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Abstract

The popular choice of using a direct forecasting scheme implies that the individual predictions
do not contain information on cross-horizon dependence. However, this dependence is needed
if the forecaster has to construct, based on the direct forecasts, predictive objects that are func-
tions of several horizons; such as obtaining annual-average from quarter-on-quarter growth
rates. To address this issue we propose to use copulas to combine the individual h-step-ahead
predictive distributions into a joint predictive distribution. Our method is particularly ap-
pealing for practitioners for whom changing the direct forecasting specification is too costly.
In a Monte Carlo study, we demonstrate that our approach leads to a better approximation
of the true predictive densities than an approach which ignores the potential dependence.
We show the superior performance of our method in several empirical examples, where we
construct (i) quarterly forecasts using month-on-month direct forecasts, (ii) annual-average
forecasts using monthly year-on-year direct forecasts, and (iii) annual-average forecasts using
quarter-on-quarter direct forecasts.
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1 Introduction

Forecasting models are often specified to produce direct h-step-ahead forecasts, which implies that
the predictions do not contain information on their cross-horizon dependence. As a consequence
the individual h-step-ahead predictions cannot easily be transformed into predictions of objects
that depend on several horizons. For instance, the literature on macroeconomic risk uses quantile
models that, in brief, produce direct density forecasts of quarter-on-quarter (qoq) real GDP growth
(Adrian et al., 2019; Ferrara et al., 2022); however, it is not straightforward to make additional use
of the quarter-on-quarter density forecasts by constructing annual-average growth rates.

To address this issue, we propose using Gaussian copulas to combine the information of
direct h-step-ahead predictive densities into a joint distribution. This allows the practitioner to
construct predictive objects that are functions of several horizons, which we label target-frequency
predictive densities, since the multivariate distribution of the direct h-step-ahead predictions
reflects the serial dependence between the forecasts.1

The scenario of having a fixed forecasting specification is particularly common in institutions,
such as central banks, where changing the forecasting process is costly and yet transformations
of the existing forecasts to other target-frequencies are often required. Further, for some target-
frequencies the available time series data can be too short for estimation. This is the case, for
instance, if the target-frequency is in annual-averages of calendar years, a target-frequency often
reported in institutional forecasts.2 Another reason can be that the forecasts are derived from
surveys which only report one frequency but not the required target-frequency. In general, our
approach helps to broaden the usability of already available individual predictive densities that
are based on a direct forecasting scheme.

As an alternative to our approach, the researcher could use a simple approach that assumes
independence between the different marginal predictive densities, i.e., no correlation between
the direct h-step-ahead predictions at different horizons. However, this implies to ignore the
serial dependence that is typically present in macroeconomic variables. We show in several
Monte Carlo studies that our approach delivers better approximations to the true underlying
annual-average forecasts for different DGPs, even under misspecified forecasting models, when
the true multivariate distribution is not Gaussian, and for fairly small training samples for the
copula parameter estimation.

For the application of our approach, the researcher only needs to compute the correlation
between the empirical PITs of the individual h-step-ahead predictive distributions for different
horizons in a training sample. In particular, the forecaster needs to (i) compute the sequence of
realized PITs for the marginal predictive densities at each forecast horizon h=1,..,H, from a pseudo
out-of-sample exercise over a training sample and to (ii) combine the marginal distributions into
a joint distribution via a multivariate Gaussian copula through the rank correlation estimated on
the realized PITs.

We demonstrate the usefulness of our methodology in three empirical applications. The
first empirical application is a large-scale forecasting exercise based on monthly data from

1Note that for models that produce iterative h-step-ahead predictive densities, for instance Vector Autoregressions,
forecasts conditional on specific paths or the annual-average frequency transformation are in general possible since the
iterative approach allows to draw conditional on previous horizons.

2See, for instance, the Macroeconomic projection of the ECB.
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FRED-MD (McCracken and Ng, 2016), in which we first compute density forecasts for month-
on-month values for a large number of randomly selected outcome variable and predictor
combinations. We then use these predictive densities to compute quarter-on-quarter density
forecasts through our proposed copula approach. Results show that the copula approach
outperforms the approach that ignores cross-horizon dependence for the majority of outcome
variable and predictor combinations.

The second empirical application aims to emulate a situation in which a forecaster has pre-
dictive densities for year-on-year inflation but to get a more complete picture of the inflation
environment, the forecaster would like to extend their set of forecasts to include annual-average
predictive densities. Importantly, the year-on-year and annual-average predictions need to be
coherent, i.e., they should be based on the same predictors, model type, and the central tendency
of the forecasts across the two frequencies should be very similar. Therefore, we provide direct pre-
dictive densities for year-on-year inflation and transform them, via the proposed copula method,
into annual-average inflation based on the U.S. The copula approach provides significantly better
forecasts of annual-average inflation than the benchmark approach, in particular at the tails of the
distribution.

In the third, we use the predictive densities of quarter-on-quarter U.S. real GDP growth
from Adrian et al. (2019), which are based on direct forecasts, and transform them into annual-
average forecasts. In particular, our approach allows us to use the original predictive densities
of Adrian et al. (2019) as the basis for our annual-average forecasts. We find that the annual-
average forecasts based on the copula-approach leads to more accurate density forecasts than the
benchmark approach.

Section 2 describes the methodological framework. Section 4 shows Monte Carlo results for
the frequency transformation via copulas. Section 5 shows the three empirical exercises and
Section 6 concludes.

2 Motivating example

Consider the following simple mean-zero autoregressive model:

Yt+1 = ρYt + εt+1

with |ρ| < 1 and εt ∼ N (0, σ2
ε ). It is well known that the optimal h-steap ahead prediction (under

both iterated and direct forecasting approach) is given by

Yt+h|t = ρhYt

It follows that the forecast error et+h|t = ∑h−1
j=0 ρjεt+h−j has second moment:

V(et+h|t) = σ2
ε

(
1 − ρ2h

1 − ρ2

)
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and auto-covariance and auto-correlation functions:

Cov(et+h|t, et+h−k|t) = σ2
ε ρk

(
1 − ρ2(h−k)

1 − ρ2

)

Corr(et+h|t, et+h−k|t) = ρk

√
1 − ρ2(h−k)

1 − ρ2h

for h > k > 0. Note that Corr denotes the Pearson correlation. Thus, the process has conditional
predictive distribution:

p(Yt+h|t; ρ, σε) ∼ N
(

ρhYt, σ2
ε

1 − ρ2h

1 − ρ2

)
Now consider a linear transformation of the forecast sequence {Yt+j|t}h

j=1, such as Zt+h|t =

c1Yt+1|t + · · ·+ chYt+h|t. This transformation is often useful in macroeconomic applications when
the original forecasts need to be converted into a different target periodic measure of the same
phenomenon. For instance, if Yt+h|t is the h-step ahead forecast of a month-on-month growth rate,
then for h = 12 and c1 = · · · = ch = 1, the transformed forecast

Zt+h|t =
h

∑
j=1

cjYt+j|t

is (approximately) the 12-months ahead forecast of the year-on-year growth rate. In this case,
we shall denote Zt+h|t a periodic-transformation of the forecast sequence {Yt+j|t}h

j=1. Similarly, a
linear transformation can map the forecasts generated at the original sampling frequency of the
data into a forecast sequence sampled at a desired lower target frequency. For instance, for h = 3
and assuming that Yt+1|t is the forecast of a month-on-month growth rate for the first month of a
given quarter, the transformed forecast

Zt+h|t =
1
3

Yt−1 +
2
3

Yt + Yt+1|t +
2
3

Yt+2|t +
1
3

Yt+3|t

is (approximately) the 3-months ahead forecast of the quarter-on-quarter growth rate (see Mariano
and Murasawa, 2003).3 In this case, we shall denote Zt+h|t a frequency-transformation of the forecast
sequence {Yt+j|t}h

j=1.
For the sake of simplicity, let’s set cj = 1, for j = 1, . . . , h. The forecast error e(Z)t+h|t is given

by:

e(Z)t+h|t =
h−1

∑
j=0

1 − ρj+1

1 − ρ
εt+h−j

with second moment:

V(e(Z)t+h|t) = σ2
ε

h−1

∑
j=0

(
1 − ρj+1

1 − ρ

)2

.

