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Abstract

This paper analyzes the properties of expected return estimators on individual as-
sets/portfolios implied by the linear factor models of asset pricing, i.e., the product
of β and λ. We provide the asymptotic properties of factor–model–based expected
return estimators, which yield the standard errors for risk premium estimators for
individual assets/portfolios. We show that using factor-model-based risk premium
estimates leads to sizable precision gains compared to using historical averages. Fi-
nally, inference about expected returns does not suffer from a small–beta bias when
factors are traded. The more precise factor–model–based estimates of expected re-
turns translate into sizable improvements in out–of–sample performance of optimal
portfolios.

Keywords: Cross Section of Expected Returns, Risk Premium, Small β’s.

∗We thank Torben G. Andersen, Bertille Antoine, Svetlana Bryzgalova, Frank de Jong, Joost Driessen,
Stefano Giglio, Bryan Kelly, Frank Kleibergen, Yinying Li, Paulo Maio, Adam McCloskey, Dino Palazzo,
Andrew Patton, Eric Renault, Enrique Sentana, George Tauchen, Viktor Todorov, Brian Weller, Dacheng
Xiu, and Guofu Zhou for helpful comments and discussions as well as seminar and conference participants
at BlackRock, Federal Reserve Board, Northwestern University Kellogg School of Management, Erasmus
University Rotterdam, Tilburg University, and CIREQ Montreal Econometrics Conference in honor of Eric
Renault. We also thank Chazz Edington for his excellent research assistance. The views expressed are solely
those of the authors and should not be interpreted as reflecting the views of the Board of Governors of the
Federal Reserve System, or of any other person associated with the Federal Reserve System. Corresponding
author: Cisil Sarisoy, Federal Reserve Board, Washington, D.C. 20551 U.S.A. E-mail: cisil.sarisoy@frb.gov.

1



1 Introduction

Estimating expected returns on individual assets or portfolios is perhaps one of the longest

standing challenges in asset pricing. One standard approach at hand is to use historical

averages. However, it is known that these estimates are generally very noisy. Even using

daily data does not help much, if at all. There is a long history of papers trying to improve

estimates of expected returns by using asset pricing models, in which expected excess

returns on individual assets are linear in their exposures to the risk factors imposed (β).

The coefficients in this linear relationship are the prices of risk for the factors (λ). Examples

include Sharpe (1964)’s CAPM, Merton (1973)’s ICAPM, Breeden (1979)’s CCAPM, Ross

(1976)’ APT and Lettau and Ludvigson (2001)’s conditional CCAPM, among many others.

The literature on inference based on factor models mainly concentrates, in a frequentist

setting, on the econometric properties of the prices of risk, λ, and evaluating the ability of

the models in explaining the cross section of expected returns. In this paper, the focus is

different: we analyze the estimation of the expected (excess) returns on individual assets

or portfolios based on linear factor models, i.e., the product of exposures β and risk prices

λ. In order to have an estimate of the expected (excess) return on an individual asset, both

β and λ have to be estimated, and the dependence between these estimators introduce a

nontrivial noise structure in the standard errors of the expected (excess) return estimators.

Jorion (1991) compares CAPM—based estimators with classical sample averages of

past returns finding the former outperforming the latter in estimating expected stock re-

turns. Pástor and Stambaugh (1999) investigate, in a Bayesian setting, the impact of prior

uncertainty about mispricing in a factor model on the posterior estimates of the cost of

equity. Similarly, Pástor (2000) develops Bayesian approaches to examine the role of prior

mispricing in portfolio allocation decisions. Our paper complements this earlier work by

providing the first asymptotic analysis for the expected (excess) return estimators for sev-
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eral often–used factor models. Such limiting distributions yield the frequentist standard

errors and, accordingly, confidence bounds for the expected (excess) return of individual

assets or portfolios. Moreover, we evaluate the implications of weakly correlated factors

on the estimation of expected (excess) returns. We examine the inference under various

settings where the factors are traded, non-traded or their mimicking portfolios are used in

the estimation.

First, we derive the asymptotic properties of expected (excess) return –risk premium–

estimators based on factor models. These limiting distributions yield the standard er-

rors for individual assets or portfolios. We thereby assess the precision gains from using

factor–model based risk–premium estimators vis–à–vis the historical averages approach.

In particular, we provide closed-form asymptotic expressions for these precision gains. We

show in Theorems 4.2, 4.3, and 4.4 that exploiting the linear relationship implied by linear

factor models indeed leads to more precise estimates of risk premiums as compared to his-

torical averages. In an empirical analysis of the estimation of risk-premiums on 25 Fama

and French (1992) size and book–to–market sorted portfolios, we document reductions in

estimated variances of up to 24% for individual portfolios.

Second, we analyze the estimation of risk premiums in the presence of weakly correlated

and spurious factors. When factors are weakly correlated with assets, i.e., β’s are small,

the standard confidence intervals of the price of risk estimates are known to be erroneous

(see, e.g., Kleibergen, 2009). This effect may be severe in empirical research, as these con-

fidence intervals may be unbounded as documented for the case of consumption CAPM

of Lettau and Ludvigson (2001)1. This is a relevant issue in practice because macroe-

conomic variables are typically weakly related to individual asset/portfolio returns. We

demonstrate that such issues do not exist if the object of interest is the risk premiums on

1See also Kan and Zhang (1999) Gospodinov, Kan, and Robotti (2014), Bryzgalova (2015), Burnside
(2015), Gospodinov, Kan, and Robotti (2017, 2019), Giglio, Xiu, and Zhang (2021) on the role of spurious
or weakly identified factors for inference about the prices of risk.
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individual assets, but only in case factors are traded. In that case, the limiting variances

of the risk–premium estimators are not affected by the β’s being small, see Corollary 5.1-

2. Monte Carlo simulation results document that those limiting variances provide reliable

approximations of the finite-sample variances of the factor-model-based estimators of risk

premiums.

Third, we explore the implications of the precision gains from using factor model based

estimates of expected returns in Markowitz (1952)’s setting. The implementation of the

mean–variance framework of Markowitz (1952) in practice requires the estimation of the

first two moments of asset returns. Constructing optimal portfolios with the imprecise

estimates of expected returns, using historical averages, and the sample covariance matrix

generally lead to poor out–of–sample performance.2 In the far end, this has led to simply

abandoning the application of theoretically optimal decisions and using naive techniques

such as the 1/N strategy or the global minimum variance (GMV) portfolio as these are not

subject to estimation risk on expected returns (DeMiguel, Garlappi, and Uppal, 2009).3

Our Monte Carlo simulations document strong improvements in the out–of–sample Sharpe

ratios of optimal portfolios when constructed with factor–model–based estimates of risk

premiums as compared to when constructed with the historical averages. Moreover, optimal

portfolios constructed with the factor–model–based risk–premium estimates perform better

than both the GMV portfolio and the 1/N strategy portfolio.

The remainder of the paper is organized as follows. Section 2 introduces our set–up and

presents the linear factor model with the assumptions that form the basis of our statistical

analysis. Next, we introduce factor–mimicking portfolios and clarify the link between the

2See, for example, Frost and Savarino (1988), Michaud (1989), Jobson and Korkie (1980), and Best and
Grauer (1991).

3Several studies provide solutions on improving the covariance matrix estimates (see, e.g., Ledoit and
Wolf, 2003, DeMiguel et al., 2009 among others). However, the estimation error in asset return means
is more severe than error in covariance estimates (see Merton, 1980, Chopra and Ziemba, 1993) and the
imprecision in estimates of the expected returns affects the optimal portfolio weights more drastically
compared to the imprecision in covariance estimates (see DeMiguel et al., 2009).

4



expected returns obtained with non–traded factors and with factor–mimicking portfolios.

Section 3 discusses in detail the standard GMM estimators we consider. In particular, we

recall the different sets of moment conditions for various cases such as all factors being

traded or using factor–mimicking portfolios. Section 4 derives the asymptotic properties

of these induced GMM estimators, and we derive the efficiency gains over and above the

risk–premium estimator based on historical averages. Section 5 presents the analysis for

the small βs. Section 6 reports results from a Monte Carlo simulation experiment to study

the finite–sample properties of the factor–model based estimators of expected (excess)

returns. Section 7 presents our simulation analysis for portfolio optimization, and Section 8

concludes. All proofs are gathered in the appendix.

2 Model and Assumptions

Let M be a candidate stochastic discount factor such that for any traded asset i =

1, 2, . . . , N with excess return Re
i

E [MRe
i ] = 0. (2.1)

Linear factor models additionally specify M = a+ b′F , where F = (F1, ..., FK)′ is a vector

of K factors. Note that (2.1) can be written in matrix notation using the vector of excess

returns Re = (Re
1, ..., R

e
N)′. Throughout we impose the following.

Assumption 1. The N–vector of excess asset returns Re and the K–vector of factors F

with K < N satisfy the following conditions:

1. The covariance matrix of excess returns ΣReRe has full rank N,

2. The covariance matrix of factors ΣFF has full rank K,

3. The covariance between excess returns and factors, Cov [Re, F ′], has full rank K.
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The linear asset-pricing model can be alternatively expressed using the beta representation

E [Re] = βλ, (2.2)

where β = Cov [Re, F ′] Σ−1
FF , and λ = − 1

E[M ]
ΣFF b.

Thus, (2.2) specifies a linear relationship between risk premiums on individual assets,

E [Re], and their exposures β to the risk factors, F . The vector λ denoted the so–called

prices of risk of the factors.4 The primary focus of our analysis is on inference about (2.2).

For our main results, the following assumptions are needed.

Assumption 2. Assume that [Re
t
′, F ′t ]

′ is a jointly stationary and ergodic process with a

finite fourth moment.

