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Abstract 

The higher purchase prices of electric vehicles and the high CO2 emissions generated in the 

production process are major barriers to the acceptance of electric vehicles among consumers. 

However, electric vehicles tend to be more cost-effective and energy-efficient over time due to 

lower fuel costs and lower CO2 emissions in vehicle use. This paper examines whether greater 

awareness of potential lifetime financial savings and emissions reductions can increase the pref-

erences for electric vehicles. Our empirical analysis is based on data from a stated choice ex-

periment with more than 2,200 citizens in Germany that includes two randomized information 

interventions addressing the total costs and CO2 emissions of vehicles over time and emphasiz-

ing lower operational costs and emissions. Our econometric analysis with mixed logit models 

shows a significantly positive effect of the emissions information treatment on the preferences 

for extended-range and plug-in hybrid electric vehicles (and consequently on a reduction in 

CO2 emissions in the passenger transport sector) for frequent drivers in the past and in the fu-

ture. With respect to the preferences for battery electric vehicles, this information treatment 

only has a significantly positive effect for individuals with a very high planned mileage. There-

fore, we conclude that only corresponding targeted information campaigns for frequent drivers 

can be a successful component in increasing the purchase of electric vehicles. 
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1. Introduction 

As the effects of climate change become more and more devastating, it is critical to take action 

to reduce the greenhouse gas emissions produced by society. The transportation sector has very 

strong negative environmental impacts. For example, in the European Union (EU) 25% of all 

greenhouse gas emissions are caused by the transportation sector (e.g. European Environment 

Agency, 2024). In Germany, which is the focus of our study, transportation accounted for more 

than 19% of greenhouse gas emissions in 2021 (e.g. Umweltbundesamt, 2023a). According to 

the German Federal Climate Protection Act (“Bundes-Klimaschutzgesetz”) the greenhouse gas 

emissions from transportation must almost halve (-48%) by 2030 compared to 2019 emissions. 

Further Germany must become greenhouse gas neutral by 2045, which presumably means re-

ducing greenhouse gas emissions to zero in the transportation sector (e.g. Umweltbundesamt, 

2023b). One main measure for achieving this target is the transition to electric vehicles (EV), 

particularly (pure) battery electric vehicles (BEV). Consequently, one target of the current gov-

ernment in Germany is to reach a stock of 15 million EV by 2030 and thus become one of the 

leading markets in this field. But even with an increasing number of newly registered EV in 

Germany, with a stock of 1.2 million EV at the beginning of 2022 this target seems very ambi-

tious. For such a rapid transition to EV, a broad acceptance of EV among consumers is needed. 

Therefore, it is crucial to research consumer preferences regarding electric vehicles and under-

stand the main barriers to adoption. 

Our study contributes to the existing literature on preferences for electric vehicles compared to 

conventional vehicles with internal combustion engines (ICE) (e.g. Egbue and Long, 2012, 

Ziegler, 2012, Hackbarth and Madlener, 2013, 2016, Rezvani et al., 2015, Kanberger and Zieg-

ler, 2024). Previous studies show that, in Germany, there is a strong aversion to electric vehi-

cles, particularly battery electric vehicles (e.g. Ziegler, 2012, Hackbarth and Madlener, 2013, 

Kanberger and Ziegler, 2024). Therefore, this study focuses on selected barriers for the adop-

tion of EV by consumers. Main barriers identified in the literature, which are not focus of this 

study, are the limited driving range, the long charging time, and the limited availability of 

charging stations (e.g. Hidrue et al., 2011, Achtnicht et al., 2012, Egbue and Long, 2012, Hack-

barth and Madlener, 2013, Schneidereit et al., 2015, Biresselioglu et al., 2018, Krishna, 2021, 

Pamidimukkala et al., 2023). Another very important barrier to consumer acceptance of EV, 

which will be the subject of this study, is the higher initial purchase price of EV compared with 

conventional vehicles (e.g. Hidrue et al., 2011, Hackbarth and Madlener, 2013, Krishna, 2021). 

The broad field of literature regarding life-cycle costs (also referred to as the total costs of 
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ownership) assesses the total costs of EV during their lifespan and compares these costs with 

the corresponding costs of a conventional vehicle (e.g. Bubeck et al., 2016, Moon and Lee, 

2019, Costa et al., 2021, Liu et al., 2021). Most of these studies find, that even with higher 

initial purchase prices EV tend to be more cost-effective over their total lifespan compared to 

conventional vehicles with internal combustion engines (e.g. Cox et al., 2018, Moon and Lee, 

2019). This is especially caused by the significantly lower operating costs of EV (i.e. among 

others fuel costs per 100 km). These financial benefits of EV depend highly on electricity costs, 

fuel costs, and individual driving patterns, as the potential financial savings improve for indi-

viduals who drive a higher total number of kilometers (e.g. Bubeck et al., 2016, Moon and Lee, 

2019, Costa et al., 2021, Liu et al., 2021). 

Further previous studies show that CO2 emissions in the production and in the use have a sig-

nificantly negative effect on the choice of a vehicle (e.g. Achtnicht, 2012, Kanberger and Zieg-

ler, 2024). Based on this another barrier to the broad acceptance of EV among consumers are 

the high CO2 emissions generated during the production of EV1, leading to doubts about the 

environmental benefits of electric vehicles (e.g. Krishna, 2021). The literature of life-cycle 

emissions of EV estimates the emissions of EV that arise during the vehicle’s entire lifespan 

and identifies factors which influence these total emissions (e.g. Ellingsen et al., 2016, Helmers 

and Weiss, 2017, Li et al., 2017, Moon and Lee, 2019, Liu et al., 2021). Despite the high CO2 

emissions generated in the production of EV, studies indicate that EV tend to be more energy-

efficient than conventional vehicles, highly depending on the current electricity mix in the coun-

try and individual driving patterns (e.g. Helmers and Weiss, 2017, Del Pero, 2018, Moon and 

Lee, 2019, Wietschel et al., 2019, Shafique and Luo, 2022). 

Despite the potential financial savings and reductions in CO2 emissions caused by the low fuel 

costs and emissions per 100 km of EV, studies find that consumers do undervalue these future 

savings during their purchase decisions (e.g. Greene, 2011, Allcott and Wozny, 2014, Grigolon 

et al., 2018, Leard, 2018). Consequently, some studies examine various methods to emphasize 

fuel costs and CO2 emissions in the use, to increase consumer awareness of these vehicle attrib-

utes, in which EV generally perform better (e.g. Avineri and Waygood, 2013, Dumortier et al., 

2015, Daziano et al., 2017, Long et al., 2021). Some of these studies examine the effect of 

different information framings, so different ways to present the information (e.g. Avineri and 

Waygood, 2013, Daziano et al., 2017, Long et al., 2021). Furthermore, Dumortier et al. (2015) 

 
1 Within the production of EV particularly the extraction of resources and the production of the battery generate 

very high CO2 emissions. 
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examine the effect of including the fuel costs savings for the next five years, compared to an 

average vehicle, and the total (monthly) costs of ownership as vehicle attributes on the choice 

of EV. 

Compared to these studies, our empirical analysis specifically focuses on information treat-

ments (see e.g. the overview in Haaland et al., 2023). We contribute to this field of literature in 

three different ways: Based on data from a stated choice experiment among more than 2,200 

German citizens with randomized information treatments, we examine the effect of general 

information about the total costs and total emissions of vehicles, with highlighting the operating 

costs and emissions, before the purchase decision, on the choice of EV, as the information 

treatments emphasizes the benefits of those vehicles. The first treatment information addresses 

the cost dimension of vehicles. Thus, we further analyze the effects of the first treatment infor-

mation on the preferences for the purchase price and the fuel costs of a vehicle. As the second 

treatment gives information about the CO2 emissions of vehicles, we additionally examine the 

effect of this information on the preferences regarding CO2 emissions in the production and in 

the use of a vehicle. Since the benefits of lower operating costs and emissions increase with the 

total number of km individuals travel by car, we finally contribute to the literature by analyzing 

the heterogeneity in treatment effects regarding the total number of kilometers (km) individuals 

traveled by car in the last twelve months and the total number of km individuals plan to drive 

with a soon purchased vehicle within one year. 

The remainder of this paper is organized as follows: Section 2 describes the data and the varia-

bles used in our econometric analysis. Section 3 explains the econometric approach and reports 

the estimation results succeeding with the conclusion and policy implications in section 4. 

2. Data and variables 

2.1 Survey design 

The data for the empirical analysis were collected by means of large-scale computer-assisted 

web interviews among citizens in Germany. The survey was carried out by the German market 

research company Psyma during April and May 2021. The target population comprised adults, 

who were either solely or partially responsible for household decisions. The sample was strati-

fied according to gender, age, place of residence, and education so that it is widely representa-

tive for the target population in Germany in terms of these characteristics. Across all respond-

ents, the median completion time of the survey was about 31 minutes. Respondents, who did 
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not pass some survey quality checks, which were embedded in random batteries of questions,2 

or indicated unrealistic values in the survey, are not considered in the empirical analysis. The 

questionnaire that was used in the survey contained several parts. After some screening ques-

tions and some first socio-demographic variables, the first part comprised questions on eco-

nomic preferences, environmental attitudes, and planned vehicle purchase decisions in the fu-

ture.  