3This formula can be generalised to other frequency transformations, such as from month-on-month or quarter-on-
quarter growth rates to annual average growth rates, by changing the sequence of cj.
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Hence, the conditional predictive distribution of the “ideal” transformed forecast is:

p(Zt+h|t; ρ, σε) ∼ N
(

h−1

∑
j=0

ρj+1Yt, σ2
ε

h−1

∑
j=0

(
1 − ρj+1

1 − ρ

)2)
(1)

Note that this is equivalent to:

p(Zt+h|t; ρ, σε) ∼ N
(

h−1

∑
j=0

ρj+1Yt, σ2
ε

h

∑
j=1

(
1 − ρ2j

1 − ρ2

)
+ 2σ2

ε

h

∑
j=2

j−1

∑
k=1

ρk

(
1 − ρ2(j−k)

1 − ρ2

))
,

which is the sum of random variables from the joint Multivariate-Normal forecast distribution

p(Yt+1|t, . . . , Yt+h|t; ρ, σε) ∼ N (µ, Σ)

where

µ =



ρYt

ρ2Yt

ρ3Yt
...

ρhYt


and Σ = σ2

ε



1 ρ ρ2 · · · ρh−1

ρ
(

1−ρ4

1−ρ2

)
ρ
(

1−ρ4

1−ρ2

)
· · · ρh−2

(
1−ρ4

1−ρ2

)
ρ2 ρ

(
1−ρ4

1−ρ2

) (
1−ρ6

1−ρ2

)
· · · ρh−3

(
1−ρ6

1−ρ2

)
...

...
...

. . .
...

ρh−1 ρh−2
(

1−ρ4

1−ρ2

)
ρh−3

(
1−ρ6

1−ρ2

)
· · ·

(
1−ρ2h

1−ρ2

)


The predictive distribution in (1) can be compared to the predictive distribution of the

“inattentive” forecaster. This forecaster would typically ignore the cross-horizon dependence of
the forecasts, i.e. the correlation structure of the forecast errors, and would draw predictions from
the convoluted conditional forecast distribution:

p(Z̃t+h|t; ρ, σε) ∼ N
(

h−1

∑
j=0

ρj+1Yt, σ2
ε

h

∑
j=1

(
1 − ρ2j

1 − ρ2

))
. (2)

From (1) and (2), it is clear that the ideal and the inattentive forecast distributions diverge with
|ρ| → 1 and h ↑. Further, noting that the conditional data density is given by

p(Z∗
t+h; ρ, σε) ∼ N

(
h−1

∑
j=0

(
ρj+1Yt +

1 − ρj+1

1 − ρ
εt+h−j

)
,

σ2
ε

1 − ρ2

(
h +

h−1

∑
j=1

2(h − j)ρj

))
,

it can be shown that the data and the ideal forecast distributions tend to converge with h ↑. These
features are illustrated in the first panel of Figure 1, which shows that the Kullback-Leibler (KLIC)
difference between the inattentive and the ideal forecasts, both computed with respect to the
conditional true data density, is a monotonically increasing function of ρ and h.4

The remaining panels of Figure 1 show the average relative accuracy of the ideal density

4For Gaussian densities, the KLIC difference can be approximated by:

KLIC(Z̃, Z∗)− KLIC(Z, Z∗) ≈ loge

(
σZ
σZ̃

)
+

σ2
Z̃
− σ2

Z

2σ2
Z∗

where σ2
Z̃

and σ2
Z∗ denote here, respectively, the variance of the inattentive and ideal density forecasts.
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Figure 1: Scores for density forecasts: ideal vs inattentive approach

Note: KLIC difference denotes the difference between KLIC(Z, Z̃) and KLIC(Z, Z∗). LogS denotes the logarithmic
score. CRPS denotes the continuous ranked probability score. Quantile-weigthed CRPS denotes the quantile weighted
versions of the continuous ranked probability score, with emphasis on the tails. LogS, CRPS, and quantile-weigthed
CRPS are expressed in relative % gain of the ideal forecaster with respect to the inattentive forecaster.

forecast compared to the inattentive forecast, evaluated through proper scoring rules, such as
the logarithmic score (LogS), the continuous ranked probability score (CRPS), and the quantile-
weigthed CRPS (qwCRPS), the latter with emphasis on the tails. All these metrics show robust
gains for the ideal forecast, which increases monotonically with ρ and h. For instance, with
ρ = 0.6 and h = 12 (the year-on-year growth rate transformation), the gain would stand about
20-25% according to the LogS and 7% according to the CRPS, while the qwCRPS points to a gain
of about 15%. Not surprisingly, the latter suggests that important accuracy gain can be obtained
when focusing on the tails of the predictive densities, rather than on their central part. This is
due to the fact that the two densities differ solely on their variance, while the other moments are
the same.5

3 Constructing multivariate densities with copulas

From the previous section, it is clear that constructing the correct predictive density of transformed
forecasts requires drawing from the joint predictive distribution of the original marginal forecasts.
However, this can be often impractical in empirical applications, such as those relying on direct
multi-step forecasting or, more generally, when the marginal forecast distributions are not
necessarily Gaussians.

To address this issue, in this paper we propose to resort on (Gaussian) copulas. For instance,

5It is nevertheless worth noting that these results depend on the sign of ρ. With ρ < 0, the monotonicity feature is
in part lost, in particular for large (negative) autoregressive coefficients and small h. However, the ideal forecaster
outperforms the inattentive forecaster even under this parameterization, in particular for large forecast horizons. These
results are not presented, but are available upon request to the authors.
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continuing on the example in Section 2, the predictive density p(Zt+h|t; ρ, σε) can be constructed
by drawing from the joint forecast distribution p(Yt+1|t, . . . , Yt+h|t; ρ, σε). Defining Φ(Yt+h|t) the
CDF of the Gaussian predictive distributions, we note that:

Corr
(
Φ(Yt+h|t), Φ(Yt+h−k|t)

)
=

6
π

arcsin

(
1
2

ρk

√
1 − ρ2(h−k)

1 − ρ2h

)
(3)

which is approximately the Spearman correlation coefficients of the PITs. The Gaussian copula is
given by:

CR = ΦR

(
Φ−1(u1), . . . , Φ−1(uh)

)
where Φ−1 denotes the inverse CDF of a standard Normal and ΦR the joint CDF of a standard
multivariate Normal with covariance matrix R. Note that R is hence the correlation matrix,
whose elements are defined in (3). Note also that the predictive distribution of the “inattentive”
forecaster in (2) is also equivalent to the joint distribution of the forecasts constructed through a
Gaussian copula, but with R = Ih. Given the copula, it is easy to resample Yt+1|t, . . . , Yt+h|t from
their joint distribution:

(
Yt+1|t, . . . , Yt+h|t

)
=
(

Φ−1(U1), . . . , Φ−1(Uh)
)

and then compute the desired (periodic or frequency) transformed density forecast from the
sampled joint forecasts.

We can now extend this approach to a more general forecasting environment. Assume the
forecaster has a set of direct h-step-ahead predictive densities for T forecast origins, denoted
by {{gt,h}H

h=1}T
t=1 and with predictive cumulative distribution functions (cdf) {{Gt,h}H

h=1}T
t=1, for

outcome variable Yt+h; the subscript h denotes the forecast horizon and the subscript t denotes
the forecast origin. Further assume that the set of predictive distributions, {{gt,h}H

h=1}T
t=1, is taken

as given, for instance, due to institutional restrictions on the forecasting model to be used.
To illustrate the application of our methodology, but without loss of generality, we will assume

that the predictive density gt,h is a predictive density for quarter-on-quarter growth rates.6 In
period T, the forecaster is asked to provide predictive densities for the annual-average growth
rates as well as for the conditional predictive density g̃T,h(yT+h|yT+h−1, ..., yT−1), henceforth called
path-forecast, based on {{gt,h}H

h=1}T
t=1.

