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Abstract

This paper explores the incidence of capital and labor income taxes and empirical statistics-

based optimal taxation in a general equilibrium framework with endogenous automation.

It first identifies two channels that contribute to wage inequality : the substitution effect

and the automation effect. While capital deepening can partially alleviate wage inequality

through the substitution effect, it simultaneously exacerbates wage inequality through the

automation effect. Our theoretical analysis indicates that these two effects revise the con-

ventional Mirrleesian optimal tax formula. The quantitative analysis demonstrates that the

substitution effect leads to a more progressively optimal tax system, whereas the automa-

tion effect operates in the opposite direction. In the end, both the optimal capital and labor

income tax rate are inverted U-shaped as a function of income.
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1 Introduction

Over the past four decades, automation technology has been widely recognized as a key con-

tributor to the increasing wage inequality in the United States (Acemoglu and Restrepo, 2022).

In this scenario, the question of how to design an optimal redistributive policy becomes crucial

from both practical and intellectual perspectives. The automation process involves that tasks

originally produced by labor are displaced by capital. However, it remains unclear how to tax

capital and labor income when automation technology is endogenously determined.

By integrating the insights from Mirrlees (1971) and Acemoglu and Restrepo (2022), we

address the aforementioned question in a Mirrleesian economy that has been augmented to

include changes in endogenously automated technologies. Specifically, we develop a tractable

general equilibrium model that allows for the analysis of arbitrarily nonlinear income taxes.

Following the techniques pioneered by Sachs et al. (2020), we study the incidence of capital

and labor income tax reforms and derive a parsimonious characterization of optimal income

taxation. The key and counter-intuitive finding of this paper shows that although automation

technology exacerbates wage inequality, it also diminishes the progressivity of optimal income

taxation.

We embed the endogenous assignment model(Costinot and Vogel, 2010; Ales et al., 2015)

with the task-based framework (Acemoglu and Autor, 2011; Acemoglu and Restrepo, 2018a) to

microfound our production function. Concretely, there is a continuum of occupations to which

skills are endogenously assigned, and each occupation involves a continuum of tasks that re-

quires either capital or labor to be employed in order to complete it. In our baseline frame-

work, both wages and automation technology are endogenously determined. Nevertheless,

our model is tractable enough to decompose the different effects that contribute to equilibrium

wages.

To emphasize the significance of automation technology, we initially disentangle two chan-

nels that demonstrate how factor inputs influence wages in equilibrium: the substitution effect

and the automation effect. The substitution effect captures the impact of the substitutional or

complementary relationship between factor inputs on factor prices while holding automation

technology constant. In a model featuring two types of factor inputs, namely capital and labor,

this effect encompasses both capital-skill complementarity(Krusell et al., 2000; Cui et al., 2021)

and imperfect substitution between skills (Stiglitz, 1982; Sachs et al., 2020). By incorporating

these two factors, our model facilitates the simultaneous analysis of optimal capital and labor

income taxation within a general equilibrium framework.

Unlike the substitution effect, the automation effect implies that factor inputs lead to en-
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dogenous technological change in automation, which subsequently affects factor prices indi-

rectly. Recent studies have examined the impact of automation on wages from both theoretical

and empirical perspectives(Acemoglu and Loebbing, 2022; Acemoglu and Restrepo, 2022; Moll

et al., 2022), which bolsters our confidence in distinguishing this effect from the others. By

defining the demand-side elasticities, we find that capital deepening can increase wage levels

through the substitution effect, which results from the enhancement of marginal productivity of

labor. On the contrary, it can decrease wage levels through the automation effect, by reducing

the demand for labor.

As the comparative advantage between capital and labor may vary across different occu-

pations and tasks, it is important to note that changes in wage levels can conceal significant

heterogeneity. We delve deeper into the implications of these two effects on the distribution of

wages. Although capital deepening raises wages for all skill types, low-skilled workers bene-

fit disproportionately due to the substitution effect. Conversely, capital deepening diminishes

wages for all skill types through the automation effect, with low-skilled occupations bearing the

brunt of the impact. Our findings emphasize that capital deepening can reduce wage inequal-

ity through the substitution effect while simultaneously exacerbating it through the automation

effect.

Armed with the analyses above, we introduce tax reform for the discussion of tax incidence,

in the same vein of Sachs et al. (2020). However, our work differs from theirs by implementing

tax perturbations within the context of multidimensional taxation and endogenous automation.

