitions for h0 and h1:

h0(F ) ≡ t
(
αF λ

)
αλF λ−1, h1(F ) ≡ t

(
(α+ β)F λ

)
(α+ β)λF λ−1.
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Now note that

h1
(
(F + ε)θ−1

)
= t
(
(α+ β)((F + ε)θ−1)λ

)
(α+ β)λ((F + ε)θ−1)λ−1

= t

(
(α+ β)((F + ε))λ

(
α

α+ β

))
(α+ β)λ(F + ε)λ−1

(
α

α+ β

)λ−1

λ

= t
(
α((F + ε))λ

)
αλ(F + ε)λ−1

(
α+ β

α

)1/λ

= h0 (F + ε) θ.

Therefore we have

h0(F + ε) = θ−1h1
(
(F + ε)θ−1

)
.

Putting everything together, and noting that ∆F = (θ− 1)F , we have an expression for D(ε) as a

function of objects that are observable:

D(ε) = εB +
ε2

2

(
θ − 1

θ

)
h1(F )− ε(θ − 1)F

2

(
h0(F )− θ−1h1

(
(F + ε)θ−1

))
= εB +

ε

2

(
θ − 1

θ

)
εh1(F )− ε

2

(
θ − 1

θ

)(
θFh0(F )− Fh1

(
(F + ε)θ−1

))
= εB +

ε

2

(
θ − 1

θ

)(
εh1(F ) + Fh1

(
(F + ε)θ−1

)
− θFh0(F )

)
.

The only new object to estimate after estimating θ is h1
(
(F + ε)θ−1

)
. If one does not want to do

so, one could compute a lower bound instead using previously computed objects:

D(ε) ≥ εB +
ε

2

(
θ − 1

θ

)(
εh1(F )− θFh0(F )

)
.
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