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1 Introduction

Central bankers and other policy makers are concerned about transition risks and physical

risks related to global warming ever since the speech by the then Governor of the Bank of

England on breaking the tragedy of the horizon (Carney, 2015).1 Transition risks can origi-

nate from a sudden stepping up of climate policies, a breakthrough in green technologies, or a

sudden shifts towards green consumer preferences (e.g., Campiglio and van der Ploeg, 2022).2

Physical risks are the risks of extreme weather events (hurricanes, floods, droughts, etc.) and

of tipping of the climate system (e.g., melting of the Greenland or Antarctic Ice Sheets, or melt-

ing of the Siberian permafrost). Our objectives are to investigate the implications of transition

and physical risks on climate policies and financial markets, and more generally to gain under-

standing into the possibility of an orderly green transition. Our contributions are threefold.

First, we show that both types of physical risks significantly increase carbon pricing and the

ambition of climate policies. If financial markets price in these risks, they increase the equity

premium and curb the risk-free interest rate in line with the empirical findings of Bansal et al.

(2017) and Donadelli et al. (2017). In contrast, transition risks (both political and the possi-

bility of a technological breakthrough in negative emission technologies) imply that climate

policies are a lot less ambitious than the first-best optimal policies.

Second, we show that these transition risks are at the root of positive carbon premiums. This

might explain the empirical evidence for such premiums since 2015 by Bolton and Kacperczyk

(2021, 2023).3 and for a wider set of pollutants by Hsu et al. (2023).4 We thus provide an

explanation why risk premiums on carbon-intensive assets have been consistently higher than

1Witness the large number of central banks that have joined the Network for Greening the Financial System.
2Note that companies, investors, and regulators increasingly have to take account of how climate litigation,

regulatory enforcement, and other legal action shifts or amplifies exposure to transition and physical risks, and
thus leads to additional climate risk exposures (Wetzler et al., 2024). We abstract from such issues here.

3Similarly, Delis et al. (2019) have found that banks price in climate policy exposure, especially after 2015, and
also charge higher loan rates to fossil fuel firms. Ivanov et al. (2023) show that high emission firms face shorter
loan maturities, lower access to permanent forms of bank financing, and higher interest rates. Others have
found mixed or even contrary evidence and thus challenge the existence of carbon and pollution premiums (e.g.,
Pastor et al., 2021, 2022; Bauer et al., 2022; Ardia et al., 2023; Aswani et al., 2024; Zhang, 2024; among others).
Bolton and Kacperczyk (2024) have given a robust defense of their results in response to Aswani et al. (2024).
However, Zhang (2024) argue that emissions grow linearly with firm sales, data is only available to investors with
significant lags, and the positive carbon premium arises from the forward-looking firm performance information
contained in emissions rather than risk premium. They show that, after accounting for the data release lag, the
carbon premium turns negative in the U.S. and insignificant globally.

4The latter study finds an annual pollution premium of 4.42% and suggests that these result from environ-
mental litigation.
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those on greener, more climate-friendly assets. Moreover, we provide a mechanism to explain

that the risk of tightening climate policy affects the pricing of brown assets as documented by

Bouman (2023) and Campos-Martins and Hendry (2023).5 By the same mechanism, political

transition risk can also increase the demand for precautionary savings and reduce the risk-free

interest rate considerably if temperatures are close to two degrees.

Third, we show that if the brown sector must operate with only fossil fuel, the possibility

of a long wait before existing policies switch to greener policies implies the risk of stranded

financial assets.6 This occurs, since it is costly or impossible to shift around capital from brown

industries to productive use elsewhere after the energy transition. However, the brown sector

will never disappear completely, because with negative emissions technology there is always

the possibility that policy maker tip to becoming brown again. In fact, negative emissions

counteract the risk of stranded assets. The risk of stranded assets leads to higher carbon prices

and boosts the risk premiums of risky assets. The risk of stranding coal and other financial

assets is a real possibility if climate policy is stepped up or sudden technological or regulatory

change takes place (e.g., Caldecott et al., 2016, 2021; Caldecott, 2018).

To establish these results, we build on Hambel et al. (2024) to specify a two-sector DSGE model

of climate and the economy with two sources of energy and a wide array of economic, climate,

and damage risks. There is limited substitutability between renewable energy and fossil fuel.

Investments and capital reallocation from the brown to the green capital stock are subject

to adjustment costs. We abstract from directed technical change towards green technologies

(e.g., Bovenberg and Smulders, 1996; Acemoglu et al., 2012; Casey, 2023), but instead we

have learning by doing in renewables production which captures some features of directed

technical change. Temperature is driven by cumulative emissions.7 We allow global warming

to adversely affect output as in the seminal DICE model (e.g., Nordhaus, 2017), to increase the

risk of recurring climate-related disasters (cf. Karydas and Xepapadeas, 2022; Hambel et al.,

2024), and the risk of (repeated) climate tipping (cf. Lemoine and Traeger, 2014, 2016; van der

Ploeg and de Zeeuw, 2018; Cai and Lontzek, 2019).

5These studies extract climate news from newspapers using textual analysis and show how these news affect
risk premiums in the U.S. equity and corporate bond markets.

6For a further discussion of the risk of stranded assets during the green transition, see, e.g., van der Ploeg and
Rezai (2020), Campiglio and van der Ploeg (2022) and the references therein.

7See Matthews et al. (2009), Allen et al. (2009), IPCC (2014), van der Ploeg (2018), and Dietz and Venmans
(2019), among others, for a discussion and justification of this approach.
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As a key novel feature of our model, we also allow for two types of transition risks as well as

physical risks. The first transition risk is technological and comes from the emergence of a

negative emissions technology at an uncertain future date.8 The second transition risk is due

to changing policy regimes as we allow for the repeated tipping between three policy states

corresponding to no, moderate, and strong carbon pricing, respectively. We model climate

tipping, technological, and policy tipping by a three-dimensional Markov chain with 18 states,

where policy tipping is reversible as it can also go back from more ambitious to less or no

climate policies. Our climate policy scenarios are calibrated to the range presented in Moore

et al. (2022).

While the effect of climate tipping points on the social cost of carbon has extensively been

studied by Lemoine and Traeger (2014, 2016), Cai et al. (2016) and Cai and Lontzek (2019),

these studies are silent about the influence of physical climate risk on financial markets. We

show that and how those risks are priced in by financial markets. This leads to higher risk

premiums and an increased demand for precautionary savings.9 Although Hsu et al. (2023)

formulates a reduced-form model of transition risk, the study that is most closely related to

ours is by Barnett (2023). This study also investigates transition risk but we allow for a richer

structure and interactions between climate tipping risk, political risk, and risk of a technolog-

ical breakthrough, and the possibility of one tip setting in motion another, different type of tip.

Another difference is that we have 18 states in our Markov chain in contrast to the two states

in Barnett (2023). Other novelties of our paper are that we allow for the emergence of a neg-

ative emissions technology, which is essential for a serious story of the green transition, and

for imperfect substitution between the two types of energy and intra-sectoral adjustment costs

which allow us to study stranded assets. Furthermore, in contrast to Barnett (2023), we al-

low for repeated climate tipping points, temperature-related risks of recurring climate-related

disasters, and exogenous risks of recurring Barro-style macro disasters.

Section 2 presents our DSGE model of climate and the economy. Section 3 explains how we

solve and optimize our model. Section 4 presents our calibration. Section 5 provides our bench-

mark results. Section 6 use an alternative calibration to show how transition risks affect the
8Negative emissions technologies such as direct air capture and storage are not yet competitive as their cur-

rent marginal removal costs exceed by far current carbon prices (e.g., Rebonato et al., 2023). Technological break-
throughs can make those technologies competitive and allow to remove carbon dioxide from the atmosphere.
Those technologies are essential for a path to net-zero.

9In contrast to Kelly and Kolstad (1999), Kelly and Tan (2015), and Gerlagh and Liski (2018) we abstract from
learning about climate parameters.
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risk of stranded assets. Section 7 concludes. The proofs, numerical solution algorithm, cali-

bration details, further simulation results, and robustness checks are presented in the appen-

dices.

2 A DSGE Model of Climate and the Economy

We present a stochastic, dynamic two-sector production economy with endogenous growth and

recursive preferences. Global warming adversely affects production and increases the risk of

climate-related disasters. We also allow for the risk of climate tipping and for the possibility

of technological breakthroughs. We first discuss the economic part, then the climate part, and

finally the various policy transition scenarios and disruptive changes resulting from climate,

technological and political tipping points. Those disruptive changes are modeled by a three-

dimensional Markov chain X, which is described in detail in Section 2.4.

2.1 Economic Part

Production of Green and Brown Goods Final goods can be produced in two sectors. Total

output is given by the sum of outputs produced in the two sectors, Y “ Y1 ` Y2.10 Outputs of

both sectors n P t1,2u are given by the Cobb-Douglas production functions

Yn “ AnK1´ηn
n Eηn

n ΛnpT,Xq, (2.1)

where Kn is the capital stock of sector n and En is an energy composite consisting of renewable

energy and fossil fuel.11 The Cobb-Douglas weight ηn ă 1 and total factor productivity An are

non-negative, sector-specific constants. Here, T denotes global average temperature relative to

the beginning of the industrial revolution. Following Cai and Lontzek (2019), current average

temperatures and the climate tipping state affect the economy negatively via the sector-specific

damage functions

ΛnpT,Xq “
1´ dpXq

1`θnT2 , (2.2)

10We assume perfect substitution between the two outputs, but our analysis can be extended easily to imperfect
substitution (cf. Hambel et al., 2024)

11There is an additional production factor, i.e., labour, which is subsumed in total factor productivity An. This
production function allows for endogenous technical change, since the Cobb-Douglas weights add up to one.
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where the function d increases in the climate tipping state. In line with Golosov et al. (2014),

En is an energy composite modeled by a CES aggregate,

En “
`

κ1,nGρn
n `κ2,nFρn

n
˘

1
ρn , (2.3)

where κi,n ě 0 and ρn ă 1 may be positive or negative. Gn and Fn denote renewable (or green)

energy and fossil fuel use in sector n, respectively, and are imperfect substitutes. The elasticity

of substitution between the two energy sources in sector n is ζn “ 1
1´ρn

. We suppose that the

second sector relies significantly more on fossil fuel use than the first sector. We thus refer to

the first sector (n “ 1) as green and to the second sector (n “ 2) as brown.

Dynamics of Green and Brown Capital Let In be the investment rate in sector n and

R the rate at which brown capital can be converted into green capital. Investment is subject

to quadratic intertemporal adjustment costs as in Pindyck and Wang (2013). The conversion

of brown into green capital imposes quadratic intrasectoral adjustment costs. One dollar of

brown capital can thus be converted into less than one dollar of green capital where the wedge

increases in the amount being converted. The depreciation rates of the physical capital stocks

are denoted by δk
n ě 0, n P t1,2u.

The capital stock dynamics of the green and brown sector are then given by

dK1 “

´

I1 ´
1
2
ϕ1

I2
1

K1
` R ´

1
2
κ

R2

K1
´δk

1K1

¯

dt ` K1σ1dW1 ´
ÿ

i“c,e

K1´ℓidNi (2.4)

dK2 “

´

I2 ´
1
2
ϕ2

I2
2

K2
´ R ´δk

2K2

¯

dt ` K2σ2

´

ρ12dW1 `

b

1´ρ2
12dW2

¯

´
ÿ

i“c,e

K2´ℓidNi

where ϕn, n “ 1,2, are the investment adjustment cost parameters, κ the capital reallocation

cost parameter, and W1 and W2 two independent Brownian motions. The parameter ρ12 de-

notes the instantaneous diffusive correlation coefficient between the Brownian shocks of the

two capital stocks. The processes Ni, i P tc, eu are two independent point processes modeling

macroeconomic disasters and climate-related disasters (e.g., extreme weather events), respec-

tively. λe denotes the disaster intensity of macroeconomic disasters and is constant as in Barro

(2006, 2009) and Barro and Jin (2011). The disaster intensity of climate-related disasters

λcpTq increases in temperature as in Hambel et al. (2024). Here, λidt is the probability for a

jump to occur over a small time interval of length dt and 1{λi is the expected waiting time to
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the next jump. The parameter ℓi denotes the corresponding jump size which is drawn from an

i.i.d. process, but independent of the Brownian and Poisson shocks in the model. The corre-

sponding recovery rate is denoted by Zi “ 1´ℓi. We suppose that the jump sizes are the same

for both types of capital.12

The total stock of capital is defined by K ” K1`K2 and the share of brown capital by S ”
K2

K1`K2
.

The dynamics of K and S are discussed in Appendix A.3.

Equilibrium Conditions The amount of consumption goods provided by each sector is the

cash flow net of investments and energy costs,

Cn “ Yn ´ In ´ bgGn ´ b f Fn ´ςnbdpS,X,D,Kq, (2.5)

where bg “ bgpSq denotes the real price of one unit of green energy and b f “ b f pSq the real

price of one unit of fossil fuel. We suppose that over time green energy becomes more compet-

itive, since bg decreases in the share of green capital 1 ´ S.13 The technology for producing

fossil fuel is more likely to be mature, so that b f is less likely to increase in S.

A competitive negative emission technology, such as direct air carbon capture and storage

(DACCS), that extracts CO2 from the atmosphere at low marginal costs, may eventually emerge.

We model such a technological breakthrough as an irreversible technological tipping point. The

cost of removing an amount D of CO2 from the atmosphere is bd “ bdpS,X,D,Kq and depends

on the share of brown capital. These costs are homogeneous of degree one in capital and

marginal removal costs Bbd
BD are strictly positive for every level D (cf. Rebonato et al., 2023).

The term ςn “ ςnpSq models a cost-sharing mechanism by which the total removal costs are

divided between the two sectors, so that ς1 `ς2 “ 1.14 Without a technological breakthrough

modeled by the two-state Markov chain X t, this technology is not yet competitive and plays

only a negligible role and D “ 0. We then have X t “ 1, while if the breakthrough in negative

emissions technology has taken place we have X t “ 2.

12Since this disaster shock is common for both types of capital, it significantly increase the total correlation
between the two capital stocks. Total correlation thus involves both the instantaneous correlation stemming from
Brownian shocks and common jump risk, see the extensive discussion in Hambel et al. (2024). Besides, it is
possible to extend the model to a situation where the jump size ℓ is not identical for both sectors.

13One way of justifying this is Wright’s law, which states that unit production costs of solar panels, wind mills,
and batteries decline as more of these are used.

14In our calibrated model, ς1 “ 1´ S and ς2 “ S, but a more general case is given in Proposition A.1.
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Aggregate Consumption Consumption goods are perfect substitutes, so aggregate con-

sumption is C “ C1 ` C2. Our analysis would also work for imperfect substitutes (e.g., if

aggregate consumption is a CES aggregate of the consumption goods produced in each sec-

tor). However, to focus on the novel implications of climate transition risk on asset prices, we

keep the setting simple and consider the special case of perfect substitutes.

Recursive Preferences Our economy has identical agents with recursive preferences. As

shown in Duffie and Epstein (1992b), these preferences are the continuous-time version of

discrete-time recursive utility developed in Kreps and Porteus (1978) and Epstein and Zin

(1989). The coefficient γ of relative risk aversion (RRA) can be chosen independently of the

elasticity of intertemporal substitution (EIS)ψ. The value function (or indirect utility function)

of the representative household J is thus recursively defined by

Jpt,K1,K2,T,Xq “ sup
D,Fn,Gn,In,R

Et

”

ż 8

t
f
`

Cs, Jps,K1s,K2s,Ts,Xsq
˘

ds
ı

, (2.6)

where f is the aggregator function determining preferences. For a degree of risk aversion γ‰ 1

and elasticity of intertemporal substitution ψ, this aggregator function has the form

f pC, Jq “

$

’

&

’

%

δθJ
”

C1´1{ψ

rp1´γqJs1{θ
´1

ı

, ψ‰ 1,

δp1´γqJ log
´

C

rp1´γqJs
1

1´γ

¯

, ψ“ 1,

where θ “
1´γ

1´1{ψ
and δ ą 0 is the rate of time impatience. Notice that f depends on the

value function J, which reflects the recursive structure of the preferences. The degree of risk

aversion typically exceeds 1{ψ to reflect a preference for early resolution of uncertainty. For

γ“ 1{ψ, or equivalently θ“ 1, preferences collapse to time-additive CRRA utility.

Dividends Empirically, dividends are more volatile than consumption (e.g., Bansal and Yaron,

2004) and much more so if a disaster hits the economy (e.g., Longstaff and Piazzesi, 2004;

Wachter, 2013). This is because dividends are only a small part of household income, while

labour income is the largest part of household income is much less volatile than dividends.
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Following Wachter (2013), among others, we thus model dividends as leveraged consumption,

i.e., Dn “ Cφ
n with leverage parameter φą 1, which is common for both sectors.15

2.2 Climate Part

Following Allen et al. (2009), Matthews et al. (2009), and IPCC (2014), global mean tempera-

ture T rises in cumulative net emissions E t “
şt

0 Enet
s ds measured in gigatons of carbon (GtCs),

dT “ϑEnetdt `σTdW3, (2.7)

where ϑ “ ϑpXq denotes the transient climate response to cumulative emissions (TCRE) and

W3 denotes a third standard Wiener process that is independent of W1, W2, N c, N e, and X to

allow for regular shocks to the climate system. In line with Cai and Lontzek (2019), the Earth’s

climate system is also exposed to tipping risk modeled by the Markov chain X c. These climate

tipping points affect the future evolution of the climate system by increasing the TCRE, ϑpXq.

