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1 Introduction

Keynes (1939) noted the surprising stability of labor’s share of national income as one of the most

established facts in economic statistics. However, Karabarbounis and Neiman (2014) argue that

the global labor share has declined by approximately 5 percentage points since 1975. In the U.S.

data, we observe that the labor share has declined from around 70% of GDP to below 65% as

shown in Figure 1. This has sparked considerable research into the reasons and implications of this

trend (see Grossman and Oberfield, 2022, for review). Karabarbounis and Neiman (2014) suggest

that this decline can be understood within the context of an aggregate production function, which

incorporates the substitutability of capital and labor. According to their analysis, technological

advancements that lower the cost of capital lead to an increase in capital accumulation. As capital

and labor are substitutes in production, this accumulation subsequently reduces the demand for

labor and decreases the labor income share.
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Figure 1: Labor Share and Trend Before and After 2000. Note: Calculated as compensation divided by
gross value added less taxes on production and imports. Source: Bureau of Economic Analysis.

This explanation faces three significant challenges. Firstly, the narrative presumes capital and

labor are substitutes with an elasticity of substitution (EOS) greater than one. Contrary to this,

most empirical research points to an EOS of less than one (Chirinko and Mallick, 2017; Oberfield and

Raval, 2021; Gechert et al., 2022). Secondly, the theory suggests that technological advancements
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should decrease capital costs, leading to an increase in capital demand. However, if capital and

labor are complements, the increase in capital and the reduction in capital price should increase

the labor share. Thirdly, even if capital prices, capital per worker, and the EOS favor a declining

labor share, the actual trend only begins its pronounced downturn after the 1990s, as pointed out

by Grossman et al. (2017). Before this period, there is a slight upward (yet insignificant) trend as

shown in Figure 1.1

This paper enhances the capital accumulation narrative by incorporating a technological adop-

tion framework, addressing the challenges previously outlined. It argues that differences in capital

intensities across technologies can lead to greater adoption of capital-intensive technologies as cap-

ital stock increases, aligning with the Rybczynski Theorem. While a rise in capital stock generally

increases the labor share of the economy, the adoption of technologies that are less labor-intensive

tends to lower the labor income share, even when the EOS within each technology type remains

below one. Thus, due to this dual effect of increased capital stock and technological adoption

favoring capital intensity, the overall EOS may actually exceed one.2

Labor share is influenced by factor prices and capital intensity across two dimensions. On the

intensive margin, changes in factor input prices can affect total costs, often resulting in a higher

relative price of labor as capital becomes more prevalent. This usually leads to a higher labor share

when the EOS between capital and labor is below one. On the extensive margin, firms accumulating

more capital are inclined to adopt more capital-intensive technologies, which decreases the overall

labor share, a trend that continues even if the EOS for each technology is below one. This offers a

novel insight into how capital accumulation affects labor share.

The paper highlights the critical role of technology availability in this context. Without alter-

native technological options, an increase in capital per worker tends to increase the labor share

when EOS is below one. However, the availability of alternative technologies means that more

capital per worker can lead to the selection of more capital-intensive technologies. In this analysis,

computers are crucial, symbolizing the presence of alternative technological options. The limited

use of computers prior to the 1980s and their widespread adoption thereafter, as noted by Burstein,

1The observed trend in labor share remains consistent across different cutoff years. For instance, selecting 1975 as
the cutoff year, following Karabarbounis and Neiman (2014), highlights a more pronounced upward trend compared
to using 2000. Conversely, choosing 1995 as the cutoff year, which aligns with the period when computers became
prominent (refer to Figure 5), the labor share trend appears flat before the cutoff year. Regardless of the specific
cutoff year, the labor share typically shows an initial period of slight increase or stability, followed by a subsequent
decline.

2Oberfield and Raval (2021) provides both theoretical and empirical support for the idea that micro- and macro-
level elasticities can differ.
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Morales and Vogel (2019), is associated with a marked decline in labor share, demonstrating the

significant impact of technology adoption on the economy.

This paper contributes to the extensive body of literature exploring the decline in labor share,

a topic that has garnered significant attention due to its implications for economic inequality and

productivity. Various studies have proposed alternative explanations for this trend, including trade

liberalization (Elsby, Hobijn and Şahin, 2013), demographic shifts (Glover and Short, 2023), the

increasing market power of firms (De Loecker, Eeckhout and Unger, 2020; Barkai, 2020), the rise

of “superstar” firms (Autor et al., 2020; Kehrig and Vincent, 2021), and the reduction in public

sector enterprises (Bridgman and Greenaway-McGrevy, 2022). The insights from Karabarbounis

and Neiman (2014) and Piketty and Zucman (2014) regarding investment goods and capital accu-

mulation are of particular relevance. The study by Boldrin and Zhu (2021) also stands out for its

examination of how technological heterogeneity influences the relationship between product market

concentration and labor share, highlighting a significant decline in labor share within the highly

concentrated manufacturing sector – a topic further explored by Kehrig and Vincent (2021).