Assumption 3. Let εt = Re
t − α− βFt. Assume that E [εt|Ft] = 0 and Var [εt|Ft] = Σεε.

Assumption 2 provides primitive conditions for central limit theorem approximations

for returns and factors. This assumption is sufficient to obtain limiting distributions for

the GMM estimators that we focus in this paper. But to obtain explicit limiting results,

we make further assumptions on the data. Assumption 3 is made for that purpose and can

further be relaxed at the cost of a more cumbersome notation.

2.1 Factor–Mimicking Portfolios

A large number of studies in the asset pricing literature suggest “macroeconomic” factors

that capture systematic risk. Examples include the C-CAPM of Breeden (1979), the I-

CAPM of Merton (1973), and the conditional C-CAPM of Lettau and Ludvigson (2001).

In order to assess the validity of macroeconomic risk factors being priced or not, it has been

4We focus on constant parameter factor models. Gagliardini, Ossola, and Scaillet (2016) and Kelly,
Pruitt, and Su (2019) allow for time varying risk exposures and time varying factor risk premia by incor-
porating information from stock characteristics and macroeconomic variables. Our results can be extended
to such a setting, at the cost of additional assumptions. As constant parameter models are still widely
used in empirical applications, we’ve decided to focus on that setting.
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suggested to refer to alternative formulations of such factor models replacing the factors

by their projections on the linear span of the excess returns. This is commonly referred

to as factor–mimicking portfolios and early references go back to Huberman, Kandel, and

Stambaugh (1987) (see also, e.g., Fama, 1998, Lamont, 2001, and Balduzzi and Robotti,

2008). In this paper, we analyze the effect of such formulations on the estimation of risk

premiums and we show, in Section 4, that there are efficiency gains from the information

in mimicking portfolios when estimating risk premiums.

It is important to understand that, the prices of risk of (non–traded) factors generally

differ from the risk–premiums on their factor–mimicking portfolios. However, using factor–

mimicking portfolios leads to identical risk premiums on individual assets. This is shown

in Theorem 2.1 below.

To be precise, we project the factors Ft onto the space of excess asset returns, augmented

with a constant. In particular, given Assumption 3, there exists a K–vector Φ0 and a K×N

matrix Φ of constants and a K–vector of random variables ut satisfying

Ft = Φ0 + ΦRe
t + ut, (2.3)

E [ut] = 0K×1, and EutR
e
t
′ = 0K×N .

We then define the factor–mimicking portfolios by

Fm
t = ΦRe

t . (2.4)

Now, we obtain an alternative formulation of the linear factor model by replacing the

original factors by their factor–mimicking portfolios

Re
t = αm + βmFm

t + εmt , t = 1, 2, . . . , T. (2.5)
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Recall that, using the projection results, we have

Φ = ΣFFβ
′Σ−1

ReRe , and βm = β
(
β′Σ−1

ReReβ
)−1

Σ−1
FF . (2.6)

The following theorem recalls that, while factor loadings and prices of risk change when

using factor mimicking portfolios, expected (excess) returns on individual assets, i.e., their

product, are not affected. For completeness we provide a proof in the appendix.

Theorem 2.1. Under Assumption 1, we have βλ = βmλm with λm = E [Fm
t ].

Note that since the factor–mimicking portfolio is an excess return itself, asset pricing

theory implies that the price of risk attached to it, λm, equals its expectation. This addi-

tional information can be imposed in the estimation of expected (excess) returns and one

may hope that the expected (excess) return estimators obtained with factor–mimicking

portfolios are more precise than the expected (excess) return estimators obtained with the

non-traded factors themselves. We study this question in Section 4.

3 Estimation

We concentrate on Hansen (1982)’s GMM estimation technique. The GMM approach

is particularly useful in our paper as it avoids the use of two-step estimators and the

resulting “errors-in-variables” problem when calculating limiting distributions. In addition,

we immediately obtain the joint limiting distribution of estimates for β and λ which is

needed as we are interested in their product.

In the following sections, we study the asymptotics of the expected (excess) return

estimators by specifying different sets of moment conditions. In Section 3.1, we study a

set of moment conditions which generally holds, i.e., both when factors are traded and

when they are non-traded. In Section 3.2, we study the case where all factors are traded.

We then incorporate the moment condition that factor prices equal expected factor values.
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In Section 3.3, we consider expected (excess) return estimates based on factor–mimicking

portfolios.

3.1 Moment Conditions - General Case

We first provide the moment conditions for a general case, i.e., where factors may repre-

sent excess returns themselves, but not necessarily. In that case, the standard moment

conditions to estimate both factor loadings β and factor prices λ are

E [ht(α, β, λ)] = E



 1

Ft

⊗ [Re
t − α− βFt]

Re
t − βλ

 = 0. (3.1)

The first set of moment conditions identifies α and β as regression coefficients, while the

last set of conditions represents the pricing restrictions. Note that there are N(1 +K + 1)

moment conditions although there are N(1 + K) + K parameters, which implies that the

system is overidentified. We set a linear combination of the given moment conditions to

zero, that is, we set AE [ht(α, β, λ)] = 0 with

A =

 IN(1+K) 0N(1+K)×N

0K×N(1+K) ΘK×N

 .
Note that the matrix A specified above combines the last N moment conditions into K

moment conditions so that the system becomes exactly identified. We take Θ = βTΣ−1
εε .

The advantage of this particular choice is that the resulting λ estimates coincide with the

GLS cross–sectional estimates.
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3.2 Moment Conditions - Traded Factor Case

Asset pricing theory provides an additional restriction on the prices of risk when factors

are traded, meaning that they are excess returns themselves. If a factor is an excess return,

we have λ = E [Ft]. For example, the price of market risk is equal to the expected excess

market return, and the prices of size and book–to–market risks, as captured by Fama-

French’s SMB and HML portfolio movements, are equal to the expected SMB and HML

excess returns. Note that we use the term “excess return” for any difference of gross returns,

that is, not only in excess of the risk-free rate. Prices of excess returns are zero, i.e., excess

returns are zero investment portfolios.

The standard two–pass estimation procedure commonly found in the finance literature

may not give reliable estimates of risk prices when factors are traded. Hou and Kimmel

(2006) provide an interesting example to point out this issue. They generate standard two–

pass expected (excess) return estimates (both OLS and GLS) in the three factor Fama–

French model by using 25 size and book–to–market porfolios as test assets. As shown

in their Table 1, both OLS and GLS risk price estimates of the market are significantly

different from the sample average of the excess market return. It is important to point

out that the two–pass procedure ignores the fact that the Fama–French factors are traded

factors and it treats them in the same way as non–traded factors.

Consequently, when factors are traded we usually replace the second set of moment

conditions with the condition that their expectation of the vector of factors equals λ.

Then, the relevant moment conditions are given by

E [ht(α, β, λ)] = E



 1

Ft

⊗ [Re
t − α− βFt]

F e
t − λ

 = 0, (3.2)
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where Ft is the K × 1 vector of factor (excess) returns.

In this case, estimates are obtained by an exactly identified system, i.e., the number of

parameters equals the number of moment conditions. Note that if the factor is traded, but

we do not add the moment condition that the factor averages equal λ , then the results are

just those of the non-traded case in Section 3.1.

Alternatively, we could incorporate the theoretical restriction on factor prices into the

estimation by adding the factor portfolios as test assets in the linear pricing equation,

Re−βλ. This set of moment conditions would be similar to the general case, with the only

difference being that the linear pricing restriction incorporates the factors as test assets in

addition to the original set of test assets, i.e., we define RF
t =

 Re
t

Ft

. Under this setting,

the moment conditions would be given by

E [ht(α, β, λ)] = E



 1

Ft

⊗ [Re
t − α− βFt]

RF
t − βF,Rλ

 = 0, (3.3)

with βF,R =

 β

IK

. Following the same procedure as in Section 3.1, we specify the A

matrix and set Θ = βTF,RΣ−1
RFRF . Because we find that GMM based on (3.3) leads to the

same asymptotic variance covariance matrices for risk premiums as GMM based on (3.2),

we omit the conditions (3.3) in the rest of the paper.
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3.3 Moment Conditions - Factor–Mimicking Portfolios

Following Balduzzi and Robotti (2008), we also consider the case where risk prices are equal

to expected returns of factor–mimicking portfolios. Then, the moment conditions used are

E [ht(α
m, βm,Φ0,Φ, λ

m)] = E



 1

Re
t

⊗ [Ft − Φ0 − ΦRe
t ] 1

Fm
t

⊗ [Re
t − αm − βmFm

t ]

ΦRe
t − λm


= 0, (3.4)

with Fm
t = ΦRe

t . In this case, there are K(1 +N) +N(1 +K) +K moment conditions and

parameters, which makes the system exactly identified.

4 Precision of Risk–Premium Estimators

As mentioned in the introduction, our focus is on estimating risk premiums of individual

assets or portfolios. Much of the literature on multi–factor asset pricing models has pri-

marily focused on the issue of a factor being priced or not. Formally, this is a test on (a

component of) λ being zero or not and, accordingly, the properties of risk–price estimates

for λ have been studied and compared.5

In this paper, since our focus is on analyzing the possible efficiency gains based on linear

factor models in estimating expected (excess) returns, we first derive the joint distribution

of estimates for β and λ for the three cases discussed in Sections 3.1 to 3.3.6 Then, we derive

the asymptotic distributions of the implied expected (excess) return estimators given by

the product β̂λ̂. Moreover, we illustrate the empirical relevance of our asymptotic results

5Examples include Shanken (1992), Jagannathan and Wang (1998), Kleibergen (2009), Lewellen, Nagel,
and Shanken (2010), Kan and Robotti (2011), and Kan, Robotti, and Shanken (2013).

