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Abstract

In the modern economy, data is a valuable firm asset, but it is fraught with
risks including loss and destruction. In this paper, we examine how data risk
impacts firm growth, financial outcomes, and innovation activities. Examining
the universe of U.S. publicly-listed firms from 2000 to 2022, we find that higher
data risk reduces knowledge stocks, decreases productivity, and slows growth for
the average firm in the U.S. economy. Notwithstanding, there exists a select group
of AI-intensive firms, highly exposed to data risk, which develop data protection
strategies that enhance productivity in other domains. This positive spillover
leads to higher innovation and profitability for these firms. The mechanism is that
the same data engineers who develop data protection are also among the same
inventors doing product innovation for these firms. In a second stage, we develop
a structural heterogeneous-firm growth model of the data economy to rationalize
the empirical findings and to provide some comparative statics exercises.
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“dadada”

Mark Zuckerberg’s password,

as revealed after a 2016 data breach.

1 Motivation

The modern economy is a data economy. Data supports strategic decision-making

and is a key ingredient in AI development. AI and AI-driven processes propel firms

toward innovation, growth, and competitive advantage (Brynjolfsson et al. (2017),

Agrawal et al. (2022) and Babina et al. (2024)). However, this valuable asset is not

without its vulnerabilities. Data risks such as breaches and loss threaten operational

continuity, financial stability, and growth. Understanding the varied impacts of data

risk is crucial for assessing its financial consequences and effects on innovation, particu-

larly in firms using AI-driven decision processes. Furthermore, the changing regulatory

environment surrounding data privacy, as seen in the GDPR and CCPA (Peukert et al.

(2022) and Aridor et al. (2023)), emphasizes the need for effective data risk manage-

ment. Firms must navigate the complex relationship between data security, regulatory

compliance, and technological progress to prevent losses and leverage AI for innovation.

In this paper, we examine how data risk impacts firm growth, financial decisions,

and innovation activities. Our empirical strategy consists of conducting a Poisson

regression analysis and a staggered difference-in-difference analysis to study the rela-

tionship between data risk and firm outcomes. By looking at publicly-listed U.S. firms

between 2000 and 2022, we investigate whether companies that are highly exposed to

data risk experience significant changes to their financial and innovation outcomes. We

measure data risks in two ways: first, we directly measure individual firm data risk over

time using the text-based NLP method of Florackis et al. (2023); second, in a more

causally-robust approach, we instrument data risk with the staggered adoption of Data

Breach Notification Laws in the United States.

Data Breach Notification Laws are regulations that require organizations to inform

individuals, regulatory authorities, and other stakeholders when a security breach has

occurred, leading to the unauthorized access, disclosure, or loss of personal data. These

laws are designed to protect consumer privacy and enhance corporate accountability

by ensuring that affected parties are aware of breaches that may impact their personal

data. These laws have been shown to increase firm risk related to data breaches (Boasi-

ako and Keefe (2021); Liu and Ni (2023)). Our strategy is to compare the financial

decisions and innovation activities of firms located in early-treated states to those of

firms located in late-treated states, taking into account the ‘forbidden comparison’ in

staggered difference-in-difference models (Goodman-Bacon (2021)).
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We narrow down our analysis to consider the impact of data risk on AI-intensive

firms because data is a crucial input for these firms. We propose a new measure of firm

AI-intensity based on firm business description similarity as computed by Hoberg and

Phillips (2016) to a set of firms that file AI patents, as defined by Giczy et al. (2022).

The advantage of this measure is that it is constructed at firm-year level with only

publicly available data. This implies that it can be constructed over long time-periods

and for a variety of public firms belonging to any industry. Moreover, by focusing on

the close firms that develop AI patents, we also include firms that do not necessarily file

AI patents, but heavily use AI in their day-to-day business operations. Our measure is

complementary to Babina et al. (2024), who identify the hiring and stock of AI-skilled

labor at the firm-year level using worker resumes and job posting data. Our measure

is complimentary in that it identifies the use of AI technologies in day-to-day firm

operations, not exclusively a firm’s AI-skilled labor share.

Both our direct Poisson estimation and our staggered difference-in-difference method

suggest that AI-intense firms experience an increase in profitability and patenting ac-

tivity in response to an increase in data risk, controlling for a multitude of firm-level

characteristics. We also find that non-AI-intensive firm profitability and innovation fall,

while leverage increases, as expected for the average firm in the economy faced with

higher data risk. The robustness check analysis indicates that it is not firm size driving

the results, but AI-intensity. Within superstar firms, defined by Autor et al. (2020), it

is the AI-intensive large firms that drive the positive results, with no effects for non-

AI-intensive superstar firms. Lastly, a sub-sample analysis suggests that the positive

spillovers are concentrated in AI-intensive firms in the financial sector and tech firms

in the retail sector as defined through the NAICS industry code. We then investigate

the mechanism through which AI-intensive firms benefit from increased data risk.

The mechanism through which this positive spillover occurs is that data risk ex-

ante prompts AI-intensive firms to pursue digital innovation that enhances productivity

in other domains. Data risk forces these companies to improve their data protection

measures and systems, which can lead to the development of new technology and prod-

ucts. A concrete example of this positive spillover when facing higher data risk is that,

in the pursuit of finding ways to securely store and transmit financial information over

internet networks, Amazon used their own-built solution (Amazon’s 7th and 9th most

cited patents) to offer the new “1-Click ordering” feature (Amazon’s most cited patent).

Thus, the need to protect firms against data risk has created a demand for skilled la-

bor, and more secure software, hardware, and services, which has lead to technological

advancements and to a boost in long-term growth.

Investigating the mechanism further, we find that in AI-intensive firms, the IT

department in charge of data protection is highly interconnected with the R&D de-
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partment in charge of product development. We find that when data risk increases,

the share of self data protection patent citations increases dramatically for AI-intensive

firms, but does not respond in non-AI-intensive firms. Moreover, we find that the av-

erage share of inventors of data security patents, who also work on non-data security

patents, is 7-8 times larger in AI-firms relative to their non-AI-intensive peers. We do

not observe that AI-intensive firms increase the share of common inventors after data

risk increases. Rather, they already have the capacity to employ the same inventors on

both data security and non-data security patents.

We also perform a sub-sample analysis to understand which industries respond

strongly to data risk. Using the NAICS classification, we observe that among AI-

intensive firms, which span many different industries, financial firms and retail tech

firms respond most positively to an increase in data risk, while firms in the health and

accommodation industries are most adversely affected. The observed variance in re-

sponse to increased data risk among industries classified by the NAICS, notably between

the financial, insurance, retail tech sectors, and the health and accommodation sectors,

can primarily be attributed to differences in data dependency, regulatory pressures,

and inherent adaptability. Financial and tech firms, being inherently data-driven and

technologically adept, view data risks as opportunities for innovation and competitive

strengthening, underpinned by substantial investments in data security. Conversely,

health and accommodation sectors, heavily regulated and less technologically focused,

face significant challenges, as heightened data risks translate into operational vulnera-

bilities and increased compliance costs, without commensurate benefits.

In the second part of the study, we develop a theoretical framework that rationalizes

the main mechanisms driving the interaction between data risk and digital innovation.

We build a heterogeneous-firm growth model of the data economy, in which data is

information that helps firms optimize their business processes and is subject to data

risk, meaning that it can be damaged and destroyed. Firms are heterogeneous in

their AI-intensity levels and are allowed to protect themselves against data risk. AI-

intensity is modeled as firms being able to develop in-house security solutions that

are specifically tailored to the needs of firms and investing in data protection has a

side-effect of increasing the maximum quality frontier of the goods products. Non-AI-

intensive firms in the model purchase non-rival data security from AI-intensive firms.

Both types of firms solve profit maximization problems and they both benefit from

fighting data risk: for the latter, the single benefit of purchasing protection consists in

preserving data; for the former, in-house innovation signifies not only the preservation

of data, but also an innovation spillover effect that increases the potential quality of

the produced goods. We use the simple model to provide some counterfactual analyses.
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Our research is nestled in the burgeoning dialogue on data as a critical asset in the

empirical and theoretical landscape, illustrating its dual role as a catalyst for strategic

decision-making and AI-driven innovation (Babina et al. (2024)) and as a source of

risk (Mihet and Philippon (2019)). While the potential of data to propel firms toward

growth and competitive advantage is well-acknowledged, the associated risks—ranging

from data loss to breaches—pose significant challenges. Our work contributes to the

understanding of these dual facets by examining the impact of data risk on firms’

innovation, growth, and profitability, offering a nuanced view that goes beyond the

conventional focus on firm valuation and equity returns impacted by data risk (Jamilov

et al. (2021), Eisenbach et al. (2022), Florackis et al. (2023)).

Furthermore, we explore the dynamic interplay between data risk and data protec-

tion within the financial and tech sectors, underscoring its systemic significance (Duffie

and Younger (2019), Aldasoro et al. (2022)). By employing novel methodologies to an-

alyze corporate disclosures (Florackis et al. (2023)), our study reveals how AI-intensive

firms adeptly navigate the complexities of data risk, not merely mitigating adverse im-

pacts, but also leveraging these challenges to spur innovation and secure competitive

advantage. This proactive approach to data risk management showcases a significant

amplification of innovation activities, evidencing the critical role of data security in

fostering cross-disciplinary innovation and enhancing firm resilience. Our findings not

only augment the empirical literature on data risk but also contribute to the theoretical

discourse on the role of data in economic growth (Farboodi et al. (2019), Jones and

Tonetti (2020), and Eeckhout and Veldkamp (2022)), highlighting the indispensable

need for robust data protection strategies in the digital era.

The remainder of the paper proceeds as follows. Section 2 describes the data and

hypotheses and tests our main predictions. Section 3 addresses endogeneity and explains

our staggered difference-in-difference strategy and results. Section 4 builds a model of

the data economy with data risk and protection and provides some comparative statics

exercises. Section 5 concludes.

2 Empirical Analysis

2.1 Data

Data risk. We expand the method from Florackis et al. (2023) to create a firm-

year level of data breach risk for the period 2000 to 2022. Florackis et al. (2023) builds

data security risk scores based on a textual analysis of the annual 10-K filings of these

companies. For any given year, a firm’s risk measure is derived from the similarity

between the language used to detail data risk-factors in its current-year 10-K filings
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and the previous-year 10-K filings of a chosen ‘training’ set of firms. The firms in this

training set are those that endured actual data breaches in the same year. We source

the list of breached firms from Audit Analytics. The assumption is that firms that have

fallen prey to actual data breaches likely had existing vulnerabilities, which would have

been reflected in their risk disclosures in the previous year. As such, if a firm’s language

in its risk-factor disclosure strongly resembles the previous-year risk disclosure of firms

that were indeed attacked, it is inferred that it features high data security risks. The

similarity score, which also serves as the data risk score, ranges from zero to one, with

a higher score indicating a greater data breach risk.1 We compute these firm-year level

scores for the period 2000-2022. The risk index is robust to using a smaller data risk

dictionary or no dictionary at all. More details on the exact method of computation

can be found in Appendix D.

Innovation. We capture innovation in various complementary ways. The first

measure we use is the knowledge capital accumulation calculated by Ewens et al. (2020).

Knowledge capital is the stock of research and development (R&D) expenditure net of

the knowledge capital depreciation. Knowledge asset can also be thought of as an input

to innovation, rather than output, as it represents expenditure on producing innovation.

Our next set of measures explicitly captures innovation output.

Firms’ patent activity represents their innovation output. Following the literature

on innovation, we count patents filed by the firms by taking into account their scientific

value (Kogan et al., 2017; Aghion et al., 2013; Howell, 2017). We count number of

patents filed by weighing it with the number of forward citations they receive. The idea

is that the more scientifically important a patent is, the more citations it receives (Hall

et al., 2005; Kogan et al., 2017). Following the best practice in the literature, we adjust

the count for the truncation bias. As the citations occur over time, a simple counting

of cites underestimates the importance of the patents that were issued towards the end

of our sample period (Lerner and Seru, 2022; Dass et al., 2017). We correct for that

using the well-established methodology proposed by Hall et al. (2001). All our patent

data is from the publicly available database maintained by Kogan et al. (2017).

Data security innovation. We measure data security innovation using the

citation-weighted count of cyber security patents a firm files within a year. A patent

1We believe these are good measures of firm data risk because US firms are required by law to report
data breaches in all 50 states, the District of Columbia, Guam, Puerto Rico and the Virgin Islands,
and therefore they are highly likely to be forthcoming about their data risk and risk mitigation in their
10-Ks (Murciano-Goroff (n.d.)). Moreover, we are confident in the validity of this measure because,
according to the undertaken calculations, it correlates highly (86%) with the data risk measure based
on conference calls from Jamilov et al. (2021) and 95% with our own measure using a smaller set of
data-risk related words.
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is classified as a cyber security patent if the USPTO assigns it CPC codes associated

with cyber security. For instance, CPC code G06F21/ is titled ‘Security arrangements

for protecting computers, components thereof, programs or data against unauthorised

activity’. Our cyber security patent measure indicates a consistent growth in data se-

curity innovation over time, currently accounting for approximately seven percent of all

patent filings (as depicted in Figure 1).

Figure 1: Share of data security (i.e., cyber security) patents in all patents filed

Legend: This figure shows the proportion of data security (i.e., cyber security) patents out of all
patents filed in a given year from 1976 to 2022. A cyber security patent is defined as one that
USPTO assigns CPC code pertaining to cyber security.

AI-intensive firms. To identify publicly traded companies prominently focused

on AI, we set criteria grounded on two essential principles. Firstly, firms deeply involved

in AI technology development are designated as AI-intensive. Secondly, companies

that do not directly engage in AI technology creation but whose business descriptions

resemble those of AI developers also qualify as AI-intensive. Our process for identifying

AI-intensive companies proceeds in two phases. Initially, we use data from the US

Patent and Trademark Office (USPTO), which distinguishes AI from non-AI patents

Giczy et al. (2022), enabling us to recognize US public companies that have applied for

AI patents. We then apply a dataset by Hoberg and Phillips (2016) to compare textual

similarity in business descriptions among public companies. A firm is categorized as

AI-intensive or not for all the periods they are present in the dataset.

Financial variables. We obtain firm level financial information from the merged

CRSP-Compustat database. We calculate various financial variables and ratios to use

them as control variables in our baseline regressions. Specifically, we use the following
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variables as controls: log of total assets, Tobin’s Q, asset tangibility, book-to-market

ratio, cash-to-asset ratio, leverage, and return on assets. We winsorize all the variables

at 0.5% on both sides of the distribution.

Table 1 presents summary statistics on the firm variables of interest. Notice that

more than a quarter of the firms do not face any data risk. Further, innovation activity

is skewed. For instance, more than 50 percent of firm-year observations do not record

any positive knowledge capital accumulation or any patent activity.

