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Abstract

We represent an autoregressive panel of time series as a sum of (orthogonal) scale-

specific autoregressive panels capturing interactions between time-series components at

different frequencies. This leads to scale-specific autoregressive matrices and inverse co-

variance matrices of the innovations that are assumed to be sparse, and can - but are not

forced to - have different sparsity patterns across scales. The decomposition leads to a

novel representation of the system as a series of (orthogonal) scale-specific networks in

terms of a multilayer directed graph representing predictive Granger relations and a mul-

tilayer undirected graph representing contemporaneous partial correlations at different

frequencies. A method is introduced to estimate the model. Building on these insights,

we apply the methodology to analyze a panel of volatility measures in the financial sec-

tor. We illustrate how the methods may lead to economically meaningful new results on

spillover effects and systemically important institutions at different frequencies.

Keywords: Networks, Multivariate Time Series, Long Run Covariance, Frequency, GLASSO,

LARS, Systemic risk, Volatility Spillover

JEL classification: C01 C32 G1 E32

1 Introduction

The interaction between the volatility of different stocks is a key element in understanding the

propagation of risk in the financial markets. Among various approaches to tackle this topic,

network analysis - concerned with examining the relationships between a group of individual

entities - has emerged as a useful methodological tool for time series analysis. In these networks,
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nodes denote univariate time series components, and edges describe different forms of condi-

tional dependence among components. The interactions in a dynamic system change with the

subset analyzed but may also change across frequencies. While most of the macro and finance

literature has focused on the observational domain, more recent evidence suggests that it is

crucial to understand the interactions between the subcomponents of time series that evolve

within cycles of different lengths, i.e., frequency bands.

The main contribution of this article is to propose a novel network model that captures

interactions in a panel of time series for different frequency bands. Our approach relies on

two strands of literature: one on modeling the linear interactions between multivariate time

series using networks or graphs, see Barigozzi and Brownlees (2019); and the second one on

using orthogonal projections to decompose time series in components with different resolutions,

colloquially named scales. The Extended Wold Decomposition (EWD) proposed by Ortu et al.

(2020) is particularly appealing because it fully restricts interactions between components at

different scales. Consequently, the joint interactions can be decomposed into scale-specific in-

teractions, that are fully separable among scales and lead to multilayer networks or graphs.

This allows us to represent the system as a sum of orthogonal scale-specific sub-systems cap-

turing interactions between time-series components at different frequencies. For identification,

we focus on linear autoregressive panels that are characterized by scale-specific autoregressive

matrices and inverse covariance matrices of the innovations that are assumed to be sparse, and

can - but are not forced to - have different sparsity patterns across scales. The representa-

tion leads to a series of (orthogonal) scale-specific networks in terms of a multilayer directed

graph representing predictive Granger relations and a multilayer undirected graph representing

contemporaneous partial correlations at different frequencies. This representation allows us to

incorporate dependence between components corresponding to long, medium, and short-term

shocks.

A second contribution is the estimation of the networks. We estimate contemporaneous

and Granger causality networks for both the actual financial series and the details obtained

through the EWD decomposition. We use the graphical LASSO (GLASSO) to estimate the

contemporaneous network and the LARS algorithm to estimate the Granger causality network.

We also contribute to the understanding of the risk in the scale domain. We show that the

central nodes of the financial networks are different for short-term, medium-term and long-term

components. The degree distribution is also different for the different frequencies.

Few papers have addressed this. One notable contribution is due to Baruńık and Křehĺık

(2018). The study looks at connectedness along decomposed components obtained through
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spectral representation of variance decomposition. Shocks for high frequency are not persistent,

in contrast to those at lower frequencies that have more durable effects.

Another contribution on this topic is due to Teply and Kvapilikova (2017), who proposed

Wavelet Conditional Value at Risk to determine short-term, medium-term, and long-term fi-

nancial connectedness.

2 Literature

This article analyzes the network characterization of the interactions between multivariate

time series when the scales (or frequencies) are taken into account. To develop our model,

we adopt established techniques from the network/graphs and time series literature. We also

contribute methodologically with an estimation method for the multilevel graphs. We apply the

methodology to analyze a panel of volatility measures in the financial sector and illustrate how

it leads to economically meaningful new results on spillover effects and systemically important

institutions at different frequencies. Our work is related to several strands of literature.