Unlike these studies, our research studies the interplay between technological adoption and

capital accumulation and its effects on labor share. We argue that this relationship leads to a

decline in labor share, even when the EOS within each technology type remains below one. Our

analysis aims to capture the full dynamics of labor share fluctuations, accounting for the stable

trend observed before the 1990s and the subsequent decline after the 2000s.

Our paper enhances the capital accumulation narrative surrounding the declining labor share by

introducing an additional, realistic mechanism: technological choice.3 This approach diverges from

traditional analyses that primarily focus on automation or labor-augmenting technological changes.

The novelty of our paper lies in establishing a mechanism where, at the micro level, the EOS is less

than one, aligning with much of the empirical evidence (see, for example, Chirinko and Mallick,

2017; Oberfield and Raval, 2021; Gechert et al., 2022). At the macro level, however, the implied

aggregate EOS can exceed one, as required to explain the declining labor share.4 Additionally,

our study underscores the role of computers in influencing the labor share. It suggests a stable

labor share pattern before widespread computer adoption, followed by a declining trend as personal

computers became prevalent (Aum and Shin, 2020).

3Farrokhi and Pellegrina (2023) use a similar discrete choice model as we have. However, their focus is to study
the effect of globalization on technological choice in the agricultrual sector.

4Houthakker (1955) famously demonstrated that micro and macro elasticities can differ significantly: an economy
of Leontief micro units can have a Cobb–Douglas aggregate production function.
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2 Empirical Fact

2.1 Elasticity of Substitution – Meta Analysis

In classical capital-deepening theory, technological advancements in capital production are posited

to lead to increased capital accumulation and a consequent decline in the labor share of income,

but this occurs only if the elasticity of substitution (EOS) between capital and labor exceeds 1.

However, a substantial body of evidence, particularly at the micro-level – including data specific

to firms and industries – suggests that the EOS typically falls below 1.

In the analysis that follows, we conduct a meta-analysis using data from Gechert et al. (2022).5

The principal finding from Gechert et al. (2022) is that the EOS between capital and labor does

not exceed 1, indicating that the majority of studies report an EOS below 1. The consideration of

publication bias further reduces the estimated value of EOS.

The time series of the labor share exhibits distinct trends. Following the approach of Karabar-

bounis and Neiman (2014), we use the year 1980 as a cutoff to study if EOS varies across time.6

Our findings indicate that the majority of EOS estimates are below 1, as illustrated in Figure 2.

Although there has been evidence on the time-varying EOS, most data in Gechert et al. (2022)

agree with the fact that EOS before and after the cutoff are well below 1, even without correcting

the publication bias.

Figure 2: EOS Estimates. Left: 1950-1980. Right: After 1980. Source: Gechert et al. (2022).

5We adhere as closely as possible to their methodology and select the midpoint year of the data period for each
study to maximize representativeness.

6Following the approach of Grossman et al. (2017) and use the year 2000 as a cutoff will result in too few
observations for the second period.
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2.2 Capital Price and Capital Stock

The significance of capital accumulation in quantitative terms largely depends on the extent to

which technological advancements in the production of capital goods reduce capital costs, thereby

fostering further capital accumulation. The increase in the capital accumulation per worker is well

known in the literature and we use the data from Penn World Table (Feenstra, Inklaar and Timmer,

2015) to illustrate the trend in Figure 3 (Left Panel).
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Figure 3: Log Capital-Labor Ratio and Price of Capital. Source: Feenstra, Inklaar and Timmer (2015) and
Barkai (2020).

To empirically assess the reduction in capital costs, more work is needed. Within an aggregate

model, prices of capital and investment are considered equivalent, both influencing the rental rate.

Yet, in practical scenarios, different assets contribute variably to capital, investment, and rental

costs. To address this complexity, we utilize the formula developed by Hall and Jorgenson (1967)

and recently applied by Barkai (2020) for analyzing the required return on a specific capital type

s:

Rs =

[(
D

D + E
iD(1− τ) +

E

D + E
iE

)
− E(πs) + δs

]
1− zsτ

1− τ

Subsequently, the required rate of return on aggregated capital R can be determined as:

E =
∑
s

RsP
K
s Ks =

∑
s

PK
s Ks∑

j P
K
j Kj︸ ︷︷ ︸

R

×
∑
s

PK
s Ks︸ ︷︷ ︸

PKK

Here, E is the aggregate capital costs are the sum of the asset-specific capital costs. The term

R represents the weighted average of the asset-specific required rates of return, with the weight
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for asset s being proportional to its capital stock’s nominal value. The term PKK indicates the

nominal value of the total capital stock. The result is shown in Figure 3 (Right Panel), indicating

the downward trend of capital cost.