Table 1: Descriptive statistics

N Mean SD p10 p25 p50 p75 p90 p99

I. Data risk
Data risk score 59293 0.30 0.22 0 0 0.37 0.49 0.55 0.61

II. Innovation
Patents filed: c-wtd count 60007 17.32 98.34 0 0 0 0 12.05 546.87
Cyber security patents: c-wtd count 60007 0.98 8.16 0 0 0 0 0 29.16
Non-cyber security patents: c-wtd count 60007 15.65 89.02 0 0 0 0 11.08 474.77
Product patents: c-wtd count 60007 9.45 54.95 0 0 0 0 5.53 294.85
Process patents: c-wtd count 60007 4.59 28.44 0 0 0 0 2.39 144.03
Share of product patents in c-wtd count 11621 0.65 0.34 0 0.43 0.73 1 1 1

III. AI-intensity
Is AI intensive (1 = Yes) 60007 0.39 0.49 0 0 0 1 1 1
Has In-house cyber security (1 = Yes) 60007 0.07 0.25 0 0 0 0 0 1

IV. Financial attributes
Knowledge asset 40904 121.62 607.75 0 0 0 29.25 149.67 3115.03
R&D expenditure 60007 63.50 308.21 0 0 0 15.96 84.80 1549.91
Total assets (log) 60007 6.73 2.17 3.79 5.23 6.80 8.20 9.51 11.93
Tobin’s Q 59896 2.04 1.93 0.94 1.04 1.39 2.19 3.79 11.16
Tangibility 57659 0.20 0.24 0.01 0.02 0.10 0.29 0.63 0.90
Return on assets 57511 0.00 0.30 -0.26 0.01 0.07 0.13 0.20 0.43
Book-to-market ratio 59896 0.63 0.79 0.09 0.25 0.50 0.86 1.30 3.97
Cash-to-asset ratio 60006 0.21 0.25 0.01 0.03 0.10 0.29 0.62 0.97
Leverage 59764 0.24 0.24 0 0.04 0.18 0.38 0.57 1.04

Legend: N refers to the total number of firm-year observations. The data risk score is constructed based on Florackis et al. (2023) with
details in the Appendix. The data risk score lies between zero and one, with higher values indicating higher risk. The knowledge stock
is based on the estimates of knowledge stock net of knowledge depreciation from Ewens et al. (2020). The simple patent count refers to
number of patents filed by the firm in a year. All patents (i.e., filed, cyber, non-cyber, product, process and shares) are citation-weighted
counts. The citation-weighted patent count weighs each patent with the forward citation the patent receives, adjusting for the filing
vintage. p10-p99 refer to the 10th to 99th percentile values.

2.2 Empirical strategy

We first conduct a regression analysis to uncover the reduced-form correlation

between data risk and firm profitability, growth, and innovation strategies. We rely on

two aspects of our regression specification. First, we regress firm outcomes on the lagged

value of data risk score. Doing so addresses simultaneity concerns. Second, we include

firm fixed effects to absorb time invariant characteristics of firms that might affect this

relationship. Moreover, we include year fixed effects to absorb shocks occurring over
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time and that are common across firms. Finally, we control for a multitude of financial

firm characteristics.

As visible from Table 1, the firm outcomes, particularly the innovation variables,

have a right skew and contain a high share of zeros. Therefore, applying ordinary

least squares (OLS) estimation results in inefficient parameter estimates. While there

are some possible solutions that transform the firm outcome variables, these methods

are known to produce inconsistent and incorrect estimates.2 Thus, we use the Poisson

model to explicitly take into account many zeros and the right skew of the dependent

variables, as recommended by Cohn et al. (2022) and Correia et al. (2020).3 Other

studies that employ Poisson regression analysis with patent data include Azoulay et al.

(2019), Aghion et al. (2013), Amore et al. (2013), and Blundell et al. (1999).

To study the relationship between the lagged value of data risk score (data riskit−1)

and firm outcomes (yit) we fit the following conditional expectation of the firm outcome:

E[yit|data riskit−1,xit−1, ηi, τt] = exp (βcdata riskit−1 + βxit−1 + ηi + τt) (1)

where yit is the firm’s innovation variables such as citation-weighted patent counts,

knowledge, R&D, and financial variables such as log assets and return on assets.

data riskit−1 is the lagged value of the data risk score, xit−1 are lagged control vari-

ables, including log R& D expenditures, size (log of total assets), Tobin’s Q, asset

tangibility, book-to-market ratio, cash-to-asset ratio, leverage, and return on assets,

when these controls are not the dependent variable itself. We denote ηi as the firm

fixed effect, and τt as the year fixed effect.

We perform Poisson pseudo-maximum likelihood estimation to estimate the pa-

rameters of the model in (1). Finally, we cluster standard errors at the firm level, to

take into account the possibility of autocorrelation and hetereskedasticity in the error

terms. Clustered standard errors are additionally useful because they are also robust to

‘overdispersion’ and ‘underdispersion’ issues encountered in Poisson regression analysis

(Cohn et al., 2022; Wooldridge, 1999).

2One approach is to use OLS estimation with a log transformation of the patent count variables,
although the presence of many zeros means this method might exclude a significant number of ob-
servations. Log-linear regressions, while a potential solution, are criticized for potentially yielding
inconsistent parameter estimates. An alternative could involve adding 1 to each patent count before
transformation or employing the inverse hyperbolic sine transformation. These methods keep zero
counts but might still lead to inconsistent estimates and could misrepresent the true relationship’s
direction (Cohn et al. (2022), Silva and Tenreyro (2006)).

3The Poisson model offers consistent estimators for count data, like patents, without assuming
higher order error moments. It also supports group fixed effects, crucial for our analysis. Notably, the
model is applicable not only to discrete count data but also to continuous non-negative variables, such
as knowledge assets (Silva and Tenreyro (2011), Wooldridge (1999)).
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2.3 Baseline results

Firm outcomes. Does a rise in data risk affect a firm’s profitability? Does it

decrease a firm’s innovation activity? Data risk can reduce firm growth and innovation

outcomes by diverting its resources towards data risk protection measures.

Table 2 presents the results from our preferred Poisson estimation of regressing firm

outcomes on lagged data risk. We find that firms file more overall patents, more non-

data security patents, accumulate more knowledge capital and R&D stock in response

to a rise in data risk, and increase their size and profitability. In Appendix C, we show

the results are robust to using a battery of different controls.

Table 2: Regression of firm innovation, growth, and profitability outcomes

Citation-weighted Patent Count Knowledge and R&D Financial Vars

(1) (2) (3) (4) (5) (6)
Overall patent Non-CS patent Knowledge R&D Log assets ROA

L. Data-risk score 0.243** 0.226* 0.0612 0.122* 0.159** 0.065***
(0.134) (0.131) (0.0563) (0.0683) (0.060) (0.019)

L. Firm Controls Yes Yes Yes Yes Yes Yes
Firm FE Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes
N 12900 14122 15111 21358 20238 20234

Legend: ∗p < 0.10,∗∗ p < 0.05,∗∗∗ p < 0.01. Standard errors are in parentheses. Standard errors are
clustered at the firm level. N refers to the total number of firm-year observations. Data-risk score, and all
control variables are lagged by one year. The data-risk score is computed as explained in D. Knowledge is
based on the estimates of knowledge stock net of knowledge depreciation from Ewens et al. (2020). Other
control variables are computed using WRDS CRSP-Compustat merged data. R&D expenditures are
research and development expenditures typically reported in the income statement, Tobin’s Q is defined
as Total assets (at) minus common equity (ceq) plus market value of equity (prcc f × csho), as a ratio
of total assets (at). ROA is defined as operating income before depreciation (oibdp) to total assets (at).
Tangibility is defined as total property, plant and equipment (ppent) scaled by total assets (at). Leverage
is long-term debt (dltt) plus debt in current liabilities (dlc), as a ratio of total assets (at). Book-to-market
ratio is book value of common equity (ceq) divided by the market value of common equity (prcc f × csho).
Cash-to-asset is the ratio of cash and short-term investments (che) to total assets (at). For a detailed
variable description see table 1.

The increase in innovation and profitability measures are significant. For example,

a one standard deviation change in data risk is associated with an increase in the

overall patent count of about 7%[= 0.22(e0.243 − 1)], and to an increase in non data-

security related patents of about 5.5% [= 0.22(e0.226 − 1)]. This adaptation is not just

limited to increasing the quantity of patents; Lattanzio and Ma (2023) document that

firms exposed to cyber threats strategically file for simpler patents to accelerate their

innovation cycle.

Do firms file more patents because they accumulate more R&D stock, or do they

also respond by increasing their R&D productivity? To test this, we regress patent-

count variables on lagged data-risk in columns (1) and (2) including the stock of R&D
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capital as an explanatory variable. Therefore, the coefficient on data-risk score gives us

the estimate of how a firm’s patent count changes keeping its innovation input (R&D

capital) unchanged in response to an increase in data-risk. But, in column (3) and (4)

we examine the response of the intangible knowledge stock as defined by Ewens et al.

(2020) and R&D expenditures to an increase in data risk. Although the Poisson model

does not give a significant coefficient for data risk at the conventional 10% significance

level in the regression of knowledge capital, the value is quite close. Moreover, the results

are also confirmed by the regression of R&D stock, which shows a significant rise. The

increase is also economically meaningful. For instance, a one standard deviation change

in data risk is associated with an increase in R&D of about 3% [= 0.22(e0.124 − 1)],

keeping everything else the same. Lastly, a one standard deviation change in data risk

would lead to an increase in firm size by 3.7%[= 0.22(e0.159 − 1)] and to an increase in

profitability by 1% [= 0.22(e0.065 − 1)].

Firm innovation details. How do firms respond with their patenting output

when they face a higher data risk? Which type of patents do they file more? To verify

this, we pinpoint product patents filed by the firms in our sample. Product patents

symbolize both the genesis of new products and enhancements in the quality of existing

ones (Babina et al., 2024). Utilizing the patent claims dataset shared by Ganglmair et

al. (2022), which classifies patent claims into product and process claims, we label a

patent as a product patent if 50 percent or more of its claims are designated as product

claims (Babina et al., 2024), and similarly define process patents.

We examine whether an escalation in data risk triggers an uptick in product patent-

ing. Our testing methodology is twofold: initially, we regress product patent counts,

and subsequently, we regress the ratio of product patent counts to process patent counts.

Table 3 unveils the results of these regressions. Column 2 affirms that a one standard

deviation increase in data risk catalyzes around a 5% increase in product innovation

in terms of citation-weighted patent counts. We see that the effect is indistinguishable

from zero for process patents. Further, we scrutinize whether the surge in product in-

novation supersedes process innovation by analyzing the proportion of product patent

counts in the aggregate. Column 4 reveals that the fraction of product patents ascends

as firms confront elevated data risk.

AI-intensive firms. Next, we study how the above dynamics differ between the

AI-intensive and non-AI-intensive firms. Examining the response of AI-intensive firms

to an increase in data risk is particularly insightful due to these firms’ deep reliance on

data for their core operations and innovation processes. The substantial volume and

sensitivity of data handled by AI firms make them uniquely vulnerable to breaches,

thereby amplifying the impact of such laws on their business practices, growth, and
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Table 3: Regression of citation-weighted patent count by patent classification

Citation weighted count of: Share of product patents in

All patents Product Patents Process Patents citation-weighted count
(1) (2) (3) (4)

L. Data-risk score 0.243* 0.208* 0.0154 0.102**
(0.134) (0.113) (0.133) (0.0428)

L. Firm controls Yes Yes Yes Yes
Firm FE Yes Yes Yes Yes
Year FE Yes Yes Yes Yes
N 13375 11497 10786 8298

Legend: ∗p < 0.10,∗∗ p < 0.05,∗∗∗ p < 0.01. The coefficient estimates are derived from the Poisson pseudo-maximum
likelihood estimation. Standard errors are denoted in parentheses and are clustered at the firm level. Here, N represents
the total number of firm-year observations. The data risk score, and control variables are lagged by one year. The
data-risk score is constructed using the methodology Florackis et al. (2023). Citation-weighted patent count weighs
each patent with the forward citation the patent receives, adjusting for the filing vintage. Non-cyber security patent
is any patent not clasified as a cyber security patent. A patent is classified as a cyber security patent if the USPTO
assigns it CPC codes associated with cyber security. For instance, CPC code G06F21/ is titled ‘Security arrangements
for protecting computers, components thereof, programs or data against unauthorised activity’. Product patents are
defined as those having at least 50% of their claims categorized as product claims according to Ganglmair et al. (2022).
Similarly, process patents have more than half of their claims classified as process claims. Share of product patent
represents the proportion of citation-weighted count of product patents in the total citation weighted-patent count,
which includes both product and process patents. Control variables are lagged and include: Log of total assets, log of
R&D expenditure, Tobin’s Q, Return On Assets, Tangibility, Leverage, Book-to-market ratio, Cash-to-asset ratio. For
variable description see table 1.

innovation strategies. Understanding how these firms navigate legal, operational, and

reputation challenges sheds light on the broader implications of data security regulations

on technological advancement and market dynamics in the data-driven economy.

To understand the differential responses of AI-intensive firms and the non-AI-

intensive firms, we run the regressions similarly to those in the previous section, how-

ever, now we interact the lagged data risk score with the our indicator variable on

AI-intensity. The results are presented in Table 4.

We find that even though AI-intensive firms account only for a minority of the

observations (roughly 39%), our baseline results are driven by them. The regressions

show that data risk score has even sometimes negative effects on innovation in non-

AI-intensive firms, although, the results are never significant. In Appendix C.1 we use

an alternative definition of AI intensive firms developed by Babina et al. (2024) based

on the job postings data. Our results with alternative definition of AI intensive firms

reinforce our findings in Table 4. Appendix Table A.2 provides regression results for a

wider range of firm financial outcomes.

12



Table 4: Regression of firm outcomes by AI-intensity

Citation-weighted Patent Counts R&D Financial Vars

(1) (2) (3) (4) (5) (6) (7)
Overall patent count Product patent Process patent Share of product R&D Log assets ROA

L. Data-risk score×(AI = 0) 0.216 0.132 -0.101 0.0745* 0.0783 0.0798 0.0189
(0.164) (0.144) (0.165) (0.043) (0.0888) (0.0509) (0.0174)

L. Data-risk score×(AI = 1) 0.384** 0.347** 0.161 0.159* 0.198* 0.249*** 0.0811***
(0.174) (0.148) (0.165) (0.069) (0.0816) (0.070) (0.027)

L. Firm Controls Yes Yes Yes Yes Yes Yes Yes
Firm FE Yes Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes Yes
N 13375 11497 10786 8298 21358 20238 20234

Legend: ∗p < 0.10,∗∗ p < 0.05,∗∗∗ p < 0.01. Standard errors are in parentheses. Standard errors are clustered at the firm level. N refers to the total
number of firm-year observations. Data-risk score, and all control variables are lagged by one year. The data-risk score is computed as explained
in D. Knowledge is based on the estimates of knowledge stock net of knowledge depreciation from Ewens et al. (2020). Other control variables
are computed using WRDS CRSP-Compustat merged data. Log R&D expenditures are logged research and development expenditures typically
reported in the income statement, Tobin’s Q is defined as Total assets (at) minus common equity (ceq) plus market value of equity (prcc f × csho),
as a ratio of total assets (at). ROA is defined as operating income before depreciation (oibdp) to total assets (at). Tangibility is defined as total
property, plant and equipment (ppent) scaled by total assets (at). Leverage is long-term debt (dltt) plus debt in current liabilities (dlc), as a ratio
of total assets (at). Book-to-market ratio is book value of common equity (ceq) divided by the market value of common equity (prcc f × csho).
Cash-to-asset is the ratio of cash and short-term investments (che) to total assets (at).