They may also affect output damages from climate change.16 Climate tipping points are typi-

cally irreversible. An example is the melting of permafrost soils in the Siberian tundra, which

is the largest methane reservoir in the Earth. Such a tipping event is irreversible because,

for example, the methane cannot be restored once it has been released.17 The temperature

diffusion coefficient, σT , is constant and models uncertainty in the climate system.

15An alternative to this approach is modelling the consumption-dividend ratio as a stationary but persistent
process, as in Longstaff and Piazzesi (2004), among others. In order to focus on the novel implications of climate
transition risk on asset prices, we keep the setting simple although following this approach would also be feasible
in our setting. A more rigorous approach, in which capital is owned by intermediaries who issue stocks and pay
dividends to households is beyond the scope of this paper.

16Alternatively, one can allow tipping points to affect the temperature dynamics directly via a jump term that
boosts the temperature anomaly. This is comparable to the self-exciting temperature process from Hambel et al.
(2021a), which has been proven to be a significant driver of the social cost of carbon.

17Other examples are melting of the Greenland or Antarctic Ice Sheet or dieback of the Amazon rain forest.
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Industrial emissions are proportional to fossil fuel use, i.e., E ind “ νpF1 ` F2q where Fn is the

rate of fossil use in sector n.18 The process ν is the emission intensity per unit of energy from

fossil fuel. The emission intensity evolves according to

dν“ ν´

”

gνdt ´
dK
K´

ı

. (2.8)

If gν is smaller than the expected economic growth rate, the emission intensity declines in

expectation but it might be state-dependent. Net emissions are industrial emissions reduced

by the amount of CO2 that is extracted from the atmosphere using the negative emission

technology if available, i.e., Enet “ E ind ´ D. Hence, the temperature dynamics becomes

dT “ϑrνpF1 ` F2q´ Dsdt `σTdW3. (2.9)

2.3 Policy Tipping

The third Markov chain X p models different policy scenarios. While climate tipping and tech-

nological breakthroughs are irreversible, policy shocks are reversible due to political processes

(or coups). For example, the election of a new government that takes climate change less se-

riously than its predecessor can at a later time be replaced again by a government with more

climate ambition. We focus on three policy states of the Markov chain:

(i) Business-as-usual (BAU): In this state (X p “ 1), policy makers behave as climate change

deniers and do not implement a carbon tax as they ignore the negative impact of climate

change on the economy. Damages from releasing carbon into the atmosphere are not

internalized even though financial markets price in both physical and transitions risks.

(ii) Optimal carbon taxation (PIGOU): In this state (X p “ 2), policy makers have full infor-

mation and implement an optimal Pigouvian carbon tax (cf. Pigou, 1920), termed the

social cost of carbon or SCC in the climate economics literature, that internalizes all

negative externalities from climate change.

18 In our model fossil fuel is not an exhaustible resource. To test whether exhaustibility matters for our policy
simulations, we have studied a variant of our model that takes account of the constraint

şt
0 E ind

s ds ď E, where E
denotes the maximum amount of total carbon emissions if all fossil fuel resources were to be exploited. We find
that this constraint is not binding if E is set in line with recent estimates on exhaustible fossil fuel resources,
11,000GtCO2 or 3,000GtC (McGlade and Ekins, 2015).
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(iii) Temperature cap (CAP): In this state (X p “ 3), there is a legally binding carbon budget

constraint to ensure that temperature stays below a pre-specified cap Tcap of a two-

degrees target, Tcap “ 2˝C, in accordance with the Paris agreement (cf. United Nations,

2015). If the cap is exceeded, a binding constraint comes into force so that fossil fuels

cannot be burnt anymore: F1,t “ F2,t “ 0 if Tt ą Tcap. If this constraint bites, carbon

prices will exceed the Pigouvian carbon prices.

A transition from one policy regime to another arises when a policy maker changes its cli-

mate ambition or when there is a change of policy makers (e.g., due to an election). Financial

markets anticipate transition risks (as well as physical risks and technological risks). Conse-

quently, asset prices reflect these risks even when society is still in the BAU state. Starting in

the BAU state also implies that society faces and internalizes the economic costs of delaying

climate action, which lead to more stringent policies as soon as the government starts inter-

nalizing global warming externalities or as soon as a legally binding temperature cap comes

into force. These costs of delaying will be priced in and will thus affect asset returns.

2.4 Full Markov Chain for Disruptive Changes

Although our framework is rich enough to model disruptive changes to a broad range of input

parameters and political scenarios, we focus on three dimensions. First, the Earth’s climate

system is affected by two irreversible climate tipping points and modeled by a directed Markov

chain X c with 3 states in the spirit of Cai et al. (2016). Second, irreversible technological

breakthroughs that allow the use of competitive negative emission technologies such as di-

rect air capture and storage to remove CO2 from the atmosphere. This layer is modeled by

X t and has two states. Third, the political regime switches are modeled by the non-directed

Markov chain X p. The political regime can thus shift to and from each of three states: busi-

ness as usual, optimal carbon taxes, and an emission cap.19 The sudden shocks to the political

landscape, the Earth’s climate system, and negative emissions technology can be summarized

by three-dimensional independent Markov chain X “ pX c, X t, X pq with 18 different states in

X “ t1,2,3u ˆ t1,2u ˆ t1,2,3u as illustrated in Figure 1. The transition intensity of jumping

19Of course, we could easily allow for more states in each of these layers. For instance, a model extension with
more climate tipping elements or several intermediate states between BAU and PIGOU, in which an increasing
proportion of carbon dioxide emissions is taxed, can be implemented easily, but we keep this simple structure for
ease of interpretation.
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Figure 1: Structure of the Markov Chains. The Markov system consists of a three-dimensional
Markov chain X “ pX c, X t, X pq with three states for climate tipping points X c P t1,2,3u, two technolog-
ical states X t P t1,2u and three political states X p P t1,2,3u. Jump intensities between two states may
explicitly depend on the share of brown capital and temperature. The states from the different chains
can link together in 18 combinations.

from state i P X to state j P X is modeled by the sufficiently smooth non-negative function

λxpS, i, jq, where S denotes the vector of all state variables in the economy.20

3 Carbon Taxes, Negative Emissions, and Asset Returns

In both the optimal carbon taxation (PIGOU) and the temperature cap (CAP) scenario, welfare

(2.6) is optimized subject to the constraints of our DSGE model of the climate and the econ-

omy. The only difference between the CAP and PIGOU scenario is that in the CAP scenario

there is an additional constraint on cumulative emissions to take account of. The business-as-

usual (BAU) scenario also requires solving a stochastic dynamic optimization problem where

no account is taken of the adverse effects of temperature on the economy and on the risk of

climate-related disasters or climate tipping points. Of course, once the optimization is done,

these adverse effects do impinge on the economy.

20We also denote the transition intensities of Xℓ by λℓpS, i, jq, where ℓ equals c, t, or p, respectively. To keep
the mechanisms transparent, we assume that the jump intensity λℓpS, i, jq of a component Xℓ does not explicitly
depend on the other components. We therefore have no direct domino effects of the entire chain, but we do have
the indirect effect, since the jump intensities depend on the common factors S and T.
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The numerical solution algorithm that we use to solve our dynamic programming problems

is discussed in Appendix A. The value function must satisfy the Hamilton-Jacobi-Bellman

equation (A.1). Under some very mild assumptions, it can be expressed as Jpt,K1,K2,T,Xq “

1
1´γ

K1´γV
`

t,T,SpK1,K2q,X
˘

, where S “ SpK1,K2q “
K2

K1`K2
, K “ K1`K2, and V “ V pt,T,S,Xq

satisfies the simpler Hamilton-Jacobi-Bellman equation (A.12). We thus obtain the following

results.

Carbon Taxes The optimal Pigouvian carbon tax τ is set to the social cost of carbon (SCC),

which equals the expected present discounted value of all present and future negative effects

of emitting one ton of CO2. The optimal Pigouvian carbon tax or SCC is (see Appendix A.2)

τ“ ´
ϑpXq JT

fcpC, Jq
“
ϑpXqc1{ψ

δpγ´1q

VT

V 1´1{θ
K ą 0. (3.1)

This carbon tax is proportional to the total stock of capital as marginal damages are pro-

portional to aggregate economic activity (e.g., Nordhaus, 1991; Golosov et al., 2014; van den

Bijgaart et al., 2016; Rezai and van der Ploeg, 2016; Hambel et al., 2021b). Notice that if the

political state is BAU rather than PIGOU or CAP, the SCC can be computed too but there is no

carbon price that is implemented by policy makers.

Negative Emissions The optimality condition for carbon removal is

BbdpS,X,D,Kq

BD
“ τ (3.2)

(see Appendix A.2). The economy thus keeps extracting carbon from the atmosphere until the

marginal costs exceed the marginal benefits (i.e., the SCC). Since even the first ton of carbon

to be removed and stored has non-zero marginal cost, the social planner leaves all CO2 in the

atmosphere if the marginal cost of removal exceeds the SCC.
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Risk-free Rate and Precautionary Savings In equilibrium the risk-free rate r f is21

r f
t “ δ

loomoon

Discounting

`
1
ψ
µC

loomoon

Smoothing

´
1
2
γ

´

1`
1
ψ

¯

}σC}
2

looooooooomooooooooon

Standard Diffusion Risk

´
ÿ

i“c,e

λipTqE

”

Z´γ

i ´1`
θ´1
θ

`

1´ Z1´γ

i

˘

ı

looooooooooooooooooooooooomooooooooooooooooooooooooon

Macroeconomic and Climate-related Disaster Risk

`
γψ´1

2ψ2

´

}σC ´σk}
2

`ψ
`

}σC}
2

´}σk}
2˘
¯

`
θ´1
θψ

σJ
g pσC ´σkq

loooooooooooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooooooooooon

Temperature Interaction Risk

(3.3)

´
ÿ

x‰X
λxpS,X, xq

”

p1´ jx
vq

1´1{θ
p1´ jx

cq
´1{ψ

´1`
θ´1
θ

jx
v

ı

looooooooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooooooon

Tipping and Transition Risk

Equation (3.3) offers a similar decomposition of the risk-free interest rate as in Barro (2006,

2009), Pindyck and Wang (2013), and Wachter (2013), and extends the results in Hambel et al.

(2024) to various types of climate-related tipping and transition risks. The first two terms

in equation (3.3) also arise in deterministic models. If the time preference rate δ is high,

there are strong preferences for early consumption and one would like to borrow. Since, in

equilibrium, the risk-free asset is in zero net supply, the risk-free rate must increase to counter

this. The risk-free rate also increases in expected consumption growth µC due to the preference

for smooth consumption streams. This effect is bigger if it is more difficult to substitute present

for future consumption (if the elasticity of intertemporal substitution ψ is small).

The third term ´1
2γ
`

1 ` 1
ψ

˘

}σC}2 in equation (3.3) is negative and represents the motive for

precautionary savings in response to diffusion risk, which requires the interest rate to fall to

keep the risk-free asset in zero net supply. Expected consumption growth and its volatility

depend non-linearly on both temperature and the brown capital share, whereby the result is

more involved and qualitatively different from one-tree endowment economies. While the effect

of temperature on the precautionary-savings term ´1
2γ
`

1` 1
ψ

˘

}σC}2 is negligible, the share of

brown capital has a significant influence on the equilibrium risk-free rate. The latter result

stems from a diversification argument as in Cochrane et al. (2007) and Hambel et al. (2024).

Diversifying across the green and brown capital stock reduces the volatility of the total capital

stock and aggregate consumption, so the need for precautionary saving falls.

21Details on the derivation of the risk-free rate can be found in Appendix B.1, where we also derive the dynamics
of the pricing kernel (B.6).
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The fourth term ´
ř

i“c,eλipTqE
“

Z´γ

i ´1`
ψ´1´γ

1´γ

`

1´ Z1´γ

i

˘‰

in equation (3.3) reflects precau-

tionary savings in response to macroeconomic and climate-related recurring disaster risks,

respectively. As for standard diffusion risk, these terms reduce the interest rate to keep the

risk-free asset is in zero net supply. The greater the coefficient of relative risk aversion γ, the

greater is this effect, see also the extensive discussion in Wachter (2013).

The terms in the second row in equation (3.3) capture the interdependence between capital,

consumption, temperature, and the value function. They represent precautionary savings for

uninsurable temperature risk. We emphasize that these components depend on the relevant

state variables, in particular on temperature, in a nonlinear manner, but have little effect on

the risk-free rate because consumption volatility σC is close to capital volatility σk. In case of

time-additive CRRA-utility (γ“ 1{ψ, θ“ 1), these terms vanish.

The last term in equation (3.3) reflects precautionary savings in response to the various types

of disruptive changes resulting from climate tipping, technological tipping, and political tip-

ping. These terms have a similar structure as the precautionary savings terms for standard

disaster risk and all lead to higher precautionary savings and thus curb the risk-free rate.

While disaster risk affects the capital stock via the loss ℓ, these shocks affect utility and con-

sumption via state-dependent terms jx
v and jx

c that measure the relative change in the indirect

utility function and consumption rate, respectively, when the Markov chain jumps to state x.

These figures are computed numerically and are given in (B.3) and (B.5) of Appendix B.1.

We emphasize that in contrast to the well-established decompositions in the afore-mentioned

literature, the risk-free interest rate (3.3) is not a continuous process because it explicitly de-

pends on the current state of the Markov chain X. Therefore, it reacts abruptly to climate

tipping and transition risks. This novel feature can be seen explicitly from the precaution-

ary savings term ´
ř

x‰XλxpS,X, xq
“

p1 ´ jx
vq1´1{θp1 ´ jx

cq´1{ψ ´ 1 ` θ´1
θ

jx
v
‰

, which depends on

X. Moreover, the expected consumption growth rate µC also depends on X. We perform an

extensive quantitative analysis on how transition risks affect the risk-free rate in Section 5.3.

Asset Prices We use the representation (B.6) of the pricing kernel H to calculate the ex-

dividend price Pn of both the green and brown asset. For the dividend stream Dn “ Cϕ
n , the

time-t price of asset n equals

Pnt “ Et

”

ż 8

t

Hs

Ht
Dnsds

ı

. (3.4)
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where Hs denotes the stochastic time factor for discounting from time s to time t. Its equi-

librium expected excess return corresponds to the risk premium of the asset. It is the sum of

its expected ex-dividend stock return, µp
n, and dividend yield, yd

n “ Dn{Pn, minus the risk-free

interest rate, r f , so that rp
n “ µ

p
n ` yd

n ´ r f .22 Finally, we define the carbon premium as the

difference between the brown and green risk premiums, i.e., rp
2 ´ rp

1 .

4 Calibration

Since the influence of climate change on asset markets has been negligible until recently or

moderate, at least in developed countries (e.g., Dell et al. 2009, 2012), we first calibrate the

economic part of our model by disregarding climate damages and any sudden changes so that it

closely matches the historical evolution of interest rates, expected asset returns, GDP growth,

and the consumption-GDP ratio. We then calibrate the climate part of our model and damages

in the pre-tipping state. Finally, we calibrate the Markov chains, which model disruptive

changes stemming from tipping points in the climate system, negative emission technologies,

and the political landscape. Tables 1 and 2 summarize our benchmark calibration.

4.1 Economic Part of the Model

Macroeconomic Uncertainty We set annual volatility of capital diffusion risk to σ1 “σ2 “

2% matching the observed volatility of consumption or output (e.g., Wachter 2013). We assume

a zero instantaneous correlation between the two capital stocks, ρ12 “ 0 (cf. Cochrane et al.,

2007). The total correlation between capital stocks is much higher than indicated by the value

of ρ12 due to joint macroeconomic disaster shocks and common state variables that affect both

sectors (cf. Hambel et al., 2024).

