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Abstract

We examine the determinants of European Union Allowances (EUA) futures prices
and the market design of the European Trading System (ETS) using a macro-finance
framework. We introduce an innovative approach to estimate the impact of abate-
ment and climate sentiment shocks, leveraging the information contained in the price
of EUA futures. Our analysis reveals that during the third phase of the ETS, the price
has been primarily influenced by energy fluctuations, climate sentiment, and abate-
ment shocks. When compared to the social cost of carbon (SCC), representing the
optimal policy scenario, we find that the ETS price is 100 times more volatile. Fur-
thermore, we observe that volatility in ETS prices generates monthly losses of 0.22% in
consumption-equivalent terms compared to the SCC case. We conclude by illustrating
how implementing a carbon cap rule can significantly reduce this price volatility and
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1 Introduction

In this paper, we estimate the drivers of the carbon price of the European Union Emission

Trading System (EU ETS) and shed light on the impact of various shocks on the carbon price

over the studied period. To achieve this, we develop a macro-finance model that comprises

two sectors: i) an energy sector and ii) a non-energy final sector. The model also incorporates

climate and emission dynamics. We begin by estimating our model using Bayesian techniques

and subsequently extracting the shock decomposition of the carbon price. We then compare

the theoretical social cost of carbon (SCC)–the first-best policy–to the estimated EU ETS

carbon price. Finally, we introduce a novel mechanism for determining the supply of emission

permits, termed the ’carbon cap rule’. This approach narrows the gap with the first best

optimal carbon price and presents a feasible implementation strategy for policy makers.

Our primary finding highlights that the EU ETS carbon cap policy leads to increased

price volatility, primarily driven by abatement cost shocks and climate sentiment shocks,

in contrast to the first-best carbon price policy. Given that the SCC inherently exhibits

minimal price volatility, closing this gap essentially involves minimizing price uncertainty,

which we find to be 100 times more volatile than the SCC. Additionally, our analysis reveals

that price volatility and economic uncertainty incur costs at the business cycle, resulting in

0.22% welfare losses in consumption equivalent terms (CE) compared to the first-best policy.

To address this, we introduce an innovative method to infer abatement shock series, utilizing

information from the market price of carbon. Furthermore, we propose a new carbon cap

rule designed to achieve reduced price volatility and welfare losses, bringing them down from

0.22% to 0.03% with respect to the SCC scenario.

To internalize the effects of the carbon externality, public economists have consistently

advocated for setting a carbon price equivalent to the social cost of carbon – the shadow

value of CO2 emissions. Such a price would guide the economy towards a welfare-enhancing

trajectory while incentivizing emissions reduction. Yet, determining the appropriate level of

the SCC has sparked significant debates, as seen in works by Stern (2008) and Nordhaus

(2008). The correct level of the SCC remains ambiguous, given its dependence on factors

such as climate damages, climate dynamics, and the discount rate.

In response to this challenge, numerous governments and public authorities, spanning

both developed and developing nations, have adopted either a carbon tax or a cap-and-trade

system. These strategies aim to curtail emissions by either directly setting a carbon price or

allowing market participants to determine the carbon price through the trading of carbon
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permits. However, such policies do not ensure that the actual carbon price will result in a

first-best optimal allocation. Moreover, they might introduce market inefficiencies due to

policy structures and market designs, as discussed in Goulder (2013), Jenkins (2014), and

Benmir and Roman (2020).

The challenge faced by environmental and public authorities in establishing a carbon

policy mirror those confronted by monetary and financial policy authorities. For example,

monetary authorities determine interest rates based on specific rules, such as the Taylor

(1993) rule, rather than adhere to the natural interest rate, which remains unobservable. A

similar analogy can be made with the SCC. The SCC is fraught with uncertainties, making

it challenging to estimate and monitor over time. To address this issue, Grosjean, Acworth,

Flachsland, and Marschinski (2016) introduce the concept of a central bank of carbon, en-

visioned to operate akin to a monetary central bank. This regulatory body would set the

carbon cap and monitor the implicit carbon price, taking into account business cycle fluc-

tuations, which are emphasized as significant in Benmir, Jaccard, and Vermandel (2020).

The adoption of such a framework could potentially alleviate market inefficiencies inherent

in cap-and-trade market structures and foster a tighter alignment with the SCC.

Theory predicts that the price of emission permits should reflect market fundamentals

associated with the marginal costs of emissions abatement (e.g. Montgomery (1972) and

Rubin (1996)).1 Shifts in business-as-usual emissions, determined by changes in demand for

emission permits (e.g. weather, economic activity, and energy intensity of their products),

and shifts in abatement supply (e.g. supply of fossil fuels, the response of consumers to fuel

prices, and the cost of new technologies for production), modify market fundamentals expec-

tations. Predominantly, existing cap-and-trade programs target major domestic industries

with high energy consumption (e.g. electricity and heat production, cement manufacture,

iron, and steel production). Fluctuations in both emission demand and abatement supply

are anticipated to be the primary sources of uncertainty in the emission permit market.

A collection of research studies has empirically examined the significance of the theo-

retically suggested permit price determinants in the California cap-and-trade program (e.g.

Borenstein, Bushnell, Wolak, and Zaragoza-Watkins (2019)) and the EU ETS (e.g. Hin-

termann, Peterson, and Rickels (2016), Friedrich, Mauer, Pahle, and Tietjen (2020), and

Batten, Maddox, and Young (2021)). Regarding permit demand, a consistent observation

across these studies is the prominent role of fossil fuels. Specifically, while many of these

1For a recent survey of permit pricing theory, see Weitzman (1974), Hoel and Karp (2002), Newell and
Pizer (2003), Wood and Jotzo (2011), and Karp and Traeger (2018).
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papers highlight the significance of oil and gas, coal appears to be a less influential factor. In

the majority of these studies, economic activity and growth announcements emerge as clear

price drivers too. On the permit supply front, a challenge faced by empirical research is that

several price determinants are not directly observable. For instance, while we can observe the

supply of fossil fuels, technological advancements and innovation, along with expectations

about them, remain unobservable. Consequently, changes in the costs of abatement tech-

nology have been scarcely addressed in empirical studies, even though they hold significant

importance in the theoretical forecasting of permit prices.

Operational insights from cap-and-trade programs underscore that the permit supply

schedule is not fixed, but subject to potential policy revisions. The proposed regulatory

amendments in California in 20132 and the EU’s decision in 2021 regarding 2030 targets

serve as instances of mid-term cap adjustments during the periodic updates of the long-term

cap. Simultaneously, due to the rigidity of most cap-and-trade frameworks in modifying

the legislated caps within each commitment phase based on current situations (e.g. severe

economic shocks), there have been discussions about supply management mechanisms that

render the cap endogenous. Some of these mechanisms have even been implemented. A

notable instance of such market intervention is the so-called EU Market Stability Reserve.

While policy program interventions are observable, sudden chances of shocks in policy are

not, leading to policy uncertainty. The European cap-and-trade program is particularly apt

for analyzing the impact of policy uncertainty. Reacting to intense demand shocks during the

EU ETS’s third phase, a series of proposals and decisions were unveiled, aiming to reinstate

the stringency of the EU ETS cap. This presents us with a unique period characterized by

significant policy events and associated carbon price volatility that exceeds that of several

typically volatile agricultural commodities and currencies; see Figure 1.

2The proposed revisions cover several areas of the regulation, including allocation and distribution of
allowances, see: https://www.edf.org/sites/default/files/content/carbon-market-california-year two.pdf
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Figure 1: 2011-2022 Price Volatility (avg of annualised st. dev.)

Note: The figure was constructed using data from Bloomberg.

These fluctuations can arise from various factors, including changes in economic condi-

tions, energy inputs, technological advancements, and policy shifts. Crucially, the volatility

in carbon prices can create uncertainty for businesses, making it difficult for them to plan

long-term investments in emission reduction strategies (Martin, Muuls, and Wagner (2011),

and European Parliament (2022)).

Our methodology is grounded in both theoretical and empirical insights and addresses a

unique research question that distinguishes it from a significant portion of the environmen-

tal economics literature, both theoretical and empirical. Previous studies, including Fowlie

(2010), Acemoglu, Aghion, Bursztyn, and Hemous (2012), Fowlie and Perloff (2013), Aghion,

Dechezleprêtre, Hemous, Martin, and Van Reenen (2016), Pommeret and Schubert (2018),

and Acemoglu, Hemous, Barrage, Aghion, et al. (2019) have examined the effects of emission

permit prices in the EU ETS impact macro-financial aggregates like clean technology invest-

ment. Yet, there is a noticeable gap in research focusing on the fundamental determinants

influencing the implicit carbon price in the EU ETS market.3

3The primary emphasis of environmental and climate economists over the last decade, as outlined in the
literature review conducted by Schubert (2018) has centered on the pricing of the environmental externality
and the global macroeconomic impacts of climate change. There is a dearth of studies examining the
connection between macro-finance and environmental policy frameworks such as the interactions between
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Our contribution to the literature is twofold. First, we present a novel strategy for

estimating and decomposing the drivers of the EU ETS. Second, we introduce a carbon cap

rule that mitigates business cycle fluctuations in relation to the estimated EU ETS policy,

aligning more closely with the social cost of carbon, which represents the first-best optimal

policy.

Drawing from the empirical literature mentioned earlier, we investigate the relationship

between the EU-wide allowance price and a set of observable determinants that capture shifts

in market fundamentals of key regulated sectors and changes in economic activity across EU

ETS countries. This approach allows us to micro-found our macro-finance framework. To

this end, we estimate a panel Vector Autoregression (VAR) to analyze how the EU emission

permit price reacts to key demand and supply aggregate shocks. Our findings underscore

the significance of energy as a crucial component when evaluating carbon prices. Many of

the early business cycle environmental-macro models, known as E-DSGE (e.g., Fischer and

Springborn (2011) and Heutel (2012)), which probe the connections between environmental

policy and macroeconomic aggregates, do not explicitly model energy production as an inter-

mediary input nor they focus on impacts of implied volatility on macro-financial aggregates

and prices.4 Thus, examining the influence of energy inputs and prices on cap-and-trade

prices enhances the micro-founding of our framework. We then utilize a unique estimation

strategy to explore the factors driving the inherent market volatility within the implicit

carbon price, volatility which is highly important for business cycle welfare costs.