3 Addressing endogeneity

3.1 Staggered DiD using Data Breach Notification Laws

In the previous section we investigated the direct impact of an increase in data

risk on firm innovation activities. However, there exists an endogeneity problem in

assessing the impact of data risk on firm innovation due to intertwined relationships

where data risk and innovation mutually influence each other, making it challenging

to establish a clear cause-and-effect relationship. For instance, while data risks might

hinder innovation by diverting resources toward data security measures, innovative

activities within a firm could also lead to increased data risks due to new technologies

or processes being introduced. Moreover, firms that are more innovative might invest

more in advanced technologies, making them both more susceptible to data risks and

more likely to innovate. This bias can create a spurious relationship between data risk

and innovation if not properly addressed. Factors such as reverse causality, omitted

variables, simultaneity, and sample selection bias complicate the distinction between

the effects of data risk on innovation and vice versa.

In this section, to address this issue, we employ an instrumental variables approach

to disentangle and understand the true causal impact of data risk on firm innovation

activities. Our instrument is the adoption of Data Breach Notification Laws in the

United States, which have been shown to increase firm risk related to data breaches

(Boasiako and Keefe (2021); Liu and Ni (2023); Huang and Wang (2021)).

Data Breach Notification Laws (DBN) in the United States mandate firms to inform

individuals affected by a data breach involving their personal information. Typically,

these laws require companies that experience a data breach to notify affected individuals
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Figure 2: State adoption of DBN laws

Legend: This figure reports the first time a data breach notification law is enacted state-wise specifically
containing data security breach notification provisions. For example, Nevada introduced a data breach
statute in January 2005, but it only required notification provisions for general data provisions in
January 2006; thus, in our sample, it appears as a 2006 adoption of DBN law. Only in Nevada is the
ability to launch a private action (2005) different from the date of DBN law adoption. Other states
that allow for a private cause of action are: Alabama, Alaska, California, Delaware, D.C., Hawaii,
Idaho, Illinois, Louisiana, Maryland, Massachusetts, Minnesota, Hampshire, New Jersey, New Mexico,
New York, North Carolina, North Dakota, Oregon, Rhode Island, South Carolina, Tennessee, Texas,
Washington, and Wisconsin. The source of the data is Perkins Coie LLP (2023).

within a specified time-frame, often ranging from 30 to 90 days after the breach is

discovered. The notification usually includes details about the nature of the breach, the

type of information compromised, and steps individuals can take to protect themselves.

Additionally, some states require organizations to notify state authorities or consumer

reporting agencies depending on the scale and severity of the breach. The laws also

have provisions outlining penalties for non-compliance, aiming to hold organizations

accountable for safeguarding individuals’ personal data. All 50 states have enacted

their own versions of DBNL starting in 2003 with California and ending in 2018 with

Alabama and South Dakota. By 2008, more than half of the states had adopted a DBN

law, as shown in Figure 2.

Our empirical strategy explores the staggered implementation of Data Breach No-

tification Laws in the United States, which increased firm data risk costs, and compares

the innovation activities of firm headquarters located in early-treated states to those

of firm headquarters located in late-treated states. We must mention that multi-state

firms may be affected earlier than the state of their headquarter. If a firm operates in

both treated and untreated states, the policy impact might spill over from treated to

untreated states via the firm’s internal policies, practices, or economic activities, poten-

tially contaminating the control group. Multi-state firms might adjust their operations
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across states in response to the laws, such as reallocating resources to more favorable

regulatory environments, which could affect the estimation of the law’s impact. How-

ever, these concerns work in our direction, in the sense that the estimation provides a

lower-bound for the impact of DBN laws for treated firms relative to a control group

which may have already reacted before. While no instrument is perfect, we believe we

adequately capture firm responses to an increase in data risk costs because we estimate

lower-bounds. In an ideal world, these state laws would have affected only firms in

the respective state only, in which case we would have been able to estimate the true

average effect, and not the lower bound.

We also make sure we take into account the latest critiques in the literature on stag-

gered difference-in-difference estimation. A very recent literature (Baker et al. (2022);

Goodman-Bacon (2021), among others) has uncovered two vital econometric issues in

standard staggered difference-in-difference methods such as linear two-way fixed effects

(henceforth, TWFE): (1) there is a possibility of bias due to ‘forbidden comparisons’,

and (2) there is a possibility of bias and/or inefficiency due to mis-specification in the

presence of right skewed dependent variables. For example, related to the first issue,

standard dynamic two-way fixed effects methods suffer from an aggregation problem of

treatment effects over some valid comparisons but also over some ‘forbidden compar-

isons’. Specifically, TWFE compare already treated units (as controls) with the later

treated units (as treated). When the treatment effects are heterogeneous over time or

across treatment units, this may lead to biased average treatment effects in the treated

(ATT) estimates. The second issue of mis-specification in the presence of right skewed

dependent variables is also problematic. Using a log(1 + y) transformation of the de-

pendent variable, a log-linear, or an inverse hyperbolic sine (IHS) regression produces

inconsistent and biased estimates. Another method to reduce skewness, the negative

binomial regression, does not work with fixed effects.

This leaves us with three models that admit fixed effects and produce unbiased

estimates: linear, Poisson, and rate regressions. The literature has shown that the

Poisson regression is the best because it is the most efficient, having the lowest variance

among these three unbiased strategies. Linear regressions can be admitted, however, in

spite of high variance, because there are no bias and inconsistency issues (Cohn et al.

(2022)). This will make it harder to obtain significant results, but at least the estimates

will be unbiased and consistent with the correct sign. Positive significant results will

suggest that despite the method producing high variance estimates, there is evidence

data breach notification laws have an effect on firm financial and innovation activities.

In our analysis, we use the Borusyak et al. (2022) linear method (henceforth, BJS)

to address the first challenge of ‘forbidden comparisons’. The BJS method is unbiased

and consistent (Cohn et al. (2022)), despite being inefficient. Other popular methods
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that account for ‘forbidden comparisons’ are Callaway and Sant’Anna (2021), Sun and

Abraham (2021), and de Chaisemartin et al. (2020), among others. The BJS estimator

is the most efficient under the assumption of parallel trends because it uses all pre-

treatment data in the estimation and it is robust to cases when treatment effects vary

arbitrarily. The first estimation that we run is a linear difference-in-difference regression

accounting for ‘forbidden comparisons’ using the BJS 3-step imputation representation

for the efficient estimator, explained below:

1. Within the untreated observations only, estimate the λi and δt (by λ̂⋆
i , δ̂t

⋆
) by

OLS in

Yit = λi + δt + ϵit, (2)

where λi is unit (i.e., firm) fixed effect, δt is year fixed effect;

2. For each treated observation with wit ̸= 0, set Ŷit = λ̂⋆
i + δ̂t

⋆
and τ̂ ⋆it = Yit − Ŷit(0)

to obtain the estimate of τit;

3. Estimate the target τw by a weighted sum τ̂ ⋆w =
∑

it witτ̂
⋆
it;

The above model allows us to estimate unbiased and consistent dynamic treatment

effects using panel data on firms i over years t, where Yit is the time t firm-level measure

of innovation, Yit(0) is the period-t stochastic potential outcome of unit i if it is never

treated, Ω1 = {it ∈ Ω|treated = 1} is the set of treated observations (i.e., firms are

headquartered in a state that has adopted a DBN law), Ω0 = {it ∈ Ω|treated = 0} is

the set of untreated (i.e., never-treated and not-yet-treated) observations, τit = E[Yit −
Yit(0)] represents the causal effects on the treated observations it ∈ Ω1, wit are BJS-

derived pre-specified non-stochastic weights that depend on treatment assignment and

timing, but not on realized outcomes.

3.2 AI-intensive firms benefit from higher data risk

We explore the impact of Data Breach Notification Laws (DBN laws) on firm

innovation activities, as proxied by their patenting activity, as well as on firm growth,

cost structure, and profitability.

AI-intensive firms patent more. Figure 3 presents the BJS-weighted dy-

namic heterogeneous treatment effects of citation-weighted patent counts by firm AI-

intensity. The left-hand panel allows heterogeneous pre-trends, while the right-hand

panel assumes common pre-trends for both groups, but estimates ATT separately post-

treatment.

AI-intensive firms exhibit higher overall innovation after the adoption of DBN laws,

as shown in Figure 3. On the other hand, non-AI-intensive firms exhibit lower overall
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innovation after the adoption of DBN laws. This indicates that the adoption of these

laws imposes a high firm cost, which overall discourages innovation. It is to be noted

that both panels provide evidence on the observed counterparts of the parallel trends

assumption and show that we do not have an unnatural experiment.

Figure 3: Citation-weighted patent count by AI-intensity

Legend: This figure plots BJS-weighted dynamic heterogeneous treatment effects of citation-weighted
patent counts by firm AI-intensity pre- and post- treatment. The ‘0’ event is the staggered adoption
of DBN laws across the United States. AI intensive firms are identified using a combination of the
USPTO dataset on AI patents (Giczy et al. (2022)) and the KPSS patent dataset linked to firms
(Kogan et al. (2017)). Moreover, firms that are close to AI patenting firms in the sense of Hoberg
and Phillips (2016) and mirror their AI innovations are also considered AI-intensive. This measure
has the advantage to be constructed from entirely publicly available data and it is different from IT
expenditures.

Patent class: process vs. product. We also examine differences in patent

type (product vs. process patents) after the adoption of DBN laws. We refocus on the

product patents filed by the companies in our study. Product patents signify both the

introduction of new products and enhancements in the quality of existing ones (Babina

et al. (2024)). To identify these patents, we utilize the patent claims dataset provided

by Ganglmair et al. (2022), which categorizes patent claims into product and process

claims. We classify a patent as a product patent if 50 percent or more of its claims

are specified as product claims, following the method described in Babina et al. (2024).

Similarly, we establish the definition of process patents in a similar manner.

Figure 4 presents the BJS-weighted dynamic heterogeneous treatment effects of

citation-weighted patent counts by patent type (i.e., overall, product, and process) for

AI-intensive firms. The left-hand panel allows heterogeneous pre-trends, while the right-

hand panel assumes common pre-trends for both groups, but estimates ATT separately

post-treatment.

As shown in Figure 4, AI-intensive firms exhibit a slight increase in process and

product patenting, although the results are not different or significant except for long-

term horizons. As mentioned previously, linear staggered difference-in-difference meth-
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Figure 4: Citation-weighted patent count by patent type for AI-intensive firms

Legend: This figure plots the effects of citation-weighted cybersecurity patent counts by firm AI-
intensity pre- and post- treatment. The ‘0’ event is the staggered adoption of DBN laws across the
United States. Estimates for AI intensive firms are in blue, while estimates for non-AI intensive firms
are in red. AI intensive firms are identified as described previously.

ods that account for ‘forbidden comparisons’ produce consistent and unbiased estimates,

but they may produce insignificant estimates due to high variances, when the depen-

dent variable is right skewed, which is typical of the patent counts.

AI-intensive firms become more profitable and grow more. We repeat

the analysis, this time looking at the response of firm costs (operating expenses), size

(sales), profitability (return on assets), and leverage to the staggered implementation

of Data Breach Notification laws. The results are shown in Figure 5.

In the staggered difference-in-difference analysis, neither the cost nor the size re-

sponses are to be trusted, because of the strong presence of pre-trends. We include

them because it is important to be transparent about which results hold in the causal

estimation and which do not. On the other hand, we can confidently observe that

AI-intensive firms become more profitable after the DBN laws. Moreover, they do not

increase their leverage, while non-AI-intensive firms significantly increase their leverage

to survive after the adoption of DBN laws.

3.3 Mechanism: inventor network and in-house advantage

Common inventors. In Figure 6, we observe that the share of data security in-

ventors in non-data security patent teams is consistently 7-8 times larger in AI-intensive
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Figure 5: Financial variables by AI intensity

Legend: This figure plots BJS-weighted dynamic heterogeneous treatment effects of select financial
variables. The ‘0’ event is the staggered adoption of DBN laws across the United States. Return on
assets is defined as ratio of Operating income before depreciation to total assets. Leverage is defined
as long-term debt + debt in current liab to total assets ratio.

firms relative to non-AI-intensive firms. This indicates a significant cross-pollination of

expertise and innovation between data security and other technological domains within

firms that heavily utilize AI. This phenomenon suggests that AI-intensive firms not

only prioritize data security to protect their data-rich environments, but also leverage

the specialized knowledge of data security professionals to enhance innovation across

different areas of their business. It could imply that these firms recognize the strate-

gic value of integrating data security insights into broader product development and

innovation processes, leading to more robust and secure technological solutions.

This interdisciplinary collaboration likely fosters a culture of innovation that is

attuned to the complexities of the digital age, where security and functionality are in-

creasingly intertwined. It also points to the potential for AI-intensive firms to drive

industry standards and practices in data security, setting benchmarks that could influ-

ence the wider market, including non-AI-intensive firms.
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Figure 6: Common inventor network by AI intensity

Legend: This figure plots the proportion of data security (CS) inventors within non-data security
patent teams, calculated at the patent level and averaged annually across AI-intensive and Non-AI-
intensive firms. Data security inventors are defined as those who have contributed to the development
of at least one cyber security-related patent for the same assignee firm as the non-data security patent
in question. Cyber security patents are identified through CPC classification codes as assigned by the
USPTO as described in the main text.

Utilizing existing capabilities or developing new ones? AI-intensive firms

might initially leverage existing capabilities to innovate in data security and prod-

uct/process spaces post-data breach regulations. However, the complexity and speci-

ficity of these regulations might often necessitate new capabilities, leading to an in-

creased share of common inventors to meet advanced data security demands. Therefore,

we also investigate whether AI-intensive firms already have the capability to innovate

both in the data security space and the product/process space, or whether they increase

their share of common inventors significantly after the DBN laws.