The recovery rates of macroeconomic and climate-related disasters, respectively, Zi “ 1 ´ℓi,

i P tc, eu, have a power distribution over p0,1q with parameter αi ą 0 and density functions

ζipZiq “ αiZ
αi´1
i , Zi P p0,1q (Pindyck and Wang, 2013). The nth moment of the recovery rate

is ErZn
i s “

αi
αi`n . To calibrate the macroeconomic disaster-size distribution, we follow Wachter

(2013) and define a disaster as an event destroying more than ℓ “ 10% of GDP or aggregate

consumption. She uses historical consumption data to estimate an annual disaster probability

22The price-dividend ratio Πn “ Pn{Dn satisfies the parabolic partial differential equation (B.12), which we
solve numerically (see Appendices B.3 and B.4).
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Preferences
δ time-preference rate calibrated (Appendix C.1) 0.0346
γ relative risk aversion calibrated (Appendix C.1) 2.977
ψ elasticity of intertemp. substitution Bansal and Yaron (2004) 1.5

Economic Model
Y0 initial GDP (trillion US $) Nordhaus (2017) 116
S0 initial share of brown capital from World Bank data (Footnote 26) 0.876
K1,0 initial green capital (trillion US $) calibrated (Appendix C.1) 74.3
K2,0 initial brown capital (trillion US $) calibrated (Appendix C.1) 1353.9
A1 green productivity calibrated (Appendix C.1) 0.3323
A2 brown productivity calibrated (Appendix C.1) 0.3451
ϕn investment adjustment cost parameter calibrated (Appendix C.1) 13.61
κ capital reallocation cost parameter calibrated to modified RCP8.5 (Section 4.2) 2
b f ,0 initial fossil fuel costs ($ per tC) Hambel et al. (2024) 540
bg,0 initial renewable energy costs ($ per etC) Hambel et al. (2024) 810
k0 cost function parameter from Swanson’s law (Footnote 24) 0.5107
k1 cost function parameter from Swanson’s law (Footnote 24) 0.3219
ηn energy share in production van den Bremer and van der Ploeg (2021) 0.043
ζn elasticity of energy substitution Golosov et al. (2014) 2
κ1,2 renewable energy weight in brown sector Golosov et al. (2014) 0.356
κ2,2 fossil fuel weight in brown sector Golosov et al. (2014) 0.644
κ1,1 renewable energy weight in green sector assumption 1
κ2,1 fossil fuel weight in green sector assumption 0
φ leverage parameter Wachter (2013) 2.6
σn annual capital volatility Wachter (2013) 0.02
ρ12 instantaneous correlation Cochrane et al. (2007) 0
αe macroeconomic jump size parameter calibrated in line with Wachter (2013) 5
λe macroeconomic disaster intensity calibrated in line with Wachter (2013) 0.06

Climate Model and Damages
T0 initial temperature (˝C) temperature data 1.27
ϑpX0q TCRE (˝C/TtC) Hambel et al. (2024) 1.8
σT annual temperature volatility RCP data (Footnote 28) 0.033
θn damage function parameter Nordhaus (2017) 0.00236
αc climate disaster jump size parameter Hambel et al. (2024) 65.7
λ̂c marginal climate disaster intensity Hambel et al. (2024) 0.096

Table 1: Benchmark Calibration I. Preferences, the economy, the climate, and damages.

of 3.55% and an average consumption loss of 25% when a disaster strikes: λe
ş1´ℓ

0 ζepZqdZ “

0.0355 and Erℓe|ℓe ą ℓs “ 0.25. This pins down αe “ 5 and λe “ 0.06.

Economic Growth We set the leverage parameter to ϕ“ 2.6 (Wachter, 2013), the elasticity

of intertemporal substitution to ψ“ 1.5 (Bansal and Yaron, 2004), and the energy shares in the

production functions to ηi “ 0.043 (van den Bremer and van der Ploeg, 2021).23 We calibrate

23This assumption is in line with Golosov et al. (2014) who use an energy share of 4%.
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the remaining preference parameters, the depreciation rate, the investment adjustment cost

parameters, and the total factor productivities given in Table 1 to match an expected GDP

growth rate of µ “ 2.52% in normal times without disasters (Wachter, 2013), a consumption

share of C
Y “ 63% of GDP, a risk-free interest rate of r f “ 0.8%, an equity risk premium of rp “

6.6%, and a Tobin’s Q of 1.548 (Pindyck and Wang, 2013). Details are given in Appendix C.1.

Energy Consumption We set the initial cost of fossil fuel to b f pS0q = $540/tC (cf. van den

Bremer and van der Ploeg, 2021), but use a significantly higher initial cost of green energy,

bgpS0q = $810/etC, in line with production costs in developed countries. We suppose that the

cost parameter for green energy gradually declines over time as the green transition progresses

by setting bgpStq “ bgpS0qk0p1 ´ Stq
´k1 with k0 ą 0 and k1 ą 0. We calibrate so that costs for

renewable energy drop by 20% for every doubling of cumulative installed volume in accordance

with Swanson’s law.24 This gives k0 “ 0.5107 and k1 “ 0.3219.

The green sector only uses renewable energy, so κ1,1 “ 1, κ2,1 “ 0, and ρ1 can be chosen ar-

bitrarily. The brown sector can be fueled by both energy sources. To calibrate the energy

composite of the brown sector and the CES weights, we set the elasticity of intratemporal sub-

stitution to ζ2 “ 2 corresponding to ρ2 “ 0.5 and the CES weights to κ1,2 “ 0.356, κ2,2 “ 0.644

(Golosov et al., 2014). With this calibration it is possible to fully replace fossil fuel by green

energy withing this sector even though moving capital to the green sector may be more effi-

cient.25 Given those parameter choices, we determine the share of brown capital such that the

model generates 19.77% of renewable energy in total energy demand in the BAU-scenario in

2020.26 This gives an initial share of brown capital of S0 “ 0.876. We can thus back out the

initial green and brown capital stocks (74.3 and 1353.9 trillion US $, respectively).

24Swanson’s law is the solar industry specific application of Wright’s Law which states there will be a fixed cost
reduction for each doubling of manufacturing volume. More specifically, Swanson’s law states that the price of
solar panels drops by 20 percent every time the volume of panels shipped doubles, see https://www.economist.
com/news/2012/11/21/sunny-uplands.

25Alternative calibrations for when the two energy forms are complements within the brown sector (e.g., the
benchmark calibration of Golosov et al. 2014 with ζ2 “ 0.95 and ρ2 “ ´0.058) or when the brown sector only takes
fossil fuel as input (e.g., Hambel et al. 2024 with κ1,2 “ 0 and κ2,2 “ 1) are discussed in Appendix C.3. With those
calibrations, it is not possible to completely replace fossil fuels with renewable energies within the brown sector.
This may cause stranded assets if the carbon budget is exceeded and the CAP scenario enforced.

26We use world bank data on the share of renewable energy of total final energy consumption, see https:
//data.worldbank.org/indicator/EG.FEC.RNEW.ZS.
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4.2 Climate Change and Global Warming Damages

Emission Intensity We calibrate the emission intensity such that the pure BAU simulation

mimics the modified RCP8.5 scenario of IPCC (2014). RCP8.5 is characterized by high emis-

sions leading to a temperature increase of about 4.3˝C relative to the pre-industrial level by

the end of this century.27 We slightly modify the emission data to take account of the lower

emissions in reality compared to the RCP8.5 scenario. While the scenario predicts emissions

of 12.44 GtC in 2020, the actual emissions were only 10 GtC. Thus, we calibrate the emis-

sion intensity (2.8) to adjusted RCP8.5 emission data that is 20% lower than the original data.

Details are given in Appendix C.1.

Temperature Dynamics Estimates of the transient climate response to cumulative emis-

sions range from 0.8 to 2.4˝C/TtC (e.g., Allen et al., 2009; Matthews et al., 2009, 2018). We

take an initial value of the TCRE of ϑpX0q “ 1.8˝C/TtC, which is in line with the tempera-

ture evolution in DICE-2016R and other climate-economic models such as Dietz and Venmans

(2019) or the econometric approach in Miftakhova et al. (2020). Moreover, we choose a constant

temperature volatility of σT “ 0.033 to match the temperature range of global mean tempera-

ture increase in the RCP scenarios.28 The effect of climate tipping risk on the transient climate

response to cumulative emissions is described in Section 4.3 and shown in Panel (a) of Figure 1.

Damage Specification Our model involves both a level impact and a climate-related dis-

aster risk component. We adapt the damage function (2.2) from Cai and Lontzek (2019) but

modify the damage parameter θn “ 0.00236 to be in line with the recent version of the DICE

model in the pre-tipping state (Nordhaus, 2017). Following the median damage scenario in Cai

and Lontzek (2019), we assume a post-tipping permanent damage of 5% of global output and

2.5% in the intermediate state, i.e., dpX c “ 0q “ 0, dpX c “ 1q “ 0.025, and dpX c “ 2q “ 0.05.

We assume that the intensity of climate-related disasters rises linearly in temperature with

λcpTq “ λ̂cT with a marginal intensity parameter of λ̂c “ 0.096. The expected loss is 1.5% and

thus Erℓcs “ 0.015 (cf. Karydas and Xepapadeas, 2022; Hambel et al., 2024). Fitting a power

distribution, we obtain αc “ 65.7.29

27The data is available from the RCP database, see http://tntcat.iiasa.ac.at/RcpDb.
28The temperature range in the year 2100 of the various RCP scenarios varies between 0.8˝C around its mean

in RCP2.6 to 1.1˝C in RCP8.5.
29It is also possible to assume that the intensity of climate-related disasters or their damage distribution de-

pends on the state of the climate tipping X c. This generalization of Cai et al. (2016) and Cai and Lontzek (2019)
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Climate Tipping Risk
TCRE ϑpX c “ 1q “ 1.8, ϑpX c “ 2q “ 2.1, ϑpX c “ 3q “ 2.4 ˝C/TtC from Allen et al. (2009)
Damage parameters dpX c “ 1q “ 0, dpX c “ 2q “ 0.025, dpX c “ 3q “ 0.05 cf. Cai and Lontzek (2019)
Intensity parameters λ̂

1,2
c “ 0.012, λ̂1,3

c “ 0.012, λ̂2,3
c “ 0.02 cf. Cai and Lontzek (2019)

Breakthrough of Negative Emission Technology
Cost function b1 “1.77¨10´4, b2 “ 1.19¨10´5, b3 “ 1 from Rebonato et al. (2023)

c1 “ 0.34, c2 “ 0.03, c3 “ 0.34, ζ“ 0.1 Appendix C.2, Footnote 31
Intensity parameter λ̂

1,2
t “ 0.0224 assumed

Political Transition Risks
Intensity parameters λ̂

1,2
p “ 0.12, λ̂1,3

p “ 0.05, λ̂2,3
p “ 0.05, µ̂“ 0.75 using Moore et al. (2022)

λ̂
2,1
p “ 0.12, λ̂3,1

p “ 0.06, λ̂3,2
p “ 0.10

Table 2: Benchmark Calibration II. The table gives the Markov chain X “ pX c, X t, X pq. The tip from
a TCRE of 1.8 to 2.1˝C{TtC has an expected duration of 309 years if temperature remains fixed at the
initial temperature while the expected tip from a TCRE of 2.1 to 2.4˝C{TtC has an expected duration of
50 years. The technological breakthrough occurs with 50% probability by 2050. The expected duration
for jumping from BAU to either PIGOU or to CAP at the initial temperature and share of brown capital
is 11.35 years.

4.3 Sudden Disruptive Changes

Our Markov chain X “ pX c, X t, X pq has three components. First, the Earth’s climate system

is subject to climatic tipping points. We follow Cai et al. (2016), but our Markov chain X c

has only one pre-tip state and two post-tip states that affect the climate system (2.9). Second,

we allow at some uncertain date in the future for a technological breakthrough that leads

to a new negative emission technology that allows for direct carbon removal at low marginal

costs. This is modeled by the Markov chain X t, which has only two states (before and after

the breakthrough). Third, the political landscape is exposed to changes in policy (see Section

2.3), which are modeled by the Markov chain X p. Society can jump back and forth between the

states BAU, PIGOU, and CAP. The model starts in the BAU state. The three Markov chains

together X have a total of 18 states (3ˆ2ˆ3) and is shown in Figure 1.

Climate Tipping Risks Our directed three-state Markov chain X c starts at the pre-tip state

X c
0 “ 1. Given the initial value of the TCRE in the pre-tip state, ϑpX c

0 “ 1q “ 1.8˝C{TtC, and the

range of estimates up to 2.4˝C{TtC for the TRCE, we choose a TCRE of ϑpX c “ 2q “ 2.1˝C{TtC

for the intermediate state and ϑpX c “ 3q “ 2.4˝C{TtC for the post-tip state (see Figure 1).

leads to qualitatively similar results and does not increase the numerical complexity of the solution algorithm.
To focus on the novel aspects of transition risk, we do not pursue this route further here.
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From the pre-tip state, we let the transition intensity to the intermediate and post-tip state be

λcpS,1, jq “ λ̂
1, j
c pT ´1q with λ̂

1, j
c “ 0.012 (cf. Cai and Lontzek, 2019).30 This implies an annual

initial tipping intensity of 0.324% at the initial temperature T0 “ 1.27˝C corresponding to an

expected duration of 309 years and a tipping intensity of 1.2% at T “ 2˝C corresponding to

an expected duration of 83 years. The transition intensity for the post-tip state conditional

on being in the intermediate state is set to λcpS,2,3q “ λ̂
2,3
c “ 0.02. This corresponds to an

average duration of 50 years between the intermediate and the final climate tipping state. The

climate can also jump directly from state 1 to state 3, so the total tipping intensity at the initial

temperature T0 “ 1.27˝C is 0.648% (cf. van den Bremer et al., 2023). Hence, we allow for both

fast and relatively sluggish reactions of the climate system to tipping points. Finally, we have

irreversible climate tipping, so λcpS, i, jq “ 0 for j ă i.

Technological Breakthroughs The negative emission technology is only available after a

technological breakthrough, i.e., if X t “ 2, which occurs at some unknown future date. Then,

it is proportional to the capital stock, bdpS,X,D,Kq “ b̃dpS,X,DqK with

b̃dpS,X,Dq “ 1tDą0u

“

a1pSqD ` a2pSqexp
`

a3pSqD
˘‰

,

where a j are truncated power functions of the form a jpSq “ b j maxpζ,Sqc j , j P t1,2,3u. This

mimics the exponential marginal cost structure in equation (2.17) of Rebonato et al. (2023) with

some differences. First, the term a1pSqD ensures that even the first ton of carbon to be removed

and stored has non-zero marginal costs. Second, carbon removal becomes cheaper as the green

transition progresses via a jpSq “ b j maxpζ,Sqc j . We assume that carbon removal costs no

longer fall once the share of green capital reaches 90%, so set ζ“ 0.1.31 Third, carbon removal

costs are stochastic as the capital stock and the share of brown capital are stochastic. Fourth,

without a technological breakthrough (X t “ 1), this technology is too expensive. But after a

technological breakthrough (X t “ 2), this technology is competitive and operates at strictly

positive but finite marginal costs 0 ă
Bb̂dpS,X t“2,Dq

BD “ a1pSq` a2pSqa3pSqexppa3pSqDq ă 8.

30Climate tipping is only possible if temperature exceeds 1˝C, which given our initial temperature is the case.
31The truncation parameter ensures that costs for carbon removal does not fall to zero when the share of

green capital approaches 100%. Alternative parametrizations with different truncation parameters or alternative
functional forms do not significantly affect the qualitative nature of our results.
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This cost function can be calibrated to the marginal cost curves depicted in Figure 5 in Rebon-

ato et al. (2023) for the years 2050 and 2100.32 For the cost-sharing mechanism we assume

that the costs are shared according to the size of the two sectors, i.e., ς1 “ 1´S and ς1 “ S. The

resulting parameters are stated in Table 2. The calibration details are given in Appendix C.2

and the fit to the data is illustrated in Figure C.2. Furthermore, we calibrate a constant jump

intensity λtpS,1,2q “ λ̂
1,2
t , which controls the likelihood of a technological breakthrough. We

assume that the negative emission technology becomes competitive somewhere in the period

up to the year 2050 with a probability of 50%. This implies a jump intensity of λ̂1,2
t “ 0.0224.33

Political Transition Risks We start with the BAU state (X p
0 “ 1) and only start pricing

carbon when there is a jump to the PIGOU state (X p “ 2) in which policy makers internalize

all global warming externalities or to the CAP state (X p “ 3) in which policy makers in addition

ensure that temperature stays below 2˝C. Ongoing global warming (exponentially) increases

the likelihood of strengthening climate policy once temperature has crossed 1.5˝C (Barnett,

2023. Although carbon taxes or cap-and-trade systems have never been completely abolished

after they had been implemented, there is still a significant hazard of climate change deniers

coming (back) to power in some of the world’s most powerful countries. To allow for transitions

from PIGOU or CAP back to BAU, we model political transition intensities by

λppS, i, jq “ λ̂
i, j
p exp

`

µ̂rmaxpT ´1.5,0q´ Ss
˘

, i ă j

λppS, i, jq “ λ̂
i, j
p exp

`

µ̂rminp1.5´ T,0q` Ss
˘

, i ą j

with λ̂
i, j
p ą 0 for i ‰ j and µ̂ą 0. The probability for jumps to a more ambitious climate policy

(i ă j) thus rises in temperature provided temperature exceeds 1.5˝C. It also falls in the share

of brown capital as a result of brown lobbies to slow down the green transition;34 alternatively,

as the green sector grows in size, the influence of green lobbyists increases and with it the

chance of more stringent climate policies. Conversely, the probability for jumps back to a less

32These marginal cost curves build upon cost estimates for negative emission technologies of Fuss et al. (2018)
and the comprehensive review in the of the sixth assessment report of the IPCC (2022), which has shown the
important role for negative emissions technologies in limiting global warming to 2˝C.