The main part of the survey referred to the stated choice experiment on the preferences for 

different vehicles and the corresponding randomized interventions. Each participant of the sur-

vey faced twelve different choice sets, each containing the choice among four hypothetical ve-

hicle types, i.e. three electric vehicles and a conventional vehicle. The experiment included 

several experimental (e.g. information) interventions at the beginning and/or after the sixth 

choice set. However, not all treatments are considered in this paper due to the focus on the 

treatment information regarding total costs and total emissions which highlights the operating 

costs and emissions. Consequently, we consider the first six choice sets for overall 1,128 re-

spondents in the control group without any interventions, 561 respondents in the first treatment 

group, which refers to total costs, and 554 in the second treatment group, which considers the 

total emissions of a vehicle, as discussed below.  

The questions on environmental attitudes, economic preferences, and planned vehicle purchase 

decisions in the future were asked prior to the stated choice experiment to prevent the answers 

of the respondents from being influenced by the stated choices in the experiment. Finally, the 

last part of the questionnaire comprised some questions about the Corona crisis, which are not 

considered in this paper, and some additional socio-economic and socio-demographic variables.  

2.2 Stated choice experiment 

To empirically examine individual preferences for different vehicle types and attributes, we 

conducted an appropriate stated choice experiment. In each choice set, the participants of the 

experiment had to choose among four hypothetical vehicles, which were labeled according to 

their propulsion technology (e.g. Ferguson et al., 2018) to keep the experiment more realistic 

and enable the consideration of initial vehicle type preferences among the respondents (e.g. 

Louviere et al., 2000). Specifically, in each choice set, the participants of the experiment were 

 
2 Specifically, the respondents were asked to select a specific option to make sure that they were reading the 

instructions attentively.  
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asked to choose among one conventional (i.e. gasoline or diesel) vehicle with an internal com-

bustion engine, one plug-in hybrid vehicle with a combination of an internal combustion engine 

and one or more small electric engines, one extended-range electric vehicle with one or more 

electric engines and a small internal combustion engine as range extender, and finally one (pure) 

battery electric vehicle with only one or more electric engines.  

The alternative vehicles were additionally characterized by the following eight quantitative at-

tributes: 

• Purchase price (in Euro) 

• Average CO2 emissions caused in use per 100 km (in kg) 

• Total CO2 emissions caused in the production of the vehicle (in kg) 

• Average range with a fully charged battery (in km) 

• Average range with a full tank (in km) 

• Average time to recharge the battery (in minutes) 

• Average time to refuel the tank (in minutes)  

• Average fuel costs per 100 km3 (in Euro) 

With the exception of CO2 emissions in vehicle production, the attributes and their levels are 

based on previous studies. Furthermore, these attributes are found to be among the most im-

portant vehicle features for (stated) vehicle purchase decisions (e.g. Hackbarth and Madlener, 

2013, 2016). On this basis, we expect a positive effect of vehicle range and a negative effect of 

purchase price, time to recharge the battery and refuel the tank, and fuel costs on the choice 

among the four vehicle types. Kanberger and Ziegler (2024) show that the preferences for a 

reduction of CO2 emissions in the production of a vehicle are higher than the preferences for 

lower CO2 emissions in vehicle use. Since the study of Kanberger and Ziegler (2024) is based 

on the same data but only refers to the control group we examine if these preferences change 

due to the second treatment information. The level ranges of the attributes were aligned to re-

alistically fit the respective vehicle type. Table 1 gives an over-view of all attributes and the 

corresponding attribute levels across the different vehicle types in the stated choice experiment. 

To keep the hypothetical vehicle alternatives as realistic as possible, some attributes were cus-

tomized or grounded to reality according to certain indications by the respondents (e.g. Hensher, 

2010, Hensher et al., 2015). The purchase price levels were customized according to the average 

 
3 It should be noted that in our experiment, fuel costs refer not only to gasoline and diesel but also include electricity 

costs for electric vehicles. 
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indicated Euro value the participants of the experiment were willing to pay in future purchase 

decisions, while the CO2 emissions and operating costs levels were based on individual refer-

ence values of the preferred vehicle class. The purchase price levels as well as the levels of CO2 

emissions and operating costs thus differed across the respondents. To allow the respondents to 

compare the hypothetical vehicles in each choice set, the purchase prices and fuel costs were 

presented in Euro and the CO2 emissions were given in kg. The reference values for the emis-

sion levels in different vehicles were based on Wietschel et al. (2019). CO2 emissions caused 

in vehicle production, have not been considered in previous studies so far. Therefore, the range 

of the levels according to the reference values were defined along the line of CO2 emissions in 

vehicle use. 

Methodologically, a fractional factorial design was employed for the attribute combinations, 

whereby the statistical software Sawtooth was used to efficiently generate choice sets for all 

participants of the experiment. The order of the four vehicle types was randomized in each 

choice set, whereby the respondents always had to choose one of them. The complete survey 

including the stated choice experiment was pre-tested to ensure comprehensibility among the 

respondents. Table 2 shows a translated exemplary choice set, while Figure 1 presents the cor-

responding original (German) screenshot of it. To avoid or at least reduce the hypothetical bias 

of the stated choice experiment, a cheap talk script, alerting the respondents to strongly consider 

their financial situation when making a decision, was implemented at the beginning of the ex-

periment (e.g. Mariel et al., 2021). 

In the next section, we will describe the treatment information implemented in the stated choice 

experiment, on which our econometric results are based. Following that, we will provide a de-

scription of the variables used in the empirical analysis. 

2.3 Randomized information interventions on costs and emissions 

The stated choice experiment, which is the base for our analysis, was combined with two dif-

ferent randomized information interventions addressing the total costs and total emissions of a 

vehicle. Each of the respective treatment information was presented to the respondents after the 

introduction of the choice experiment. The first treatment information which refers to the total 

costs of a vehicle with presenting the purchase price as well as the costs in use of a vehicle was 

the following: 
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When making your decision, please note that the total costs of the cars over their entire service 

life depends on the operating costs and thus on the average fuel costs for gasoline, diesel, or 

electricity per 100 km driven, as well as on the purchase price. 

The total costs of two example cars over their entire service life are shown below:  

 Example car 1 Example car 2 

Costs in use 10 Euro per 100 km 5 Euro per 100 km 

Purchase price 20.000 Euro 24.000 Euro 

The purchase price for example car 1 is lower than for example car 2. The operating costs, on 

the other hand, are lower for example car 2 than for example car 1.  

With an average total distance of 20,000 km driven per year, the total costs of example car 2 

with the higher purchase price are thus already lower than example car 1 after four years of 

use. 

With an average total distance driven of 10,000 km per year, the total costs of example car 2 

with the higher purchase price are only lower than example car 1 after eight years of use. 

This treatment information aims to raise individuals' awareness of potential future financial 

savings resulting from reduced operating costs. EV not only have the potential of financial 

savings but provide the opportunity to significantly reduce the emissions in the passenger trans-

portation sector. Thus, the second treatment information refers to the total emissions of a vehi-

cle with highlighting the emissions in the use. The information shown to the participants before 

the first choice set in the second treatment group was the following: 

When making your decision, please also bear in mind that the total CO2 emissions of cars over 

their entire service life depend on the CO2 emissions caused during use and thus on the average 

CO2 emissions caused per 100 km driven, as well as on the CO2 emissions caused during car 

production.  
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The total CO2 emissions of two example cars over their entire service life are shown below: 

 Example car 1 Example car 2 

CO2 emissions in use 20 kg per 100 km 10 kg per 100 km 

CO2 emissions in car  

production 
5.000 kg 13.000 kg 

CO2 emissions caused during car production are lower for example car 1 than for example car 

2. CO2 emissions caused during use, on the other hand, are lower for example car 2 than for 

example car 1. 

With an average total distance of 20,000 km driven per year, the total CO2 emissions of example 

car 2 with the higher CO2 emissions caused during car production are thus already lower than 

example car 1 after four years of use. 

With an average total distance of 10,000 km driven per year, the total CO2 emissions of example 

car 2 with the higher CO2 emissions caused during car production are only lower than example 

car 1 after eight years of use. 

With these two information interventions we expect to increase the stated choices of EV and 

further affect the preferences regarding the ‘purchase price’, the ‘fuel costs per 100 km’, and 

the preferences regarding the two emission-related attributes. We further anticipate heteroge-

neity in treatment effects since the potential financial savings and reductions in CO2 emissions 

depend on driving patterns such as the total number of individual driven kilometers. Table 3 

present some first descriptive statistics for the choice among the different vehicle types and 

reveal that in all three groups, with around 38-42.5%, the highest share of stated choices refers 

to conventional vehicles compared to stated choices for each of the respective EV. Furthermore, 

Table 3 shows that the frequency of stated choices for conventional vehicles in the control group 

is the highest at around 42.5%, compared to 39.75% in the first treatment group and 38.39% in 

the second treatment group. In addition, it is noteworthy that the frequency of stated choices 

for extended-range electric vehicles and (pure) battery electric vehicles is higher in both treat-

ment groups than in the control group. In the first treatment group, 13.76% and in the second 

treatment group, 13.51% of all respondents chose extended-range electric vehicles, compared 

to 12.16% of all respondents in the control group. Table 3 shows that the stated choices for 

battery electric vehicles in the treatment groups are about 2.5-3% higher than in the control 
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group, suggesting possible treatment effects. However, these descriptive results should be in-

terpreted with caution as they do not control for the included attributes or correlations over the 

different choices of one respondent. 