Figure 7 suggests that AI-intensive firms slightly and temporarily increase the

share of common inventors on both data and non-data security patents. The effect is

not persistent for the full sample, but it is more pronounced for superstar firms.
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Figure 7: Share of cybersecurity innovators in patent teams

(a) Full Sample (b) Top 500 firms (2000 vintage)

Legend: This figure illustrates the impact on the proportion of cybersecurity inventors within patent
teams, calculated at the patent level and averaged annually at the firm level. Cybersecurity inventors
are defined as those who have contributed to the development of at least one cybersecurity-related
patent for the same assignee firm as the non-cybersecurity patent in question. Cybersecurity patents
are identified through CPC classification codes as assigned by the USPTO, with further details provided
in the main text.Top 500 firms are based on total sales in the year 2000, referred to as ”superstar firms,”
adopting the terminology from Autor et al. (2020). The ’event year 0’ corresponds to the staggered
implementation of Data Breach Notification (DBN) laws across the United States. AI-intensive firms
are identified based on criteria outlined earlier in the text.

More knowledge transfer. AI-intensive firms likely excel in transferring knowl-

edge between data security and other domains due to their inherent need for robust data

handling and protection mechanisms. The core operations of these firms, which involve

processing vast amounts of data through advanced algorithms, naturally integrate data

security innovations to enhance AI system efficiency and reliability. This integration

fosters a cross-pollination of ideas, where advancements in data security can directly

influence and improve AI technologies and vice versa. For example, breakthroughs in

encryption can lead to the development of more secure AI models, demonstrating a

seamless flow of knowledge between domains. Additionally, the push for explainable

and ethical AI demands that data security is embedded within AI algorithms from the

ground up, further blurring the lines between specialized innovations. This dynamic

environment creates a synergy where knowledge transfer is not just beneficial, but es-

sential for the advancement of both fields. We go further and test whether AI-intensive

firms exhibit more knowledge transfer between data security and other domains.

As shown in Figure 8, the share of self -data security patent citations in non-data

security patents for AI-intensive firms increases on impact, while the same share for

non-AI-intensive firms stays flat. This suggests that AI-intensive firms cite their own

data security (CS) patents much more often in their other patents after the adoption

of DBN laws.
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Figure 8: Share of self -cybersecurity patent citations by AI-intensity

Legend: This figure plots the effects of the share of self -cybersecurity patent citations by firm AI-
intensity pre- and post- treatment. The ‘0’ event is the staggered adoption of DBN laws across the
United States. Estimates for AI-intensive firms are in blue, while estimates for non-AI-intensive firms
are in red. AI-intensive firms are identified as described previously.

No increase in data-security innovation. AI-intensive firms could be partic-

ularly motivated to enhance their data security patenting in response to data breach

notification laws due to their reliance on large volumes of sensitive data. Strengthening

data security measures could help these firms comply with stringent legal requirements,

protect against reputation damage from potential breaches, and secure competitive ad-

vantages. Therefore, we next investigate whether AI-intensive firms increase their data

security patenting in response to the adoption of DBN laws.

Figure 9: Citation-weighted cybersecurity patent count by AI-intensity

Legend: This figure plots the effects of citation-weighted cybersecurity patent counts by firm AI-
intensity pre- and post- treatment. The ‘0’ event is the staggered adoption of DBN laws across the
United States. Estimates for AI-intensive (AI) firms are in blue, while estimates for non-AI-intensive
(non-AI) firms are in red. AI intensive firms are identified as described previously.

Figure 9 presents the BJS-weighted dynamic heterogeneous treatment effects of

citation-weighted data security patent counts by firm AI-intensity (AI). The left-hand
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panel allows heterogeneous pre-trends, while the right-hand panel assumes common

pre-trends for both groups, but estimates ATT separately post-treatment.

As shown in Figure 9, AI-intensive firms exhibit a slight increase in data security

patenting, although the results are not significant except for long-term horizons. The

insignificance of the results is due to there being very few firms overall that produce data

security patents. Our analysis suggests that, while AI-intensive firms do not increase

their overall issuance of data security (CS) patents, they increase their share of self -

data security (CS) patent citations in their other patents after the adoption of DBN

laws. This suggests a strong knowledge transfer from their data protection operations

to their product and service development.

In-house data security firms. Lastly, we explore whether, within the AI-

intensive firm category, it is those firms which develop data security in-house by using

their own inventors both for data security innovation and for non-data security innova-

tion that respond the most.

Figure 10: Citation-weighted patent count by in-house data security × AI-intensity

Legend: This figure plots BJS-weighted dynamic heterogeneous treatment effects of citation-weighted
cybersecurity patent counts by firm’s choice of in-house vs. external cybersecurity protection interacted
with AI-intensity pre- and post- treatment. The ‘0’ event is the staggered adoption of DBN laws
across the United States. Estimates for in-house cybersecurity (in-house CS) firms are in blue, while
estimates for non-in-house cybersecurity (non-in-house CS) firms are in red. In-house cybersecurity
firms are identified if they cite at least one of their own cybersecurity patents in their general patents.
AI-intensive firms are identified as mentioned previously.

Figure 10 presents the BJS-weighted dynamic heterogeneous treatment effects of

citation-weighted overall patent counts by firm AI-intensity (AI) interacted with in-

house data security (in-house CS) protection choices. The left-hand panel allows het-

erogeneous pre-trends, while the right-hand panel assumes common pre-trends for both

groups, but estimates ATT separately post-treatment. As shown in Figure 10, firms

that use both in-house data protection and are AI-intensive exhibit a slight (temporary)

increase in data-security patenting.
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3.4 Cohort and calendar year effects

Cohort effects. We also examine whether firm innovation changes after the

adoption of DBN laws depending on the cohort. This could happen if later treated

cohorts anticipate DBN law adoption in their state. In that case, the estimates will

be smaller for later treated cohorts. This could also happen if the nature of the data

risk has changed over time in such a way that first movers may have had an advantage.

Moreover, if the data risk has changed in nature and severity over the last twenty years,

it could be that it has become too costly for later treated cohorts to invest resources

in growth and innovation because too many resources had to go directly into managing

the data risk. While we cannot separate these mechanisms empirically, they could all

be at play at the same time.

Figure 11: Treatment effects by DBN cohort

Legend: This figure plots treatment effects by cohort for AI-intensive and non-AI intensive firms. A
cohort for a firm is the year in which the state it is incorporated in implements DBN laws. AI intensive
firms are identified as mentioned previously. Estimates are average treatment in the first three years
after DBN law implementation.

Figure 11 shows that the very earliest treated AI-intensive cohorts responded the

most. These effects are averaged across all the post-treatment years. We explain the

effects being concentrated in the early part of the sample as due to the multi-state

impact of these Data Breach Notification Laws. Firms operating across multiple states

might experience the effects of regulatory changes before their headquarters state does.

When a company is active in both regulated and non-regulated areas, policy effects

could extend from the regulated to the non-regulated regions through the company’s

internal strategies, actions, or economic behavior, potentially influencing the compari-

son group. Such firms may alter their operational strategies across states in reaction to
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new regulations, including shifting resources to regions with more lenient regulations,

which might influence the accuracy of assessing the regulation’s effects. Nonetheless,

these issues actually support our analysis, as they suggest that our estimates represent

a minimum effect of Data Breach Notification (DBN) laws on regulated firms compared

to a comparison group that might have adapted in anticipation. Although no method is

flawless, we are confident that our approach effectively accounts for corporate reactions

to increased costs associated with data risk, by focusing on estimating minimum effects.

Calendar year effects. In Figure 12 we explore the DBN law effects in a partic-

ular year. The period 2004 to 2008 is the most intense period in terms of increase in

firm innovation activities in response to the increase in the data risk.

Figure 12: Treatment effects by calendar year

Legend: This figure plots treatment effects by calendar year for AI-intensive and non-AI intensive
firms. Each estimate is the sum of effects of all treated cohorts up to and including that year in that
particular year. So for instance 2008 will contain the effect for 3rd year since the firms treated in 2005,
2nd year effects for firms treated in 2006 and so on. Treatment effects up to 5 years contribute to the
calculations. AI intensive firms are identified as mentioned previously.

Similar to the cohort effects, companies across multiple states might feel policy im-

pacts earlier, influencing their operations and possibly affecting control group compar-

isons. Adjustments in response to DBN regulations can skew the true effect estimation

to the earlier sample, as seen in Figure 12.

3.5 Sub-sample analysis

Superstar firms. We also examine whether the effects are concentrated in super-

star firms and we find that size does not drive the results. Superstar firms, characterized

25



by significant market share, high profitability, and often global reach, have increasingly

leveraged advanced technologies, including artificial intelligence (AI), to maintain and

enhance their market positions. These firms often have the resources and strategic mo-

tivations to invest in AI-intensive processes. However, as shown in Figure 13, within the

universe of superstar firms, it is the AI-intensive firms that display a positive reduced-

form correlation between data risk and firm outcomes. Non-AI-intensive superstar

firms experience negative effects. We find similar results in reduced form regressions

restricted to superstar firms, as shown in the appendix Figure A.3.

Figure 13: Citation-weighted patent count within superstar firms: by AI intensity

Legend: This figure plots BJS dynamic heterogeneous treatment effects on citation-weighted patent
counts by firm AI-intensity pre- and post- treatment. The ‘0’ event is the staggered adoption of DBN
laws across the United States. AI intensive firms are identified using a combination of the USPTO
dataset on AI patents (Giczy et al. (2022)) and the KPSS patent dataset linked to firms (Kogan et al.
(2017)). Moreover, firms that are close to AI patenting firms in the sense of Hoberg and Phillips (2016)
and mirror their AI innovations are also considered AI-intensive. This measure has the advantage to
be constructed from entirely publicly available data and it is different from IT expenditures. Analysis
conducted on the highest 500 firms in terms of total sales for a given vintage year. Where vintage year
could be 2000 or 2007. These firms are referred to as ‘superstar firms,’ following the terminology used
by Autor et al. (2020).

Finance and tech firms. Lastly, we examine which industries exhibit the strongest

effects within the universe of AI-intensive firms. Interacting our lagged data-risk score

measure with an industry dummy for each of the NAICS industry classification cate-

gories, we observe an increase in innovation activities and profitability for AI-intensive

firms that offer financial and tech products (belonging either to ‘Finance and Insurance’,

or to ‘Manufacturing’, as shown in Figure 14.

In Appendix Figures A.1 and A.2 , we show the results for all the NAICS industry

classifications. We observe strong positive effects for firms in ‘Manufacturing’, ‘Retail’,

and ‘Finance and Insurance’, and negative effects for firms in ‘Health care’ and ‘Ac-

commodation’, with no significant results for other industry classifications. Upon closer

inspection, firms in ‘Manufacturing’ and ‘Retail’ are high-tech firms such as Amazon
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and Apple, whose firm boundaries have been expanding rapidly in the last 20 years.

They not only offer retail products, but also tech and financial products.

Figure 14: Citation-weighted patent count: by AI-intensity in select industries

Legend: This figure plots BJS dynamic heterogeneous treatment effects of citation-weighted patent
counts. Industry refers to the North American Industry Classification System (NAICS) at the two-
digit level. The ‘0’ event is the adoption of DBN laws across the United States. AI-intensive firms are
identified as explained in Section 2. The figure plots the estimates only for those industries where a
separate estimation was possible for the-AI intensive firms.

The differential response to increased data risk across industries, particularly be-

tween the financial, insurance, tech sectors, and the health, services and accommoda-

tion sectors, reflects a complex interplay of factors. Financial and insurance industries,

alongside tech firms, are fundamentally data-centric and technology-driven. For these

sectors, heightened data risk prompts strategic investments in advanced data security

measures and data management technologies, transforming potential vulnerabilities into

catalysts for innovation, efficiency, and market differentiation. These industries are also

buoyed by substantial financial resources and a regulatory environment that, while de-

manding, incentivizes robust data protection practices, making them more resilient and

adaptive to data-related challenges.

In stark contrast, the health and accommodation sectors face more daunting ob-

stacles when confronting increased data risks. Stringent regulations, such as HIPAA in
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healthcare, impose rigorous data privacy obligations, turning enhanced data risks into

significant compliance burdens. These industries, less focused on data management

and more on service delivery, often lack the technological infrastructure and expertise

to navigate the evolving landscape of data threats effectively. The result is a pro-

nounced vulnerability to operational disruptions and financial liabilities arising from

data breaches, without the offsetting advantages of technological innovation or new

revenue streams that tech-savvy sectors enjoy. This divergence underscores the critical

need for industry-specific strategies in addressing and mitigating data risks.

4 A model of big data, data risk and data security

4.1 Efficient data use and security risks

We consider a competitive industry. Time is discrete and infinite. There is a

continuum of firms indexed by i. Each firm i produces a good of quality Ai,t.

yi,t = Ai,t. (3)

Because the single input employed in production is one unit of capital, variable Ai,t also

represents the real value of the producer’s output.

Quality Ai,t depends on a firm’s choice of a production technique ai,t, which can be

interpreted as managing inventories, or learning about consumer tastes. In each period,

and for each firm, there is one optimal technique with a persistent and a transitory

component: θi,t+ ϵa,i,t. The persistent component θi,t is unknown and follows an AR(1)

process, where ηi,t is i.i.d. across time and firms:

θi,t = θ̄ + ρ(θi,t−1 − θ̄) + ηi,t. (4)

Firms have a noisy prior about the realization of θ0. The transitory shock ϵa,i,t is

i.i.d. across time and firms and is unlearnable. Deviating from that optimum incurs a

quadratic loss in quality:

Ai,t = Āi − (ai,t − θi,t − ϵa,i,t)
2. (5)

Quality Ai,t is a strictly decreasing function of the difference between the firm’s chosen

production technique, ai,t, and the optimal technique θi,t + ϵa,i,t. A decreasing function

means that techniques far away from the optimum result in inferior quality goods.
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Data as by-product. Data helps firms infer θi,t. The term ϵa indicates that firms

are incapable of fully inferring θi,t at the end of each period, making the accumulation

of past data a valuable asset. If a firm knew the current value of θi,t, it would maximize

quality by setting ai,t = θi,t.

In our model, similar to Farboodi et al. (2019) and Farboodi and Veldkamp (2021),

data is a by-product of economic activity. Each firm passively obtains z data points as

a by-product of production. Each data point m ∈ [1 : z] reveals

si,t,m = θi,t + ϵi,t,m, (6)

where ϵi,t,m is i.i.d. across firms, time, and signals. For tractability, we assume that all

the shocks are normally distributed: fundamental uncertainty is ηi,t ∼ N(µ, σ2
θ), signal

noise is ϵi,t,m ∼ N(0, σ2
ϵ ), and the unlearnable quality shock is ϵa,i,t ∼ N(0, σ2

a).