33Alternative calibrations for when the jump intensity depends on the political state or the share of brown
capital are available upon request, but they do not significantly affect our results.

34For instance, more than 2400 lobbyists affiliated with oil and gas industries attended the re-
cent climate summit COP28, e.g., https://www.theguardian.com/environment/2023/dec/05/
record-number-of-fossil-fuel-lobbyists-get-access-to-cop28-climate-talks.
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ambitious climate policy (i ą j), falls in temperature provided temperature exceeds 1.5˝C and

rises in the share of brown capital as a result of stronger brown and weaker green lobbies.

These parameters are chosen to roughly match the likelihood and resulting temperature in-

crease of the various transition scenarios in Moore et al. (2022): about 48% of their simulations

are in their modal scenario, which leads to an average temperature increase of 2.3˝C. More-

over, about 28% of their simulations lead to aggressive climate action limiting global warming

to up to 1.8˝C. There is less ambitious or less effective climate action in the remaining sce-

narios (about 24%) with average temperature increases of around 3˝C, of which less than two

percent of the simulations lead to significantly higher temperatures. To replicate those figures

with our model, we use the parameterization in Table 2.

For example, the jump intensity from BAU to PIGOU or CAP at the initial temperature of

1.27˝C and share of brown capital of 0.876 is 6.22% or 2.59%, respectively, corresponding to an

expected duration of 16.08 or 38.56 years. The average time until the government takes climate

action is half the harmonic mean of those average durations, i.e., 11.35 years. Compared to the

expected times before a technological or climate tip, these are quick transitions. Note that if the

policy state BAU continues and temperature rises to say 2˝C these expected durations shorten

to 11.05 or 26.52 years, respectively. This reduces the average time until the government takes

climate action to 7.80 years. Thus capturing that ongoing global warming makes it more likely

that policy makers start taking the climate serious. Moreover, if the market gradually manages

to curb the share of brown capital, it becomes more likely that policy makers jump into action.

5 Benchmark Results

We now present our policy optimization and simulation results using the calibration discussed

in Section 4. We solve our model numerically with the grid-based finite-differences method

outlined in Appendix A.5, and use 200,000 sample paths until the year 2100 to calculate means,

medians, and quantiles of all relevant decision and state variables.

5.1 Business-as-usual Scenario without Policy Transition Risks

First, we discuss the results for a pure BAU scenario, which excludes policy transition to the

PIGOU or CAP state (with the political and technological Markov chains switched off), to fa-
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Figure 2: Business-as-usual Scenario With No Transition Risks. Average values are depicted by
solid lines ( ) and 5% and 95% quantiles by dashed lines ( ). The dotted line ( ) in Panel a)
depicts the mean path of the share of fossil fuel in the global energy mix. The light (■), dark gray (■),
and black (■) areas in Panel d) depict the proportion of simulations in the pre-tip (X c “ 1), intermediate
(X c “ 2), and post-tip (X c “ 3) climate state, respectively.
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cilitate comparison with transition risk scenarios.35 Figure 2 shows the simulation of key

variables until the year 2100. The average values of a variable are depicted by solid lines ( )

and referred to as the mean path. Dashed lines ( ) show 5% and 95% quantiles.

In this scenario, policy makers never take account of negative global warming externalities.

There are thus no carbon taxes and the green transition takes place at a slow pace as can be

seen from Panel a). The negative emission technology plays no role in this simulation. The

gradual transition towards a greener economy is solely driven by the desire to diversify assets

and the learning-by-doing motive as green energy gets cheaper when the share of green capital

increases (see Hambel et al. 2024). Since, the brown sector can be operated with both fossil

fuel and renewable energy, the share of fossil fuel in global energy mix is always a bit lower

than the share of brown capital.

This scenario leads to high emissions (see Panel b) and global average temperatures reach on

average 4.2˝C (3.8˝C disregarding climate tipping) above the pre-industrial average by the end

of this century (see Panel c)). This temperature increase is thus partly due to climate tipping.

The light area (■) in Panel d) represents the proportion of paths in the pre-tip state (X c “ 1),

the dark gray area (■) in the intermediate state (X c “ 2), and the black area (■) in the post-tip

state (X c “ 3). Climate tipping points occurs in almost 90% of the paths. These events further

fuel global warming and lead to additional economic damages.

In contrast to policy makers, financial markets do anticipate the negative externalities of car-

bon emissions on total factor productivity, the intensity of recurring climate-related disasters,

and the probability of climate tipping, and price these risks in. This leads to an additional risk

premium for both green and brown assets (see Panels e) and f)). Both risk premiums show

a slight upward-trend because of growing climate risks but this effect is modest. Since the

risk premium of the brown asset is slightly higher than its green counterpart, there is only a

tiny carbon premium (the difference between the risk premium on brown assets and that on

green assets) of 0.1% per year as in this scenario we do not have policy tipping. In line with

Hambel et al. (2024) and van den Bremer et al. (2023) and discussed in Section 3, the risk-free

rate decreases over time as growing temperatures and tipping risks increase the demand for

precautionary savings (see Panel g)). The effect of physical climate risks on interest rates is

slightly more pronounced than those on risk premiums. Finally, the evolution of global output

appears quite volatile as it is plagued by many types of economic uncertainty (see Panel h)).

35The simulation results for the first-best optimal outcomes (the pure PIGOU scenario) with no policy transition
to BAU or CAP are presented in Appendix D.2.
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Figure 3: Markov Chains and Temperature Scenarios (starting from BAU with transition
risks). In Panel a) the light area (■) is the proportion of simulations in the BAU state, the dark gray
area (■) the proportion in the PIGOU state, and the black area (■) the proportion in the CAP state. In
Panel b) the light area (■) is the proportion of simulations in the pre-tip state, the dark gray area (■)
the proportion in the intermediate state, and the black area (■) the proportion in the post-tip state. In
Panel c) the light area (■) is the proportion of simulations in the pre-breakthrough state and the black
area (■) the proportion where the negative emission technology has come into force. In Panel d) the
light area (■) is the proportion of simulations with temperature less than 1.8˝C, the gray area (■) that
with temperature between 1.8˝C and 2˝C, the dark gray area (■) that with temperature between 2˝C
and 2.5˝C, and the black area (■) that with temperature above 2.5˝C.

5.2 BAU with Transition Risks

Now, we turn to our benchmark scenario for which we switch on the political Markov chain

and start in the year 2020 with the BAU state.

Markov Chains and Temperature Scenarios Panel a) of Figure 3 depicts the evolution

of the political state until the year 2100. By 2060, society has implemented a carbon tax (■)

or even a temperature cap (■) in about half of the simulated pathways. This figure rises to

around 80% by the end of this century and stabilizes there. The gradual increase in paths with

climate mitigation measures can be explained by the dependence of transition intensities on

temperature and the share of brown capital. Even the paths that are in the BAU state in 2100
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Figure 4: Transition of the Real Economy (starting from BAU with transition risks). Mean
paths are depicted by solid lines ( ) and dashed lines ( ) show 5% and 95% quantiles. The dotted
line ( ) in Panel a) shows the share of fossil fuel in the global energy mix.

often had carbon taxes implemented in the past and thus emissions in 2100 are lower than

in the pure BAU simulation. Panel b) illustrates the simulation of the climate tipping state.

This evolution looks similar to the pure BAU simulation, but the tipping loop is slowed down

somewhat because society is mitigating climate change in many paths and thus delaying or

preventing the activation of climate tipping points. Panel c) shows that in about two-thirds

of the simulated paths, there is a technological breakthrough by 2100 that makes negative

emission technologies competitive.

Panel d) shows that about 29% of the paths lead to a temperature increase of less than 1.8˝C

by the end of this century as shown by the light area (■) and 47% of the paths lead to a temper-

ature increase between 1.8˝C and 2.5˝C, as shown by the aggregated gray and dark gray areas

(■ and ■). The remaining paths suffer from little or ineffective climate action and lead to a

significant temperature increase of more than 2.5˝C, as shown by the black area (■). These

figures roughly correspond to the scenarios in Moore et al. (2022) as discussed in Section 4.3.

Moreover, the 2˝C cap is violated for many paths from 2040 onwards, with the number of vio-

lations increasing sharply around 2050. About 46% of the simulated sample paths up to 2100

adhere to the 2˝C cap, but a greater proportion of paths temporarily violate the target. These

26



2020 2040 2060 2080 2100
0

500

1000

1500

2000
a) Unconditional Carbon Tax [$/tC]

mean path
5% and 95% quantile

2020 2040 2060 2080 2100
0

500

1000

1500

2000
b) Conditional Carbon Tax [$/tC]

Figure 5: Carbon Taxes (starting from BAU with transition risks). The figure depicts the carbon
taxes for the benchmark simulation until the year 2100. Mean paths are depicted by solid lines ( )
and dashed lines ( ) show 5% and 95% quantiles. Panel a) shows unconditional means and quantiles,
and Panel b) shows means and quantiles conditional on being in the PIGOU or CAP state.

paths are represented by the aggregated light and gray areas (■ and ■). These temporary

violations are compensated by negative emissions. This underlines the importance of negative

emissions technologies for the transition to a low-carbon economy.

Energy Transition and Global Output Figure 4 illustrates the transition towards a low-

carbon economy until the year 2100. Mean paths are depicted by solid lines ( ) and dashed

lines ( ) show 5% and 95% quantiles of the optimal solution. Panel a) shows that due to

political tipping the share of brown capital and the share of fossil fuel in the global energy mix

decline much faster than in the pure BAU simulation. Still, the transition is plagued by sub-

stantial political uncertainty since in our policy tipping scenario policy makers can be replaced.

In particular, there is a likelihood that already implemented carbon taxes are reversed by a

new BAU-type government. Such political uncertainties are reflected by the broad confidence

bands of the share of brown capital and carbon emissions in Panels a) and b).

Panel c) shows that mean temperature reaches a maximum around the year 2085 when the

mean net emission path crosses the zero line, see Panel b). Hereafter, mean temperature

slowly declines due to the negative net emissions technology, which kicks in after technological

breakthrough has made this technology competitive. Global output evolves as in the pure BAU

case but increases at a slightly higher rate as society mitigates global warming damages by

internalizing the negative externalities from carbon emissions or imposing a temperature cap.
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Moments conditional on carbon tax being implemented (X p ‰ 1)

(a) Erτ | X p ‰ 1s Medpτ | X p ‰ 1q σpτ | X p ‰ 1q q5%pτ | X p ‰ 1q q95%pτ | X p ‰ 1q Skewpτ | X p ‰ 1q

2025 332 338 39 250 380 -1.01
2050 561 542 199 280 933 1.02
2075 705 683 275 298 1187 0.54
2100 959 905 436 346 1757 0.66

Moments conditional on the political state

(b) Erτ | X p “ 2s Medpτ | X p “ 2q σpτ | X p “ 2q q5%pτ | X p “ 2q q95%pτ | X p “ 2q Skewpτ | X p “ 2q

2025 331 338 38 249 376 -1.29
2050 511 513 146 272 750 0.07
2075 689 671 259 295 1141 0.37
2100 957 901 438 344 1764 0.67

(c) Erτ | X p “ 3s Medpτ | X p “ 3q σpτ | X p “ 3q q5%pτ | X p “ 3q q95%pτ | X p “ 3q Skewpτ | X p “ 3q

2025 336 341 41 254 391 -0.51
2050 667 630 251 312 1138 0.68
2075 726 698 292 302 1244 0.65
2100 961 908 434 347 1751 0.65

Moments conditional on the climate tipping state and on X p ‰ 1

(d) Erτ | X c “ 1s Medpτ | X c “ 1q σpτ | X c “ 1q q5%pτ | X c “ 1q q95%pτ | X c “ 1q Skewpτ | X c “ 1q

2025 331 338 38 250 375 -1.33
2050 531 518 181 272 864 0.98
2075 660 641 254 280 1100 0.51
2100 899 849 402 328 1634 0.61

(e) Erτ | X c “ 2s Medpτ | X c “ 2q σpτ | X c “ 2q q5%pτ | X c “ 2q q95%pτ | X c “ 2q Skewpτ | X c “ 2q

2025 343 349 40 260 398 -1.13
2050 566 552 196 284 937 0.95
2075 664 644 254 289 1098 0.53
2100 882 833 397 320 1609 0.62

(f) Erτ | X c “ 3s Medpτ | X c “ 3q σpτ | X c “ 3q q5%pτ | X c “ 3q q95%pτ | X c “ 3q Skewpτ | X c “ 3q

2025 403 406 50 304 475 -0.63
2050 659 643 227 331 1080 0.85
2075 763 741 290 326 1266 0.46
2100 1003 947 453 364 1834 0.64

Moments conditional on the technological state and on X p ‰ 1

(g) Erτ | X t “ 1s Medpτ | X t “ 1q σpτ | X t “ 1q q5%pτ | X t “ 1q q95%pτ | X t “ 1q Skewpτ | X t “ 1q

2025 333 339 39 251 380 -1.00
2050 564 544 201 281 941 1.01
2075 706 684 275 298 1189 0.53
2100 978 923 442 356 1784 0.66

(h) Erτ | X t “ 1s Medpτ | X t “ 1q σpτ | X t “ 1q q5%pτ | X t “ 1q q95%pτ | X t “ 1q Skewpτ | X t “ 1q

2025 331 337 39 249 379 -1.12
2050 557 539 198 280 923 1.02
2075 705 683 275 298 1186 0.54
2100 955 901 435 344 1752 0.66

Table 3: Carbon Taxes, U.S. ${tC (starting from BAU with Transition Risks). Summary statis-
tics of the carbon taxes for the years 2025, 2050, 2075, and 2100 are reported. All reported moments
are at least conditional on being in the PIGOU or CAP state, i.e., on X p ‰ 1. These summary statistics
are generated with 200,000 sample paths, of which around 25% have a carbon tax implemented in 2025,
46% in 2050, 69% in 2075, and 79% in 2100. Unconditional moments are reported in Table D.2.
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Carbon Tax Paths Starting from BAU Although the simulations start in the BAU state,

the number of paths with carbon taxes resulting from internalizing global warming external-

ities or imposing a temperature cap increases rapidly over time, see Panel a) of Figure 3. We

first consider the level of the carbon tax in different scenarios and over time. For this pur-

pose, we compute means, medians, standard deviations, skewness, as well as the 5% and 95%

quantiles of the optimal carbon tax in the years 2025, 2050, 2075, and 2100, conditional on

the respective political state and climate tipping state. Figure 5 illustrates the simulation of

the carbon taxes over time. Panel a) shows unconditional means and quantiles, and Panel b)

shows means and quantiles conditional on being implemented and the political state is either

PIGOU or CAP. In about 8% of paths, the carbon tax is implemented in the year 2021 and then

starts at an average of 308 $/tC.

Table 3 provides summary statistics for the optimal carbon taxes conditional on being imple-

mented. At first glance it might be surprising that the conditional distributions of the imple-

mented carbon taxes are left-skewed in 2025 and become right-skewed in later years. This

negative skew in 2025 can be explained by a negatively skewed distribution of the aggregate

capital stock, which largely stems from rare economic disasters. Since the optimal carbon tax

is proportional to the capital stock (see equation (3.1)), this left-skewed distribution carries

over to the distribution of the optimal carbon tax. As time goes by, climate risks such as tip-

ping points or climate disasters, as well as political shocks, increase in intensity. Thus, the

carbon price will be skewed to the right by these risks, gradually transforming the left-skewed

distribution into a right-skewed distribution (see Appendix D.1).

To analyze whether and how different political, technological, and tipping states affect the

optimal carbon tax, we perform several Welch’s t-tests.36 We find three main results which are

statistically significant at the 1% level. First, optimal carbon taxes are consistently higher in

the climate tipping state. This reflects that climate tipping leads to more pronounced economic

damages (Panels d) – f) of Table 3). Second average carbon taxes are slightly lower after a

technological breakthrough. This is because negative emissions help reduce temperatures and

the tax no longer has to do the job alone.37 Third, carbon taxes are consistently higher in the

36A Welch’s t-test is variant of a two-sample t-test which is used to test the null hypothesis that two populations
have equal means. This test is more reliable than the classical Student’s t-test if both samples have unequal
variances and possibly unequal sample sizes.

37This finding is statistically significant for all years until 2100, but the difference is not always economically
significant. E.g., in the year 2025 when this technology is too expensive to play a big role, the average carbon tax
before the technological breakthrough is 333 $/tC and 331 $/tC after the technological breakthrough.
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Figure 6: Asset Pricing Moments (starting from BAU with transition risks). This figure depicts
the simulation of several asset pricing moments for benchmark simulation until the year 2100. Mean
paths are depicted by solid lines ( ) and dashed lines ( ) show 5% and 95% quantiles.

