
Latent Quantile Network: Estimation and Inference

Stan Koobs∗ Ryo Okui† Yutao Sun‡ Wendun Wang§

February 22, 2024

Abstract

We propose methods for the estimation of an unknown network, specifi-
cally the corresponding adjacency matrix, from a panel data set in which the
individuals are connected through the network. In particular, we allow this
network to be quantile-dependent which involves links that mutate across data
quantiles. To address this, we utilize a linear quantile regression model, treat-
ing the adjacency matrix entries as model parameters. We impose a sparsity
assumption on the network and employ standard regularization techniques to
improve estimation efficiency. Furthermore, we enable valid post-selection in-
ference on other policy/treatment variables in the model. Simulation studies
are conducted to investigate the performance of our methods. In addition, we
apply our methods to study sovereign credit risks and find interactions of risks
that are not explained by geographical factors.
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1 Introduction

There has been an increasing amount of evidence that individuals are more con-
nected than ever, interacting with each other and shaping their decisions through
these connections. Information about such connections, referred to as networks, has
been widely utilized in empirical studies across various domains including education
(De Giorgi and Pellizzari, 2014), portfolio allocation (Bursztyn et al., 2014), crime
(Malm and Bichler, 2011), financial market contagion (Forbes and Rigobon, 2002),
R&D collaborations (König et al., 2019), and more. For comprehensive reviews, we
refer to (Jackson et al., 2017) and (de Paula, 2017).

One of the main challenges in empirical applications is that the true underlying
network is rarely observed by researchers. A common solution is to rely on a postu-
lated network constructed from measures of geographic or economic distance, among
other factors. However, this approach may have flaws as the postulated network
may not be consistent with its true underlying counterpart for at least two reasons.
First, the formation of such a network is often driven simultaneously by a combi-
nation of multiple economic, geographic, or social factors (Carrell et al., 2013) and
by unobservables (Goldsmith-Pinkham and Imbens, 2013; Hsieh and Lee, 2016; Han
et al., 2019). Second, the exact mechanism of formation, including the roles of the
driving factors and their interactions, is often unclear to researchers. Additionally,
the network may vary across different locations of the data distribution, exhibiting
quantile dependency. A motivating example is provided by Zhu et al. (2019), who
find that dependencies of volatilities differ across quantile levels in the Chinese fi-
nancial market, with much stronger dependencies at tail levels. This raises another
challenge in capturing the quantile-varying feature of the network. Most existing
methods, however, rely on the assumption of a constant network, thus unable to
capture this feature.

The first contribution of this paper is that we propose a new method for estimat-
ing an unobserved, and most importantly, a fully unspecified and quantile-dependent
network. We consider a panel dataset where individual outcomes are influenced by
the characteristics of their connected peers through a network. These peer charac-
teristics are considered to have distributional effects on an individual’s outcome, and
we allow the network to exhibit quantile dependency, leading to a quantile regression
approach. Notably, the features of the network need not be specified a priori. Our
primary interest lies in estimating the entries of the adjacency matrix associated with
the unknown network, along with doing valid inference on other model parameters
as well. All parameters are permitted to vary based on the quantiles of interest. This
approach diverges from relevant works such as de Paula et al. (2018) and Manresa

2



(2016), where quantile-varying networks are generally not allowed. Our problem is
high-dimensional, as the number of parameters to be estimated is roughly the square
of the number of the cross-sectional units. Similar to de Paula et al. (2018) and
Manresa (2016), we consider a sparse network where the number of actual links is
small relative to the number of possible ones. It is common to employ sparsity in
the network literature and this is well-justified by empirical evidence (see, e.g., Kar-
lan et al., 2009; Leider et al., 2009; De Weerdt and Dercon, 2006; Cai et al., 2015).
To accommodate the sparsity, we invoke regularization approaches, in particular,
ℓ1-penalized quantile regression (Belloni and Chernozhukov, 2011) using adaptive
weights (Zou, 2006) in our estimation.

Utilizing regularization techniques for network estimation can pose challenges
when conducting inference on another policy or treatment variable in the model.
Only under highly unrealistic assumptions, the network will be selected perfectly
(where ‘selection’ refers to setting the corresponding element in the network matrix to
nonzero). However, in practice, moderate selection errors are common and can have
serious consequences for inference, as demonstrated by Leeb and Pötscher (2005). To
address such challenges, we draw upon insights from the emerging debiased machine
learning (DML) literature (Chernozhukov et al., 2018; Belloni et al., 2013, 2014;
Zhang and Zhang, 2014; van de Geer et al., 2014). In particular, we will adopt
the methodology outlined by Belloni et al. (2019), which has been developed for
cross-sectional quantile regression analysis. The second main contribution of this
paper is that we adapt their estimation techniques to the panel data framework,
where the confounding factors in our model comprise of a fixed effect and potential
network effects. The estimators rely on constructing an orthogonal score function,
either explicitly or implicitly, resulting in a moment condition robust against first-
order mistakes in estimating network parameters. The approach involves an initial
estimate of the network matrix using ℓ1-penalized quantile regression methods and
partialling out its confounding influence on the treatment variable. For partialling
out this effect, we employ a post-Lasso technique as proposed by Belloni et al. (2012).
Subsequently, we introduce two treatment effect estimators: one based on an explicit
moment condition derived from the orthogonal score function and another utilizing
quantile regression incorporating all variables selected in prior steps. The latter
approach bears resemblance to the “post-double selection” method introduced by
Belloni et al. (2013, 2014). To conduct inference on these variables, we rely on
the asymptotic normality results established by Belloni et al. (2019), which provide
confidence regions with valid asymptotic coverage.

In the simulations presented in this paper, we first assess the performance of the
estimation of the quantile-varying network effects. When examining a large number
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of time periods relative to the number of cross-sectional units (T > N), we observe
the capability to capture underlying network links, with performance improving as
the number of time periods increases. Moreover, in terms of inference on the treat-
ment variable, we compare the performance of the two proposed estimators with
ℓ1-penalized, post-ℓ1-penalized, and ordinary quantile regression. Our estimators
substantially reduce bias compared to the ℓ1-penalized and post-ℓ1-penalized esti-
mators. Furthermore, we demonstrate valid coverage while demonstrating greater
efficiency than ordinary quantile regression.

We apply our method to investigate the determinants of sovereign credit risk,
explicitly taking into account the international connection of the risk. Cross-country
spillovers of risks are expected to play an important role in the sovereign credit risks
due to deep integration and globalization, and the interactions between countries may
also evolve over time. Several important insights emerge from our analysis. First,
while the geographic pattern remains salient in the network structure, some strong
connections are not captured by the geographic locations but economic relations,
such as strategic economic partnership or heavy trading relationship. Second, our
empirical estimates generally confirm the sparsity of the network. We also find that
the network structure is not always symmetric, suggesting that the risk spillovers are
directional.

The rest of the paper is organized in the following way. Section 2 reviews the
literature and links with related studies. Section 3 sets up the model and explains
our estimation strategy and subsequent inference. To evaluate the finite-sample per-
formance of our approach, we provide simulation studies in Section 4. An empirical
study on investigating international interactions of sovereign credit risks is provided
in Section 5. Finally, Section 6 concludes.

2 Literature review

The literature on recovering networks is extensive, albeit with limitations. One
significant body of research examines postulated networks based on characteristics
such as geographic locations (Ciccarelli and Elhorst, 2018; Ho et al., 2018), social ho-
mophily (Topa, 2001; Sacerdote, 2001), and economic distance (Qu and Lee, 2015).
Identification results and various estimation methods for models dependent on this
type of network have been established, including works by Ord (1975); Lin and Lee
(2010); Lee (2007); Bramoullé et al. (2009); Goldsmith-Pinkham and Imbens (2013);
Lee et al. (2010). However, accurately specifying a network is challenging since the
underlying network is often poorly understood. Moreover, deviations of the postu-
lated network from the underlying one could result in highly misleading estimates
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(Manresa, 2016). Endogeneity problems may also arise because the variables used
to construct the adjacency matrix, such as “economic distance,” may be correlated
with the final outcome or with some unobserved characteristics affecting both the
network and outcome (Qu and Lee, 2015; Hsieh and Lee, 2016).

To avoid a fully postulated network and the potential endogeneity problem, an-
other line of methods has been proposed. These methods aim to model, rather than
postulate, the network formation process based on individual decisions or charac-
teristics. For example, Goldsmith-Pinkham and Imbens (2013) propose a strategic
network formation model where units form a link if they find positive net utility
in doing so. Similarly, Hsieh and Lee (2016) parameterize the network formation
process using a logit function, where the probability of each link is determined by
a pre-specified set of covariates. Hsieh et al. (2020) model the network formation
via an exponential probability distribution, while Johnsson and Moon (2021) adopt a
control function approach. While these modeling strategies relax the assumption of a
fully postulated network, they still necessitate specification of the network formation
process on different aspects, such as driving variables, link probabilities, or utility
functions. Any misspecification of the formation process could lead to inconsistency.