Therefore, we consider the estimation results in multinomial discrete choice models in section 

3.2. In the next section we will describe the variables included in the analysis following by an 

explanation of the econometric approach. 

2.4 Variables in the econometric analysis 

Experiment-related variables 

Our dependent variable refers to the stated choice among the four vehicle types, i.e. conven-

tional vehicles, plug-in hybrid electric vehicles, extended-range electric vehicles, and battery 

electric vehicles. Technically, alternative-specific constants for the three types of electric vehi-

cles are included in the econometric analysis with mixed logit models as discussed below, con-

sidering conventional vehicles as base category. The experiment-related explanatory variables 

are based on the eight attributes as discussed above. While the first financial attribute is termed 

‘purchase price (in 1000 Euro)’, the two emission-specific attributes are termed ‘CO2 emissions 

in use per 100 km (in kg)’ and ‘CO2 emissions in the production (in tons)’. We now consider 

the latter variable in tons to avoid very high parameter estimates in the econometric analysis. 

As the preferences for the range attributes are not the focus of this study, we summarized the 

two attributes for driving range in the variable ‘range with a fully charged battery and/or a full 

tank (in 100 km)’4. The two time-specific attributes are termed ‘time to recharge the battery (in 

hours)’ and ‘time to refuel the tank (in minutes)’, whereby the former variable is now measured 

in hours to avoid very high parameter estimates in the econometric analysis. Finally, the second 

financial attribute is termed ‘fuel costs per 100 km (in Euro)’. 

Since we examine the effect of the treatment information on the preferences for EV, we addi-

tionally include interaction terms between the respective treatment dummy variables and the 

alternative-specific constants in our econometric analysis. As the first treatment information 

addresses the total costs of a vehicle with emphasizing the operational costs, we further include 

interaction terms with the first treatment dummy variable and respectively the ‘purchase price’ 

and the ‘fuel costs per 100 km’. With the second treatment information we address the total 

 
4 The preferences for the range in vehicles and their influence on the choice between vehicles, including different 

interventions, were examined in a complementary paper (Staar and Ziegler, 2024). 
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emissions of a vehicle with highlighting the ‘CO2 emissions in the use per 100 km’. This is why 

we additionally include interaction terms between the second treatment dummy variable and 

the ‘CO2 emissions in use per 100 km’ and the ‘CO2 emissions in the production’ as we expect 

to affect the preferences regarding these attributes. 

Individual characteristics 

For analyzing heterogeneity in treatment effects, we consider split samples regarding two indi-

vidual specific characteristics which reflects the driving patterns. The first variable we use for 

the heterogeneity analysis is the individual number of total km traveled by car within the last 

twelve months. The respondents, who used a car in the last twelve months as means of transport, 

were therefore asked how many kilometers they drove within the last year. As described before 

we further asked the respondents if they plan to purchase a car in the future. For participants 

who did indicate that they will purchase a car in the future, the survey included further questions 

about the features of a potential vehicle. The answers regarding these questions are used for 

customization of some attributes, as explained above, and for the analysis of heterogeneous 

treatment effects. The second variable, used to create split samples for the analysis of hetero-

geneity in treatment effects, is the 'planned mileage'. Therefore, the respondents were asked 

what the approximated total distance is, which must be covered by the purchased vehicle within 

one year. 

In the next section we describe the econometric approach used in this study and report the esti-

mation results. 

3. Empirical analysis 

3.1 Econometric approach 

In our econometric analysis we use mixed logit models (e.g. McFadden and Train, 2000, 

Hensher and Greene, 2003, Greene, 2012), i.e. random parameters logit models. In contrast to 

common multinomial logit models the random parameters logit models are much less restrictive 

and more flexible by including random parameters of the explanatory variables. This model 

maintains the assumption that error terms 𝜀𝑖𝑗𝑚 are independently and follow a standard (type 1) 

extreme value distribution, but it allows the inclusion of random coefficients. Consequently, it 

eases the “independence of irrelevant alternatives" (IIA) assumption seen in multinomial mod-

els (e.g. Hensher et al., 2005, Cameron and Trivedi, 2010). Mixed logit models are particularly 

able to capture unobserved taste heterogeneity and correlations due to the panel nature of the 
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data since each respondent was faced with several choice sets. Incorrectly neglecting taste het-

erogeneity and/or correlations in multinomial logit models, assuming fixed parameters of the 

explanatory variables, can therefore lead to distorted estimation results due to the underlying 

model misspecification (e.g. Greene, 2012). 

As described above, in the stated choice experiment which forms the basis for our discrete 

choice analysis the respondents choose between four different alternative vehicles. The (hypo-

thetical) utility of individual 𝑖 ( 𝑖 = 1,...,N) for alternative j (j = 1, …, 4) in choice set 

m (m = 1,…,6) is given by the following equation (e.g. Greene, 2012, Gutsche and Zieg-

ler, 2019): 

𝑈𝑖𝑗𝑚 = 𝛽𝑖’𝑥𝑖𝑗𝑚 + 𝜀𝑖𝑗𝑚 

The utility thus depends on the vectors of explanatory variables 𝑥𝑖𝑗𝑚 = (𝑥𝑖𝑗𝑚1, . . . , 𝑥𝑖𝑗𝑚𝐾)’ that 

are based on (not exclusively) the attributes and the corresponding unknown parameter vectors 

𝛽𝑖 =  (𝛽𝑖1, … , 𝛽𝑖𝐾)’ where K = 20. As outlined in the theory of random utility maximization 

(e.g. McFadden, 1974), when faced with a choice set 𝑚, individual 𝑖 chooses alternative 𝑗 if the 

utility derived from alternative j is higher than the utility of all other options. Whereas the utility 

𝑈𝑖𝑗𝑚 of each alternative is not observable, it is possible to observe the decision of the respond-

ents. The choice 𝑦𝑖𝑗𝑚 of respondent 𝑖 in the choice set 𝑚 is represented as dummy variable, 

which takes the value one if the respondent chooses the alternative 𝑗 and zero otherwise (e.g. 

Greene, 2012). This observed variable 𝑦𝑖𝑗𝑚 can thus inform about which alternative provides 

the greatest utility for the individual (e.g. Greene, 2012). The choice probability that individual 

𝑖 chooses alternative 𝑗 in choice set 𝑚 can thus be written as following (e.g. Gutsche and Zieg-

ler, 2019): 

𝑃𝑖𝑗𝑚 = 𝑃(𝑈𝑖𝑗𝑚 > 𝑈𝑖𝑗′𝑚;  ∀𝑗 ≠ 𝑗′) = 𝑃(𝛽𝑖
′𝑥𝑖𝑗𝑚 + 𝜀𝑖𝑗𝑚 > 𝛽𝑖

′𝑥𝑖𝑗′𝑚 + 𝜀𝑖𝑗′𝑚; ∀𝑗 ≠ 𝑗′) 

For our SML estimation of mixed logit models we assume normally distributed parameters of 

all attributes (except for the purchase price, which will serve as basis for the estimations of 

WTP). It is important to note that the treatment effects on the choice of electric vehicles are 

estimated by including interaction terms in the mixed logit models. Specifically, the respective 

treatment dummy variables are interacted with the alternative-specific constants (ASC), con-

sidering conventional vehicles as base category, as discussed above. Because we expect our 

treatment interventions to (additionally) affect preferences for the ‘purchase price’, ‘fuel costs 

per 100 km’, and ‘CO2 emissions in the production’ and in the use of a vehicle, we also included 



 

12 

interaction terms between the first treatment dummy variable and respectively the ‘purchase 

price’ and the ‘fuel costs per 100 km’. For the second information treatment we included further 

interactions between the second treatment dummy variable and first the ‘CO2 emissions in the 

production’ and second the ‘CO2 emissions in use per 100 km’. The parameters of these inter-

action terms are typically assumed to be non-random. 

In random parameters logit models, it is assumed that the parameters 𝛽𝑖𝑘 (𝑖 = 1, … , 𝑁) of those 

explanatory variables which are assumed to be random are continuously distributed across 𝑖 

(e.g. Greene, 2012, Gutsche and Ziegler, 2019): 

𝛽𝑖𝑘 = 𝛽𝑘 + 𝜎𝑘𝑢𝑖𝑘 

The 𝑢𝑖𝑘 reflect the individual specific heterogeneity and are independently normally distributed 

with mean zero and standard deviation one. Furthermore, 𝜎𝑘 captures the standard deviation of 

the distribution of 𝛽𝑖𝑘 around the mean 𝛽𝑘. In contrast, the parameters for the purchase price 

and all interaction terms are specified as fixed since it is common practice if the estimated 

parameter is used for willingness to pay (WTP) estimations (e.g. Hensher et al., 2005). Condi-

tional on knowing the unknown vector 𝛽𝑖 the probability that respondent i chooses alternative 

j in choice set m is the standard logit (e.g. Revelt and Train, 1998; Hole, 2007): 

𝐿𝑖𝑗𝑚(𝛽𝑖) =  
𝑒𝛽𝑖

′𝑥𝑖𝑗𝑚

∑ 𝑒
𝛽𝑖

′𝑥𝑖𝑗′𝑚4
𝑗=1

 