6We also provide results for inference on risk premiums when the model is misspecified in the appendix.
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using the Fama–French three factor model with 25 Fama–French size and book–to–market

portfolios as test assets. In particular, we provide the (asymptotic) variances of the various

risk–premium estimators with empirically reasonable parameter values and evaluate the

benefits of using linear factor models in estimating risk premiums, see Table 1 below.

The asset data used in this paper consists of 25 portfolios formed by Fama-French

(1992, 1993), downloaded from Kenneth French‘s website. The factors are the three factors

of Fama and French (1992) (market, book–to–market, and size). Our analysis is based on

monthly data from January 1963 until August 2020, i.e., we have 692 time–series observa-

tions.

The following theorem provides the limiting distribution of the historical averages esti-

mator. It’s classical and provided for comparison with the three GMM–based estimators

in Sections 3.1-3.3.

Theorem 4.1. Suppose that Assumptions 1 and 2 holds and that Re
t − E [Re] forms a

martingale difference sequence.7 Then, we have
√
T
(
R̄e − E [Re]

) d→ N (0,ΣReRe).

Note that Theorem 4.1 assumes no factor structure. We will, next, provide the asymp-

totic distributions of expected (excess) return estimators given the linear factor structure

implied by asset pricing models. Note that the joint distributions of λ and β are different for

each set of moment conditions, which leads to different asymptotic distributions for the risk

premiums βλ as well. Hence, we derive the asymptotic distributions of expected (excess)

return estimators for the three set of moment conditions introduced in Sections 3.1, 3.2,

and 3.3 separately.

4.1 Precision with General Moment Conditions

The following theorem provides the asymptotic variances of the risk–premium estimators

based on the general moment conditions in Section 3.1. This result is valid for both traded

7We throughout assume that standard assumptions for martingale CLTs hold.
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and non-traded factors.

Theorem 4.2. Suppose that Assumptions 1-3 hold and that ht(α, β, λ) forms a martingale

difference sequence. Consider the moment conditions (3.1).

Then, the limiting variance of the expected (excess) return estimator β̂λ̂ is given by

ΣReRe −
(
1− λ′Σ−1

FFλ
) (

Σεε − β(β′Σ−1
εε β)−1β′

)
. (4.1)

The proof is provided in the appendix. Theorem 4.2 provides the asymptotic covari-

ance matrix of the factor–model based risk–premium estimators with the general moment

conditions as in Section 3.1. This formula is useful mainly for two reasons. First, it can

be used to compute the standard errors of these risk–premium estimates and, accordingly,

the related t–statistics and p-values can be obtained. Second, it allows us to study the

precision gains for estimating the risk premiums from incorporating information about the

factor model.

In case of a one–factor model and a single test asset, the (asymptotic) variances of both

the naive risk–premium estimator and the factor–model based risk–premium estimator are

the same. When more assets/portfolios are available (N > 1), observe that the magni-

tude of the asymptotic variances of the risk–premium estimators depends on the prices

of risk λ, the exposures β, and the idiosyncratic variances Σεε. Note that the difference

between the asymptotic covariance matrix of the naive estimator, R̄e, and the factor–based

risk–premium estimator is
(
1− λ′Σ−1

FFλ
)

(Σεε − β(β′Σ−1
εε β)−1β′). The following corollary

formalizes this relation.

Corollary 4.1. Suppose that Assumptions 1-3 hold and that ht(α, β, λ) forms a martingale

difference sequence. If λ′Σ−1
FFλ < 1, then the limiting variance of the expected (excess)

return estimator β̂λ̂ is at most ΣReRe.

Corollary 4.1 shows that there may be precision gains for estimating risk premiums
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from the added information about the factor model if λ′Σ−1
FFλ is smaller than one. Observe

that, although λ′Σ−1
FFλ can be larger than one mathematically, in the one–factor case with a

traded factor, λ′Σ−1
FFλ is the squared Sharpe ratio of that factor. This squared Sharpe ratio

is, for stocks and stock portfolios, generally (much) smaller than 1. Moreover, plugging

in the estimates from the Fama–French three factor model (based on GMM with moment

conditions (3.1)) gives λ′Σ−1
FFλ = 0.034. Note that the smaller the value for λ′Σ−1

FFλ, the

larger the efficiency gains from imposing a factor model. It may be surprising that, theo-

retically, the GMM estimator can behave worse than historical averages. Note, however,

that we are, in line with the literature, not using optimal GMM weights.

We calculate the (asymptotic) variances of the factor–model based risk–premium es-

timates for all 25 FF portfolios by plugging the parameter estimates into (4.1). Table 1

presents the results. Comparing the asymptotic variances of the factor–model based risk–

premium estimators to those of the naive estimators, we see that the factor–model based

risk–premium estimators are more precise than the naive estimators for all 25 Fama–French

portfolios. In particular, using the 3–factor model in estimating risk premiums of 25 FF

portfolios leads to considerable gains in variances of up to 23%. Note that a 23% gain

in variances means that the same (statistical) precision can be obtained with 23% less

observations.

4.2 Precision with Moment Conditions for Traded Factors

When the risk factors are traded, meaning that the factor itself is an excess return, addi-

tional restrictions on the prices of risk can be incorporated into the estimation. With the

availability of such information, one could again expect efficiency gains in estimating both

the prices of risk and the expected (excess) returns. In this section, we consider this case

and the following theorem gives the asymptotic variances of the expected (excess) return

estimators with the moment conditions (3.2) for the case all factors are traded.
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Theorem 4.3. Suppose that all factors are excess returns. In addition, suppose that As-

sumptions 1-3 hold and that ht(α, β, λ) forms a martingale difference sequence. Consider

the moment conditions (3.2).

Then, the limiting variance of the expected (excess) return estimator β̂λ̂ is given by

ΣReRe −
(
1− λ′Σ−1

FFλ
)

Σεε. (4.2)

Theorem 4.3 allows us to study the efficiency gains for estimating risk premiums from

a model where the factors are traded compared to historical averages. Comparing the

asymptotic covariance matrix of the factor–based risk–premium estimators from GMM

based on (3.2) to the one of the naive estimator, we observe that the difference is given by(
1− λ′Σ−1

FFλ
)

Σεε. As before, the factor 1 − λ′Σ−1
FFλ is empirically generally found to be

positive implying an efficiency gain. Moreover, observe that asymptotic covariance matrix

of the risk–premium estimator based on GMM with (3.2) can be different from the ones

of the risk–premium estimator based on GMM with (3.1). This indicates that there may

be efficiency gains even within the GMM framework from that the information that the

factors are traded. The following corollary formalizes these issues.

Corollary 4.2. Suppose that all factors are traded. In addition, suppose that Assumptions

1-3 hold and that ht(α, β, λ) forms a martingale difference sequence. Consider the GMM

estimator based on the moment conditons (3.2). Then, we have the following.

1. If λ′Σ−1
FFλ < 1, then the limiting variance of the expected (excess) return estimator

β̂λ̂ is at most ΣReRe.

2. The limiting variance of this expected (excess) return estimator is at most the limiting

variance of the estimator based on the moment conditions (3.1).

Plugging in the parameter estimates from the analysis of the Fama–French model gives

λ′Σ−1
FFλ < 1 = 0.033. Comparing the variances of the risk–premium estimates based on
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GMM with (3.2) to those of the naive estimators in Table 1, we see that the risk–premium

estimates based on GMM with (3.2) have smaller asymptotic variances than the naive

estimators. In particular, the magnitude of efficiency gains goes up to 24%. Moreover,

consistent with Corollary 4.2, the asymptotic variances of the risk–premium estimates

based on GMM with (3.1) exceed those of the risk–premium estimators based on GMM

with (3.2). Overall, these precision gains from estimating risk premiums based on factor

models stem from two sources. First, the linear relation implied by asset pricing models

is valuable information in the estimation of risk premiums. Second, when the factors are

traded, the additional information that the prices of risk equal the expected factor returns

leads to higher precision of risk–premium estimates.

4.3 Precision with Moment Conditions Using Factor–Mimicking

Portfolios

One may hope that replacing factors by factor–mimicking portfolios may also bring effi-

ciency gains compared to (4.1) since the additional restriction on the price of the factor risk

can be incorporated into the estimation. In this section, we derive the asymptotic variances

of expected (excess) return estimators obtained with factor–mimicking portfolios.

Theorem 4.4. Suppose that Assumptions 1-3 hold and that ht(α
m, βm,Φ0,Φ, λ

m) forms a

martingale difference sequence. Consider the GMM estimator based on the moment condi-

tions (3.4).

Then, the limiting variance of the expected (excess) return estimator, β̂mλ̂m, is given by

ΣReRe −
(
µ′Re

{
Σ−1
ReRe − Σ−1

ReReβ
(
β′Σ−1

ReReβ
)−1

β′Σ−1
ReRe

}
µRe

)
(4.3)

×
(

ΣReRe − β
(
β′Σ−1

ReReβ
)−1

Σ−1
FF

(
βΣ−1

ReReβ
)−1

β′
)

−
(
1− µ′ReΣ−1

ReReµRe

) (
ΣReRe − β

(
β′Σ−1

ReReβ
)−1

β′
)
,
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with µRe = E [Re
t ].

Theorem 4.4 enables us to study the efficiency gains in risk premiums using factor–

mimicking portfolios. Observe that the difference between the asymptotic covariance ma-

trices of the naive estimator and the factor–model based GMM risk–premium estimator

with (3.4) is given by

µ′Re

{
Σ−1
ReRe − Σ−1

ReReβ
(
β′Σ−1

ReReβ
)−1

β′Σ−1
ReRe

}
µRe (4.4)

×
(

ΣReRe − β
(
β′Σ−1

ReReβ
)−1

Σ−1
FF

(
βΣ−1

ReReβ
)−1

β′
)

+
(
1− µ′ReΣ−1

ReReµRe

) (
ΣReRe − β

(
β′Σ−1

ReReβ
)−1

β′
)
.