The formation of networks is also examined in other contexts, and this stream of
literature focuses on explaining how the connections form and evolve. For example,
Jackson et al. (2012) propose a game theoretic foundation for network formation
in the framework of informal favor exchange. Haag and Lagunoff (2006) study the
formation of cliques or clusters in a network. Currarini et al. (2009) examine, in the
context of sociology, the effect of individual characteristics on the formation of links,
and McPherson et al. (2001) formulate, mathematically, the concept of homophily
and propose an economic model for friendship formation. Graham (2017) further
pursues the concept of homophily and proposed an econometric model and estimation
procedures to detect homophily with heterogeneous agents. Dzemski (2019) studies
a dyadic link formation model where direct links are formed between agents with
homophily and reciprocity. Most of these techniques are in contexts of individual or
household behaviors, and thus ad hoc to different extents.

Two very related papers are by Manresa (2016) and de Paula et al. (2018). They
allow for a general and fully unspecified network which they estimate from the data.
Manresa (2016) considers panel data and a conditional mean model in which the
outcome of a unit depends on the characteristics of his/her own, and that of others.
A double pooled LASSO procedure has been proposed to recover the latent network
together with the network externalities, or “spillover” in the terminology of Manresa
(2016). de Paula et al. (2018) consider a similar model in which and in addition
to the covariates, the outcome also generates externalities; and thus, allowing the
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presence of both endogenous and exogenous social effects, in the terminology of Man-
ski (1993). They discuss the identification of the network and propose to estimate
the adjacency matrix using the GMM regularized by the adaptive elastic net. Our
work is similar in that we also allow for a general and fully unspecified network, and
estimate the adjacency matrix using regularization methods. We consider, however,
only the exogenous social effect, since dealing with exogeneity in a quantile regression
setting is difficult. In addition, instead of the conditional mean model, we consider a
conditional quantile model in which the network may vary across different quantile
levels and we propose several estimators to enable post-selection valid inference for
a treatment variable.

Another important related paper is the work by Hautsch et al. (2015), who also
use ℓ1-penalized quantile regression to estimate quantile-varying network matrices
in a financial network. Their estimation procedure is slightly different as they only
have unit-specific parameters which allows them to estimate all parameters per unit
(dropping the panel aspect). Our contribution is that we also allow for common pa-
rameters in the model and the estimation of the network is only a preliminary step
to doing further inference on these. To better understand the network estimation,
we also perform a more extensive simulation study. Other related papers include,
for instance, Zhu et al. (2019) who follow a vector autoregression approach where
the conditional quantile of the vector of outcomes is affected by its temporal and
spatial lags. Like most existing studies but unlike ours, Zhu et al. (2019) require
prior knowledge of the adjacency matrix. In their analysis of financial risk conta-
gion mechanisms that arise from common shared ownership, the adjacency matrix is
constructed from the top ten shareholders’ characteristics. Another example is Han
et al. (2019) who model the dynamic network formation and interactions jointly.
They assume that the network is unweighted so that the entries of the adjacency
matrix are binary. Each of the entries follows a probability distribution which is fur-
ther modelled using a logit function of time-varying observables and unobservables,
including observed homophily measures, persistence and transitivity, and unobserved
homophily and heterogeneity. We resemble this study in that we allow latent and
possibly time-varying (in the sense of quantile-varying) networks as well, while not
imposing any specific functional forms or variable specifications for the network for-
mation process. Instead, our network recovery is achieved by exploiting repeated
observations of individuals in a panel data set.

In addition, many existing methods consider the presence of fixed effects. For
instance, Manresa (2016) allows for individual effects whereas de Paula et al. (2018)
allow, as an extension, individual and time effects. Our approaches are alike, as
we consider the presence of individual effects. The inclusion of fixed effects may
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induce the so-called incidental parameter problems of Neyman and Scott (1948).
Our ambition is not to provide solutions to the incidental parameter problem in this
context. Therefore, we mostly focus on settings where the number of time periods is
relatively large compared to the number of cross-sectional units which allows us to
utilize the results derived by Kato et al. (2012) and Galvao et al. (2020). We refer
to Fernández-Val and Weidner (2018) for a recent survey of the development in this
field.

This paper also contributes to the literature on applying DML techniques to panel
data models. While DML techniques are quite general, there are no such examples
provided in Chernozhukov et al. (2018). One important paper in this literature is
Belloni et al. (2016), where valid inference techniques for high-dimensional linear
panel data models are developed. More recent work has focused on dynamic panel
data models (Semenova et al., 2023). To the best of our knowledge, DML tech-
niques have not been applied to panel data models that account for cross-sectional
dependence, as we do by incorporating exogenous spillover effects.

3 Model setup and estimation

In this section, we begin by presenting a linear panel data model incorporating
quantile-dependent spillover effects. This model posits that a unit’s dependent vari-
able is impacted not just by its own characteristics but also by those of other units. As
the number of units increases, the number of parameters to estimate grows roughly
quadratically. Therefore, we require a penalized estimation approach capable of
handling high-dimensional parameters. Next to that, to conduct inferince on other
treatment variables in the model, we propose several estimators that integrate the
network estimation as the initial step.

3.1 Model

We consider a panel data set where the individuals are connected through an un-
known but exogenous network, and the purpose of our work is to recover the network
(i.e., its adjacency matrix) using quantile level information. Let yit be a continuous
scalar outcome variable for individual i = 1, . . . , N at time period t = 1, . . . , T . Next,
let xit and zit represent scalar covariates. The distinction between xit and zit lies
in the fact that the former denotes an individual characteristic that may generate
spillovers, while zit comprises another observable that does not lead to spillovers. For
simplicity, we maintain xit and zit as scalars, although this can readily be extended
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to multivariate covariates. We consider the following data generating process (DGP)

yit =
N∑
j=1

Wij(Uit)xjt + θ(Uit)zit + αi(Uit), (3.1)

where Uit is an i.i.d. uniform random variable on (0, 1), Wij (Uit) denotes the (i, j)th
element of the unknown adjacency matrix W (Uit) which captures the exogenous so-
cial effect of xjt on yit, θ (Uit) is an unknown scalar parameter that captures the effect
of the individual’s characteristics on its own outcome, and αi (Uit) is the individual
effect.

Equation (3.1) corresponds to a random coefficient representation of a quantile
regression model where the DGP itself does not have an explicit error term. All
parameters, including the adjacency matrix, are functions of the common random
variable Uit and, thus, the randomness comes solely from Uit. This is similar to
other works of, e.g., Su and Yang (2007) and Graham et al. (2015). We use this
representation as it is convenient to choose a particular network matrix as a function
of the data quantile. Another common set-up is the location-scale representation in,
e.g., Koenker and Xiao (2002) for which we will also demonstrate simulation results
in Appendix C. However, for now we focus on the random coefficient representation.

A further step is necessary to transform the random coefficient representation in
(3.1) into a linear quantile regression model. Specifically, we assume that for each
xt := (x1t, . . . , xNT )

′ and zit, the right-hand side of (3.1) is monotonically increasing
in Uit. This ensures that the quantile function of yit also monotonically increases
in Uit, a standard assumption in the quantile regression literature and for the rest
of this paper we will refer to it as the monotonocity assumption. Doksum (1974)
interprets the disturbance Uit as individual “ability” or “proneness”. It, however,
shall be noted that this monotonicity assumption does not always hold in empirical
studies. When this assumption is violated, one may follow Bondell et al. (2010) by
adding a monotonicity constraint in the estimation; or follow Chernozhukov et al.
(2010) by considering a reordering.

Next, we show an example where this assumption is satisfied.

Example 3.1 Let us consider a simplified version of (3.1) where θ (Uit) = 0, αi (Uit) =
0 for all i. Consider xit being non-negative such that xit ≥ 0 for all i and t. It can
then be verified that the monotonicity assumption is satisfied for every Wij (Uit) sat-
isfying Wij(Uit) ≤ Wij(U

′
it) for Uit ≤ U ′

it.
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A special case of such a W (Uit) can be, e.g. for N = 3,

W (Uit) := (1 + Uit)

0 1 0
1 0 0
0 1 0

 for Uit < 0.5,

W (Uit) := (1 + Uit)

0 1 0
1 0 0
0 1 1

 for Uit ≥ 0.5.

This provides an example of how particular links in the network can become nonzero
for higher quantiles. In practice, one could think about financial applications where
a network of firms becomes more “dense” in times of high volatility.

Under the monotonicity condition, the conditional quantile function of yit can be
written as

Qit (τ) := Qyit (τ |xt, zit) =
N∑
j=1

Wij (τ)xjt + θ(τ)zit + αi (τ) , (3.2)

or more compactly in matrix notation,

Qt (τ) = W (τ)xt + θ(τ)zt + α (τ) ,

where τ ∈ (0, 1) is a quantile of interest, Qt (τ) := (Q1t (τ) , . . . , QNT (τ))′, zt :=
(z1t, . . . , zNT )

′, and α (τ) := (α1 (τ) , . . . , αn (τ))
′.