2 Data

We assembled our dataset by integrating multiple sources. This includes macroeconomic

goods productivity data and consumption patterns obtained from National Statistical Of-

fices and Eurostat; energy production and pricing information sourced from Bloomberg;

carbon dioxide emissions data from the Emissions Database for Global Atmospheric Re-

search (EDGAR); and data on European Union Allowance (EUA) futures prices from the

Intercontinental Exchange (ICE).5 We restrict our empirical study to countries within the

carbon markets (e.g., EU ETS) and macro-financial aggregates.
4However, it’s worth noting that business cycle environmental-macro frameworks have began recently to

incorporate energy as an input (e.g. Golosov, Hassler, Krusell, and Tsyvinski (2014)).
5In the EU ETS, EUAs represent the primary form of carbon allowance, granting permission to emit one

tonne of carbon dioxide (CO2) or an equivalent amount of another greenhouse gas. ”EUA Futures” refers
to futures contracts based on these allowances.
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European Union Emission Trading System (EU ETS) framework. Specifically, we utilize

data from countries that participated in the system from January 2013 to December 2019.6

This period aligns with phase 3 of the EU ETS and includes the UK, which remained a

part of the European carbon market until 2020. Due to data constraints, we omit Norway

and Liechtenstein, resulting in a total of 28 countries for our analysis (including the UK).7

Below, we describe each data source used.

Goods productivity and consumption patterns From Eurostat, we have compiled

data on the consumption preference index for each country to capture the evolving trends in

consumer behavior and preferences. Additionally, we have gathered data on the industrial

production index for each European state, providing a measure of the extent of industrial

activity.

Energy supply data From Bloomberg, we compile data on energy production, focusing

on both the volume of energy produced and the corresponding price levels. In line with the

empirical literature discussed earlier, we consider three critical energy sources: Brent crude

oil, natural gas, and coal. This data collection enables us to closely monitor the supply of

energy, an essential determinant of the price of emission allowances.

Carbon dioxide emissions The Emissions Database for Global Atmospheric Research

(EDGAR) provides estimates for emissions of the three main greenhouse gases (CO2, CH4,

N2O) per sector and country. This comprehensive dataset enables us to study emission

dynamics at a high frequency.

Emission allowance prices From the Intercontinental Exchange (ICE), we retrieve data

on daily carbon futures contracts, the European Union Allowance (EUA) futures contracts.

Our data collection includes the daily prices of these EUA futures contracts, which we then

convert from a daily to a monthly frequency. By examining EUA prices, we gain valuable

insights into the market’s response to innovations in abatement technologies, a less well-

observed driver of the EU ETS.

6Our study does not include the COVID-19 period.
7The EU ETS currently operates in 30 countries: the 27 EU member states plus Iceland, Liechtenstein,

and Norway. The United Kingdom left the EU on 31 January 2020 but remained subject to EU rules until
31 December 2020. In our analysis, we consider the 27 EU member states and the United Kingdom.
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3 Empirical Results: EUA Futures Prices Responses

To Macro and Energy Supply Aggregates

In this section, we present our analysis of the impact of macroeconomic and energy supply

factors on EUA futures prices, using aggregate data from the countries included in our

dataset. To estimate these effects, we employ a panel Vector Autoregressive (VAR) model.

This approach enables us to explore the behavior of the EU-wide allowance permit price in

response to various aggregate shocks.

In practice, inspired by Friedrich et al. (2020), Hintermann et al. (2016), andBorenstein

et al. (2019), we consider 9 observable determinants and define the vector of endogenous

variables for each country i in month-year t containing: consumption preference index, in-

dustrial production index, inflation, oil supply, coal supply, gas supply, oil price, coal price,

and gas price. Then, we specify the following panel VAR:

Yi,t =

p∑
j=1

Ai,tYi,t−j + Γiεi,t, (1)

where Γ is a non-singular 9 x 9 structural impact matrix, and εi,t is the vector of strucutral

shocks.

Figure 2 plots the cumulative impulse response functions (IRFs) of the EUA futures prices

when subjected to various macroeconomic and energy supply shocks. The solid black lines

represent the estimated paths, while the shaded blue regions indicate the confidence intervals,

with the inner and outer bands representing 68% and 95% confidence levels, respectively.
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Figure 2: EUA Futures Response To Macro and Price Aggregates
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Notes: The figure shows EUA futures price cumulative impulse responses to different macroeconomic and energy price

aggregates over monthly periods.

The analysis reveals that when there is a shock in consumption preference index, it trig-

gers a prolonged rise in EUA futures prices. This is likely because such a shock indicates a

surge in the demand for goods, which in turn can drive up the prices of carbon allowances as

industries ramp up production to meet this demand. A shock in the industrial production

index appears to have no impact on EUA futures prices, reinforcing the limited role of un-

expected change in the output of production activities as observed in the empirical studies

discussed earlier. With respect to inflation, its role in influencing EUA price movements

seems to be minimal during the period under study. This could mean that the general price

level in the economy, represented by inflation, does not have a direct and strong correla-

tion with the fluctuations in EUA futures prices. These observations underscore that the

relationship between EUA futures prices and certain macroeconomic indicators is limited,

9



consistent with patterns highlighted in previous empirical research (Friedrich et al. (2020)

and Batten et al. (2021)).

Regarding the energy drivers, we find that oil and gas significantly influence EUA futures

price levels. After an oil supply shock, the EUA futures price increases persistently, whereas

it declines following a gas supply shock. This aligns with the findings of Aatola, Ollikainen,

and Toppinen (2013) and Friedrich et al. (2020), given that energy supply based on gas is less

emission-intensive than that based on oil. A similar pattern is evident when the EUA futures

prices face gas and oil price shocks (Rickels, Görlich, and Peterson (2015)). Specifically, the

futures prices tend to persistently increase after a gas price shock and decrease after an

oil price shock. The latter two findings could be further substantiated if renewable energy

data were accessible for all 28 EU countries throughout the examined period. Lastly, the

outcomes remain inconclusive when considering coal energy generation and prices, consistent

with Friedrich et al. (2020).

The panel VAR analysis emphasizes the relevance of observable variables like energy

generation and prices, particularly oil and gas, corroborating existing literature that un-

derscores the crucial role of energy dynamics in shaping allowance prices (Friedrich et al.

(2020), Hintermann et al. (2016) and Borenstein et al. (2019)). However, this empirical

analysis overlooks critical factors such as innovations in abatement technologies and shifts

in policy and regulations, which are essential for a more comprehensive understanding of the

determinants of allowance prices.

Abatement technologies, which are key to reducing emissions, play a vital role in the-

oretical models of emission control and pricing, as discussed in studies like Rubin (1996),

Newell and Pizer (2003), and Schennach (2000). In these models, emission allowance prices

are primarily influenced by marginal abatement costs. However, these costs are often not

directly observable. Moreover, while the advancement of low-carbon technologies does af-

fect marginal abatement costs, and thereby the prices, the technologies themselves and the

market’s expectations about them are not readily observable. This lack of visibility into

technological developments and market expectations poses a challenge in identifying abate-

ment shocks and accurately decomposing their impact on emission allowance prices within

the market.

Regulatory uncertainty has been identified in the literature as another crucial factor

(Koch, Grosjean, Fuss, and Edenhofer (2016) and Deeney, Cummins, Dowling, and Smeaton

(2016)). The growing attention toward policy and regulatory changes emerges in light of the

challenges in explaining recent allowance price developments by solely relying on demand-
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side fundamentals (Friedrich et al. (2020)). The regulatory landscape of these government-

created markets is dynamic. Changes in political leadership, public opinion, international

agreements, and other factors can prompt shifts in the regulatory framework over time. Such

shifts inject a level of uncertainty into the market, as participants are unable to accurately

predict future regulatory trajectories. Indeed, there is evidence that the allowance market

responds to various policy and regulatory news with fluctuations in price and price volatility

(Koch et al. (2016) and Deeney et al. (2016)).

Thus, while the allowance market evidently reacts to observable shocks such as changes

in energy supply and energy prices, it is apparent it also responds to less well-observable

factors. These include innovations (shocks) in abatement technology and shifts in regulatory

frameworks, which, despite their significant impact on allowance prices, are not adequately

captured in empirical studies due to their less observable nature. To address this gap,

we introduce a comprehensive model in the next section. This model integrates energy

dynamics, as indicated by the panel VAR, with both theoretically significant abatement

shocks and empirically evident policy uncertainty shocks. Designed to provide a deeper and

more insightful analysis, this model aims to enhance our understanding of the diverse factors

influencing EUA futures prices.

4 The model

We consider an infinite-horizon, closed economy comprising two production sectors (en-

ergy producers and final firms), households, a government, and an environmental regulator.

The households in this economy are identical, infinitely lived, and collectively account for

a measure of one. Energy producers generate an environmental externality through carbon

dioxide emissions (hereafter CO2 emissions). These emissions impact the utility (or alter-

natively the productivity of final firms via a damage function) and subsequently affect the

welfare of the representative households. Energy producers do not internalize the broader

environmental consequences of their CO2 emissions, resulting in a market failure.

We start by outlining the climate dynamics. This is followed by a detailed description

of the energy and non-energy firms’ problems. Next, we introduce households in the model.

Lastly, we delve into the roles of the government and the environmental regulator.
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4.1 Climate change and emission dynamics

Following standard integrated assessment models (IAMs) (see Nordhaus (1991) and Nord-

haus and Yang (1996)), we cast environmental externality within a macro-finance framework.

A significant portion of the accumulation of carbon dioxide and other Greenhouse Gases

(GHGs) in the atmosphere is attributed to the human activity of economic production. We

describe the temperature and concentration process of carbon dioxide in the atmosphere as

follows. Firstly, the global temperature T o
t is linearly proportional to the CO2 emission stock

– the cumulative amount of emissions – as posited by Matthews, Gillett, Stott, and Zickfeld

(2009):

T o
t+1 = ζo1(ζ

o
2Xt − T o

t ) + T o
t , (2)

with ζo1 and ζo2 chosen following Dietz and Venmans (2019).8

Second, cumulative CO2 emissions, denoted as Xt, follow a law of motion:9

Xt+1 = ηXt + ET
t + E∗

t , (3)

where Xt+1 is the concentration of gases in the atmosphere, ET
t ≥ 0 the total inflow of CO2

at time t (both from the energy EE
t and non-energy ENE

t sectors in the EU)10, E∗
t represents

the rest of the world emissions,and 0 < η < 1 represents the persistence of CO2 emissions,

which is chosen to be very close to 1, as argued by Dietz and Venmans (2019). Anthropogenic

emissions of CO2 are comprised of both energy and non-energy emissions.