The first strand of literature builds on the Extended Wold Decomposition (EWD) litera-

ture. Cerreia-Vioglio et al. (2023) propose a Hilbert A-module approach for the Multivariate

Wold decompositions that features a notion of orthogonality that permits to easily retrieve

two important orthogonal decompositions for weakly stationary vector processes. One is the

celebrated multivariate classical Wold decomposition (MCWD, henceforth). The other is the

multivariate extended Wold decomposition (MEWD, henceforth), which constitutes the mul-

tivariate version of the extended Wold decomposition of Ortu et al. (2020), and it is used by

Bandi et al. (2019, 2021) in financial economics settings, and extended by Baruńık and Vacha

(2023) for locally stationary processes.

The second strand of literature focuses on network representations of time series. One

of the most known ones is due to Diebold and Yılmaz (2014a) who proposed constructing a

connectedness measure based on the variance decomposition from an estimated VAR model.

In a related contribution, Billio et al. (2012) suggested alternative measures of connectedness

using both principal components and Granger-causality measures. Using data on hedge funds,

banks, brokers and insurance companies they found higher connectedness between them and

that banks are central in the transmission of financial shocks. Our approach is similar in the

sense of contructing measures of ”connectedness” based on various network estimations. There

are also several differences with their work. First, we estimate both a contemporaneous and a

Granger-causality network. Second, we also look at different scales, while Diebold and Yılmaz
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(2014a) only looked at aggregate series.

The third strand of literature contributes to the understanding of systemic risk using net-

works. The recent work by Jackson and Pernoud (2021) reviews the contributions done using

networks on the topic of systemic risk. The analysis discusses two types of systemic risk, one

comes from contagion coming from direct externalities 1. The second type of systemic risk

is based on feedback effects. Our work is based on the first type of systemic risk, based on

contagion effects. In another contribution, Cont et al. (2013) used data on financial institutions

from Brazil to construct a financial contagion index. Their main finding was that systemic risk

comes from several central nodes/institutions from the network.

A pertinent question would be how to differentiate between systemic risk, spillover effects,

and contagion. Since, we work within a network based approach, these notions are all mod-

elled within this framework. Our contribution links these topics. As shown by Jackson and

Pernoud (2021), there are two types of systemic risk within a network, and it is specifically

on the one related to contagion that we focus on. Furthermore, it is through spillovers that

the contagion makes its effects. ? propose a modelling framework for spillover effects with

mixed-frequency variables that allow for differences in sampling frequency between financial

and macroeconomic data. Baruńık and Křehĺık (2018) explores connectedness among financial

variables that arise due to heterogeneous frequency responses to shocks, where the frequency

components are defined as a Fourier transform of MA(∞) filtered series.

The fourth strand of literature: regards volatility modeling. Volatility networks. As in

Diebold and Yılmaz (2014a), we study volatility networks. As outlined by the authors of this

study, volatility connectedness has an intuitive meaning as it can be understood as a sort of

”investor fear”. The second reason one should focus on volatility measures is that it is strongly

related to the crisis.

3 Methodology

3.1 Extended Wold Decomposition

Extended Wold Decomposition (EWD) in Ortu et al. (2020) applies the transform to the infinite

moving-average parameters and innovations of a covariance stationary process. Consequently,

each resulting scale-specific component supports a Wold decomposition at a particular scale.

1This happens when a negative shock on one bank, be it a default or a firesale of assets leads to a negative
impact for other banks
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3.1.1 Univariate case

Let’s consider a zero-mean covariance stationary one-dimensional time series process y =

{yt}t∈Z. Then, it admits the classical Wold-type decomposition (Wold (1938)):

yt =
+∞∑
h=0

αhεt−h

with variance white noise ε = {εt}t∈Z, where the coefficients αh are square-summable, indepen-

dent of t, and αh = E [ytεt−h]. The process ε is commonly called the sequence of fundamental

innovations of y.