3.2 Estimation of the network

The purpose of our work is to estimate the unknown adjacency matrixW (τ) together
with other model parameters in (3.1). In addition, as many empirical applications
find that W (τ) is high-dimensional but sparse, we employ ℓ1-penalized quantile re-
gression (Belloni and Chernozhukov, 2011) in combination with the adaptive LASSO
from Zou (2006) in the estimation to improve the estimation efficiency. This means
we focus on the following optimization problem

(θ̂(τ), Ŵ (τ), α̂(τ)) ∈ argmin
θ,W,α

1

NT

N∑
i=1

T∑
t=1

ρτ

(
yit − zitθ −

N∑
j=1

xjtWij − αi

)
+D(W ),

(3.3)
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where ρτ (u) := (τ − 1{u ≤ 0})u denotes the check function (Koenker and Bassett,
1978) and D(W ) the penalization on the spillover effects. This term is given by

D(W ) = λ

N∑
i=1

N∑
j=1

µij|Wij|. (3.4)

where λ and µij are, respectively, the penalty parameter and weights involved in the

adaptive LASSO procedure. In particular, we set µij = 1/
√
|W̆ij(τ)| where W̆ij(τ)

denotes an estimate of Wij(τ) using unregularized quantile regression.
In our model, we have both unit-specific parameters like Wi1(τ), . . . ,WjN(τ) and

αi(τ), as well as a common parameter θ(τ). This makes our estimation procedure
slightly different from Hautsch et al. (2015) as they consider a similar quantile-
varying network model but without a common parameter. To estimate our model,
we first write the DGP (3.1) in full matrix notation. We can write y = Sβ(U) where
y = (y11, y12, . . . , yNT ) and

S =



1 0′
N−1 x′1 0′

N(N−1) z11
1 0′

N−1 x′2 0′
N(N−1) z12

...
...

...
1 0′

N−1 x′T 0′
N(N−1) z1T

0 1 0′
N−2 0′

N x′1 0′
N(N−1) z21

0 1 0′
N−2 0′

N x′2 0′
N(N−1) z22

...
...

...
0′
N−1 1 0′

N(N−1) x′T zNT


which is a NT × (N +N2 + 1) matrix. Lastly, β(U) = (α(U)′, rvec(W (U))′, θ(U))′,
where rvec denotes the vec operation by row-wise stacking. This system can be
estimated by ℓ1-penalized quantile regression estimation methods. For moderate
values of N , this can already become computationally expensive. We directly utilize
the existing code from R package ‘quantreg’ by Koenker (2023) which proves to be
quite fast. For the rest of this paper, we refer to the above estimation method as the
ℓ1-penalized network estimation.

Lastly, a model selection technique needs to be invoked for the selection of λ.
There are two commonly used methods: the cross validation and information criteria
(IC) minimization. While theoretically both may apply, our preference is to consider
cross validation (see, e.g., Arlot and Celisse, 2010), because of its simplicity, where IC-
based approaches, e.g., Lee et al. (2014), would depend on extra tuning parameters
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which, in turn, adds extra complexity to our model. For our purpose, we partition
the data set along the time dimension. In typical panel settings, it would be more
natural to partition the individuals. However, in our setting, the individuals are
network-connected, which renders partitioning the individuals infeasible; whereas
by partitioning the time periods, we implicitly rule out the possibility of temporal
dependency in the model as well as the data generating process.

3.3 Estimation of the treatment effect

Let us now direct our attention to the estimation of the treatment effect θ(τ). In
addition to the model in (3.1), we introduce the following equation to account for
confounding in the model:

zit =
N∑
j=1

W c
0,ijxjt + vit. (3.5)

Here, W c
0 denotes the “confounding matrix” which is the matrix of parameters that

determines how the x regressors affect the treatment z and where the subscript “0”
denotes its true value. Specifically, W c

0,ij denotes the (i, j)th element of W c
0 which

indicates the influence of xjt on zit. Additionaly, vit is a disturbance term. This
equation tracks the dependence of the treatment variable on the other regressors,
similar to the methodology discussed by Chernozhukov et al. (2018). For now, we
assume that W c

0,ij is quantile-invariant. While this assumption could be extended to
cases where W c

0,ij also varies with the quantile, for simplicity, we assume it remains
constant across all quantiles. Equation (4.1) is crucial for understanding how different
estimation techniques for W (τ) affect the estimates of θ(τ).

One possible way to estimate the treatment effect is to use the network estimation
method described above, which also delivers an estimate of the treatment effect given
by θ̂(τ). However, a drawback of this estimate is that the estimates of W (τ) suffer
from bias due to the regularization bias introduced by the ℓ1-penalized quantile re-
gression. Although no penalization is applied to θ(τ), this regularization bias extends

to θ̂(τ) when the regressors are correlated with the treatment. In practical scenar-
ios, there is often strong correlation between the treatment and other regressors,
leading to significant implications for treatment inference when using such penalized
estimation techniques. We refer to θ̂(τ) as the “naive” estimator.

A more sensible way to estimate θ(τ) without regularization bias involves using
techniques that mitigate the regularization bias in the estimates of W (τ). One
popular technique to do this is the post-Lasso (Belloni et al., 2012), which runs
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ordinary quantile-regression on the regressors selected by the first-stage ℓ1-penalized
quantile regression. This method performs well under perfect selection, i.e., when
all relevant variables are included in the model and irrelevant ones are excluded.
Nonetheless, this method commonly encounters moderate selection mistakes in the
first-stage. When variables are left out of the model which are correlated with the
treatment, this leads to omitted variable bias. As has been shown in the work by
Leeb and Pötscher (2005), disregaring the model-selection step can therefore lead
to invalid inference. We refer to this estimation technique as the post-ℓ1-penalized
quantile regression.

The goal of this paper is to utilize the emerging DML literature to obtain estima-
tors which are insensitive to such model selection mistakes coming from the network
estimation. Here, we will mainly follow the methodology proposed by Belloni et al.
(2019) who offer multiple estimators for high-dimensional sparse quantile regression
models in the cross-sectional case. The contribution we make is to extend these
methods to panel data quantile regression where the high-dimensionality comes from
the spillover effects.

The key to do this is to use a moment condition for θ(τ) that satisfies Neyman
orthogonality. Intuitively, one could think of this as a moment condition that is
insensitive to first-order changes in the nuisance parameters, which are W , α and
W c for our model. For this purpose, we define the following orthogonal score function

ψit(θ) =

(
τ − 1

{
yit ≤

N∑
j=1

Wij (τ)xjt + θzit + αi (τ)

})(
zit −

N∑
j=1

W c
0,ijxjt

)
.

Using (3.2), one then obtains a moment condition for θ(τ) given by

E

[(
τ − 1

{
yit ≤

N∑
j=1

Wij (τ)xjt + θ(τ)zit + αi (τ)

})(
zit −

N∑
j=1

W c
0,ijxjt

)]
= 0.

(3.6)
Let fit = fyit(Qit(τ)|xt, zit) denote the conditional density of yit conditional on xt, zit
evaluated at the conditional function Qit(τ). Then, under the assumptions that
E [fitxtvit] = 0 and E [fitvit] = 0 for all i and t, the moment condition in (3.6)
satisfies Neyman orthogonality with respect to first-order changes in the values of the
nuisance parameters W , α, and W c. Mathematically, this means that the Gateaux
derivative of the moment condition w.r.t. any of these nuisance parameters evaluated
at the true parameter value equals zero. For further details on this condition, we
refer the reader to Appendix A.

Using the above moment condition, we turn to the first estimator we propose
where we construct this orthogonal score function explicitly. The estimation proce-
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dure is described in the algorithm below. Penalty parameter choices are deferred to
Remark 1.

Orthogonal score algorithm

Step 1: Estimate (θ̂(τ), Ŵ (τ), α̂(τ)) from post-ℓ1-penalized quantile regression
of yit on zit and xt described in Section 3.2.

Step 2: Compute (θ̃(τ), W̃ (τ), α̃(τ)) from quantile regression of yit on the treat-
ment and the regressors selected in Step 1.

Step 3: Compute W̃ c from the post-Lasso estimator of zit on xt.

Step 4: Construct the score function

ψ̂it(θ) =

(
τ − 1

{
yit ≤ zitθ +

N∑
j=1

W̃ij(τ)xjt + α̃i(τ)

})(
zit −

N∑
j=1

W̃ c
ijxjt

)
.

Step 5: Using the Neyman-type score statistic

LNT (θ) =
|
∑N

i=1

∑T
t=1 ψ̂it(θ)|2∑N

i=1

∑T
t=1 ψ̂

2
it(θ)

,

set W̌ (τ) = W̃ (τ), α̌(τ) = α̃(τ) and θ̌OS(τ) ∈ argminθ∈Θτ
LNT (θ).

In Step 5 of the Orthogonal Score (OS) algorithm, we minimize the Neyman-type
score over the following set

Θτ = {θ ∈ R : |θ − θ̃| ≤ 10(ENT [z
2
it])

−1/2/ log(NT )},

where we use ENT to abbreviate the panel sample average (NT )−1
∑N

i=1

∑T
t=1.

In addition to the above estimator, we also offer a second estimator for θ(τ), in
the same fashion as Belloni et al. (2019). This estimator can be viewed as a panel
quantile regression version of the “post-double selection” method by Belloni et al.
(2013, 2014). The estimation procedure is summarized in the algoritm below.

Double Selection algorithm

Step 1: Estimate (θ̂(τ), Ŵ (τ), α̂(τ)) from ℓ1-penalized quantile regression of yit
on zit and xt.
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Step 2: Compute W̃ c from the Lasso estimator of zit on xt.

Step 3: Compute (θ̌DS(τ), W̌ (τ), α̌(τ)) from quantile regression of yit on zit and
{xjt : xjt is selected in either Step 1 or Step 2}.