CAP state than in the PIGOU state although the differences are not very pronounced. It can

be explained by the fact that carbon taxes in the PIGOU state grow roughly in line with the

growth rate of the economy while carbon taxes in the CAP state follow an average of such a

Pigouvian path and a Hotelling path, where the carbon price in the latter path grows at a

higher rate equal to the risk-adjusted interest rate (e.g., Olijslagers et al. 2023). This implies

that the CAP state tilts the carbon path away from the present to the future relative to the

carbon path in the PIGOU state.
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5.3 Asset Pricing with Transition Risks

We now turn to the asset pricing implications of our model. Figure 6 illustrates the mean path

as well as 5% and 95% quantiles of the risk-free rate, the green and brown risk premium, and

the carbon premium until the year 2100. It is obvious from equation (3.3) that sudden shocks to

the political landscape, the climate system, and the technological state have a crucial influence

on the risk-free rate. The same holds for price-dividend ratios and risk premiums of the risky

assets. Moreover, the asset pricing moments depend in a non-linear manner on temperature,

especially as the impact of a policy transition to CAP becomes potentially devastating when

the 2˝C cap is exceeded. This is reflected in the large extent of variation of the key variables

shown in Figure 6. Since the effects of temperature and the share of brown capital on those

asset pricing moments have extensively been discussed in Hambel et al. (2024), we focus on

the novel implications of transition risk.

Risk-free Asset Panel a) depicts the evolution of the equilibrium risk-free rate. The aver-

age interest rate ( ) starts at 0.8% and is slowly decreasing over time in response to growing

climate-related risks. The 5% quantile of the interest rate reflects extreme transition risks and

starts to fall rapidly around the year 2045. This happens especially in paths with temperatures

exceeding the two-degrees target while being in the BAU and PIGOU state. Under these cir-

cumstances a policy transition to the CAP state would massively affect the productivity in the

brown sector when the carbon budget kicks in. This risk is priced in by financial markets and

the corresponding precautionary savings reduce the risk-free interest rate considerably up to

-2.5% in 2055. When the transition continues and the brown capital stock becomes smaller,

the impact of such a policy shock will diminish, which is why the demand for precautionary

savings will fall again and the 5% quantile eventually returns to 0% in 2100. If society has

already entered the CAP state, the precautionary savings term related to policy transition be-

comes positive. This is because a backwards transition to the PIGOU state would allow society

to operate the brown sector again with fossil fuel and thus to increase its productivity. Since

climate policy in CAP goes beyond what is optimal in the Pigouvian sense, such a backwards

transition is not considered a risk but a chance. Hence, this term increases the risk-free rate.

This is is reflected in the 95% quantile, which reaches up to 1.5% in 2060. This effect becomes

less important over time as the share of brown capital declines.
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Green and Brown Assets By contrast to the earlier work of Hambel et al. (2024), which

ignores climate transition risk, our model consistently generates a positive carbon premium

even in the PIGOU state and the CAP state as can be seen in Panel b) of Figure 6.38 This

carbon premium is initially small and not economically significant (about 0.1%), hence in line

with the empirical findings of Aswani et al. (2024) and Zhang (2024).

Still, our model offers a mechanism to explain sizable carbon premiums when political transi-

tion risks prevail. The effect of transition risk is particularly strong if temperatures are close to

or exceed the 2˝C cap and society is in the PIGOU state. The 95% quantiles in Panels c) and d)

indicate that then the risk premiums for both assets go up considerably. In line with the em-

pirical findings of Hsu et al. (2023) and Bolton and Kacperczyk (2021, 2023), a sizable carbon

premium emerges that reflects transition risks, especially political risk. To test this hypoth-

esis, we have also simulated the model in a pure PIGOU scenario with no policy transitions

to the BAU or CAP state and obtain a slightly negative carbon premium (see Appendix D.2).

Furthermore, the effect on the brown risk premium is much more pronounced and leads to a

sizable carbon premium when transition risks become more pronounced (see Panel b)).

Panels e) and f) show that the green and brown price-dividend ratios tend to decline over time.

The green asset’s price-dividend ratio is initially relatively high reflecting the scarcity of this

asset. A transition to the PIGOU or CAP state boosts the demand for the green asset and thus

sizably increases its price-dividend ratio as can be seen from the 95% quantile. The brown

asset becomes worthless when the transition has come to an end and the brown capital stock

has run down completely.

6 Transition Risk and Stranded Assets

We now investigate the interplay between climate transition risk and stranded assets. For this

purpose, we adopt an alternative calibration, in which the brown sector only uses fossil fuel

energy and the green sector uses both energy forms but with high weight on renewable energy

(see Appendix C.3 for details).39 We still reproduce the emission and temperature paths of

the pure BAU simulation of Section 5.1 but things become different once the political Markov

38Although Hambel et al. (2024) find a small positive carbon premium in their pure BAU scenario, this premium
becomes negative if policy makers implement the first-best optimal Pigouvian carbon tax.

39Appendix C.3 provides two more alternative calibrations but the main qualitative conclusions are unaltered.
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Figure 7: Transition of the Real Economy (Stranded Assets Scenario). Mean paths are depicted
by solid lines ( ) and dashed lines ( ) show 5% and 95% quantiles. The dotted line ( ) in Panel
a) shows the share of fossil fuel in the global energy mix.

chain is switched on. To ensure a consistent comparison with the benchmark results of Section

5, we keep the calibration of the Markov chains unchanged.40

Energy Transition and Carbon Taxes In this alternative calibration it is no longer pos-

sible to replace fossil fuels with renewable energy in the brown sector. Thus, the transition to

a green economy must necessarily take place through the development of the green sector. If

this does not happen quickly enough before society jumps to the state with the most ambitious

climate policies (the CAP state), the brown asset may become stranded. This hazard and the

costs of stranding are priced in by policy makers, who implement higher carbon taxes com-

pared to our benchmark calibration (in both the PIGOU state and the CAP state). Conditional

on being implemented, the average carbon tax in the year 2021 is 366 $/tC, which is about

19% higher than the 308 $/tC in our benchmark simulation. This markup is sizable and solely

driven by the transition risk of policy-related stranding of financial assets. Consequently, the

40Results for a modified calibration that matches the temperature ranges in Moore et al. (2022) again are
available upon request.
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Figure 8: Risk of Stranded Assets. Panel a) shows the share of sample paths with stranded assets
in simulations with our alternative calibration. Panel b) depicts the share of stranded capital by calcu-
lating the sample mean of 1tTě2,X p“3uS over all paths. Panel c) depicts the share of stranded capital
conditional on those paths in which stranded asset occur by calculating the sample mean and quantiles
of 1tTě2,X p“3uS over all paths in which stranded assets occur.

transition to a low-carbon economy takes place at a much faster pace as policy makers aim to

avoid the economic costs of stranded assets.

Figure 7 illustrates the transition towards a low-carbon economy until the year 2100. Panels a)

and b) show that the hazard of stranded assets accelerates the green transition a lot relative to

our benchmark scenario. Panel c) shows that mean temperature reaches its maximum around

2065, about 20 years earlier than in our benchmark simulation. The acceleration of the green

transition is also reflected in Figure D.5 in Appendix D.3, which shows that the number of

paths keeping global mean temperature below the 2˝C cap in the year 2100 is 75% and thus

much higher than the 45% in our benchmark (see Panel d). This stems from the much more

stringent climate policies in paths that entered the PIGOU or CAP state compared to our

benchmark scenario even though slightly less paths than in our benchmark scenario have left

the BAU state in the year 2100 (see Panel a)).
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Economic Costs of Stranded Assets Panel a) of Figure 8 indicates that the share of sam-

ple paths with stranded assets increases rapidly from 2035 on, and peaks in the year 2080 at

15% of paths. Then this share starts to decline slowly. Notice that in our framework, the risk of

stranded assets can be reverted if either policy makers switch back from the CAP state to less

ambitious or no climate policies or if temperatures fall below 2˝C which case brown produc-

tion technology can be operated again. Negative emission technologies reduce the likelihood

of stranded assets and increase the likelihood that the brown technology may eventually be

operated again.

Panel b) of Figure 8 depicts the economic costs of stranded assets expressed as the average

share of stranded capital. It peaks around 2055 at 1% of total capital. Conditioning this

figure on those paths in which stranded assets occur, the economic costs are much higher and

amount to up to around 75% of total capital if stranded assets occur before 2030 (see Panel c)).

Although this happens in less than 0.2% of the paths, the probability of stranded assets sharply

increases around the year 2040 while its economic costs decline gradually as the brown capital

stock is cut back. Still, the economic impact of stranding can be devastating and its magnitude

is comparable to the risk of recurring macroeconomic disasters.

Asset Pricing Implications of Stranded Assets A policy transition to enforcing a 2˝C

temperature cap now has much more severe impacts on asset prices than in our benchmark

simulations as illustrated in Figure 9. Demand for precautionary savings and the risk-free rate

are more strongly affected (see Panel a)). The risk premiums for both assets are significantly

boosted by the risk of stranded assets and rises to 15% per year in some extreme cases (see

Panels c) and d)). The effect is more pronounced for the brown asset, because of the enormous

economic impact of stranded assets discussed in the previous paragraph. This effect is much

stronger than in our benchmark simulation without stranded assets. This leads to quite a

high carbon premium of up to 2.5% per year (see Panel b)). Moreover, when the brown asset

becomes stranded, it looses almost its whole value (see Panel f)).41

41Its value remains strictly positive as there is always a strictly positive probability that this policy transition
will be reversed eventually or temperature falls again below 2˝C because of use of the negative emission technol-
ogy. Our framework does generate a brown asset price of zero if we model CAP as an absorbing state, there is no
negative emissions technology, and the temperature evolution is deterministic.

35



2020 2040 2060 2080 2100
-2

-1

0

1

2 a) Risk-free Rate [%/year]

mean path
5% and 95% quantile

2020 2040 2060 2080 2100
-1

0

1

2

3 b) Carbon Premium [%/year]

2020 2040 2060 2080 2100
6

8

10

12

14

d) Brown Risk Premium [%/year]

2020 2040 2060 2080 2100
6

8

10

12

14

c) Green Risk Premium [%/year]

2020 2040 2060 2080 2100
0

10

20

30
e) Green Price-dividend Ratio

2020 2040 2060 2080 2100
0

10

20

30
f) Brown Price-dividend Ratio

Figure 9: Asset Pricing Moments (Stranded Assets). This figure depicts the simulation of several
asset pricing moments for simulations based on our alternative calibration until the year 2100. Mean
paths are depicted by solid lines ( ) and dashed lines ( ) show 5% and 95% quantiles.

7 Concluding Remarks

Our aim has been to better understand how transition risks, namely uncertainty about future

policy regimes and breakthroughs in negative emissions technologies, and physical risks, i.e.,

temperature-related risks of recurring climate disasters and climate tipping points, affect car-

bon pricing, asset returns, carbon premiums, and the risk of stranded assets. For this purpose,

we have formulated and calibrated a DSGE model of the economy and the climate with a wide

range of uncertainties affecting the economy, the climate, and global warming damages. We

have distinguished three different political states: (i) business as usual, (ii) policy makers set

the carbon tax to the Pigouvian tax (or the social cost of carbon), and (iii) policy makers maxi-
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mize social welfare subject to a temperature gap of 2˝C. Under (ii) and (iii) policy makers take

account of the risks of future policy, technological, and climate tipping as well as the risk of

regular macroeconomic disasters and temperature-related risk of climate disasters.

If policy makers do not take account of global warming externalities and negative emissions

technology is excluded, the green transition takes place at a slow pace. In this business-as-

usual scenario, emissions are high and global mean temperatures reach 4.2˝C by the end of the

century. Climate tipping points occurs in almost 90% of paths. This fuels global warming and

leads to additional economic damages. Financial markets price in the adverse effects of global

warming on output, the frequency of climate-related disasters, and the probability of climate

tipping. This gives rise to a tiny carbon risk premium, since transition risks are absent. The

risk-free rate falls due to precautionary saving. Global output is quite volatile due to growing

physical (i.e., climate) risks.

However, if political and technological tipping are allowed for, carbon taxes are implemented

by 2060 in about half of simulated pathways. Emissions and temperature are lower than in

the absence of transition risks, which delays activation of climate tipping points. A little less

than a third of paths lead to temperatures of less than 1.8˝C by the end of this century, about

half of paths lead to temperatures between 1.8˝C and 2.5˝C, and remaining paths lead to

temperatures of more than 2.5˝C. This is a lot better than in the scenario without transition

risks. But the greening of the economy is plagued by substantial political uncertainty and

thus temperatures are still a lot higher than if policy makers did not face such risks and could

impose the first-best optimal climate policies.

The risk-free rate slowly decreases over time in response to growing climate-related risks. If

the temperature cap kicks in, markets respond with precautionary savings and rapid falls

in the risk-free interest rate. As the green transition continues and the brown capital stock

falls, precautionary savings will fall again. We consistently find a positive carbon premium

even when policy makers set carbon taxes or enforce a cap. This carbon premium reflects

transition risks, especially political risk, and is particularly large if temperatures are close

to or exceed the 2˝C cap. In contrast, if policy makers ignore political transition risk and

implement first-best carbon taxes, there is a slightly negative carbon premium. The green

asset’s price-dividend ratio is initially relatively high reflecting the scarcity of this asset. The

brown asset becomes worthless when the transition has come to an end and the brown capital

stock has run down completely.
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To highlight the risk of stranded assets, we have also considered an alternative calibration in

which the brown sector only uses fossil fuel energy and the green sector uses both energies.

If it takes too long before society jumps into climate action, the brown asset may now become

stranded. Policy makers want to avoid this by implementing higher carbon taxes and thus the

green transition occurs more quickly. Policy makers now find themselves more often in a state

where they take ambitious climate action. The risk of stranded assets can be reverted if policy

makers switch back to less ambitious or no climate polices or if temperature falls below its cap

in which case brown capital comes into operation again. Also, negative emission technologies

curb the risk of stranded assets and make it more likely that brown technology may some time

be operated again. Up to three quarters of total capital can become stranded before 2030 in

all paths where stranded assets occur. The economic impact of stranding is comparable to that

of the risk of macroeconomic disasters. The financial impacts are also more pronounced. For

example, the risk premium on both green and brown assets and the carbon premium rise more

sharply due to the risk of stranded assets. The carbon premium can be as much as 2.5% per

year. Once the brown assets strand they loose almost their whole value, but not all as there is

always a chance that brown capital comes into operation again.

Summing up, we have provided a mechanism for the carbon premium and stranded assets and

have shown how these and carbon prices are qualitatively affected by political and technolog-

ical tipping (transition risks) and by climate tipping and the risk of climate-related disasters

such as extreme weather events (physical risks). We believe it is important to extend frame-

works like the one we proposed to allow for credit market constraints, monetary policy, and

systemic financial risk and to study empirically the mechanisms underlying carbon premiums

and stranded assets, but leave these for further research.
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A Solution Approach

A.1 Hamilton-Jacobi-Bellman Equation

Applying the Bellman principle in continuous time, the value function J “ Jpt,K1,K2,T,Xq

solves a non-linear partial differential equation, which is typically refered to as Hamilton-

Jacobi-Bellman equation (e.g., Duffie and Epstein 1992b). This equation is given by

0 “ max
D,Fn,Gn,In,R

"

Jt `δθJ
´

`
ř

n“1,2rYn ´ In ´ bgGn ´ b f Fn ´ςnbdpS,X,D,Kqs
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,

subject to the constraints D,Fn,Gn, In,R ě 0. Subscripts of J denote partial derivatives, e.g.,

JK1 “ BJ
BK1

.

A.2 Optimal Carbon Tax and Negative Emission Technology

The first-order condition for optimal fossil fuel use is

fCpC, Jq

´

BYn

BFn
´ b f

¯

“ ´JTϑpXqνt.

Setting the marginal product of fossil fuel equal its marginal cost b f plus the external costs of

emitting greenhouse gases into the atmosphere,

BYn

BFn
“ b f `τ f .

The optimal Pigouvian social cost for using one unit of fossil fuel is thus

τ f “ ´
ϑpXqνtJTC1{ψ

δrp1´γqJs1´1{θ
.
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Taking the different units between fossil fuel and carbon emissions into account, the social cost

of burning one ton of carbon (the SCC) or optimal carbon tax is

τ“ ´
ϑpXqJTC1{ψ

δrp1´γqJs1´1{θ
. (A.2)

Since ς1 `ς2 “ 1, the first-order conditions for optimal carbon removal give

fCpC, Jq
BbdpS,X,D,Kq

BD
“ ´JTϑpXq.

A.3 Share of Brown Capital

To solve the Hamilton-Jacobi-Bellman equation (A.1), we first transform it by expressing the

decision variables in relative terms and reducing the number of state variables by one. Let

gn “ Gn{Kn, fn “ Fn{Kn, in “ In{Kn, r “ R{K1 denote the relative control variables. Ex-

ploiting the homogeneity property of bd, we use the notation b̃dpS,X,Dq “ bdpS,X,D,Kq{K .

We express the value function in terms of total capital K “ K1 ` K2 and share of brown cap-

ital S “ K2{pK1 ` K2q (instead of K1 and K2). Besides, we set c “ C{K . Using the notation

S1 “ 1´ S, S2 “ S, the production functions can then be expressed as

Yn “ AnSnK
`

κ1,n gρn
n `κ2,n f ρn

n
˘

ηn
ρnΛnpTq.

