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Abstract

We provide a simple distribution regression estimator for treatment effects in the

difference-in-differences (DiD) design. Our procedure is particularly useful when the

treatment effect differs across the distribution of the outcome variable. Our pro-

posed estimator easily incorporates the role of covariates and can also be employed

to examine whether the treatment affects the joint distribution of multiple out-

comes. Our key identifying restriction is that the counterfactual distribution of the

treated in the untreated state has no interaction effect between treatment and time.

This assumption results in a parallel trend assumption on the transformation of the

distribution. We highlight the relationship between our procedure and assumptions

with the changes-in-changes estimator of Athey and Imbens (2006). We also provide

an empirical example which highlights the utility of our approach.

1 Introduction

The remarkable popularity of the difference-in-difference estimator, inspired by an ap-

proach to evaluate the impact of policy interventions on economic outcomes introduced by

David Card, is one of the most striking features of empirical work on treatment and policy

effects (see, for example, Card 1990, Card and Krueger, 1994). While the methodological
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innovations in this literature cover a range of issues, including the use of constructed con-

trol groups, the staggered timing of treatments, and fuzzy rather than sharp designs, the

vast majority of the associated empirical work has been restricted to estimating the mean

effect of the treatment on a single economic outcome (see Arkhangelsky and Imbens, 2023

for a recent review article). This seems restricted given that a fuller evaluation of a policy

effect generally requires an examination of distributional effects and also a consideration

of multiple outcomes. We address each of these issues by providing a simple procedure

for estimating distributional treatment effects in the presence of a single treatment but

when the outcomes of interest are potentially multivariate.

The initial methodological innovation devoted to providing a distributional approach

to difference-in-differences (DiD) estimation is the changes-in-changes procedure of Athey

and Imbens (2006). That paper focuses on estimating the counterfactual distribution of

the treated group in the absence of treatment and comparing it to the observed distribu-

tion in the presence of treatment. Other work has adopted the approach of conducting

DiD estimation to explain the impact of treatment at various quantiles of the outcome

via the use of quantile regression. These include Callaway and Li (2018, 2019). In con-

trast, Dube (2019), Goodman-Bacon (2021), and Goodman-Bacon and Schmidt (2020)

employ conventional DiD estimation to explore the impact of the treatment at different

points of the outcome distribution. Other approaches include comparisons based on ac-

tual and constructed counterfactual distributions. Two papers that adopt this approach

are Kim and Wooldridge (2023) and Biewen, Fitzenberger, and Rümmele (2022). The

former suggests the use of an inverse probability weighting procedure, while the latter em-

ploys a distribution regression (DR) approach. This paper also adopts a DR approach to

constructing counterfactuals. In contrast to Biewen, Fitzenberger, and Rümmele (2022),

who construct the counterfactual distributions via a series of linear probability models,

we employ a series of non-linear link functions such as probit or logit models. This has

a number of advantages, which we discuss below. In addition, we provide the associated

identifying conditions required for this form of the implementation of DR.

While DiD has typically been employed to evaluate the treatment effect on a certain

economic outcome there are many instances in which the treatment is likely to have an
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impact on a number of outcomes. Evaluating how the treatment affects the relationship

between these outcomes might also be of economic interest. For example, a change in tax

rates on earnings of married couples may affect both the labor supply of the husbands

and wives so an analysis of such a change should include the impact on both outcomes as

the objects of interest. However, a richer analysis would not only examine the impact on

the respective marginal hours distribution of husbands and wives but also the joint distri-

bution of hours. We introduce this type of treatment effect via the bivariate distribution

regression (BDR) approach of Fernandez-Val et al (2023). This requires that we first es-

timate the joint distribution by BDR and then construct the appropriate counterfactual.

As in the univariate case, the treatment effects are then constructed via the appropriate

comparisons.

The following section introduces the model and provides an analysis of the univariate

case. We extend our analysis to include covariates and contrast our approach with the

Athey and Imbens (2006) changes-in-changes estimator. Section 3 extends our analysis

to the multiple outcome case and section 4 discusses estimation. Section 5 provides

an empirical illustration of our methodology by revisiting the Malesky et al. (2014)

investigation of the impact of recentralization in Vietnam. Section 6 concludes.

2 Econometric analysis of the univariate case

Consider the standard DiD design with 2 periods, T ∈ {0, 1}, and 2 groups, G ∈ {0, 1} in

which a binary treatment, D ∈ {0, 1}, is administered only to the treatment group with

G = 1 in the second period T = 1. Let Y0 and Y1 denote the potential outcomes under

the non-treated and treated statuses. The observed outcome is Y = Y0(1 − D) + Y1D,

which corresponds to Y0 for both groups at T = 0, with Y0 for G = 0 at T = 1, and to

Y1 for G = 1 at T = 1. Note that this implicitly imposes a non-anticipation assumption

as we do not distinguish between the outcomes of the treated and non-treated state for

G = 1 in period T = 0.

We are interested in the distributions of the potential outcomes of the treated at

T = 1, that is FY1 |G,T (y | 1, 1) and FY0 |G,T (y | 1, 1). FY1 |G,T (y | 1, 1) is identified from the
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observed outcome for G = 1 at T = 1,

FY1 |G,T (y | 1, 1) = FY |G,T (y | 1, 1);

whereas FY0 |G,T (y | 1, 1) is not identified without further assumptions.

The distribution of Y0 conditional on G and T can be written as

FY0 |G,T (y | g, t) = Λ(α(y) + β(y)t+ γ(y)g + δ(y)gt), y ∈ R, (1)

where Λ is an invertible CDF such as the logistic, normal or uniform, and y 7→ (α(y),

β(y), γ(y), δ(y)) is a vector of function-valued parameters.