The energy emissions EE
t arise from energy production denoted as Y E

t , and are influenced

by an exogenous trend ΓX
t . This trend encapsulates the decoupling between CO2 emissions

and production. The relationship can be expressed as:

EE
t = (1− µt)φEY

E
t ΓX

t , (4)

where φEY
E
t represents the total CO2 influx resulting from production prior to the imple-

8We observe that although variations in climate dynamics and damage modeling over the long horizon
(be it à la Golosov et al. (2014), à la Nordhaus (2017), or à la Matthews et al. (2009), among others) lead
to subsequent effects on macroeconomic aggregate equilibria, over the business cycle horizon (and under
equivalent calibrations), these modeling specifications do not result in significant changes to macroeconomic
aggregate equilibria.

9To ensure convergence in the auto-regressive law of motion for the stock of emissions process, and without
a loss of generality, we deviate slightly from the transient climate response to cumulative CO2 emissions
theory by setting η ̸= 1. However, we select η to be sufficiently close to one so thatXt ≈ X0+

∑t
i=0(E

T
i +E∗

i ).
10Where ET

t = EE
t + ENE

t .
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mentation of any abatement measures. The variable 0 ≤ µt ≤ 1 represents the fraction of

emissions that are mitigated (abated) by the energy firms, while φE ≥ 0 is a carbon-intensity

parameter that defines the steady-state relationship between emissions and output.

CO2 emissions from the non-energy sector follow a similar law of motion to the emissions

from the energy sector. The key distinction lies in the fact that the non-energy sector is not

subject to any environmental policy or carbon price. Consequently, firms in the non-energy

sector do not undertake any abatement efforts:

ENE
t = φNEY

NE
t ΓX

t (5)

with φNE the emission intensity in the non-energy sectors.

4.2 Energy Firms

The energy producers aim to maximize their profit by balancing the desired levels of

capital and labor, taking into account the energy price. Energy production follows a Cobb-

Douglas production function:

Ỹ E
t = εAE

t AE
t (K

E
t )

αE(ΓY
t l

E
t )

1−αEΓY E

t , (6)

where KE
t represents the capital stock utilized by the energy firms with an intensity param-

eter αE ∈ [0, 1], lEt denotes labor, AE
t > 0 denotes the productivity level, and εA

E

t is a total

energy productivity shock that evolves as follows:

log
(
εA

E

t

)
= ρAE log

(
εA

E

t−1

)
+ ηA

E

t , with ηA
E

t ∼ N(0, σ2
AE).

To align with the trends in the EU’s energy and industrial production sectors, we incorporate

an energy transition trend ΓY E

t = γyEΓY E

t−1, enabling the capture of the energy sector’s growth

rate, distinct from that of the overall economy, denoted as γy. Consequently, the trend-

corrected energy production is expressed as Y E
t = Ỹ E

t ΓY E

t

−1
. This is further discussed in the

balanced growth path (BGP) section.

Energy producers maximize profits:

ΠE
t = εptp

E
t Y

E
t − wE

t l
E
t − IEt − Zt − τtE

E
t . (7)

The relative price of energy and the real wage are denoted by pEt and wE
t , respectively. ε

p
t is
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an AR(1) shock to the energy price.

log (εpt ) = ρp log
(
εpt−1

)
+ ηpt , with ηpt ∼ N(0, σ2

p).

The function Zt = f (µt)Y
E
t represents the abatement-cost function per unite of energy

production. Additionally, τt ≥ 0 is a price on CO2 emissions, reflecting the carbon policy set

forth by the environmental regulatory authority, which will be detailed later. Investment is

denoted by IEt , and the accumulation of physical capital follows the law of motion:

KE
t+1 = (1− δ)KE

t + IEt , (8)

where δ ∈ [0, 1] is the depreciation rate of physical capital.

The abatement-cost function is adapted from Nordhaus (2008), where f (µt) = θ1µ
θ2
t εzt .

In this expression, θ1 ≥ 0 determines the steady state of the abatement, while θ2 > 0

represents the elasticity of the abatement cost concerning the fraction of abated emissions.

This function f (µt) connects the fraction of emissions abated to the fraction of output

allocated to abatement, with the price of abatement normalized to one. Lastly, the abatement

shock (εzt ) that captures market uncertainties about both abatement investment cost and

technology, evolves as follows:

log (εzt ) = ρz log
(
εzt−1

)
+ ηzt with ηzt ∼ N(0, σ2

z).

4.3 Final goods firms

Final firms aim to maximize profit by balancing the desired levels of capital, energy

consumption, and labor. Following Bachmann, Baqaee, Bayer, Kuhn, Löschel, Moll, Peichl,

Pittel, and Schularick (2022), output is generated using a Constant Elasticity of Substitution

(CES) production function11, allowing for the capture of the non-linear dynamics involved

in substituting away from energy to different production inputs.

Yt =
(
(1− χ)

1
σ (Y NE

t )
σ−1
σ + χ

1
σY E

t

σ−1
σ

) σ
σ−1

(9)

with

Y NE
t = εA

NE

t ANE
t (KNE

t )αNE(ΓY
t l

NE
t )1−αNE (10)

11In the robustness section, we also consider the simple case of a Cobb-Douglas aggregator: Yt =

ε
Ay

t Ay
t d(T

o
t )(K

NE
t )αNE(Y E

t ΓE
t
−1

)αE(ΓY
t l

NE
t )1−αNE−αE , where αE represents the energy share and αNE the

non-energy capital share.
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where KNE
t is the capital stock utilized by the final firms with an intensity parameter αNE ∈

[0, 1], lNE
t is non-energy labor, ANE

t > 0 the productivity level of the non-energy final sector,

σ the elasticity of substitution between the energy and non-energy factors of production,

χ the energy share in total production, ΓY E

t the exogenous corrective trend applied to the

energy sector in order to match the growth dynamics in the EU while maintaining a BGP,

and εA
NE

t a total factor productivity shock that evolves as follows:

log
(
εA

NE

t

)
= ρANE log

(
εA

NE

t−1

)
+ ηA

NE

t with ηA
NE

t ∼ N(0, σ2
ANE)

While a significant portion of the climate economics literature models environmen-

tal damages through the production side following Nordhaus (1991) in the form of Yt =

Dp(T
o
t )
(
(1− χ)

1
σ (Y NE

t )
σ−1
σ + χ

1
σY E

t

σ−1
σ

) σ
σ−1

, we adopt the approach of Barnett, Brock, and

Hansen (2020) by incorporating environmental damages within the utility function. Al-

though modeling environmental damages via disutility can be isomorphic to production dam-

ages given specific functional forms and calibration, it enables us to maintain a BGP without

imposing restrictive assumptions on the form of the damage function and its parametriza-

tion. We delve into this point in detail in the BGP section. Furthermore, in a robustness

exercise, we demonstrate that both utility damages and production damages yield similar

results.12

Final firms producers maximize profits as follows:

ΠF
t = Yt − wNE

t lNE
t − INE

t − εptp
E
t Y

E
t . (11)

where the real wage is denoted by wNE
t and capital investment by INE

t . The accumulation of

physical capital is given by a similar law of motion to the energy firms:

KNE
t+1 = (1− δ)KNE

t + INE
t , (12)

where δ ∈ [0, 1] is the depreciation rate of physical capital.

4.4 Households

Households make consumption and savings decisions, supplying labor inelastically. They

hold government bonds and possess ownership of firms in the corporate sector, from which

12See results in Appendix C.
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they receive dividends or profits. Additionally, our households encounter climate damages,

denoted as Du(T
o
t ), which result from a disutility associated with rising temperatures, akin

to the approaches in Barnett et al. (2020) and Barrage (2020).

Households maximize their life-time utility:

Et

∞∑
t=0

βtεBt u (Ct −Ht−1 −Du(T
o
t )) , (13)

where Et is the expectations operator conditioned on information at time t, β is the time

discount factor, Ct represents consumption while Ht−1 represents consumption habits, and

εBt is the preference shock

log εBt = ρB log εBt−1 + ηBt with ηBt ∼ N(0, σ2
B)

Climate damages are linear in temperature:

Du(T
o
t ) = ΘT

t T
o
t

where ΘT
t is the damage sensitivity of households to temperature increase.

The law of motion for the habit stock is determined in accordance with Campbell and

Cochrane (1999), specifically as Ht−1 = hCt−1. In contrast to the approach taken by Cai and

Lontzek (2019), who employ recursive utility à la Epstein and Zin (1989) to capture long-run

risk associated with climate change, we opt for consumption habits for two reasons: i) our

focus is on the business cycle (i.e., phase 3 of the EU ETS from 2013 to 2019), where long-run

risk related to climate change is not as significant as in long-run climate policy analysis, and

ii) consumption habits are demonstrated to play a crucial role in generating higher volatility

levels within business cycle fluctuations of the social cost of carbon, contrary to the recursive

utility framework (Benmir et al. (2020)), while still aligning with consumption and output

volatility obsevered in real data.

The budget constraint of the representative household is as follows:

wNE
t lNE

t + wE
t l

E
t + rtBt +ΠE

t +ΠF
t − Tt = Ct +Bt+1 (14)

where the left-hand side represents the household’s various sources of income. The total in-

come primarily consists of labor earnings. In each period, the household also receives returns

from holding a long-term government bond, denoted as Bt, with a return rate of rt. Addi-
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tionally, since the representative household owns firms in the corporate sector, they receive

dividend income from both the energy firms ΠE
t , and the final firms ΠF

t . On the spend-

ing front, the representative household primarily allocates its income towards consumption

goods, denoted as Ct and the purchase of long-term government bonds Bt. Additionally, it’s

assumed that the government imposes a lump-sum tax, represented by Tt.

4.5 Government and market clearing

The government funds its expenditures through tax collection. The budget constraint

for the government is given by:

Gt = Tt + τtEt. (15)

Here Gt represents public expenditure, and Tt is a lump-sum tax. The second revenue compo-

nent τtEt represents the earnings derived from the imposition of a cost on the environmental

externality. In this expression, Et and τt denote respectively emissions and the carbon price

– the price of the right to emit one unit of CO2 emission, respectively.