It is worth noting that the Double Selection (DS) algorithm does not explicitly feature
an orthogonal score function. However, as noted by Belloni et al. (2019), an implicit
construction of the orthogonal score function occurs within the optimality condition
of the quantile regression in Step 3. This indicates that while the algorithm may not
explicitly define the orthogonal score function, its presence is embedded within the
optimization process of the quantile regression.

Remark 1 (Penalty parameters) For both the ℓ1-penalized quantile regression
(step 1 of both algorithms) and the (post-)Lasso (step 3 in OS, step 2 in DS), we
use the adaptive Lasso weights from (3.4). The penalty parameter λ is chosen using
cross-validation by partitioning along the time dimension.

Belloni et al. (2019) also propose “weighted” versions of the OS and DS algorithm
where the auxiliary regression equation (4.1) is weighted by fit. Under particular
conditions, this leads to more a efficient estimator. The problem is that one does need
to estimate fit which contains estimation error. In our simulations, this generally
led to worse finite-sample results. Therefore, we have deferred these estimators to
Appendix B and only focus on the “unweighted” versions above.

3.4 Inference on the treatment

To conduct inference, we employ the results derived by Belloni et al. (2019). Un-
der mild moment conditions and approximate sparsity assumptions, they establish
asymptotic normality for both the OS and DS estimator. Under the appropriate
regularity conditions, the panel version of their results becomes

σ−1
NT

√
NT (θ̌(τ)− θ(τ))⇝ UNT (τ) + op(1), and UNT (τ)⇝ N (0, 1),

where θ̌(τ) can refer to either the OS or DS estimator and σ2
NT = τ(1−τ)E [ENT [v

2
it]

−1].
The result still applies when we replace σ2

NT by a consistent estimator. For the OS
estimator, we use the following estimator that follows from the moment condition

σ̂2
OS =

(
ENT

[
f̂itzitṽit

])−2

ENT

[(
1
{
yit ≤ W̌i(τ)xt + zitθ̌(τ) + α̌i(τ)

}
− τ
)2
ṽ2it

]
.

(3.7)
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Moreover, for the DS estimator we estimate the standard error σ̂2
DS by paired boot-

strap of the quantile regression in Step 3 of the algorithm. This leads to confidence
regions of the form

Ck
ξ,N,T =

{
θ ∈ R : |θ − θ̌(τ)| ≤ σ̂kΦ

−1(1− ξ/2)/
√
NT

}
, for k = OS or k = DS.

(3.8)

4 Simulation

In this section, we demonstrate our procedure by simulations under various designs.
We do not use any network-specific information in our procedure. In particular, all
networks are considered directed and weighted during the estimation.

4.1 Design and evaluation

We consider the following DGP

zit =
N∑
j=1

W c
ijxjt + vit,

yit =
N∑
j=1

Wij(Uit)xjt + zitθ(Uit) + αi(Uit).

(4.1)

Firstly, we set αi(Uit) = αi(1 + Uit) for αi ∼ χ2(1). For simplicity, we have still
taken αi(Uit) to be independent of the regressors like a random effect. For the
treatment parameter, we θ(Uit) = 0.6(1 + Uit). Now for the regressors, we take xit
iid from truncated normal with lower bound at zero and mean at 5. This ensures the
regressors are non-negative which allows us to utilize spillover matrices of the form
in Example 3.1 and have the monotonicity assumption satisfied.

In particular, we set W (Uit) = W̃ (Uit)γ(Uit) where γ(Uit) = 0.6(1 + Uit). Now
we generate W̃ (Uit) in an Erdos-Renyi (ER) type procedure which we outline below.
The ith row of W̃i(Uit) is set as

W̃i (Uit) = W̃i + Vi (Uit) , (4.2)

where

W̃i =
(
W̃i1, . . . , W̃ii−1, 1, W̃ii+1, . . . , W̃iN

)
,
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Vi (Uit) = (Vi1 (Uit) , . . . , Vii−1 (Uit) , 0, Vii+1 (Uit) , . . . , ViN (Uit)) .

Here, W̃i is the Uit-invariant component and Vi (Uit) generates the Uit-dependency.
Note that the above already implies that we have a vector of ones on the diagonal
for every value of Uit. For the non-diagonal elements in W̃i, one element is randomly
selected independent of τ and set to 1, while other elements are set to 0. This means
that W̃i contains two ones and only zeros for the rest. For the Uit-dependency, we
set Vij (Uit) = W̃ij + 1 if

W̃ij−1 = 1, Uit ≥ 0.5, j ̸= 1, j ̸= i,

and Vij (Uit) = 0 for all other j. This process is essentially adding a nonzero element
on each row to the right of a nonzero element for Uit ≥ 0.5 on the condition that
the target position is not on the diagonal line and not out of range. In other words,
another nonzero elements is added as long the nonzero element is not on the (i− 1)th
or the Nth position. Given that the covariates are non-negative, such a Wi (Uit)
guarantees the monotonicity of the quantile function. Note that every row Wi (Uit)
depend on its own Uit and is, thus, (i, t)-variant. In other words, every observation
(i, t) could potentially face a distinct Wi (Uit). This is the same for other model
parameters and is how a random coefficient models are formulated. A simulation
design involving the location-scale shift model can be found in Appendix C.

Lastly, W c is taken to be quantile-invariant for simplicity, however one could also
allow this to be quantile-variant. All diagonals elements are set to 0.8 and the non-
diagonal element are generated using ER (so only one off-diagonal element in every
row is nonzero) and set to 0.5. Notice that xit is now positively correlated with zit
for all (i, t). Moreover, vit is drawn i.i.d. from N (0, 1).

We set N ∈ {5, 10} while T ∈ {50, 100, 200} and we look at τ ∈ {0.2, 0.4, 0.6, 0.8}
and let the number of replications be R = 500, unless otherwise stated. To evaluate
the performance of the network estimation, we consider the percentages of correctly
and incorrectly estimated links. These percentages are calculated in the following
way. Denote WN (τ) := {(i, j) : Wij (τ) ̸= 0} and WZ (τ) := {(i, j) : Wij (τ) = 0}.
We count, for each replication,

pqr (τ) :=

∣∣∣Ŵq (τ) ∩Wr (τ)
∣∣∣

|Wr (τ)|
, q, r ∈ {N,Z} ,

where |·| denotes the cardinality, ŴN (τ) := {(i, j) : Ŵij (τ) ̸= 0}, and ŴZ (τ) :=

{(i, j) : Ŵij = 0}. All pqr are then averaged over the replications. Note that pNN

is the percentage of correctly estimated nonzero links and pZZ is the percentage
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correctly estimated zero links. Moreover, for the performance of different treatment
effect estimators, we consider both bias and coverage. For bias, we average θ̂(τ)(r) −
θ(τ) over the replications, where the superscript (r) denotes the estimate coming
from replication r. For coverage, we compute the confidence regions, such as the one
in (3.8) for OS and DS and consider the percentage over all replications in which the
true value is contained in this interval.

4.2 Network estimation results

We begin by examining the estimation of the network effects, as understanding the
quality of these estimates and how they interplay with the corresponding regulariza-
tion is crucial for understanding subsequent inference on the treatment parameter.
In Table 1, we demonstrate pNN (in the nonzero column) and pZZ (in the zero col-
umn) for several values of N , T and τ . Notably, we observe that the majority of
percentages are 50% or higher, and with increasing T , our method demonstrates
improved performance in both capturing the true non-zero links and the true zero
links. Additionally, we observe a decline in performance as N increases, particularly
evident in the percentage of correctly captured non-zero links. This outcome is an-
ticipated, considering that the number of parameters in the network matrix increases
quadratically with N . This means that for N = 10, the estimation entails 100 entries
instead of 25 which is four times as large.

Next to that, when we compare the performance around different quantiles, we
note that the performance is generally worse for the middle quantiles τ = 0.4 and
τ = 0.6. Usually one would expect the best performance around the median as this
quantile contains the most information. However, for this network, some zero entries
in fact become nonzero at the median. This means that it is expected that the
quantiles around the median struggle to correctly classify these links which explains
the decline in performance. We also note that the percentage of correctly captures
nonzeros is higher for τ = 0.8 compared to τ = 0.2. Our intuition on this is that the
role of the network becomes more significant as τ increases because W (τ) increases
with τ due to γ(τ). Lastly, the performance of the method also depends on the
strength of confounding, i.e. the magnitude of the coefficient in W c. In Appendix
D.1, we demonstrate that all percentages increase when one uses weaker confounding.

This demonstrates that for the Erdos-Renyi networks, we can estimate the links in
the matrix relatively well for large T , but there still remains some moderate selection
mistake. This is important to keep in mind when comparing the different treatment
effect estimators.
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Table 1: Updated average percentages of correct nonzero and zero links of τ -
dependent Erdos-Renyi networks. For all settings, we used R = 500, adaptive pe-
nalization and cross-validation to select the penalty parameter.