The representation in (1) does not make any parametric assumption about the under-

lying distribution of Y0 |G, T . The representation is local (i.e. is assumed to hold for a

specific level of y) and because the dummy variable representation within the parentheses

at the right-hand side is saturated it makes no parametric assumption. To understand the

flexibility of (1), note that for any representation of Λ, α(y), β(y), γ(y) and δ(y) solve1

α(y) = Λ−1
(
FY0 |G,T (y | 0, 0)

)
β(y) = Λ−1

(
FY0 |G,T (y | 0, 1)

)
− Λ−1

(
FY0 |G,T (y | 0, 0)

)
γ(y) = Λ−1

(
FY0 |G,T (y | 1, 0)

)
− Λ−1

(
FY0 |G,T (y | 0, 0)

)
δ(y) = Λ−1

(
FY1 |G,T (y | 1, 1)

)
− Λ−1

(
FY0 |G,T (y | 1, 0)

)
−

[
Λ−1

(
FY0 |G,T (y | 0, 1)

)
− Λ−1

(
FY0 |G,T (y | 0, 0)

)]
Distribution regression was originally developed by Williams and Grizzle (1972) and by

Foresi and Peracchi (1995). Inference for distribution regression with continuous outcome

variables was developed in Chernozhukov et al. (2013) and Chernozhukov et al. (2020)

extend inference to outcome variables which are discrete, mixed discrete or continuous.

We make the following identifying assumptions with respect to the distribution func-

tion in (1).

Assumption 1 [No-interaction assumption]. For the distribution function FY0 |G,T (y | g, t)

introduced in (1) we impose δ(y) = 0 for all y ∈ R.
1See also Wooldridge (2023) equations (2.6) and (2.7).
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To proceed, we now define the support of the random variable Yi|G = g, T = t with

i, g, t ∈ 0, 1 by Yi(G = g, T = t).

Assumption 2 [Support conditions]. We have the following restrictions with respect to

the supports

Y0(G = 1;T = 1) ⊆ Y0(G = 0;T = 1) ∪ Y0(G = 1;T = 0) ∪ Y0(G = 0;T = 0)

Assumption 1 implies that the distribution of the potential outcome Y0 should not

change differently in the second period for the treatment group compared to the control

group. We allow a difference between the distributions of the potential outcome Y0 be-

tween the treatment and control group, but this difference should be identical in both

periods. This is a parallel trend type assumption on a transformation of the distribution

and can be written as

Λ−1
(
FY0 |G,T (y | 1, 1)

)
− Λ−1

(
FY0 |G,T (y | 1, 0)

)
=

Λ−1
(
FY0 |G,T (y | 0, 1)

)
− Λ−1

(
FY0 |G,T (y | 0, 0)

)
.

This assumption is sensitive to the link function and can impose restrictions on the distri-

bution FY0 |G,T for some link functions. For example, if Λ is the identity link used in the

linear probability model, it imposes strong requirements on the tails of the distributions

FY0 |G,T (y | 1, 0), FY0 |G,T (y | 0, 1) and FY0 |G,T (y | 0, 0) to guarantee that FY0 |G,T (y | 1, 1)

is between 0 and 1. Thus, it requires that FY0 |G,T (y | 1, 0) ≤ 1 + FY0 |G,T (y | 0, 0) −

FY0 |G,T (y | 0, 1), which might be restrictive at the top of the distribution, and FY0 |G,T (y | 1, 0)≥

FY0 |G,T (y | 0, 0)− FY0 |G,T (y | 0, 1), which might be restrictive at the bottom of the distri-

bution.2 Other links such as the normal or logistic CDFs do not require such restrictions

because the transformation expands the range of the distribution. Assumption 1 cannot

be empirically verified but when we have multiple observations in the pre-treatment pe-

riod, it is possible to examine whether the “parallel trends” assumption at least holds

pre-treatment.

When the identity function is used for the link function in (1), then Assumption 1

results in models employed in, for example, Almond et al. (2011), Dube (2019), Cengiz

2This requirements can be used to develop a specification test for the identity link. We do not pursue

this approach in the paper because we do not encourage the use of the linear probability model in practice.
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et al. (2019), Goodman-Bancon and Smith (2020), Goodman-Bacon (2021) and Biewen

et al. (2022). As previously noted by Blundell et al. (2004) and Wooldridge (2023),

using the identity function has as a drawback that the parallel trends assumption might

be suspect as the outcome variable is limited and non-linear by nature. This is especially

the case when the outcome is near the borders of 0 and 1. That is an increase of, for

example, 0.2 in probability over time might be realistic for the control group when the

original probability equals 0.5. However, when the treatment group already starts in the

first period with a probability of, for example, 0.9, then it is not even possible for the

common trends assumption to hold.

Assumption 2 is a restriction of the support of the counterfactual outcome of Y0 for

the treated group in the treated period.

These two assumptions identify FY0 |G,T (y | 1, 1) because

FY0 |G,T (y | 1, 1) = Λ(α(y) + β(y) + γ(y))

= Λ
[
Λ−1

(
FY0 |G,T (y | 1, 0)

)
+ Λ−1

(
FY0 |G,T (y | 0, 1)

)
− Λ−1

(
FY0 |G,T (y | 0, 0)

)]
= Λ

[
Λ−1

(
FY |G,T (y | 1, 0)

)
+ Λ−1

(
FY |G,T (y | 0, 1)

)
− Λ−1

(
FY |G,T (y | 0, 0)

)]
, (2)

under the non-anticipation assumption. The support restrictions in Assumption 2 en-

sure the term in parentheses in (2) is determined. Note that as limx→∞ Λ(x) = 1 and

limx→−∞ Λ(x) = 0, our assumptions are sufficient but not necessary.

We present this identification result in the following lemma:

Lemma 1 [Identification with One Outcome]. FY0 |G,T (y | 1, 1) is identified under Assump-

tions 1 and 2.

Proof of Lemma 1. The results follows from equation (2).

2.1 Inclusion of covariates

Including covariates is appealing as the assumption that δ(y) = 0 may be harder to defend

when there are either differences in the trend between covariates or when the composition

of the treatment group changes over time in terms of observed characteristics; see also

Melly and Santangelo (2015). Covariates can be trivially incorporated for identification by
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making the analysis conditional on them and adding an overlapping support assumption.