In our model, both capital and labor income tax reforms have significant implications for the

relative supply of capital and labor, the adoption of automation technology, the distribution of

wages, and ultimately the social welfare. We show that discussions on tax incidence would be

incomplete without considering the impact of automated technological change.

Next, we extend the variational approach developed by Sachs et al. (2020) to solve optimal

multidimensional taxation, i.e., optimal nonlinear capital and labor income taxes, in terms of

sufficient statistics. In the appendix F, we also demonstrate the equivalence between mech-

anism design and variational approach in solving optimal multidimensional taxation. Com-

pared to the existing literature that examines the optimal labor income tax problem using a task-

to-talent assignment model(Ales et al., 2015; Sachs et al., 2020; Loebbing, 2020), our occupation-

to-talent assignment model incorporates the production of tasks by capital. While automation

commonly refers to the process in which capital replaces labor in the production of tasks, this

framework enables us to analyze the implications of automated technological change for both

optimal capital and labor income taxes.
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Finally, we conduct a numerical analysis of optimal taxation and discover that both the sub-

stitution effect and automation effect make significant contributions to the optimal tax schemes.

To begin, we calibrate the 2019 US economy using the Distributional National Accounts (DI-

NAs) constructed by Piketty et al. (2018). Our findings reveal that occupations with higher

labor income exhibit a lower level of automation. Subsequently, we conduct simulations to de-

termine the optimal taxation under various scenarios, including the tax system with separable

nonlinear labor and capital income taxation(NLIT-NCIT system), as well as scenarios where

the capital income taxation is constrained to be linear (NLIT-LCIT system). Our analysis re-

veals that both optimal nonlinear capital and labor income taxes exhibit an inverted U-shaped

pattern. Relative to the benchmark with exogenous wages(Mirrlees, 1971; Saez, 2001), the sub-

stitution effect contributes to a more progressive optimal tax system, while the automation

effect counteracts this progressivity.

Our work is related to several streams of literature, one of which concerns is about automa-

tion technology. While some studies model automation using a task-based framework(Acemoglu

and Autor, 2011; Acemoglu and Restrepo, 2018a), several others investigate the implications of

automation technology for growth(Acemoglu and Restrepo, 2018b), employment (Acemoglu

and Restrepo, 2020), labor share(Hémous and Olsen, 2022; Bergholt et al., 2022; Hubmer and

Restrepo, 2021), and inequality (Moll et al., 2022; Acemoglu and Restrepo, 2022). However,

few studies have explored the optimal government’s policy response to this technology, except

some recent works on robot tax (Costinot and Werning, 2018; Guerreiro et al., 2022; Thuemmel,

2023). While taxing the users of capital, such as robots or equipment, could regulate automa-

tion technology directly, the question remains as whether taxing the owners of capital, such as

wealth or capital income, would be effective. This paper explores the design of optimal capital

income tax in the context of automation technology.

Another relevant stream of literature pertains to capital taxation. Since the influential Chamley-

Judd result that suggests capital should not be taxed in the long run (Judd, 1985; Chamley,

1986), the debate regarding the optimal design of capital taxes has persisted. Some studies in-

troduce equipment-skill complementarity to argue that the optimal tax rate is not zero even in

the steady state (Slavik and Yazici, 2014; Cui et al., 2021). Saez and Stantcheva (2018) argue

that taxing capital income may be desirable if individuals derive utility from wealth. While

we incorporate heterogeneity in wealth endowments to examine the motivations redistribution

behind both linear and nonlinear capital income taxes, other studies consider various forms of

heterogeneity to study savings or capital taxation, such as heterogeneous rates of return (Ferey

et al., 2021; Gerritsen et al., 2020). Recent studies have explored the optimal taxation of multiple
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incomes, including the taxation of couples or different sources of income(Jacquet and Lehmann,

2021; Spiritus et al., 2022; Golosov and Krasikov, 2023). Our study serves as a valuable addition

to this line of research.

The last related stream of literature is on tax incidence (Harberger, 1962) and optimal in-

come taxation (Mirrlees, 1971). Extensive research on optimal income taxation has started since

the seminal work of Mirrlees (1971). Some studies explore this basic theory methodologically

in formulating policy recommendations (Saez, 2001; Diamond, 1998; Diamond and Saez, 2011).