We propose to do this by using copula functions, developed by Sklar (1959). A copula can be
described as a function such that for any Q(y1, ..., yd), where Q is the multivariate distribution
function of the random vector (Y1, ..., Yd), there is a copula function C(·|R), such that Q(y1, ..., yd)

= C(GY1(y1), ..., GYd(yd)|R), where GY1 , ..., GYd are the marginal cdfs of Y1, ..., Yd, respectively, and
R denotes the parameter(s) that governs the dependence between GY1(y1), ..., GYd(yd). Inversely, a
copula function C, combined with marginal cdfs GY1 , ..., GYd , gives a multivariate distribution.

A popular copula family is the Gaussian copula, denoted by CGa, where the dependence
between the d variables is governed by the correlation matrix R, with ones on the diagonal and
the rank correlation of variable i and j as the respective off-diagonal element (i, j).

Let then QT(yT+1, ..., yT+h|R) denote the joint predictive cdf of YT+1, ..., YT+h for forecast origin

6Predictive distributions for month-on-month growth rates, monthly or quarterly (log-)levels or year-on-year growth
rates can be handled analogously with our approach.
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T, conditional on the correlation matrix R and constructed using CGa. Note that QT(yT+1, ..., yT+H |R) =
CGa(GT,1(yT+1), ..., GT,H(yT+H)|R). Let further PITt,h = Gt,h(yt+h), where yt+h is the realized
value. The forecaster can obtain an estimate of QT(yT+1, ..., yT+H |R) using the algorithm de-
scribed below.

Algorithm 1 Joint Predictive Distribution

1. Compute the realized PITs, {{PITt,h}H
h=1}

T−H
t=1 , of the predictive CDFs {{Gt,h}H

h=1}
T−H
t=1 .

2. Compute the rank correlations of PITt,h across the different h to get an estimate of R̂.

3. Use R̂ in combination with CGa to obtain the joint distribution Q̂T(yT+1, .., yT+H |R̂).

The resulting multivariate distribution allows to sample the direct h-step-ahead predictions
jointly, such that predictive objects that are functions of several horizons can be constructed.

To illustrate the use of Algorithm 1, consider the following example. The forecaster is
asked in T, which is the last quarter of the year, to provide a predictive distribution of the
annual-average growth for the next year. The forecaster, however, has only a set of direct quarter-
on-quarter h-step-ahead growth rate predictions available, for h = 1, ..., 4. To transform the
quarter-on-quarter growth rates into annual-average predictions, the forecaster can obtain the set
{[YT,1,s, YT,2,s, YT,3,s, YT,4,s]}S

s=1 of draws, for s = 1, ..., S, from Q̂−1
T (yT+1, .., yT+4|R̂). This can easily

be implemented in standard statistics software. First, compute the lower Cholesky decomposition
of R̂, denoted by P. Then, for each s = 1, ..., S:

(a) Draw a vector X = [X1, ..., X4]
′ of independent standard Normals.

(b) Compute the vector U = [U1, U2, U3, U4] = [Φ(Z1), Φ(Z2), Φ(Z3), Φ(Z4)], where Φ(·) is the
CDF of a standard Normal distribution and [Z1, Z2, Z3, Z4] = Z = PX.

(c) Evaluate GT,1(U1), ..., GT,4(U4) to get the joint draw [YT,1,s, YT,2,s, YT,3,s, YT,4,s].

The joint draws {[YT,1,s, YT,2,s, YT,3,s, YT,4,s]}S
s=1 can be used to obtain the predictive distribution

of the annual-average growth rate by computing the level of quarter two, three, and four for each
s = 1, ..., S.

The multivariate distribution also allows to sample Yt,h,i conditional on Yt,h−j for j = 1, ..., h− 1.

4 Monte Carlo study

We study the performance of our suggested copula approach via Monte Carlo simulations in a
scenario where the forecaster has a model that produces direct h-step-ahead predictive densities
for qoq growth rates and then needs to transform the predictive densities into annual-average
growth rates and year-on-year (yoy) growth rates. The absolute and relative performance of the
proposed approach with respect to a simple benchmark ignoring cross-horizon dependence of the
forecasts (the “inattentive” forecaster described in Section 2) are evaluated via an out-of-sample
forecasting exercise.
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4.1 Monte Carlo design

*** Note that the results in the submitted version of the paper uses the value of θ2 = 0 from an
earlier version of the paper. An update of the results with θ ̸= 0is work in progress ***

The underlying DGP of qoq growth rates, denoted by Yt, takes the form of a VAR(1):[
Yt

Xt

]
=

[
τ1

τ2

]
+

[
θ1 θ2

0 γ

] [
Yt−1

Xt−1

]
+

[
ε1,t

ε2,t

]
(4)

where {ε j,t}T
t=1 are two uncorrelated sequences of independent and identically distributed (iid)

shocks. We set ε2,t
iid∼ N

(
0, σ2

ϵ2

)
, but we consider three different specifications for the error

term ε1,t: (i) a Normal distribution, (ii) a Skew-Normal (SN) distribution, or (iii) a Skew-t (ST)
distribution. For cases (ii) and (iii), we adopt a location-scale-shape parameterization (Azzalini
and Capitanio, 2003). All the distributions are calibrated to have mean zero and standard deviation
σϵ1 = 0.5, as well as negative skewness for cases (ii) and (iii) (with shape parameter α = −1.5).
For the ST distribution, the degrees of freedom parameter is set to ν = 8, which implies somewhat
heavier tails than the Normal distribution. We consider these different specifications to allow for
a varying degree of complexity in the DGP. In addition to the qoq growth rates, we also simulate
the true annual-average and year-on-year growth rates generated by the DGP described in eq. (4).

We consider two types of forecasting models, both of which are misspecified AR(1) and
produce direct h-step-ahead forecasts. The first forecasting model is used when ε1,t in the DGP is
drawn from a Normal distribution:

Yt+h = τh + βhYt + ut+h, (5)

with ut+h
iid∼ N (0, σ2

u,h).
The second forecasting model is a quantile regression specification used when ε1,t in the DGP

is drawn from the Skew-Normal or the Skew-t distribution:

Yt+h(q) = τh(q) + βh(q)Yt + ut+h(q), (6)

where q ∈ Q = [0.05, 0.25, 0.5, 0.75, 0.95] denotes the set of estimated quantiles, and τh(q) and
γh(q) denote respectively the quantile specific intercept and autoregressive parameter. To ob-
tain a full predictive distribution, we smooth the five predicted quantiles using the Skew-t of
Azzalini and Capitanio (2003). Note that the latter introduces a second potential source of model
misspecification, in addition to that implied by the specification in (6).

The parameters {τh, βh σ2
u,h} and {τh(q), βh(q)}q∈Q are estimated using a rolling-window

estimation scheme with sample size Tis, which we set to 200. Estimated parameters are used
to compute quarter-on-quarter predictive densities up to 12 quarters ahead, from which we get
S forecast paths. We then use simple approximating formulas to construct annual-average and
year-on-year predictive distributions from those paths. For instance, assuming that the starting
point of the forecasting exercise is the first quarter of the year, for each forecast path s = 1, . . . , S,
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we would have for the one year-ahead annual-average transformation:

Z(s)
t+h =

1
4

Yt−2 +
2
4

Yt−1 +
3
4

Yt + Y(s)
t+1|t +

3
4

Y(s)
t+2|t +

2
4

Y(s)
t+3|t +

1
4

Y(s)
t+4|t (7)

and for the four quarters-ahead year-on-year transformation:

Z(s)
t+h =

h=4

∑
j=1

Y(s)
t+j|t (8)

Two competing approaches are here considered. On one side, the benchmark approach, which
constructs the annual-average and year-on-year forecasts by directly transforming the quarter-on-
quarter forecast paths with (7) and (8), i.e., without accounting for the cross-horizon dependence.
On the other, the copula approach, which in turn constructs the predictive distributions for the
annual-average and yoy growth rates using first the methodology described in Section 3 to obtain
joint draws of the quarter-on-quarter growth rates, and then expressions (7) and (8) to transform
the joint draws.