Specifically, let X be a vector of covariates such that the non-interaction assumption holds

conditional on X; see Assumption 3. The distribution of Y0 conditional on G, T and X

can be written as

FY0 |G,T,X(y | g, t, x) = Λ(α(y, x) + β(y, x)t+ γ(y, x)g + δ(y, x)gt), y ∈ R, (3)

where (y, x) 7→ (α(y, x), β(y, x), γ(y, x), δ(y, x)) is a vector of unspecified functions.

The identifying assumptions with covariates become:

Assumption 3 [No-interaction with Covariates]. For the distribution function FY0 |G,T,X

as introduced in (3) we impose that δ(y,X) = 0 almost surely for all y ∈ R.

Assumption 4 [Support conditions with Covariates]. We have the following restrictions

with respect to the supports

Y0(G = 1;T = 1;X) ⊆ Y0(G = 0;T = 1;X)∪Y0(G = 1;T = 0;X)∪Y0(G = 0;T = 0;X)

almost surely.

These two assumptions identify FY0 |G,T,X(y | 1, 1, x) because

FY0 |G,T,X(y | 1, 1, x) = Λ(α(y, x) + β(y, x) + γ(y, x))

= Λ
[
Λ−1

(
FY0 |G,T,X(y | 1, 0, x)

)
+ Λ−1

(
FY0 |G,T,X(y | 0, 1, x)

)
− Λ−1

(
FY0 |G,T,X(y | 0, 0, x)

)]
= Λ

[
Λ−1

(
FY |G,T,X(y | 1, 0, x)

)
+ Λ−1

(
FY |G,T,X(y | 0, 1, x)

)
− Λ−1

(
FY |G,T,X(y | 0, 0, x)

)]
,

(4)

under the non-anticipation assumption. The support restrictions in Assumption 4 make

sure that the term between parentheses in (4) is determined. Note that as limx→∞ Λ(x) =

1 and limx→−∞ Λ(x) = 0, our assumptions are sufficient but not necessary. Then, we can

identify FY0 |G,T (y | 1, 1) as

FY0 |G,T (y | 1, 1) =
∫

FY0 |G,T,X(y | 1, 1, x)dFX |G,T (x | 1, 1). (5)

We gather this identification result in the following lemma:
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Lemma 2 [Identification with Covariates]. Under Assumptions 3 and 4, FY0 |G,T (y | 1, 1)

is identified.

Proof of Lemma 1. The results follows from equations (4) and (5).

For estimation, we replace the functions (y, x) 7→ (α(y, x), β(y, x), γ(y, x)) by semi-

parametric linear indexes leading to the DR model for the conditional distribution:

FY0 |G,T,X(y | g, t, x) = Λ(p(x)′α(y) + q(x)′β(y)t+ r(x)′γ(y)g), y ∈ R, (6)

where p(x), q(x) and r(x) are vectors including the covariates and their transformations,

and y 7→ (α(y), β(y), γ(y)) is a vector of function-valued parameters.

2.2 A comparison of our model with the Changes-In-Changes

model (Athey and Imbens, 2006)

The changes-in-changes (CiC) design assumes that the outcome of an individual without

treatment satisfies the relationship Y0 = h(U, T ) with an unobserved and uniformly dis-

tributed term U . It is assumed that h is strictly increasing in the first term and that the

distribution of U is independent of time given the treatment outcome, i.e. U ⊥⊥ T |G.

Finally, the support of U for the treated population should be a subset of those of the un-

treated population. The final assumption implies in terms of the support of the outcomes

that

Y0(G = 1, T = 0) ⊆ Y0(G = 0, T = 0)

Y0(G = 1, T = 1) ⊆ Y0(G = 0, T = 1)

Their second support restriction is less restrictive than ours but we do not need their first

support restriction.

The assumptions of Athey and Imbens (2006) identify the quantile function of FY0 |G,T (y | 1, 1)

as

F−1
Y0 |G,T (u | 1, 1) =ϕ

(
F−1
Y0 |G,T (u | 1, 0)

)
,

ϕ(y) := F−1
Y0 |G,T

(
FY0 |G,T (y | 0, 0) | 0, 1

)
, u ∈ {0, 1},
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where we assume that Y0 is continuous with strictly increasing distribution function. The

transformation ϕ gives the second period outcome for an individual with an unobserved

component u such that h(u, 0) = y, with y the location at which we evaluate the distri-

bution function (Athey and Imbens, 2006, page 441). Hence, their identification results

follows from the idea that ϕ evaluated in the first period observations of the treatment

group is equally distributed as the distribution of the untreated outcome of the treatment

group in the second period. It means that their assumptions result in the implicit as-

sumption that the transformation ϕ that maps quantiles of Y0 from period 0 to period 1

is the same for the treatment and control groups. This condition imposes the following

restrictions on the coefficients of the representation of the conditional distribution in (1):

α(y) = α(ϕ(y)) + β(ϕ(y)), γ(y) = γ(ϕ(y)) + δ(ϕ(y)).

To see this, note that

FY0 |G,T (y | g, 0) = FY0 |G,T (h(h
−1(y, 0), 1) | g, 1). (7)

Evaluating (7) at g = 0 and applying F−1
Y0 |G,T (· | 0, 1) to both sides

h(h−1(y, 0), 1) = F−1
Y0 |G,T

(
FY0 |G,T (y | 0, 0) | 0, 1

)
=: ϕ(y).

Replacing ϕ(y) back in (7) and using the representation (1)

Λ(α(y) + γ(y)g) = Λ(α(ϕ(y)) + β(ϕ(y)) + γ(ϕ(y))g + δ(ϕ(y))g).

The restrictions then follow from equalizing the coefficients in both sides.3 They com-

plicate estimation in our framework as they involve two different levels of Y and the

transformation ϕ needs to be estimated.