We use up to 25 lags for each univariate AR(p) process, following Ortu et al. (2020). We

estimate for each individual series an AR(p) model.

To define scale-specific or spectral decomposition of time series, we define the following

processes by introducing a scale j that is a measure of aggregation of the coefficients and

processes:

(i) Scale-specific innovations: for any fixed j ∈ N, the process ε(j) =
{
ε
(j)
t

}
t∈Z

with

ε
(j)
t =

1√
2j

2j−1−1∑
i=0

εt−i −
2j−1−1∑
i=0

εt−2j−1−i

 (3.1)

is a MA (2j − 1) with respect to the classical Wold innovations of y and
{
ε
(j)

t−k2j

}
k∈Z

is a

unit variance white noise;

(ii) Scale-specific MA parameters: for any j ∈ N, k ∈ N0, the coefficients ψ
(j)
k are uniquely

determined via

ψ
(j)
k =

1√
2j

2j−1−1∑
i=0

αk2j+i −
2j−1−1∑
i=0

αk2j+2j−1+i

 (3.2)

hence, they are independent of t and
∑∞

k=0

(
ψ

(j)
k

)2
< +∞∀j ∈ N;

(iii) Scale-specific component of process yt

y
(j)
t =

+∞∑
k=0

ψ
(j)
k ε

(j)

t−k2j

for any j, l ∈ N, p, q, t ∈ Z,E
[
x
(j)
t−px

(l)
t−q

]
depends at most on j, l, p − q. Moreover,
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E
[
x
(j)

t−m2j
x
(l)

t−n2l

]
= 0 for all j ̸= l,m, n ∈ N0, and t ∈ Z.

Putting equations together, yt can be expressed as the infinite orthogonal sum of scale-

specific components. We call this the extended Wold decomposition:

yt =
∞∑
j=1

y
(j)
t =

∞∑
j=1

∞∑
k=0

ψ
(j)
k εt−k2j . (3.3)

For each j the process {εt−k2j , k ∈ Z+} has a zero mean and unit variance and (ψ
(j)
k , k =

1, . . . , T ) form a system of orthogonal basis.

3.1.2 Multivariate case

Consider the zero mean, covariance stationary, n-variate process y = {yt}t∈Z, with yt =

(y1t, . . . , ynt)
′. Its Wold representation is

yt =
+∞∑
k=0

αkεt−k, (3.4)

where εt, t ∈ Z is a n-dimensional vector of (possibly) cross-correlated white noise shocks and

the Wold coefficients αk are, for all k ∈ N0, n × n matrices. By analogy with the scalar case,

we can now write

yt =
∞∑
j=1

y
(j)
t =

+∞∑
j=1

+∞∑
k=0

Ψ
(j)
k ε

(j)

t−k2j
. (3.5)

For any j ∈ N, the N ×N matrices Ψ
(j)
k are unique Discrete Haar Transforms (DHTs) of the

original Wold coefficients:

Ψ
(j)
k =

1√
2j

2j−1−1∑
i=0

αk2j+i −
2j−1−1∑
i=0

αk2j+2j−1+i

 (3.6)

Similarly,

ε
(j)
t =

1√
2j

2j−1−1∑
i=0

εt−i −
2j−1−1∑
i=0

εt−2j−1−i

 . (3.7)

We emphasize that the components of the extended Wold are uncorrelated for all t.
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3.2 Identification

To define an economically meaningful network, we model yt as an autoregressive of order p

process VAR(p)

yt =

p∑
k=1

Akyt−k + ϵt ϵt ∼ wn (0,Σϵ) , (3.8)

where Ak and Σϵ are n×n matrices. Throughout, the VAR is assumed to be stable and Σϵ to

be positive definite. Under standard assumptions, a stable VAR is covariance stationary and

therefore, admits a Wold representation. This implies that this representation of yt allows us

to identify parameters Ψ
(j)
k and innovations ε

(j)
t in Equation (3.5).