Efficiency gains with respect to the historical averages estimator are dependent on (4.4)

being positive semi–definite or not. The results from our empirical analysis with FF-3 factor

model illustrates that there are considerable efficiency gains over the naive estimation for

all 25 Fama–French 25 portfolios (see Table 1). In particular, estimating risk premiums

with GMM (3.4) leads to, of up to 22%, smaller variances than estimating them with the

naive estimator. Moreover, we find that estimating risk premiums by making use of the

mimicking portfolios leads to small efficiency losses over the estimation based on the general

case, i.e, GMM based on (3.1) for all assets.

Note that one important difference between Theorem 4.2 and Theorem 4.4 may po-

tentially come from the estimation of the mimicking portfolio weights. The estimation

of the weights of the factor–mimicking portfolio potentially leads to different (intuitively

higher) asymptotic variances for the betas of the mimicking factors as well as for the mim-

icking factor prices of risk, and the risk premiums, which are essentially a multiplication

of βm and λm. Such issue is similar to errors–in–variables type of corrections in two step

Fama–Macbeth estimation, i.e., the Shanken (1992) correction in asymptotic variances for

generated regressors. We recall here that GMM standard errors automatically account for
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such effects as the system of moment conditions is solved simultaneously. In particular,

in our setting with moments conditions (3.4), GMM treats the moments producing Φ si-

multaneously with the moments generating βm and λm. Hence, the long–run covariance

matrix captures the effects of estimation of Φ on the standard errors of the βm and λm,

hence the risk premiums.

If we consider the Fama–French three factor model with the 25 FF–portfolios, we can

also intuitively gain insights about the difference between the inferences about risk premi-

ums based on GMM with the two sets of moment conditions (3.2) and (3.4). In fact, since

the factors are traded, meaning that they are excess returns themselves, we can estimate

the risk premiums via the second set of moment conditions (3.2). Moreover, we can also

estimate such system via the third set of moment conditions (3.4), which has the addi-

tional burden of estimating the coefficients for the construction of the mimicking portfolio.

Accordingly, GMM estimation via the second set and the third set of moment conditions

may lead to different precisions for the risk–premium estimates. The last column in Ta-

ble 1 documents the efficiency comparisons in estimating risk premiums of 25 FF portfolios

employing factor mimicking portfolios over risk premium estimation with moment condi-

tions (3.2). Efficiency losses are present for all 25 Fama–French portfolios, meaning that

risk–premium estimates employing factor mimicking portfolios, i.e., based on (3.4), are less

precise than risk–premium estimates based on (3.2).

5 Inference about Risk Premiums when the β’s are

small

Several studies document inference issues regarding the prices of risk when the factors are

weakly correlated with the asset returns (see, e.g., Kleibergen (2009), Gospodinov et al.

(2014), Bryzgalova (2015), Burnside (2015), Kleibergen and Zhan (2015), and Gospodinov
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et al. (2017, 2019)). When β’s are close to zero and/or when the β matrix is almost of

reduced rank, the confidence intervals of the prices of risk estimates, λ̂, are erroneous, which

leads to unreliable statistical inference. The effects may be severe in empirical research, as

the confidence intervals of the risk price estimates may even be unbounded, as documented

in Kleibergen (2009) for the case of the conditional consumption CAPM of Lettau and

Ludvigson (2001).8 Accordingly, Kleibergen (2009) provides identification-robust statistics

and confidence sets for the risk price estimates when the β’s are small.

However, once the interest is in estimating risk premiums on individual assets or port-

folios, a natural question is whether similar issues exist in the presence of weakly correlated

factors. Recall that the focus of this study is on risk premiums, the product of β and λ,

rather than on λ alone.

In the rest of this section, we will focus on the specification where β has small but

non-zero values. Following the literature on weak instruments (see, e.g., Staiger and Stock

(1997)), and Kleibergen (2009), we consider a sequence of β’s getting smaller as the sample

size increases. 9

Corollary 5.1. Suppose Assumption 2 and Assumption 3 hold and consider the small β

case where β = 1√
T
B for a fixed full rank N ×K matrix B. Then, the behavior of the risk

premium estimators in large samples can be characterized as follows.

1. Consider the moment conditions (3.1), then

(
β̂λ̂− βλ

)
d→
(
B + Y ΣFF

−1
) [(

B + Y ΣFF
−1
)′

Σεε
−1
(
B + Y ΣFF

−1
)]−1

×
(
B + Y ΣFF

−1
)′

Σεε
−1[Bλ+ U ]− βλ, (5.5)

where U ∼ N(0,Σεε) and vec(Y ) ∼ N(0,ΣFF ⊗Σεε) are independently distributed. 10

8Kleibergen (2009) documents that %95 percent confidence bounds of the prices of risk on the scaled
consumption growth coincides with the whole real line.

9The results in this section have been revised in the current version of the paper.
10The limiting variance of the risk price estimator in the presence of weak–factors is unbounded for Fama
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2. Consider moment conditions (3.2), then

(
β̂λ̂− βλ

)
d→ N

(
0, λ

′
ΣFF

−1λΣεε

)
. (5.6)

The proof is provided in the appendix. Corollary 5.1 documents several important

findings of our analysis regarding the issue of small but non-zero factor loadings. First, if

the parameters of the linear factor model are estimated with GMM based on the moment

conditions (3.1), the limiting behaviour of the risk premium estimator is non-standard and

differs from normality. This result is in line with the literature documenting unreliable

statistical inference about the prices of risk based on the Fama-Macbeth and GLS two-pass

estimation and their unbounded confidence sets.

Corollary 5.1-2 shed light on the issue of small β’s when all factors in the linear factor

model of interest are traded. In this case, if one estimates the parameters of the model

with GMM based on (3.2), then the limiting variances of the risk–premium estimators are

not affected by the β having a small value or not. Observe that, the limiting variances in

Corollary 5.1-2 is equal to (4.2) under β = 0.

6 Monte Carlo Simulations

In this section, we conduct a Monte Carlo experiment to study the finite-sample properties

of the various-factor model based estimators of expected returns. We consider correctly

specified models, and models with spurious and weak factors.

We calibrate the parameters of the true models by using the monthly returns on

25 Fama-French portfolios from January 1963 until August 2020 (available on Kenneth

French’s website). We use the nominal 1–month Treasury bill rate as a proxy for risk–free

rate. In our simulations we consider three different time-series sample sizes: are T = 240,

and MacBeth (1973) and generalized least squares (GLS) regression methods (see, e.g. Kleibergen (2009),
and Kleibergen and Zhan (2015).
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T = 480, and T = 960. These choices cover the sample sizes typically encountered in

empirical research with quarterly and monthly data. Varying T is useful for understanding

the small-sample behaviour of the estimators and we use T = 960 to assess the quality of

our asymptotic approximations. All results are based on 20, 000 replications.

6.1 Under the null that asset pricing restrictions hold

In this subsection, we assume that the asset pricing restrictions are true, i.e. Eqn. (2.2)

holds for returns of N = 25 test assets. We present results for a one-factor model setting.11

In this case, the model is calibrated to mimic the CAPM, estimated over the sample period

from January 1963 until August 2020. All factors and the error terms are generated from

multivariate normal distribution.12

Figure 1 reports the simulation results for the standard errors of risk premium estimates

on 25 test assets. Panel (a), Panel (b), and Panel (c) show the results for T = 240, T = 480,

and T = 960, respectively. Top exhibits provide the root–mean–square errors (RMSE) for

risk premium estimators across 25 test assets (x-axis values). The middle exhibits illustrate

the simulation averages of the estimated asymptotic standard errors (AEST). The lower

exhibits present the percentage errors (PE) of AESTs as compared to the RMSEs.

There are several important observations to be made about the standard errors. First,

AESTs for all 25 assets are very close to their corresponding RMSEs for all three factor-

model based estimators of expected returns (GMM–Gen, GMM–Tr, GMM–Mim). In par-

ticular, absolute percentage errors across all assets are less than 0.5% for T=960, and they

are less than 1% for T=480, and T = 240. Second, the RMSEs of all three factor–model

based estimators of expected returns (GMM–Gen, GMM–Tr, GMM–Mim) are smaller than

the RMSEs of the historical averages estimator, which holds true for all 25 individual assets

11Results for three-factor model is available upon request.
12In the three-factor model setting, the parameters of the model are calibrated to mimic the Fama–French

three-factor model.
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and for all sample sizes T = 240, T = 480, and T = 960. We observe a similar pattern

for the estimated asymptotic standard errors. Those patterns are manifestations of the

efficiency gains from using the factor–model based risk premium estimates.

These simulation results show that the limiting variances for factor–model based es-

timators of risk premiums that we provide in our paper provide accurate approximations

to the finite sample behavior of standard errors of the estimates. Furthermore, comparing

the RMSEs (and AESTs) of factor–model–based estimators of risk premiums to RMSEs

(and AESTs) of the historical averages, we observe that the efficiency gains from using the

factor–model based estimators of risk–premiums are present for all individual assets.

6.2 Presence of weak factors

In this section, we consider the case for the presence of a weak factor. The parameters

are calibrated by using the monthly data from from January 1963 until August 2020 on 25

Fama French (1992) portfolios sorted by size and book–to–market and the corresponding

market factor, Re
m,t. The data generating process is given by

Re
t = α +

B√
T
Re
m,t + εt, t = 1, 2, . . . , T, (6.7)

with normally distributed Re
m,t and multivariate normal εt under the null of E [Re

t ] = B√
T
λ.

We use 20000 replications for each estimator considered.