2.3 Comparison with Roth and Sant’Anna (2023)

Roth and Sant’Anna (2023) derive the condition,

FY0 |G,T (y | 1, 1)− FY0 |G,T (y | 1, 0) = FY0 |G,T (y | 0, 1)− FY0 |G,T (y | 0, 0), y ∈ R,
3There is only a binding restriction because α(y) = α(ϕ(y)) + β(ϕ(y)) holds by definition of ϕ(y).
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for the parallel trends assumption in expectations,

E(Y0 |G = 1, T = 1)−E(Y0 |G = 1, T = 0) = E(Y0 |G = 0, T = 1)−E(Y0 |G = 0, T = 0),

to be invariant to strictly monotone transformations of Y0. This condition is different from

our no-interaction assumption. Indeed, our DR model with the no-interaction condition

does not generally satisfy the parallel trends assumption in expectation because

E(Y0 |G = g, T = 1)− E(Y0 |G = g, T = 0) =∫ ∞

−∞
[Λ(α(y) + γ(y)g)− Λ(α(y) + β(y) + γ(y)g)]dy

depends on g unless Λ is the identity map, or β(y) = 0 (no trend) or γ(y) = 0 (random

assignment) for y ∈ R. Roth and Sant’Anna (2023) show that their condition holds if

and only if there are no trends, random assignment or a mixture of the previous two. Our

model, however, generally satisfies a different invariance property with respect to strictly

monotonic transformations that we specify in Remark 2.4.

2.4 Invariance to Strictly Monotonic Transformations

The DR model in (1) and the no-interaction assumption are invariant to strictly monotonic

transformations in a sense that we specify here. If Y0 follows the DR model and satisfies

the no-interaction assumption, then Ỹ0 = h(Y0) also follows the DR model and satisfies

the no-interaction assumption for any strictly monotonic transformation h. To see this

result, note that, if h is strictly increasing,

FỸ0 |G,T,X(ỹ | g, t, x) = Λ(α(h−1(ỹ))+β(h−1(ỹ))t+ γ(h−1(ỹ))g) = Λ(α̃(ỹ)+ β̃(ỹ)t+ γ̃(ỹ)g),

where ỹ 7→ h−1(ỹ) is the inverse function of y 7→ h(y), α̃ = α ◦ h−1, β̃ = β ◦ h−1 and

γ̃ = γ ◦ h−1. A similar argument applies to the case where h is strictly decreasing. In

other words, unlike the parallel trends in expectation, the no-interaction or parallel trends

in distribution is invariant to strictly monotonic transformations.
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3 Multiple Outcomes

There are situations where we observe multiple outcomes and are interested in how the

treatment affects their relationship. To analyze such situations, we need to identify the

joint distribution of the potential outcomes with and without the treatment. Here, we

consider the case of two outcomes Y and Z. We are interested in comparing features

of the joint distribution of the potential outcomes with the treatment, Y1 and Z1, and

the joint distribution of the potential outcomes with the treatment, Y0 and Z0, for the

treated group G = 1 in the post-treatment period T = 1. For example, Spearman’s rank

correlation between Yd and Zd, d ∈ {0, 1}, can be expressed as

ρ[Yd, Zd |G = 1, T = 1] = Corr[FYd |G,T (Yd | 1, 1), FZd |G,T (Zd | 1, 1) |G = 1, T = 1] =

12

∫ ∞

−∞

∫ ∞

−∞
[FYd |G,T (y | 1, 1)− 1/2][FZd |G,T (z | 1, 1)− 1/2]FYd,Zd |G,T (dy, dz | 1, 1);

and Kendall’s rank correlation between Yd and Zd, d ∈ {0, 1}, can be expressed as

τ [Yd, Zd |G = 1, T = 1] = 4

∫ ∞

−∞

∫ ∞

−∞
[FYd,Zd |G,T (y, z | 1, 1)−1/4]FYd,Zd |G,T (dy, dz | 1, 1),

where we have assumed that Yd and Zd are continuous random variables.

As in the univariate case, FY1,Z1 |G,T (y, z | 1, 1) is identified by the joint distribution of

the observed outcomes, FY,Z |G,T (y, z | 1, 1), whereas FY0,Z0 |G,T (y, z | 1, 1) is not identified

from the data. To analyze identification, we use the local Gaussian representation (LGR)

of a bivariate distribution from Chernozhukov, Fernandéz-Val and Luo (2019). By the

LGR, FY0,Z0 |G,T can be expressed as

FY0,Z0 |G,T (y, z | g, t) =

Φ2(αY (y)+βY (y)t+γY (y)g+δY (y)gt, αZ(z)+βZ(z)t+γZ(z)g+δZ(z)gt; ρY,Z |G,T (y, z | g, t)),

where Φ2(·, ·; ρ) is the CDF of a standard bivariate normal with correlation ρ, and

ρY,Z |G,T (y, z | g, t) = αY,Z(y, z) + βY,Z(y, z)t + γY,Z(y, z)g + δY,Z(y, z)gt. In the LGR,

the marginals are represented by

FY0 |G,T (y | g, t) = Φ(αY (y) + βY (y)t+ γY (y)g + δY (y)gt),
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and

FZ0 |G,T (z | g, t) = Φ(αZ(z) + βZ(z)t+ γZ(z)g + δZ(z)gt),

where Φ is the CDF of a standard univariate normal.

Lemma 3 [Identification with Two Outcomes]. If δY (y) = δZ(z) = δY,Z(y, z) = 0, then

FY0,Z0 |G,T (y, z | 1, 1) is identified.

Proof of Lemma 3. Under the assumptions of the Lemma

FY0,Z0 |G,T (y, z | g, t) = Φ2(αY (y)+βY (y)t+γY (y)g, αZ(z)+βZ(z)t+γZ(z)g; ρY,Z |G,T (y, z | g, t)),

and ρY,Z |G,T (y, z | g, t) = αY,Z(y, z) + βY,Z(y, z)t+ γY,Z(y, z)g.

The parameters αY (y), βY (y), γY (y), αZ(z), βZ(z), and γZ(z) are identified from the

marginals of Y and Z, by Lemma 1.