The VAR(p) process in Equation (3.8) can be written in a companion form, as an np-

dimensional VAR(1) process by stacking p consecutive yt variables in an (np× 1)-dimensional

vector



yt

yt−1

yt−2

...

yt−p+1


︸ ︷︷ ︸

Yt

=



A1 A2 · · · Ap−1 Ap

I 0 · · · 0 0

0 I · · · 0 0
...

...
. . .

...
...

0 0 · · · I 0


︸ ︷︷ ︸

Γ



yt−1

yt−2

yt−3

...

yt−p


︸ ︷︷ ︸

Yt−1

+



ϵt

0

0
...

0


︸ ︷︷ ︸

Ut

Thus, we have

Yt = ΓYt−1 +Ut. (3.9)

The stability of Yt is contingent upon the absolute value of all eigenvalues of Γ being less than

one. It can be shown that if the process yt is stable, then Yt is also stable. The stability of

the process Yt ensures the existence of the inverse VAR operator (Inp − ΓL)−1 =
∑∞

k=0 γkL
k,

where γk = Γk. As a result, one can obtain the following Wold moving average representation

of Yt :

Yt =
∞∑
k=0

γkUt−k. (3.10)

The long-run concentration matrix of Yt is

ΣL
Y = (Inp − Γ′)Σ∗,−1

U (Inp − Γ) (3.11)

where Σ∗,−1
U is the Moore–Penrose inverse of ΣU .

Define ej,n
np , j = 1, · · · , p an np×n vector whose j-th block values is the n×n identity matrix
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and whose values are zero otherwise, with (ej,n
np )

′ej,n
np = I and ej,n

np (e
j,n
np )

′ = I + 0np×np.
2 Now,

we can derive the long-run covariance matrix of yt (also known as the long-run concentration

matrix K) by focusing on the first n components of Yt.

K := ΣL
y = (ej,n

np )
′ΣL

Le
j,n
np = (ej,n

np )
′ (I − Γ′)Σ∗,−1

U (I − Γ) ej,n
np

=
(
I − (ej,n

np )
′Γ′ej,n

np

)
(ej,n

np )
′Σ∗,−1

U ej,n
np

(
I − (ej,n

np )
′Γej,n

np

)
= (I −G′)C(I −G)

(3.12)

where C = Σ−1
ϵ = (ej,n

np )
′Σ∗,−1

U ej,n
np and G = (ej,n

np )
′Γej,n

np , with notations similar to Barigozzi

and Brownlees (2019) to define Contemporaneous undirected and Granger directed networks

(graphs).

3.3 Spectral Networks for Time Series

To define scale-specific networks for time series, we will use VAR(1) specification of Yt

Yt =
∞∑
k=0

ΓkUt−k. (3.13)

The network representation of the scale-specific system is

K(j) =
(
I − (G(j))′

)
C(j)(I −G(j)) (3.14)

with G(j) = (ej,n
np )

′Γ2kej,n
np the directed Granger and C(j) = (ej,n

np )
′Σ̂

(j),∗,−1
U ej,n

np the undirected

Contemporaneous spectral networks.

A proof and definition of parameters is given in Appendix A.2.

4 Estimation

We combine several approaches to estimate the two key matrices: the Granger causality network

G and the contemporaneous network C. While (Barigozzi and Brownlees, 2019) uses bases the

estimations of the two matrices on equation (3.4), we estimate first the C matrix following the

Graphical Lasso approach, see (Yuan and Lin, 2006) for the representation which we describe

2Here we use an abuse of notations to express the structure of the matrix.
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below:

K̂ = arg min
K∈S

{tr(Σ̄K − log det K) + λ
∑
i ̸=j

|kij|} (4.1)

In the estimation, we follow (Friedman et al., 2007) who recasted the estimation as a se-

quence of basic LASSO regressions.

To select the λ, we set a grid of values and select the optimal λ using the BIC computed as

below:

BIC(λ) = log(RSS(λ)) +
log(T )

T
× n (4.2)

λ is selected optimally for the actual series, as well as for each frequency component (be it

short-run, long-run or medium-run). To select λ, we use the BIC criterion.