The amounts of consumption goods produced by each sector are

Cn “ SnK
”

An
`

κ1,n gρn
n `κ2,n f ρn

n
˘

ηn
ρnΛnpT,Xq´ in ´ bgpSqgn ´ b f pSq fn ´

ςnpSq

Sn
b̃dpS,X,Dq

ı

.

Therefore,

c “ A1p1´ Sq
`

κ1,1 gρ1
1 `κ2,1 f ρ1

1

˘

η1
ρ1Λ1pT,Xq` A2S

`

κ1,2 gρ2
2 `κ2,2 f ρ2

2

˘

η2
ρ2Λ2pT,Xq´ i1p1´ Sq´ i2S

´ bgpSqrg1p1´ Sq` g2Ss´ b f pSqr f1p1´ Sq` f2Ss´ b̃dpS,X,Dq.

The dynamics of the state variables can be written as

dK1 “ K1´

”´

i1 ´
1
2
ϕ1i2

1 ` r ´
1
2
κr2

´δk
1

¯

dt `σ1dW1 ´
ÿ

i“c,e

ℓidNi

ı

,
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dK2 “ K2´

”´

i2 ´
1
2
ϕ2i2

2 ´ r
1´ S

S
´δk

2

¯

dt `σ2

´

ρ12dW1 `

b

1´ρ2
12dW2

¯

´
ÿ

i“c,e

ℓidNi

ı

,

dT “ ϑ̂pt,Xqr f1p1´ Sq` f2Ssdt ´ϑpXqD dt `σTdW3 `κT´dX c,

where ϑ̂pt,Xq “ ϑpXqK0e
şt
0 gνpsqds. To shorten the notation, we write W “ pW1,W2,W3qJ and de-

note the drift of the capital stocks and temperature by µK i and µT , respectively. The dynamics

of K and S can be calculated using Ito’s lemma:

dS “ Sp1´ Sq

”

µSpi1, i2, r,Sqdt `pσ2ρ12 ´σ1qdW1 `σ2

b

1´ρ2
12dW2

ı

,

dK “ K´

”

µKpi1, i2, r,Sqdt `rp1´ Sqσ1 ` Sσ2ρ12sdW1 ` Sσ2

b

1´ρ2
12dW2 ´

ÿ

i“c,e

ℓidNi

ı

,

where the drift rates are given by

µSpi1, i2, r,Sq “µK1 ´µK2 ` Spσ1σ2ρ12 ´σ2
2q`p1´ Sqpσ2

1 ´σ1σ2ρ12q,

µKpi1, i2, r,Sq “ p1´ SqµK1 ` SµK2 .

A.4 Separation and Reduced-Form Value Function

We solve a modified HJB equation with finite differences in terms of only three (S,T,X) instead

of four state variables (K1,K2,T,X). For this to be possible, we must make the mild model

assumption that the transition intensities λℓpS, i, jq depend on S and T but not explicitly on

K1 and K2. The following proposition summarizes our findings for the PIGOU state. The

situation for the CAP state is discussed in Corollary A.3.

Proposition A.1 (Value Function and Optimal Controls in the PIGOU state). Let ϑ̂pt,Xq “

ϑpXqK0e
şt
0 gνpsqds. Suppose that there is no temperature cap in the current state. The value

function (2.6) has the form

Jpt,K1,K2,T,Xq “
1

1´γ
pK1 ` K2q

1´γV
`

t,T,SpK1,K2q,X
˘

. (A.3)
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where V satisfies a certain HJB equation which is given in (A.12) below. Optimal consumption

is given by

c “
ÿ

n“1,2

Sn

”

An
`

κ1,n gρn
n `κ2,n f ρn

n
˘

ηn
ρnΛnpT,Xq´ in ´ bgpSqgn ´ b f pSq fn ´

ςn

Sn
b̃dpS,X,Dq

ı

.

(A.4)

Optimal energy use is given by

g1 “

´ bgpSq

η1A1
`

κ1,1 `κ2,1zρ1
˘

η1
ρ1

´1
Λ1pT,Xqκ1,1

¯
1

η1´1
, f1 “ g1z1, (A.5)

g2 “

´ bgpSq

η2A2
`

κ1,2 `κ2,2zρ2
˘

η2
ρ2

´1
Λ2pT,Xqκ1,2

¯
1

η2´1
f2 “ g2z2, (A.6)

where

z1 “

´ κ1,1

κ2,1bgpSq

¯
1

ρ1´1
”

b f pSq´
VT ϑ̂pt,Xqp1´ Sq

“

p1´γqV ´VSS
‰

r1´ϕ1i1s

ı
1

ρ1´1
,

z2 “

´ κ1,2

κ2,2bgpSq

¯
1

ρ2´1
”

b f pSq´
VT ϑ̂pt,XqS

“

p1´γqV ´VSS
‰

r1´ϕ1i1s

ı
1

ρ2´1

The optimal reallocation strategy is

r “
1
κ

´ VS

VSS `pγ´1qV

¯

(A.7)

and optimal investment and carbon removal solves the nonlinear system

δp1´γqV 1´1{θc´1{ψ
“
“

p1´γqV ´VSS
‰

r1´ϕ1i1s, (A.8)

δp1´γqV 1´1{θc´1{ψ
“
“

p1´γqV `VSp1´ Sq
‰

r1´ϕ2i2s, (A.9)

δp1´γqV 1´1{θc´1{ψ
“ ´VTϑpXq

´

Bb̃dpS,X,Dq

BD

¯´1
, (A.10)

The optimal carbon tax is

τ“
ϑpXqc1{ψ

δpγ´1q

VT

V 1´1{θ
K . (A.11)
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Proof. Let in “ In{Kn, fn “ Fn{Kn, gn “ Gn{Kn, r “ R{K1 denote the control variables in

relative terms. Substituting these relative controls into (A.1) leads to the HJB equation:

0 “ sup
D,in, fn,gn,r

!

Jt `
δ

1´1{ψ
rp1´γqJs

1´1{θ
´

ÿ

n“1,2

rYn ´ In ´ bgGn ´ b f Fn ´ςnbdpS,X,D,Kqs

¯1´1{ψ

´δθJ ` JK1 K1
`

i1 ´
1
2
ϕ1i2

1 ` r ´
1
2
κr2

´δk
1

˘

` JK2 K2
`

i2 ´
1
2
ϕ2i2

2 ´ r
K1

K2
´δk

2

˘

`
1
2

JK1K1 K2
1σ

2
1 `

1
2

JK2K2 K2
2σ

2
2 ` JK1K2 K1K2σ1σ2ρ12 ` JTrϑ̂p f1S1 ` f2S2q´ϑDs` JTT

1
2
σ2

T

`
ÿ

i“c,e

λipTqErJpK1Zi,K2Zi,T,Xq´ Js`
ÿ

x‰X

λxpS,X, xq
“

JpK1,K2,T, xq´ J
‰

)

We conjecture that the value function has the form

Jpt,K1,K2,T,Xq “
1

1´γ
pK1 ` K2q

1´γV
`

t,T,SpK1,K2q,X
˘

.

The partial derivatives of S are SK1 “ ´ S
K , SK2 “ 1´S

K . This specification implies42

V pt,T,S,Xq ą 0, VTpt,T,S,Xq ą 0.

The relevant partial derivatives of the value function J are

JK1 “ K´γV `
1

1´γ
K1´γVS

´S
K

,

JK1K1 “ ´γK´γ´1V `2K´γVS
´S
K

`
1

1´γ
K1´γ

”

VSS
S2

K2 `2VS
S

K2

ı

,

JK2 “ K´γV `
1

1´γ
K1´γVS

1´ S
K

,

JK2K2 “ ´γK´γ´1V `2K´γVS
1´ S

K
`

1
1´γ

K1´γ
”

VSS
p1´ Sq2

K2 ´2VS
1´ S
K2

ı

,

JK1K2 “ ´γK´1´γV ` K´γVS
1´2S

K
`

1
1´γ

K1´γ
”

VSS
´p1´ SqS

K2 `VS
2S ´1

K2

ı

,

JT “
1

1´γ
K1´γVT .

42The sign of VSpt,T,S,Xq is ambiguous because S indicates how CO2 intensive the economy is but also how
much the economy is diversified, see Hambel et al. (2024) for an extensive discussion about the interaction of
abatement and diversification motives.
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The aggregator is given by f pC, Jq “ K1´γ
“

δθV 1´1{θc1´1{ψ´δθV
‰

. Substituting the conjecture

and its partial derivatives into the HJB equation leads to the following reduced-form HJB

equation

0 “ sup
D, fn,,gn,in,r

!

Vt ` M0 ` M1V ` M2VS ` M3VSS ` M4VT ` M5VTT

)

(A.12)

We introduce the three-dimensional volatility vectors

σkpSq “
`

p1´ Sqσ1 ` Sσ2ρ12, Sσ2

b

1´ρ2
12, 0

˘J, (A.13)

σs “
`

σ2ρ12 ´σ1, σ2

b

1´ρ2
12, 0

˘J. (A.14)

The coefficients Mℓ (ℓ“ 1, . . . ,5) are given by

M0 “ δθV 1´1{θc1´1{ψ
`

ÿ

x‰X
λxpS,X, xqV pt,T,S, xq

M1 “ p1´γq

”

p1´ Sqµ1 ` Sµ2
loooooooomoooooooon

“µk

´
1
2
γrp1´ Sq

2σ2
1 ` S2σ2

2 `2Sp1´ Sqσ1σ2ρ12
loooooooooooooooooooooooomoooooooooooooooooooooooon

“}σk}2

s

ı

`
ÿ

i“c,e

λipTqErp1´ℓiq
1´γ

´1s´
ÿ

x‰ X
λxpS,X, xq´δθ

M2 “ Sp1´ Sq

´

µ2 ´µ1 ´γ
“

Sσ2
2 ´p1´ Sqσ2

1 `p1´2Sqσ1σ2ρ12
loooooooooooooooooooooomoooooooooooooooooooooon

“σJ
k σs

‰

¯

M3 “
1
2

p1´ Sq
2S2“σ2

1 `σ2
2 ´2σ1σ2ρ12

looooooooooomooooooooooon

“}σs}2

‰

M4 “ ϑ̂pt,Xqr f1p1´ Sq` f2Ss´ϑpXqD

M5 “
1
2
σ2

T

where c is given in (A.4) and ϑ̂pt,Xq “ ϑpXqK0e
şt
0 gνpsqds. Calculating the first-order conditions

leads to the system of equations (A.5) – (A.9), which determine the optimal controls. The

optimal carbon price follows from substituting the (A.3) into (A.2).

We emphasize that the proposition is also valid in the BAU state. Policy makers ignore the

negative externalities from emitting CO2, so behave as if ΛnpT,Xq “ 0 and λcpTq “ 0. This

implies in particular VT “ 0, D “ 0, and τ“ 0.
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Corollary A.2 (Tobin’s Q’s). Under the conditions of Proposition A.1, the Tobin’s Q’s of the

green and brown asset, respectively, are given by

q1 “
p1´γqV ´VSS

δp1´γqV 1´1{θc´1{ψ
, q2 “

p1´γqV `VSp1´ Sq

δp1´γqV 1´1{θc´1{ψ
.

Proof. This follows immediately from (A.8) and (A.9).

Now, we consider the case where a temperature cap is implemented in some state X, i.e.,

carbon emissions are only allowed as long as Tt ď Tcap. If the carbon budget has been maxed

out, i.e., if temperature exceeds Tcap, society is not allowed anymore to release CO2 into the

atmosphere.

Corollary A.3 (Optimal Controls in the CAP state). Suppose that in state X, carbon emissions

are prohibited if temperature exceeds its limit Tcap.

(i) If temperature is below T ď Tcap, the indirect utility function and the optimal controls are

as stated in Proposition A.1.

(ii) If temperature exceeds Tcap, the separation (A.3) still holds true, but the agent is not

allowed to release CO2 into the atmosphere anymore, i.e., fn “ 0. Then, the optimal energy

composites are

en “ gnκ
1
ρn
1,n “

$

’

&

’

%

”

bgpSq

Anηnκ
ηn{ρn
1,n ΛnpTq

ı
1

ηn´1
κ

1
ρn
1,n, if ρn ą 0

0, if ρn ď 0
(A.15)

Optimal consumption is

c “
ÿ

n“1,2

´

Sn

”

Aneηn
n ΛnpTq´ in ´ bgpSqgn ´

ςn

Sn
b̃dpS,X,Dq

ı¯

. (A.16)

The optimal reallocation strategy is

r “
1
κ

´ VS

VSS `pγ´1qV

¯

(A.17)

and optimal investment and optimal carbon removal solve the nonlinear system

δp1´γqV 1´1{θc´1{ψ
“
“

p1´γqV ´VSS
‰

r1´ϕ1i1s, (A.18)
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δp1´γqV 1´1{θc´1{ψ
“
“

p1´γqV `VSp1´ Sq
‰

r1´ϕ2i2s, (A.19)

δp1´γqV 1´1{θc´1{ψ
“ ´VTϑpXq

´

Bb̃dpS,X,Dq

BD

¯´1
. (A.20)

The optimal tax is as stated in Proposition A.1 and the Tobin’s Q’s are as stated in Corol-

lary A.2.

Proof. Along the lines of the proof of Proposition A.1.

Although the decomposition of the indirect utility function and the optimal controls in (i) are

unaffected when the temperature cap kicks in, the values are different. This is because V has

a different shape in states with and without temperature cap. In the latter scenario, the value

function is much steeper as temperature approaches Tcap.

A.5 Numerical Solution Approach

Basic idea We face a problem with an infinite time horizon. To solve this problem we first

compute the steady state Ṽ pT,S,Xq on a grid pT,S,Xq assuming there is no exogenous time

trend. Thus, we first have to solve a similar PDE as in (A.12) but without the time derivative.

The resulting steady state Ṽ pT,S,Xq is then used as a terminal condition V ptmax,T,S,Xq “

Ṽ pT,S,Xq for the value function in the year 2400 corresponding to tmax “ 380. Starting with

this terminal condition, we proceed backwards through the time grid to analyze the transition

towards the steady state.

Definition of the grid We use a grid-based solution approach to solve the non-linear PDE.

We discretize the pt,T,Sq-space using an equally-spaced lattice. Its grid points are defined by

␣

ptn,Ti,S jq | n “ 0, ¨ ¨ ¨ , Nt, i “ 0, ¨ ¨ ¨ , NT , j “ 0, ¨ ¨ ¨ , NS
(

,

where tn “ n∆t, Ti “ i∆T , and S j “ j∆S for some fixed grid size parameters ∆t, ∆T , and ∆S that

denote the distances between two grid points. The numerical results are based on a choice of

NT “ 50, NS “ 200 and one time step per year. Our results hardly change if we use a finer grid

or more time steps per year. In the sequel, Vn,i, j,k denotes the approximated value function at

the grid point ptn,Ti,S j,X “ kq and πn,i, j,k refers to the corresponding set of optimal controls.

We apply an implicit finite-difference scheme.
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Finite differences approach In this paragraph, we describe the numerical solution ap-

proach in more detail. We adapt the numerical solution approach used by Munk and Sørensen

(2010). The numerical procedure works as follows. At any point in time, we make a conjec-

ture for the optimal strategy π˚
n,i, j,k. A good guess is the value at the previous grid point since

the abatement strategy varies only slightly over a small time interval, i.e., we set πn´1,i, j,k “

π˚
n,i, j,k. Substituting this guess into the HJB equation yields a semi-linear PDE:

0 “ Vt `δθV 1´1{θc1´1{ψ
`

ÿ

x‰X
λxpS,X, xqV pt,T,S, xq` M1V ` M2VT ` M3VTT ` M4VS ` M5VSS

with state-dependent coefficients Mi “ Mipt,T,S,Xq as stated in Appendix A.4. Due to the

implicit approach, we approximate the time derivative by forward finite differences. In the

approximation, we use the so-called ’up-wind‘ scheme that stabilizes the finite differences ap-

proach. Therefore, the relevant finite differences at the grid point pn, i, j,kq are given by

D`
T Vn,i, j,k “

Vn,i`1, j,k ´Vn,i, j,k

∆T
, D´

T Vn,i, j,k “
Vn,i, j,k ´Vn,i´1, j,k

∆T
,

D`

S Vn,i, j,k “
Vn,i, j`1,k ´Vn,i, j,k

∆S
, D´

S Vn,i, j,k “
Vn,i, j,k ´Vn,i, j´1,k

∆S
,

D2
TTVn,i, j,k “

Vn,i`1, j,k ´2Vn,i, j,k `Vn,i´1, j,k

∆2
T

,

D2
SSVn,i, j,k “

Vn,i, j`1,k ´2Vn,i, j,k `Vn,i, j´1,k

∆2
S

,

D`
t Vn,i, j,k “

Vn`1,i, j,k ´Vn,i, j,k

∆t
.