The parameter αY,Z(y, z) is identified as the solution in α to

FY,Z |G,T (y, z | 0, 0) = Φ2(αY (y) + βY (y)t+ γY (y)g, αZ(z) + βZ(z)t+ γZ(z)g;α).

This solution exists and is unique because the RHS is strictly increasing in α. The

parameters βY,Z(y, z) and γY,Z(y, z) are identified similarly as the solutions in β and γ of

FY,Z |G,T (y, z | 0, 1) = Φ2(αY (y)+βY (y)t+γY (y)g, αZ(z)+βZ(z)t+γZ(z)g;αY,Z(y, z)+β).

and

FY,Z |G,T (y, z | 1, 0) = Φ2(αY (y)+βY (y)t+γY (y)g, αZ(z)+βZ(z)t+γZ(z)g;αY,Z(y, z)+γ).

Finally,

FY0,Z0 |G,T (y, z | 1, 1) = Φ2(αY (y) + βY (y) + γY (y), αZ(z)βZ(z) + γZ(z);αY,Z(y, z)+

βY,Z(y, z) + γY,Z(y, z)).

We can estimate the distribution of FY0,Z0 |G,T (y, z | 1, 1) in a similar way as for the

univariate case presented above. That is, we first estimate the parameters αY (y), βY (y),

γY (y), αZ(y), βZ(y), γZ(y), αY,Z(y, z), βY,Z(y, z), γY,Z(y, z) using bivariate distribution
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regression and using the sample of the first period and the sample of the second period

for the untreated group. Then, in a second step, we plug in the estimated parameters

for the sample of the treated in the second period in order to obtain the estimator of

FY0,Z0 |G,T (y, z | 1, 1). Again, additional regressors can trivially be added to the analysis.

4 Estimation

We start our discussion of estimation for the univariate case and for reasons of illustration

only we initially assume that there are no covariates as in equation (1). Estimation is

straightforward and can be performed in two steps. See also Wooldridge (2023) for a

similar estimation strategy (i.e. equations (2.31) and (2.32), page C41.)

Algorithm 1. 1. Estimate the model parameters (α(y), β(y), γ(y)) by distribution re-

gression of the indicator 1(Y ≤ y) on a constant, T and G for multiple values of

y ∈ Y, using all the observations for G = 0 and the observations for G = 1 at

T = 0. Denote the estimators as (α̂(y), β̂(y), γ̂(y)).

2. Construct a plug-in estimator of the distribution of the potential outcomes

F̂Y0 |G,T (y | 1, 1) = Λ(α̂(y) + β̂(y) + γ̂(y)).

The distribution FY1 |G,T (y | 1, 1) can be estimated by the empirical distribution of Y

for G = 1 at T = 1. Estimators of functionals of the distributions of potential outcomes

such as quantile functions and effects can be also constructed using the plug-in principle.

As in Wooldridge, we can also sestimate the parameters via Quasi-Maximum Likeli-

hood Estimation. Again, this is most easily explained with no regressors. For this, define

the statistic θ(y) by

θ(y) := Λ−1 (P(Y1 ≤ y|G = 1, T = 1))− Λ−1 (P(Y0 ≤ y|G = 1, T = 1))

= Λ−1 (P(Y1 ≤ y|G = 1, T = 1))− α(y)− β(y)− γ(y)

Based on this, we have that the Distributional Treatment Effect (DTE) equals

τy := FY1 |G,T (y | 1, 1)− FY0 |G,T (y | 1, 1)

= Λ (α(y) + β(y) + γ(y) + θ(y))− Λ (α(y) + β(y) + γ(y))

13



Moreover we have that:

α(y) = Λ−1
(
FY0 |G,T (y | 0, 0)

)
β(y) = Λ−1

(
FY0 |G,T (y | 0, 1)

)
− Λ−1

(
FY0 |G,T (y | 0, 0)

)
γ(y) = Λ−1

(
FY0 |G,T (y | 1, 0)

)
− Λ−1

(
FY0 |G,T (y | 0, 0)

)
θ(y) = Λ−1

(
FY1 |G,T (y | 1, 1)

)
− Λ−1

(
FY0 |G,T (y | 1, 0)

)
−

[
Λ−1

(
FY0 |G,T (y | 0, 1)

)
− Λ−1

(
FY0 |G,T (y | 0, 0)

)]
We can estimate the probabilities in parentheses by the fractions in the dataset

F̂Y0 |G,T (y | 0, 0) =
1

Ngt

∑
i=1,...,N ;Gi=g,Ti=t

1(Yi ≤ y)

And we obtain an estimator of τy by

τ̂y = Λ
(
α̂(y) + β̂(y) + γ̂(y) + θ̂(y)

)
− Λ

(
α̂(y) + β̂(y) + γ̂(y)

)
(8)

Note that the same estimators can be derived by running a distribution regression of

1(Yi ≤ y) on Ti, Gi and Di. Note that this implies that we assume the following relation-

ship for FY |G,T (y|g, t)

FY |G,T (y|g, t) = Λ (α(y) + β(y)t+ γ(y)g + θ(y)gt)

Hence, we obtain the following algorithm

Algorithm 2. 1. Estimate the parameters α(y), β(y), γ(y) and the statistic θ(y) by

distribution regression of the indicator 1(Y ≤ y) on a constant, T and G for multiple

values of y ∈ Y, using all the observations.

2. Estimate FY1 |G,T (y | 1, 1) and FY0 |G,T (y | 1, 1) by the plug-in estimators

F̂Y1 |G,T (y | 1, 1) = Λ
(
α̂(y) + β̂(y) + γ̂(y) + θ̂(y)

)
F̂Y0 |G,T (y | 1, 1) = Λ

(
α̂(y) + β̂(y) + γ̂(y)

)
The DFE τy can be estimated using the plug-in estimator defined in (8).

Note that both algorithms do not necessarily result in numerically identical estimates.