T oos , which we set to 50, denotes the out-of-sample size used to compute the correlation of
the empirical PITs for the copula approach.7

The effective out-of-sample size available for evaluation for the annual-average (yoy) forecasts
is set to 50, i.e., we simulate 200 periods of quarterly data and then produce annual-average (yoy)
forecast every four quarters for horizons of one, two, and three years ahead.8

Results are based on 500 Monte Carlo iterations, i.e., we simulate 500 times 50 out-of-sample
annual-average (yoy) predictions for horizons one, two, and three years ahead. For each of 1,...,500
Monte Carlo iterations, we evaluate the performance of the benchmark and copula approach using
both relative and absolute forecasting performance measures. The relative performance measures
include the log-score (LS; Amisano and Giacomini, 2007), the continous ranked probability
score (CRPS; Gneiting et al., 2007) and the tick loss (Komunjer, 2013) to evaluate the predictive
performance at different quantiles of the distribution. The relative performance is evaluated
against the forecasts one could generate with knowledge of the true underlying DGP and the
true parameter values. The absolute forecasting measures tests for the correct specification of the
predictive distribution using the test of Rossi and Sekhposyan (2019), which tests for uniformity
of the PIT.

4.2 Monte Carlo results

Table 1 shows rejection frequencies, computed over the 500 Monte Carlo iterations, of the null
hypothesis of equal predictive ability (Panel A to B) using the unconditional test of Giacomini
and White (2006) and the null hypothesis of correct specification (Panel C) evaluated using the
test of Rossi and Sekhposyan (2019). The nominal size is 5%, i.e., rejection frequencies above
5% indicate that the respective approach underperforms too often than what could be expected
by the nominal size. Starting with Panel A to B, the table shows that with increasing temporal

7To reduce the computational costs in the Monte Carlo simulations, we compute the correlation of the empirical
PITs for the first annual-average forecast and use the parameter in all forecasting iterations, instead of re-estimating it
in every forecasting iteration.

8To only produce annual-average forecasts every four quarters aims to replicate the calendar year predictions
typically used in practice.
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Table 1: Tests of predictive performance: rejection frequency for annual average forecast

Normal Skew Normal Skew t

θ1 Model h=1 h=2 h=3 h=1 h=2 h=3 h=1 h=2 h=3

Panel A. Log-score

0.8 Benchmark 0.59 0.74 0.67 0.47 0.68 0.62 0.47 0.69 0.64
Copula 0.09 0.07 0.07 0.06 0.05 0.06 0.04 0.07 0.08

0.5 Benchmark 0.30 0.51 0.45 0.22 0.42 0.42 0.24 0.44 0.43
Copula 0.05 0.06 0.09 0.04 0.10 0.09 0.03 0.07 0.09

0.1 Benchmark 0.06 0.10 0.11 0.10 0.10 0.09 0.06 0.09 0.10
Copula 0.12 0.21 0.22 0.14 0.19 0.18 0.09 0.21 0.20

Panel B. CRPS

0.8 Benchmark 0.30 0.46 0.42 0.30 0.50 0.41 0.27 0.48 0.43
Copula 0.05 0.04 0.10 0.04 0.05 0.06 0.05 0.08 0.12

0.5 Benchmark 0.15 0.29 0.27 0.14 0.25 0.24 0.17 0.27 0.26
Copula 0.06 0.09 0.11 0.05 0.09 0.09 0.05 0.08 0.09

0.1 Benchmark 0.07 0.11 0.12 0.10 0.11 0.11 0.08 0.12 0.11
Copula 0.11 0.18 0.19 0.12 0.15 0.14 0.09 0.17 0.15

Panel C. PIT

0.8 Benchmark 0.56 0.85 0.82 0.60 0.84 0.78 0.57 0.81 0.77
Copula 0.08 0.10 0.13 0.07 0.07 0.11 0.06 0.09 0.12

0.5 Benchmark 0.29 0.46 0.47 0.28 0.41 0.40 0.36 0.46 0.46
Copula 0.11 0.15 0.18 0.05 0.09 0.10 0.08 0.11 0.13

0.1 Benchmark 0.08 0.09 0.09 0.09 0.07 0.09 0.08 0.09 0.08
Copula 0.13 0.20 0.20 0.08 0.10 0.12 0.08 0.14 0.12

Note: The table shows the rejection frequency of the null hypothesis of a Giacomini
and White (2006) test of unconditional equal predictive ability for Panel A to B and of
a test of correct specification of Rossi and Sekhposyan (2019) in Panel C. The nominal
size is 5%. The equal predictive ability test in Panel A to B compares the score of the
true predictive density to the score of the approach indicated by the row name. Panel
C shows the results based on the Kolmogorov-Smirnov statistic. The column ρ denotes
the autoregressive parameter. The column label h denotes the horizon, i.e., one-year-,
two-years-, and three-years-ahead. Normal, Skew Normal, and Skew t indicate the
distribution of the error terms in the DGP. Standard errors of the tests were computed
using a HAC with a bandwidth = h − 1.
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dependence, i.e. increasing ρ, the copula approach remains to have size around the nominal
size whereas for the benchmark approach the null hypothesis of equal performance is rejected
frequently. This reflects the fact that the copula approach takes the temporal dependence into
account when constructing the annual-average predictive distributions. For very small values of
ρ, the copula approach performs slightly worse than the benchmark approach, i.e., the parameter
estimation uncertainty due to the copula estimation dominates the gain from taking the temporal
dependence into account.

A similar picture emerges for Panel C: high temporal dependence implies that the benchmark
approach is misspecified whereas the copula approach adjusts for the temporal dependence and
has rejection frequencies only slightly above the nominal size.

Table 2 shows the relative forecasting performance of the benchmark and copula approach.
Panel A shows the log-score of the copula approach minus the log-score of the benchmark
approach, i.e., numbers above zero indicate superior performance of the copula approach. Panel
B shows the CRPS of the benchmark approach relative to the copula approach, i.e., numbers
smaller than one indicate a worse performance of the benchmark approach. As expected, for
small serial dependence there is no improvement in the forecasting performance when using
the copula approach. For medium to large values of ρ the copula approach outperforms the
benchmark approach by about 3% to 7% in the case of the CRPS.

Table 3 and Table 4 show results for the year-on-year forecasts which are very similar to the
annual-average results.