Others examine examine optimal income taxation in general equilibrium framework, such as

taking into account the occupation choice (Rothschild and Scheuer, 2013), or introducing bi-

ased technical change(Ales et al., 2015; Loebbing, 2020). Our study aligns closely with Sachs

et al. (2020), who have developed a comprehensive framework for analyzing tax incidence and

optimal taxation. Building upon their work, we contribute to the existing literature by examin-

ing tax incidence and optimal taxation for both capital and labor income taxes within a general

equilibrium framework.

We summarize the contributions of this paper as follows. Firstly, we build upon the research

of Moll et al. (2022) and Acemoglu and Restrepo (2022) by advancing the discussion on opti-

mal redistributive policy design. Specifically, we investigate the optimal combination of capital

and labor income taxation, recognizing the implications of automation for wage or income in-

equality. Moreover, we calibrate the US economy to the year 2019 and undertake simulations to

analyze the optimal dual-tax system across various scenarios. Through this analysis, we gain

valuable insights into how tax policies should adapt and respond to the impact of automa-

tion technology. From this perspective, our research carries significant policy implications as it

provides policymakers with valuable guidance on designing effective tax policies that address

challenges arising from automation.

By incorporating the interaction between capital and labor in the production function within

a general equilibrium framework, our study extends the simple theory of optimal capital tax-

ation developed by Saez and Stantcheva (2018), who has derived optimal tax formulas in a

partial equilibrium setting. Our expression for optimal capital income taxation incorporates an

additional general equilibrium term that is linked to the optimal labor income taxation. This

term arises due to the incidence of capital income tax reform on the distribution of wages. Cui

et al. (2021) has captured this general equilibrium term by introducing capital-skill complemen-

tarity, while our study complements their work by demonstrating that the replacement of labor

by capital in production tasks, specifically through automation technology, also contributes to

the general equilibrium term. Moreover, our results from numerical simulations provide strong
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evidence that the automation effect is highly consequential and should not be overlooked in the

analysis of optimal income taxation.

Finally, we contributes to the insightful work of Sachs et al. (2020) in two key aspects. First,

we generalize their approach by extending their unidimensional model to a multidimensional

one. Considering that individuals receive both capital income and labor income concurrently,

our analysis of tax incidence and optimal taxation becomes a multidimensional problem. Sec-

ondly, we decompose the general equilibrium effect in their study into substitution effect and

automation effect. From this perspective, our research can be viewed as an application of their

theoretical framework to the scenario of automation technology.

The rest of the paper is organized as follows. Section 2 introduces the model. Section 3 fo-

cuses on the impact of automation technology on wages. Tax incidence analysis is implemented

in Section 4. Section 5 lays out the optimal income tax system. Finally, Section 6 presents the

quantitative results and Section 7 concludes.

2 The Model

2.1 Economic Environment

Individuals.–The economy is populated by a unit mass of individuals differing in their skills,

indexed by n, and wealth, indexed by q. Accordingly, individuals have a two-dimensional type

(n, q) ∈ N × Q with N = [n, n̄] and Q = [q, q̄], following a joint distribution F(n, q) with density

f (n, q). Individuals live for two periods. In the first period, he decides to save aq unit assets

out of his initial wealth yq, and consume the rest to derive utility u(yq − aq). In the next period,

he supplies ln unit labor with wage wn, thus obtaining labor income zn = wnln. Moreover,

his assets can be rented in capital market with rental rate R and he can receive capital income

xq = Raq. In this period, he consumes all his after-tax income. Individuals with a given type

(n, q) maximize their utility subject to the budget constraint:

max
aq,ln

U(n, q) ≡ u(yq − aq) + c(n, q)− v(ln)

s.t. c(n, q) = wnln + (1 + R)aq − T(wnln, Raq)

(1)

Where c(n, q) denotes his consumption in the second period. T(·) is a twice continuously dif-

ferentiable income tax function implemented by the government. −v(ln) is the disutility of

labor. We assume that there is no depreciation in assets aq. Moreover, u(·) and v(·) is twice

continuously differentiable with u′(·) > 0, u′′(·) < 0 and v′(·) > 0, v′′(·) > 0.
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Technology.– There is one final good, which is produced by a continuum occupational output

Yθ, where θ ∈ Θ = [θ, θ̄] denotes the occupation. Output of the final good is given by the

following constant elasticity of substitution (CES) production function:

Y =

{∫ θ̄

θ
βθYρ

θ dθ

}1/ρ

.