However, the maximum likelihood estimation requires, in this case, the joint conditional prob-

ability 𝑆𝑖(𝛽𝑖) of the sequence of observed choices across all M =6 choice sets (e.g. Revelt and 

Train, 1998, Gutsche and Ziegler, 2019), which is the product of the standard logits (e.g. Revelt 

and Train, 1998, Train, 2009): 

𝑆𝑖(𝛽𝑖) = ∏ 𝐿𝑖𝑗(𝑖,𝑚)𝑚(𝛽𝑖)

6

𝑚=1

 

Where j(i,m) represents the alternative that respondent i chooses in choice set m. Integrating the 

conditional probability over the distribution of 𝛽𝑖 gives, thus, the unconditional probability of 

the sequence of observed choices (e.g. Revelt and Train, 1998): 
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𝑃𝑖(𝜃) =  ∫ ∏ 𝐿𝑖𝑗(𝑖,𝑚)𝑚(𝛽𝑖)

6

𝑚=1

 𝑓(𝛽𝑖|𝜃) 𝑑𝛽𝑖 

In line with, for example, Revelt and Train (1998), the log-likelihood function can be written 

as 𝐿𝐿(𝜃) =  ∑ ln 𝑃𝑖(𝜃)𝑁
𝑖=1 , which is the sum of the natural logarithms of the probabilities across 

all respondents (e.g. Gutsche and Ziegler, 2019). However, the probabilities 𝑃𝑖(𝜃) cannot be 

solved analytically because they are characterized by multiple integrals (e.g. Gutsche and Zieg-

ler, 2019; Schwirplies et al., 2019). Consequently, exact maximum likelihood estimations are 

not possible, but can instead be approximated through simulation methods (e.g. Train, 2009). 

According to, for example, Revelt and Train (1998), 𝑃𝑖(𝜃) is approximated through the aggre-

gation over randomly chosen values of 𝛽𝑖. First, a value of 𝛽𝑖 is drawn from 𝑓(𝛽𝑖|𝜃) for any 

given value of 𝜃. Second, the product of the standard logits (i.e. 𝑆𝑖(𝛽𝑖)) is calculated using the 

drawn value of 𝛽𝑖. Finally, the latter two steps are repeated several times, and the results are 

averaged. Hence, the simulated probability of the sequence of choices of a respondent i is (e.g. 

Revelt and Train, 1998; Train, 2009): 

𝑆𝑃𝑖(𝜃) = (
1

𝑅
) ∑ 𝑆𝑖(𝛽𝑖

𝑟|𝜃
)

𝑅

𝑟=1

 

Where 𝛽𝑖
𝑟|𝜃

 represents the simulated 𝑟𝑡ℎ draw from 𝑓(𝛽𝑖|𝜃) and 𝑅 is the number of Halton 

draws. 𝑆𝑃𝑖(𝜃) is, by design, an unbiased estimator of 𝑃𝑖(𝜃) whose variance decreases as the 

number of Halton draws 𝑅 increases (e.g. Revelt and Train, 1998; Train, 2009). Accordingly, 

the simulated log-likelihood function can be written as (e.g. Revelt and Train, 1998; 

Hole, 2007): 

𝑆𝐿𝐿(𝜃) =  ∑ ln [
1

𝑅
∑ 𝑆𝑖(𝛽𝑖

𝑟|𝜃
)

𝑅

𝑟=1

]

𝑁

𝑖 =1

 

Recall that mixed logit models account for unobserved taste heterogeneity by assuming a con-

tinuous distribution for the parameters, which must be defined by the analyst (e.g. Kanberger 

and Ziegler, 2023). As explained above, we assume the parameters of the purchase price attrib-

ute and the interaction terms to be fixed and the parameters of the rest of the attributes to be 

normally distributed. We use the Stata command “mixlogit”, which was written by Hole (2007). 

Furthermore, we use 1,000 Halton draws in all SML estimations5. 

 
5 Note that all other estimations and statistical analyses considered in this paper were also conducted using Stata. 
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Based on the estimated parameters, it is subsequently possible to additionally estimate the mean 

WTP for the attributes of the vehicles. Mean WTP can be obtained by setting the total derivative 

of the utility function with respect to the attributes and the purchase price equal to zero while 

assuming that all other attributes are held constant (e.g. Gutsche and Ziegler, 2019). Mean WTP 

refers to the change in the purchase price that holds the utility constant for a marginal change 

in the explanatory variable of interest (e.g. change in CO2 emissions) (e.g. Gutsche and Ziegler, 

2019). In the case of the common multinomial logit models (which assume fixed parameters), 

the value of the mean WTP can be obtained mathematically through dividing the negative value 

of the estimated parameter of the explanatory variable of interest by the estimated parameter of 

the monthly household costs (e.g. Kanberger and Ziegler, 2024). However, in our case with 

mixed logit models with assumed random parameters, the mean WTP for the attributes of the 

future transport systems is calculated through dividing the negative values of the estimated 

means of the random parameters by the estimated fixed parameter of the purchase price (e.g. 

Revelt and Train, 1998; Gutsche and Ziegler, 2019). 

Recall, however, that we also consider interaction terms in our model. Typically, the parameters 

of such interaction terms are assumed to be non-random. Therefore, their corresponding mean 

WTP is estimated through dividing the negative value of the estimated parameter of the inter-

action term by the estimated parameter of the purchase price (e.g. Kanberger and Ziegler, 2024). 

Let 𝛽𝑘̂ denote the estimated mean of the (random) parameter 𝑘 and 𝛽𝑐𝑜𝑠𝑡̂ the estimated fixed 

parameter of the purchase price. Then, mathematically, the estimated mean 𝑊𝑇𝑃𝑘̂ can be ex-

pressed as follows (e.g. Scarpa and Rose, 2008; Daziano and Achtnicht, 2014): 

𝑀𝑒𝑎𝑛 𝑊𝑇𝑃𝑘̂ = −
𝛽𝑘̂

𝛽𝑐𝑜𝑠𝑡̂

 

In the next section we describe the estimation results regarding the main treatment effects fol-

lowing by an analysis of heterogeneity in treatment effects. 

3.2 Preliminary estimation results  

Treatment effects 

Table 4 reports the SML estimation results in a mixed logit model that includes the variables 

based on the vehicle attributes, as explained above, the alternative-specific constants for the 

three different electric vehicle types considering conventional vehicles as base category, the 

interaction terms between the first treatment variable and respectively the ‘purchase price’ and 
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the ‘fuel costs per 100 km’. Additionally, the interaction terms between the second treatment 

variable and the ‘CO2 emissions in the production’ and ‘CO2 emissions in the use’ of a vehicle 

are included. The parameter estimates and the corresponding (cluster) robust z-statistics in the 

first column refer to the mean of the random parameters whereas the second column refers to 

the estimated standard deviations of the random parameters and the corresponding robust z-

statistics, whereby no standard deviations are estimated for the parameters, which are assumed 

to be fixed. The second column of Table 4 shows that all estimated standard deviations of the 

parameters are significantly different from zero, which indicates strong unobserved heteroge-

neity in the estimated preferences and thus confirms the superiority of the application of mixed 

logit models compared to multinomial logit models that implicitly assume standard deviations 

of zero due to the underlying fixed parameters. The third column of Table 4 reports the results 

of the willingness to pay estimations based on the purchase price. 

According to the first column of Table 4 the ‘range with a fully charged battery and/or a full 

tank’ has the expected significantly positive effect, whereas the ‘time to recharge the battery’, 

‘time to refuel the tank’, as well as the ‘fuel costs per 100 km’ have the expected significantly 

negative effect on the choice of a vehicle. This is in line with findings in previous studies (e.g. 

Hidrue et al., 2011, Noel et al., 2019). Furthermore, the first column reveals that the ‘purchase 

price’ has the expected significantly negative effect on the choice of a vehicle. Since the esti-

mated parameter for the ‘purchase price’ is significantly different from zero we can consider 

the mean WTP estimates for the other variables considered in the analysis if the respective 

parameters are significantly different from zero. The estimated mean of the parameters for the 

‘CO2 emission in the production’ and in the use of a vehicle indicate a significantly negative 

effect on the choice of a vehicle which indicates preferences for lower ‘CO2 emissions in the 

production’ as well as in the use of a vehicle. These findings are in line with the literature (e.g. 

Hidrue et al., 2011, Achtnicht, 2012, Kanberger and Ziegler, 2024). Further, in line with previ-

ous studies (e.g. Achtnicht, 2012), the estimation results for the alternative-specific constants 

in Table 4 reveal strong initial preference for conventional vehicles since conventional vehicles 

are considered as base category and the estimated means of the parameters for all three electric 

vehicle types are strongly significantly negative. The estimated stated preference is especially 

low for extended-range and battery electric vehicles. 

However, the estimation results for the ‘purchase price’, the ‘fuel costs’, both emission-related 

variables, and the alternative-specific constants only refer to the control group, since we in-

cluded interaction terms between the respective treatment variable and all these variables. We 
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expect our information treatments to have a significantly positive effect on the preferences for 

EV which would result in significant positive estimated parameters for the interaction terms 

between the ASC and the treatment variables. The first column of Table 4 shows contrary to 

our expectation no significant effect for any of the information treatments when considering the 

whole sample. With the first treatment information, which addresses the total costs, we further 

expect to affect the preferences for the ‘purchase price’ and the ‘fuel costs per 100 km’. The 

estimation results for the interaction terms between the first treatment variable and these varia-

bles show no significant effect on the preferences for none of the financial variables. Since the 

second treatment information addresses total CO2 emissions of vehicles, we also expect to af-

fect the preferences for the ‘CO2 emissions in production’ and the ‘CO2 emissions in the use’ 

of a vehicle. Based on the estimation results presented in Table 4 we do not find any significant 

treatment effect for these interaction terms.  