Table 2: Relative performance of annual average forecast

Normal Skew Normal Skew t

θ1 Model h=1 h=2 h=3 h=1 h=2 h=3 h=1 h=2 h=3

Panel A. Log-score

0.8 Copula/Benchmark 0.40 1.37 1.62 0.38 1.28 1.55 0.43 1.34 1.60
0.5 Copula/Benchmark 0.14 0.33 0.35 0.12 0.32 0.32 0.21 0.39 0.40
0.1 Copula/Benchmark -0.01 -0.06 -0.06 -0.01 -0.03 -0.03 0.01 -0.03 -0.03

Panel B. CRPS

0.8 Copula/Benchmark 0.96 0.93 0.93 0.96 0.94 0.93 0.97 0.94 0.93
0.5 Copula/Benchmark 0.98 0.97 0.97 0.98 0.97 0.97 0.98 0.97 0.97
0.1 Copula/Benchmark 1.00 1.01 1.01 1.00 1.00 1.00 1.00 1.01 1.01

Note: Panel A shows the log-score of the copula approach minus the log-score of the benchmark
approach, i.e., numbers above zero indicate superior performance of the copula approach. Panel B shows
the CRPS of the benchmark approach relative to the copula approach, i.e., numbers smaller than one
indicate a worse performance of the benchmark approach. The column ρ indicates the autoregressive
parameter. The column label h denotes the horizon, i.e., one-year-, two-years-, and three-years-ahead.
Normal, Skew Normal, and Skew t indicate the distribution of the error terms in the DGP.
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Table 3: Rejection frequency for year-on-year forecasts

Normal Skew Normal Skew t

θ1 Model h=4 h=8 h=12 h=4 h=8 h=12 h=4 h=8 h=12

Panel A. Log-score

0.8 Benchmark 0.63 0.55 0.51 0.51 0.42 0.44 0.50 0.51 0.46
Copula 0.10 0.07 0.06 0.08 0.05 0.06 0.06 0.07 0.08

0.5 Benchmark 0.41 0.39 0.40 0.32 0.34 0.34 0.35 0.35 0.34
Copula 0.08 0.06 0.07 0.04 0.08 0.07 0.05 0.07 0.07

0.1 Benchmark 0.08 0.10 0.09 0.11 0.09 0.09 0.09 0.09 0.09
Copula 0.15 0.15 0.17 0.15 0.14 0.15 0.15 0.16 0.16

Panel B. CRPS

0.8 Benchmark 0.36 0.33 0.33 0.36 0.32 0.28 0.31 0.33 0.32
Copula 0.04 0.06 0.09 0.03 0.06 0.07 0.05 0.09 0.11

0.5 Benchmark 0.22 0.22 0.20 0.20 0.21 0.19 0.21 0.24 0.20
Copula 0.07 0.09 0.09 0.05 0.08 0.08 0.07 0.07 0.08

0.1 Benchmark 0.09 0.11 0.10 0.11 0.08 0.09 0.10 0.11 0.12
Copula 0.15 0.14 0.14 0.14 0.11 0.11 0.14 0.15 0.16

Panel C. PIT

0.8 Benchmark 0.68 0.68 0.67 0.64 0.64 0.62 0.58 0.61 0.58
Copula 0.07 0.11 0.14 0.06 0.08 0.11 0.05 0.07 0.12

0.5 Benchmark 0.39 0.39 0.40 0.32 0.30 0.28 0.39 0.36 0.36
Copula 0.11 0.14 0.14 0.05 0.07 0.08 0.10 0.11 0.10

0.1 Benchmark 0.07 0.08 0.08 0.06 0.07 0.07 0.09 0.09 0.08
Copula 0.14 0.15 0.16 0.08 0.09 0.09 0.11 0.12 0.10

Note: The table shows the rejection frequency of the null hypothesis of a Giacomini
and White (2006) test of unconditional equal predictive ability for Panel A to B and of
a test of correct specification of Rossi and Sekhposyan (2019) in Panel C. The nominal
size is 5%. The equal predictive ability test in Panel A to B compares the score of the
true predictive density to the score of the approach indicated by the row name. Panel C
shows the results based on the Kolmogorov-Smirnov statistic. The column ρ denotes the
autoregressive parameter. The column label h denotes the horizon, i.e., one-year-, two-
years-, and three-years-ahead. Normal, Skew Normal, and Skew t indicate the distribution
of the error terms in the DGP. Standard errors of the tests were computed using a HAC
with a bandwidth = h − 1.
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Table 4: Relative performance of year-on-year forecasts

Normal Skew Normal Skew t

θ1 Model h=4 h=8 h=12 h=4 h=8 h=12 h=4 h=8 h=12

Panel A. Log-score

0.8 Copula/Benchmark 0.53 0.84 0.91 0.49 0.80 0.91 0.53 0.83 0.91
0.5 Copula/Benchmark 0.19 0.21 0.22 0.17 0.19 0.19 0.24 0.25 0.27
0.1 Copula/Benchmark -0.03 -0.03 -0.03 -0.01 -0.01 -0.01 -0.00 -0.02 -0.01

Panel B. CRPS

0.8 Copula/Benchmark 0.96 0.95 0.94 0.96 0.95 0.95 0.96 0.95 0.95
0.5 Copula/Benchmark 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98
0.1 Copula/Benchmark 1.01 1.01 1.01 1.00 1.00 1.00 1.00 1.00 1.00

Note: Panel A shows the log-score of the copula approach minus the log-score of the benchmark approach,
i.e., numbers above zero indicate superior performance of the copula approach. Panel B shows the CRPS
of the benchmark approach relative to the copula approach, i.e., numbers smaller than one indicate a
worse performance of the benchmark approach. The column ρ indicates the autoregressive parameter.
The column label h denotes the horizon, i.e., one-year-, two-years-, and three-years-ahead. Normal, Skew
Normal, and Skew t indicate the distribution of the error terms in the DGP.

5 Empirical applications

5.1 Large bivariate exercise

In this section, we provide the results of a large-scale forecasting exercise based on monthly data
from FRED-MD (McCracken and Ng, 2016). In the construction of the forecasting environment, we
closely follow McCracken and McGillicuddy (2019) and consider a bivariate system, Zt = (Yt, Xt)′,
consisting of a pair of two stationary series randomly drawn from the series available in FRED-
MD.9 We first compute density forecasts for month-on-month values yt+h, with h = 1, . . . , 12
months, and then we use these predictive densities to compute quarter-on-quarter density
forecasts through our proposed copula approach. Density forecasts are obtained through an
autoregressive distributed lag (ARDL) DMS regression, estimated via OLS at each forecast origin:

yt+h|t = α +
p−1

∑
j=0

β jyt−j +
p−1

∑
j=0

γjxt−j + εt+h (9)

For the sake of simplicity, we only consider the first month of each quarter as a forecast origin.
The number of lags p is either fixed at four or selected through the Bayesian Information Criterion
(BIC) among p ∈ {0, 1, . . . , 12}.

We consider two samples: a full sample starting in 1959:M1 and a reduced sample starting in
1984:M1, covering only the Great Moderation period. The sample ends in both cases in 2019:M12.
The sample is partitioned into a forecasting part and an in-sample part for estimation. The
forecasting sample is further partitioned into two blocks: the first block ranges from 2003:Mh
to 2010:M12, in which we compute the initial set of PITs that we use to estimate the copula
parameters; the second block ranges from 2010:Mh to 2019:M12, and it is used for (pseudo)10

9Stationarity is ensured by taking first- or second-order differences or log-differences, depending on the series.
10We do not use real-time data vintages.
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out-of-sample evaluation. Estimation is carried out recursively using a rolling-window sample,
updating at each forecast origin the model parameters, the PITs, and the copula parameters.

As a datasource we use the February 2023 vintage of FRED-MD. After dropping series not
meeting some minimal conditions11 , the number of variables used in the bivariate exercise is 101,
organized into 5 different groups as in Marcellino et al. (2006) and McCracken and McGillicuddy
(2019): (1) income, output, sales, and capacity utilization; (2) employment and unemployment; (3)
construction, inventories, and orders; (4) interest rates and asset prices; (5) nominal prices, wages,
and money.

Then, 500 random pairs of y and x are selected from the database such that y and x come
from distinct groups and an equal number of series pairs (y, x) comes from each of the 10
possible group pairings. For each permutation of the series, we compute qoq density forecasts
at horizon h̃ = 1, . . . , 4 from the original mom densities using either the copula approach or the
benchmark approach, and we then compare their forecasting performance using their average
log-score, CRPS, and tail quantile scores (QS 10% and QS 90%) over the out-of-sample. For
each lag selection method and forecast horizon h̃, we hence have a distribution of 1,000 average
score ratios (or score differentials in the case of the log-score), for which we compute the median
score value. To grasp the statistical significance of these results, we also compute a test of equal
(unconditional) predictive accuracy (Giacomini and White, 2006). We provide rejection rates at 5%
level of the null hypothesis that the copula approach outperforms the benchmark approach, i.e.,
we perform one-sided tests testing for the alternative that the copula approach provides better
density forecasts than the benchmark approach.