2.3 The Trend Computer Usage and Relationship with Labor Share

Computers began entering workplaces in the 1980s but only became widely popular after the late

1990s. As shown in Figure 4 (Left Panel), the adoption of computers, in terms of both overall

quantity and as a proportion of total capital stock, significantly increased in mid-1990. Paradoxi-

cally, a decrease in the rate of computer adoption post-2010 corresponds with a stabilization of the

previously declining labor share.
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Figure 4: Left: Computer Stock and Share of Total Capital Stock 1985-2015. Right: Robot Usage and
Labor Share in Manufacturing Sector. Source: Caunedo, Jaume and Keller (2023) and BLS.

To illustrate the partial effect of adopting computers on the labor share, we utilize data from the

International Federation of Robotics (IFR) on the stock of robots in operation. The use of robots,

which encompasses computers and software, effectively demonstrates the impact of robot utilization

on labor share.7 Due to data limitations, our analysis is concentrated on the manufacturing sector,

which has experienced one of the largest declines in labor share, as identified by Boldrin and Zhu

(2021). Figure 4 (Right Panel) shows a clear negative correlation between robot usage and labor

share in the manufacturing sector across various years.

7Refer to Aum (2017) for an analysis of the effects of computer and software utilization on job polarization.
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3 Model

In this model, we consider a closed economy consisting of a single sector, where final goods is

produced by a continuum of varieties, denoted as ν, ranging from 0 to 1. These varieties can

be produced using either high capital-intensive (TH) or low capital-intensive (TL) technologies.

The decision of technology adoption resting with firms. There are 2 inputs: labor which is fixed,

denoted as L, and capital, denoted as K.8 Capital accumulation is endogenous, and its supply

being determined by the household saving based on various economic interactions and factors.

All markets are competitive. Finally, the model adopts a steady-state analysis to understand the

long-term implications of different technological choices in production.

3.1 Production

There are υ ∈ [0, 1] varieties. All the varieties are combined using a CES technology in the overall

production process M to give the quantity produced qM , which can be expressed as

qM =

(∫ 1

0
yg(υ)

η−1
η dυ

) η
η−1

(1)

In the production process, firms have the option to select a technology, denoted as g, from the

available set G, for producing each varieties υ. The technology choices include capital-intensive

“high” technology (TH), and labor-intensive “low” technology (TL). Both technologies utilize labor

and capital as inputs. The output yg(υ) for each variety υ using technology g is defined by the

equation:

yg(υ) = ag(υ)

[
(αg)1/ρ

g

Lg(υ)
ρg−1
ρg + (1− αg)1/ρ

g

Kg(υ)
ρg−1
ρg

] ρg

ρg−1

, g ∈ {TH , TL} (2)

Here, ag(υ) represents the productivity level for firm producing variety υ, and follows a Fréchet

distribution with Pr(x < a) = exp
(
−Aga−θ

)
. The term αg indicates the labor intensity of technol-

ogy g, with αTL > αTH . Lg(υ) and Kg(υ) are the labor and capital used for producing variety υ in

technology g, respectively. Lastly, ρg
(
= ∂ ln(Kg/Lg)

∂ ln(w/r)

)
refers to the elasticity of substitution between

labor L and capital K in technology g.

8We keep labor fixed so that it is flexible to incorporate skilled and unskilled labors in our definition. Our
robustness check indicates this assumption is innocuous.
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Cost minimization determines the unit bundle cost for technology g, given by the equation:

cg =
[
αgw1−ρg + (1− αg)r1−ρg

] 1
1−ρg (3)

where w represents the labor wage, and r is the rate of return on capital. This formula provides

an aggregated cost measure for employing technology g, factoring in the costs of labor and capital.

Additionally, the model calculates the expenditure shares on labor and capital within technology

g. The expenditure share on labor, denoted as egL, and capital, denoted as egK , for technology g are

given by

Labor: egL = αg
(w

cg

)1−ρg

(4)

Capital: egK = (1− αg)
( r

cg

)1−ρg

(5)

These equations reflect how labor and capital costs are proportionally allocated within each tech-

nology, based on their respective intensities (αg) and the overall cost of employing the technology.

Furthermore, the model also accounts for the marginal cost associated with producing a specific

variety υ using technology g. The marginal cost, cg(υ), is determined by

cg(υ) =
cg

ag(υ)
(6)

Firms select the most cost-effective technology for each variety υ. The cost for a specific firm

is determined by choosing the cheapest available technology, which is represented as:

c(υ) = min
g∈G

{cg(υ)} = min
g∈G

{
cg

ag(υ)

}
(7)

As the productivity ag follows Fréchet distribution with shape parameter θ, the probability of

selecting a technology g is given by:

τ g =
Ag(cg)−θ∑

g′∈GAg′(cg′)−θ
(8)

This probability depends on the relative cost efficiency of technology g compared to other tech-
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nologies in set G. The unit cost of the overall production process M is given as

PM = Γ

(
θ − 1 + η

θ

) 1
1−η

∑
g∈G

Ag(cg)−θ

− 1
θ

(9)

where Γ(·) represents the gamma function and η is the elasticity of substitution between the varieties

υ. This equation incorporates the cost efficiencies of all technologies and the characteristics of the

production function.