As is standard in most business-cycle models, the government’s expenditure is a propor-

tion of the total output. The resource constraint of the economy reads as follows:

Yt = Ct + INE
t + IEt +Gt + Zt. (16)

4.6 Emission cap

Considering a cap-and-trade framework, we focus on a scenario where emissions in the

economy are regulated by an environmental authority to ensure they remain within a prede-

fined limit, commonly known as “the cap.” Ideally, the environmental regulator sets this cap

by equating the marginal costs to the marginal benefits of emission reduction, essentially re-

flecting the social cost of carbon that a social planner would pick in a centralized economy.13

In a decentralized economy and without uncertainty, setting the carbon policy equal to the

social cost of carbon would retrieve the first-best optimal solution. However, the existence

of uncertainties in production, consumer behavior, and abatement processes presents signif-

icant challenges in setting a fixed cap (or a comparable constant tax) at the optimal level

after the fact. These uncertainties render it challenging to accurately assess the marginal

value of emission reductions in advance. In fact, it is widely understood that policies should

be conditioned on the available information (Ellerman and Wing (2003), Jotzo and Pezzey

13A complete derivation of the theoretical social cost of carbon can be found in Appendix A.
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(2007), Newell and Pizer (2008), and Doda (2016)). In an ideal scenario, policies would

be adaptive, responding to the actual occurrence of these shocks, thereby necessitating a

cap that is dynamically adjusted over time (Kollenberg and Taschini (2016) and Karp and

Traeger (2023)).

In practice, setting the cap is typically a complex political process aimed at balancing

environmental goals with socio-economic considerations. As new information emerges and

societal priorities shift, policymakers may adjust the emission limits to align with these

evolving conditions. These adjustments, however, can lead to policy and regulatory uncer-

tainties. Consequently, we treat the cap, denoted as ĒE, as an exogenous variable, and we

will outline the associated per-period quota as follows:

EE
t = Qtε

CS
t , (17)

where εCS
t evolves as:

log εCS
t = ρCS log ε

CS
t−1 + ηCS

t with ηCS
t ∼ N(0, σ2

CS).

The innovation εCS
t captures the policy uncertainty surrounding the cap target or corre-

sponding shifts in the availability of allowances. This is referred to as the climate sentiment

shock.

4.7 Balanced growth

Given that the primary focus of the paper is to estimate the drivers of the carbon permit

price and the permit market, we derive the de-trended model concerning its balanced growth

path. Additionally, we account for the scenario where emissions and energy production

exhibit growth rates different from that of the overall output. As illustrated in Figure 3, EU

energy emissions, energy production, and output all experience distinct growth rates.
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Figure 3: EU Trends in CO2 Energy Emissions, Energy Production (Electricity), and GDP
Per Capita

Notes: The figure was generated utilizing data on CO2 emissions and energy production from https://ourworldindata.org/,

along with GDP per capita data sourced from FRED.

In the context of our model, we assume that the energy sector is stationary due to the

zero growth rate observed in the data (i.e., ΓE
t = ΓY

t
−1
). The disparity in growth rates

between energy emissions and output is attributed to the introduction of a rate of green

technological progress.

Consistent with the literature, macroeconomic variables are also assumed to grow along

the balanced growth path. This growth is facilitated by labor-augmenting technological

progress, represented by ΓY
t . The growth rate of this labor-augmenting technological progress

is denoted by γy, where:
ΓY
t+1

ΓY
t

= γy.

We represent green technological progress in the growing economy by ΓX
t . The growth
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rate of this green progress, denoted as γx, is defined as follows:

ΓX
t+1

ΓX
t

= γx.

This trend is crucial for capturing the long-term process of decoupling output growth

from emission growth. As documented by Newell, Jaffe, and Stavins (1999), this trend

can be interpreted as an energy-saving technological shift that reflects the adoption of less

energy-intensive technologies in capital goods. An improvement in this technology would

result in a value for γx that is below 1. Following Nordhaus (1991), we assume that this

trend is deterministic.

Turning to climate damages, a model choice following that of Nordhaus (1991) where cli-

mate damages Dp(T
o
t ) are represented via a convex function relating the temperature level to

a deterioration in output given by Dp(T
o
t ) = ae−btT o

t
2
poses some BGP challenges (especially

as we are estimating our model over the business cycle and thus requiring stationarity). One

potential solution is to correct for the damage sensitivity bt =
b

ΓY
t

2 in order to adjust it with

the economy’s growth rate. Therefore, introducing ΓY
t
2
to the damage sensitivity parameter

such that Dp(T
o
t ) = ae

− b

ΓY
t

2 T
o
t
2

= ae−bT o
t
2
. ensure the existence of a BGP. This however

could be problematic over the long-run as bt would be declining overtime, which means as

temperature increases we have less damages. However, such an assumption should not be

restrictive over the studied period bt ≈ b
(ΓY

t )2
.14

In the appendix, we introduce the de-trended economy, providing a detailed derivation.

Additionally, we discuss both the social planner problem and the decentralized problem in

details.

5 Bringing the Model to Data

Bringing our model to data is essential to disentangle the drivers of the EUA futures. A major

challenge, however, stems from the unobservable nature of abatement and climate sentiment

dynamics at the monthly frequency. To overcome this limitation and fill the data gap in

these areas, we have devised an innovative methodology for estimating the shocks associated

with both abatement and climate sentiment changes. We also pay particular attention to

match a broad spectrum of statistics, including the share of EU emissions, emissions per

14As we are looking at 6 years with an average low growth rate in the EU.
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sector within the EU, and the energy intensity of each sector.

5.1 Strategy

While we can reliably estimate consumption patterns, goods productivity, energy prices,

and energy supply dynamics using data from Eurostat and Bloomberg, the same approach is

not feasible for abatement and climate sentiment dynamics. This discrepancy arises because

the latter involves more complex and less tangible elements that are not directly captured

in standard economic databases.

We begin our analysis by focusing on policy change dynamics and the estimation of

climate sentiment shocks, which are pivotal as they mirror shifts in the regulatory environ-

ment and alterations in firms’ perceptions of policy stringency. These shocks are indicative

of how regulatory changes and policy updates influence market sentiment, particularly in

the context of emission control. To estimate these shocks, we leverage the intrinsic design of

the cap-and-trade system, which is structured to achieve a consistent reduction in emissions

over the duration of our study. This system’s design is key because it provides a framework

where emission targets are incrementally tightened, indicative of a progressively decreasing

per-period cap. In our methodology, we integrate an emissions dataset from EDGAR into

our model, which has been specifically modified to exclude long-term trends. This adjust-

ment is critical as it enables us to effectively isolate the climate sentiment shock series. This

series provides insight into the evolution of market sentiment and expectations in the face

of ongoing regulatory and policy changes. This technique enables us to uncover the often

unobservable effects of policy shifts on market dynamics, thereby allowing us to represent

how regulatory changes impact carbon allowance prices.

Our model’s structural framework, which links economic activity, energy factors, climate

sentiment changes, abatement costs, and the carbon price, provides a comprehensive basis

for analyzing residual volatility in the allowance permit market. This residual volatility is

of particular importance in our analysis, as it encompasses market fluctuations that remain

unaccounted for by factors such as energy dynamics, economic activity, and policy shifts.

In our model, we can ascribe them to abatement shocks. These shocks refer to unforeseen

changes in the costs associated with strategies and technologies that firms employ to reduce

emissions.

We estimate our model using Bayesian methods on monthly EU data from January 2013

to December 2018. To map our model to the data, we augment our equilibrium equations
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with observation equations as follows:

Production Index Growth

Consumption Index Growth

Per Capita Emissions Growth

Per Capita Energy Production Growth

Energy Production Price

Real CO2 Price Growth


=



(γyyt − yt−1)/yt−1

(γyct − ct−1)/ct−1

log γs +∆ log (et)

∆ log
(
yEt
)

∆ log
(
pEt
)

∆ log (τt)


, (18)

where γs represents the trend in emissions15 and γy denotes the trend growth rate of the

economy. Considering the model’s stationary nature, it is imperative to transform the data

series into a stationary form before integrating them into the model. In line with the foun-

dational approach established by Smets and Wouters (2007), we address data that exhibit a

unit root by rendering them stationary. This is achieved by taking the logarithmic difference

of the series as necessary.

5.2 Calibration

We summarise in this section the parametrisation of the model. For parameters for which

the time interval is relevant, the calibration is monthly. Consistent with standard practice, we

have tailored the model’s calibration to align with certain observed key aggregates. These

include temperature, the share of EU emissions, emissions per sector within the EU, the

energy intensity of each sector, and the average value of the EU ETS allowance price, all

specifically within the context of the European Union. This calibration ensures that our

model accurately reflects the real-world dynamics and trends of these critical environmental

and economic indicators.

The parameters pertaining to the business cycle structure of our model are conventional.

For the standard parameters in these models, such as the discount factor β and the risk

aversion σU , we align to typical values used in macroeconomic modeling.16 Specifically, the

capital intensity parameters are set at αN = αNE = 0.333, while the depreciation rate δ is

fixed at 0.008. The discount factor β is set at 0.9986 and the risk aversion σU at 1.5.

In calibrating the climate block of the model, we follow Dietz and Venmans (2019) and

set the parameters for the global temperature function ζo1 = 0.50 and ζo2 = 0.00125.

15Refer to appendix for the full description of the BGP.
16Notice that we calibrated all the parameters to a monthly frequency.
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We use the remaining parameters to match a number of relevant statistics for the EU.

Specifically, the share of the energy sector in the economy χ is fixed at 2%, while the

elasticity in the CES function σ is 0.2, consistent with estimates in Labandeira, Labeaga,

and López-Otero (2017). The emission intensity parameters φE and φNE are calibrated to

match emission to production in both sectors. As depicted in Figure 4, the energy sector is

approximately thirty times more emission intensive than the industry as a whole.

Figure 4: Emission Intensity in the EA

Notes: The figure depicts the emissions intensity in the energy sector and in the total industry for the top 5 EA economies,

along with the EA mean over the estimated period (2013 – 2019).

As for the price of carbon, we proceed in two steps. We first find the value of the

abatement function level θ1 that is consistent with the observed mean EUA price of 7.54

euros. This also takes into account the split of emissions across sectors (see Figure 5) and the

emission intensity of the energy sector. Then, we assume that the implied level of the EUA

price was optimal over the 2013-2019 period and retrieve the value of ΘT . More precisely,

we find the value of ΘT that equates the steady state level of the welfare in the model to
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the level of the welfare in the counterfactual optimal case. As we will show later, this does

not imply that the economy in the estimated model behaves optimally. In particular, high

volatility in the EUA price will generate losses in consumption for risk-averse agents that

are more severe in the estimated case than in the optimal case.