Substituting these expressions into the PDE above yields the following semi-linear equation

for the grid point ptn,Ti,S j,kq:

Vn`1,i, j,k
1
∆t

“ Vn,i, j,k

”

´ M1 `
1
∆t

`abs
´M2

∆T

¯

`abs
´M4

∆S

¯

`2
M3

∆2
T

`2
M5

∆2
S

ı

`Vn,i´1, j,k

”M´
2

∆T
´

M3

∆2
T

ı

`Vn,i`1, j,k

”

´
M`

2

∆T
´

M3

∆2
T

ı

`Vn,i, j´1,k

”M´
4

∆S
´

M5

∆2
S

ı

`Vn,i, j`1,k

”

´
M`

4

∆S
´

M5

∆2
S

ı

`δθV 1´1{θ

n,i, j,k c1´1{ψ

n,i, j,k `
ÿ

k̂‰k

λpS,k, k̂qVn,i, j,k̂.
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Therefore, for a fixed point in time each grid point is determined by a non-linear equation. This

results in a non-linear system of pNS ` 1qpNT ` 1q equations for every state k of the Markov

chain X that can be solved for the vector

Vn,k “ pVn,1,1,k, ¨ ¨ ¨ ,Vn,1,NS ,k,Vn,2,1,k, ¨ ¨ ¨ ,Vn,2,NS ,k, ¨ ¨ ¨ ,Vn,NT ,1,k, ¨ ¨ ¨ ,Vn,NT ,NS ,kq.

Using this solution we update our conjecture for the optimal controls at the current point in the

time dimension. We apply the first-order conditions as stated in Proposition A.1 and determine

the optimal strategies and the optimal carbon tax with the above-mentioned finite-difference

approximations of the corresponding partial derivatives.

After we have solved the model, we simulate all state and decision variables in a Monte-Carlo

simulation. We simulate 200,000 paths and calculate quantiles, means, and other moments

for all relevant variables.

B Asset Pricing

B.1 Dynamics of the Stochastic Discount Factor

Duffie and Epstein (1992a) show that the dynamics of the pricing kernel H are given by

dH
H´

“
d fcpC, Jq

fcpC, Jq
` fJpC, Jqdt.

The relevant partial derivatives of the aggregator are

fcpC, Jq “ δV 1´1{θK´γc´1{ψ, fJpC, Jq “ δpθ´1qc1´1{ψV ´1{θ
´δθ.

To calculate the dynamics of the SDF, we first compute

dK´γ

K´γ
´

“

´

´γµk `
1
2
γpγ`1q}σk}

2
¯

dt ´γσJ
k dW `

ÿ

i“c,e

`

p1´ℓiq
´γ

´1
˘

dNi.
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Secondly, we determine the dynamics of V 1´1{θ. According to Ito’s lemma, V “ V pt,S,T,Xq

satisfies

dV
V´

“µvdt `σJ
v dW ´

ÿ

x‰X
jx
vdNx

where Nx is a point process that indicates a jump to state x, i.e.,

Nx
τx

“

$

&

%

Nx
τx´ `1 : Xτx “ x, Xτx´ ‰ x

Nx
τx´ : else

with

µv “
1

V´

´

Vt `VSSp1´ Sqµs `VTϑνp f1p1´ Sq` f2Sq´VTϑD (B.1)

`
1
2

VSSS2
p1´ Sq

2
}σs}

2
`

1
2

VTTσ
2
T

¯

,

σv “
1

V´

´

VSSp1´ Sqp´σ1 `σ2ρ12q, VSSp1´ Sqσ2

b

1´ρ2
12, VTσT

¯J

, (B.2)

jx
v “ 1´

V pt,T,S, xq

V pt,T,S,Xq
(B.3)

Another application of Ito’s lemma yields

dV 1´1{θ

V 1´1{θ
´

“

”

θ´1
θ

µv ´
θ´1
2θ2 }σv}

2
ı

dt `
θ´1
θ

σJ
v dW `

ÿ

x‰X

`

p1´ jx
vq

1´1{θ
´1

˘

dNx

Therefore, by Ito’s product rule,

dpV 1´1{θK´γq

pV 1´1{θK´γq´

“

´

´γµk `
1
2
γpγ`1q}σk}

2
¯

dt `
θ´1
θ

´

µv ´γxσk,σsy
VS

V
Sp1´ Sq

¯

dt

´
θ´1
2θ2 }σs}

2 V 2
S

V 2 S2
p1´ Sq

2dt `

´

θ´1
θ

σv ´γσk

¯J

dW `
ÿ

i“c,e

`

p1´ℓiq
´γ

´1
˘

dNi (B.4)

`
ÿ

x‰X

`

p1´ jx
vq

1´1{θ
´1

˘

dNx

Notice that according to the simplified HJB equation (A.12),

µv ´γxσk,σsy
VS

V
Sp1´ Sq “ pγ´1q

`

µk ´
1
2
γ}σk}

2˘
`δθ´δθV ´1{θc1´1{ψ
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´
ÿ

i“c,e

λiErp1´ℓiq
1´γ

´1s`
ÿ

x‰X
λx jx

v

where we use the short-hand notation λx “λxpS,X, xq. Substituting this term into (B.4) yields

dpV 1´1{θK´γq

pV 1´1{θK´γq´

“

´

´γµk `
1
2
γpγ`1q}σk}

2
¯

dt ´
θ´1
2θ2 }σs}

2 V 2
S

V 2 S2
p1´ Sq

2dt

`

´

θ´1
θ

σv ´γσk

¯J

dW

`
θ´1
θ

´

pγ´1q
`

µk ´
1
2
γ}σk}

2˘
`δθ´δθV ´1{θc1´1{ψ

¯

dt `
ÿ

i“c,e

`

p1´ℓiq
´γ

´1
˘

dNi

`
ÿ

x‰X

`

p1´ jx
vq

1´1{θ
´1

˘

dNx
´
θ´1
θ

´

ÿ

i“c,e

λiErp1´ℓiq
1´γ

´1s´
ÿ

x‰X
λx jx

v

¯

dt

Furthermore, the consumption-capital ratio c “ C{K has the following dynamics

dc
c´

“µcdt `σJ
c dW ´

ÿ

x‰X
jx
cdNx

for auxiliary functions µcpt,T,S,Xq and σcpt,T,S,Xq, which can be determined numerically,

and

jx
c “ 1´

cpt,T,S, xq

cpt,T,S,Xq
. (B.5)

In turn,

dc´1{ψ

c´1{ψ
´

“ ´
1
ψ

pµcdt `σJ
c dWq`

1`ψ

ψ2 }σc}
2dt `

ÿ

x‰X

`

p1´ jx
cq

´1{ψ
´1

˘

dNx

Set H “ V 1´1{θK´γ. Then d fcpC, Jq “ δpH´dc´1{ψ`c´1{ψ
´ dH`dxc´1{ψ,Hy`∆H∆c´1{ψq. Con-

sequently, the pricing kernel dynamics are given by

dH´

H´

“ ´r f
t dt `

´

´γσk `
θ´1
θ

σv ´
1
ψ
σc

¯J

dW `
ÿ

i“c,e

`

p1´ℓiq
´γ

´1
˘

dNi ´λiErp1´ℓiq
´γ

´1sdt

(B.6)

`
ÿ

x‰X

”

`

p1´ jx
vq

1´1{θ
p1´ jx

cq
´1{ψ

´1
˘

dNx
´λx

`

p1´ jx
vq

1´1{θ
p1´ jx

cq
´1{ψ

´1
˘

dt
ı

(B.7)
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where the risk-free rate is given by

r f
t “ δ`

1
ψ
µk ´

1
2
γ

´

1`
1
ψ

¯

}σk}
2

´

´1`ψ

ψ2 }σc}
2

´
θ´1
2θ2 }σv}

2
´

1
ψ
σJ

c

´

θ´1
θ

σv ´γσk

¯¯

´
ÿ

i“c,e

λiE
”

p1´ℓiq
´γ

´1`
ψ´1 ´γ

1´γ

`

1´p1´ℓiq
1´γ

˘

ı

´
ÿ

x‰X

”

λx
`

p1´ jx
vq

1´1{θ
p1´ jx

cq
´1{ψ

´1
˘

`
θ´1
θ

λx jx
v

ı

An application of Itô’s lemma gives the drift and volatility vector of optimal consumption as

µCpt,T,Sq “µkpSq`µcpt,T,Sq`xσcpt,T,Sq,σkpSqy, (B.8)

σCpt,T,Sq “σkpSq`σcpt,T,Sq. (B.9)

Substituting (B.8) and (B.9) into the pricing kernel dynamics and some algebra completes the

proof.

B.2 Dividend Dynamics

The amount of consumption goods produced by asset n are

Cn “ Yn ´ In ´ b f Fn ´ bgGn ´ bdpS,X,D,Kq “ χnKn

with χn “
“

An
`

κ1,n gρn
n `κ2,n f ρn

n
˘

ηn
ρnΛnpTq´ in ´ bgpSqgn ´ b f pSq fn ´ b̃dpS,X,Dq

‰

. An applica-

tion of Ito’s lemma shows that χn evolves according to

dχn

χn´

“µχndt `σJ
χn

dW ´
ÿ

x‰X
jx
χn

dNx

for auxiliary functions µχn , σχn , jx
χn

that can be determined numerically along the lines of

(B.1) – (B.3). Notice that χn is unaffected when the economy is hit by an economic Barro-type

disaster shock Nd.

Empirically, dividends are more volatile than consumption (e.g., Bansal and Yaron 2004) and

dividends fall more than consumption when a disaster hits the economy (e.g., Longstaff and

Piazzesi 2004). Following Wachter (2013), among others, we thus model dividends as levered
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consumption, i.e., Dn “ Cφ
n for φě 1.43 An application of Ito’s product rule yields the dividend

dynamics

dDn

Dn´

“µDndt `σJ
Dn

dW `
ÿ

i“c,e

j i
Dn

dN i
`

ÿ

x‰X
jx
Dn

dNx

with

µDn “φpµKn `µχn `σJ
χn
σKnq`

1
2
φpφ´1q}σKn `σχn}

2,

σDn “φpσKn `σχnq,

j i
Dn

“ p1´ℓiq
φ

´1,

jx
Dn

“ p1´ jx
χn

q
φ

´1.

In a next step, we determine the dynamics of discounted dividends, D̂n “ MDn. Another appli-

cation of Itô’s product rule implies

dD̂n

D̂n´

“µD̂n
dt `σJ

D̂n
dW `

ÿ

i“c,e

j i
D̂n

dNi `
ÿ

x‰X
jx
D̂n

dNx

with

µD̂n
“µH `µDn `σJ

MσDn ,

σD̂n
“σM `σDn ,

j i
D̂n

“ p1´ℓiq
φ´γ

´1,

jx
D̂n

“ p1´ jx
χn

q
φ

p1´ jx
vq

1´1{θ
p1´ jx

cq
´1{ψ

´1.

B.3 Price-dividend Ratios of Dividend Claims

Let Πn “
Pn
Dn

denote the price-dividend ration of asset n, and πn “ log
`Pn

Dn

˘

the log price-

dividend ratio. Due to the representation of the dividends, the dynamics of Kn, and the pricing

43A popular alternative to this approach is modelling the consumption-dividend ratio as a stationary but per-
sistent process, as in Longstaff and Piazzesi (2004), among others. In order to focus on the novel implications of
climate transition risk on asset prices, we keep the setting simple although following this approach would also be
feasible in our setting.
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equation, the price is linear in Kn and thus the price-dividend ratio is independent of Kn.

Therefore, it is not driven by the disaster risk process Nd, and the dynamics of the log price-

dividend ratio can be written as

dπn

πn´

“µπndt `σJ
πn

dW ´
ÿ

x‰X
jx
πn

dNx,

where the drift and the volatility vector are given by

µπn “
1
πn

“

πn,t `πn,SSp1´ SqµS `πn,TµT `
1
2
πn,TT}σT}

2
`

1
2
πn,SSS2

p1´ Sq
2
}σS}

2‰

σπn “
1
πn

“

πn,TσT `πn,SSp1´ SqσS
‰

,

jx
πn

“ 1´
πnpt,T,S, xq

πnpt,T,S,Xq
.

In particular, the price-dividend ratio Πn “ eπn satisfies the following dynamics

dΠn

Πn´

“
`

πnµπn `
1
2
π2

n}σπn}
2˘dt `πnσ

J
πn

dW ´
ÿ

x‰X
jx
Πn

dNx,

where

jx
Πn

“ 1´
Πnpt,T,S, xq

Πnpt,T,S,Xq

We rewrite the discounted asset price HPn as P̂npD̂n,πnq “ D̂neπn . An application of Itô’s

lemma implies

dP̂n

P̂n´

“
`

µD̂n
`πnµπn `

1
2
π2

n}σπn}
2

`πnσ
J
πn
σD̂n

˘

dt `pπnσπn `σD̂n
q

JdW

`
ÿ

i“c,e

`

p1´ℓiq
φ´γ

´1
˘

dNi `
ÿ

x‰X

`

p1´ jx
Πn

qp1` jx
D̂n

q´1
˘

dNx.

An application of the Feynman-Kač Theorem yields

L P̂n `e´πn P̂n “ 0, (B.10)
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where L P̂n denotes the infinitesimal generator. The no-arbitrage condition implies

L P̂n

P̂n´

“µD̂n
`πnµπn `

1
2
π2

n}σπn}
2

`πnσ
J
πn
σD̂n

`
ÿ

i“c,e

λipTqE
“

p1´ℓiq
φ´γ

´1
‰

(B.11)

`
ÿ

x‰X
λx
`

p1´ jx
Πn

qp1` jx
D̂n

q´1
˘

.

Substituting (B.11) into (B.10) yields

0 “µD̂n
`πnµπn `

1
2
π2

n}σπn}
2

`πnσ
J
πn
σD̂n

`
ÿ

i“c,e

λipTqE
“

p1´ℓiq
φ´γ

´1
‰

`e´π

`
ÿ

x‰X
λx
`

p1´ jx
Πn

qp1` jx
D̂n

q´1
˘

.

Consequently, we obtain the following partial differential equation for the log price-dividend

ratio πn:

0 “ e´πn `µD̂n
`πn,t `πn,SSp1´ SqµS `πn,TµT `

1
2

pπn,TT `π2
n,Tq}σT}

2

`
1
2

pπn,SS `π2
n,SqS2

p1´ Sq
2
}σS}

2
`
`

πn,TσT `πn,SSp1´ SqσS
˘J
σD̂n

`
ÿ

i“c,e

λipTqE
“

p1´ℓiq
φ´γ

´1
‰

`
ÿ

x‰X
λx
`

p1´ jx
Πn

qp1` jx
D̂n

q´1
˘

.

Notice that this PDE is nonlinear since it involves squared partial derivatives of πn. To simplify

the numerical solution approach, we transform this PDE into a linear, parabolic PDE that can

be solved using finite differences. We substitute Πn “ eπn and end up with

0 “ 1`
ÿ

x‰X
λxΠnpt,T,S, xqp1` jx

D̂n
q`Πn

´

µD̂n
`

ÿ

i“c,e

λipTqE
“

p1´ℓiq
φ´γ

´1
‰

´
ÿ

x‰X
λx

¯

`Πn,t `Πn,SSp1´ SqµS `Πn,TµT `
1
2
Πn,TT}σT}

2
`

1
2
Πn,SSS2

p1´ Sq
2
}σS}

2 (B.12)

`pΠn,TσT `Πn,SSp1´ SqσSq
JσD̂n
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B.4 Risk Premiums

The dynamics of the asset price Pn “ eπnDn follow by Itô’s lemma. We obtain the following

asset price dynamics

dPn

Pn´

“µ
p
ndt `pσπn `σDnq

JdW `
ÿ

i“c,e

`

p1´ℓiq
φ

´1
˘

dNi ´λipTqE
“

p1´ℓiq
φ

´1
‰

dt

`
ÿ

x‰X

”

`

p1´ jx
Πn

qp1` jx
Dn

q´1
˘

dNx
´λx

`

p1´ jx
Πn

qp1` jx
Dn

q´1
˘

ı

,

where the expected stock return and the volatility vector are given by

µ
p
n “µπn `µDn `σJ

Dn
σπn `

1
2

}σπn}
2

`
ÿ

i“c,e

λipTqE
“

p1´ℓiq
φ

´1
‰

`
ÿ

x‰X
λx
`

p1´ jx
Πn

qp1` jx
Dn

q´1
˘

Now, the risk premium of asset n can be computed as the sum of its expected stock return, µPn ,

and its dividend yield, yd
n “ e´πn , minus the risk-free interest rate, r f , i.e.,

rp
n “µ

p
n ` yd

n ´ r f .

C Details on the Calibration

Here we provide further calibration details for all relevant parts of the model. We also present

alternative calibrations used for sensitivity analyses and robustness checks.

C.1 Benchmark Calibration

Economic Growth To jointly calibrate the production and preference parameters, we follow

Hambel et al. (2024) and firstly consider a model with only one capital share in the spirit of

Pindyck and Wang (2013). Their model also abstracts from climate change, but it is nested in

our two-sector model. The model is well-suited to explain historical asset returns, since dirty

capital dominated the world economy in the past, while the influence of climate change on

asset markets was modest. We assume that the single-capital stock evolves according to

dK “

´

I ´
1
2
ϕ

I2

K
´δkK

¯

dt ` KσdW ´ K´ℓedNe.
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Besides, output is produced by capital K and energy E by a Cobb-Douglas production technol-

ogy, Y “ AK1´ηEη “ I ` C ` bE, where b is the price of one unit of the energy composite E. In

the optimum, the model collapses to a simple AK-technology with linear production function

Y “ A˚K where productivity is

A˚
“ A

´ b
ηA

¯

η
η´1

.