Data risk. Data is subject to data risk or data incident risk, meaning that it can

be lost and, in that case, it can no longer be used for prediction. We denote the degree

of data risk by ϑ ∈ [0, 1]. With probability ϑ, a firm risks losing all its data, while with

probability (1 − ϑ) the firm keeps its data generated as a by-product of activity, zσ2
θ .

Thus, the data endowment under data risk is (1− ϑ)zσ2
ϵ .

Data security. A key assumption of our model is that firms are heterogeneous

in their capability to protect themselves against data risk. High capability (H-type)

firms can develop in-house data security protection, while low capability (L-type) firms

cannot develop this security internally, but can buy it externally from H-type firms.

The essential distinction between in-house and external data security is that inter-

nal data security can also be used to innovate, apart from providing protection against

data loss and destruction. This is because in-house data security is typically more easily

integrated with existing R&D and product development systems, and tends to be more

tailored for a firm’s specific business needs. In the model, innovation is modeled as an

increase in the productivity ceiling Ai.

Low-type capability firms do not generate in-house security, but they can buy it

externally from High H-type firms. In this case, they can only use it to mitigate the

impact of data risk and not to innovate (i.e., they can use the security software for

protecting their production process, but their R&D department does not know and is

unable to use the security software for product improvements).

Let mH represent the share of H-type firms. Aggregate output is then the sum of
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weighted outputs for the two types of firms:

Yt =

∫ 1

0

Ai,tdi = mHAH,t + (1−mH)AL,t. (7)

Let τt ≥ 0 represent the investment in in-house data security made by an H-type

firm. Let also δt ≥ 0 represent the amount of external data security bought by a L-type

firm from the H-type firm at an endogenous price denoted by π. Given the firm shares,

the amount of protection that is sold by an H-type producer must be 1−mH

mH
δt. In this

case, on the aggregate H-type firms sell (1 − mH)δt, which is precisely the value of

protection purchased by L-type firms.

Non-rivlary. When a company invests in data security measures such as firewalls,

encryption protocols, or security software, these measures protect the company’s data

and systems without necessarily reducing their effectiveness for other companies that

may use similar security tools. This suggests that data security is (partially) non-rival.

Thus, we assume that when an H-type firm sells a given amount of data protection,

it retains, for its own use, a share 1− ι of such protection, where ι ∈ (0, 1). Therefore,

the H-firm that invests τt in data security and trades 1−mH

mH
δt ≤ τt, will retain, for its

own use, τt − ι1−mH

mH
δt. This amount of data protection can be used to mitigate the

impact of data risk, transforming the term (1− ϑ)z into

[
1− ϑe

−
(
τt−ι

1−mH
mH

δt
)]

z. Note

that if τt − ι1−mH

mH
δt = 0, there is no use of data protection, and the effect of data risk

over data is maximum; if τt − ι1−mH

mH
δt → ∞, then there is full protection, and the

original data endowment maintains its integrity.

Firm problem. With this in mind, we can write firm i’s optimization problem,

where i ∈ {H,L}. As mentioned previously, the H-type firm can use the investment in

data security to enhance the potential quality of the produced good. Hence, constant

Ai is replaced, for this type of firm, by the term Ae
b
(
τt−ι

1−mH
mH

δt
)
.

An H-type firm chooses a sequence of quality decisions ai,t, in-house data security

investments τt, and how much data security δt to sell at price πt to maximize:

E0

∞∑
t=0

βt

[
Ae

b
(
τt−ι

1−mH
mH

δt
)
− (ai,t − θi,t − ϵa,i,t)

2 − τt +
1−mH

mH

δtπt − r

]
(8)

An L-type firm chooses a sequence of quality decisions ai,t, and how much external
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data protection δt to buy at price πt to maximize:

E0

∞∑
t=0

βt
[
Ā− (ai,t − θi,t − ϵa,i,t)

2 − δtπt − r
]

(9)

Note the differences between the two expressions: innovation from data security is

possible for the H-type firm but not for the L-type firm ; the cost of investment in data

security is present only in the H-type firm expression; protection trading is a revenue

for those who sell it and a cost for those who buy it.

The stock of knowledge. The information set of firm i ∈ {H,L} when it chooses

its technique ai,t is Ii,t = {Ii,t−1, {si,t−1,m}zm=1, Ai,t−1} where z is the net numbers of

points added each period as a by-product of economic activity. To make the problem

recursive, we construct a helpful summary statistic for this information, called the ‘stock

of knowledge.’ A firm’s stock of knowledge is the inverse of its posterior variance, or in

other words, the precision of firm i’s forecast of θt, which is formally:

Ωi,t = E
[
(E[θt|Ii,t]− θt)

2
]−1

(10)

Note that the interior of the expression is the difference between a forecast, E[θt|Ii,t] and

the realized value, θt, and is therefore a forecast error. An expected squared forecast

error is the variance of the forecast. It is also called the variance of θt, conditional

on the information set Ii,t, or the posterior variance. The inverse of a variance is a

precision. Thus, this is the precision of firm i’s forecast of θt.

A law of motion for knowledge The state variables of the recursive problems in (8)

and (9) are the prior mean and variance of beliefs about θi,t−1, and the new data points.

Taking a first order condition with respect to the technique choice, we find that the

optimal technique is a∗i,t = Ei[θi,t|Ii,t]. Given the posterior variance of beliefs in (10),

the expected quality for the H-type and the L-type firms, respectively, are

E[AH,t] = Ae
b
(
τt−ι

1−mH
mH

δt
)
− Ω−1

H,t − σ2
a (11)

E[AL,t] = A− Ω−1
L,t − σ2

a (12)

Deriving the law of motion for the stock of knowledge, Ωi,t, requires adding new data

from two sources: 1) data as a by-product of production, which is subject to data risk

but can be protected through data security and 2) data inferred from a firm observing

its own quality at the end of a production period. These two pieces of information are

incorporated into beliefs using Bayes’ law.

31



Each firm i ∈ {H,L} observes zi = z data points as a by-product of economic

activity. This means that the sum of the precisions of all the signals (data points),

ziσ
−2
ϵ is part of the stock of knowledge. Both types of firms, the H-type and the

L-type, are subject to data risk, which can be reduced through protection. The H-

type firm reduces data risk by the amount of data security it retains for its own use,

τt − ι1−mH

mH
δt ≤ τt, after it invests τt in data security and trades 1−mH

mH
δt ≤ τt data

protection which is non-rival. This amount of data protection can be used to mitigate

the impact of data risk, implying that the weighted sum of precisions of data points

obtained as a byproduct of economic activity, subject to data risk and after optimal

data security decisions, is

[
1− ϑe

−
(
τt−ι

1−mH
mH

δt
)]

zσ−2
ϵ . The L-type firm buys protection

in amount δt and, therefore, the weighted sum of precisions of data points obtained as

a byproduct of economic activity, subject to data risk and after optimal data security

decisions, is
[
1− ϑe−δt

]
zσ−2

ϵ .

Moreover, each firm i ∈ {H,L} also learns from seeing its own realization of quality

Ai,t at the end of each period t, with precision σ−2
a . This information is different from

the produced data because the quality realization is a signal about θt, not about θt+1.

Therefore, σ−2
a gets added to the time-t stock of knowledge and depreciates, just like

other time-t knowledge that the firm takes with it to time t+ 1.

Lemma 1 expresses the dynamic knowledge constraint that puts together data

depreciation and data inflows.

Lemma 1 The dynamic knowledge constraint is, for the H-type firm:

ΩH,t+1 =
[
ρ2(ΩH,t + σ−2

a )−1 + σ2
θ

]−1
+

[
1− ϑe

−
(
τt−ι

1−mH
mH

δt
)]

zσ−2
ϵ (13)

The L-type firm buys protection in amount δt and, therefore,

ΩL,t+1 =
[
ρ2(ΩL,t + σ−2

a )−1 + σ2
θ

]−1
+
(
1− ϑe−δt

)
zσ−2

ϵ (14)

In this last case, if the firm buys no protection, data loss risk occurs in a share ϑ; if it

buys infinite protection, it faces no data risk.

The demonstration for this lemma and all subsequent lemmas and propositions can

be found in Appendix E. The proof involves utilizing Bayes’ law, or alternatively, the

Ricatti equation within a modified Kalman filter framework. Given the similarity in

information structure to that of a Kalman filter, the sequence of conditional variances

(or conversely, their inverses, the sequence of precisions) is deterministic.
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4.2 Recursive representation of the firm’s problem, equilib-

rium and steady state

Lemma 2 proceeds with the recursive representation of the expected firm value.

Lemma 2 The optimal sequences of in-house data security investments {τt} and data

security sales {δt} solve the following current-value Hamiltonian function for the H-type

firm:

HH,t(ΩH,t, τt, δt, pH,t) = Ae
b
(
τt−ι

1−mH
mH

δt
)
− Ω−1

H,t − σ2
a − τt +

1−mH

mH

δtπt − r+ (15)

+ βpH,t+1(ΩH,t+1 − ΩH,t)

where ΩH,t+1 =
[
ρ2(ΩH,t + σ−2

a )−1 + σ2
θ

]−1
+

[
1− ϑe

−
(
τt−ι

1−mH
mH

δt
)]

zσ−2
ϵ (16)

and pH,t is the shadow-price or co-state variable associated with the state variable, and

the transversality condition is lim
t→∞

ΩH,tβ
tpH,t = 0.

The optimal sequence of data security purchases {δt} solves the following current-

value Hamiltonian function for the L-type firm:

HL,t(ΩL,t, τt, δt, pL,t) = A− Ω−1
L,t − σ2

a − δtπt − r + βpL,t+1(ΩL,t+1 − ΩL,t) (17)

where ΩL,t+1 =
[
ρ2(ΩL,t + σ−2

a )−1 + σ2
θ

]−1
+
(
1− ϑe−δt

)
zσ−2

ϵ (18)

and pL,t is the shadow-price or co-state variable associated with the state variable, and

the transversality condition is lim
t→∞

ΩL,tβ
tpL,t = 0.

See the Appendix for the proof. This result greatly simplifies the problem by

collapsing it to a deterministic dynamic system involving only one state variable, Ωi,t,

where i = H or i = L. The reason we can do this is that quality Ai,t depends on the

conditional variance of θi,t and because the information structure is similar to that of a

Kalman filter, where the sequence of conditional variances is generally deterministic.4

This Kalman system has a 2-by-1 observation equation, with ni,t = z signals about θi,t

and one signal about θi,t−1. The signal about θi,t−1 comes from observing last period’s

output, which reveals quality Ai,t−1, which, in turn, reveals θi,t + ϵa,i,t.
5

4The optimal choice of technique is always the same: a∗i,t = Ei[θi,t|Ii,t]. The way ai,t enters into

expected quality Ai,t is through E[(E[θi,t|Ii,t]− θi,t)
2], which is the conditional variance Ωi,t. We can

replace the entire sequence of a∗i,t with the sequence of variances, which is deterministic here because
of normality. The only randomness in this model comes from the signals and their realizations, but
they never affect the conditional variance, since normal means and variances are independent. Thus,
given Ωi,t−1, Ωi,t is a sufficient statistic for ni,t = z and Ωi,t+1. The mean E[θi,t|Ii,t] is not a state
variable because it only matters for determining ai,t and does not affect anything else.

5Firms observe (θi,t + ϵa,i,t)
2. For tractability, we assume that firms know whether the root is

positive or negative. For the derivation of the belief updating equations, see the Appendix.
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Equilibrium. From the Hamiltonian functions, and assuming all variances are equal

such that σ2
θ = σ2

a = σ2
ϵ = σ2, we can derive the equilibrium conditions.

∂HH,t

∂τt
= 0 ⇒ βpH,t+1 =

1− bAe
b
(
τt−ι

1−mH
mH

δt
)

ϑe
−
(
τt−ι

1−mH
mH

δt
)
zσ−2

(19)

∂H

∂δt
= 0 ⇒ βpH,t+1 =

πt − bAιe
b
(
τt−ι

1−mH
mH

δt
)

ϑιe
−
(
τt−ι

1−mH
mH

δt
)
zσ−2

(20)

βpH,t+1 − pH,t = − ∂H

∂ΩH,t

⇒
[
ρ+

σ2

ρ
(ΩH,t + σ−2)

]−2

βpH,t+1 = pH,t − Ω−2
H,t (21)

From (32) and (33), a constant optimal trading price, which is simply πt = ι,

emerges. The price of protection is directly associated with the degree of its own non-

rivalry. If protection is completely non-rival (i.e., ι = 0), then its price is zero; if

protection is fully rival, its price is 1.

For the L-type firm, the equilibrium conditions are:

∂H

∂δt
= 0 ⇒ βpL,t+1 =

πt

ϑe−δtzσ−2
(22)

βpL,t+1 − pL,t = − ∂H

∂ΩL,t

⇒
[
ρ+

σ2

ρ
(ΩL,t + σ−2)

]−2

βpL,t+1 = pL,t − Ω−2
L,t (23)

Steady-state. The steady-state of the economy is characterized by a level of data

security held by H-type firms after trade given by:

τ ∗ − ι
1−mH

mH

δ∗ = − ln

(
z − ΞH

ϑz

)
(24)

where ΞH ≡
{
Ω∗

H − [ρ2(Ω∗
H + σ−2)−1 + σ2]

−1
}
σ2. At steady-state, the amount of pro-

tection bought by L-type firms is given by:

δ∗ = − ln

(
z − ΞL

ϑz

)
(25)

with ΞL ≡
{
Ω∗

L − [ρ2(Ω∗
L + σ−2)−1 + σ2]

−1
}
σ2.

Figure (15) plots the equilibrium knowledge levels of this economy. The demand

and supply of knowledge for H-type firms intersect at a higher level than the demand

and supply of knowledge for L-type firms. The demand of L-type firms is flatter and
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more inelastic than the demand of H-type firms. Thus, in equilibrium, H-type firms

end up with a higher level of knowledge than L-type firms.

Figure 15: Steady-state stocks of knowledge

Legend: The figure shows the equilibrium levels of knowledge for H-type firms (in orange on the
right) and L-type firms (in green on the left) as a function of the data risk index, ϑ, on the X-axis.
H-type firms achieve a higher level of steady-state knowledge than L-type firms. The parameters
used in this simulation are the following: z = 10, ρ = 0.9, σ2

θ = σ2
a = σ2

ϵ = σ2 = 2.5, mH = 1/3,
ι = 0.6, β = 0.96, ϑ = 0.75, A = 25, b = 0.035, and r = 1.

Table 5 illustrates the steady-state equilibrium of this economy. In the steady state,

the H-type firms invest 1.296 in in-house data protection, sell 0.130 data protection to

L-type firms and remain with a data protection level of 0.335, which is higher than the

L-type’s level of protection of 0.130. In steady-state, knowledge, quality and profits are

all higher for the H-type firm than for the L-type firm.