The third column of Table 4 comprises the mean willingness to pay (WTP) estimates in terms 

of the purchase price, measured in Euro. These estimates are calculated by the ratio between 

the negative values of the estimated (means of the) parameters and the estimated fixed param-

eter of the purchase price and multiplied by 1,000 as the purchase price is measured in 1,000 

Euro. The mean WTP estimates for the alternative-specific constants for the three different 

electric vehicle types reveal strong initial preferences for conventional vehicles since all of them 

are strongly significantly negative. According to the mean WTP estimates the aversion is espe-

cially high for extended-range and battery electric vehicles. The estimated mean WTP for ex-

tended-range electric vehicles is about -17,200 Euro. For battery electric vehicles the third col-

umn of reveals an estimated mean WTP of about -16,700 Euro and about -10,200 Euro for plug-

in hybrid electric vehicles compared to conventional vehicles. This indicates that the purchase 

price for extended-range electric vehicle must be almost 17,200 Euro lower than the purchase 

price for conventional vehicles that individuals are on average indifferent between two other-

wise identical vehicles which only differ in their propulsion technology. 

Regarding the attributes the mean WTP estimates indicate that on average individuals are will-

ing to pay 2,060 Euro for an increase in the ‘range with a fully charged battery/ full tank’ by 

100 km, almost 2,500 Euro per hour decrease in recharging time, and more than 1,700 Euro for 

a decrease of fuel costs of one Euro per 100 km. According to the mean WTP estimates in the 

third column individuals are on average willing to pay 273.47 Euro for a reduction in ‘CO2 

emissions in use per 100 km’ by one kg, what means an estimated mean WTP of 27.35 Euro 

for a reduction by one gram per km. It is difficult to compare the estimated mean WTP estimates 
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for the emissions-related attributes. In line with Kanberger and Ziegler (2024) and following 

the approach in Achtnicht (2012) and Hulshof and Mulder (2020) the mean WTP estimates for 

CO2 emissions in the use of a vehicle can be transformed into an estimated mean WTP for a 

reduction by one ton over the lifetime of a vehicle by considering an average lifetime mileage 

of 145,830 km6. This leads to an estimated mean WTP of 187,53 Euro for a reduction of one 

ton in the use over the total lifespan of a vehicle which lies within the range of the mean WTP 

estimates in Achtnicht (2012) and Hulshof and Mulder (2020). Compared to this, citizens are 

on average willing to pay 371.99 Euro for a reduction by one ton of ‘CO2 emissions in the 

production’. These results imply that individuals are on average willing to pay more for a re-

duction by one ton generated in the production compared to a reduction by one ton in the use 

over the total lifespan. This confirms consumers’ aversion to the high CO2 emissions generated 

in the production of electric vehicles, as found in the literature (e.g. Krishna, 2021). It is im-

portant to note that the estimated mean of the random parameters regarding the emissions-re-

lated variables in Table 4 does not exclusively refer to electric vehicles. Based on our estimation 

results for the interaction terms we cannot find any significantly change for the estimated mean 

WTP for the alternative-specific constants for the three different electric vehicle types and the 

attributes ‘purchase price’, ‘fuel costs per 100 km’, ‘CO2 emissions in the use’, and ‘CO2 emis-

sions in the production’ of a vehicle for the treatment group. 

In summary, Table 4 indicates that there is no significant treatment effect on the choice of EV 

or on the preferences for the two financial attributes and the two emission-related attributes. 

The potential financial savings and reductions in the total CO2 emissions caused by operational 

costs and emissions highly depend on the total number of km individuals drive (e.g. Helmers 

and Weiss, 2017, Moon and Lee, 2019, Wietschel et al., 2019, Shafique and Luo, 2022), we 

therefore anticipate that the impact will vary depending on the individual total number of kilo-

meters driven. In the following chapter, we therefore analyze possible heterogeneity in treat-

ment effects by examining split samples based on the total number of kilometers traveled by 

car in the last twelve months and the total ‘planned mileage’ within one year for a vehicle that 

will soon be purchased. 

 
6 For calculation we multiply the estimated mean WTP of 27.35 Euro with 1,000,000 and divide this result by 

145,830 km. 



 

18 

Heterogeneity in treatment effects 

Table 5 presents the SML estimation results using the same specifications as in Table 4, but 

considering split samples based on the total distance driven by individuals in the last twelve 

months. In the survey only individuals who stated that they used the car within the last twelve 

months as means of transport saw this question. We assigned a value of zero kilometers to those 

who stated that they did not use the car as means of transport since they in fact traveled zero 

kilometers by car. We used different thresholds to separate the split samples. The first two 

columns of Table 5 show the estimated (mean) parameters and the corresponding (robust) z-

statistics for respondents who drove less than or equal to 8,000 km, which is the median value 

for this variable in our sample (when only considering those who stated a number of kilome-

ters). The third column refers to the mean WTP estimates based on the estimation results in the 

first two columns. Compared to this, the columns four to six report the estimation results for 

participants who drove more than 8,000 km. The columns seven to nine refer to the estimation 

results for individuals who drove more than 10,000 km whereas the last three columns refer to 

the results for participants who drove more than 12,000 km in the last twelve months. According 

to the results in Table 5 the initial aversion for the three different electric vehicle types increases 

with the total number of kilometers driven in the last twelve months. For extended-range elec-

tric vehicles, for example, the estimated mean WTP ranges from almost - 13,300 Euro for indi-

viduals who drove less than 8,000 km in the last year to more than – 30,800 Euro for those who 

drove more than 12,000 km in the last twelve months. Similar to this, the estimated mean WTP 

for a decrease in ‘fuel costs per 100 km’ by one Euro also increase with the number of kilome-

ters driven in the last twelve months. 

Regarding the first treatment information, which addresses the total costs of vehicles, Table 5 

reveals a positive treatment effect on the choice of extended-range electric vehicles which is 

significantly different from zero for individuals who drove more than 8,000 km and for those 

who drove more than 10,000 km. The sixth column thus reveal an increase in the estimated 

mean WTP for extended-range electric vehicle for individuals in the first treatment group who 

drove more than 8,000 km by about 7,430 Euro. The increase in the mean WTP estimate for 

individuals who drove more than 10,000 km through the information about the total costs, with 

highlighting the operational costs, is even higher with 10,204 Euro. In contrast, the estimation 

results in the first column do not reveal any significant treatment effect for the sample with 

individuals who travelled less than 8,000 km by car. This result confirms our expectation that 

treatment information has a stronger effect on individuals who use their car more intensively. 
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Regarding the split sample for individuals who drove more than 12,000 km within the last year 

the estimation results in the last two columns indicate again no significant treatment effect for 

the first treatment information. In this regard we must mention that if splitting the sample at a 

threshold of 12,000 km the sample size for the group of individuals who drove more than 

12,000 km is way smaller which leads to a decrease in statistical power. Furthermore, the not 

existent treatment effect may be explained by other existing barriers such as experienced range 

anxiety which increases for individuals with a higher number of driven kilometers. Regarding 

the second treatment information which refers to the total emissions of a vehicle with highlight-

ing the emissions in the use, the estimation results in Table 5 reveal a significantly positive 

effect on the choice of plug-in hybrid electric vehicles for individuals who drove more than 

8,000 km, more than 10,000 km, and more than 12,000 km. The increase in the estimated mean 

WTP in the second treatment group compared to the control group is again higher for those 

individuals who drove a higher total number of kilometers in the last year and varies from 

6,050 Euro for individuals who drove more than 8,000 km to more than 12,500 Euro for those 

who stated that they drove more than 12,000 km. This significant effect again cannot be found 

for individuals who drove less than 8,000 km in the last twelve months. Additionally for the 

groups who drove more than 10,000 km and more than 12,000 km the results in the seventh and 

tenth column reveal a weakly significantly positive effect of the treatment information on the 

choice of extended-range electric vehicles. 

Table 6 reports the estimation results for the SML estimations with split samples regarding the 

total ‘planned mileage’ of individuals for one year. A few (unplausible) values which were 

identified in an outlier analysis (e.g. 1 km or 1,000,000 km) were excluded (in the literature 

referred to as ‘trimming’, e.g. Lusk et al., 2011) in the econometric analysis. Therefore, we 

excluded the lowest and highest 0.5 percentile of the values for the ‘planned mileage’ variable7. 

Since this question was only presented to individuals who did state that they intent to buy a car 

in the future the observations in the model with split samples regarding this variable are lower 

than in the other models. The first two columns report the estimated mean parameters and the 

corresponding (robust) z-statistics for individuals who stated that they plan to drive less or equal 

to 10,000 km within one year with the soon to be purchased vehicle. We choose the first thresh-

old of 10,000 km as this is the median value in our sample for this variable. The third column 

 
7 As second approach regarding these values we used winsorizing (e.g. Lusk et al., 2011) and reassigned those 

values to the first values which are not identified as outliers anymore and again estimated the model with specifi-

cations as in in Table 6. These estimation results do not differ qualitatively from the results reported in Table 6. 