Results are reported in Table 5 and show that the copula approach outperforms the benchmark
approach for several quarter ahead forecasts, independently of the lag length and the specific
scoring rule considered. In other words, for most target variable and predictor combination, the
copula approach delivers better forecasting results than the benchmark approach.

11We exclude from the dataset three series starting after the 1970 (new orders for consumers goods, new orders for
non-defense capital goods, trade weighted US dollar index), one series presenting missing values (consumer sentiment
index), and one series switching to negative over the sample (non-borrowed reserves of depository institutions). In
addition, we exclude 21 series that should be used in levels or log-levels, as we focus on series that can be expressed in
first/second difference (or log-difference) in our application.
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Table 5: Relative performance of copula approach for quarter-on-quarter forecasts

Lag length Statistics Great moderation Full sample

h̃ = 1 h̃ = 2 h̃ = 3 h̃ = 4 h̃ = 1 h̃ = 2 h̃ = 3 h̃ = 4

Panel A. Log-score

AR(4) Median -0.01 0.00 0.17 0.26 -0.01 0.00 0.19 0.30
Test 1S 0.05 0.27 0.64 0.67 0.05 0.28 0.65 0.68
Test 2S 0.26 0.40 0.75 0.78 0.28 0.45 0.77 0.82

BIC Median -0.02 0.00 0.10 0.20 -0.01 -0.01 0.14 0.28
Test 1S 0.04 0.28 0.56 0.65 0.04 0.26 0.59 0.69
Test 2S 0.23 0.46 0.70 0.77 0.25 0.46 0.72 0.78

Panel B. CRPS

AR(4) Median 1.00 1.01 1.10 1.21 1.00 1.01 1.12 1.23
Test 1S 0.08 0.25 0.62 0.73 0.08 0.27 0.66 0.74
Test 2S 0.29 0.42 0.74 0.78 0.30 0.47 0.78 0.79

BIC Median 1.00 1.00 1.08 1.17 1.00 1.00 1.09 1.20
Test 1S 0.06 0.24 0.52 0.69 0.06 0.23 0.57 0.72
Test 2S 0.24 0.45 0.74 0.78 0.26 0.47 0.70 0.77

Panel C. QS 10%

AR(4) Median 0.97 0.99 1.27 1.56 0.98 0.99 1.28 1.57
Test 1S 0.05 0.24 0.75 0.85 0.04 0.23 0.77 0.87
Test 2S 0.28 0.56 0.77 0.85 0.26 0.58 0.77 0.87

BIC Median 0.97 0.99 1.21 1.42 0.98 0.98 1.24 1.48
Test 1S 0.04 0.22 0.64 0.82 0.03 0.22 0.69 0.85
Test 2S 0.26 0.54 0.73 0.84 0.25 0.57 0.74 0.86

Panel D. QS 90%

AR(4) Median 0.99 1.03 1.27 1.48 0.99 1.04 1.27 1.52
Test 1S 0.05 0.34 0.59 0.66 0.03 0.35 0.63 0.69
Test 2S 0.21 0.39 0.70 0.73 0.19 0.43 0.74 0.75

BIC Median 1.00 1.03 1.18 1.39 0.99 1.03 1.20 1.46
Test 1S 0.07 0.32 0.57 0.67 0.04 0.32 0.59 0.68
Test 2S 0.21 0.39 0.70 0.76 0.19 0.41 0.72 0.76

Note: Panel A shows the log-score of the copula approach minus the log-score of the benchmark
approach, i.e., numbers above zero indicate superior performance of the copula approach. Panels
B, C, and D show respectively the CRPS, the QS10%, and the QS90% of the benchmark approach
relative to the copula approach, i.e., numbers larger than one indicate a worse performance of
the benchmark approach. The column “Lag length” indicates the lag of the underlying ARDL
regressions( fixed p = 4 or BIC selection). The column label “h” denotes the horizon at quarterly
frequency, i.e., one-quarter-, two-quarters-, three-quarters, and four-quarters-ahead.
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5.2 Inflation-at-Risk

In this section, we provide estimates of inflation at risk for year-on-year and annual-average
inflation based on the U.S. Consumer Price Index. Consider the following situation: an institution
has predictive densities for year-on-year inflation, which is the benchmark inflation rate for central
banks such as the Federal Reserve or the European Central Bank (ECB). However, while the year-
on-year inflation rate is a benchmark, to get a more complete picture of the inflation environment,
the institutions tend to extend their set of forecasts to include annual-average predictive densities;
note that, in fact, both the ECB and the Federal Reserve publish annual-average forecasts as
part of their institutional projection exercises. Importantly, the year-on-year and annual-average
predictions need to be coherent, i.e., they should be based on the same predictors, model type,
and the central tendency of the forecasts across the two frequencies should be very similar.

To emulate this situation, we use a quantile regression model to produce quantile predictions
for monthly year-on-year inflation for up to 12 months ahead. We then use the copula approach to
combine the monthly year-on-year inflation predictive distributions into annual-average predictive
distributions.

The underlying price index is the monthly and seasonally adjusted Consumper Price Index
for all Urban Consumers12 (henceforth only CPI) from 1960 to 2022. The baseline model predicts
year-on-year inflation, computed via the log-difference of t and t − 12.

The forecasts of the monthly year-on-year inflation rate are produced via a quantile regression
model that uses a Lasso to select among a number of potential predictors. Estimating a quantile
regression model with L1 penalization amounts to solving the following objective function for β:

min
β∈Rp

T

∑
t=1

ρτ(yt+h − x′tβ) +
λ
√

u(1 − u)
n

p

∑
j=1

σ̂2
j |β j|, (10)

where yt+h denotes the monthly year-on-year inflation rate, ρτ(z) = (τ − 1{t ≤ 0})z denotes the
tick function, λ is a hyperparameter that determines the degree of penalization, p is the number
of predictors, h = 1, ..., 12 is the forecast horizon, and σ̂2

j = ∑T
t=1 x2

i,t. We are estimating the model
using the code made available by Belloni and Chernozhukov (2011) as well as their calibration for
λ.

The predictor vector xt contains a maximum of 22 predictors, similar to the predictors used
in Korobilis (2017), yt and yt−1

13 and an intercept; see Appendix A for details on the data series.
Note that because not all series cover the entire range of the data, not all predictors enter the
model in all forecast origins. The predictions generated by eq. (10) are then combined into
annual-average inflation predictions via the copula and benchmark approach, as described below.

We use the model in eq. (10) to produce (pseudo)14 out-of-sample forecasts for forecast
horizons of h = 1, ..., 12 months ahead, with the first forecast origin being 1974:M12 and the last
forecast origin being 2021:M12 for h = 1, ..., 12. At each forecast origin, the quantile regression is
re-estimated over a rolling window of 15 years of monthly data. For instance, for the forecast
origin 1974:M12, the first observation used in the model estimation is 1960:M1.

12Results are robust to using the non-seasonally adjusted CPI for all items, which has the mnemonic USACPI-
ALLMINMEI on FRED.

13Results are robust to increasing the number of lags to six.
14The forecasts are pseudo out-of-sample since we do not use real-time data. Henceforth, we refer to the forecasts

simply as “out-of-sample”.
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The models produce quantile predictions for τ ∈ [0.01, 0.02, ..., 0.98, 0.99]15 and we calculate
the predictive cdf based on linearly interpolating between adjacent quantiles. Details are provided
in Appendix A.