Table 5: Steady-state

Parameter Symbol Steady-state
Knowledge H-type Ω⋆

H 3.224
Knowledge L-type Ω⋆

L 1.609
In-house data protection τ ⋆ 1.296
Data security traded δ⋆ 0.130
Quality H-type A∗

H 23.207
Quality L-type A∗

L 21.879
Profits H-type Π∗

H 21.068
Profits L-type Π∗

L 20.800
Total output Y 22.321

Legend: The parameters used in this simulation are the following: z = 10, ρ = 0.9, σ2
θ = σ2

a = σ2
ϵ = σ2 = 2.5,

mH = 1/3, ι = 0.6, β = 0.96, ϑ = 0.75, A = 25, b = 0.035, and r = 1.
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4.3 Results and implications

Throughout this section, we use a numerical example to highlight some model

implications. These results comprise the impact of data risk on firm profits, aggregate

output, and on the timing of the decision to engage in data security protection.

4.3.1 Data protection helps firms hedge data risk

Our first numerical experiment studies how an increase in firm data risk changes

firm profitability. We start by simulating firm profits in a model with no data protection.

Then, we turn on data security protection for both types of firms to observe how their

profits change. To compute the change in firm profitability when firms face increasingly

higher data risk, we change the data risk index ϑ continuously from no data risk (ϑ = 0)

to maximum data risk (ϑ = 1) and re-compute the steady state. Figure 16 shows that

the profits of H-type firms with data security fall by less than the profits of L-type

firms as data risk increases. Moreover, the profits of both types of firms with no data

security protection at all drop dramatically as the overall level of data risk increases in

the economy.

Figure 16: Profits as a function of data risk

Legend: This figure plots the steady-state profit levels for H-type firms with (in orange, Π⋆
H,sec) and

without data protection (in green, Π⋆
H,cy), and L-type firms with (in yellow, Π⋆

L,sec) and without data
protection (in green, Π⋆

L,cy), as a function of the data risk index, ϑ, on the X-axis. The parameters
used in this simulation are the following: the data endowment z = 10, the coefficient of the AR(1)
process ρ = 0.9, all variances σ2

θ = σ2
a = σ2

ϵ = σ2 = 2.5, the share of H-type firms mH = 1/3, the
non-rivalry parameter ι = 0.6, the inter-temporal discount factor β = 0.96, the maximum quality
threshold A = 25, the innovation externality b = 0.035, and the cost of capital r = 1.

Without protection, the profits (in green) of H-type firms are the same as of L-type

firms and they decrease in the data risk index ϑ. Initially, the profits without data secu-

rity decline slowly, but after the second threshold, they decline rapidly because the cost
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incurred in knowledge loss increases exponentially with data risk without protection.

With protection, however, the profits of H-type firms (in orange) are always higher

than of L-type firms (in yellow). As data risk increases, the profits of H-type firms

decrease at a smaller rate than of L-type firms (in yellow). An interesting observation

is that initially, with protection, the profits of H-type firms first increase because the

benefit of protection (which is a data security-driven innovation) is initially higher than

the cost of cyber crime.

4.3.2 High capability firms engage in protection at lower risk levels than

L-type firms

What governs the steady-state size of firms is firm data security levels as a function

of the data risk index, ϑ, plotted in Figure 17.

Figure 17: Data security as a function of data risk

Legend: The figure plots in-house data security investment, τt, by H-type firms (in orange), and
external data security acquisition by L-type firms (in yellow). Notice the two critical thresholds at
which in-house data security and external data security become strictly positive. The parameters
used in this simulation are the following: the data endowment z = 10, the coefficient of the AR(1)
process ρ = 0.9, all variances σ2

θ = σ2
a = σ2

ϵ = σ2 = 2.5, the share of H-type firms mH = 1/3, the
non-rivalry parameter ι = 0.6, the inter-temporal discount factor β = 0.96, the maximum quality
threshold A = 25, the innovation externality b = 0.035, and the cost of capital r = 1.

Evaluating the model for different values of ϑ, and letting all other parameters be as

before, we find two critical thresholds: at ϑ = 0.6583, optimal data security purchases,

δ∗, changes from negative to positive, implying that L-type firms buy protection only

for ϑ > 0.6583. For ϑ ≤ 0.6583, H-type firms have to choose whether to invest in

protection, knowing that they cannot sell data protection. H-type firms are indifferent

between investing in protection or not at a critical threshold level of ϑ = 0.3. For

ϑ > 0.3, H-type firms invest in protection, otherwise they do not.
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4.3.3 Data risk can also sustain growth

Surprisingly, while one expects aggregate economic output to decrease in data risk,

there is a counteracting force that works especially at high levels of risk. This is shown

in Figure 18.

Figure 18: Output as a function of data risk

Legend: The parameters used in this simulation are the following: the data endowment z = 10, the
coefficent of the AR(1) process ρ = 0.9, all variances σ2

θ = σ2
a = σ2

ϵ = σ2 = 2.5, the share of H-type
firms mH = 1/3, the non-rivalry parameter ι = 0.6, the inter-temporal discount factor β = 0.96, the
maximum quality threshold A = 25, the innovation externality b = 0.035, and the cost of capital
r = 1.

Firms with a high capacity for in-house data security protection (in orange) use

this protection to innovate, which raises the quality and quantity of production. Output

increases in data risk for H-type firms at moderate to high levels of data risk. L-type

firms do not have this positive spillover because they only use data security for their

own protection to mitigate the negative effects of data risk. The aggregate output is

a weighted average of the output of the two types of firms. Concerning the evolution

of Y ∗ as ϑ increases, one notices that an initial fall is counteracted when H-type firms

start to invest in protection, and this process gains momentum when L-type firms start

to protect their data as well.

We can recover the representation of profits in Figure 16, to plot the actual profits,

given the choices of firms on whether to obtain data protection. Figure 19 clarifies

again the existence of three stages and the fact that data risk is much less harmful for

H-type firms because these make use of the innovation externality that data security

allows for.

The model is simple, but it generates some powerful predictions. Data risk hurts

firms in the modern economy and firms make lower profits at increasingly high levels
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Figure 19: Realized (equilibrium) profits

Legend: The parameters used in this simulations are the following: the data endowment z = 10, the
coefficient of the AR(1) process ρ = 0.9, all variances σ2

θ = σ2
a = σ2

ϵ = σ2 = 2.5, the share of H-type
firms mH = 1/3, the non-rivalry parameter ι = 0.6, the inter-temporal discount factor β = 0.96, the
maximum quality threshold A = 25, the innovation externality b = 0.035, and the cost of capital
r = 1.

of risk. However, there is a silver lining: data risk can sustain growth and innovation

when it allows firms to use data security for innovation. We allowed some firms in the

economy the potential to use data security to improve their productivity ceiling. When

given this opportunity, data risk can sustain firm growth and innovation because there

are innovation externalities that arise from data risk protection.

5 Conclusion

In this paper, we assess the relationship between data risk, data security, innova-

tion, and growth. From the empirical stand point, we find evidence that the increased

threat of data theft and destruction drives innovation in security measures and sys-

tems, leading to advancements in technology and potential long-term growth when se-

curity measures are developed in-house, in AI-intensive firms. Essentially, the data risk

motivates AI-intensive companies to actively pursue digital innovation, subsequently

enhancing productivity in various aspects of their operations.

In other words, AI-intensive firms which develop products and services to protect

themselves against data risk, benefit from these products and services to improve the

quality of their other digital products. In this context, it is noteworthy to consider how

Amazon’s innovation with the 1-click purchase system relies on a patented innovation

that ensures secure data transmission over the internet. This innovation and its associ-
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ated patent have not only revolutionized the online shopping experience, but they also

highlight the critical role of secure data transmission in the digital realm. Amazon’s use

of their own internally-developed data-security innovation at the heart of their other

digital product offerings aligns with our empirical analysis, confirming that digitally-

intensive firms respond to data risk by boosting their innovation activities with positive

spillover effects across multiple product domains.

We also find that early treated firms, in the sense of firms being in states that

adopted data breach notification laws early, display the strongest response. This sug-

gests that the nature of data risk may have changed over time, becoming more severe

and debilitating, increasing firm costs beyond their ability to invest in innovation. But

the muted response in the later part of the sample could also be due to the multi-state

nature of the Data Breach Notification Laws. Yet, this feature only strengthens our

empirical findings, as firms in not-yet-treated states may already react before treat-

ment, implying that the estimates we compute in the difference-in-difference exercise

are a lower bound of treated firms’ responses. The exact mechanism for this effect is

interesting in and of itself and the subject of future investigation.

In this paper we also propose a growth model of the data economy where data,

crucial for business optimization, is at risk of being damaged and destroyed. We allow

firms to protect themselves against data risk and even trade data security protection.

Our simple model features heterogeneity in the type of data security a firm invests in.

AI-intensive firms invest in in-house data security, which can be used to improve the

quality of other products. Non-AI-intensive firms invest in the external data security

they source from AI-intensive firms. This external data protection, which they buy, is

assumed to be not tailored enough for them to be used for the development of other

products within those firms. Similar to our empirical findings, the model generates

growth and innovation for AI-intensive firms, while non-AI-intensive firms experience

a decrease in profits and innovation activities in response to greater data risk.

In the context of a data-driven economy increasingly threatened by data risk,

the divide between high-tech and low-tech firms has become more pronounced, with

significant policy implications. AI-intensive firms, benefiting from positive spillovers

generated by their innovations in data security, are incentivized to continue their ad-

vancements. This dynamic, however, runs the risk of widening the technological and

security gap between them and their low-tech counterparts, potentially exacerbating

industry concentration and inequity. Small and Medium Enterprises (SMEs), in par-

ticular, find themselves at a disadvantage. Lacking the sophisticated algorithms, data,

and specialized personnel available to high-tech firms, SMEs emerge as increasingly

vulnerable targets for data security threats. This vulnerability underscores the urgent

need for government intervention, both in terms of incentivizing robust data protec-
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tion measures among SMEs and implementing more effective regulatory frameworks to

protect them.

Additionally, there is a critical need to develop a financial insurance market tailored

to data security. Currently underdeveloped and costly, such a market could encourage

better protection standards across firms through the strategic design of insurance con-

tracts, offering a financial safety net that incentivizes firms to adopt and maintain

higher levels of data security. These policy directions not only aim to level the playing

field among firms of varying technological capabilities, but also to strengthen the overall

resilience of the economic landscape against the growing threat of data risk.
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Appendix A Additional Tables

Table A.1: Variable Description

Variable Description

Data risk score Risk score built on the method developed by Florackis (2023) for US-based publicly
listed firms. This variable quantifies data risk from 0 to 1. It is calculated through
textual analysis of a firms annual 10-K filings, comparing the language on cyber risk-
factors to that of the previous years filings from firms that suffered cyberattacks.
A higher score suggests greater similarity and, thus, a higher risk of cybersecurity
vulnerabilities.

Citation-weighted patent count Sum of [one plus (cites / mean cites)] over all the patents filed by the firm in a given
year. Where mean cites is the average number of cites for all the patents filed in the
year. Thus, a patent with zero citations counts as one.

Cybersecurity patent A patent classified by USPTO under any of the following CPC codes that relate
to cybersecurity: G06F21/, H04L9/, H04l63/, G06F11/14, G06F12/14, H04L63/,
04W12/,G06Q20/382,H04B10/85, H04L2012/5687,H04M3/42008, G06Q50/265,
H04L2209/42

Product patent A patent which has majority of its claims classified as product claims by Ganglmair
et al. (2022)

Process patent A patent which has majority of its claims classified as process claims by Ganglmair
et al. (2022)

AI-Intensive firm (Yes = 1) Firms that file at least ten AI patents in the period 2000-2020, or those that are
sufficiently close to the firms filing ten or more AI patents. AI patents are identified
using data from Giczy et al. (2022). Firm closeness is identified using data from
Hoberg and Phillips (2016).

In-house Cyber security firm (Yes = 1) Firms that file both cybersecurity and non-cybersecurity patents and cite their own
cybersecurity patents in other patents. This captures the set of firms building and
using data security innovation themselves.

Assets Compustat item at
R&D Expenditure Compustat item xrd
Knowledge Assets Item knowCapital in the dataset provided by Ewens et al. (2020). A measure of

knowledge capital calcualted using R&D net of depreciation.
Market Equity Market value of equity. Derived from Compustat items. Market Equity = prccf ∗

csho
Tobin’s Q Derived from Compustat items. Tobin’s Q = [at - ceq + Market Equity) / at
Leverage Defined as long-term debt + debt in current liability as a share of total assets.

Derived from compustat items. Leverage = (dltt +dlc) / at
Return on Assets (ROA) Operating income before depreciation to total assets. Derived from Compustat

items. ROA = oibdp / at
Asset Tangibility Total property, plant and equipment to total assets. Derived from Compustat items.