In order to determine the Granger causality network, we follow a two-step approach. First,

we estimate A VAR(1) model as in equation (3.4), using the LARS algorithm, see (Efron et al.,

2004). The optimal model is selected by minimizing the BIC criterion. Then we construct an

adjacency matrix setting that a connection exists whenever the coefficient determined in the

previous step is not zero.

LARS is a stepwise forward algorithm which starts from a different assumption as compared

to LASSO. For LARS, initially, all coefficients are assumed to be zero. Then the procedure

activates the variables with the strongest correlation with the residual. The algorithm continues

until all variables become active.

The algorithm consists in the following steps:

1. The variables X are standardized to have zero mean and a variance of 1.

2. All β’s are set to zero, while the residuals are set at r0 = yt

3. We determine the variable from X with the highest correlation with r0

4. We further activate the first βi based on the least square values resulting from X ′
jr0, until

we get another variable Xi maximally correlated with the current value of residuals, as

given by rk

5. We repeat the previous step until another variables becomes active

6. The algorithm is repeated until all coefficients are non-zero.

Note that we use the same algorithm also to estimate K(j) and its components.
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5 Data

We use data from the financial sector from S&P 500. We have daily returns from 2000 to

2015. Focusing on the financial sector helps with comparing our results with related work from

Diebold and Yılmaz (2014b) or Billio et al. (2012). Appendix A shows the sample of companies.

We present here the results for the simulations and estimations. The aggregate series (for

real data or simulated data) have been decomposed into 9 different components. From here we

compute the short-term, medium-term and long-term components as given by:

ylong =
9∑

j=7

yj (5.1)

ymed =
6∑

j=4

yj (5.2)

yshort =
3∑

j=1

yj (5.3)

We perform this decomposition in order to reveal the different components at different

frequencies. Each j component corresponds to 2(j−1) − 2(j) days frequencies. Thus, the short

run corresponds to 1. Thus, the short-term component corresponds to 1 day to 8 days of

trading, the medium-run component corresponds to 8 days to 26 = 64 trading days, while the

long-run component corresponds to 64 trading days to 512 days (about two years).

6 Results

We first look at the results for the aggregate series, see Figures 5a and 6a below. We also

look at the results for the decomposed series, see Figures 5 and 6, b, c and d. While the con-

temporaneous correlation matrices look at a first look quite similar, there are some significant

differences with respect to the long-run Granger causality matrices.

First, we can see that the short-run Granger causality network is much sparse than the

medium or the long run. This might come from the fact that the short-run components are

more erratic and harder to predict. This is in line with previous findings on the fact that short-

run components are harder to be attracted. For example, Caraiani (2017) showed that the

short-run component of exchange rates, as identified using wavelets, is hardest to be predicted.

A second key finding is that the central nodes differ among the different components. This
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outlines the fact that the different components lead to different patterns. This is a finding

that has been also outlined in the literature using wavelet decomposition. A study in this

direction was done by Caraiani (2015) who estimated a dynamic stochastic general equilibrium

model along different components, obtaining different structural estimations for the different

components.

Finally, we can also see that, even for the contemporaneous network, the degree out-degree

distribution has different patterns. While the aggregate series has the same number of degrees

for each node, for the other components we can see some differences. Especially for the medium

and short term components, we can see that there are more nodes having less than the maximum

number of degrees.

(a) Aggregate (b) Long-run

(c) Medium-run (d) Short-run

Figure 1: Contemporaneous networks

11



(a) Aggregate (b) Long-run

(c) Medium-run (d) Short-run

Figure 2: Granger-causality networks: a) aggregate series; b) long-term; c) medium-term; d)
short-term. Notes: Each node stands for a company.

7 Conclusion

In this paper, we approached the topic of modelling connectedness in volatility networks using

estimates of contemporaneous and Granger causality networks. While the main literature

on connectedness, following Diebold and Yılmaz (2014a) or Billio et al. (2012) focused on

a single type of network, we followed Barigozzi and Brownlees (2019) and estimated both

contemporaneous and Granger causality networks. In contrast however to the former and

latter, we performed the estimations also along different frequencies as obtained using EWD.
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The research leads to several key findings. First, the central nodes differ between the

networks based the actual financial series and those based on short-run, medium-run and long-

run EWD details. In other words, the different frequencies have different central financial

institutions as central.