The production of the final consumption good involves using the production process M . The

output of the final good, denoted as Y , is expressed as:

Y = AqM (10)

where A represents the TFP in the production of final goods, and qM is the quantity produced in

the production process. The price of the final goods is given by:

P =
PM

A
(11)

3.2 Household

The household faces an intertemporal optimization problem, aiming to maximize its utility over

an infinite time horizon, by making dynamic saving and consumption decisions. The labor supply

decision of the household is assumed to be inelastic to as to make the steady state Euler Equation

(15) independent of wage and labor decision. The household problem is

max

∞∑
t=0

βtu(Ct) (12)

s.t.
rtKt + wtLt

Pt
= Ct + It (13)

Kt+1 = (1− δ)Kt + It (14)

In the steady state, when the labor is assumed inelastic, the FOCs simplify to:

1 = β ×
[ r
P

+ (1− δ)
]

(15)

I = δK (16)
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3.3 Equilibrium

The total output in the economy, Y , is produced using CRS production function and hence is

defined by the sum of wages and capital returns, as given by the equation:

Y = wL+ rK (17)

where wL represents the total wage bill, and rK signifies the total return on capital. The factor

market clearing conditions ensure that the total compensation in the economy is distributed across

different technologies. These equations imply that the wage bill and capital returns are allocated

across technologies in proportion to their expenditure shares and adoption rates. These conditions

are specified for labor and capital as follows:

Labor Bill: wL =
∑
g∈G

egLτ
gY (18)

Capital Bill: rK =
∑
g∈G

egKτ gY (19)

The aggregate labor and capital shares in the economy are calculated as the weighted average

of the respective shares across all technologies g ∈ G, using their adoption shares as weights. The

aggregate labor share, sL, and the aggregate capital share, sK , are determined by:

Aggregate Labor Share: sL =
∑
g∈G

egLτ
g (20)

Aggregate Capital Share: sK =
∑
g∈G

egKτ g (21)

These shares represent the overall distribution of income between labor and capital in the economy,

reflecting the average impact of different technologies.

An equilibrium in this context is defined as a set of values w, r,K that satisfy all the equilibrium

conditions mentioned above. This equilibrium state ensures that the factor markets for labor and

capital are cleared, and the distribution of income across different technologies is balanced. Thus,

from equations (17)-(19), the equilibrium aggregate labor share can be rewritten as

sL =
wL

Y
=

wL

wL+ rK
=

1

1 + rK
wL

(22)
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where

rK

wL
=

eTH
K · τTH + eTL

K · τTL

eTH
L · τTH + eTL

L · τTL

(23)

Following Dekle, Eaton and Kortum (2007), we solve the model in relative changes. In this

analysis, let x represent a baseline economic variable, and x̂ = x′/x, where x′ is the counterfactual

outcome or the outcome from the new equilibrium.

The change in the factor shares can be expressed as

Change in Labor Share: ŝL =

∑
g∈G(ê

g
Le

g
L)× (τ̂ gτ g)

sL
(24)

where the respective changes in expenditure shares, êg, and in probability of selecting a technology

g, τ̂ g, can be expressed as the changes in wage, rent and capital stock, {ŵ, r̂, K̂}:

êgL =

(
ŵ

ĉg

)1−ρg

; êgK =

(
r̂

ĉg

)1−ρg

(25)

where ĉg =
[
egL(ŵ)

1−ρg + egK(r̂)1−ρg
] 1
1−ρg , and

τ̂ g =
Âg(ĉg)−θ∑

g′∈{TH ,TL} τ
g′

i Âg′(ĉg′)−θ
(26)

3.4 Discussion of Mechanism

Capital deepening impacts the labor share along two dimensions: the intensive margin effect and

the extensive margin effect. Both affect the aggregate labor share through the relative return of

capital to labor rK
wL , as shown in equation (22).

The intensive margin effect echoes the conventional one, as in Karabarbounis and Neiman

(2014), whereby capital accumulation changes the relative price of factor inputs and hence the labor

share. To recover the conventional effect, we shut down the extensive margin effect by restraining

firms from the technology choice (imposing only one type of technology for firms). Thus, from

equations (1), (2), and (10), we have the aggregate production function

Y = A

[
(αg)

1
ρg · L

ρg−1
ρg + (1− αg)

1
ρg ·K

ρg−1
ρg

] ρg

ρg−1

Accordingly, we can use the first-order conditions (r = MPK and W = MPL) to obtain the ratios
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of capital and labor bills as follows

rK

wL
=

egK
egL

=

(
K

L

)1− 1
ρg

·
(

α

1− α

)− 1
ρg

(27)

Note that, because there is only one type of technology, the relative return of capital to labor in

equation (23) is simply equal to the relative expenditure of capital to labor ( rKwL =
egK
egL

), i.e., τ g ≡ 1.