Due to brevity the estimation results are not reported here but are available upon request. 
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reports the mean WTP estimates which are based on the estimation results in the first two col-

umns. The columns four to six refer to the estimation results for the group which stated to plan 

to drive more than 10,000 km per year. The last three columns show the estimation results for 

individuals who stated a planned mileage of more than 15,000 km. For individuals who stated 

a planned mileage of less than or equal to 10,000 km the estimation results only indicate weakly 

significantly negative treatment effects on the choice of plug-in hybrid electric vehicles for both 

treatment information. This may be since both information treatments draw attention to the fact 

that financial savings and reductions in CO2 emissions may be less present for individuals who 

(plan to) drive lower numbers of kilometers. For individuals who stated a planned mileage of 

more than 10,000 km the second treatment information referring to the total emissions of vehi-

cles with highlighting the operating emissions has a significantly positive effect on the prefer-

ences for extended-range and plug-in hybrid electric vehicles. As a result, column six shows 

that the estimated mean WTP for those individuals in the second treatment group increases by 

more than 12,500 Euro for extended-range, and by almost 11,300 Euro for plug-in hybrid elec-

tric vehicles.  

Regarding the first treatment the estimation results in the last two columns reveal a significantly 

negative effect on the preferences for the purchase price. For this group we can see that the 

aversion against the purchase price was not as strong as for individuals who have a lower stated 

‘planned mileage’ and by highlighting the costs of vehicles in general this may have increased 

the awareness regarding the purchase price. Additionally, in the split sample of individuals who 

stated a planned mileage of more than 15,000 km the second treatment information has a weakly 

significant positive effect on the preferences for extended-range electric vehicles. Furthermore, 

for those individuals we find significantly positive treatment effect on the preferences for plug-

in hybrid and battery electric vehicles of the second treatment information. The last column 

reveals that these effects results in a very high increase in WTP for all types of electric vehicles 

for this group of individuals, i.e. an increase in the estimated mean WTP for extended-range 

electric vehicles by around 18,600 Euro, for plug-in hybrid EV by 23,600 Euro, and for battery 

electric vehicles by 24,300 Euro in the second treatment group.  

Our findings indicate that especially people who would benefit more from lower operational 

costs of EV and would highly reduce their CO2 emissions because lower operational emissions 

can be influenced by informing about the potential of these lower operational costs and emis-

sions before the purchase decision. In summary both treatment information almost exclusively 

influences the choice of plug-in and extended-range electric vehicles. This may be because 
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other factors like range anxiety are especially high for battery electric vehicles as this only have 

one or more electric engines and this the shortest range of the different EV types we included 

in our study. Only for individuals who plan to drive more than 15,000 km within one year can 

be positively influenced by the information about the total emissions of a vehicle. Furthermore, 

based on our estimation results we find a higher potential for the second treatment information. 

4. Conclusion and policy implications 

This study empirically examines the effect of general information about costs and emissions 

over the life cycle of a vehicle, by highlighting the operational costs and emissions before the 

purchase decision on the stated choices of electric vehicles. We further analyze the effect of 

these two information treatments on the preferences for the purchase price, the fuel costs, the 

CO2 emissions in the production and in the use of a vehicle. Considering the whole sample, we 

cannot find any significant treatment effect. Since the potential financial benefits and reductions 

in emissions caused by lower operational costs and emissions highly depends on the intensity 

of vehicle use, we considered split samples regarding the total driven kilometers in the last year 

and the planned mileage within twelve months for a soon to be purchased vehicle. Our results 

imply the potential effectiveness of targeted information campaigns for individuals with a 

higher extent of car use. Providing information about costs and emissions over the life cycle 

can increase the awareness for potential financial savings and reductions in emissions and thus 

increase the number of individuals who buy electric vehicles. The results of our SML estima-

tions imply that the information about total CO2 emissions of a vehicle would have more po-

tential in increasing the preferences and the willingness to pay for electric vehicles. Neverthe-

less, the information mainly led to an increase in preferences for plug-in hybrid and extended-

range electric vehicles. Regarding the preferences for battery electric vehicles, this information 

treatment only has a significantly positive effect for individuals with a very high planned mile-

age. Since the target is to reach climate neutrality in the transportation sector (and overall) we 

conclude that only corresponding targeted information campaigns for frequent drivers can be a 

successful component in increasing the purchase of electric vehicles and that the information 

campaign to highlight the energy efficiency could be combined with measures to address other 

barriers as the fear which is related to the limited driving range of electric vehicles (i.e. range 

anxiety) and the limited charging availabilities.  
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As further steps we will conduct further robustness checks and we will consider additional in-

dividual characteristics for analyzing the heterogeneity in treatment effects such as the environ-

mental awareness measured by the “New ecological paradigm”, the income, and other variables 

of the survey.  
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Tables 

Table 1: Attributes and attribute levels across different vehicle types in the stated choice exper-

iment 

Attributes Attribute levels Vehicle types 

Purchase price 
70%, 80%, 90%, 100%, 110%, 120%, 130% 

of stated reference value (in Euro) 

Conventional vehicle, plug-in hybrid electric 

vehicle, extended-range electric vehicle, pure 

electric vehicle 

CO2 emissions 

in use per 100 

km 

60%, 80%, 100%, 120%, 140%  

of reference value according to  

stated vehicle class (in kg) 

Conventional vehicle, plug-in hybrid electric 

vehicle, extended-range electric vehicle 

0%, 30%, 60%, 80%, 100%, 120%, 140%  

of reference value according to  

stated vehicle class (in kg) 

Pure electric vehicle 

CO2 emissions 

in production 

60%, 80%, 100%, 120%, 140%  

of reference value according to  

stated vehicle class (in kg) 

Conventional vehicle, plug-in hybrid electric 

vehicle, extended-range electric vehicle, bat-

tery electric vehicle 

Range with fully 

charged battery 

-- Conventional vehicle 

50 km, 75 km, 100 km, 150 km, 200 km Plug-in hybrid electric vehicle 

100 km, 200 km, 250 km, 300 km, 400 km Extended-range electric vehicle 

150 km, 200 km, 300 km, 450 km, 600 km Battery electric vehicle 

Range with 

full tank 

450 km, 600 km, 750 km, 900 km, 1050 km Conventional vehicle 

300 km, 400 km, 500 km, 600 km, 700 km Plug-in hybrid electric vehicle 

50 km, 100 km, 150 km, 200 km, 250 km Extended-range electric vehicle 

-- Battery electric vehicle 

Time to  

recharge battery 

-- Conventional vehicle 

15 minutes, 30 minutes,  

60 minutes, 120 minutes 
Plug-in hybrid electric vehicle 

30 minutes, 60 minutes,  

120 minutes, 140 minutes 
Extended-range electric vehicle 

45 minutes, 90 minutes,  

180 minutes, 360 minutes 
Battery electric vehicle 

Time to refuel 

tank 

3 minutes, 5 minutes, 6 minutes Conventional vehicle 

2 minutes, 3 minutes, 5 minutes Plug-in hybrid electric vehicle 

1 minute, 2 minutes, 3 minutes Extended-range electric vehicle 

-- Battery electric vehicle 

Fuel costs  

per 100 km 

60%, 80%, 100%, 120%, 140%  

of reference value according to  

stated vehicle class (in Euro) 

Conventional vehicle, plug-in hybrid electric 

vehicle, extended-range electric vehicle, bat-

tery electric vehicle 
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Table 2: Exemplary choice set in the stated choice experiment 

 

  

Let us start with the first set of choices. Which of the following four cars would you most likely choose? 

 Vehicle 1: 

Battery electric vehi-

cle [Mouse click: 

Car powered exclu-

sively by one or 

more electric mo-

tors] 

 

Vehicle 2: 

Electric vehicle with 

range extender 

[Mouse click: Car 

powered by a combi-

nation of one or 

more electric motors 

plus a small gasoline 

or diesel engine for 

range extension] 

Vehicle 3: 

Gasoline or diesel 

vehicle  

[Mouse click: Car 

powered exclusively 

by a gasoline or die-

sel engine] 

Vehicle 4: 

Plug-in 

hybrid vehicle 

[Mouse click: Car 

powered by a combi-

nation of one or 

more small electric 

motors and a gaso-

line or diesel engine] 

CO2 emissions in use 

per 100 km 
10.1 kg 11.2 kg 22.9 kg 21.2 kg 

CO2 emissions in 

production 
5,000 kg 5,800 kg 6,000 kg 8,600 kg 

Range with fully 

charged battery 
300 km 400 km - 150 km 

Range with  

full tank 
- 50 km 900 km 400 km 

Time to recharge 

battery 
180 minutes 60 minutes - 120 minutes 

Time to refuel  

tank 
- 2 minutes 3 minutes 5 minutes 

Fuel costs  

per 100 km 
3.50 Euro 7.20 Euro 5.50 Euro 7.50 Euro 

Purchase price 8,400 Euro 15,600 Euro 14,400 Euro 12,000 Euro 

My choice □ □ □ □ 

 

Would you rather not choose any of the cars shown above and prefer another car instead?  