Figure 2 present the simulation results for the standard errors of the risk premium

estimates in the presence of weak factor. Panel (a), Panel (b), and Panel (c) show the

results for T = 240, T = 480, and T = 960, respectively. For all three factor–model

based risk premium estimators, the estimated asymptotic standard errors are close to their

corresponding RMSEs, with absolute percentage errors being lower than 3% for all assets

for T = 240, 480, 960. Moreover, comparing the RMSEs (and the standard errors of the

historical averages) to the RMSEs (and the standard errors of the factor–model–based
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risk–premium estimators), we observe that there are substantial efficiency gains from using

the factor–model–based risk–premium estimates. These efficiency gains are present for all

individual assets.

To sum up, if one is interested in making econometric inference about the prices of risk

λ, small but non-zero β’s may may cause spurious inference. However, once the interest is in

estimating risk premiums, i.e., expected (excess) returns on individual assets or portfolios,

the limiting variances based on GMM with (3.1), (3.2) or (3.4) provide good approximations

to the finite–sample variances of the factor model based estimators when the β’s are weak.

7 Portfolio Choice with Parameter Uncertainty

In the previous sections, we provided an asymptotic analysis of the three factor–model

based risk–premium estimators and analyzed the efficiency gains with respect to naive

historical averages. In this section, we analyze the economic significance of these gains in

a portfolio allocation problem à la Markowitz (1952).

The implementation of the mean–variance framework requires the estimation of first two

moments of the asset returns. Although, in this setting, the optimal portfolios are supposed

to achieve the best performance, in practice, the estimation error in the estimated moments

leads to large deterioration of the out–of–sample performance of the optimal portfolios (see,

e.g., DeMiguel et al. (2009)). In this section, we analyze the out–of–sample performances

of the optimal portfolios based on factor–based risk–premium estimates as well as the

historical averages, 1/N portfolio and global minimum variance portfolio in a simulation

analysis.

We consider the following well known optimization problem: Suppose a risk–free asset

exists and w is the vector of relative portfolio allocations of wealth to N risky assets. The

investor has preferences that are characterized by the expected return and variance of her

selected portfolio. The investor maximizes her expected utility, by choosing the vector of
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portfolio weights w such that

E [U ] = w′µe − γ

2
w′ΣRRw, (7.8)

is maximized, where γ measures the investor’s risk aversion level and µe and ΣRR denote

the expected excess returns on the assets and covariance matrix of returns. The solution

to this maximization problem is well known and given by

wopt =
1

γ
Σ−1
RRµ

e. (7.9)

In the optimization problem above, since the true risk–premium vector, µe, and the

true covariance matrix of asset returns, ΣRR, are unknown, in empirical work, one needs

to estimate them.

We consider four portfolios constructed with different risk–premium estimators: the op-

timal portfolio constructed with historical averages, and the optimal portfolios constructed

with the three factor model–based GMM risk–premium estimates with moment condi-

tions (3.1), (3.2) and (3.4), respectively. Note that the covariance matrix is estimated

using the traditional sample counterpart.13 We also consider the global minimum variance

(GMV thereafter) portfolio to which we compare the performance of the portfolios based

on the risk–premium estimates. Note that the implementation of this portfolio only re-

quires estimation of the covariance matrix, for which we again use the sample counterpart,

and completely ignores the estimation of expected returns.14 Morover, we analyze the

performance of the 1/N portfolio.

We compare performances of the portfolios by using their out-of-sample Sharpe Ratios.15

131/(T − 1)
∑T

1 (Rt − R̄t)(Rt − R̄t)′, where R̄t is the sample average of returns.
14This portfolio is obtained by minimizing the portfolio variance with respect to the weights with the

only constraint that weights sum up to 1 and the N–vector of portfolio weights is given by wgmv = ΣRRιN
ιNΣRRιN

15See Peñaranda and Sentana (2011) for an analysis examining the improvements in the estimation of in–
sample mean variance frontiers based on asset pricing model restrictions, tangency or spanning constraints.
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We set the initial window length at 120 data points, corresponding to 10 years of monthly

data. The parameters for the return–generating process are calibrated to mimic the Fama-

French 3–factor model with 25 FF portfolios. All factors and the error terms are generated

from multivariate normal distribution. We simulate independent sets of Z = 20, 000 return

samples.

Table 2 provides the simulation results for out–of–sample Sharpe ratios of different

portfolios. For each portfolio, we present the average estimate over simulations, SR (first

line), the bias as the percentage of the population Sharpe ratios, (SR − SR)/SR (second

line) and the root–mean–square error (RMSE), the square root of
∑Z

s=1(ŜRs − SR)/Z,

(third line) , where Z = 20, 000.

In order to isolate the effect of the error in risk–premium estimates, we present our

results with both true and estimated ΣRR. First, note that the true Sharpe ratio of the op-

timal portfolio is superior to the portfolios based on estimated risk–premiums or covariance

matrix of asset returns. Comparing the average Sharpe ratio of the optimal portfolio based

on historical averages to the true Sharpe ratio of optimal portfolio for enlarging samples,

we see that the bias is strikingly large and negative with −42% and −43%, depending on

whether the covariance matrix of asset returns is the true one or the estimated one. How-

ever, using the factor–models to estimate the risk–premiums reduces the bias in Sharpe

ratios substantially to about −12% when the true coviariance matrix is used, and to about

−9% when the covariance matrix is estimated. In particular, with GMM–Gen estimates,

average Sharpe ratio of the optimal portfolio is 0.157 in case of true covariance matrix (with

an improvement of about 50% over the average Sharpe ratios with the historical averages)

and 0.161 in case of an estimated covariance matrix (with an improvement of about 60%

over the average Sharpe ratios with the historical averages). Among the optimal port-

folios constructed with factor–model based risk–premium estimates, the portfolio based

on GMM–Tr estimates perform the best with 0.162. However, the differences in biases
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are minimal for all optimal portfolios constructed with factor–model based risk–premium

estimators.

Next, we analyse the RMSEs of the various portfolios. Out–of–sample Sharpe ratio of

the optimal portfolios based on historical averages is extremely volatile across simulations.

That is, for the case of enlarging samples, it has a RMSE of 0.09 (given the average

estimate 0.10) if the covariance matrix is estimated. However, using factor-model based

risk–premium estimators decreases the RMSEs substantially. The differences in RMSEs

are minor for all optimal portfolios constructed with factor–model based risk–premium

estimators.

Comparing the average Sharpe ratios of the optimal portfolios the factor model–based

risk–premium estimates with GMV and 1/N, we see that optimal portfolios based on the

naive estimator performs worse than both the 1/N strategy and the GMV portfolio. More-

over, both GMV and 1/N have substantially lower RMSEs. This result is consistent with

the findings in the literature that GMV portfolio as well as 1/N strategy has better out–of–

sample performance than the optimal portfolios based on sample moments.16 However, the

average Sharpe ratios for all optimal portfolios based on factor model–based risk–premium

estimates are larger than both the GMV and 1/N porfolios. Moreover, their out of Sharpe

ratios across simulations are almost as stable as the GMV portfolio as well as the 1/N

strategy.

Overall, using the factor–model based risk–premium estimators improves the perfor-

mance of optimal portfolios substantially over the optimal portfolios based on the plug in

estimates of historical averages in terms of both bias and RMSEs. Moreover, in contrast

to the optimal portfolios with historical averages, these portfolios perform considerably

better than the global minimum variance portfolio. In practice, while there is little hope

in knowing the universally true factor model, we know that particular factor models work

16See, e.g., DeMiguel et al. (2009), Jagannathan and Ma (2003), and Jorion (1985, 1991)).
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well empirically in explaining expected returns of particular test assets (e.g. the Fama-

French three factor model explains the returns of 25 size/book-to-market portfolios). Our

results suggests that using factor-model-based expected return estimates likely improves

the performance of optimal portfolios over the portfolios based on the historical averages

estimators of expected returns, minimum variance portfolio, and 1/N portfolio.

8 Conclusions

One traditional technique in the literature is to use average historical returns as estimates

of expected excess returns, that is risk premiums, on individual assets or portfolios. These

estimators are usually noisy. This translates into the need for very long, in practice, mostly

infeasible, samples of data in order to obtain some precision. However, the finance literature

provides a wide variety of risk–return models which imply a linear relationship between the

expected excess returns and their exposures.

In this paper, we show that, when correctly specified, such parametric specifications

on the functional form of risk premiums lead to significant inference gains for estimating

expected (excess) returns. In the standard Fama–French three factor model using MKT,

SMB, HML as factors with 25 FF portfolios, the efficiency gains are sizeable and go up

to about 25% for individual portfolios. For applications, this translates into the benefit

of using only about 75% of the data with factor–model based risk–premium estimates to

obtain the same precision as with the historical averages estimator. Moreover, we show that

the presence of weakly identified factors, the confidence bounds of factor model based risk–

premium estimators are not affected in case of traded factors. Finally, we show that out–

of–sample performance of optimal portfolios significantly improves if factor–model based

estimates of risk premium are used in portfolio weights instead of the classical historical

averages.
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A Proofs

In the rest of the paper, the covariance matrix of the factor–mimicking portfolios is denoted

by ΣFmFm .

A.1 Equivalence of factor pricing using mimicking portfolios

Proof of Theorem 2.1. Define Mm as the projection of M onto the augmented span of

excess returns,

Mm = P(M |1, Re) (A.1)

so that

= E [Mm] , (A.2)

Cov [M,Re] = Cov [Mm, Re] . (A.3)

Thus, we have

βλ = Cov [Re, F ′] Σ−1
FF

(
− 1

E [M ]
ΣFF b

)
(A.4)

= − 1

E [M ]
Cov [Re, F ′] b

= − 1

E [Mm]
Cov

[
Re, Fm′] b

= − 1

E [Mm]
Cov

[
Re, Fm′]Σ−1

FmFmΣFmFmb

= βmλm,

which completes the proof.