Differentiating equation (27) with respect to the ratio of capital to labor immediately yields

∂
(
rK
wL

)
∂
(
K
L

) =

(
1− 1

ρg

)(
αK

(1− α)L

)− 1
ρg

< 0 (28)

given that capital and labor are gross complements (ρg < 1). This is intuitive since an increase

in capital K, on the one hand, raises the capital-labor ratio K
L (recalling that the aggregate labor

force L = 1) and, on the other hand, lowers the relative price of capital to labor r
w . If capital and

labor are gross complements, the decrease in r
w is larger than the increases in K

L , lowing the relative

return of capital to labor rK
wL . Thus, capital deepening increases, rather than decreases, the labor

share sL when ρg < 1.

The labor share decline resulting from capital deepening is not theoretically feasible if capital

and labor are gross complements. Although the theoretical prediction requires the labor-capital

substitution elasticity to be greater than one, most empirical studies find estimates of the labor-

capital substitution elasticity to be less than one (Grossman et al., 2017). Particularly, our previous

Section 2.1 and that in Gechert et al. (2022) show that the EOS estimates typically falls below 1.

With an endogenous technology choice, the extensive margin effect indicates that differences in

capital intensities across technologies can lead to greater adoption of capital-intensive technologies

as capital stock increases, aligning with the Rybczynski Theorem. To shed light on such an effect,

we assume that τTH = (1+ θ)τTL , where θ measures the additional increase in the adoption of high

technology, and rearrange equation (23) as

rK

wL
=

τTL

e
TH
K

(
eTH
K + eTL

K

)
+ θ

τTL

e
TH
K

(
eTH
L + eTL

L

)
+ θ · e

TH
L

e
TH
K

(29)

Note that if high-technology production is more capital-intensive than low-technology production

(i.e., the labor intensity αTH < αTL) and if αTH < 1/2, then
e
TH
L

e
TH
K

< 1 are true under the production

function with constant returns to scale and complementarity between capital and labor (ρg < 1).
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When capital deepening increases the capital stock, there is an increased adoption of higher capital-

intensive technology (i.e., high-technology production), leading to an increase in the probability of

adopting high technology θ, Thus, we can see that in contradiction to the conventional intensive

margin effect, a higher θ increases the relative return of capital to labor rK
wL (see equation (29)

with
e
TH
L

e
TH
K

< 1), resulting in a lower labor share (see equation (22)). The extensive margin effect

represents a novel channel in this model that can decrease the labor share in general equilibrium,

even if the EOS is less than one.

Overall, on the intensive margin, a rise in capital stock always increases the labor share of the

economy when capital and labor are complements, but, on the extensive margin, the adoption of

technologies that are less labor-intensive tends to lower the labor income share, even when the

EOS within each technology type remains below one. Thus, due to this dual effect of increased

capital stock and technological adoption favoring capital intensity, the labor share can increase,

remain constant or decrease with capital deepening. Hence, the overall aggregate EOS in the whole

economy may actually exceed one (see our numerical analysis in Section 4) even if the individual

firm’s EOS is less than 1.9 In our analysis, the extensive margin effect helps us reconcile the

discrepancy in labor shares not only between theory and practice, but also between micro-level and

macro-level estimates for factor substitution,

4 Quantitative Results

4.1 Parameterization

We solve the model using relative changes, following the approach of Dekle, Eaton and Kortum

(2007). This reduces the number of parameters requiring calibration, as some are eliminated in the

computation of relative terms. Table 1 summarizes these parameters and their respective values.

The methodology for determining these values is discussed subsequently.

Our model includes a total of six time-invariant parameters {ρg, αTL
L , αTH

L , τTH
0 , τTL

0 , θ} and

three time-variant parameters {Lt, A
TL
t , ATH

t } that need to be determined.10 We establish the

values for {ρg, αTH
L , θ} and {Lt, At} using existing literature and empirical data. Then, we calibrate

{αTL
L , τTH

0 } to align with the initial and final labor share observed in 1980 and 2010. All the data

9This also echos the finding in Oberfield and Raval (2021) that the aggregate EOS is larger than that of the
micro-level EOS.

10Throughout the baseline analysis, we assume that the TFP of the final goods production is identical to 1, i.e.
A ≡ 1
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Parameter Value Definition Source

Time-Invariant Parameters

Production Parameters
ρg 0.30 Elasticity of Sub. btw K and L Gechert et al. (2022)

αTL
L 0.87 Labor Share of TL Tech Decline in Labor Share

αTH
L 0.10 Labor Share of TH Tech U.S. Auto-Mobile Industry

Adoption Parameters

τTH
0 0.44 Initial Adoption Share of the TH Tech Initial Labor Share

τTL
0 0.56 Initial Adoption Share of the TL Tech 1− τLo0

Distribution Parameters
θ 4 Shape Parameter Bernard et al. (2003)

Time-Varying Parameters

Lt Varies Labor Supply Penn World Table

ATL
t Varies Productivity Progress in TL Tech Penn World Table

ATH
t Varies Productivity Progress in TH Tech BEA

Table 1: Model parameters in the baseline model.

used in the exercise are from the U.S.