Where βθ is a distributional parameter. In each occupation, there is a unit continuum of tasks

i ∈ [0, 1], some of which may be automated by capital.1 The occupational output is produced

according to a Cobb-Douglas production function:

ln Yθ =
∫ 1

0
ln Yθ(i)di,

where tasks can be produced using different-skill labor or capital as follows:

Yθ(i) = ψk(θ, i)K(θ, i) +
∫ n̄

n
ψl(n, θ, i)L(n, θ, i)dn

where ψk(θ, i) and ψl(n, θ, i) denote, respectively, the productivity of capital and n-type labor

in task i of occupation θ. We assume that ψl(n, θ, i) is twice differentiable and strictly log-

supermodular:

ψl(n′, θ′, i)ψl(n, θ, i) > ψl(n, θ′, i)ψ(n′, θ, i) ∀n′ > n, θ′ > θ, i ∈ [0, 1].

Following Costinot and Vogel (2010), this property ensures that there exists a continuous and

strictly increasing matching function θ(n) such that n can be mapped to θ. Intuitively, individ-

uals with skill n choose occupation based on their comparative advantage. Moreover, we order

ψl(n, θ, i)/ψk(θ, i) is strictly increasing with i to ensure there exists a threshold task αθ such that

tasks in [0, αθ] are produced with capital and tasks in (αθ, 1] are produced with labor. Intuitively,

labor has more comparative advantage over capital in more complicated tasks (higher index i).

Given these assumptions on factor’s productivity, the production of tasks could be reduced as

follows:

Yθ(n)(i) =

ψk(θ(n), i)K(θ(n), i) if i ∈
[
0, αθ(n)

]
ψl(n, θ(n), i)L(n, θ(n), i) if i ∈

(
αθ(n), 1

]
1Taking blue-collar workers and teachers for example, worker’s tasks involve carrying, building, driving,

assembling etc, while the duty of teacher is teaching, writhing and coming up with new idea etc. Intuitively, tasks
of the latter are less likely to be automated by capital.
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In what follows, we do not distinguish skill type n and occupation type θ due to their monotone

mapping relationship. To make our notations clear and brief, we reduce the index of occupation

θ and hold the following equations through out the paper,

ψl
n(i) ≡ ψl(n, θ(n), i), ψk

n(i) ≡ ψk(θ(n), i), Kn(i) ≡ K(θ(n), i), Ln(i) ≡ L(n, θ(n), i).

Then, the output and automation technology in occupation θ(n), i.e., Yθ(n) and αθ(n) can be

reduced to Yn and αn naturally.

Government.–The government wishes to raise a given amount of revenue for government

expenditure B, but only has access to the instruments of capital and labor income taxes on

individuals.

B =
∫ n̄

n

∫ q̄

q
T(zn, xq) f (n, q)dqdn. (2)

Equilibrium.–An equilibrium of the model is given by a tax function T, a collection of quan-

tities and prices, a set of automation technology, aggregate output and capital, such that:

• Capital and labor, {Kn(i), Ln(i)}n∈N,i∈[0,1], automation technology, {αn}n∈N, are allocated

in a profit maximizing way to produce output Y given factor price {wn}n∈N, R.

• Capital and labor supply, {aq}q∈Q, {ln}n∈N, maximize individuals’ utility {U(n, q)}n∈N,q∈Q.

• Labor and capital markets clear2:

ln = Ln =
∫ 1

αn
Ln(i)di ∀n ∈ N, K =

∫
n∈N

∫ αn

0
Kn(i)didn =

∫
n∈N

∫
q∈Q

aq f (n, q)dqdn

2.2 Macroeconomic Aggregates

To characterize the equilibrium variables in the way of a parsimonious set of equations, we first

introduce the aggregate results.

Lemma 1 (Equilibrium output) Suppose ψl
n(i)/ψk

n(i) is strictly increasing with i for all n ∈ N, and

the interior point solution for the level of automation {αn}n∈N exists, then the skill output could be

reduced as a Cobb-Douglas production function:

Yn = An(αn)Kαn
n L1−αn

n (3)

2Good markets is naturally clearing,
∫

n∈N

∫
q∈Q c(n, q) f (n, q)dqdn + B = K + Y, due to the Walras’s law.
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where

An(αn) =
e
∫ αn

0 ln ψk
n(i)di+

∫ 1
αn

ln ψl
n(i)di

ααn
n (1 − αn)1−αn

denotes the total factor productivity in the workplace of skill-type n. Denote L ≡ {Ln}n∈N and α ≡
{αn}n∈N, the aggregate output is given by a CES production function:

Y ≡ F(K,L; α) =

{∫ n̄

n
βn

[
Ãn(αn)Kαn L1−αn

n

]ρ
dn
}1/ρ

(4)

where Ãn(αn) = An(αn)ϕ
αn
n (αn), and ϕn(αn) the share of capital allocated to skill-type n out of the

total capital.