τ = 0.2 N = 5 N = 10
T Nonzero Zero Nonzero Zero
50 48.67% 75.82% 49.20% 73.53%
100 58.47% 84.61% 54.93% 88.31%
200 74.07% 91.52% 73.33% 92.21%

τ = 0.4 N = 5 N = 10
T Nonzero Zero Nonzero Zero
50 58.93% 61.38% 54.87% 57.46%
100 59.26% 74.31% 54.00% 72.89%
200 71.27% 83.38% 62.27% 84.09%

τ = 0.6 N = 5 N = 10
T Nonzero Zero Nonzero Zero
50 61.09% 62.08% 58.43% 56.71%
100 65.38% 74.31% 57.16% 69.70%
200 74.29% 83.38% 67.25% 79.04%

τ = 0.8 N = 5 N = 10
T Nonzero Zero Nonzero Zero
50 65.42% 73.18% 61.50% 70.42%
100 78.26% 79.12% 73.76% 83.78%
200 93.17% 88.94% 91.08% 88.30%

4.3 Inference results

For brevity, in this section, we will restrict our attention to four estimation techniques
of the treatment effect:

1. Post-ℓ1 estimator: refers to the estimate from Step 2 of the OS algorithm,

2. Quantile regression (QR) estimator: refers to applying ordinary QR to the
model with all possible variables,

3. OS estimator,

4. DS estimator.
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We have also ran experiments with the “naive” estimator but this estimator, as
expected, performed worse than the post-ℓ1 estimator. Next to that, we have also
used a “weighted” version of the OS estimator but this also led to worse performance
than the OS itself. Therefore, we have left these out here but they are included in
similar tables in Appendix D.2.

We first consider the bias of these estimators. These can be found in Table 2
which showcases results for various values of N , T , and τ . Primarily, it is evident
that in most cases, the bias is strongest for the post-ℓ1 estimator, which aligns
with expectations as this estimator is susceptible to omitted variable bias owing to
selection mistakes. OS clearly improves upon the post-ℓ1 estimator as it has smaller
bias for all settings. QR and DS perform generally even better than OS, with no clear
standout performer among them. The disparity between the post-ℓ1 estimator and
the other estimators seems to be most notable for larger values of T where in some
instances the bias is reduced by over 90% when using QR or DS. This demonstrates
the faster convergence rates of these estimators, whereas the post-ℓ1 estimator is not
root-T consistent (Belloni et al., 2019).

Furthermore, we observe a general trend across most estimators wherein bias
decreases with increasing T , which is in line with expectations. However, this trend
is not consistent in all cases, likely due to minimal differences in true bias and
the limited number of replications in the current simulations. Additionally, it is
noteworthy that there is no clear pattern between bias and N . According to the
findings presented in Table 1, an increase in N correlates with decreased accuracy
in network estimation. Conversely, a larger N results in a greater number of units
containing information about the common parameter θ(τ). The results suggest that
neither of these opposing factors exerts clear dominance over the other.

Next, we turn to coverage of the different confidence regions of the true parameter.
These are constructed using the approximate normality from (3.8). In Table 3, we
report the coverage and average standard deviation of the different estimators, with
the nominal coverage probability being 95% for τ = 0.2. Results for the remaining
quantile levels are given in Appendix D.3. Ideally, we should see the coverage to also
be 95%. We have omitted the confidence regions resulting from the OS estimator in
combination with standard error estimate (3.7) as this proved to be more unstable
in finite sample than the confidence regions coming from DS in combination with
bootstrapped standard errors. Lastly, we compute the standard errors for the post-ℓ1
estimator by bootstrapping the post-stage quantile regression, and for QR standard
errors we also use bootstrap.

We immediately observe that the post-ℓ1 estimator experiences serious undercov-
erage. The coverage by QR and DS is consistently above 95%. DS is the closest to
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Table 2: Average bias of post-ℓ1, QR, OS, and DS estimators of treatment effect
confounded by τ -dependent Erdos-Renyi networks. For all settings, we used R = 500,
adaptive penalization and cross-validation to select the penalty parameter.

τ = 0.2 N = 5 N = 10
T Post QR OS DS Post QR OS DS
50 0.133 0.039 0.119 0.040 0.132 0.008 0.103 0.025
100 0.127 0.008 0.107 0.012 0.128 0.008 0.088 0.010
200 0.096 0.006 0.064 0.008 0.092 0.001 0.052 −0.006

τ = 0.4 N = 5 N = 10
T Post QR OS DS Post QR OS DS
50 0.103 0.039 0.101 0.040 0.082 0.010 0.069 0.010
100 0.063 −0.037 0.050 −0.038 0.079 −0.017 0.067 −0.009
200 0.077 −0.017 0.046 −0.012 0.076 −0.030 0.039 −0.012

τ = 0.6 N = 5 N = 10
T Post QR OS DS Post QR OS DS
50 0.108 −0.010 0.089 0.023 0.087 −0.054 0.062 −0.037
100 0.106 0.009 0.087 0.012 0.117 0.015 0.079 0.019
200 0.097 0.012 0.067 0.016 0.103 0.012 0.069 0.018

τ = 0.8 N = 5 N = 10
T Post QR OS DS Post QR OS DS
50 0.127 −0.006 0.115 0.020 0.114 −0.025 0.086 0.010
100 0.087 −0.002 0.059 0.010 0.112 −0.004 0.083 0.012
200 0.039 0.001 0.023 0.001 0.045 0.002 0.025 0.002

95% in all settings, whereas using QR seems to be rather conservative. From the
standard deviation used for the confidence intervals, we observe that the length of
the DS intervals is also always smaller. This demonstrates that both QR and DS
lead to valid inference for this model where DS is more efficient. Another benefit of
the DS estimator is that it can also be used in cases where N > T , whereas the QR
estimator is infeasible here.
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Table 3: Coverage and average standard deviation of confidence regions resulting
from the post-ℓ1, QR, and DS estimators of the treatment effect confounded by τ -
dependent Erdos-Renyi networks under nominal coverage probability of 95%. For
all settings, we used τ = 0.2, R = 500, adaptive penalization and cross-validation to
select the penalty parameter.

Design Coverage SD
N T Post QR DS Post QR DS
5 50 83.7% 98.9% 97.1% 0.232 0.387 0.330
5 100 76.0% 97.4% 95.4% 0.155 0.219 0.202
5 200 74.0% 96.6% 96.2% 0.112 0.142 0.138
10 50 81.4% 99.7% 97.4% 0.172 0.398 0.270
10 100 72.3% 99.8% 96.6% 0.108 0.197 0.149
10 200 69.7% 96.5% 95.7% 0.078 0.108 0.097

5 Empirical example: interactions of sovereign credit

risk

In this section, we estimate the international connection of sovereign credit risk. This
type of risk has received extensive attention especially since the breakout of a wide
range of financial crises when government debts of many countries have increased
dramatically. The large and rapidly increasing size of the sovereign debt markets
also urges a good understanding of the nature of sovereign credit risk. We focus on
the sovereign credit default swap (CDS) spreads as a proxy of sovereign credit risk. A
CDS contract is an insurance contract that protects the buyer from the credit event,
and its spread is the insurance premium that buyers have to pay, and thus reflects
the credit risk. Existing studies that examine the determinants of sovereign credit
risk primarily focus on the country-specific type of risk and global macroeconomic
forces, but ignore the international interactions of the risk.

Cross-country spillovers of risks are expected to play an important role in the
sovereign credit risks due to deep integration and globalization. The economic and
financial performance of a country not only affects her own sovereign credit risk,
but also the risk of other countries that are economically and politically tied. This
suggests that geographic neighbors or a single economic index may not be sufficient
to capture the cross-country spillovers of risks. The network structure is likely to be
driven by a set of observables and unobservables, and needs to be recovered with some
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data-driven methods. Ignoring the interaction (if there is any) in the sovereign credit
risk regression, as existing studies in this literature, leads to biased estimates of the
effects of determinants, even if the global determinants are controlled. Identifying the
network structure is also of great interest and importance in practice as it provides
policy makers and investors with extra information from other sovereigns to better
control the risk in the own sovereign, diversify the investment, and even possibly use
this information as an early warning to avoid future default.

The interactions between countries may also evolve over time. The network struc-
ture in tranquil periods is not necessarily identical to that in the turmoil periods given
that many studies have found evidence of financial contagion or stronger spillovers
during financial crisis or recessions. Even if the network structure remains stable,
the effects of determinants are also likely to vary across regimes (Qian et al., 2017;
Dieckmann and Plank, 2012) and across countries (Longstaff et al., 2011). Thus
motivated, we employ the network quantile regression model to identify the possibly
quantile-specific network structure and effects of determinants as

Qit (τ) =
N∑
j=1

Wij (τ)xjt + αi (τ) , (5.1)

where yit is the CDS spread for country i at time t and Qit(τ) is the associated condi-
tional quantile at τ . We follow Longstaff et al. (2011) to focus on spreads of five-year
sovereign credit default swaps, and focus on the effects of domestic macroeconomic
variables on the the CDS spreads, namely the local stock market returns. We also
include control variables of the U.S. stock market returns, treasury yields, high-yield
corporate bond spreads, equity premium, volatility risk premium, equity flows, and
bond flows. We use an extended data set of Wang et al. (2019) that contains 19
countries, i.e. Brazil, Bulgaria, Chile, China, Colombia, Croatia, Hungary, Japan,
Korea, Malaysia, Mexico, Philippines, Poland, Romania, Slovak, South Africa, Thai-
land, and Turkey. We use the monthly data starting from January 2003 to January
2016 resulting in 156 time observations. We apply the proposed network estimation
method to estimate (5.1). Figure 1 presents the estimated network of the country
CDS spreads at τ = 0.5. We also include the estimates at τ = 0.9 in Appendix E.
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Figure 1: Estimated network structure at τ = 0.5
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Several important results emerge from the analysis. First, we find that some
geographic pattern remain salient in the network structure. The connections among
Eastern European countries are particularly strong, while the Asian and Latin Amer-
ican countries are also interconnected within the continent. For example, in Eastern
Europe, the CDS spreads of Bulgaria are highly affected by the spreads and eco-
nomic performance of Romania and Poland. Croatia is most influenced by Romania
as well. In Asia, Malaysia is strongly affected by the Philippines, while Thailand is
most influenced by Malaysia and Japan. In Latin America, Brazil, Colombia, and
Mexico are all interconnected. These finding are well in line with the strong economic
ties between these countries.