Production Parameters {ρg, αTH
L , αTL

L }. Gechert et al. (2022) performed a meta-analysis

revealing that the elasticity of substitution (EOS) between capital and labor varies between 0.3

and 0.9, with 0.5 emerging as the median value across studies. They argue that, when adjusting

for publication bias, the EOS should be considered as 0.3. Based on these findings, our baseline

analysis assumes an EOS of 0.3, and we plan to explore the sensitivity of this assumption across a

range of ρg ∈ [0.2, 0.9] in Section 5.3.11

We calculate the labor intensity, denoted as αTH
L , for industries with high capital intensity

by examining the labor share within the sector reporting the highest robot density, according to

the International Federation of Robotics (IFR). The objective is to assess labor intensity in an

industry characterized by full automation. The motor vehicle manufacturing industry is identified

for this purpose. Given the variability of labor share over time, we take time average, at the value

roughly equals to 0.1. Consequently, we adopt this minimum as our labor intensity value, setting

αTH
L = 0.10. Subsequently, we calibrate the value of αTL

L = 0.87 to align with the overall decline in

labor share in the Penn World Table.

Adoption Parameters {τTH
0 , τTL

0 }. The adoption share parameters, τTH
0 and τTL

0 , are designed

to sum to unity, as expressed by the equation τTH
0 + τTL

0 = 1. By adjusting the initial values of

11A significant consideration in our analysis is the assumption that the EOS is consistent across different technolo-
gies, although it is conceivable that technologies with higher capital intensity might substitute labor more efficiently,
thereby warranting a higher ρg value. However, due to data constraints, this hypothesis cannot be directly tested.
As such, in Section 5.3, we will investigate the implications of varying ρg values to address this potential variability.
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αTH
L , αTL

L , we aim to align the initial adoption share with the labor share of 0.62 reported in 1980,

according to the Penn World Table. This adjustment results in an implied value of τTH
0 = 0.44,

which appears high in comparison to empirical data, such as the computer stock’s proportion of

the total capital stock depicted in Figure 4. Yet, referencing the findings of Burstein, Morales and

Vogel (2019), the adoption rate during that period should not be underestimated.12 To deduce the

adoption share for 1980, we employ linear extrapolation based on the trends observed between 1984

and 1993 as reported by Burstein, Morales and Vogel (2019). This method suggests an adoption

rate of 0.24, lower than our calculated value but significantly above zero.

Distribution Parameter {ρg}. We follow the value used in Bernard et al. (2003) and set the

shape parameters of the Fréchet distribution at 4.

Time-Variant Parameters {Lt, A
TH
t , ATL

t }. To identify three time-varying parameters, we

employ the Penn World Table (Feenstra, Inklaar and Timmer, 2015) to determine the number

of workers, Lt, in the U.S., as illustrated in the left panel of Figure 5. For the TFP progress

associated with the low-tech (TL) technology, we use the overall TFP growth in the U.S. as a

proxy. Meanwhile, TFP growth in the computer-producing sector, as reported by the Bureau of

Economic Analysis (BEA), serves as a proxy for TFP progress in the high-tech (TH) technology.

It is important to note, as Aum, Lee and Shin (2018) argue, that the adoption of computers is

primarily driven by technological advancements within the computer-producing sector. The trends

for these three parameters over time are depicted in Figure 5.
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Figure 5: Computer Stock and Share of Total Capital Stock 1985-2015. Source: Feenstra, Inklaar and
Timmer (2015) and BEA Industry Account.

12Data on computer usage from Burstein, Morales and Vogel (2019) is derived from analysis of the CPS October
Supplement surveys from 1984, 1989, 1993, 1997, and 2003, which collected information on respondents’ direct use
of computers at work.
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4.2 Model Fit and Discussion

To validate our model, we compare its predictions with untargeted moments, with a particular focus

on the implied economy-wide EOS. While we assume an EOS of capital and labor, ρg, of 0.3 across

all technologies, the aggregate EOS may differ due to distribution effects from the use of various

technologies within the economy, as discussed by Oberfield and Raval (2021). Consequently, the

aggregate EOS is determined by the equation:

EOS = −d ln(K/L)

d ln(r/w)
= −K̂ − L̂

r̂ − ŵ
,

where the implied value of the aggregate EOS in our model for 2010 is 3.2. This is compared to an

empirical value of 3.0, derived from data post-1990s in Gechert et al. (2022).