Proof. See Appendix A.1.

There are two notes about Lemma 1. First, As the occupational output is in the form of

CD production function, the degree of automation coincides with the capital share. However,

both of them are no longer exogenous, but adjust with the automated technological change.

The intuition behind is that, for the workplace where capital gains more importance (larger

αn), more tasks of individuals with skill-type n are automated. In addition, reassigning tasks

between capital and labor could also promote productivity, captured by the improvement of

An(αn). Second, with no distinction on capital that cooperated with different skill labor, the

aggregate output Y can be expressed as a function of aggregate capital K, a set of labor input L
and automation technology α. As we will see, this parsimonious form is convenient for our tax

analysis.

Definition 1 Denote µn(i) = ψl
n(i)

ψk
n(i)

= δn · iη as the comparative advantage of labor with skill-type n

over capital in task i, where δ̇n > 0, η > 0.

In the context of automation technology, defining the comparative advantages of capital and

labor in tasks is necessary. The definition above shows that the more complex the task (higher

i), the more comparative advantage of producing with labor than capital, i.e., µn(i) increases

with i for any skill-type n. In addition, relative to low-skilled labor, high-skilled individuals

have more comparative advantages over capital for a given task, i.e., µn(i) increases with n for

any tasks i. We will calibrate parameters δn and η in the quantitative analysis. Armed with this

preliminary work, now we turn to the equilibrium factor prices and degree of automation.

Lemma 2 (Factor prices and automation) With the price of aggregate output normalized to one, in

8



equilibrium, wages and rental rate can be given as follows:

wn ≡ wn(K,L; α) =
(1 − αn)γnY

Ln
, R ≡ R(K,L; α) =

αY
K

, ∀n ∈ N. (5)

where γn = pnYn/Y denotes the the share of output value produced by skill-type n in the total output

value, and with
∫ n̄

n γndn = 1.

Denote α =
∫ n̄

n γnαndn as the average degree of automation in the economy, the equilibrium automation

technology is the solution of the following equations:

αn ≡ αn(K,L) = 1 − 1
γn

µn(αn)Ln

K +
∫ n̄

n µn(αn)Lndn
, α ≡ α(K,L) = K

K +
∫ n̄

n µn(αn)Lndn
, ∀n ∈ N.

(6)

Proof. See Appendix A.2.

Equation (5) in Lemma 2 discloses two channels that affect equilibrium factor prices. The

first is capital-skill complementarity and imperfect substitution between skills, which has been

discussed by Slavik and Yazici (2014) and Sachs et al. (2020) respectively. In this paper, we gen-

eralize them as being the substitution effect, for it captures the substitution relationship between

all factor inputs. The second channel, the adjustment of automation technology, called automa-

tion effect, is captured by the new arguments α.3 As we will see, these two effects compose the

workhorse of this paper. The adoption of automation technology is captured by equation (6),

which is endogenous with respect to capital and labor input {K,L}. Intuitively, the more cap-

ital in the economy, the higher extent of automation. While there is no difference in the using

of capital or labor in task αn, i.e., µn(αn) = ψl
n(αn)/ψk

n(αn) = wn/R, the equilibrium degree

of automation in skill-type n, αn, coincides with the capital share RKn/pnYn, and the average

degree of automation in economy, α, coincides with the aggregate capital share RK/Y. Thus,

the rise in automation technology goes hand in hand with the decline in labor share. Recent

studies have found that the decline in aggregate labor share could mainly be attributed to the

process of automation(Hémous and Olsen, 2022; Bergholt et al., 2022).

2.3 Definition of Elasticities

Before we move on to the analysis in the following sections, two bunches of elasticities are

defined here for convenience. As will be shown later, these elasticities play a central role in our

3Acemoglu and Restrepo (2018a) isolates displace effect, captured by 1 − αn, and productivity effect, captured
by γnY, that automated technological change has impact on wage. In this paper, we do not distinguish these two
effects, but make automation technology endogenized.
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decomposition of mechanisms.