Second, we also find that some strong connections are not captured by the ge-
ographic locations. For example, the CDS spreads of Chile are affected not only
by Latin American countries but also by Japan, and similarly Japan is also most
affected by Chile (and other Asian countries). In fact, although Chile is geograph-
ically remote from Japan, their economic relations have been strong and persistent
as a result of their agreement for a Strategic Economic Partnership. This results in
frequent economic activities including a large amount of import and export between
the two countries. Hence, it is not surprising that the CDS spreads of Chile got
affected by those of Japan when the gross government debt to GDP ratio of Japan
kept increasing and remained the highest over years around the world. Another
example is Turkey, which is remote from Brazil and South Africa geographically.
But the CDS spreads of Turkey is largely influenced by the risk level and economic
status of Brazil while it affects South Africa strongly. Further examination reveals
that these countries indeed have strong economic ties with Turkey. Brazil is the first
strategic partner and biggest trade partner of Turkey in South America, and South
Africa is the leading trade partner of Turkey in the Sub-Saharan Africa, and the
trade with Turkey generates more than 30 percent of the GDP of all Sub-Saharan
African countries.

Third, we find that the spillover effects and network structure are not always
symmetric. Although Turkey is highly affected by Brazil, the spillover from Turkey
to Brazil is rather limited. Similarly, Russia is largely affected by Bulgaria and China
is largely affected by Thailand, but these two connections are both directional. In-
terestingly, the source countries that generate spillovers in such asymmetric relations
are typically characterized by less developed and unstable economies and financial
markets, and thus the asymmetry in the volatility of economy may be a possible
explanation of directional links.

Finally, the network seems to vary across quantiles. For instance at τ = 0.9 (see
Figure 2 in Appendix E) China is strongly connected with many economies such as
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Russia, Poland, Thailand, etc. whereas at τ = 0.5 many of these connections are only
weak. This implies that at different quantiles of the CDS spreads, the international
interactions may exhibit different behaviors.

This demonstrates that sovereign credit risk is highly connected across different
nations. These network estimates are crucial to include in further policy / treatment
analysis.

6 Concluding remarks

We study the estimation of unobserved networks, representing socioeconomic or spa-
tial interactions, from panel data sets. Such a situation arises naturally in many
empirical studies. We consider a quantile model in which outcome distributions of
individuals are affected by peer characteristics, in addition to their own, through an
unobserved network. Our approach allows the network to change across the quan-
tiles of the data distributions and, therefore, estimates the network for each quantile
of interest. The network structures are largely unrestricted, except that sparsity
assumptions are adopted to improve the efficiency of the estimated network. In
addition, we propose estimators to conduct valid post-selection inference on other
policy/treatment variables in the model.

Simulations studies are carried out to demonstrate the performance of our ap-
proaches. These demonstrate that our method is well able to capture the underlying
network links with the performance increasing with the number of time periods.
Nonetheless, moderate selection mistakes persist, carrying over to bias and invalid
inference when employing (post-)ℓ1-penalized estimation techniques. Our estimators,
which are based on a Neyman orthogonal moment condition, demonstrate reduced
susceptibility resulting from such model selection mistakes. In particular, we achieve
a bias reduction of up to 90% compared to conventional estimation techniques. More-
over, we show that our estimator leads to valid inference while being more efficient
when comparing with ordinary quantile regression. Moreover, our empirical study
illustrates that interactions among sovereign credit risks cannot be solely attributed
to geographical factors. It also reveals the varying nature of these interactions across
different quantiles.

Several issues are not addressed during our analysis and, therefore, may require
further studies. The most important issue is perhaps to allow for the endogenous
effect where peer outcomes may also affect each other through the unobserved net-
work. We briefly looked into this issue and find that the inclusion of such an effect
would induce the endogeneity. While it could be addressed relatively easily in a con-
ditional mean model, there has not been much much investigation for the quantile
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regression. This is partly due to the well-known complication that a quantile func-
tion does not possess a linearity and that the monotonicity of the quantile function
must be honored. This renders many well-known treatments under a conditional
mean model infeasible in this context. In addition, we do not allow for temporal
dependency in the data while it could be of particular interest in many applications.
The incorporation of temporal dependency should be generally possible by including
lagged variables into the model, with the model selection procedure adapted to this.
In addition, time-specific effects are also not allowed in our analysis. The reason is
that the asymptotic properties of a quantile fixed-effect model with both individual
effects, as we include, and time effects is not well-studied. Based on the existing
literatures, our conjecture about this is that estimators of such models would be
inconsistent so that certain bias correction techniques shall be invoked. During our
analysis, we only consider the adaptive LASSO as a vehicle for regularization. How-
ever, the literatures on regularization approaches is expanding rapidly; and thus,
other tools, such as adaptive elastic net, SCAD, etc., are also worth considering.
Similarly, other model selections techniques beyond cross validation may also be of
interest.
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A Neyman orthogonality

Let wit = {yit, xt, zit} denote the data relevant for unit i at time t. Let us define the
following moment function

m(wit,W, α,W
c, θ) =

(
τ − 1

{
yit ≤

N∑
j=1

Wijxjt + θzit + αi

})(
zit −

N∑
j=1

W c
ijxjt

)

such that the moment condition in (3.6) becomes

E [m(wit,W (τ), α(τ),W c
0 , θ(τ))] = 0.

The Neyman orthogonality condition now boils down to the following conditions on
the derivatives w.r.t. the nuisance parameters W , α, and W c,

∂WE [m(wit,W, α(τ),W
c
0 , θ(τ))]

∣∣
W=W (τ)

= 0,

∂αE [m(wit,W (τ), α,W c
0 , θ(τ))]

∣∣
α=α(τ)

= 0,

∂W cE [m(wit,W (τ), α(τ),W c, θ(τ))]
∣∣
W c=W c

0
= 0.

Let us verify the first condition. Note that for observation wit, the derivative w.r.t.
Wj where j ̸= i always vanishes. Therefore, we only need to consider the derivative
w.r.t. Wi. Furthermore, let Fyit(·|xt, zit) denote the cdf of yit conditional on xt and
zit. Using the law of iterated expectations, we then obtain that

∂Wi
E [m(wit,W, α(τ),W

c
0 , θ(τ))]

∣∣
W=W (τ)

= 0

∂Wi
E

[(
τ − 1

{
yit ≤

N∑
j=1

Wijxjt + θ(τ)zit + αi(τ)

})
vit

] ∣∣∣∣∣
W=W (τ)

= 0

∂Wi
E

[(
τ − Fyit

(
Qit(τ) +

N∑
j=1

(Wij −Wij(τ))xjt

∣∣∣∣∣xt, zit
))

vit

] ∣∣∣∣∣
W=W (τ)

= 0

E

[
−fyit

(
Qit(τ) +

N∑
j=1

(Wij −Wij(τ))xjt

∣∣∣∣∣xt, zit
)
xtvit

] ∣∣∣∣∣
W=W (τ)

= 0
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E [fitxtvit] = 0,

which gives the condition mentioned in Section 3.3. The derivatives and correspond-
ing conditions w.r.t. other nuisance parameters can be verified in a similar way.

B Additonal estimators

As has been motivated by Belloni et al. (2019), using a weighted version of the auxil-
iary regression (4.1) could possibly reduce the asymptotic variance of the treatment
effect estimator. Recall that fit = fyit(Qit(τ)|xt, zit) denotes the conditional density
of yit conditional on xt, zit evaluated at the conditional function Qit(τ). We now
focus on the following model

fitzit = fit

N∑
j=1

W c
0,ijxjt + vit,

yit =
N∑
j=1

Wij(Uit)xjt + zitθ(Uit) + αi(Uit).

(B.1)

For estimation of fit, we can use that Fyit(Qyit(τ |xt, zit)) = τ implies that

1

fit
=
∂Qyit(τ |xt, zit)

∂τ
.

Therefore, Belloni et al. (2019) propose the estimator

f̂it =
2h

Q̂yit(τ + h|xt, zit)− Q̂yit(τ − h|xt, zit)
, (B.2)

where h = hn → 0 and denotes a bandwidth parameter and Q̂yit(u|xt, zit) denotes
an estimate of the conditional u-quantile Qyit(u|xt, zit) of observation (i, t) based on
ℓ1-penalized quantile regression. For the bandwidth parameter, it is suggested to
use h := {n−1/6, τ(1− τ)/2}. Incorporating these into the orthogonal score algoritm
leads to the following weighted algorithm

Weighted orthogonal score algorithm

Step 1: Estimate (θ̂(τ), Ŵ (τ), α̂(τ)) from post-ℓ1-penalized quantile regression
of yit on zit and xt described in Section 3.2.
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Step 2: Compute (θ̃(τ), W̃ (τ), α̃(τ)) from quantile regression of yit on the treat-
ment and the regressors selected in Step 1.