Figure 5: Sectoral Emissions in the EA

Notes: The figure depicts the emissions split between the energy sector and the rest of the industry for the top 5 EA

economies, along with the EA mean over the estimated period (2013 – 2019).

Finally, we use the decay rate of emissions η to ensure that the stock of emissions in the

atmosphere is consistent with the mean level of emissions observed during the studied period

and we set the public consumption to GDP ratio ḡ/ȳ at 0.22.

The comprehensive list of calibrated parameters, along with the targeted economic and

environmental moments they allow us to replicate, can be found in Table 3 and Table 4,

respectively.
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5.3 Estimation

Our model’s shock processes and trends are estimated using a generalized Kalman Filter,

specifically chosen to effectively handle the model’s non-linear characteristics.17 We employ

the Metropolis-Hastings algorithm to approximate the posterior distribution, constructing

our results based on four distinct chains. The estimation outcomes are concisely presented in

Table 5, where we display both the prior and posterior densities of the estimated parameters.

The robust identification of the majority of these parameters indicates the informativeness

of the data used. Despite some constraints in pinpointing their exact values, the trends in

emissions and output are clearly discernible. Notably, our model’s estimation is able to

capture the decoupling between output and emissions. This is evidenced by the negative

value of γx and the positive value of γy, a pattern that persists even with the application of

normal priors centered around zero for both trends.

6 EUA Futures Drivers and Optimal Policy

In this section, we first analyse the contribution of the different structural shocks to

fluctuations in the allowance price in the EU ETS. To do so, we utilize the parameters and

shock series that we have previously estimated. We then undertake a comparative study.

We compare the EUA futures price with the case where the environmental regulator sets

the carbon price equal to the social cost of carbon (SCC), as determined by our estimated

parameters and shock series. This comparison is designed to measure the additional volatility

in the EU ETS market compared to the SCC over the studied period.

17A comparative analysis between first-order Bayesian estimation and second-order estimation highlights
the significance of non-linearities, especially during periods of increased market volatility (refer to Figure 11
and Figure 12).
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6.1 Uncovering Drivers in the EU ETS Futures Market

Figure 6: EUA Futures Price Historical Decomposition
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Notes: The figure depicts the path of the EUA futures price (black line) broken down into different drivers over the

estimated period (2013 – 2019).

Figure 6 illustrates the trajectory of the de-trended EUA futures price from 2013 to

2019, broken down by various influencing factors. The primary drivers of the EUA fu-

tures during this period have been abatement shocks, climate sentiment, and, to a lesser

extent, energy shocks. In contrast, the other two factors impacting firms’ demand for emis-

sion permits—goods supply and consumer demand shocks—have contributed less to market

volatility. This aligns with expectations, as these factors indirectly affect energy firms’ pro-

duction rather than their emissions directly. Goods Total Factor Productivity (TFP) shocks,

for instance, represent typical variations in productivity among final goods firms, such as the

adoption of a new manufacturing technique that increases output. Similarly, consumption

shocks are indicative of changes in consumer demand patterns, often reflecting shifts in con-

sumer preferences. An example of this could be a heightened environmental awareness due

to a climate change campaign, leading to reduced demand for products with high emission

footprints. In our model’s context, this translates to consumers becoming more patient and

deferring consumption, thereby influencing the demand for emission permits.

Thus, EUA prices are primarily influenced by shifts in abatement technology, policy
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uncertainty, and energy market dynamics. Energy shocks play a crucial role in energy

generation, directly impacting the equilibrium energy price. For instance, a significant tech-

nological advancement in the energy sector that enhances efficiency in energy production

exemplifies a positive energy TFP shock. Empirical studies discussed earlier highlight the

strong connection between the ETS market and energy markets, emphasizing the influence

of energy shocks.

Climate sentiment shocks are driven by changes in the regulatory landscape and shifts in

firms’ perceptions of policy strictness. As presented in the model section, these shocks reflect

the impact of regulatory and policy changes on market sentiment, especially regarding the

per-period cap. Our analysis indicates that uncertainty in allowance allocation significantly

contributes to the variance in carbon prices. This finding is consistent with the research

presented in Koch et al. (2016), Deeney et al. (2016), and more recently, Känzig (2021),

which all underscore the substantial role of policy and regulatory shocks in historical EUA

price fluctuations.

Finally, abatement shocks, representing unexpected changes in the costs for energy com-

panies to reduce emissions, are also a key factor. These shocks might arise from ground-

breaking innovations in low-emission technologies or increased adoption of existing solutions.

While such changes are not directly observable in macro data, our innovative approach, as

detailed in ??, enables us to identify these shocks.

Together, these observations effectively bridge the gap between empirical findings and

the theory about cap-and-trade, offering a comprehensive view of the factors driving EUA

prices.

Figure 7 illustrates the contribution of each driver to the variance of the EUA futures

price across various horizons, highlighting the shocks with a prolonged influence on the EU

ETS market.
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Figure 7: EUA Futures Price Variance Decomposition
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Notes: The figure displays the variance decomposition of the EUA futures price based on different horizons: one month,

three months, one year, and five years. This represents the theoretical variance decomposition of the permit price, taking

into account the estimated variances of shocks.

The three primary factors influencing EUA futures prices–energy TFP, climate sentiment,

and abatement shocks–account for a relatively constant proportion of the variance across

different time horizons. In the long run, the significance of energy shocks appears to slightly

diminish, giving way to climate sentiment and abatement shocks.

6.2 How does our estimated series compare to the actual data?

From our prior analysis, the primary drivers influencing the EUA future price and the

overall EU ETS market appear to be climate sentiment and abatement shocks. To ensure

the validity of these findings, we cross-referenced them with closely related real-world data

to ascertain their accuracy and correlation.

Starting from abatement, we compare our derived estimated series for abatement against

the annual data reflecting the EU’s net-zero emission total expenditure. It’s essential to

note that this data primarily showcases the EU’s overall commitment to green investments18

rather than the explicit abatement costs featured in our model.19 Nevertheless, this com-

18Data: Contribution to the international 100bn USD commitment on climate-related expending (source:
DG CLIMA, EIONET)

19It measures the total amount spent from the annual budget of the EU Member States as well as of the
European Commission and the European Investment Bank, in order to contribute to the international 100bn
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parison provides a valuable perspective on whether our model’s estimations are in sync with

the actual green investment expenditures. To facilitate a more detailed comparison, we first

transformed the annual data into a monthly format using Cubic Spline Interpolation. This

allowed us to align it with our monthly abatement estimation series. Figure 8 presents both

the interpolated EU data on total climate mitigation expenditure and our model’s estimated

abatement investment. Both series exhibit similar trends and business cycle fluctuations.

Figure 8: Estimated Abatement Costs and Climate Mitigation Investment Data
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Notes: The figure displays the estimated abatement costs as a deviation of their steady state, alongside the actual data

on climate mitigation investment for the EU in detrended log million euros.

Moving on to the climate sentiment, we turned to the US Sentometric data, as presented

by Ardia, Bluteau, Boudt, and Inghelbrecht (2022).20 This data served as a benchmark to

gauge the correlation with our deduced climate sentiment shock series. For the estimated

climate sentiment/policy shock series, we observe a negative correlation of 14% with the US

climate Sentometric index. This correlation suggests that when the climate sentiment index

rises, climate concerns intensify, prompting the environmental regulator to tighten the cap

USD commitment for climate finance under the United Nations Framework Convention on Climate Change
(UNFCCC).

20Sentometrics is a term that refers to the quantitative analysis of sentiment derived from textual data.
This approach is often used in finance and economics to analyze sentiment in news articles, financial reports,
and other textual sources to predict financial market movements or economic indicators. See Algaba, Ardia,
Bluteau, Borms, and Boudt (2020) for a comprehensive literature review.

29



on emissions. Consequently, this leads to an increase in carbon prices.

Our findings from these cross-references reveal that our shock estimates align with the

characteristics of the actual observed data. This alignment affirms the validity of our ana-

lytical approach and the robustness of its results.

6.3 EU ETS cap-and-trade and Optimal Policy

To gauge the extra volatility in the EU ETS market, establishing a baseline is essential.

For this, we create a hypothetical scenario where the environmental regulator aligns the

carbon price with the estimated SCC, thereby achieving what is considered the first-best

allocation in a decentralized economy. This scenario serves as our baseline. In this approach,

we utilize the parameters and shock series estimated earlier, replacing our carbon price

equation with the SCC.21 In this hypothetical model, policy uncertainty is non-existent.

There are no political interferences or alterations; once a policy is set, it remains unaltered.

Consequently, under the SCC framework, unforeseen climate sentiment shifts, which could

otherwise influence the market, are effectively nullified. This setup enables us to isolate and

assess the extra market volatility in the EU ETS in comparison to a scenario governed by

the SCC, where the SCC is responsive to goods supply and consumer demand shocks, energy

shocks, and abatement shocks.

21The SCC is formally derived in the Appendix.
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Figure 9: EUA Futures Price vs SCC Variations
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Notes: The figure shows the deviations of the estimated EUA futures price and the SCC in percentage deviations from

their respective steady states.

Figure 9 displays percentage deviations from the steady-state for both the estimated

EUA futures price and the estimated SCC. Although the trajectories of the EUA futures

price and the SCC appear to mirror each other to some extent, the magnitude of the SCC’s

fluctuations is notably smaller–approximately one hundred times less than that of the EUA

futures price. This significant disparity highlights the presence of considerable additional

volatility in the EU ETS market when compared to the SCC.

Table 1 contrasts several moments in the estimated EU ETS cap policy case with the

counterfactual SCC. By continuously aligning the marginal costs with the marginal benefits

of emission reduction, the SCC stabilizes abatement costs and marginal abatement costs,

leading to a carbon price that has virtually zero volatility, though at the expense of more

fluctuating emissions. Additionally, the SCC tends to result in a higher carbon price level.

While a higher carbon price could potentially yield welfare gains for households, it’s crucial

to acknowledge the substantial uncertainty surrounding the estimation of the social cost of

carbon, as discussed in studies like Cai and Lontzek (2019) and Barnett et al. (2020).