A.2 Precision of Parameter Estimators Given a Factor Model

This section provides the proofs for asymptotic properties of the parameter estimators

under the specified linear factor model. The lemma A.1 below illustrates the asymptotic

distribution of the GMM estimators with a given set of moment conditions provided that

a pre–specified matrix A, that essentially determines the weigths of the overidentifying

moments, is introduced. Thereafter, these results will be used to calculate the variance

covariance matrix for the moment conditions (3.1), (3.2) and (3.4), respectively.

32



Under appropriate regularity conditions, see, e.g., Hall (2005), Chapter 3.4, we have

the following result.

Lemma A.1. Let θ ∈ Rp be a vector of parameters and the moment conditions are given

by E [ht(θ)] = 0 where ht(θ) ∈ Rq, stationary and ergodic process with finite fourth moment.

Given a prespecified matrix A ∈ Rp×q, its consistent estimator Â and Â 1
T

∑T
t=1 ht(θ̂) = 0,

√
T (θ̂ − θ) d→ N

(
0, [AJ ]−1ASA′[J ′A′]−1

)
, (A.5)

where,

J = E

[
∂ht(θ)

∂θ′

]
, (A.6)

S = E [ht(θ)ht(θ)
′] . (A.7)

The above lemma presents the asymptotic distribution of the parameters in a general

GMM context. In the subsequent lemmas, we provide the limiting distributions for the

parameter estimators based on the moment conditions (3.1), (3.2) and (3.4), respectively.

Lemma A.2. Under Assumptions 1-3 and the moment conditions (3.1) with parameter

vector θ = (α′, vec (β)′ , λ′)′, we have

√
T (θ̂ − θ) d→ N (0, V ), (A.8)

with

V =



 1 + µ′FΣ−1
FFµF −µ′FΣ−1

FF

−Σ−1
FFµF Σ−1

FF

⊗ Σεε Vc

V ′c (1 + λ′Σ−1
FFλ)(β′Σ−1

εε β)−1 + ΣFF
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where µF = E [Ft] and Vc =

 1 + µ′FΣ−1
FFλ

−Σ−1
FFλ

⊗ β(β′Σ−1
εε β)−1.

Proof. The proof follows from plugging the appropriate matrices for the moment conditions

provided in Section 3.1 into the variance covariance formula in (A.5) and performing the

matrix multiplications. Below, we provide the limiting variance covariance matrix (S) and

the Jacobian (J) for this specific set of moment conditions,

S =


Σεε µ′F ⊗ Σεε Σεε

µF ⊗ Σεε [ΣFF + µFµ
′
F ]⊗ Σεε µF ⊗ Σεε

Σεε µ′F ⊗ Σεε βΣFFβ
′ + Σεε

 .

J(θ) = E

[
∂ht(θ)

∂θ′

]
=


−

 1 µ′F

µF ΣFF + µFµ
′
F

⊗ IN 0N(K+1)×K[
0N×N −λ′ ⊗ IN

]
−β

 .

Furthermore

A =

 IN(K+1) 0N(K+1)×N

0K×N(K+1) β′Σ−1
εε

 .
so that the limiting variance of GMM estimator for θ is obtained by performing the matrix

multiplications [AJ ]−1ASA′[J ′A′]−1.

Lemma A.3. Suppose that all factors are traded. Then, under Assumptions 1-3 and the

moment conditions (3.2) with parameter vector θ = (α′, vec (β)′ , λ′)′, we have

√
T (θ̂ − θ) d→ N (0, V ), (A.9)
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with

V =



 1 + µ′FΣ−1
FFµF −µ′FΣ−1

FF

−Σ−1
FFµF Σ−1

FF

⊗ Σεε 0N(K+1)×K

0K×N(K+1) ΣFF


.

Proof. The proof follows from plugging the appropriate matrices for the moment condi-

tions (3.2) into the variance covariance formula in (A.5) and performing the matrix mul-

tiplications. Below, we provide the limiting variance covariance matrix (S), Jacobian (J)

for this specific set of moment conditions, In this case,

S =


Σεε µ′F ⊗ Σεε 0N×K

µF ⊗ Σεε [ΣFF + µFµ
′
F ]⊗ Σεε 0NK×K

0K×N 0K×NK ΣFF

 ,

and

J(θ) =


−

 1 µ′F

µF ΣFF + µFµ
′
F

⊗ IN 0N(K+1)×K

0K×N(K+1) IK

 .
Thus, the limiting variance of the GMM estimator for θ is obtained by performing the

matrix multiplications J−1S[J ′]−1 since A = IN(K+1)+K .

The next lemma provides the asymptotic properties of the GMM estimatior with factor–

mimicking portfolios.

Lemma A.4. Given that Assumptions 1-3 are satisfied and that (2.3) hold, then under the

moment conditions (3.4), for θ = (vec (βm)′ , λm′)′, we have

√
T (θ̂ − θ) d→ N (0, V ), (A.10)
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with

V =


Σ−1
FmFmΦΣReReΦ′Σ−1

FmFm ⊗ βmΣuuβ
m′ + Σ−1

FmFm ⊗ Σεmεm −Σ−1
FmFmµFm ⊗ βmΣuu

−µ′FmΣ−1
FmFm ⊗ Σuuβ

m′ µ′ReΣ−1
ReReµReΣuu + ΣFmFm

 .

Proof. The proof follows again from plugging the appropriate matrices for the moment

conditions (3.4) into the variance covariance formula in (A.5) and performing the matrix

multiplications. Now, observe that from (A.7), we have

S =



 1 µ′Re

µRe ΣReRe + µReµ′Re

⊗ Σuu 0K(1+N)×N(K+1) 0K(1+N)×K

0N(K+1)×K(1+N)

 1 µ′Fm

µFm ΣFmFm + µFmµFm
′

⊗ Σεmεm 0N(K+1)×K

0K×K(1+N) 0K×N(K+1) ΣFmFm


,

and from (A.6), we have

J(θ) = E



−

 1 Re
t
′

Re
t Re

tR
e
t
′

⊗ IK 0K(1+N)×N(K+1) 0K(1+N)×K

−

 0 Re
t
′

0K×1 Φ(Re
tR

e
t
′)

⊗ βm −

 1 Fm
t
′

Fm
t Fm

t F
m
t
′

⊗ IN 0N(K+1)×K

0K Re
t
′ ⊗ IK 0K×N(K+1) −IK


,

with A = IK(1+N)+N(K+1)+K . Thus, the limiting variance of the GMM estimator for θ =

(vec (βm)′ , λm′)′ is obtained by performing the matrix multiplications J−1S[J ′]−1.

Here, it is worth stressing that the limiting variance covariance matrix obtained by

performing the matrix multiplications corresponds to the parameter vector

(Φ0
′, vec (Φ)′ , αm′, vec (βm)′ , λm′)′.
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Therefore, the asymptotic variance covariance matrix for θ = (vec (βm)′ , λm′)′ is the lower-

right KN +K by KN +K sub-matrix of the larger variance covariance matrix.

Lemmas A.2–A.4 allow us to study the asymptotic properties of the obtained risk pre-

mium estimators. It is worth mentioning that the lower–left NK +K dimensional square

matrices of the variance covariance matrices in Lemma A.2 and A.3 give the variance co-

variance matrices corresponding to parameters (vec (β)′ , λ′)′. We will use these results to

derive the variance covariance matrices of risk premium estimators in the following section.

Proof of Theorem 4.1. This follows from a direct application of the Central Limit Theorem.

Proofs of Theorems 4.2 and 4.3. We are interested in the asymptotic distribution of g(β, λ) =

βλ. Given

(vec
(
β̂
)′
, λ̂′)′ − (vec (β)′ , λ′)′

d→ N (0, Vβ,λ),

we have, by applying the delta method, that

√
T
(
g(β̂, λ̂)− g(β, λ)

)
d→ N (0, ġ′Vβ,λġ),

with

ġ =

[
λ′ ⊗ IN β

]
.

Remember that Lemma A.2 and A.3 give the asymptotic distributions of
√
T (θ̂ − θ)

where θ = (α′, vec (β)′ , λ′)′ for the moment conditions (3.1) and (3.2). Observe that Vβ,λ

is the lower NK + K block diagonal matrix of the variance covariance matrices provided

in Lemma A.2 and A.3. Hence, the asymptotic variances of the risk premium estimators

in Theorems 4.2 and 4.3 follow from plugging in the limiting variance covariance matrices

of (vec (β)′ , λ′)′ and calculating ġ′Vβ,λġ.

Proof of Theorem 4.4. We are interested in g(βm, λm) = βmλm. Given

(vec
(
β̂m
)′
, λ̂m

′
)′ − (vec (βm)′ , λm′)′

d→ N (0, Vβm,λm),
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Then, by applying the delta method, we have

√
T (g(β̂m, λ̂m)− g(βm, λm))

d→ N (0, ġ′Vβm,λm ġ)

and note that here

ġ =
[
λm′ ⊗ IN βm

]
Then, we have

ġ′Vβm,λm ġ = λm′Σ−1
FmFmλmΣεmεm + βmΣFmFmβm′ (A.11)

+
(
µ′ReΣ−1

RRµRe − λm′ΣFmFm
−1λm

)
βmΣuuβ

m′

The result follows from plugging the βm and Φ respectively into the above equation via (2.6).

The following lemma follows from the Schur complement condition, see Boyd and Van-

denberghe (2004).

Lemma A.5. Let

K =

 K11 K12

K21 K22


be a symmetric matrix and assume that K−1

22 exists. Then K ≥ 0 is equivalent to K22 ≥ 0

and K11 −K12K
−1
22 K21 ≥ 0.