The first set of elasticities is about supply-side elasticities. These elasticities are defined to

capture individuals’ behavior of factor supply. To simplify our analysis, we restrict the tax

function to be separable, i.e., T(zn, xq) = Tz(zn) + Tx(xq), 4 which means that the government

levies nonlinear tax on labor and capital income separately. Following the first-order condi-

tions of individuals, the behavior of labor supply depends on marginal labor income retention

rate and wage, ln(1 − T′
z(zn), wn). Symmetrically, the behavior of capital supply depends on

marginal capital income retention rate and rental rate, aq(1 − T′
x(xq), R). Following the stan-

dard definition of elasticity, we denote the elasticity of labor supply with respect to wage and

the elasticity of capital supply with respect to rental rate as follows,

ϵln,wn =
wn

ln
dln
dwn

, ϵaq,R =
R
aq

daq

dR
.

To define the behavioral elasticity for nonlinear tax, we consider a tax perturbation in the same

vein of Gerritsen (2016),

T̃i = Ti + κiτi with i ∈ [z, x]. (7)

where κi denotes the reform parameter, and τi is the reform function of income tax. τi is as-

sumed to be twice differentiable in taxable income. A marginal reform of the income tax can

be studies by considering a change dκi as κi → 0. For a given taxable income i ∈ [z, x], such

reform can both raise the tax burden by τidκi and the marginal tax rate by τ′
i dκi. We define the

elasticity of labor supply with respect to the marginal retention rate as

ϵln,1−T′
z
= −1 − T

′
z(zn)

ln
dln

τ′
z(zn)dκz

|κz=0

which is the relative change in labor supply, dln/ln, due to a relative change in the marginal

retention rate, −τ′
z(zn)dκz/(1 − Tz(zn)). Similarly, the elasticity of capital supply with respect

to the marginal retention rate can be defined as

ϵaq,1−T′
x
= −

1 − T
′
x(xq)

aq

daq

τ′
x(xq)dκx

|κx=0.

We summarize these supply-side elasticities (behavioral elasticities) in Table 1.

4This kind of tax system has been discussed by Gerritsen et al. (2020),Jacquet and Lehmann (2021),Ferey et al.
(2021). With a comprehensive income tax system T(zn, xq), we just need to define some cross-elasticity, e.g., labor
supply w.r.t capital tax rate, this is beyond the scope of this article.
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Table 1: Supply-side elasticities

Marginal retention rate elasticity of labor supply ϵln,1−T′
z

[1−T′
z(zn)]eln ,1−tz

1−T′
z(zn)+eln ,1−tz T′′

z (zn)zn

Marignal retention rate elasticity of capital supply ϵaq,1−T′
x

[1−T′
x(xq)]eaq ,1−tx

1−T′
x(xq)+eaq ,1−tx T′′

x (xq)xq

Wage elasticity of labor supply ϵln,wn
[1−T′

z(zn)−T′′
z (zn)zn]eln ,1−tz

1−T′
z(zn)+eln ,1−tz T′′

z (zn)zn

Rental rate elasticity of capital supply ϵaq,R
[1−T′

x(xq)−T′′
x (xq)xq]eaq ,1−tx

1−T′
x(xq)+eaq ,1−tx T′′

x (xq)xq

Proof. See Appendix B.1.

Where eln,1−tz ≡ −1−tz
ln

dln
dtz

= v′(ln)
lnv′′(ln)

and eaq,1−tx ≡ −1−tx
aq

daq
dtx

= −u′(yq−aq)−1
aqu′′(yq−aq)

represent the

marginal retention rate elasticities of labor and capital respectively, in the context of linear labor

and capital income taxes tz and tx. When T′′
z (zn) = T′′

x (xq) = 0, ϵln,1−T′
z

and ϵaq,1−T′
x

collapse to

eln,1−tz and eaq,1−tx , moreover, we have ϵln,1−T′
z
= ϵln,wn and ϵaq,1−T′

x
= ϵaq,R.

Now we turn to the demand-side elasticities, which is defined according to the first-order

conditions of producer. From Lemma 2, we know that equilibrium factor prices are determined

by factor inputs and the equilibrium automation technology,

wn ≡ wn(K,L; α) =
(1 − αn)γnY

Ln
, R ≡ R(K,L; α) =

αY
K

.