Considering the inherent complexity in determining the SCC, it is unlikely that an en-

vironmental regulator would rely exclusively on a single estimation of the SCC to set the

emission cap. A more pragmatic approach might involve agreeing on a specific emission

trajectory through a cap-and-trade market (or, equivalently, a defined path for the carbon

price) and then adjusting the number of permit allowances allocated in response to the
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shocks in the economy. In the subsequent section, we explore the potential of such adaptive

carbon cap rules, where the allocation of permit allowances is conditioned on the available

information.

6.4 The cost of business cycle fluctuations

Furthermore, the implied uncertainty and price volatility incorporate business cycle wel-

fare costs (Lucas (1987)). We calculate the cost of business cycle fluctuations in consumption

equivalence (CE) terms for both the SCC and ETS price cases. To perform this calculation,

we first compute the lifetime utility given by the value function of our representative agent

for the deterministic case. Subsequently, we compute the value for the parameter ∆ such

that the welfare in the stochastic framework is equal to the welfare in the deterministic case.

We denote the deterministic welfare function by WelfareDt and the stochastic counterpart by

WelfareSt .

WelfareDt = u(Ct, Du(T
o
t )) + βEt{Welfaret+1}

WelfareSt = u((1−∆)Ct, Du(T
o
t )) + βEt{Welfaret+1}

As risk-averse agents dislike fluctuations, welfare in the stochastic economy is lower than

what would be obtained in the same economy where the standard deviation of all shocks is

set to zero. Therefore, we have E(WelfaretS) < ¯WelfaretD.

We then find the necessary compensation needed in terms of CE to close the distance

between the welfare in the stochastic case and the deterministic case. In other words, we

find the value of ∆ such that E(WelfaretS) = ¯WelfaretD.

We obtain a value for |∆| of 0.01915 in the case where we follow a SCC and value for

|∆| of 0.01919 in the case where we implement an ETS price. This implies a cost of business

cycle fluctuations amounting to .22% in CE term per month between the first best policy

and ETS carbon cap.

7 Responsiveness of Carbon Cap Rules

In the preceding section, we highlighted the pronounced volatility in the permit price

observed during phase 3 (2013-2019) of the EU ETS market. This volatility is not merely

a statistical observation but carries significant real-world implications. It is important to

understand that while some degree of volatility is anticipated in any cap-and-trade system,
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the levels observed in the EU ETS market during this phase were particularly high. Such

volatility can be a double-edged sword. On one hand, it can be seen as a reflection of a

market’s responsiveness to changing conditions, but on the other, it can introduce a level of

unpredictability that can be detrimental.

For policymakers, this volatility presents challenges. It makes it difficult to set long-term

policies and can undermine the very goals the cap-and-trade system is designed to achieve.

If prices are too volatile, firms might hesitate to invest in long-term emission reduction

strategies, fearing that the costs might outweigh the benefits if prices swing too widely

(Martin et al. (2011), and European Parliament (2022), among others). Market participants,

especially firms, bear the brunt of this volatility. Excessive price fluctuations introduce

a level of market uncertainty that can be challenging to navigate. Such unpredictability

makes it difficult for firms and investors to commit to substantial long-term investments,

especially when these investments are potentially irreversible (Calel (2020) and Taschini

(2021)). The fear of making a costly mistake due to volatile prices can deter companies from

investing in capital-intensive projects or adopting new technologies. This hesitancy can slow

down innovation and progress, particularly in sectors where upfront investments are crucial

for future decarbonization. Moreover, the inability to accurately forecast returns on these

investments due to price volatility can lead to missed opportunities and hinder strategic

planning.

Furthermore, as Benmir and Roman (2020) points out, this volatility can seep into the

financial markets. When firms face higher risks due to unpredictable carbon prices, it can

lead to higher risk premia. This means that firms might face higher borrowing costs, as

lenders demand a higher return to compensate for the increased risk. In the long run, this

can impact firms’ investment decisions, potentially slowing down the transition to greener

technologies.

To counteract the uncertainties stemming from energy drivers, abatement innovations,

and perceived policy stringency, it is essential to adopt a strategy where the cap is not

static but dynamically adjusted over time to reflect these changing factors (Kollenberg and

Taschini (2016), Karp and Traeger (2023)).22 Implementing a conditional supply of permit

allowances that allows for a dynamic per-period cap could effectively manage price volatility

in the allowance market while keeping emissions on the desired trajectory. To achieve this,

we introduce a Carbon Cap Rule (CCR) designed to address the uncertainties primarily

22It is widely understood that the cap should be conditioned on the realized shocks (Ellerman and Wing
(2003), Jotzo and Pezzey (2007), Newell and Pizer (2008), and Doda (2016)).
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associated with two critical factors: innovation in abatement and perceived regulatory un-

certainty. The CCR we propose can be likened to the environmental policy equivalent of

the Taylor rule, a well-known monetary policy guideline. Just as the Taylor rule provides

a formulaic approach for central banks to adjust interest rates in response to changes in

economic conditions like inflation and output gaps, the CCR offers a structured method for

adjusting emission caps in response to both abatement and sentiment/regulatory shocks.

The CCR adjusts the quantity of emission permits (Qt) in the market. This adjustment is

based on deviations from the de-trended steady-state emissions (ēE) and abatement costs

(z̄):

Qt = Q+ ϕe

(eEt−1 − ēE)

ēE
+ ϕz

(zt − z̄)

z̄
,

where ϕe and ϕz are coefficients that determine the sensitivity of the cap to changes in

emissions and abatement costs, respectively. This approach ensures that the cap is not static

but dynamically adjusts in response to abatement and climate sentiment shocks, similar to

how the Taylor rule adjusts interest rates based on economic indicators. By responding to

these deviations, the CCR aims to align the realization of the marginal costs of emission

reduction with the marginal benefits, akin to how the SCC is calculated.23 We note that the

regulatory will be reacting to realized changes in emissions eEt−1 to adjust the cap level.

We show how the shock sensitivity of the CCR differs from that of the SCC curve.

To do this, we use the parameters and shock series we previously estimated, replacing the

carbon price equation in our model with the CCR formula.24 We identify the optimal values

for the coefficients ϕe and ϕz that result in the lowest possible standard deviation of the

carbon price. We employ a quasi-Newton method to refine our initial guess. The economy’s

path is simulated to the second order for each parameter pair in the carbon cap rule until

the algorithm reaches convergence. Both estimated coefficients, ϕe and ϕz, are found to be

positive. This indicates that in the event of a positive shock to either emissions or abatement

23The concept of the proposed CCR draws parallels with the ”target-consistent pricing” approach, a notion
championed by among others Stern, Stiglitz, Karlsson, and Taylor (2022). This method pivots around the
idea that the Social Cost of Carbon should be formulated in a manner that inherently aligns with the
objectives set out in the Paris Agreement. Instead of determining the SCC based on estimated damages
from an additional ton of carbon dioxide, this approach works backward: it starts with the goals of the Paris
Agreement and then calculates the SCC required to achieve those specific targets. This perspective ensures
that pricing is consistent with broader climate objectives and should provide a clear policy and, crucially,
price signal for the necessary transition.

24Note that we retain the climate sentiment shock, even though one could contend that if a carbon cap
rule were in place, climate sentiment might not influence the emissions path. Thus, our counterfactual can
be viewed as a conservative scenario where some unexplained (residual) volatility in emissions persists.
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costs, the regulator’s response, as per the CCR, would be to increase the cap.

ETS Cap Policy Social Cost of Carbon Carbon Cap Rule

Estimated Optimal ϕz = 1.0467 and ϕe = 0.4439

Column (1) Column (2) Column (3)

Consumption (Std. Dev.) 0.13 % 0.13 % .13 %

Output - Industrial Prod (Std. Dev.) .10 % .10 % .10 %

Emissions (Std. Dev.) 3.21 % 2.81 % 2.05 %

Abatement Cost (Std. Dev.) 29.15 % 11.01 % 04.62 %

Marginal Abatement Cost (Std. Dev.) 15.51 % 11.17 % 13 .66 %

Carbon Price (in euros) 7.50 7.52 7.53

Carbon Price (Std. Dev.) 18.91 % 0.17 % 6.31 %

Table 1: Policy Scenarios Estimated Second Moments

Notes: The table reports various moments under three cap policy scenarios. The first column corresponds to the estimated

ETS model, the second column corresponds to the Social Cost of Carbon – the optimal case, and the third column

corresponds to the Carbon Cap Rule (CCR). The CCR is Qt = Q+ ϕe
(eEt−1−ēE)

ēE
+ ϕz

(zt−z̄)
z̄

.

Table 1 presents key statistical moments under three different cap policy scenarios. The

first column displays results from the estimated ETS model, the second column represents

the SCC (considered the optimal case), and the third column details the outcomes under the

CCR. First, regarding macro aggregates, the presence of habits, allows for better matching

the standard deviation of consumption with respect to output. Second, our proposed carbon

cap rule allows for a reduction of about 34% in price volatility. The CCR demonstrates a

significantly stronger response to deviations in steady-state abatement costs as compared

to deviations in steady-state emissions. This implies that the rule prioritizes the manage-

ment of abatement costs over strictly adhering to per-period emission levels. This approach

underscores the importance of keeping abatement costs aligned, suggesting that economic

feasibility in emission reduction efforts is given precedence over rigid adherence to per-period

emission targets.

Considering the CCR’s emphasis on managing abatement costs, it’s not unexpected to

find that the volatility of these costs under the CCR is quite similar to that in the SCC

scenario. Moreover, the volatility of the marginal abatement costs under both scenarios

is almost identical. Yet, the volatility of emissions under the CCR is about half of what

it is under the SCC. In terms of carbon price volatility, the standard deviation under the

CCR is higher than that under the SCC. However, it is notably lower compared to the

volatility observed in the current ETS model. This suggests that although the CCR does not
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completely eliminate price volatility, it markedly reduces the extremes of volatility observed

in the existing ETS framework, mitigating the unpredictability associated with abatement

costs for firms. This effect is observable in Figure 10.

Figure 10: EUA vs SCC vs CCR Variations
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Notes: The figure shows the deviations of the estimated EUA futures price, the counterfactual SCC, and the counterfactual

CCR in percentage deviations from their respective steady states.