Proof of Corollary 4.1. Suppose λ′Σ−1
FFλ < 1. We need to study the difference between

the limiting variance of the historical averages and the limiting variance of the expected

(excess) return estimator based on (3.1). In particular, we need to study

ΣReRe −
(
ΣReRe −

(
1− λ′Σ−1

FFλ
) [

Σεε − β(β′Σ−1
εε β)−1β′

])
=
(
1− λ′Σ−1

FFλ
) [

Σεε − β(β′Σ−1
εε β)−1β′

]
.

In order to show that Σεε−β(β′Σ−1
εε β)−1β′ is positive semi–definite, we will use Lemma A.5.
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Now, let K1 = Σ
1/2
εε and K2 = β′Σ

−1/2
εε . Then,

K =

 K1

K2

[ K ′1 K ′2

]
=

 K1K
′
1 K1K

′
2

K2K
′
1 K2K

′
2


so that

K =

 Σεε β

β′ β′Σεε−1β

 .
Then, Lemma A.5 yields that

Σεε − β(β′Σ−1
εε β)−1β′ ≥ 0

Proof of Corollary 4.2. Suppose λ′Σ−1
FFλ < 1.

In order to prove Corollary 4.2–1, we need to study the difference between the limiting

variance of the historical averages and the limiting variance of the expected (excess) return

estimator based on (3.2). In particular, we need to show that

ΣReRe −
(
ΣReRe −

(
1− λ′Σ−1

FFλ
)

Σεε

)
=
(
1− λ′Σ−1

FFλ
)

Σεε

is positive semi–definite. Since Σεε is positive semi-definite, Corollary 4.2–1 follows.

In order to prove Corollary 4.2–2, we need to study the difference between the limiting

variance of the expected (excess) return estimator based on (3.1) and the limiting variance

of the expected (excess) return estimator based on (3.2). In particular, we need to show
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that

(
ΣReRe −

(
1− λ′Σ−1

FFλ
) [

Σεε − β(β′Σ−1
εε β)−1β′

])
−
(
ΣReRe −

(
1− λ′Σ−1

FFλ
)

Σεε

)
=
(
1− λ′Σ−1

FFλ
)
β(β′Σ−1

εε β)−1β′

is positive semi–definite. This follows immediately from Σεε being positive semi–definite.

Following the literature on weak instruments (see, e.g., Staiger and Stock (1997)), and

Kleibergen (2009), we consider a sequence of β’s getting smaller as the sample size increases.

Proof of Corollary 5.1. Suppose Assumption 2 and Assumption 3 hold and consider the

small β case where β = 1√
T
B for a fixed full rank N ×K matrix B. Then

1. Consider the GMM estimator based on the moment conditions (3.1). We want to

study

(
β̂λ̂− βλ

)
= Σ̂ReF Σ̂−1

FF

(
β̂

′
Σ̂−1
εε β̂
)−1 (

β̂
′
Σ̂−1
εε R̄

e
)
− βλ. (A.12)

Note, using Rt
e = α + βFt + εt,

Σ̂ReF =
1

T

T∑
t=1

(
Re
t − R̄e

) (
Ft − F̄

)′
(A.13)

=
1

T

T∑
t=1

[
β
(
Ft − F̄

)
+ (εt − ε̂)

] (
Ft − F̄

)′
= βΣ̂FF + Σ̂εF ,

so that

β̂ = β + Σ̂εF Σ̂−1
FF . (A.14)
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Moreover, note

β̂
′
Σ̂−1
εε R̄

e =
(
β + Σ̂εF Σ̂−1

FF

)′

Σ̂εε

(
α + βF̄ + ε

)
, (A.15)

and

β̂
′
Σ̂−1
εε β̂ =

(
β + Σ̂εF Σ̂−1

FF

)′

Σ̂εε

(
β + Σ̂εF Σ̂−1

FF

)
. (A.16)

Considering β = B/
√
T and assuming that

√
(T )Σ̂εF

d→ Y , and
√
T ε̄

d→ U for some

random U and Y , from (A.16), we get

β̂
′
Σ̂−1
εε β̂

d→
(
B + Y Σ−1

FF

)′
Σεε

(
B + Y Σ−1

FF

)
. (A.17)

Furthermore, note

ERe
t = βλ = α + βEF, (A.18)

so that

α = β (λ− EF ) = B/
√
T (λ− EF ) . (A.19)

As a result, (A.15) leads to

T β̂
′
Σ̂−1
εε R̄

e d→
(
B + Y ΣFF

−1
)′

Σεε (Bλ+ U) . (A.20)

Hence, (A.12) implies

(
β̂λ̂− βλ

)
d→
(
B + Y ΣFF

−1
) [(

B + Y ΣFF
−1
)′

Σεε
−1
(
B + Y ΣFF

−1
)]−1

×
(
B + Y ΣFF

−1
)′

Σεε
−1[Bλ+ U ]− βλ.
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Under the assumptions in the paper, U is independent of Y , U ∼ N(0,Σεε) and

vec(Y ) ∼ N(0,ΣFF ⊗ Σεε).

2. Suppose that factors are traded, and consider the GMM estimator based on the

moment conditions (3.2). Then,

β̂λ̂ = Σ̂ReF Σ̂−1
FF F̄ (A.21)

=
(
β + Σ̂εF Σ̂−1

FF

)
F̄ ,

so that

√
T
(
β̂λ̂− βλ

)
= β
√
T
(
F̄ − EF

)
+
√
T Σ̂εF Σ̂−1

FF F̄ . (A.22)

Now, taking β = B/
√
T ,

√
T
(
β̂λ̂− βλ

)
d→ Y Σ−1

FFλ. (A.23)

Using vec(Y ) ∼ N(0,ΣFF ⊗ Σεε),

V Σ−1
FFλ = vec

(
Y Σ−1

FFλ
)

=
(
λTΣ−1

FF ⊗ IN
)
vec(Y )

∼ N
(
0,
(
λTΣ−1

FF ⊗ In
)

(ΣFF ⊗ Σεε)(Σ
−1
FFλ⊗ IN)

)
= N(0, λTΣ−1

FFΣFFΣ−1
FFλ⊗ Σεε)

= N(0, λTΣ−1
FFλΣεε) (A.24)
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B Inference about Risk–Premiums with Omitted Fac-

tors

The asymptotic results in the main paper are based on the assumption that the pricing

model is correctly specified. The researcher is assumed to know the true factor model that

explains expected excess returns on the assets. In that case, the risk–premium estimators

are consistent certainly under our maintained assumption of stationary and ergodic returns.

However, the pricing model may be misspecified and this might induce inconsistent risk–

premium estimates. We investigate this issue and its solution in this section.

We consider model misspecification due to omitted factors. An example of such type of

misspecification would be to use Fama–French three factor model if the true pricing model

is the four factor Fama–French–Carhart Model. Formally, assume that excess returns are

generated by a factor model with two different sets of distinct factors, F and G such that

Re = α∗ + β∗F + δ∗G+ ε∗, (B.1)

where ε∗ is a vector of residuals with mean zero and E [Fε∗′] = 0 and E [Gε∗′] = 0. Note

that the sets of factors F and G perfectly explain the expected excess returns of the test

assets, i.e., E [Re] = β∗λF + δ∗λG.

However, a researcher may forget about the presence of the factors G and thus estimates

the model only with factors F . Then, the estimated model is

Re = α + βF + ε, (B.2)

with zero–mean ε, and E [Fε′] = 0. As the researcher might not know the underlying factor

model exactly, she allows for misspecification by adding an N -vector of constant terms, α,

in the estimation as in Fama and French (1993).

The bias in the parameter estimates for, α, β and λ are presented in the following
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theorem:

Theorem B.1. Assume that returns are generated by (B.1) but α, β, and λ are estimated

from (B.2) with GMM based on (3.1). Then,

1. α̂ converges to α∗ + (β∗ − β)E [F ] + δ∗E [G],

2. β̂ converges to β∗ + δ∗Cov
[
G,F T

]
Σ−1
FF ,

3. λ̂ converges to λF + (β′Σ−1
εε β)−1β′Σ−1

εε [(β∗ − β)λF + δ∗λG],

in probability.

Theorem B.1 shows that, if a researcher ignores some risk factors G, then the risk price

estimators associated with the factors F are inconsistent if and only if

β′Σ−1
εε [(β∗ − β)λF + δ∗λG] 6= 0.

It is important to note that the inconsistency of the estimates of risk prices may be

caused not only by the risk prices λ of the omitted factors but also by the bias in betas

of the factors F . This result has an important implication: even if the ignored factors

have zero price of risk, the cross–sectional estimates of the prices of risk on the true factors

included in the estimation (F ) can still be asymptotically biased. This happens in case F

and G are correlated.

Next, we analyse the asymptotic bias in the parameter estimates for α, β and λ in case

the factors are traded and the estimation is based on GMM with the moment conditions

(3.2) of Section 3.2.

Theorem B.2. Assume that returns are generated by (B.1) but α, β, and λ are estimated

from (B.2) with GMM based on (3.2). Then,

1. α̂ converges to α∗ + (β∗ − β)λF + δ∗λG,

2. β̂ converges to β∗ + δ∗Cov
[
G,F T

]
Σ−1
F ,
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3. λ̂ converges to λF ,

in probability.

Theorem B.2 illustrates that, even if the researcher forgets some risk factors, risk price

estimators will still be asymptotically unbiased. Notice that this is in contrast with the

estimator based on GMM with moment conditions (3.1) of Section 3.1. It is important to

note that, if the forgotten factors G, are uncorrelated with the factors, then the bias in β

disappears. Moreover, if the ignored factors are associated with zero prices of risk and are

uncorrelated with F , then α̂ will converge to α.