Note that Y ≡ F(K,L; α). It is clear that when the automation effect is shut down, i.e., holding

α unchanged, factor inputs can still affect equilibrium price via substitution effect, which can

be captured by the following definition of elasticity,

ϵwn,Ln′
=

Ln′

wn

dwn

dLn′
, ϵD

wn,Ln
=

Ln

wn

dwn

dLn
, ϵwn,K =

K
wn

dwn

dK
, ∀n, n′ ∈ N. (8)

Readers should be careful about the notations of ϵD
wn,Ln

, which we distinguish from ϵwn,Ln . For

a given skill-type n, the labor input Ln can affect wage wn directly holding Y unchanged, we

denote this channel by ϵD
wn,Ln

. It can also affect wage through equilibrium effect indirectly,

where Y changes, captured by ϵwn,Ln . Moreover, ϵwn,Ln′
, n ̸= n′ capture the spillover effects of

labor input Ln′ on wage wn due to imperfect substitution between skills. ϵwn,K captures the

capital-skill complementarity. Since we restrict rental rate R to be uniform, the definition of

elasticity for substitution effect is more straightforward,

ϵR,Ln =
Ln

R
dR
dLn

, ϵR,K =
K
R

dR
dK

, ∀n ∈ N.

11



Next, it is time to turn on the automation effect. Armed with the equilibrium factor prices,

we first define the elasticity of them with respect to automation technology,

ϵwn,αn =
αn

wn

dwn

dαn
, ϵR,α =

α

R
dR
dα

, ∀n ∈ N.

The intuition behind that is the automation can induce the change of demand structure for

labor and capital, consequently impacting factor prices.5 Furthermore, Lemma 2 shows that

the equilibrium automation technology is determined by factor inputs,

αn ≡ αn(K,L) = 1 − 1
γn

µn(αn)Ln

K +
∫ n̄

n µn(αn)Lndn
, α ≡ α(K,L) = K

K +
∫ n̄

n µn(αn)Lndn
, ∀n ∈ N.

Following the same logic, we define the elasticity of automation technology with respect to

factor inputs,

ϵαn,Ln′
=

Ln′

αn

dαn

dLn′
, ϵD

αn,Ln
=

Ln

αn

dαn

dLn
, ϵαn,K =

K
αn

dαn

dK
, ∀n ∈ N,

ϵα,Ln =
Ln

α

dα

dLn
, ϵα,K =

K
α

dα

dK
, ∀n ∈ N.

We summarize these demand-side elasticities in Table 2.

Table 2: Demand-side elasticities

Indirect wage elasticity of labor ϵwn,Ln′
(1 − ρ)(1 − αn′)γn′

Direct wage elasticity of labor ϵD
wn,Ln

ρ(1 − αn)− 1

Wage elasticity of capital ϵwn,K (1 − ρ)α + ραn

Rental rate elasticity of labor ϵR,Ln (1 − αn)γn

Rental rate elasticity of capital ϵR,K α − 1

Wage elasticity of automation ϵwn,αn − αn
1−αn

Rental rate elasticity of average automation ϵR,α 1

Indirect automation elasticity of labor ϵαn,Ln′
(1−ρ)(1−αn′ )γn′+

∫
(1−αn)γnϵµn(αn),αn ϵαn ,Ln′

dn
ϵµn(αn),αn+αn/(1−αn)

Direct automation elasticity of labor ϵD
αn,Ln

ρ(1−αn)−1
αn/(1−αn)

Automation elasticity of capital ϵαn,K
(1−ρ)α+ραn+

∫
(1−αn)γnϵµn(αn),αn ϵαn ,Kdn

ϵµn(αn),αn+αn/(1−αn)

Average automation elasticity of labor ϵα,Ln −(1 − αn)γn −
∫
(1 − αn′)γn′ϵµn′ (αn′ ),αn′

ϵαn′ ,Ln dn′

Average automation elasticity of capital ϵα,K 1 − α −
∫
(1 − αn)γnϵµn(αn),αn ϵαn,Kdn

5Note that ϵwn ,αn′ = 0 for n ̸= n′ due to the Envelope Theorem, and with no heterogeneous in rental rate, the
definition of ϵR,αn , ∀n ∈ N is redundant, which can be understood by R = αY/K.
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Proof. See Appendix B.2.

Following the Chain rule, it is clear for us to characterize the automation effect of factor

inputs on factor prices. For instance, capital supply can lead to the adjustment of automation

technology, i.e., ϵαn,K, which will further induce the change of wage, i.e., ϵwn,αn . Readers can try

to assemble these elasticities by themselves.