In addition, as demonstrated in Table 2, our proposed carbon cap rule is capable of

reducing the business cycle cost related to price volatility and economic uncertainty to ap-

proximately 0.03% in comparison to the social cost, as opposed to the 0.22% welfare losses

in CE observed in the case of the EU ETS cap concerning the SCC.
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ETS Cap Policy Social Cost of Carbon Carbon Cap Rule

|∆| = 0.0191931 |∆| = 0.0191509 |∆| = 0.0191574

Column (1) Column (2) Column (3)

Welfare loss (in CE) w.r.t SCC 0.22 % — .03 %

Table 2: Business Cycle Welfare Cost

Notes: The table reports welfare business cycle costs of uncertainty for the three cap policy scenarios studied. The first

column corresponds to the estimated ETS model, the second column corresponds to the Social Cost of Carbon – the

optimal case, and the third column corresponds to the Carbon Cap Rule (CCR). The CCR is Qt = Q+ ϕe
(eEt−1−ēE)

ēE
+

ϕz
(zt−z̄)

z̄
.

In summary, our analysis demonstrates that by dynamically adjusting the cap in re-

sponse to deviations from steady-state values of emissions and abatement costs, the proposed

mechanism can effectively reduce carbon price volatility, thereby decreasing overall market

uncertainty.

We acknowledge the potential for such a rule to be implemented by a Central Carbon

Bank, tasked with overseeing carbon market dynamics (de Perthuis (2011), Pahle and Eden-

hofer (2021), Blanchard and Tirole (2021)). As a regulatory authority, this entity would

manage the supply of EUA allowances, intervening as needed to stabilize prices. While our

study does not delve into the specific governance structure of a Carbon Central Bank, we

recognize that its primary function of managing the cap could be guided by the principles

of the CCR. This approach would ensure a more controlled and predictable carbon market,

aligning with broader environmental and economic objectives.

8 Conclusion

Cap and trade systems currently stand as the primary market-based method for regulat-

ing greenhouse gas emissions. However, recent years have highlighted significant shortcom-

ings in how these systems react to market fundamental shocks. Some of these shocks are

easily observable, like those related to energy dynamics, while others are less well-observable,

such as abatement shocks and climate sentiment shocks. In response, we propose a novel

approach to estimate less well-observable shocks and we construct a mechanism, the ’Car-

bon Cap Rule’ (CCR), which dynamically adjusts the number of emission permits (the cap)

in response to abatement and sentiment shocks, crucial factors influencing emission permit
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demand. The CCR conceptually parallels the environmental equivalent of the Taylor rule in

monetary policy and aligns with practical mechanisms like the Market Stability Reserve in

the EU ETS, which also adjusts the cap. Our analysis suggests that the CCR could reduce

the volatility of emission permit prices by about 35 percent, resulting in welfare gains of

about 85% in CE terms with respect to the SCC scenario. This approach aims to enhance

the efficiency and responsiveness of cap and trade systems to market changes.

Drawing on existing empirical research, we employ a panel Vector Autoregressive (VAR)

model to examine the response of the EU emission permit price to essential macroeconomic

and energy supply factors. Our analysis underscores the pivotal role of energy in influencing

emission permit prices. This finding underpins our decision to include energy production

as an intermediary input in our macro-model, which is used to assess the impact of less

observable factors like abatement and policy changes. We then introduce a new approach for

estimating the factors driving the EU ETS. Our innovative methodology allow us to quantify

the shocks associated with abatement and climate sentiment/policy changes, enabling us to

pinpoint all the critical factors that have been empirically and theoretically affecting the

price of emission allowances. We have identified these key factors as abatement shocks,

climate sentiment shocks, and energy shocks, each playing a significant role in the dynamics

of emission allowance pricing. Subsequently, we contrast the actual emission permit price

with a hypothetical situation where the environmental regulator sets the carbon price in line

with the Social Cost of Carbon (SCC). The aim of this comparison is to assess the additional

volatility present in the EU ETS market compared to the more stable pricing scenario under

the SCC. This serves as the baseline for evaluating the effectiveness of the CCR, essentially

demonstrating that the proposed mechanism makes the emission permit price in standard

cap and trade systems more closely with the SCC.
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Appendix A Model Calibration and Estimation

Table 3: Parameters Value

Parameter Value Definition

σU 1.5 Risk Aversion

β 0.9986 Discount Factor

αE 0.33 Elasticity to Capital Input in Energy Production

αNE 0.33 Elasticity to Capital Input in Non-Energy Production

χ 0.02 Share of Energy in the CES

σ 0.20 Substitution Parameter in the CES

δ 0.0083 Depreciation of Energy and Non-Energy Capital

φE 0.0055 Emission Intensity in Energy Production

φNE 0.0002 Emission Intensity in Non-Energy Production

ΘT 26.29 Dis-utility Sensitivity to Temperature

η 0.0004 Decay Rate of Emissions in the Atmosphere

ζo1 0.50 Climate Transient Parameter

ζo2 0.00125 Climate Transient Parameter

θ1 0.239 Level of the Abatement Cost Function

θ2 2.7 Curvature of the Abatement Cost Function
ḡ
ȳ

0.22 Government Spending to Output Ratio

Table 4: Moments matching

Variable Label Target Source

ETS Mean Carbon Price (euros) τ 7.54 ICE

Cumulative Emission (World, GtC) X 800 Copernicus (EC)

Monthly Emission Flow (World, GtCO2) ET + E∗ 4.51 Ourworldindata

Share of EU27 in World Emissions (%) ET/(ET + E∗) 6.73 Ourworldindata

Share of Emissions from Energy Generation in the EU (%) EE/ET 33.56 OECD

Emission intensity in the EU (kCO2 / euros) ET/Y 0.20 OECD

Emission intensity from Energy Generation in the EU (kCO2 / euros) EE/Y 0.07 OECD

Abatement level (percentage of energy emissions) µ 0.20 EDGAR (EC)

Temperature T o 1.00 NOAA

Notes: All the values reported in this table are perfectly matched by the model at the steady state.
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Table 5: Estimated Parameters

Prior Distributions Posterior Distributions

Distribution Mean Std. Dev. Mean [0.05 ; 0.95]

Shock processes:

Std. Dev. Goods Productivity σA IG2 0.10 0.05 0.02 [0.01 ; 0.03]

Std. Dev. Energy Productivity σAn IG2 0.10 0.05 0.01 [0.01 ; 0.02]

Std. Dev. Energy Price σp IG2 0.10 0.05 0.08 [0.05 ; 0.10]

Std. Dev. Climate Sentiment σCS IG2 0.10 0.05 0.03 [0.01 ; 0.04]

Std. Dev. Consumption σB IG2 0.10 0.05 0.07 [0.02 ; 0.12]

Std. Dev. Abatement Cost σZ IG2 0.10 0.05 0.18 [0.09 ; 0.30]

AR(1) Goods Productivity ρA B 0.30 0.10 0.41 [0.08 ; 0.68]

AR(1) Energy Productivity ρAn B 0.30 0.10 0.29 [0.01 ; 0.43]

AR(1) Energy Price ρp B 0.30 0.10 0.47 [0.20 ; 0.70]

AR(1) Climate Sentiment ρCS B 0.30 0.10 0.60 [0.21 ; 0.88]

AR(1) Consumption ρC B 0.30 0.10 0.26 [0.03 ; 0.55]

AR(1) Abatement Cost ρZ B 0.30 0.10 0.53 [0.14 ; 0.82]

Structural Parameters:

TFP Trend (γy − 1)× 100 U 0.00 0.28 0.13 [-0.14 ; 0.28]

Emissions Trend (γx − 1)× 100 U 0.00 0.13 -0.07 [-0.29 ; -0.27]

Notes: IG2 denotes the Inverse Gamma distribution (type 2), B the Beta distribution, and N the Gaussian distribution.
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Appendix B Order of Estimation

Figure 11: EUA Futures Pathway
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Notes: The figure shows the path of the ETS carbon price (2013 – 2019) when estimated using 1st order and second order

estimations as well as when simulating a model using first and second orders.

Figure 12: Abatement Cost Pathway
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Notes: The figure shows the path of abatement cost carbon price (2013 – 2019) when estimated using 1st order and

second order estimations as well as when simulating a model using first and second orders.

47



Appendix C Case of Production Damages

In this section we presents the 2nd order estimation results where climate damages are

modeled following a production damages framework à la Nordhaus. We note that the results

are sensitively similar to the climate diutility case. Figure 13, figure 14, and figure 15/

presents the shock decomposition, variance decomposition, and the comparison between the

SCC and EU ETS.

Figure 13: EUA Futures Price Historical Decomposition
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Notes: The figure depicts the path of the EUA futures price (black line) broken down into different drivers over the

estimated period (2013 – 2019).
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Figure 14: EUA Futures Price Variance Decomposition

T+1 T+3 T+12 T+60
0%

20%

40%

60%

80%

100%

Goods TFP shocks Consumption shocks
Energy shocks Climate Sentiment shocks
Abatement shocks

Notes: The figure displays the variance decomposition of the EUA futures price based on different horizons: one month,

three months, one year, and five years. This represents the theoretical variance decomposition of the permit price, taking

into account the estimated variances of shocks.

Figure 15: EUA Futures Price vs SCC Variations
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Notes: The figure shows the deviations of the estimated EUA futures price and the SCC in percentage deviations from

their respective steady states.
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Appendix D Balanced Growth Path

To carry out our structural parameters estimation via Bayesian estimation, we first need

to specify the de-trended economy along its balanced growth path.

The growth rate of ΓY
t dictates the economy’s growth rate on the balanced growth path.25

This growth rate is denoted by γY , where:

ΓY
t = γY ΓY

t−1 (19)

Variables that are stationary are represented by lowercase letters, while those that are

growing are indicated by uppercase letters. For instance, in the expanding economy, the

final firm output, the non-energy output (intermediate variable), and non-energy output are

denoted by Yt, Y
NE
t and Y E

t , resepctively. To obtain the de-trended output, one must divide

the output in the growing economy by the level of growth progress:

yt =
Yt

ΓY
t

(20)

yNE
t =

Y NE
t

ΓY
t

(21)

ỹEt =
Ỹ E
t

ΓY
t Γ

E
t

(22)

yEt =
Y E
t

ΓY
t

(23)

where ΓY
t Γ

E
t = 1 (given that energy production in EU is not growing over the studied

period). In the growing economy, emissions from the energy sector are represented by Et

and are defined as follows:

EE
t = (1− µt)φEY

E
t ΓX

t (24)

ENE
t = φNEY

NE
t ΓX

t (25)

where ΓX
t represents the decoupling of CO2 emissions relative to the output trend. Con-

sequently, in the de-trended economy, the law of motion for CO2 emissions is expressed

25In our setup both final firms and non-energy firms grow at the identical rate ΓY
t .
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as:

eEt = (1− µt)φEy
E
t (26)

eNE
t = φNEy

NE
t (27)

where:

eEt =
EE

t

ΓY
t Γ

X
t

(28)

eNE
t =

ENE
t

ΓY
t Γ

X
t

(29)

The abatement cost in the growing economy is:

Zt = f(µt)Y
E
t (30)

In the de-trended economy, the abatement cost is represented as:26

zt = f(µt)y
E
t (31)

where zt =
Zt

ΓY
t
.