An exception arises when we use the identity function or the standard logistic function

for the link function Λ for which cases we obtain results that are identical.
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Algorithm 1 can be easily extended by using equation (6) instead of (1). The extension

of Algorithm 2 is somewhat more involved. For this, define the statistic θ(y, x) as

θ(y, x) = Λ−1
(
FY1 |G,T,X(y | g, t, x)

)
− Λ−1

(
FY0 |G,T,X(y | g, t, x)

)
= Λ−1

(
FY1 |G,T,X(y | g, t, x)

)
− α(y)− β(y)− γ(y)− π(y)x.

Hence the DTE conditional on x can be defined by

τy = FY1 |G,T,X(y | 1, 1, x)− FY0 |G,T,X(y | 1, 1, x)

= Λ (α(y) + β(y) + γ(y) + π(y)x+ θ(y, x))− Λ (α(y) + β(y) + π(y)x+ γ(y)) .

As above, we can define a quasi-distribution regression for FY |G,T (y|g, t) by assuming

FY |G,T,X(y|g, t, x) = Λ (α(y) + β(y)t+ γ(y)g + πx+ θ(y, x)gt) .

where the statistic θ(y, x) is a function of x, for example

θ(y, x) = θ0 + θ1x.

Hence, algorithm 2 can be trivially extended by this assumption. Again, both algorithms

will not produce numerically identical estimates unless the link function is the identity

function or the standard logistic function.

5 Empirical application

5.1 Description of the original empirical exercise

Malesky et al. (2014) investigate the impact of recentralization by looking at a case study

in Vietnam. Because of dissatisfaction of the measures of decentralization taken in the

early 1990s, Vietnam decided to change their political system in 2007. In particular,

they decided to take out one political layer from the decision making process. That is,

Vietnam has four layers of the political process: the central government, the provinces

(63 in total), the districts (696 in total), and the communes (more than 11,000 in total).4

The idea was to abolish the political process at the districts (which are governed by the

4The total population of Vietnam was 84.76 million in 2007.
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so called Districts People Council or DPC). Instead of introducing this change in the

system immediately, the Vietnam government decided to first apply an experiment for

only ten provinces (with 99 districts). Malesky et al. (2014) use this experiment for their

empirical analysis. Note that the experiment was not random, but was decided by the

central government to be stratified based on regions and subregions as well as on rural

versus urban areas and by socioeconomic and public administration performance of the

provinces. The decision to start this experiment was made in 2008 and the abolishment

of the DPC in the treatment districts started in 2009.

Malesky et al. (2014) use the following specification for their analysis:

Yit = α + βTt + γGi + θGiTt +Xitπ + Uit

where Yit is the outcome variable for period t of commune i. Tt is a dummy variable that

equals one in the treated period while Gi is a dummy variable that equals one in the case

that commune i belongs to a treated district. Finally, Xit is a set of control variables

for commune i and in period t. Malesky et al. (2014) use the log surface area of the

commune, the log of the commune population density, whether the commune belongs to

a national level city and they use region dummies (8 regions in total). For reasons of data

availability, Malesky et al. (2014) only use rural communes and they use two years of

observation: 2008 and 2010 (they use 2006 for robustness checks). They use 30 different

outcome variables to investigate the impact of the abolishment of the political layer which

can be subdivided into 6 categories: Infrastructure index, agricultural services index,

health services index, education index, communications index, and household business

development index. Due to the fact that most variables are dummy variables, we can

only use eight of their original outcome variables: (1) proportion of households supported

crop, (2) proportion of households supported agricultural extension, (3) proportion of

households supported agriculture tax exemption, (4) the number of visits of agricultural

extension staff, (5) proportion of households supported healthcare fee, (6) proportion of

households supported tuition fee, (7) proportion of households supported credit, and (8)

proportion of households supported business tax exemption. The first four are based

on the category agricultural services index, the fifth is related to the category health

services index, the sixth related to the education index and the last two are related to the
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household business development index.

5.2 Our analysis for the univariate case

For our empirical analysis, we use the following specification for FY0,i|Gi,Ti,Xit
(·|g, t, x)

FY0,i|Gi,Ti,Xit
(y|gt, tt, xit) = Λ(α(y) + β(y)tt + γ(y)gi + xitπ(y))

where we use the same control variables as in Malesky et al. (2014). Hence, we can

estimate the counterfactual distribution using

F̂Y0,i|Gi,Ti,Xit
(y|1, 1, xi,1) = Λ(α̂(y) + β̂(y) + γ̂(y) + xi1π̂(y))

where α̂(y), β̂(y), γ̂(y), and π̂(y) are estimated by using distribution regression at y. We

can estimate the unconditional distribution using

FY0,i|Gi,Ti
(y|1, 1) =

∫
X (1,1)

FY0,i|Gi,Ti,Xit
(y|1, 1, xi1)dFXit|G,T (x|1, 1)

Hence, our estimator becomes

F̂Y0,i|Gi,Ti
(y|1, 1) = 1

N11

∑
i:Gi=1,Ti=1

F̂Y0,i,t|Gi,Ti,Xi1
(y|1, 1, Xi,1)

where N11 is the total number of observations for which Gi = 1, Ti = 1. We can estimate

the quantile treatment effects by inverting the estimated distributions of FY0,i,t|Gi,Ti
(y|1, 1)

and FY1,i,t|Gi,Ti
(y|1, 1), where we estimate FY1,i,t|Gi,Ti

(y|1, 1) by using the empirical distri-

bution. In particular we use

F̂−1
Yj,i,t|Gi,Ti

(q|1, 1) = inf{y : F̂Yj,i,t|Gi,Ti
(y|1, 1) ≤ q} j = 0, 1

Results of our empirical exercise are in Figure 1. The quantile treatment effects are listed

in Table 1. We estimate the quantile treatment effects by simply inverting the estimated

distribution functions. As in Malesky et al. (2014), we correct the confidence intervals

for clustering at the province level. That is, we use the Bayesian bootstrap and draw

the same exponential weight for all observations that belong to the same province (see

also Chernozukov et al., 2020). In order to construct the confidence bounds by following

17



steps 1-4 of Algorithm 1 of Chernozhukov et al. (2020) but we use directly the quantile

treatment effects rather than the estimated distributions. Note that this is allowed as

long as we assume our outcome variable to be continuously distributed. For some of the

variables, there is a lot of bunching at zero. For example, for the variable “Proportion

of households supported crop” 49.93 percent of the observations equal zero and it equals

54.04 percent for the treatment group in the treatment period while it equals 50.79 for

the control group. This implies that the quantile treatment effect is by definition equal

to zero up and until the median and as such the impact can only come from the higher

quantiles. To distinguish these cases from the cases in which there was a real zero impact,

we use dots at these places.