Tangibility = ppent / at
Book to market ratio Book value of common equity (ceq) to Market Equity.
Cash to asset ratio (COA) Cash holdings to assets. Derived from Compustat items. COA = che / at

Table A.2: Regression of financial variables

Log assets ROA Tobin’s q Book-to-market Leverage Tangibility COGS-to-asset Opex-to-asset

(1) (2) (3) (4) (5) (6) (7) (8)

L. Data risk score ×(AI = 0) 0.0798 0.0189 -0.341** -0.0507 0.00506 -0.00834 -2.214 -0.135***
(0.0509) (0.0174) (0.159) (0.0454) (0.0160) (0.00697) (3.610) (0.0290)

L. Data risk score ×(AI = 1) 0.249*** 0.0811*** -0.494** 0.0321 -0.00151 0.00171 -12.66* 0.0264
(0.0709) (0.0276) (0.206) (0.0556) (0.0246) (0.00781) (6.558) (0.0377)

Lagged controls Yes Yes Yes Yes Yes Yes Yes Yes
Firm FE Yes Yes Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes Yes Yes
N 20238 20234 20238 20238 20237 20238 19409 17990

Legend: ∗p < 0.10,∗∗ p < 0.05,∗∗∗ p < 0.01. The coefficient estimates are derived from the OLS estimate. Standard errors are denoted in parentheses and are clustered at
the firm level. Here, N represents the total number of firm-year observations. Cyber score, and control variables are lagged by one year. Cyberrisk score is constructed
using the methodology Florackis et al. (2023). Each regression controls for financial variables, except for the variable which is the dependent variable in the regression.
These control variables include: Log of total assets, log of R&D expenditure, Tobin’s Q, Return On Assets, Tangibility, Leverage, Book-to-market ratio, Cash-to-asset
ratio. For variable description see table A.1.
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Table A.3: Regression of citation-weighted patent count within superstar firms

2007 Vintage 2000 Vintage

Top 100 Top 500 Top 100 Top 500

(1) (2) (3) (4)

L. Data risk score ×(AI = 0) -0.0351 0.221 0.197 -0.0302
(0.166) (0.216) (0.177) (0.148)

L. Data risk score ×(AI = 1) 0.558** 0.311 0.399* 0.409**
(0.231) (0.222) (0.214) (0.197)

Lagged controls Yes Yes Yes Yes
Firm FE Yes Yes Yes Yes
Year FE Yes Yes Yes Yes
N 552 1874 368 1470

Legend: ∗p < 0.10,∗∗ p < 0.05,∗∗∗ p < 0.01. The coefficient estimates are
derived from the Poisson pseudo-maximum likelihood estimation. Standard
errors are denoted in parentheses and are clustered at the firm level. Here,
N represents the total number of firm-year observations. Cyber score, and
control variables are lagged by one year. Cyberrisk score is constructed using
the methodology Florackis et al. (2023). The dependent variable, Citation-
weighted patent count weighs each patent with the forward citation the
patent receives, adjusting for the filing vintage. Analysis conducted on the
highest N firms in terms of total sales for a given vintage year, where N
equals either 100 or 500. These firms are referred to as ‘superstar firms,’
following the terminology used by Autor et al. (2020). Control variables
include: Log of total assets, log of R&D expenditure, Tobin’s Q, Return
On Assets, Tangibility, Leverage, Book-to-market ratio, Cash-to-asset ratio.
For variable description see table 1.
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Appendix B Additional Figures

Figure A.1: Citation-weighted patent count within AI-intensive firms: by select indus-
tries

Legend: This figure plots BJS dynamic heterogeneous treatment effects of citation-weighted patent
counts. Industry refers to North American Industry Classification System (NAICS) at the two-digit
level. The ‘0’ event is the staggered adoption of DBN laws across the United States. Estimates for
AI-intensive firms. AI intensive firms are identified using a combination of the USPTO dataset on
AI patents (Giczy et al. (2022)) and the KPSS patent dataset linked to firms (Kogan et al. (2017)).
Moreover, firms that are close to AI patenting firms in the sense of Hoberg and Phillips (2016) and
mirror their AI innovations are also considered AI-intensive. This measure has the advantage to be
constructed from entirely publicly available data and it is different from IT expenditures. The figure
plots the estimates only for those industries where a separate estimation was possible for the AI
intensive firms.
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Figure A.2: Citation-weighted patent count by industries: All firms

Legend: This figure plots BJS dynamic heterogeneous treatment effects of citation-weighted patent
counts. Industry refers to North American Industry Classification System (NAICS) at the two-digit
level. The ‘0’ event is the staggered adoption of DBN laws across the United States. For variable
description see Table A.1
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Appendix C Robustness

C.1 Alternative measure of AI intensive firms

We investigate whether adopting an alternative definition of AI-intensive firms changes

our primary results. To achieve this, we utilize a metric for AI investment proposed by Babina

et al. (2024), based on job postings data from Burning Glass covering 2007 to 2018. This

metric quantifies a firm’s annual AI investment as the percentage of its job postings that

require AI skills. We managed to link 21,144 entries from our data with the AI investment

figures provided by Babina et al. (2024), constituting about one-third of our entire dataset.

The limited coverage of the AI investment data and potential discrepancies due to unavailable

data primarily account for this figure. In our adapted approach, a firm is classified as AI-

intensive for a given year if its AI investment, as indicated by its job postings, ranks in the

top 10% of all firm-year data points.

The restricted coverage of our alternative AI intensity measure limits our ability to

conduct a DiD analysis because the DBNL events predominantly occurred before 2007. How-

ever, we can still compare our findings across different AI-intensity definitions in a regression

framework. Figure A.4 illustrates the outcomes using this alternate AI-intensive firm measure,

reinforcing our principal results shown in Table 4. AI-intensive firms exhibit a significantly

more positive response to data risks compared to their non-AI-intensive counterparts. Their

reaction to data risk is approximately threefold that of non-AI-intensive firms, which also lacks

statistical significance. This stronger response is particularly noticeable for product patents,

consistent with findings from our main analysis. However, unlike our primary analysis, the

reactions in terms of product patent shares, R&D expenditure, and Return on Assets (ROA)

are subdued and not statistically significant, even though the directional trends remain con-

sistent across both AI-intensity measures. The lack of statistical significance may stem from

the reduced number of observations, contributing to the imprecise estimates.

Table A.4: Regression of firm outcomes by alternative AI intensity measure

Citation weighted count R&D Financial Vars

Overall Patents Product Patents Process Patents Share product patent R&D ROA Log (Assets)

(1) (2) (3) (4) (5) (6) (7)

L. Data risk score ×(AIbg = 0) 0.0873 0.0495 0.0186 -0.0628 0.0627 0.0797** 0.0122
(0.0893) (0.0910) (0.129) (0.0489) (0.0711) (0.0328) (0.00854)

L. Data risk score ×(AIbg = 1) 0.249* 0.311** 0.0909 0.0390 0.0953 0.150*** 0.0128
(0.139) (0.135) (0.197) (0.0674) (0.0831) (0.0571) (0.0128)

Lagged controls Yes Yes Yes Yes Yes Yes Yes
Firm FE Yes Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes Yes
N 8166 7671 6988 5747 8645 17550 17539

Legend: ∗p < 0.10,∗∗ p < 0.05,∗∗∗ p < 0.01. Standard errors are in parentheses. Standard errors are clustered at the firm level. N refers to the total number of firm-year observations.
Data-risk score, and all control variables are lagged by one year. The data-risk score is computed as explained in D. AIbg is a dummy variable that identifies a firm as AI intensive
in a year if its AI investment as defined by Babina et al. (2024) falls in the top 10% of the firms. Control variables are computed using WRDS CRSP-Compustat merged data. Log
R&D expenditures are logged research and development expenditures typically reported in the income statement, Tobin’s Q is defined as Total assets (at) minus common equity
(ceq) plus market value of equity (prcc f × csho), as a ratio of total assets (at). ROA is defined as operating income before depreciation (oibdp) to total assets (at). Tangibility is
defined as total property, plant and equipment (ppent) scaled by total assets (at). Leverage is long-term debt (dltt) plus debt in current liabilities (dlc), as a ratio of total assets
(at). Book-to-market ratio is book value of common equity (ceq) divided by the market value of common equity (prcc f × csho). Cash-to-asset is the ratio of cash and short-term
investments (che) to total assets (at). For variable description see Table A.1.
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Appendix D Data risk scores

D.1 Data risk measure following Florackis et al. (2023)

We adopt the methodology from Florackis et al. (2023) to create data risk scores for

each firm-year observation. For a detailed description of the method, refer to the cited paper.

In essence, our approach involves extracting discussions of cybersecurity risks from the ’Item

1A. Risk Factors’ section of 10-K filings on the SEC Edgar database, specifically excluding

amendments. Our algorithm employs web crawling to retrieve and analyze filings, focusing on

fiscal year and central index key (CIK) information, as well as cybersecurity risk statements.

We utilize the list of 3210 word roots from Florackis et al. (2023) and apply it to firm-year

data. The process includes calculating the cosine similarities between a firm’s word vector in

year t and the year t− 1 word vector of the firms in the training group. Training group firms

are defined as those that suffered a cyber attack in year t. A firm’s cybersecurity risk score

for year t is determined by the average of its cosine similarities with the training group firms

for that period.

Our method adapts the approach of Florackis et al. (2023) with some variations. Notably,

we opt for cyber attack data from Audit Analytics due to its broader historical coverage of

cyberattacks, compared to the dataset from the Privacy Rights Clearinghouse (PRC) that

concludes in 2018. Additionally, we apply an alternative stopping rule for determining the

scope of sentences used in constructing the word vector.

D.2 Measure based on our own cyber risk dictionary

We check the robustness of the above method by creating our own scores with our own

dictionary of cyberrisk related terms. We extract the entire Item 1A. Risk Factors and now

populate a vector of 160 words that are more specifically related to cybercrime. The Table

below list the words that form part of our dictionary measure.
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Terms Source

Access Control, Attacker, Authentication, Cloud Safety,

Cloud Security, Computer Breach, Computer Security,

Computer Virus, Cyber Attack, Cyber Incident, Cyber

Security, Cyber Threat, Cybersecurity, Data Breach,

Data Integrity, Data Leakage, Data Loss, Data Secu-

rity, Data Theft, Digital Security, Encrypt, Encryption,

Exfiltration, Exposed Data, Firewall, Hacker, Informa-

tion Leak, Information Risk, Information Security, Infor-

mation System, Infosec, Inside Threat, Insider Threat,

Intrusion, IT Asset, Malicious, Malware, Network Re-

silience, Phishing, Security Breach, Security Expendi-

ture, Security Incident, Security Integrity, Security Mea-

sure, Security Monitoring, Security Policy, Security Pro-

gram, Software Assurance, Spoof, Spyware, System In-

tegrity, System Security, Unauthorized Access

Lattanzio and Ma (2023)

breach in security, cyber intrusions, cyber risk, cyber-

attack, cyberattacks, denial of service, denial-of-service,

hacking, social engineering

Florackis et al. (2023)
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antispyware, antivirus, blocklist, Confidentiality,

Cookie, decipher, decode, decrypt, Decryption, encode,

Hash, hashing, password, protocol, Proxy, Public-

Key, Ransomware, Spam, information theft, Trojan,

Two-factor, Vulnerability Assessment, Vulnerability

Management, Vulnerability Scanning, Vulnerability

Exploit, Vulnerability Patching, Vulnerability Anal-

ysis, Software Vulnerability, Network Vulnerability,

System Vulnerability, Security Vulnerability, Vulner-

ability Disclosure, Zero-Day Vulnerability, Remote

Code Execution Vulnerability, Database Vulnerability,

Application Vulnerability, Penetration Testing, Secu-

rity Auditing, Intrusion Detection System, Intrusion

Prevention System, Secure Sockets Layer, Transport

Layer Security, Virtual Private Network, Firewall Con-

figuration, Multi-Factor Authentication, Brute Force

Attack, Security Architecture, Endpoint Protection,

Security Operations Center, Security Information and

Event Management, Risk Assessment, Data Encryption

Standard, Advanced Encryption Standard, Public

Key Infrastructure, Domain Name System Security,

Secure/Multipurpose Internet Mail Extensions, Botnet,

Social Engineering Attack, Spear Phishing, Zero Trust

Architecture, Security Compliance, Secure Coding,

Sandboxing, Threat Intelligence, Incident Response

Plan, Chain of Custody, Data Masking, Digital Foren-

sics, Man-in-the-Middle Attack, Dark Web Monitoring,

Certificate Authority, Secure File Transfer Protocol

(SFTP), Endpoint Detection and Response (EDR),

Web Application Firewall (WAF), Privilege Escalation

BSIGroup, National Initia-

tive for Cybersecurity Ca-

reers and Studies, SANS In-

stitute

computer attacks, computer intrusion, computer mal-

ware, cyber threats, Data stealing, datacenter attack,

digital breach, digital leak, digital loss, information sys-

tem attacks, infrastructure attack, Network attack, Net-

work integrity, Network security, network threats, pro-

grams breach, services threat, software breach, System

attack, system threat, Systems attack, systems threat,

third party breach

Own
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D.3 Correlation across data risk measures

The correlation between these methods can be seen in the figure below.

Figure A.3: Comparison between our extended scores and Florackis et al. (2023) score

The correlation between our extended score (in blue) with the Florackis et al. (2023)

cyber-risk score (in yellow) is 75%. The difference between our methods is using another

list of publicly breached firms, but keepiong the same large dictionary of words as explained

above. The correlation between our extended score based on a smaller dictionary of cyber

security risk (in red) and the Florackis et al. (2023) cyber-risk score is 64%.
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Appendix E Theoretical derivations

E.1 Model Solution Details

There are two sources of uncertainty in firm i’s problem at date t: the (random) optimal

technique θi,t, and the aggregate price Pt. Let (µ̂i,t,Ωi,t) denote the conditional mean and

precision of firm i belief about θi,t given its information set at date t, Ii,t.
In this section, we will first describe the firm belief updating process about its optimal

technique. Next, we argue that in this environment, the firm’s optimal production choice is

deterministic, and thus the price is deterministic as well. Finally, we lay out the full set of

equations that characterize the equilibrium of this economy with two groups of firms.

Belief updating The information problem of firm i about its optimal technique θi,t can

be expressed as a Kalman filtering system, with a 2-by-1 observation equation, (µ̂i,t,Ωi,t).

We start by describing the Kalman system, and show that the sequence of conditional

variances is deterministic. Note that all the variables are firm specific, but since the infor-

mation problem is solved firm-by-firm, for brevity we suppress the dependence on firm index

i.

At time t, each firm observes two types of signals. First, date t − 1 output provides a

noisy signal about θt−1:

yt−1 = θt−1 + ϵa,t−1, (26)

where ϵa,t ∼ N (0, ). We provide model detail on this step below. Second, the firm observes

nt = zt data points as a bi-product of its economic activity. The set of signals {st,m}m∈[1:ni,t]

are equivalent to an aggregate (average) signal s̄t such that:

s̄t = θt + ϵs,t, (27)

where ϵs,t ∼ N (0, ). The state equation is

θt − θ̄ = ρ(θt−1 − θ̄) + ηt,

where ηt ∼ N (0, ).

At time, t, the firm takes as given:

µ̂t−1 = E
[
θt | st−1, yt−2

]
Ω−1
t−1 = V ar

[
θt | st−1, yt−2

]
where st−1 = {st−1, st−2, . . . } and yt−2 = {yt−2, yit−3, . . . } denote the histories of the observed

variables, and st = {st,m}m∈[1:ni,t].

We update the state variable sequentially, using the two signals. First, combine the
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priors with yt−1:

E
[
θt−1 | It−1, yt−1

]
=

Ωt−1µ̂t−1 + yt−1

Ωt−1+

V
[
θt−1 | It−1, yt−1

]
=

[
Ωt−1 +

]−1

E
[
θt | It−1, yt−1

]
= θ̄ + ρ ·

(
E
[
θt−1 | It−1, yt−1

]
− θ̄

)
V
[
θt | It−1, yt−1

]
= ρ2

[
Ωt−1 +

]−1
+

Then, use these as priors and update them with s̄t:

µ̂t = E
[
θt | It

]
=

[
ρ2
[
Ωt−1 +

]−1
+
]−1

· E
[
θt | It−1, yt−1

]
+ s̄t[

ρ2
[
Ωt−1 +

]−1
+

]−1
+

(28)

Ω−1
t = V ar

[
θ | It

]
=

{[
ρ2
[
Ωt−1 +

]−1
+
]−1

+
}−1

(29)

Multiply and divide equation (28) by Ω−1
t as defined in equation (29) to get

µ̂t = (1− ntσ
−2
ϵ Ω−1

t )
[
θ̄(1− ρ) + ρ ((1−Mt)µt−1 +Mtỹt−1)

]
+ ntσ

−2
ϵ Ω−1

t s̄t, (30)

where Mt = σ−2
a (Σt−1 + σ−2

a )−1.