The second aspect of our validation focuses on assessing whether our model accurately replicates

the observed increase and then decline in labor share from 1980 to 2010. As depicted in Figure 6

(Left Panel), the model successfully captures the trend of an increasing labor share from 1980 to

2000, followed by a decrease from 2000 to 2010. This trend is primarily attributed to the varying

rates of adoption of high-type technology in the economy. As detailed in Section 3.4, two main

forces drive the dynamics of the labor share:

ŝL =

∑
g∈G(ê

g
Le

g
L)× (τ̂ gτ g)

sL
,

where the first force is the intensive channel, influenced by the change in factor price, êgLe
g
L. With

ρKL being less than 1, this intensive channel contributes to an increase in the labor share. The

second force is the extensive channel, which affects the labor share through the adoption of tech-

nology associated with a lower labor share, τ̂ gτ g, tending to decrease the labor share. However, as

shown in Figure 6 (Right Panel), the model suggests a slight decline in the adoption of computers

from 1980 to 2000, resulting in a weakened extensive channel and, consequently, an increase in the

labor share during this period.
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Figure 6: Labor Share Dynamics: Model Versus Data

5 Discussion

5.1 Positive and Increasing Profit

The baseline model assumes firms do not generate profits. Nevertheless, recent studies have shown

that the most productive firms often achieve higher profits and a lower labor share (Barkai, 2020;

De Loecker, Eeckhout and Unger, 2020; Autor et al., 2020), contributing to a decline in the overall

labor share (Kehrig and Vincent, 2021). In light of these findings, we adjust our model to incorpo-

rate a production function that includes entrepreneurial skill Mg(υ), utilized by technology g for

task υ, with the entrepreneurs’ input share interpreted as profit share. The production function is

thus:

yg(υ) = ag(υ)
([

αg
L

]1/ρg
Lg(υ) +

[
αg
K

]1/ρg
Kg(υ) +

[
αg
M

]1/ρg
Mg(υ)

) ρg

ρg−1

This formulation, while not exactly fitting into Lucas’ span-of-control framework (Lucas, 1978),

shares a similar principle that a portion of the output is allocated to entrepreneurs. In this revised

production function, we must determine six parameters: {αg
f}

g∈{TH ,TL}
f∈{L,K,M}. Following the baseline

calibration, we maintain labor shares
(
αTL
L , αTH

L

)
= (0.87, 0.10). Owing to data limitations, we

adopt a fixed rule for dividing inputs between capital and entrepreneurial skill across all technologies

g ∈ G, setting
(
αg
K , αg

M

)
=

(
κ× [1− αg

L], [1− κ]× [1− αg
L]
)
, effectively reducing the number of

parameters to just κ. We select κ = 0.81 to align the profit share of GDP in the 1980s with the

7.6% figure reported by Dobbs et al. (2015).

The model is successful in predicting the profit share of GDP in the 2010s, estimating a profit

share of 9.8% in 2010, which matches the figure for 2013 reported by Dobbs et al. (2015). However,
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the model’s explanatory power regarding the declining labor share has diminished. It now accounts

for approximately 20% of the labor share decline (see Figure 7, left panel). This is largely because

adding another factor reduces the aggregate EOS between capital and labor, attenuating the impact

of increased capital stock on labor observed in previous cases.
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Figure 7: Changes in Labor Share for Different Values of ρg in Model with Positive Profit.

Furthermore, as shown in Figure 7 (Right Panel), both labor share and capital share decline.

However, the profit share, representing entrepreneurs’ factor share, increases, as evidenced by the

positive percentage change between 1980 and 2010. This finding aligns with the evidence provided

by Barkai (2020).

5.2 Sensitivity of Elasticity of Substitution

In our baseline analysis, we follow Gechert et al. (2022) by adopting their lowest estimate for the

elasticity of substitution (EOS) in our model. A critique regarding our methodology concerns

the uniform EOS assumed for both high (TH) and low (TL) technology sectors. This critique is

warranted given that the exact EOS values are challenging to pinpoint from the available data.

Nevertheless, evidence suggests that the EOS for TH technology could be higher than that for TL

technology, as Aum, Lee and Shin (2018) estimate the EOS between computers and occupations

to consistently exceed 1.

To address these concerns and explore the impact of varying EOS values, we model different

ρg values ranging from 0.2 to 0.9, all below the threshold of 1. As illustrated in Figure 8, every

evaluated ρg value results in a predicted reduction in the labor share, as evidenced by the negative

percentage change in sL. Furthermore, the model indicates that an increase in the EOS corresponds

with a more pronounced decline in the labor share, thereby reinforcing the underlying mechanism

of our model.
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Figure 8: Changes in Labor Share for different values of ρg

5.3 The Importance of Factor Intensity

In our baseline analysis, we link the labor intensity of high capital-intensive technology to the

4-digit industry reported by the IFR with the highest robot density. For low capital-intensive tech-

nology, we calibrate it to reflect the actual labor share accurately. This section explores alternative

factor share intensities to assess our mechanism’s robustness across different parameterizations of(
αTL
L , αTH

L

)
. We find that a significant difference between αTL

L and αTH
L is essential for our mecha-

nism to hold.