To construct annual-average forecasts based on the predictions of eq. (10), we then use 10
years16 of data to estimate the copula parameter over a rolling window starting with the years
1975:M1 to 1984:M12. To be precise, we start by evaluating the empirical PITs of the predictive
distributions of monthly year-on-year inflation from 1975:Mh to 1984:Mh for horizon h = 1, ..., 12.
We then estimate the copula parameter based on the empirical PITs, and use the estimated
copula parameters in combination with the forecasts for 1985:Mh, h = 1, ..., 12, to construct an
annual-average inflation predictive distribution for 1986. Next, we use the predictive distributions
for year-on-year inflation from 1976:Mh to 1986:Mh for horizon h = 1, ..., 12, and re-do the steps to
construct the annual-average inflation predictive distribution for 1987. We then repeat this until
we have an annual-average forecast for each year from 1986 to 2022. In addition, we construct
annual-average forecasts as described above but using the benchmark approach, which is identical
to setting all off-diagonal elements of R equal to zero.

Therefore, the out-of-sample evaluation period for annual-average inflation forecasts is from
1986 to 2022, which leaves us with a sample of 37 out-of-sample (calendar year) annual-average
predictive distributions.

The ratio of the CRPS of the copula and the benchmark approach is 0.90, i.e., the copula
approach delivers a 10% better performance. The better performance of the copula approach
relative to the benchmark approach is statistically significant at the 1% level when doing a forecast
comparison test using Giacomini and White (2006).

The ratio of the tick loss function for the 10% and 90% quantile is 0.70 and 0.88, i.e., the copula
approach delivers a 30% and 10% better performance for predicting the risk of low inflation and
the risk of high inflation, respectively. The better performance of the copula approach relative
to the benchmark approach is statistically significant at the 1% level for the 10% quantile when
doing a forecast comparison test using Giacomini and White (2006).

Figure 2 illustrates the superior ability of the copula approach to predict tail-risk. Panel (a)
shows the predictive density for the annual-average inflation for 2001 and panel (b) shows the
predictive density for the annual-average inflation for 2011. In both cases the realizations receive
an ex-ante probability of close to zero by the benchmark approach whereas the copula-based
annual-average inflation forecast density has fatter tails due to the high correlation between
adjacent months’ year-on-year growth rates. Note that the distribution of the copula-based
approach exhibits notably stronger asymmetry.

15Quantile crossing is dealt with by sorting the predictive quantiles.
16Results are robust to using five or 15 years as training data for the copula approach.
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Figure 2: Annual-average predictive densities for inflation

(a) For 2001 (b) For 2011

Note: The figure shows the results for the annual-average inflation predictive density for 2001, panel (a), and for 2011,
panel (b), for both the copula approach (solid line) as well as the benchmark approach (dashed line), alongside the
realization (dotted line).

5.3 Growth-at-Risk

In a recent influential contribution, Adrian et al. (2019) use quantile regressions to produce
direct forecasts of quarterly quarter-on-quarter U.S. real GDP growth and show that financial
conditions, captured by the National Financial Conditions Index (NFCI), are an important
predictor for downside risk to GDP growth. Their specification produces forecasts for quarterly
quarter-on-quarter growth rates and we apply our methodology to transform their quarter-on-
quarter forecasts into annual-average GDP growth predictive densities. This allows us to use the
original predictive densities of Adrian et al. (2019) as the basis for our annual-average predictive
distributions.

The total data sample of Adrian et al. (2019) ranges from 1973:Q1 to 2015:Q4 and starting
with forecast origin 1993:Q1 the authors produce (pseudo) out-of-sample forecasts using quantile
regressions for up to four quarters ahead.17 Thus using their exact specification, this leaves
us with a series of out-of-sample forecasts from 1993:Q(1+h) to 2015:Q4, for forecast horizons
h=1,...,4.

To construct annual-average predictive distributions, we proceed as follows. We start with
evaluating the series of predictive distributions at forecast targets 1993:Q(1+h) to 2001:Q(1+h-1),
h=1,...,4, at their realizations to obtain a series of 32 empirical PITs for each forecast horizon
h=1,...,4. Given the series of empirical PITs, we calculate the copula parameter as described
in Section 3. The resulting estimate of the copula parameter together with the quarter-on-
quarter predictive distributions for horizon h=1,...,4, with origin 2001:Q4 (and forecasting target
2002:Q1, to 2002:Q2, 2002:Q3, and 2002:Q4), then allow us to compute an annual-average growth
predictive distribution for 2002. This annual-average growth predictive distribution is based on
the original quarterly predictive distributions of Adrian et al. (2019) and takes into account the

17The predictors of their preferred specification are the own lag of real GDP growth and the NFCI. For details on the
exact specification and variable definitions, please see Adrian et al. (2019).
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serial correlation across the quarterly growth rates.
Then, we move four quarters ahead and repeat the exercise to construct the annual-average

predictive distribution for 2003. In total, we repeat this until we have a series of 14 annual-average
predictive distributions for 2002 to 2015.

In addition, we construct the benchmark annual-average predictive distributions which are
also based on the Adrian et al. (2019) quarterly quarter-on-quarter predictive distributions, but
ignore the serial correlation between the quarterly growth rates.

Figure 3 shows the results for the annual-average predictive density of 2008 for both the
copula-approach (solid line) as well as the benchmark approach (dashed line), alongside the
realized annual-average growth rate in 2008 (dotted line). The copula-approach leads to annual-
average forecasts with larger tails due to the positive correlation between the quarterly growth
rates; the rank correlation, i.e., the elements in the Gaussian copula correlation matrix, is around
50% to 60% for adjacent quarters, depending on the horizon. Importantly, the larger tails of
the copula-approach help to assess the downside risk for the annual-average forecast of 2008,
i.e., during the onset of the financial crisis. This underlines the usefulness of our approach and
provides anecdotal evidence that risk assessments can be misleading if the serial correlation is
not taken into account for the transformation of predictive distributions to different frequencies.

Figure 3: Annual-average predictive densities for 2008

Note: The figure shows the results for the annual-average predictive density of 2008 for both the copula approach
(solid line) as well as the benchmark approach (dashed line), alongside the realization (dotted line).

Figure 4 shows the negative of the continuous ranked probability score (CRPS; Gneiting
et al., 2007) of the copula approach (solid line) and benchmark approach (dashed line) for the
14 annual-average predictive distributions. Importantly, larger values imply a worse forecasting
performance. While the sample is too short for formal testing procedures, the overall ratio of the
CRPSs of the two approaches points to a 2% gain of the copula approach over the benchmark
approach in terms of their CRPS score.
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Figure 4: CRPS values of annual-average forecasts

Note: The figure shows the negative of the CRPS of the copula approach (solid line) and benchmark approach
(dashed line) for the 14 annual-average predictive distributions. Importantly, larger values imply a worse forecasting
performance.

6 Conclusion

In this work, we provide a method to combine direct forecasts to obtain new predictive objects
that are function of several horizons. Our methdology is useful in a situation where the forecaster
has a set of direct forecasts available and has to use the same set of direct predictive densities
to construct a new predictive object; for instance, the model produces direct quarter-on-quarter
growth rates and the forecasters also needs annual-average predictions. These type of situations
typically arise, but are not limited to, in institutions where the forecasting specification is rigid.

In a Monte Carlo exercise, we show that our methodolgy outperforms the benchmark approach
whenever the serial correlation across different forecasting horizons is not extremely low. In the
relative forecasting exercise, the copula approach delivers significantly better results than the
benchmark approach. In the absolute forecasting exercise the copula approach provides density
forecasts that pass a correct specification test based on evaluating the uniformity of the PIT,
whereas the benchmark approach fails to pass this test whenever the serial correlation is at least
moderately high.

In the first empirical application, we transform the quarter-on-quarter direct forecasts of U.S.
real GDP growth of Adrian et al. (2019) into annual-average forecasts, and provide anecdotal
evidence that the copula approach provides a better forecasts of the growth at risk during the
great recession period.