Step 3: Estimate the conditional density f̂ via (B.2).

Step 4: Compute W̃ c from the post-Lasso estimator of f̂itzit on f̂txt.

Step 5: Construct the weighted score function

ψ̂it(θ) =

(
τ − 1

{
yit ≤ zitθ +

N∑
j=1

W̃ij(τ)xjt + α̃i(τ)

})
f̂it

(
zit −

N∑
j=1

W̃ c
ij(τ)xjt

)
.

Step 6: Using the Neyman-type score statistic

LnT (θ) =
|
∑N

i=1

∑T
t=1 ψ̂it(θ)|2∑N

i=1

∑T
t=1 ψ̂

2
it(θ)

,

set W̌ (τ) = W̃ (τ), α̌(τ) = α̃(τ) and θ̌OS(τ) ∈ argminθ∈Θτ
LnT (θ).

Furthermore, these can also be incorporated in the Double Selection algorithm as
summarized below

Weighted Double Selection algorithm

Step 1: Estimate (θ̂(τ), Ŵ (τ), α̂(τ)) from ℓ1-penalized quantile regression of yit
on zit and xt.

Step 2: Estimate the conditional density f̂ via (B.2).

Step 3: Compute W̃ c from the Lasso estimator of f̂itzit on f̂txt.

Step 4: Compute (θ̌DS(τ), W̌ (τ), α̌(τ)) from quantile regression of f̂ityit on f̂itzit
and {f̂jtxjt : xjt is selected in either Step 1 or Step 2}.

C Location-scale shift model

Instead of using the random coefficient representation, we now consider a DGP that
falls into the class of location-scale shift models. This is a very common setup setup
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in the quantile regression literature (Koenker, 2005; Koenker and Xiao, 2002). In
particular, we focus on the following DGP

zit =
N∑
j=1

W c
ijxjt + vit,

yit = ηi + xit + zit +
(
1 + W̃iixit + W̃ijI{ϵit≥zγ}xjt + zitθ̃

)
ϵit.

(C.1)

First of all, note that the first equation (the confounding equation) in (C.1) is the
same as in (4.1). The second equation shows the location-scale shift model. Here, ηi
denotes a random effect of unit i, W̃ denotes the N ×N matrix containing spillover
parameters, θ̃ is a treatment effect parameter, and ϵit ∼ F where zγ denotes the γ-th
quantile of F . Note that the random variable I{ϵit≥zγ}ϵit follows a mixture distribution
with γ probability mass at zero and a continuous Gaussian tail past zγ with total
mass 1− γ. This ensures that the effect of xjt on yit is zero for ϵit ≤ zγ and nonzero
for ϵit ≥ zγ. Let M = I{ϵit≥zγ}ϵit and let FM denote its cdf, we observe that

F−1
M (τ) = 0 for τ ≤ γ,

F−1
M (τ) = F−1(τ) for τ ≥ γ.

One then easily verifies that for the linear QR model

Qyit(τ |xt, zit) = αi(τ) +
N∑
j=1

Wij(τ)xjt + θ(τ)zit,

we get that

αi(τ) = ηi + F−1(τ)

Wii(τ) = 1 + W̃iiF
−1(τ)

Wij(τ) = W̃ijF
−1
M (τ)

Wik(τ) = 0 for k /∈ {i, j}
θ(τ) = 1 + θ̃F−1(τ).

The most important part of this DGP is how we choose W (τ). For now, we have
chosen W (τ) so that it is a continuous function of τ . For the diagonal elements this
holds if F−1 is continuous. We set F = N (µ, 1/2) where µ is chosen to guaran-
tee continuity of the non-diagonal elements of W . In particular, we set it so that
F−1(γ) = 0. This ensures the continuity of F−1

m (τ) and thereby the continuity of
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Wij(τ). For the rest, the regressors and treatment are generated in the same way as
in Section 4. Next to that, the non-zero entries of W̃ are chosen using ER (similar
to Section 4). All nonzero elements in W̃ are set equal to 1. Lastly, we have that
ηi ∼ U(0, 1) and θ̃ = 1.

The results of the network estimation can be found in Table 4. An important
difference with Table 1 is that we now see better performance around the middle
quantiles. This is anticipated as there is most information here and for this particular
network there are no link switches around the median, as was the case with Table 1.
Furthermore, note that around the τ = 0.8, the effect of the non-diagonal elements
is still smaller than 0.1, so we classify these elements as zeros. We observe that these
effects do not strongly deteriorate performance. The performance is slightly worse
as in the middle quantiles but this is expected due to the loss of information. On
the other side, we do better than in the τ = 0.2 quantile which is due to the fact the
effects are stronger in the upper tails and therefore easier to distinguish from true
zeros.

Moreover, in Table 5 we show the average bias of the post-ℓ1, QR, OS and DS
estimators. Here, the conclusions are largely the same as in Table 2. The post-ℓ1 has
the most bias compared to the other three. For the other three, there is no single
estimator with the smallest bias in general, although QR and DS seem to do slightly
better than OS. The coverage corresponding to the post-ℓ1, QR and DS can be found
in Table 6. Here, we see the same patterns as before in Table 3.
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Table 4: Average percentages of correct nonzero and zero links of τ -dependent
location-scale shift networks. Here, a zero correspond to a link with strength be-
low 0.1 in the true network, which has been estimated to be zero. For all settings,
we used R = 200, adaptive penalization and cross-validation to select the penalty
parameter.

τ = 0.2 N = 5 N = 10
T Nonzero Zero Nonzero Zero
50 62.40% 57.90% 62.60% 56.38%
100 63.80% 73.35% 64.00% 74.36%
200 66.20% 85.20% 70.90% 86.57%

τ = 0.4 N = 5 N = 10
T Nonzero Zero Nonzero Zero
50 73.60% 53.75% 73.80% 53.93%
100 80.80% 69.90% 80.40% 72.00%
200 92.00% 82.25% 93.00% 83.08%

τ = 0.6 N = 5 N = 10
T Nonzero Zero Nonzero Zero
50 77.40% 53.25% 78.40% 52.28%
100 84.60% 67.55% 83.70% 68.73%
200 93.00% 80.15% 95.10% 82.10%

τ = 0.8 N = 5 N = 10
T Nonzero Zero Nonzero Zero
50 73.60% 49.65% 71.20% 50.92%
100 77.40% 65.55% 77.70% 67.42%
200 88.80% 77.78% 87.00% 79.53%
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Table 5: Average bias of post-ℓ1, QR, OS, and DS estimators of treatment effect
confounded by τ -dependent location-scale shift networks. For all settings, we used
R = 200, adaptive penalization and cross-validation to select the penalty parameter.

τ = 0.2 N = 5 N = 10
T Post QR OS DS Post QR OS DS
50 0.089 0.039 0.088 0.032 0.086 0.013 0.070 0.039
100 0.057 −0.026 0.024 −0.025 0.085 0.029 0.067 0.033
200 0.078 −0.038 0.044 0.041 0.075 0.018 0.043 0.021

τ = 0.4 N = 5 N = 10
T Post QR OS DS Post QR OS DS
50 0.063 0.028 0.060 0.026 0.040 0.009 0.050 0.013
100 0.042 −0.006 0.028 0.013 0.053 0.022 0.043 0.018
200 0.054 0.026 0.027 0.024 0.013 −0.001 −0.006 −0.001

τ = 0.6 N = 5 N = 10
T Post QR OS DS Post QR OS DS
50 −0.044 −0.044 −0.019 −0.031 0.035 −0.040 0.018 −0.026
100 0.023 −0.012 0.001 −0.011 0.045 0.005 0.037 0.023
200 0.028 0.010 0.017 0.009 0.004 −0.020 −0.007 0.001

τ = 0.8 N = 5 N = 10
T Post QR OS DS Post QR OS DS
50 −0.034 −0.033 −0.024 −0.032 0.024 −0.036 0.018 −0.005
100 0.043 −0.038 0.016 −0.030 0.008 −0.072 0.006 −0.023
200 0.020 −0.025 0.011 −0.019 0.025 −0.036 0.003 −0.009
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Table 6: Coverage and average standard deviation of confidence regions resulting
from the post-ℓ1, QR, and DS estimators of the treatment effect confounded by τ -
dependent location-scale shift networks under nominal coverage probability of 95%.
For all settings, we used τ = 0.2, R = 200, adaptive penalization and cross-validation
to select the penalty parameter.