Consider a hypothetical scenario where
(
αTL
L , αTH

L

)
= (0.5, 0.4), with the adoption share ad-

justed to match the initial labor share. We also incorporate time-varying parameters as depicted

in Figure 5. Results, shown in Figure 9, unexpectedly indicate an increase in labor share across all

examined values of ρg, contradicting the expected decline.

0.2 0.3 0.4 0.5 0.6 0.7
g

5

0

5

10

15

ch
an

ge
s i

n 
sL  (

%
)

baseline
data

Figure 9: Changes in Labor Share for different values of ρg with
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This result is intuitive. Recall our formula for labor share change: ŝLsL =
∑

g∈G(ê
g
Le

g
L)× (τ̂ gτ g).

Here, the extensive margin τ̂ gτ g, which influences the labor share, is dependent on the difference

in labor shares between technologies. Therefore, if the difference in labor shares between the two

technologies is minimal, the extensive margin’s negative impact on the labor share will also be

diminished, leading to a counterfactual increase in labor share.

5.4 Endogenous Labor Choice

To accommodate endogenous labor supply and keep the baseline conditions intact, we separate the

labor and capital supply problems and assume that labor works hand to mouth. The capital supply

problem is the same as the one in Section 3.2. The utility function of workers in follows Greenwood,

Hercowitz and Huffman (1988) utility function. Workers’ optimization problem follows

u(C,L) =
C1−σ − 1

1− σ
− L1+ 1

ν

1 + 1
ν

s.t. PC = wL,

where ν is the Frisch elasticity of of labor supply. Workers supply labor according to optimality

condition CσL1/ν =
w

P
. Since workers are hand-to-mouth, we can rewrite FOC as L =

(w
P

) 1−σ
σ+1/ν

.

All other equilibrium conditions remain the same as in the baseline case. In the quantitative

exercise below, we further pick σ = 2 and ν = 1. The result is reported in Figure 10.
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Figure 10: Changes in Labor Share for Different Values of ρg in Model with Endogenous Labor Supply.

In the scenario with endogenous labor supply, capital adjustments ensure that the optimal

capital-labor ratio in equilibrium remains constant. Consequently, the change in labor share mirrors

that of the baseline case and so there is no difference between the labor share changes in model with

exogenous and endogenous labor supply. However, the aggregate elasticity of substitution (EOS)
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differs due to the labor’s endogenous response to wage changes, as illustrated by the equation:

EOS = −d ln(K/L)

d ln(r/w)
= −K̂ − L̂

r̂ − ŵ
,

where the change in labor (L̂) is now nonzero. This endogenous response results in a reduced

magnitude of the EOS for the same wage and capital rental rate changes.

6 Conclusion

Our study presents a groundbreaking analysis of the declining labor share, attributing it to the

intricate interplay between technological adoption and capital accumulation. This approach dis-

tinguishes itself from existing literature by focusing on the internal dynamics of economic systems

rather than external factors like globalization or demographic changes. We propose that the labor

share’s decline is driven by the adoption of capital-intensive technologies, a process that affects

the labor share negatively even when the elasticity of substitution (EOS) within each technology

type remains below one. This process unfolds through two distinct mechanisms: the extensive and

intensive channels.

The extensive channel relates to how firms, in response to an increase in capital, shift towards

more capital-intensive technologies, thereby reducing the labor share. This shift is a strategic

move to optimize production efficiency by leveraging technological advancements, exemplified by

the widespread incorporation of computers into business operations since the 1980s. The intensive

channel, on the other hand, focuses on the direct impact of changes in factor prices on the cost

structure, which can lead to an increased labor share when capital becomes relatively more expen-

sive, assuming the EOS between capital and labor is below one. However, the rising prevalence

of technology that favors capital intensity has tipped the balance, leading to an overall decline in

labor share despite the intensive channel’s potential to counteract this trend.

Our analysis underscores the significance of technology availability, particularly the role of

computers, in economic outcomes. The diffusion of personal computing technology marks a critical

juncture in labor share dynamics, aligning with the observed shift from stability to decline in labor’s

income share. This correlation highlights the transformative impact of technological adoption on

labor markets and income distribution.

By weaving the concepts of technological choice, capital accumulation, and the dual channels

of economic adjustment into our narrative, we provide a nuanced framework for understanding the
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labor share’s decline. This model not only offers insights into the mechanics of income distribution

but also sheds light on the broader economic implications of technological progress and capital

deepening.

In sum, our contribution lies in elucidating a dual mechanism—comprising extensive and inten-

sive channels—that explains the declining labor share in the context of technological adoption and

capital accumulation. This analysis not only enriches the discourse on economic inequality but also

offers valuable perspectives for policymakers grappling with the challenges of technological change

and its impact on the labor market.
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