In the second empirical application, we show the usefulness of the our approach of transform-
ing year-on-year predictive densities for inflation into annual-average predictive densities. The
copula approach significantly outperforms the benchmark approach both in terms of the CRPS
and quantile tick loss evaluation.

In a third empirical application, we investigate in a large-scale forecasting exercise, based on
monthly data from FRED-MD (McCracken and Ng, 2016), the performance of our methodology
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for a large number of outcome variable and predictor combinations. In this exercise, we trans-
form month-on-month predictive densities to quarter-on-quarter density forecasts through our
proposed copula approach and results show that copula approach outperforms the benchmark
approach for the majority of outcome variable and predictor combinations.
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Appendix

Appendix A Inflation at Risk

A.1 Data

Table A.1 shows the predictors used in Section 5.2. All data is seasonally adjusted were applicable.
The transformation codes imply the following: 1 — no transformation; 4 — log(xt); 5 — 100[log(xt)
- log(xt−12)]

Table A.1: Predictors for inflation at risk forecasts

Variable Transformation Mnemonic

Aggregate weekly hours 5 AWHI

Commercial + industrial loans 5 BUSLOANS

Labor force participation rate 4 CIVPART

Consumer loans 5 CONSUMER

CPI All Urban Consumers 5 CPIAUCSL

Canadian dollar to U.S. exchange rate 5 EXCAUS

Japanese Yen to U.S. exchange rate 5 EXJPUS

British Pound to U.S. exchange rate 5 EXUSUK

Federal Funds Target 1 FEDFUNDS

Private Housing starts 4 HOUST

New Family houses sold 4 HSN1F

Industrial production 5 INDPRO

Fixed-rate 30-year mortgage rate 1 MORTG

Bank prime loan rate 1 MPRIME

Motor Vehicle assemblies 1 MVATOTASSS

Total non-farm employees 5 PAYEMS

Real estate loans 5 REALLN

Capacity utilization 4 TCU

Number unemployed for 15 weeks & over 4 UEMP15OV

Number unemployed for less than 5 weeks 4 UEMPLT5

University of Michigan: consumer sentiment 1 UMCSENT

Unemployment rate 1 UNRATE

WTI spot price 5 WTISPLC

Note: All data was downloaded from the database FRED of the St. Louis Federal
Reserve Bank.
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A.2 Quantile interpolation

Let Ft+h|t(yt+h) denotes the predictive cumulative distribution function in t and h horizons
ahead, evaluated at yt+h. Then, given the set {Qt+h|t(τi)}99

i=1 of predictive quantiles, we compute
Ft+h|t(yt+h) as follows:

Ft+h|t(yt+h) = τi +
τi+1 − τi

Qt+h|t(τi+1)− Qt+h|t(τi)
(yt+h − Qt+h|t(τi)), (11)

where Qt+h|t denotes predictive value of quantile τi, and τi and τi+1 are such that yt+h ∈
[Qt+h|t(τi), Qt+h|t(τi+1)]. For values of yt+h < Qt+h|t(τ1) and yt+h > Qt+h|t(τ99), we approximate
the slope as τ2−τ1

Qt+h|t(τ2)−Qt+h|t(τ1)
and τ99−τ98

Qt+h|t(τ99)−Qt+h|t(τ98)
and the distance as (Qt+h|t(τ1)− yt+h) and

(yt+h − Qt+h|t(τ99)).
Similarly, we sample from the distribution given by the conditional quantiles Qt+h|t(τi) as

follows. Let uj denote the j-th draw from the uniform distribution and uj ∈ [τ
j
i , τ

j
i+1]. Then,

yj
t+h|t = Qt+h|t(τ

j
i ) +

Qt+h|t(τ
j
i+1)− Qt+h|t,(τ

j
i )

τ
j
i+1 − τ

j
i

(uj − τ
j
i ), (12)

where yj
t+h|t denotes draw j of the predictive distribution for yt+h, conditional on information in t.

The two endpoints are treated analogously to the procedure described for eq. (11).

A.3 Annual-average regression

This section illustrates, using a simplified example, why designing the forecasting regressions in
an annual-average format does not lead to a superior forecasting performance. Assume the DGP
at the quarterly frequency takes the following form:

yt = ρyt−1 + et (13)

with |ρ| < 1 and et ∼ N(0, σ2). The aim is to predict, the annual-average, simplistically defined
as Xt =

1
2 (yt + yt−1). This simplification implies that a calendar year consists of two periods,

the respective calendar year annual-average growth rates are Xt, Xt−2, Xt−4, ..., and we refer to
the time periods denoted by t as quarters, i.e., a calendar year consists of two quarters.18 The
annual-average can also be written as a process in the "calendar-year" annual-averages:

Xt =
1
2
(yt + yt−1) (14)

= ρ2 1
2
(yt−2 + yt−3)︸ ︷︷ ︸

Xt−2

+
1
2
(et + (1 + ρ)et−1 + ρet−2)︸ ︷︷ ︸

ut

(15)

= ρ2Xt−2 + ut (16)

Consider now a situation where the latest available observation is t and that the aim is to produce
predictions of Xt+2 and Xt+4, i.e., the next and the subsequent calendar year.

18This timing convention and that the annual-average Xt is the simple mean of yt and yt−1 is made to keep the
analytical derivations simple.
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First, the "annual-average" regression suggested by eq. (16) suggest a forecast of X̂t+2,AA =

ρ2Xt.19 The expected squared forecast error is then

SFt+2,AA = E[(Xt+2 − X̂t+2,AA)
2] = E[(

1
2
(et+2 + (1 + ρ)et+1 + ρet)

2] (17)

=
(1 + ρ)2σ2

4
+

ρ2σ2

4
+

σ2

4
(18)

Second, the higher-frequency approach would construct the forecast as follows: X̂t+2,q =
1
2 (ŷt+2 + ŷt+1), where ŷt+2 = ρ2yt and ŷt+1 = ρyt. The expected squared forecast error is

SFt+2,q = E[(Xt+2 − X̂t+2,q)
2] = E[(

1
2
(yt+2 + yt+1)−

1
2
(ρ2yt + ρyt))

2] (19)

=
1
4

E[(yt+2 − ρ2yt + yt+1 − ρyt)
2] (20)

=
1
4

E[(et+2 + ρet+1 + et+1)
2] (21)

=
σ2

4
+

(1 + ρ)2σ2

4
. (22)

The difference between SFt+2,AA and SFt+2,q is equal to ρ2σ2

4 , such that the expected mean forecast
of the annual-average regression is worse than that of the quarter-on-quarter regression whenever
ρ ̸= 0. The term ρ2σ2

4 is a consequence of the annual-average regression in eq. (15) having
the additional term ρet−2. The intuition that the quarter-on-quarter regressions have a better
forecasting performance then the annual-average regression is then that the annual-average
regression assigns an equal weight to the latest and prior-to-latest observation, which results in
an inefficient use of information.

The two calendar year ahead regressions have the following expected squared forecast errors.

SFt+4,AA = E[(Xt+4 − X̂t+4,A)
2] = E[(ut+4 + ut+2)

2] (23)

=
1
4
(σ2 + (1 + ρ)2σ2 + (ρ + ρ2)2σ2 + (ρ2 + ρ3)2σ2 + ρ6σ2) (24)

and

SFt+4,q = E[(Xt+4 − X̂t+4,q)
2] =

1
4
(σ2 + (1 + ρ)2σ2 + (ρ + ρ2)2σ2 + (ρ2 + ρ3)2σ2). (25)

The difference between SFt+4,AA and SFt+4,q is ρ6σ2. This implies that for any value of ρ ̸= 0
and |ρ| < 1, the quarter-on-quarter regression performs better than the annual-average regressions.
At the same time, the relative gain has become smaller with the forecasting horizon.

19Throughout the section we abstract from parameter estimation error and ignore here the endogeneity issue in
estimating ρ2 in the annual-average specification because Xt and u+2 are correlated.
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