Nevertheless, even if we abstract from the impact of these zeros, both Figure 1 and

Table 1 show that there is a lot of treatment heterogeneity and that the mean impacts

published in Malesky et al. (2014) are mainly a result of impacts at the top of the

distribution. This is most clear from the outcome variable “The number of visits of

agricultural extension staff” which has only a substantial impact at Q3 and D9. To some

extent, this is also true for the negative value of the variable “Proportion of households

supported credit”.

Malesky et al. (2014) also use additional data for the year 2006 to check the common

trends assumption. They perform this check by simply looking at the results of a DiD

design for the periods 2006 and 2008 making 2008 the placebo treatment period. That

is, one would not expect any treatment effect in the period before the introduction of the

treatment. Results of this robustness check are in Figure 2 and Table 2. As in Malesky

et al. (2014), we do find some substantial differences in Figure 2 between the distribution

of Y0 and Y1. However, as is shown in Table 2 these differences are not significant and

they are generally in the opposite direction as found in the original results. For example,

for the proportion of households supported crop (the first figure in Figures 1 and 2),

the distribution of FY1|G,T (·|1, 1) is in Figure 2 generally to the left of the distribution of

FY1|G,T (·|1, 1) while the relationship is opposite in Figure 1.

Note that in a standard linear DiD design, checking the common trend assumption as

presented above is identical to checking the value of the interaction term in the period(s)
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Figure 1: Results of the empirical application.
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Table 1: Quantile treatment effects with 90 percent confidence intervals based on Bayesian

weights. Confidence intervals correct for clustering at the province level.

20



M
ea

n
0
.1

0
.2
5

0
.5

0
.7
5

0
.9

P
ro
p
o
rtio

n
o
f
h
o
u
seh

o
ld
s
su

p
p
o
rted

-0
.0
1
6
4

·
·

·
-0
.0
5
6
9

-0
.0
2
4
6

cro
p

(-0
.0
7
7
,0
.0
4
4
)

(·,·)
(·,·)

(·,·)
(-0

.1
1
9
,0
.0
0
6
)

(-0
.6
8
4
,0
.6
3
5
)

P
ro
p
o
rtio

n
o
f
h
o
u
seh

o
ld
s
su

p
p
o
rted

-0
.0
0
0
7

·
·

·
·

0
.0
1
1
7

a
g
ricu

ltu
ra
l
ex

ten
sio

n
(-0

.0
1
2
,0
.0
1
)

(·,·)
(·,·)

(·,·)
(·,·)

(-0
.0
1
4
,0
.0
3
8
)

P
ro
p
o
rtio

n
o
f
h
o
u
seh

o
ld
s
su

p
p
o
rted

0
.0
2
9
6

·
·

·
-0
.0
0
5
2

·

a
g
ricu

ltu
ra
l
ex

em
p
tio

n
(-0

.0
4
1
,0
.1
)

(·,·)
(·,·)

(·,·)
(-0

.5
7
7
,0
.5
6
6
)

(·,·)

T
h
e
n
u
m
b
er

o
f
v
isits

o
f
a
g
ricu

ltu
ra
l

-0
.0
0
0
2

·
·

·
-0
.0
0
0
1

-0
.0
0
0
1

ex
ten

sio
n
sta

ff
(-0

.0
2
6
,0
.0
2
6
)

(·,·)
(·,·)

(·,·)
(-0

.0
2
,0
.0
2
)

(-0
.0
8
,0
.0
7
9
)

P
ro
p
o
rtio

n
o
f
h
o
u
seh

o
ld
s
su

p
p
o
rted

-0
.0
0
3
8

·
·

0
.0
0
7
9

-0
.0
2
2
1

-0
.0
2
4
1

h
ea

lth
ca

re
fee

(-0
.0
3
7
,0
.0
2
9
)

(·,·)
(·,·)

(-0
.0
0
4
,0
.0
2
)

(-0
.0
4
3
,-0

.0
0
1
)

(-0
.1
3
5
,0
.0
8
7
)

P
ro
p
o
rtio

n
o
f
h
o
u
seh

o
ld
s
su

p
p
o
rted

0
.0
0
1
2

·
0
.0
0
0
2

0
.0
0
1
8

0
.0
0
3
3

0
.0
0
6

tu
itio

n
fee

(-0
.0
0
3
,0
.0
0
6
)

(·,·)
(-0

.0
0
1
,0
.0
0
1
)

(-0
.0
,0
.0
0
4
)

(-0
.0
0
1
,0
.0
0
8
)

(-0
.0
1
7
,0
.0
2
8
)

P
ro
p
o
rtio

n
o
f
h
o
u
seh

o
ld
s
su

p
p
o
rted

0
.0
0
5
3

·
-0
.0
0
1
1

-0
.0
0
0
4

-0
.0
0
1
3

-0
.0
2
3
9

cred
it

(-0
.0
1
4
,0
.0
2
5
)

(·,·)
(-0

.0
1
4
,0
.0
1
2
)

(-0
.0
2
3
,0
.0
2
2
)

(-0
.0
5
9
,0
.0
5
6
)

(-0
.1
4
9
,0
.1
0
1
)