Equations (29) and (30) constitute the Kalman filter describing the firm dynamic infor-

mation problem. Importantly, note that Ω−1
t is deterministic.

Appendix F Modeling quadratic-normal signals from

output

When yt−1 is observed, agents can back out At−1 exactly. To keep the model simple,

we assumed that when agents see At−1, they also learn whether the quadratic term (at−1 −
θt−1 − ϵa,t−1)

2 had a positive or negative root. An interpretation is that they can figure out

if their action at was too high or too low.

Relaxing this assumption complicates the model because, when agents do not know which

root of the square was realized, the signal is no longer normal. One might solve a model with

binomial distribution over two normal variables, perhaps with other simplifying assumptions.

For numerical work, a good approximate solution would be to simulate the binomial-normal

and then allows firms to observe a normal signal with the same mean and same variance as

the true binomial-normal signal. This would capture the right amount of information flow,

and keep the tractability of updating with normal variables.
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Appendix G The cybersecurity planning problems:

optimality conditions and steady state

results

G.1 H-type firm

The current-value Hamiltonian function for the H-type firm:

H(ΩH,t; τt; δt; pH,t) = ΠH,t,sec

+βpH,t+1

{[
ρ2(ΩH,t + σ−2)−1 + σ2

]−1
+
[
1− ϑe−(τt−ι 1−u

u
δt)

]
zσ−2 − Ωi,t

}
(31)

where pH,t is the shadow-price or co-state variable associated with the state variable.

The transversality condition is lim
t→∞

ΩH,tβ
tpH,t = 0.

The first-order optimality conditions:

∂H

∂τt
= 0 ⇒ βpH,t+1 =

1− bAeb(τt−ι 1−u
u

δt)

ϑe−(τt−ι 1−u
u

δt)zσ−2
(32)

∂H

∂δt
= 0 ⇒ βpH,t+1 =

πt − bAιeb(τt−ι 1−u
u

δt)

ϑιe−(τt−ι 1−u
u

δt)zσ−2
(33)

βpH,t+1 − pH,t = − ∂H

∂ΩH,t
⇒

[
ρ+

σ2

ρ
(ΩH,t + σ−2)

]−2

βpH,t+1 = pH,t − Ω−2
H,t (34)

From (32) and (33), it emerges a constant optimal trading price, which is simply πt = ι.

The price of protection is directly associated with the degree of its own nonrivalry. If protection

is completely non-rival (i.e., ι = 0), then its price is zero; if protection is fully rival, its price

is 1.

Replacing (32) into (34), and evaluating in the steady state, one gets:

ΓH =
ϑze−(τ

∗−ι 1−u
u

δ∗)

1− bAeb(τ
∗−ι 1−u

u
δ∗)

, (35)

with ΓH defined as ΓH ≡
{

1
β −

[
ρ+ σ2

ρ (Ω∗
H + σ−2)

]−2
}
(Ω∗

H)2 σ2.

Given constraint (16), it is also true, for the H-firms:

ΞH =
[
1− ϑe−(τ

∗−ι 1−u
u

δ∗)
]
z, (36)

with ΞH ≡
{
Ω∗
H −

[
ρ2(Ω∗

H + σ−2)−1 + σ2
]−1

}
σ2.

Combining expressions (35) and (36), one obtains a steady state relation that allows for
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the derivation of Ω∗
H :

ΓH =
z − ΞH

1− bA
(

ϑz
z−ΞH

)b
(37)

ΓH is such that if Ω∗
H = 0 then ΓH = 0 and if Ω∗

H → +∞ then ΓH → +∞.

ΞH is such that if Ω∗
H = 0 then ΞH = − 1

1+ρ2
and if Ω∗

H → +∞ then ΞH → +∞. Hence,

if Ω∗
H = 0 then z−ΞH

1−bA
(

ϑz
z−ΞH

)b =
z+ 1

1+ρ2

1−bA

(
ϑz

z+ 1
1+ρ2

)b ; this is a positive value for bA

(
ϑz

z+ 1
1+ρ2

)b

< 1.

If Ω∗
H → +∞ then z−ΞH

1−bA
(

ϑz
z−ΞH

)b → −∞.

By combining the above reasoning, as long as bA

(
ϑz

z+ 1
1+ρ2

)b

< 1, the l.h.s. of (37)

(positively sloped) will intersect the r.h.s. of (37) (negatively sloped) at one single point, and

therefore a unique Ω∗
H is derived.

Thus, condition bA

(
ϑz

z+ 1
1+ρ2

)b

< 1 must hold, which can be rewritten as a constraint on

ϑ: ϑ <
z+ 1

1+ρ2

z

(
bA

)−1/b
. Because ϑ ≤ 1, this constraint is always satisfied as long as bA < 1.

From (36) also note that the value of security that firm H holds after trade is also a

unique constant value,

τ∗ − ι
1− u

u
δ∗ = − ln

(
z − ΞH

ϑz

)
(38)

G.2 L-type firm

Turning to the L-type firm, the current-value Hamiltonian is:

H(ΩL,t; δt; pL,t) = ΠL,t,sec

+βpL,t+1

{[
ρ2(ΩL,t + σ−2)−1 + σ2

]−1
+
(
1− ϑe−δt

)
zσ−2 − Ωi,t

}
(39)

The transversality condition: lim
t→∞

ΩL,tβ
tpL,t = 0.

The first-order conditions are:

∂H

∂δt
= 0 ⇒ βpL,t+1 =

πt
ϑe−δtzσ−2

(40)

βpL,t+1 − pL,t = − ∂H

∂ΩL,t
⇒

[
ρ+

σ2

ρ
(ΩL,t + σ−2)

]−2

βpL,t+1 = pL,t − Ω−2
L,t (41)

Replace (40) into (41), and recall that we already know that πt = ι. With this informa-

tion, the following steady state condition holds:

ΓL = ϑze−δ∗ , (42)

with ΓL ≡
{

1
β −

[
ρ+ σ2

ρ (Ω∗
L + σ−2)

]−2
}
(Ω∗

L)
2 σ2.
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Given constraint (18),

ΞL =
(
1− ϑe−δ∗

)
z, (43)

with ΞL ≡
{
Ω∗
L −

[
ρ2(Ω∗

L + σ−2)−1 + σ2
]−1

}
σ2.

From (42) and (43), a simple expression emerges for the determination of Ω∗
L,

ΓL = z − ΞL (44)

Equation (44) allows for the derivation of a unique Ω∗
L, because the l.h.s. of the expression

is a continuous increasing function starting at zero and diverging to infinity (as ΩL increases)

and the l.h.s. is a continuous decreasing function starting at a positive value and falling to

minus infinity (as ΩL increases).

From (43), one can also compute the steady state value of the amount of security bought

by firm L:

δ∗ = − ln

(
z − ΞL

ϑz

)
(45)

A unique δ∗ exists as well.

By now, we have computed all the relevant steady state values: Ω∗
H and Ω∗

L, and also

δ∗ (determined from the L-firm problem), and τ∗, determined from (38) after knowing δ∗

(the H-type only decides how much to invest in cyberprotection after knowing how much

protection firms in the L sector are willing to buy at price πt = ι).

G.3 Steady-state

Possible steady state scenarios:

• (i) The cybersecurity optimal result is such that τ∗ ≤ 0: firms H do not invest in

cybersecurity τ∗ = 0 and firms L have no cyberprotection to buy, δ∗ = 0. Firms face

the problem with no security and their profits are: Π∗
H,cy = Π∗

L,cy.

• (ii) The cybersecurity optimal result is such that τ∗ > 0, δ∗ ≤ 0: firms L will not buy

any protection and face the no-protection problem, with profits Π∗
L,cy. Firms of the H

type have two possibilities: to invest τ∗, even though they cannot optimally exchange

protection, or not to invest; they compare profits Π∗
H,sec and Π∗

H,cy and choose the

option that delivers the highest profits.

• (iii) The cybersecurity optimal result is such that τ∗ > 0 and δ∗ > 0: firms find it

optimal to invest a positive value in cybersecurity (H) and to trade a positive amount

of cybersecurity. In this case, the best option is the cybesecurity one with profits Π∗
H,sec

and Π∗
L,sec

Note that conditions τ∗ > 0 and δ∗ > 0 impose relevant constraints on parameter values,

namely, in the first case, z > ΞH and ϑ > z−ΞH
z and, in the second case, z > ΞL and
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ϑ > z−ΞL
z . These results suggest that investment and trading in cybersecurity require the

cybercrime index ϑ to be above a given threshold.

G.4 Comparative statics

A few intuitive comparative statics outcomes (in the cybersecurity setting, i.e., for τ∗ > 0,

δ∗ > 0):

• (i) ∆z > 0: l.h.s. of (37) does not shift; r.h.s. of (37) shifts right ⇒ higher Ω∗
H / l.h.s.

of (44) does not move; r.h.s. of (44) shifts right ⇒ higher Ω∗
L / δ∗ and τ∗ increase /

output of both types of firms will increase.

• (ii) ∆u > 0: Ω∗
H , Ω∗

L, and δ∗ do not change; only τ∗ decreases - logical result: relatively

more firms investing in cyberprotection implies lower investment by each of them to

attain the optimal result. Output of L firms is maintained; output of H firms is also

maintained (the decrease in τ∗ is compensated by the increase in u and, according to

(38), there is no change on the available protection and, thus, on output).

• (iii) ∆ι > 0: Ω∗
H , Ω∗

L, and δ∗ do not change; only τ∗ decreases - logical result: a lower

degree of non-rivalry in selling protection implies H firms will invest more to keep more

protection and to profit more from trading. Output does not change for any of the

firms for reasons similar to those of the previous item.

• (iv) ∆ϑ > 0: l.h.s. of (37) does not shift; r.h.s. of (37) shifts right ⇒ higher Ω∗
H (this

is the positive effect that innovation from cybersecurity has over knowledge when H

firms increase cybersecurity in response to cybercrime) / Ω∗
L remains unchanged / δ∗

increases (L firms demand more security to face higher risks) / τ∗ increases due to the

increase on δ∗ and directly on ϑ. Output levels will increase, given the corresponding

expressions.

• (v) ∆b > 0: l.h.s. of (37) does not shift; r.h.s. of (37) shifts right ⇒ higher Ω∗
H / Ω∗

L

remains unchanged / τ∗ increases because of the increase in Ω∗
H ; δ∗ does not change /

the output of L firms does not change / the output of H firms increases.

Appendix H Simulating the economy

Take the values in the table below.
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Parameter Symbol Value

Data endowment z 10

Coefficent of the AR(1) process ρ 0.9

Variances σ2 2.5

Share of H-type firms u 1/3

Non-rivalry parameter ι 0.6

Intertemporal discount factor β 0.96

Data risk index ϑ 0.75

Maximum quality A 25

Inonvation externality b 0.035

Capital cost r 1

For these parameters: Ω∗
H = 3.224 and Ω∗

L = 1.609. These results are found in the

intersection of the l.h.s. and r.h.s. of (37) and (44) in Theory [Fig.1].

Applying the corresponding formulas, δ∗ = 0.130 and τ∗ = 1.296 (these are both positive

values and, therefore, firms engage in data security investment and data security trading).

Replacing the equilibrium values in the expressions for output and profits, A∗
H = 23.207

and A∗
L = 21.879 (A∗

H > A∗
L); Π

∗
H,sec = 21.068 and Π∗

L,sec = 20.800 (Π∗
H,sec > Π∗

L,sec). Also,

Y ∗ = uA∗
H + (1− u)A∗

L = 22.321.

H.1 Comparative statics

How do steady state values change with data risk?

Recall that ϑ ∈ [0, 1]. Evaluating the model for different values of ϑ (and letting all other

values be as in Table 1), we find two thresholds: at ϑ = z−ΞL
z = 0.6583, optimal security

purchasing, δ∗, changes from negative to positive, implying that firms L buy protection only

for ϑ > 0.6583. For ϑ ≤ 0.6583, H firms have to choose whether to invest in protection or

not, knowing that they will sell no protection. They compare profits Π∗
H,sec and Π∗

H,cy; these

are equal around ϑ = 0.3. For ϑ > 0.3, H-type firms invest in protection, otherwise they do

not.

Theory Fig.2 draws profits without protection for both firms (these are identical), the

profits of the H firms with security investment, and the profits of the L firms under security

trading. The two mentioned thresholds are highlighted.

Hence: for ϑ ≤ 0.3, H-firms do not invest in data protection and L-firms do not buy

protection; for 0.3 < ϑ ≤ 0.6583, H firms invest in protection and L firms buy no protection;

for ϑ > 0.6583, H-type firms invest in protection and L-type firms buy protection. In this

last segment, the higher the value of ϑ, the more the H firms invest and the more L firms

buy.

Theory Fig. 3 presents the investment and trading levels. Again, the two thresholds

are clear (notice the second jump in τ∗; this occurs because to the right of that point, H-type

firms need to invest in security for their one use but also to sell to firms in the L group).
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Theory Fig. 4: output of each type of firm and aggregate output, for different levels

of data risk. In the first segment, the output is the same (the firms are identical); in the

second segment, L firms face increasing risk but do not protect and, consequently, output

falls (because the stock of knowledge falls); H firms start investing in data security what

has the innovation side effect and, therefore, they are able to increase output. In the third

segment, H firms continue to invest in data protection and innovate; L firms start purchasing

security that they cannot use to innovate but that prevents output from falling (i.e., it allows

to maintain the stock of knowledge as the data risk increases).

The aggregate output is a weighted average of the output of the two types of firms

(recall that, in the example, L firms are two thirds of the total number of firms). Concerning

the evolution of Y ∗ as ϑ increases, one notices that an initial fall is counteracted when H

firms start to invest in protection, and this process gains a new impetus when L firms start

protecting as well.

We can recover the representation of profits in Theory Fig.2, to draw the actual profits,

given the choices of firms on whether to get protection or not.

Theory Fig. 5 clarifies again the existence of three stages and the fact that cyber crime

is much less harmful for H-type firms, because these make use of the innovation externality

that data security allows for.

H.2 Does data growth cause economic growth?

In the model, there are various parameters whose values can change - ϑ, ι, u, b, ... - but

only one can grow in a sustained way over time, which is the endowment of data, z. The

question is: if one makes z to increase over time at a constant rate, will the economy’s output

also grow over time at a constant rate?

The answer is no: simulations show that although the increase in z leads to increases in

Ω∗
H and Ω∗

L, they also lead to falls in δ∗ and τ∗ (more data and a same data risk lead to the

need of less protection). For large values of z, τ∗ becomes zero, and without investment in

cybersecurity there is no data risk induced innovation and the maximum quality of output

cannot expand. The increases in Ω∗
H and Ω∗

L are associated with decreasing marginal returns

and, therefore, although z might grow in a sustained way, this is not accompanied by an

increase in the firms’ output.
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