In this context, Xt denotes the cumulative emissions in the atmosphere, while the tem-

perature in the growing economy is represented by T o
t :

Xt+1 = ηXt + ET
t + E∗

t (32)

T o
t+1 = ζ1(ζ2Xt − T o

t ) + T o
t (33)

The de-trended Xt and T o
t read as follows:

γsxt+1 = ηxt + eTt + e∗ (34)

γstot+1 = ζ1(ζ2xt − tot ) + tot (35)

26Note that µt is stationary.
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where:

xt =
Xt

ΓY
t Γ

X
t

(36)

tot =
T o
t

ΓY
t Γ

X
t

(37)

with γs = γyγx.

In the growing economy, given the aforementioned growth progress, the production func-

tions for both the energy and non-energy sectors are defined as follows:

Ỹ E
t = εA

E

t AE
t (K

E
t )

αE(ΓY
t l

E
t )

1−αEΓE
t (38)

Y NE
t = εA

NE

t ANE
t (KNE

t )αE(ΓY
t l

NE
t )1−αNE (39)

Yt =
(
(1− χ)

1
σ (Y NE

t )
σ−1
σ + χ

1
σY E

t

σ−1
σ

) σ
σ−1

(40)

where, for both energy and non-energy labor lEt , l
NE
t , the technology shocks εA

E

t , εA
NE

t as well

as the TFP levels AE
t and ANE

t , are all stationary variables. Additionally, in the robustness

exercise we consider the climate damage function which incorporates the growth rate Γy
t

such that d(T o
t ) = ae−bt(T o

t )
2
= e

− b

Γ2
t
(T o

t )
2

. By embedding the economy’s growth rate within

the damage function, we can simplify the de-trended form of the damage function without

sacrificing generality, especially over the studied period (less than a 7 year horizon).

De-trending the production functions gives the following:

ỹEt = εA
E

t AE
t (k

E
t )

αE(lEt )
1−αE (41)

yNE
t = εA

NE

t ANE
t (kNE

t )αE(lNE
t )1−αNE (42)

yt =
(
(1− χ)

1
σ (yNE

t )
σ−1
σ + χ

1
σ (yEt )

σ−1
σ

) σ
σ−1

(43)

The capital-accumulation equations for both the energy and non-energy sectors in the

growing economy read as:

KE
t+1 = (1− δ)KE

t + IEt (44)

KNE
t+1 = (1− δ)KNE

t + INE
t (45)
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In the de-trended economy, we thus have:

γykE
t+1 = (1− δ)kE

t + iEt (46)

γykNE
t+1 = (1− δ)kNE

t + iNE
t (47)

with both capital and investment de-trended variables reading as: kNE
t =

KNE
t

Γy
t

and iNE
t =

INE
t

Γy
t
,

respectively. The same applies for the energy sector.

Moreover, the economy’s resource constraint is:

yt = ct + gt + f(µt)y
E
t + iEt + iNE

t (48)

Finally, in the growing economy, the utility function is as follow:

∞∑
t=0

βt

(
(Ct − hCt−1 −ΘT

t T
o
t )

1−σ

1− σ

)
(49)

where Ct is consumption, β the subjective discount factor, and σ the curvature parameter.

The de-trended utility function takes the following form:

∞∑
t=0

β̃t

(
(ct − h̃ct−1 −ΘT tot )

1−σ

1− σ

)
(50)

where we denote β̃ = β(γy)1−σ, h̃ = h(γy)−1, and ΘT = ΓX
t Θ

T
t .

Appendix E The Social Planner Equilibrium: Central-

ized Economy

The social planner’s optimal allocation and plan would aim to maximize the welfare of the

society. This is achieved by selecting a sequence of allocations, given the initial conditions for

the endogenous state variables, that adhere to the economy’s constraints. This equilibrium

serves as a benchmark solution, which we use to compare with the allocation derived in the

decentralized economy for the carbon policy.

Please note, for ease of presentation, we show both cases of production damages and

utility damages within the same framework. We then set the parameter b = 0 to eliminate

production damages, and similarly we set Θ̃T = 0 to revert back to the standard Nordhaus
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framework with production damages. The planners’ problem reads as follows:

L = E0

∞∑
t=0

β̃t

(
(ct − h̃ct−1 −ΘT tot )

1−σU

1− σU

+ λt(yt − ct − iEt − iNE
t − gt − f(µt)y

E
t )

+ λtq
NE
t ((1− δ)kNE

t + iNE
t − γykNE

t+1)

+ λtq
E
t ((1− δ)kE

t + iEt − γykE
t+1)

+ λtΨ
NE
t (εANE

t e−b(tot )
2

ANE(kNE
t )αNE(lNE

t )1−αNE − yNE
t )

+ λtΨ
E
t (ε

AE
t AE(kE

t )
αE(lEt )

1−αE − yEt )

+ λtΨt(((1− χ)
1
σ (yNE

t )
σ−1
σ + χ

1
σ yEt

σ−1
σ )

σ
σ−1 − yt)

+ λtV
X
t (γsxt+1 − ηxt − eEt − eNE

t − e∗)

+ λtV
T
t (γstot+1 − υo

1(υ
o
2xt − tot )− tot )

+ λtV
EE

t (eEt − (1− µt)φEy
E
t

+ λtV
ENE

t (eNE
t − φNEy

NE
t )

)

where, as we will demonstrate below, the Social Cost of Carbon SCCt represents the shadow

value associated with the temperature damages §tT .
The first order conditions (FOCs) that determine SCCt are the FOC with respect to

CO2 energy emissions eEt . In combination with the FOCs with respect to tot and xt we can

pin down the expression of the SCC. Meanwhile, the FOC with respect to µt determine the

required level of abatement:

V EE

t = V X
t (51)

γsV T
t = β̃Et{Λt+1((1− ζ1)V

T
t+1 +ΘT +

∂yNE
t+1

∂tot+1

ΨNE
t+1)} (52)

γsV X
t = β̃Et{Λt+1(ζ1ζ2V

T
t+1 + ηV X

t+1) (53)

f ′(µt) = φNEV
E
t (54)

The remaining of the FOCs will be presented in the decentralized economy.
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Appendix F The Decentralized Economy

F.1 Households

Households maximize utility over consumption subject to their budget constraint. They

choose consumption expenditures and holdings of government bonds,pay taxes and receive

dividends for firms they own.

max
{ct,bt+1}

E0

∞∑
t=0

β̃t (ct − h̃ct−1 −ΘT tot )
1−σU

1− σU

s.t.

wNE
t lNE

t + wE
t l

E
t + rtbt +ΠE

t +ΠF
t − tt = ct + bt+1

From the FOCs, we get:

λt = εBt

(
ct − h̃ct−1 −ΘT tot

)−σU

− εBt+1β̃h̃
(
ct+1 − h̃ct −ΘT tot+1

)−σU

(55)

β̃rt+1Λt+1 = 1 (56)

where we note Λt =
λt

λt−1
.

F.2 Energy Firms

Energy producers maximize profits by choosing capital investment and labour wages, as

well as the investment in abatement as the regulator imposes a carbon price on their level of

emissions. The production technology is a Cobb-Douglas, while the abatement investment

is a convex function on abatement levels. Capital depreciates and follows a standard law of

motion.

The firms’ problem reads:

max
{yEt ,iEt ,µt}

E0

∞∑
t=0

β̃tΛt+1Π
E
t

where

ΠE
t = εptp

E
t y

E
t − wE

t l
E
t − iEt − f (µt) y

E
t − eEt τt

s.t.
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yEt = εAE
t AE(kE

t )
αE(lEt )

1−αE

eEt = (1− µt)φEy
E
t

γykE
t+1 = (1− δ)kE

t + iEt

The FOCs with respect to capital, investment, labour, abatement, and energy output

read as:

qEt γ
y = β̃Λt+1q

E
t+1

(
(1− δ) + αEΨ

E
t+1

yEt+1

kE
t+1

)
(57)

qEt = 1 (58)

wE
t = (1− αE)

yEt
lEt

(59)

f ′(µt) = φEτt (60)

ΨE
t = pEt − (θ1µ

θ2
t + τt(1− µt)φE) (61)

where we denote ΨE
t and qnt the Lagrange multipliers associated with production inputs and

investment.

F.3 Non-energy final firms

Non-energy producers maximize profits:

ΠF
t = yt − wNE

t lNE
t − iNE

t − εptp
E
t y

E
t .

s.t.

yt =
(
(1− χ)

1
σ (yNE

t )
σ−1
σ + χ

1
σ yEt

σ−1
σ

) σ
σ−1

(62)

yNE
t = εANE

t ANE(kNE
t )αNE(lNE

t )1−αNE (63)

γykNE
t+1 = (1− δ)kNE

t + iNE
t (64)

The FOCs with respect to capital, investment, labour, energy, and non-energy produc-
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tion, yield the factor prices:

qNE
t γNE = β̃Λt+1q

NE
t+1

(
(1− δ) + ΨNE

t+1

∂yNE
t+1

∂kNE
t+1

)
(65)

qNE
t = 1 (66)

wNE
t = ΨNE

t

∂yNE
t+1

∂lNE
t+1

(67)

pEt = ΨNE
t

∂yNE
t+1

∂yEt+1

(68)

qNE
t = qt

∂yt
∂yNE

t

(69)

where we denote ΨNE
t , and qNE

t , and qt the Lagrange multipliers associated with production

inputs, non-energy investment, and total output, respectively.

We can also easily check that ΨNE
t = 1 as we are in an RBC case.

F.4 Environmental Policy

When the environmental regulator optimally sets the environmental policy, the carbon

price is set equal to the social cost of carbon, as demonstrated in the social planner’s case:

τt = V EE

t (70)

Alternatively, the regulator might choose to set an emission cap as follows:

eEt = Carbon Cap (71)
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