□   Yes 

□   No 
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Table 3: Frequencies for the stated choice of vehicle types 

Conventional 

vehicle 

Plug-in hybrid 

electric vehicle 

Extended-range  

electric vehicle 

Battery 

electric vehicle 

Control group, 1128 respondents, six choice sets, 6768 observations (choices) 

2875 

(42.48%) 

1631 

(24.10%) 

823 

(12.16%) 

1439 

(21.26%) 

Frequencies for the first treatment group (total costs) 

First treatment group, 561 respondents, six choice sets, 3366 observations (choices) 

1338 

(39.75%) 

748 

(22.22%) 

463 

(13.76%) 

817 

(24.27%) 

Frequencies for the second treatment group (total emissions) 

Second treatment group, 554 respondents, six choice sets, 3324 observations (choices) 

1276 

(38.39%) 

808 

(24.31%) 

449 

(13.51%) 

791 

(23.80%) 
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Table 4: SML estimation results in a mixed logit model for the choice among four vehicle types, 

1,000 Halton draws, 2,243 respondents (1,128 in control group, 561 in treatment group 1, and 554 in 

treatment group 2), first six choice sets, 13,458 observations (choices) 

 

Explanatory variables 

Estimates (robust z-statistics) Mean WTP estimates in 

Euro (based on purchase 

price) 
Mean 

of the parameter 

Standard deviation 

of the parameter 

Purchase price  

(in 1000 Euro) 

-0.078*** 

(-12.31) 
-- -- 

Extended-range electric vehicle 
-1.343*** 

(-11.06) 

1.121*** 

(14.84) 
-17,185.22 

Plug-in hybrid electric vehicle 
-0.795*** 

(-8.38) 

1.781*** 

(25.79) 
-10,169.10 

Battery electric vehicle 
-1.306*** 

(-8.47) 

1.071*** 

(7.52) 
-16,714.35 

CO2 emissions in use per 100 km 

(in kg) 

-0.021*** 

(-5.37) 

0.082*** 

(12.75) 
-273.47 

CO2 emissions in production  

(in tons) 

-0.029*** 

(-3.83) 

0.080*** 

(5.09) 
-371.99 

Range with fully charged battery 

/ full tank (in 100 km) 

0.161*** 

(16.19) 

0.213*** 

(14.39) 
2,060.52 

Time to recharge battery  

(in hours) 

-0.193*** 

(-8.26) 

0.364*** 

(9.94) 
-2,469.06 

Time to refuel tank  

(in minutes) 

-0.036** 

(-2.42) 

0.396*** 

(17.39) 
-462.76 

Fuel costs per 100 km  

(in Euro) 

-0.136*** 

(-14.23) 

0.239*** 

(19.60) 
-1,740.74 

Extended-range electric vehicle 

× Treatment 1 

0.204 

(1.19) 
-- -- 

Plug-in hybrid electric vehicle  

× Treatment 1 

-0.044 

(-0.28) 
-- -- 

Battery electric vehicle  

× Treatment 1 

0.273 

(1.29) 
-- -- 

Purchase price 

× Treatment 1 

-0.002 

(-0.15) 
-- -- 

Fuel costs per 100 km  

× Treatment 1 

-0.005 

(-0.25) 
-- -- 

Extended-range electric vehicle 

× Treatment 2 

0.193 

(1.06) 
-- -- 

Plug-in hybrid electric vehicle × 

Treatment 2 

0.164 

(1.02) 
-- -- 

Battery electric vehicle  

× Treatment 2 

0.316 

(1.41) 
-- -- 

CO2 emissions in use per 100 km 

× Treatment 2 

-0.005 

(-0.61) 
-- -- 

CO2 emissions in production  

× Treatment 2 

-0.003 

(-0.18) 
-- -- 

Note: * (**, ***) means that the appropriate estimated parameter is different from zero at the 10% (5%, 1%) 

significance level, respectively, explanatory variables: alternative-specific constants (base category: conven-

tional vehicle), vehicle attributes, interaction terms between alternative-specific constants and the respective 

treatment dummy variables, interaction terms between the dummy variable for the first treatment and purchase 

price and fuel costs, interaction terms between the dummy variable for the second treatment and CO2 emissions 

in use and CO2 emissions in production
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Table 5: SML estimation results in mixed logit models for the choice among four vehicle types considering split samples regarding the total number of kilometers trav-

eled by car in the last twelve months, 1,000 Halton draws, 13,458 observations (choices) 

 

Explanatory variables 

Less than or equal to 8,000 km More than 8,000 km More than 10,000 km More than 12,000 km 

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) 

Mean 

of the parame-

ter 

Standard  

deviation of the  

parameter 

Mean WTP es-

timates in Euro 
(based on pur-

chase price ) 

Mean 

of the parame-

ter 

Standard  

deviation of the  

parameter 

Mean WTP es-

timates in Euro 
(based on pur-

chase price) 

Mean 

of the parame-

ter 

Standard  

deviation of the  

parameter 

Mean WTP es-

timates in Euro 
(based on pur-

chase price ) 

Mean 

of the parame-

ter 

Standard  

deviation of the  

parameter 

Mean WTP esti-

mates in Euro 
(based on pur-

chase price ) 

Purchase price 
(in 1000 Euro) 

-0.081*** 
(-9.03) 

-- -- 
-0.073*** 

(-8.21) 
 -- 

-0.072*** 
(-6.71) 

-- -- 
-0.059*** 

(-5.25) 
-- -- 

Extended-range electric 

vehicle 

-1.075*** 

(-6.89) 

1.168*** 

(12.06) 
-13,273.53 

-1.764*** 

(-9.29) 

1.181*** 

(10.54) 
-24,025.53 

-1.800*** 

(-7.39) 

1.141*** 

(7.94) 
-25,048.36 

-1.817*** 

(-6.56) 

1.174*** 

(7.32) 
-30,819.90 

Plug-in hybrid electric 
vehicle 

-0.648*** 
(-5.15) 

1.844*** 
(19.61) 

-8,009.62 
-0.993*** 

(-6.94) 

1.749*** 

(16.12) 
-13,517.29 

-0.989*** 
(-5.75) 

1.742*** 
(13.50) 

-13,764.25 
-1.043*** 

(-5.33) 
1.650*** 
(11.40) 

-17,684.35 

Battery electric vehicle 
-1.014*** 

(-5.13) 
-1.210*** 

(-5.98) 
-12,531.39 

-1.594*** 

(-7.03) 

-0.628** 

(-2.43) 
-21,705.90 

-1.503*** 
(-5.44) 

-0.172 
(-0.18) 

-20,921.44 
-1.507*** 

(-5.08) 
-0.159 
(-0.54) 

-25,567.19 

CO2 emissions in use 
per 100 km (in kg) 

-0.019*** 
(-3.65) 

0.088*** 
(10.85) 

-237.57 
-0.024*** 

(-3.98) 

0.078*** 

(9.61) 
-331.02 

-0.028*** 
(-3.86) 

0.076*** 
(8.19) 

-394.29 
-0.027*** 

(-3.29) 
0.075*** 

(8.20) 
-461.69 

CO2 emissions in pro-
duction (in tons) 

-0.032*** 
(-3.28) 

0.067** 
(2.23) 

-400.37 
-0.023* 

(-1.89) 

0.064 

(1.29) 
-312.03 

-0.024 
(-1.64) 

0.098*** 
(3.44) 

-- 
-0.025 
(-1.61) 

0.098*** 
(3.36) 

-- 

Range with fully 

charged battery / full 
tank (in 100 km) 

0.127*** 

(10.12) 

0.201*** 

(9.77) 
1,563.77 

0.217*** 

(13.05) 

0.223*** 

(10.41) 
2,948.58 

0.236*** 

(12.07) 

0.223*** 

(9.17) 
3,291.07 

0.245*** 

(10.87) 

0.222*** 

(7.52) 
4,160.07 

Time to recharge bat-
tery (in hours) 

-0.177*** 
(-6.39) 

0.365*** 
(9.04) 

-2,190.60 
-0.239*** 

(-5.43) 

0.372*** 

(5.97) 
-3,261.37 

-0.250*** 
(-4.84) 

0.367*** 
(5.17) 

-3,474.26 
-0.205*** 

(-3.09) 
0.263** 
(2.46) 

-3,483.03 

Time to refuel tank 
(in minutes) 

-0.036* 
(-1.80) 

0.391*** 
(13.04) 

-441.54 
-0.019 

(-0.83) 

0.394*** 

(12.62) 
-- 

-0.017 
(-0.63) 

0.410*** 
(10.94) 

-- 
-0.041 
(-1.29) 

0.413*** 
(10.39) 

-- 

Fuel costs per 100 km 
(in Euro) 

-0.135*** 
(-10.64) 

0.240*** 
(14.49) 

-1,672.77 
-0.138*** 

(-9.42) 

0.233*** 

(12.45) 
-1,878.26 

-0.149*** 
(-8.46) 

0.233*** 
(10.31) 

-2,077.74 
-0.140*** 

(-7.40) 
0.216*** 

(8.83) 
-2,371.92 

Extended-range electric 
vehicle × Treatment 1 

0.010 
(0.05) 

-- -- 
0.546** 

(1.97) 
-- 7,430.79 

0.733** 
(2.33) 

-- 10,204.01 
0.593 
(1.59) 

-- -- 

Plug-in hybrid electric 

vehicle × Treatment 1 

-0.296 

(-1.45) 
-- -- 

0.263 

(1.10) 
-- -- 

0.408 

(1.41) 
-- -- 

0.363 

(1.13) 
-- -- 

Battery electric vehicle 
× Treatment 1 

0.244 
(0.92) 