P
ro
p
o
rtio

n
o
f
h
o
u
seh

o
ld
s
su

p
p
o
rted

-0
.0
0
5
8

·
·

·
0
.0
0
2

0
.0
1
4
2

b
u
sin

ess
ta
x
ex

em
p
tio

n
(-0

.0
2
1
,0
.0
0
9
)

(·,·)
(·,·)

(·,·)
(-0

.0
0
1
,0
.0
0
5
)

(-0
.0
0
4
,0
.0
3
2
)

Table 2: Quantile treatment effects – robustness check for 2006 and 2008 – parallel trends.
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Figure 1: Results of the empirical application (continued).
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before the treatment. That is not true in our non-linear design, but we can still perform

an additional check looking at the coefficient value of the interaction term. That is, we

can estimate the general representation as presented in (1) for all observations in the

periods 2006 and 2008. Results of this exercise are presented in Figure 3. Generally, we

find that δ(y) is not significantly different from zero but there are some regions in the

distribution of some of the outcome variables where there is a significant difference. For

example, for the outcome variable the “Proportion of households supported agricultural

exemption”, we find a significant difference in between 0.3 and 0.9 of the outcome values.

As a further robustness check, we also interacted the covariates with the time and

treatment dummy variables. We interact regions with time but we cannot interact regions

with treatment as this will result in perfect multicollinearity due to the setup of the

program. The results of our exercise are in Figure 4 and the quantile treatment effects

are reported in 5.

5.3 Comparison with the changes-in-changes estimation

For the changes-in-changes estimation, we note as in Athey and Imbens (2006) that the

distribution of Y0|G = 1, T = 1 equals the distribution of φ(Y0|G = 1, T = 0). Hence,
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Figure 2: Results of robustness check using the years 2006 and 2008.
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Figure 3: Results of the robustness check to investigate whether δ(y) of equation (1)

equals zero in the period before the treatment.
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Table 3: Quantile treatment effects without using additional control variables in the

analysis.
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Table 4: Quantile treatment effects without using additional control variables in the

analysis – robustness check for 2006 and 2008 – parallel trends.
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Table 5: Quantile treatment effects using interaction terms between the covariates and

the time and treatment dummy variables.
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Figure 3: Results of the robustness check to investigate whether δ(y) of equation (1)

equals zero in the period before the treatment.(continued).
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we can obtain an estimator of the distribution of Y0|G = 1, T = 1 by using the empirical

distribution function of the random variable

QF̂Y0|G,T (Y0|G=1,T=0|0,1)(Y0|G = 0, T = 0).

Hence, we can estimate the distribution function of FY0|G=1,T=1 in point y for our changes-

in-changes estimator using the following steps:

1. For every observation of Y0 of the subsample of G = 1, T = 0 estimate the empirical

distribution function of the subsample for which G = 0, T = 0.

2. For every computed empirical distribution function of step 1 estimate the corre-

sponding quantile of the subsample for which G = 0, T = 1.

3. For all the obtained quantiles from step 2, compute the empirical distribution func-

tion in y.

The distribution of FY0|G=1,T=1 can be estimated using the empirical distribution function.

One can obtain the quantile treatment effect by inverting the distribution at desired levels

of the distribution.
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Figure 4: Results of the empirical application using interaction terms between the covari-

ates and the time and treatment dummy variable.
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Table 6: Quantile treatment using changes-in-changes.
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Figure 4: Results of the empirical application using interaction terms between the covari-

ates and the time and treatment dummy variable (continued).
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5.4 Results for the bivariate case

For our bivariate analysis we only look at the outcomes of the variables “Proportion of

households supported credit” and the “Proportion of households supported healthcare

fee”. The outcomes of these variables have relatively little bunching at integer values

which makes them more interesting for our empirical analysis.

We present the results of the counterfactual and the actual distribution in Figure 7.

From this figure, it is possible to see that the joint distribution has changed due to the

treatment and that the distribution of the treated population has shifted to the upper-left

corner. However, it is difficult to see whether this is not merely a result of the changes in

the marginal distributions. Therefore, we also present results using Kendall’s tau which

equals

τ =
n∑

i=1

n∑
j=i+1

sgn(xi − xj)sgn(yi − yj)

We can directly calculate the Kendall’s tau for the joint distribution of the treated sample

in the second period when treated as this is observed from the data. For the counterfactual

distribution of the treated sample in the second period when not treated, we first sample

from the estimated distribution. That is, we sample a value of Y using our estimator
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Figure 5: Results without using additional control variables in the analysis.
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Figure 5: Results without using additional control variables in the analysis. (continued).
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of its marginal distribution described for the univariate case above. Then, we sample

Z from the conditional distribution of Z|Y which can be obtained using our estimates

for the bivariate case. We find that the Kendall’s tau based on this procedure gives a

value of 0.1253 with a 95-percent confidence interval from 0.0989 to 0.1518. This implies

that there is a positive correlation between the two outcomes in the districts. For the

observed distribution of the treated group we find a value equal to 0.2463 with a 95-percent

confidence interval from 0.2224 to 0.2703. This implies that the correlation between the

two outcomes has increased significantly due to the treatment.

6 Conclusion

We provide a relatively simple distribution regression based estimator to implement the

evaluation of treatment effects in a difference-in-difference setting. As our approach pro-

vides counterfactual distributions we are able to explore the impact of the treatment at

different quantiles of the distribution of the outcome variable. For both the univariate

and multivariate cases we provide the identifying assumption and the associated estima-

tion algorithms. We provide an empirical example which revisits an existing study. Our
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Figure 6: Results of changes-in-changes
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Figure 6: Results of changes-in-changes (continued).
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empirical analysis highlights the utility of various aspects of our approach.

Our analysis can easily be extended to the case of multiple time periods and more

than two outcomes. We can also extend our distributional regression framework to use

time and unit weights as in the synthetic difference-in-difference estimation method of

Arkhangelsky et al. (2021). We leave these extensions to future research (e.g. Fernández-

Val et al., 2024).
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Figure 7: Results of 2-dimensional effects
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