Design Coverage SD
N T Post QR DS Post QR DS
5 50 89.0% 96.0% 96.0% 0.241 0.347 0.316
5 100 91.0% 95.0% 95.0% 0.165 0.225 0.209
5 200 77.0% 95.0% 93.0% 0.115 0.153 0.145
10 50 88.0% 99.0% 93.0% 0.167 0.278 0.228
10 100 83.0% 95.0% 96.0% 0.110 0.170 0.149
10 200 76.0% 98.0% 96.0% 0.080 0.112 0.102

D Tables

D.1 Weaker confounding

For the confounding matrix W c
ij we now set all diagonals elements equal to 0.3 and

the non-diagonal element are generated using ER (so only one off-diagonal element
in every row is nonzero) and set to 0.2. Notice that this leads to weaker correlation
between the treatment and the other regressors. The results from estimating the
network matrix can be found in Table 7. Furthermore, the bias of the estimators
can be found in 8. Lastly, the coverage of the resulting confidence regions and
the corresponding standard deviation are reported in Table 9. Generally, we see
that the ℓ1-penalized estimation techniques perform better compared to Section 3.2.
Furthermore, the benefit of using OS and DS estimators that take into account
the confounding effect of the other regressors on the treatment reduces, as these
confounding effects are smaller.
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Table 7: Average percentages of correct nonzero and zero links of τ -dependent Erdos-
Renyi networks. For all settings, we used R = 1000.

τ = 0.2 N = 5 N = 10
T Nonzero Zero Nonzero Zero
50 61.14% 80.64% 56.41% 78.65%
100 75.21% 88.84% 71.02% 90.60%
200 90.66% 93.92% 90.76% 94.13%

τ = 0.4 N = 5 N = 10
T Nonzero Zero Nonzero Zero
50 62.51% 64.39% 58.48% 61.33%
100 68.27% 76.56% 60.19% 74.54%
200 82.77% 85.37% 72.13% 85.48%

τ = 0.6 N = 5 N = 10
T Nonzero Zero Nonzero Zero
50 66.95% 62.90% 59.46% 60.23%
100 71.63% 74.52% 63.20% 72.19%
200 83.35% 82.77% 74.21% 81.58%

τ = 0.8 N = 5 N = 10
T Nonzero Zero Nonzero Zero
50 73.91% 75.17% 65.83% 73.55%
100 89.22% 84.61% 83.87% 84.42%
200 97.40% 91.09% 97.11% 90.12%
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Table 8: Average bias of post-ℓ1, QR, OS, and DS estimators of treatment effect
confounded by τ -dependent Erdos-Renyi networks. For all settings, we used R = 500,
adaptive penalization and cross-validation to select the penalty parameter.

τ = 0.2 N = 5 N = 10
T Post QR OS DS Post QR OS DS
50 0.076 0.017 0.028 0.025 0.074 0.026 0.021 0.022
100 0.047 0.008 0.010 0.011 0.046 0.010 0.010 0.001
200 0.016 −0.002 0.003 0.000 0.019 0.006 0.004 −0.002

τ = 0.4 N = 5 N = 10
T Post QR OS DS Post QR OS DS
50 0.030 −0.020 −0.023 −0.022 0.029 −0.015 −0.010 −0.008
100 0.021 −0.018 −0.020 −0.025 0.012 −0.013 −0.018 −0.022
200 0.009 −0.009 −0.007 −0.006 0.012 −0.018 −0.017 −0.017

τ = 0.6 N = 5 N = 10
T Post QR OS DS Post QR OS DS
50 0.048 0.018 −0.008 −0.005 0.034 −0.020 0.012 0.009
100 0.037 0.014 0.004 0.007 0.048 0.016 0.014 0.017
200 0.011 −0.006 −0.003 0.001 0.051 0.015 0.013 0.014

τ = 0.8 N = 5 N = 10
T Post QR OS DS Post QR OS DS
50 0.038 −0.008 0.005 −0.003 0.039 −0.028 0.005 −0.004
100 0.019 −0.001 0.001 0.005 0.021 −0.009 −0.005 −0.003
200 0.010 0.001 0.002 0.004 0.007 0.001 0.000 0.001
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Table 9: Coverage and average standard deviation of confidence regions resulting
from the post-ℓ1, QR, and DS estimators of the treatment effect confounded by τ -
dependent Erdos-Renyi networks under nominal coverage probability of 95%. For
all settings, we used τ = 0.2, R = 500, adaptive penalization and cross-validation to
select the penalty parameter.

Design Coverage SD
N T Post QR DS Post QR DS
5 50 90.5% 99.0% 96.0% 0.221 0.311 0.256
5 100 92.0% 95.0% 95.0% 0.145 0.169 0.158
5 200 92.0% 95.5% 95.5% 0.101 0.109 0.108
10 50 92.0% 100% 98.0% 0.170 0.341 0.215
10 100 90.5% 99.5% 98.5% 0.102 0.157 0.119
10 200 93.5% 97.0% 95.0% 0.071 0.083 0.076

D.2 Naive and weighted OS estimator results

In Table 10, the average bias of the the naive, post-ℓ1, OS, weighted OS, and DS
estimators can be found. All settings are the same as in Section 4. The naive
estimator is described in Section 3.3. Moreover, the weighted OS algorithm is given
in Appendix B. We note that the naive estimator possesses more bias than the post-
ℓ1 estimator, which is expected due to the regularization bias in the naive estimator.
Next to that, the weighted OS seems to be rather unstable and perform worse than
the OS estimator. We expect this to happen due to the estimation noise in the
weights f̂it.
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Table 10: Average bias of the naive, post-ℓ1, OS, weighted OS (OSw), and DS
estimators of treatment effect confounded by τ -dependent Erdos-Renyi networks.
For all settings, we used R = 500, adaptive penalization and cross-validation to
select the penalty parameter.

τ = 0.2 N = 5 N = 10
T Naive Post OS OSw DS Naive Post OS OSw DS
50 0.223 0.133 0.119 0.132 0.040 0.209 0.132 0.103 0.131 0.025
100 0.235 0.127 0.107 0.129 0.012 0.225 0.128 0.088 0.135 0.010
200 0.211 0.096 0.064 0.108 0.008 0.202 0.092 0.052 0.103 −0.006

τ = 0.4 N = 5 N = 10
T Naive Post OS OSw DS Naive Post OS OSw DS
50 0.195 0.103 0.101 0.105 0.040 0.152 0.082 0.069 0.076 0.010
100 0.180 0.063 0.050 0.068 −0.038 0.176 0.079 0.067 0.093 −0.009
200 0.209 0.077 0.046 0.085 −0.012 0.195 0.076 0.039 0.084 −0.012

τ = 0.6 N = 5 N = 10
T Naive Post OS OSw DS Naive Post OS OSw DS
50 0.214 0.108 0.089 0.103 0.023 0.158 0.087 0.062 0.050 −0.037
100 0.234 0.106 0.087 0.105 0.012 0.243 0.117 0.079 0.120 0.019
200 0.230 0.097 0.067 0.098 0.016 0.0.258 0.103 0.069 0.112 0.018

τ = 0.8 N = 5 N = 10
T Naive Post OS OSw DS Naive Post OS OSw DS
50 0.270 0.127 0.115 0.124 0.020 0.252 0.114 0.086 0.100 0.010
100 0.250 0.087 0.059 0.086 0.010 0.264 0.112 0.083 0.120 0.012
200 0.205 0.039 0.023 0.039 0.001 0.196 0.045 0.025 0.044 0.002
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D.3 Coverage for different quantiles

The remaining quantiles and the corresponding coverage and standard deviation of
the estimators can be found in Table 11.

Table 11: Coverage and average standard deviation of confidence regions resulting
from the post-ℓ1, QR, and DS estimators of the treatment effect confounded by τ -
dependent Erdos-Renyi networks under nominal coverage probability of 95%. For all
settings, we used R = 500, adaptive penalization and cross-validation to select the
penalty parameter.

Design Coverage SD
τ N T Post QR DS Post QR DS
0.4 5 50 90.3% 96.0% 95.4% 0.357 0.502 0.470
0.4 5 100 88.3% 96.6% 96.6% 0.247 0.335 0.313
0.4 5 200 87.7% 98.6% 98.6% 0.171 0.222 0.207
0.4 10 50 90.9% 97.4% 96.0% 0.272 0.433 0.368
0.4 10 100 89.7% 98.0% 96.0% 0.184 0.277 0.243
0.4 10 200 83.7% 97.7% 98.2% 0.130 0.190 0.160
0.6 5 50 88.3% 96.3% 94.9% 0.376 0.506 0.480
0.6 5 100 85.3% 97.4% 95.4% 0.271 0.347 0.332
0.6 5 200 84.0% 97.1% 95.7% 0.196 0.242 0.230
0.6 10 50 88.6% 98.3% 96.0% 0.292 0.442 0.384
0.6 10 100 83.7% 97.4% 95.7% 0.212 0.296 0.270
0.6 10 200 84.6% 96.8% 96.0% 0.153 0.204 0.184
0.8 5 50 88.0% 99.1% 98.2% 0.297 0.434 0.393
0.8 5 100 86.9% 97.1% 96.0% 0.197 0.250 0.235
0.8 5 200 88.6% 96.9% 94.9% 0.145 0.167 0.161
0.8 10 50 84.0% 98.6% 96.0% 0.224 0.421 0.320
0.8 10 100 78.6% 98.9% 96.3% 0.144 0.226 0.184
0.8 10 200 87.4% 96.6% 95.1% 0.103 0.132 0.117

E Figures empirical example
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Figure 2: Estimated network structure at τ = 0.9.
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Notes: The darkness of an edge represents the strength of the corresponding link: the darker the stronger. The
global overview is in the top panel whereas details on eastern european and asian countries are in, respectively, the
bottom left and right panels.
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