-- -- 
0.141 

(0.44) 
-- -- 

0.344 
(0.89) 

-- -- 
0.088 
(0.20) 

-- -- 

Purchase price 
× Treatment 1 

-0.017 
(-0.88) 

-- -- 
0.007 

(0.44) 
-- -- 

0.009 
(0.47) 

-- -- 
0.004 
(0.20) 

-- -- 

Fuel costs per 100 km 
× Treatment 1 

-0.009 
(-0.34) 

-- -- 
0.006 

(0.22) 
-- -- 

0.020 
(0.60) 

-- -- 
0.022 
(0.59) 

-- -- 
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Table 5 (continued)             

Extended-range electric 

vehicle × Treatment 2 

0.022 

(0.10) 
-- -- 

0.433 

(1.47) 
-- -- 

0.695* 

(1.95) 
-- 9,672.30 

0.652* 

(1.67) 
-- 11,058.38 

Plug-in hybrid electric 

vehicle × Treatment 2 

-0.056 

(-0.25) 
-- -- 

0.444* 

(1.87) 
-- 6,050.40 

0.589** 

(2.09) 
-- 8,200.34 

0.739** 

(2.40) 
-- 12,541.04 

Battery electric vehicle 

× Treatment 2 

0.126 

(0.44) 
-- -- 

0.418 

(1.22) 
-- -- 

0.538 

(1.36) 
-- -- 

0.600 

(1.42) 
-- -- 

CO2 emissions in use 

per 100 km  

× Treatment 2 

-0.012 
(-1.16) 

-- -- 
0.004 
(0.33) 

-- -- 
0.004 
(0.27) 

-- -- 
0.012 
(0.73) 

-- -- 

CO2 emissions in pro-

duction × Treatment 2 

-0.001 

(-0.06) 
-- -- 

-0.006 

(-0.24) 
-- -- 

-0.013 

(-0.43) 
-- -- 

-0.012 

(-0.39) 
-- -- 

Number of observa-

tions 
8,238 8,238 8,238 5,220 5,220 5,220 3,630 3,630 3,630 2,802 2,802 2,802 

Note: * (**, ***) means that the appropriate estimated parameter is different from zero at the 10% (5%, 1%) significance level, respectively, explanatory variables: alternative-specific constants (base 

category: conventional vehicle), vehicle attributes, interaction terms between alternative-specific constants and the respective treatment dummy variables, interaction terms between the dummy variable 

for the first treatment and purchase price and fuel costs, interaction terms between the dummy variable for the second treatment and CO2 emissions in use and CO2 emissions in production.  
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Table 6: SML estimation results in mixed logit models for the choice among four vehicle types considering split samples regarding the ‘planned mileage’, 

1,000 Halton draws, 9,258 observations (choices) 

 

Explanatory variables 

Less than or equal to 10,000 km More than 10,000 km More than 15,000 km 

(1) (2) (3) (4) (5) (6) (7) (8) (9) 

Mean 

of the param-

eter 

Standard de-

viation 

of the param-

eter 

Mean WTP esti-
mates in Euro 

(based on pur-

chase price) 

Mean 

of the param-

eter 

Standard de-

viation 

of the param-

eter 

Mean WTP esti-
mates in Euro 

(based on pur-

chase price) 

Mean 

of the param-

eter 

Standard de-

viation 

of the param-

eter 

Mean WTP esti-
mates in Euro 

(based on pur-

chase price) 

Purchase price  

(in 1000 Euro) 

-0.093*** 

(-9.09) 
-- -- 

-0.061*** 

(-6.13) 
-- -- 

-0.044*** 

(-3.25) 

 
-- 

Extended-range electric vehicle 
-1.212*** 

(-6.00) 

1.158*** 

(10.05) 
-13,002.40 

-1.746*** 

(-7.57) 

1.241*** 

(9.24) 
-28,190.84 

-2.128*** 

(-6.01) 

-1.477*** 

(-6.50) 
-48,818.65 

Plug-in hybrid electric vehicle 
-0.427*** 

(-2.70) 

1.893*** 

(16.34) 
-4,584.58 

-1.000*** 

(-5.60) 

1.872*** 

(14.01) 
-16,195.50 

-1.318*** 

(-4.60) 

2.009*** 

(10.21) 
-30,236.47 

Battery electric vehicle 
-1.119*** 

(-4.27) 

1.308*** 

(6.69) 
-12,011.60 

-1.446*** 

(-5.35) 

-0.660** 

(-2.04) 
-23,243.45 

-1.893*** 

(-4.65) 

-0.679 

(-1.60) 
-43,420.72 

CO2 emissions in use per 100 km 

(in kg) 

-0.020*** 

(-3.04) 

0.089*** 

(8.48) 
-209.95 

-0.024*** 

(-3.18) 

0.083*** 

(8.87) 
-370.61 

-0.029** 

(-2.49) 

0.079*** 

(7.19) 
-666.51 

CO2 emissions in production  

(in tons) 

-0.027** 

(-2.23) 

0.058* 

(1.70) 
-290.65 

-0.016 

(-1.20) 

-0.078*** 

(-2.81) 
-260.58 

-0.038* 

(-1.93) 

0.074* 

(1.75) 
-863.19 

Range with fully charged battery 

/ full tank (in 100 km) 

0.169*** 

(10.41) 

0.228*** 

(10.55) 
1,815.41 

0.238*** 

(12.09) 

0.234*** 

(9.34) 
3,902.03 

0.268*** 

(8.55) 

0.302*** 

(8.30) 
6,151.58 

Time to recharge battery  

(in hours) 

-0.230*** 

(-5.49) 

0.394*** 

(5.72) 
-2,467.84 

-0.247*** 

(-5.24) 

0.411*** 

(6.96) 
-4,104.43 

-0.228*** 

(-2.94) 

-0.410*** 

(-3.77) 
-5,230.25 

Time to refuel tank  

(in minutes) 

-0.034 

(-1.34) 

0.406*** 

(10.93) 
-- 

-0.030 

(-1.09) 

0.383*** 

(11.09) 
-- 

-0.059 

(-1.47) 

0.357*** 

(5.87) 
-- 

Fuel costs per 100 km  

(in Euro) 

-0.146*** 

(-9.16) 

0.247*** 

(13.22) 
-1,568.67 

-0.144*** 

(-8.07) 

0.256*** 

(11.49) 
-2,344.82 

-0.156*** 

(-6.22) 

0.262*** 

(8.06) 
-3,571.95 

Extended-range electric vehicle 

× Treatment 1 

0.273 

(1.04) 
-- -- 

0.498 

(1.54) 
-- -- 

0.310 

(0.68) 
-- -- 

Plug-in hybrid electric vehicle × 

Treatment 1 

-0.485* 

(-1.92) 
-- -5,205.35 

0.261 

(0.92) 
-- -- 

0.248 

(0.53) 
-- -- 

Battery electric vehicle  

× Treatment 1 

0.334 

(1.01) 
-- -- 

-0.003 

(-0.01) 
-- -- 

-0.471 

(-0.91) 
-- -- 

Purchase price 

× Treatment 1 

0.007 

(0.30) 
-- -- 

-0.021 

(-1.29) 
-- -- 

-0.068*** 

(-2.76) 
-- -1,570.21 

Fuel costs per 100 km  

× Treatment 1 

-0.023 

(-0.75) 
-- -- 

0.014 

(0.41) 
-- -- 

-0.011 

(-0.22) 
-- -- 
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Table 6 (continued)          

Extended-range electric vehicle 

× Treatment 2 

0.004 

(0.01) 
-- -- 

0.784** 

(2.37) 
-- 12,570.47 

0.812* 

(1.72) 
-- 18,613.10 

Plug-in hybrid electric vehicle × 

Treatment 2 

-0.502* 

(-1.91) 
-- -5,388.15 

0.704** 

(2.49) 
-- 11,295.13 

1.029** 

(2.37) 
-- 23,608.11 

Battery electric vehicle  

× Treatment 2 

-0.034 

(-0.09) 
-- -- 

0.588 

(1.52) 
-- -- 

1.060** 

(1.99) 
-- 24,314,00 

CO2 emissions in use per 100 km 

× Treatment 2 

-0.012 

(-0.91) 
-- -- 

-0.008 

(-0.60) 
-- -- 

0.008 

(0.44) 
-- -- 

CO2 emissions in production  

× Treatment 2 

-0.001 

(-0.03) 
-- -- 

0.005 

(0.19) 
-- -- 

0.029 

(0.76) 
-- -- 

Number of observations 5,256 5,256 5,256 4,002 4,002 4,002 1,980 1,980 1,980 

Note: * (**, ***) means that the appropriate estimated parameter is different from zero at the 10% (5%, 1%) significance level, respectively, explanatory variables: 

alternative-specific constants (base category: conventional vehicle), vehicle attributes, interaction terms between alternative-specific constants and the respective treat-

ment dummy variables, interaction terms between the dummy variable for the first treatment and purchase price and fuel costs, interaction terms between the dummy 

variable for the second treatment and CO2 emissions in use and CO2 emissions in production. 

 



 

36 

Figures 

Figure 1: Original screenshot of an exemplary choice set in the stated choice experiment 

 

 

 

 