Second, the sparsity of the networks is different along the frequencies. Particularly, the

short-run networks, especially the Granger causality ones, are much sparse than the network

corresponding to the long-run component or the actual series.

Third, our finding underscore that systemic risk (understood in the sense of contagion) is

affected by the different scales, a finding not very well studied in the literature, see Baruńık

and Křehĺık (2018) for a previous contribution in this literature.
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A Appendix

A.1 Networks for Time Series

Following Barigozzi and Brownlees (2019), consider a zero-mean stationary n-dimensional mul-

tivariate time series yt = (y1t, . . . , ynt)
′ generated by a p th-order VAR:
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yt =

p∑
k=1

Akyt−k + ϵt ϵt ∼ wn (0,Σϵ) (A.1)

where Ak and Σϵ are n × n matrices. Throughout, the VAR is assumed to be stable and Σϵ

to be positive definite. The long-run concentration matrix of the VAR approximation is

KL =

(
Inp −

p∑
k=1

A′
k

)
Σ−1

ϵ

(
Inp −

p∑
k=1

Ak

)
= (I −G′)C(I −G)

(A.2)

where G =
∑p

k=1 Ak - as in Granger, and C = Σ−1
ϵ − as in Contemporaneous.3

We work under the assumption that the VAR approximation is sparse. This, in turns,

determines the sparsity ofG,C andKL. The matrixG can be associated to a long run Granger

network (directed) expressing long predictive relations of the system a and the matrix C can

be associated to a Contemporaneous partial correlation network of the system innovations.

The Long Run Partial Correlation network is a (nontrivial) combination of the Granger and

Contemporaneous networks.

A.2 Scale-decomposition on VAR(1) processes

Example VAR(1): To discuss this issue, assume for simplicity that the vector autoregressive

process yt is of order 1 and denote A := A1 i.e.,

yt =
+∞∑
k=0

Akϵt−k (A.3)

Drawing a parallel to the earlier notations used to introduce the EWD, for VAR(1) process we

have αk = Ak. We can now obtain the extended Wold representation for a VAR(1) process

3C = Σ−1
ϵ − is also known as concentration matrix of the innovations.
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with the following coefficients Ψ
(j)
k :

Ψ
(1)
0 =

I2 − A√
2

Ψ
(1)
1 =

A2 − A3

√
2

=
I2 − A√

2
A2,

. . .

Ψ
(1)
k =

A2k − A2k+1

√
2

=
I2 − A√

2
A2k,

for j = 1. Similarly, for a generic j = 1, 2, . . ., and for k = 0 :

Ψ
(j)
0 =

I2 + A+ · · ·+ A2(j−1)−1︸ ︷︷ ︸
2(j−1) terms

−(A2(j−1)

+ · · ·+ A2j−1︸ ︷︷ ︸
2(j−1) terms

)

√
2j

=

(
I2 − A2(j−1)

)
(I2 − A)−1 −

(
I2 − A2(j−1)

)
(I2 − A)−1A2(j−1)

√
2j

=

(
I2 − A2(j−1)

)2
(I2 − A)−1

√
2j

.

For j = 1, 2, . . ., and for k > 0 :

Ψ
(j)
k =

I2 + A+ · · ·+ A2(j−1)−1︸ ︷︷ ︸
2(j−1) terms

−(A2(j−1)+···+A2j−1︸ ︷︷ ︸
2(j−1) terms

)

√
2j

× Ak2j

=

(
I2 − A2(j−1)

)2
(I2 − A)−1

√
2j

× Ak2j .