This raises the question what happens to the risk–premium estimators on individual

assets or portfolios if some true factors are ignored in the estimation? The following

corollary provides consistency conditions for risk–premium estimators of individual assets

or portfolios.

Corollary B.1. If the returns are generated by (B.1) and

1. the model (B.2) is estimated with GMM based on (3.1), then the vector of resulting

risk–premium estimators β̂λ̂ converges to E [Re] if and only if

[IN − β(β′Σ−1
εε β)−1β′Σ−1

εε ]E [Re] = 0.

2. all factors are traded. If the model (B.2) is estimated with GMM (3.2), then the vector

of resulting risk–premium estimators β̂λ̂ converges to E [Re] if and only if (β∗−β)λF+

δ∗λG = 0.

In the view of the theorem above, if the factors are traded, and the estimation is via

GMM with moment conditions (3.2), then the risk–premium estimator is unbiased when

the omitted factors are uncorrelated with the factors, F , and the the omitted factors are

associted with zero prices of risk. In order to capture misspecification, it is a common

approach to add an N–vector of constant terms, α, to the model as in (B.2). In the

following theorem, we will show that in case of traded factors, it is possible to achieve the
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consistency for estimating risk premiums, however, this comes at the cost of loosing all

efficiency gains.

Theorem B.3. Assume that all factors in F are traded. If the returns are generated

by (B.1) but the model (B.2) is estimated with GMM based on (3.2) where the risk price

estimates are given by the factor averages, then the estimator α̂ + β̂λ̂ is consistent for

E [Re]. The asymptotic variance of such estimator equals ΣReRe.

It is important to note that adding the α̂ to β̂λ̂ does not solve the inconsistency problem

if the system is estimated via GMM with (3.1). If some factors are non–traded and the

parameters are estimated via GMM with (3.1), adding the α̂ capturing the misspecification

to β̂λ̂ doesn’t lead to consistent estimates of E [Re]. In particular, α̂ + β̂λ̂ converges to

E [Re] − β(λ − E [F ]) and λ − E [F ] is generally nonzero. Table A1 documents empirical

values of the bias caused by estimating the CAPM model on 25 Fama French portfolios.

There is a slight bias in ignoring the other factors, SMB and HML, about 1% on average

across 25 Fama French portfolios for the general case and mimicking factor case, and about

1.5% for the traded factor case. Observe that adding the α̂ to β̂λ̂ corrects for the bias for

traded factors whereas it does not correct for the bias for the general case.

C Proofs for Section “Inference about Risk–Premiums

with Omitted Factors”

Proof of Theorem B.1. Note that β̂ converges to β and α̂ converges to α in probability,

where

β = Cov
[
Re, F T

]
ΣFF

−1, (C.3)

= Cov
[
Re = α∗ + β∗F + δ∗G+ ε∗, F T

]
ΣFF

−1,

= β∗ + δ∗Cov
[
G,F T

]
Σ−1
FF .
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and

α = E [Re]− βE [F ] , (C.4)

= α∗ + β∗E [F ] + δ∗E [G]− βE [F ] ,

= α∗ + (β∗ − β)E [F ] + δ∗E [G] .

Furthermore, for λ̂, first notice that

λ̂ =
(
β̂′Σ̂−1

εε β̂
)−1

β̂′Σ̂−1
εε R̄

e. (C.5)

The probability limit of λ̂ from GMM (3.1) is thus given by

λ =
(
β′Σ−1

εε β
)−1

β′Σ−1
εε [β∗λF + δ∗λG]

= λF +
(
β′Σ−1

εε β
)−1

β′Σ−1
εε [(β∗ − β)λF + δ∗λG] . (C.6)

Proof of Theorem B.2. Note that β̂ converges to β and α̂ converges to α in probability,

with

β = Cov
[
Re, F T

]
ΣFF

−1 (C.7)

= Cov
[
Re − α∗ + β∗F + δ∗G+ ε∗, F T

]
ΣFF

−1

= β∗ + δ∗Cov
[
G,F T

]
Σ−1
FF .

and

α = E [Re]− βE [F ] (C.8)

= α∗ + β∗λF + δ∗λG − βλF
= α∗ + (β∗ − β)λF + δ∗λG.

Furthermore, for λ̂F , notice that λ̂F = F̄ , which converges to λF = E [F ] in probability.
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Proof of Corollary B.1. For the first part of the corollary, note that

βλF = β
(
β′Σ−1

εε β
)−1

β′Σ−1
εε E [Re] . (C.9)

Hence, β̂λ̂ is consistent for E [Re] if and only if E [Re] = β (β′Σ−1
εε β)

−1
β′Σ−1

εε E [Re]. This,

in turn, equivalent to

[
IN − β

(
β′Σ−1

εε β
)−1

β′Σ−1
εε

]
E [Re] = 0. (C.10)

To prove the second part of the corollary, note that β̂λ̂ converges to βλ. Using (C.7) and

λF = E [F ], we have

βλF = (β∗ + δ∗Cov
[
G,F T

]
Σ−1
FF )λF , (C.11)

= E [Re]− ((β∗ − β)λF + δ∗λG).

Proof of Theorem B.3. Consistency of α̂+βλF is straightforward. The asymptotic variance

is given by the delta method using g(α, β, λF ) = α+βλF . The asymptotic covariance matrix

of α, β, and γ is given in Lemma A.3 (denoted by V ).

Thus,
√
T
(
g(α̂, β̂, λ̂)− g(α, β, λ)

)
d→ N (0, ġ′Vα,β,λġ), (C.12)

with

ġ =

[
[1 λ′]⊗ IN β

]
.

Matrix multiplication of calculating ġ′Vα,β,λġ gives ΣReRe .
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Table A1: Omitted Factors

This table provides the average risk premium estimates on average across assets, β̂λ̂ (first line), its bias,

the average risk premium estimates augmented with an alpha on average across assets, α̂ + β̂λ̂ ,and its

bias. The test assets are the 25 portfolios formed by Fama–French (1992,1993). The factor is the market

factor in a standard CAPM. The results are based on monthly data from January 1963 until August 2020,

i.e., 692 observations for each portfolio. The first column presents the improvements for the factor–model

based risk–premium estimates based on GMM with (3.1) over the naive estimate of historical averages.

The second and the third columns present the gains of factor–model based risk–premium estimates based

on GMM with (3.2) and with (3.4) over naive estimates, respectively.

General Case Traded Factors Mimicking Factors

β̂λ̂ 7.73 7.38 7.73

Bias -1.05 -1.39 -1.05

α̂ + β̂λ̂ 9.12 8.77 8.77

Bias 0.35 0.00 0.00
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Table 1: Improvements in Efficiency for the 25 Fama–French Portfolios (in per-
centage)

This table illustrates the gains in variances (in percentage) for the various risk–premium estimates

for the 25 portfolios formed by Fama and French (1992,1993). The factors are the three factors

from Fama and French (1992): market, size and book–to–market. The results are based on monthly

data from January 1963 until August 2020, i.e., 692 observations for each portfolio. The first col-

umn (RPGMM –Gen over Naive) presents the improvements for the factor–model based risk–premium

estimates based on GMM with (3.1) over the naive estimate of historical averages. The second

(RPGMM –Tr over Naive) and the third (RPGMM –Mim over Naive) columns present the gains of factor–

model based risk–premium estimates based on GMM with (3.2) or (3.4) over naive estimates, respectively.

The fourth column (RPGMM –Tr over RPGMM –Gen) corresponds to the precision gains from estimating the

risk premiums based on GMM using the moment conditions (3.2) over the case based on GMM with (3.1).

The last column (RPGMM –Mim over RPGMM –Gen) presents the gains from making use of mimicking

portfolios using (3.4) over estimation based on (3.1)

Assets RPGMM–Gen RPGMM–Tr RPGMM–Mim RPGMM–Tr RPGMM–Mim RPGMM–Mim

over over over over over over

Naive Naive Naive RPGMM–Gen RPGMM–Gen RPGMM–Tr

1 8.9 9.6 8.8 0.6 -0.1 -0.7

2 6.9 7.5 6.9 0.5 -0.1 -0.6

3 4.3 4.8 4.3 0.5 -0.1 -0.5

4 4.7 5.2 4.6 0.5 -0.1 -0.5

5 4.8 5.4 4.8 0.5 -0.1 -0.6

6 4.8 5.5 4.7 0.7 -0.1 -0.8

7 5.0 5.5 4.9 0.5 -0.1 -0.6

8 7.0 7.6 6.9 0.5 -0.1 -0.6

9 4.9 5.5 4.8 0.6 -0.1 -0.7

10 4.2 4.8 4.1 0.6 -0.1 -0.7

11 4.6 5.4 4.5 0.7 -0.1 -0.8

12 7.6 8.2 7.5 0.6 -0.1 -0.6

13 9.9 10.6 9.8 0.7 -0.1 -0.7

14 8.2 9.0 8.1 0.7 -0.1 -0.8

15 10.1 11.0 10.0 0.8 -0.1 -0.9

16 6.1 6.9 6.0 0.8 -0.1 -0.8

17 10.8 11.6 10.7 0.7 -0.1 -0.8

18 12.3 13.3 12.2 0.8 -0.1 -0.9

19 11.3 12.3 11.2 0.9 -0.1 -1.0

20 12.2 13.3 12.1 0.9 -0.1 -1.1

21 4.8 5.8 4.7 0.9 -0.1 -1.0

22 9.5 10.5 9.3 0.9 -0.1 -1.0

23 15.1 16.3 15.0 1.1 -0.1 -1.2

24 10.3 11.8 10.1 1.3 -0.2 -1.5

25 22.7 24.3 22.5 1.3 -0.2 -1.5
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