This aggregate model closely follows Pindyck and Wang (2013), but involves an energy input

E. We solve this model for a representative investor with Epstein-Zin-preferences and obtain

a set of non-linear equations that pin down the model parameters.

Fixing the leverage parameter at φ “ 2.6 (Wachter 2013) and the elasticity of intertemporal

subsitution at ψ “ 1.5 (Bansal and Yaron 2004), we calibrate the remaining parameters to

match an expected GDP growth rate of µ “ 2.52% in normal times, i.e., in the absence of a

disaster (Wachter 2013), an average consumption rate of C
Y “ 63% of GDP, a risk-free interest

rate of r f “ 0.8%, an equity premium of rp “ 6.6%, and a Tobin’s Q of 1.548 (Pindyck and Wang

2013). Following the calculations in Pindyck and Wang (2013) but taking leverage into account

one obtains a non-linear system that involves five equations and five unknowns A˚,ϕ,δk,δ,γ.

For the risk-free rate and the risk premium, one obtains

r f
“ δ`

µ

ψ
´ 1

2γ

´

1`
1
ψ

¯

σ2
´λe

´

αe

αe ´γ`1
1{ψ´γ

1´γ
´

αe

αe ´γ

¯

, (C.1)

rp
“φγσ2

`λeγ
”

αe

αe ´γ
´

αe

αe ´γ`φ
`

αe

αe `φ
´1

ı

. (C.2)

Given the values of σ,λe, and αe, (C.2) pins down the degree of relative risk aversion γ. Then,

(C.1) can be solved for the time preference rate δ. Then, we determine the productivity by

A˚
“

q
χ

”

δ`

´ 1
ψ

´1
¯´

µ´ 1
2γσ

2
´

λe

1´γ

αe

αe ´γ`1

¯ı

. (C.3)

In equilibrium, the model generates an investment-capital ratio of i “ A˚p1´χ´ηq and Tobin’s

Q is q “ 1
1´ϕi . Hence, the adjustment cost parameter ϕ is given by

ϕ“
1´1{q

i
. (C.4)
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Figure C.1: Calibration of Emission Intensity. Panel (a) shows the simulated data pptq (o) de-
termining the emission intensity and its cubic fit. Panel (b) depicts the median evolution of the BAU
emissions ( ) and compares it to the adjusted RCP8.5 emission data (o). It also shows the 5% and
95% quantiles of BAU emissions ( ).

Finally, the capital depreciation rate δk is given by

δk “ i ´0.5ϕi2
´µ. (C.5)

Emission Intensity Since the emission intensity ν follows equation (2.8), industrial emis-

sions are given by E ind
t “ p f1tp1 ´ Stq ` f2tStqK0e

şt
0 gνpsqds. In BAU, the social planner does

not take account of the negative externalities caused by emissions but reallocates capital from

the brown to the green sector for other reasons such as diversification purposes (e.g., Hambel

et al. (2024) and the references therein). We now solve and simulate the pure BAU scenario

over the next 100 years assuming a reallocation cost parameter of κ “ 2. This parameter

choice yields a BAU simulation of temperature, emissions, and energy that is well in line

with the adjusted RCP8.5 scenario. Given the adjusted RCP8.5 emission data E t and the

simulated share of brown capital St, we approximate pptq “
E t

Er f1tp1´Stq` f2tSts
by a cubic poly-

nomial function of time, pptq “ p0 ` p1t ` p2t2 ` p3t3, with p0 “ 2.08 ¨ 1015, p1 “ 4.22 ¨ 1013,

p2 “ 1.01 ¨ 1012, p3 “ ´9.76 ¨ 109, and R2 ą 99%. The corresponding growth rate gν is then

given by gνptq “ d
dt ln pptq. Figure C.1 depicts the adjusted RCP8.5 emission data and the

model fit. Panel (a) shows the simulated data pptq (o) determining the emission intensity and

its cubic fit. Panel (b) depicts the median evolution of the BAU emissions ( ) and compares it

to the RCP8.5 emission predictions (o). It also shows the corresponding 5% and 95% quantile

of BAU emissions ( ). This calibration implies that the emission intensity νt tends to decline

over time although it is exposed to stochastic shocks.
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Figure C.2: Calibration of the Marginal Cost Function for NET. The figure shows the averaged
data from the two scenarios in Rebonato et al. (2023) (o). Panel (a) shows the resulting marginal costs
function for the year 2050 and Panel (b) for the year 2100, respectively. We fit an exponential function
of the form BbdpS,X t“2,D,Kq

BD “ Kra1pSq`a2pSqa3pSqexppa3pSqDqs to this data as shown by the black line
( ), where a jpSq “ b j maxpζ,Sqc j are truncated power functions of the share of brown capital.

C.2 Negative Emission Technology

For the calibration of the parameters of the marginal cost function for the negative emis-

sion technology BbdpS,X t“2,D,Kq

BD “ Kra1pSq`a2pSqa3pSqexppa3pSqDqs, we first average the data

from the two scenarios described in Rebonato et al. (2023) and shown in their Figure 5. We

neglect the very small share with low but steep marginal costs for removal that is close to

zero. The averaged data—expressed in GtC—is depicted in Figure C.2 for the year 2050

(Panel a) and 2100 (Panel b). Then, we calibrate the truncated power functions of the form

a jpSq “ b j maxpζ,Sqc j , j P t1,2,3u jointly to both curves by assuming that the time dependen-

cies are only driven by variations in S. In this sense, S models technological progress towards

a low-carbon economy. We simulate S and K for the optimal scenario (PIGOU) and calibrate

the power functions a1,a2,a3 such that the expected marginal costs at τ P t31,81u, i.e., in the

years 2050 and 2100, respectively, match the marginal cost curves as closely as possible in

a least-squares sense. The parameters obtained are all strictly positive so that in particular
B2bdpS,X t“2,D,Kq

BDBS ą 0, i.e., the greater the proportion of brown capital, the greater the marginal

removal costs. The fit is visualized by the black line ( ). The exponential marginal cost

function performs very well with an R2 exceeding 99%.
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Benchmark: Substitutes within the brown sector
S0 initial share of brown capital from World Bank data (Footnote 26) 0.876
k0 cost function parameter calibrated in accordance with Swanson’s law 0.5107
κ capital reallocation cost parameter calibrated to modified RCP8.5, see Section 4.2 2
ζn elasticity of energy substitution Golosov et al. (2014) 2
κ2,2 fossil fuel weight in brown sector Golosov et al. (2014) 0.644
κ1,1 renewable energy weight in green sector assumption 1
p0 emission intensity parameter calibrated to modified RCP8.5, see Section 4.2 2.08¨1015

p1 emission intensity parameter calibrated to modified RCP8.5, see Section 4.2 4.22¨1013

p2 emission intensity parameter calibrated to modified RCP8.5, see Section 4.2 1.01¨1012

p3 emission intensity parameter calibrated to modified RCP8.5, see Section 4.2 ´9.76¨109

Alternative I: Brown sector takes fossil fuel only; green sector takes both energy forms
S0 initial share of brown capital from World Bank data (Footnote 26) 0.712
k0 cost function parameter from Swanson’s law (Footnote 24) 0.6586
κ capital reallocation cost parameter from benchmark 2
ζn elasticity of energy substitution from benchmark 2
κ1,1 renewable energy weight in green sector assumption 0.9
κ2,2 fossil fuel weight in brown sector Hambel et al. (2024) 1
p0 emission intensity parameter calibrated to modified RCP8.5, see Section 4.2 2.10¨1015

p1 emission intensity parameter calibrated to modified RCP8.5, see Section 4.2 4.18¨1013

p2 emission intensity parameter calibrated to modified RCP8.5, see Section 4.2 1.15¨1012

p3 emission intensity parameter calibrated to modified RCP8.5, see Section 4.2 ´9.34¨109

Alternative II: Both sectors take only one energy type
S0 initial share of brown capital from World Bank data (Footnote 26) 0.726
k0 cost function parameter from Swanson’s law (Footnote 24) 0.6592
κ capital reallocation cost parameter from benchmark 2
ζn elasticity of energy substitution from benchmark / has no influence 2
κ2,2 fossil fuel weight in brown sector Hambel et al. (2024) 1
κ1,1 renewable energy weight in green sector Hambel et al. (2024) 1
p0 emission intensity parameter calibrated to modified RCP8.5, see Section 4.2 2.09¨1015

p1 emission intensity parameter calibrated to modified RCP8.5, see Section 4.2 4.08¨1013

p2 emission intensity parameter calibrated to modified RCP8.5, see Section 4.2 8.26¨1011

p3 emission intensity parameter calibrated to modified RCP8.5, see Section 4.2 ´9.08¨109

Alternative III: Complements within the brown sector
S0 initial share of brown capital from benchmark 0.876
k0 cost function parameter from benchmark 0.5107
κ capital reallocation cost parameter calibrated to modified RCP8.5, see Section 4.2 10
ζn elasticity of energy substitution Golosov et al. (2014) 0.95
κ2,2 fossil fuel weight in brown sector calibrated to World Bank data (Footnote 26) 0.862
κ1,1 renewable energy weight in green sector assumption 1
p0 emission intensity parameter calibrated to modified RCP8.5, see Section 4.2 2.69¨1015

p1 emission intensity parameter calibrated to modified RCP8.5, see Section 4.2 5.18¨1013

p2 emission intensity parameter calibrated to modified RCP8.5, see Section 4.2 1.17¨1012

p3 emission intensity parameter calibrated to modified RCP8.5, see Section 4.2 ´9.97¨109

Table C.1: Alternative Calibrations. This table summarizes the three alternative calibrations for
stranded assets.
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C.3 Alternative Calibrations for Energy Substitutability

In the benchmark calibration, fossil fuel and renewable energy within the brown sector are

substitutes with a substitution elasticity of ζ2 “ 2 (i.e., ρ2 “ 0.5). This means in particular that

the brown sector can always operate because it is able to shift its energy demand away from

fossil fuel and to renewable energies. Therefore, this calibration cannot generate stranded

assets. We thus offer three alternative calibrations that address this issue.

First, we consider a calibration, where the brown sector takes only fossil fuel as an input

factor, but the green sector can take both energy forms but with limited substituability and

high weight on renewable energy (Alternative I). In addition, we consider a variant in which

both sectors take only one energy sources as an input factor as in Hambel et al. (2024) (Al-

ternative II). In these cases, the elasticity of substitution within the brown sector becomes

irrelevant. Finally, we offer a calibration in which the brown sector takes both energy forms

complementarily (Alternative III). For this we follow Golosov et al. (2014) and choose a elastic-

ity of substitution of ζ2 “ 0.95 (i.e., ρ2 “ ´0.058) within this sector.

Notice that with these alternative calibrations, it is not possible to (fully) replace fossil fuels

with renewables within the brown sector, which is why the transition to a green economy must

necessarily take place through the development of the green sector. If this does not happen

quickly enough and the CO2 budget is exceeded when society jumps to CAP, the brown asset

may be stranded. This hazard is priced in by financial markets through higher risk premi-

ums, especially for the brown asset, and by the social planner, who may implement higher

carbon taxes. We discuss the results for Alternative I in detail in Section 6. Simulations for

Alternatives II and III confirm those findings and are available upon request.

The calibration strategy follows the same steps as for the benchmark calibration. However, a

number of parameters have to be recalibrated in order to match the calibration targets outlined

in the main text, i.e., the 19.77% share of green energy in the energy mix in 2020, the initial

energy price ratio of 1.5, and the emissions in the adjusted RCP8.5 scenario. As we sometimes

have more degrees of freedom in the calibration than calibration targets, we choose the pa-

rameters so that we have to recalibrate as few parameters as possible. Table C.1 summarizes

the changed parameters. All other parameters are as in the benchmark calibration shown in

Table 1. Variants of Figures C.1 and C.2 for these alternative calibrations are available upon

request.
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Figure D.3: Carbon Taxes. The figure shows histograms for the implemented carbon tax, i.e., condi-
tional on being in the PIGOU or CAP state, in the years a) 2025, b) 2050, b) 2075, and d) 2100.

D Additional Simulation Results

D.1 Additional Material for the Benchmark Simulation

This section provides additional material for the benchmark simulation such as additional

tables and figures.

Figure D.3 shows histograms for implemented carbon taxes for the years 2025, 2050, 2075,

and 2100, respectively, conditional on being in the TAX or LIM state. Those histograms are

generated with 200,000 paths, of which around 25% have a tax implemented in 2025, 46%

in 2050, 69% in 2075, and 79% in 2100. Panel a) illustrates the negative skewness of the

implemented carbon tax, as reported in Table 3, in the year 2025. This negative skewness

of the conditional distribution can be explained by a negatively skewed distribution of global

output, which is largely generated by the economic disasters. Since the optimal carbon tax

is proportional to the capital stock, see (3.1), this left-skewed distribution carries over to the

carbon tax. As time progresses and climate risks such as tipping points or climate disasters, as

well as political shocks, increase in intensity, the SCC will be skewed to the right by these risks,
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Unconditional moments

Erτs Medpτq σpτq q5%pτq q95%pτq Skewpτq

2025 85 0 146 0 358 1.19
2050 260 0 311 0 789 0.79
2075 485 521 398 0 1124 0.22
2100 755 756 551 0 1692 0.30

Table D.2: Unconditional Optimal Carbon Tax. The table reports summary statistics of the uncon-
ditional optimal carbon tax for the years 2025, 2050, 2075, and 2100.

gradually transforming the left-skewed distribution into a right-skewed distribution. This can

be seen from Panels b) to d).

Table D.2 complements Table 3 in the main text and reports the unconditional moments of

the implemented carbon tax for the years 2025, 2050, 2075, and 2100. Since the carbon tax is

implemented in only about 25% of the paths in 2025, its unconditional distribution is obviously

right-skewed. Its skewness tends to decline over time as carbon taxes are implemented in more

and more paths.

D.2 PIGOU Scenario without Policy Transition Risks

Figure D.4 provides the results for the first-best optimal outcomes (the pure PIGOU scenario),

which excludes policy transition to the BAU or CAP state (with the political Markov chain

switched off). Compared to the benchmark simulation, the carbon premium is initially small

and negative (´0.08%) due to the absence of political transition risk, and turns positive when

physical risks become sizable. Still the magnitude of the carbon premium is small. Moreover,

the carbon taxes are on average slightly higher in this scenario than in the benchmark scenario

with political transition risk. In 2021, the average carbon tax is 326 $/tC, which is about 6%

higher than the average carbon tax in paths of the benchmark scenario where carbon taxes are

implemented or the temperature cap is enforced (308 $/tC). Since there are many paths where

policy makers have not tipped into climate action yet in the benchmark scenario, the transition

towards a low-carbon economy takes place much faster than in the benchmark.
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Figure D.4: PIGOU Scenario With No Transition Risks (Optimal carbon taxes). Average values
are depicted by solid lines ( ) and 5% and 95% quantiles by dashed lines ( ). The dotted line ( )
in Panel a) depicts the mean path of the share of fossil fuel in the global energy mix. The light (■), dark
gray (■), and black (■) areas in Panel d) depict the proportion of simulations in the pre-tip (X c “ 1),
intermediate (X c “ 2), and post-tip (X c “ 3) climate state, respectively.
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Figure D.5: Markov Chains and Temperature Scenarios (Stranded Assets). In Panel a) the
light area (■) is the proportion of simulations in the BAU state, the dark gray area (■) the proportion
in the PIGOU state, and the black area (■) the proportion in the CAP state. In Panel b) the light
area (■) is the proportion of simulations in the pre-tip state, the dark gray area (■) the proportion
in the intermediate state, and the black area (■) the proportion in the post-tip state. In Panel c) the
light area (■) is the proportion of simulations in the pre-breakthrough state and the black area (■) the
proportion where the negative emission technology has come into force. In Panel d) the light area (■) is
the proportion of simulations with temperature less than 1.8˝C, the gray area (■) the proportion with
temperature between 1.8˝C and 2˝C, the dark gray area (■) the proportion with temperature between
2˝C and 2.5˝C, and the black area (■) the proportion with temperature above 2.5˝C.

D.3 Additional Material for the Risk of Stranded Assets

This section provides additional simulation results for the interplay between climate transition

risk and stranded assets. Figure D.5 is the counterpart of Figure 3 and depicts the evolution

of the three-dimensional Markov chain X. Figure D.6 is the counterpart of Figure 5 and shows

the evolution of the optimal carbon taxes both unconditional and conditional on being imple-

mented.
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Figure D.6: Carbon Tax Simulation (Stranded Assets). The figure depicts the carbon tax for the
benchmark simulation until the year 2100. Mean paths are depicted by solid lines ( ) and dashed
lines ( ) show 5% and 95% quantiles. Panel a) shows unconditional means and quantiles, and Panel
b) shows means and quantiles conditional on being in the PIGOU or CAP state.
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