Notice in the derivations above that Ψ
(j)
k = Ψ

(j)
0 ×Ak2j . Hence, the structure of the coefficients

Ψ
(j)
k is that of a VAR(1) defined on the support S

(j)
t = {t− k2j : k ∈ Z}. If we define

ε̂(j) = Ψ
(j)
0 ε(j), we can define the scale specific components in the following way

y
(j)
t =

+∞∑
k=0

Ψ
(j)
k ε

(j)

t−k2j
= ε̂

(j)
t + A2j ε̂

(j)

t−2j
+ A2×2j ε̂

(j)

t−2×2j
+ · · · (A.4)
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After some calculations, the previous equation simplifies to

y
(j)
t = A2jy

(j)

t−2j
+ ε̂

(j)
t , ε̂

(j)
t ∼ wn

(
0, Σ̂j

ϵ

)
, (A.5)

with Σ̂
(j)
ε = E[ε̂(j)(ε̂(j))′] = E[Ψ

(j)
0 ε(j)(Ψ

(j)
0 ε(j))′].

The network representation of the scale-specific system is

K
(j)
L =

(
I −

pj∑
k=1

(A
(j)
k )′

)
(Σ(j)

ϵ )−1

(
I −

pj∑
k=1

A
(j)
k

)
=
(
I − (G(j))′

)
C(j)(I −G(j))

(A.6)
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Stock Name Sector Sample
AIG American International Group Financials 2004/01/02-2015/12/13
ALL Allstate Corp Financials 2004/01/02-2015/12/13
AXP American Express Co Financials 2004/01/02-2015/12/13
BAC Bank of America Corp Financials 2004/01/02-2015/12/13
BK The Bank of New York Mellon Corp. Financials 2004/01/02-2015/12/13
C Citigroup Inc. Financials 2004/01/02-2015/12/13

COF Capital One Financial Financials 2004/01/02-2015/12/13
GS Goldman Sachs Group Financials 2004/01/02-2015/12/13
JPM JPMorgan Chase & Co. Financials 2004/01/02-2015/12/13
MET MetLife Inc. Financials 2004/01/02-2015/12/13
MS Morgan Stanley Financials 2004/01/02-2015/12/13
SPG Simon Property Group Inc Financials 2004/01/02-2015/12/13
USB U.S. Bancorp Financials 2004/01/02-2015/12/13
WFC Wells Fargo Financials 2004/01/02-2015/12/13

Table 1: Data Sample

A.3 Financial companies
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A.4 Degree Distribution

Figure 3: Contemporaneous Network: long-term component

Figure 4: Granger Network: long-term component
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Figure 5: Contemporaneous Network: long-term component

Figure 6: Granger Network: long-term component
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Figure 7: Contemporaneous Network: medium-term component

Figure 8: Granger Network: medium-term component
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Figure 9: Contemporaneous Network: short-term component

Figure 10: Granger Network: short-term component

A.5 Simulated Data

We simulate data for a sparse VAR using a degree of sparsity of 0.10, and an

autocorrelation coefficient of ρ = 0.75. We simulate a VAR(p) model and obtain
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3021, that correspond to the number of observations for the actual financial

series. The lag p in the VAR model is set to 1 (corresponding basically with

the approach in Barigozzi and Brownlees (2019)

We simulate 14 series, each having the same number of observations as the

real data. We feed the simulated VAR(1) model further in the estimation, for

the aggregate series and after getting the decomposed EWD components (using

the short-term, medium-term and long-term components).

The estimation procedure is similar to the one for the actual series, see

Estimation. λ is set using the BIC criterion.

We show below the contemporaneous network and the Granger causality

network for the aggregate series, see Figure C.1 and C.2 below.

We also present the results for the short term component, see Figures C.1

and C.2.

23



(a) Aggregate (b) Long-run

(c) Medium-run (d) Short-run

Figure 11: Contemporaneous networks: a) aggregate series; b) long-term; c) medium-term; d)
short-term. Notes: Each node stands for a company.

The results suggest some differences between the short-run component and

the aggregate series. First, for the contemporaneous matrix, the short-run

component leads to sligthly different central nodes.

Furthermore, the differences are more significant for the case of the Granger

causality network. Here, Figure 4 shows a much sparser network, while also

indicating a different subset of central nodes.
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(a) Aggregate (b) Long-run

(c) Medium-run (d) Short-run

Figure 12: Contemporaneous networks: a) aggregate series; b) long-term; c) medium-term; d)
short-term. Notes: Each node stands for a company.
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