3 Automated Technical Change

The relationship between factor prices and factor inputs is an important building block of our

tax incidence analysis below. In this section, we take labor and capital inputs as exogenous for

the moment and consider the impacts of them on wages and rental rate. As already alluded to,

these impacts could be decomposed into automation effect and substitution effect. In the following

analysis, we focus on the implications of automated technical change for factor prices and wage

distribution.

3.1 Automation and Factor Prices

Automation Effect–The key ingredients of automation effect is the adjustment of automation

technology corresponding to factor inputs, and further, the implications of automation technol-

ogy for factor prices. Using the demand-side elasticities defined in table 2, the rates of change

in wage and rental rate induced by change in factor inputs through automation effect can be

given as follows,

dwn

wn
|AE = ϵwn,αn

[
ϵD

αn,Ln

dLn

Ln
+
∫ n̄

n
ϵαn,Ln′

dLn′

Ln′
dn′ + ϵαn,K

dK
K

]
, ∀n (9)

dR
R

|AE = ϵR,α

[∫ n̄

n
ϵα,Ln

dLn

Ln
dn + ϵα,K

dK
K

]
(10)

Equation (9) shows that automation effect on the rate of change in wage wn can be expressed in

three terms. Labor inputs L lead to automated technical change directly and indirectly, which

are captured by the first two terms. Capital input K can also induce the adjustment of automa-

tion technology, which is captured by the third term, the adjustment of automation technology

can then have implications for wage. As for rental rate, analogously, both labor inputs L and

capital input K can induce automated technical change, then changes in rental rate, which are

characterized by the first and second term in equation (10) respectively. The signs of these terms
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are of the most interest to us. Assuming 0 < ρ < 1, we have,6

ϵR,α; ϵαn,Ln′
; ϵαn,K; ϵα,K > 0, ϵwn,αn ; ϵD

αn,Ln
; ϵα,Ln < 0.

To elucidate the intuition behind, we first argue that ϵR,α > 0 and ϵwn,αn < 0 actually reflect

the change in structure of demand for factor inputs as the automation technology changes. The

higher the degree of automation, the more the demand for capital (the less the demand for la-

bor), the higher the rental rate (the lower the wage), and vice versa. Then let us turn to the

adjustment of automation. The direct effect of labor input Ln may take over the task produced

by capital, then lead to the decrease in automation, i.e., ϵD
αn,Ln

< 0. But for the indirect effect of

labor input L, it generates positive spillover effect on automation technology in a given occu-

pation, and thus ϵαn,Ln′
> 0. As capital in the economy becomes more abundant, the degree of

occupational and average automation technology will increase, i.e., ϵαn,K and ϵα,K are positive.

Follow the same intuition, the effect of labor input on the degree of average automation tech-

nology is negative ϵα,Ln < 0. Thus, for the wage in a given skill-type n, the automation effect of

labor inputs may increase the wage directly and decrease the wage indirectly, through the first

and second terms in (9), respectively. As for the third term, capital input leads to a decreasing in

wages through automation effect. Analogously, the automation effect of labor inputs on rental

rate is negative, but this effect of capital input is positive.

Substitution Effect–Now we turn to the direct impact of factor inputs on wage and rental rate,

holding automation technology fixed, that is substitution effect. Similarly, using demand-side

elasticities defined in table 2, the rate of change in wage and rental rate induced by substitution

effect can be given as follows,

dwn

wn
|SE = ϵD

wn,Ln

dLn

Ln
+
∫ n̄

n
ϵwn,Ln′

dLn′

Ln′
dn′ + ϵwn,K

dK
K

∀n (11)

dR
R

|SE =
∫ n̄

n
ϵR,Ln

dLn

Ln
dn + ϵR,K

dK
K

, (12)

Here, the effects are broken down in the same way as the discussion of automation effect. Fol-

lowing the conditions in Appendix C.1, we have ϵD
wn,Ln

< 0, which means an increasing in labor

inputs will reduce his own wage directly, and ϵwn,Ln′
> 0, which captures the indirectly positive

spillover effect of labor input on wage. Capital input can also increase the level of wage due

to capital-skill complementarity, i.e., ϵwn,K > 0. As for rental rate, i.e., the price of capital, an

increase of labor inputs will increase rental rate while the increase of capital input will decrease

6For brevity, we leave the corresponding prove in Appendix C.1.
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it. The intuition behind is that factor inputs are q-complements in our setting. 7

By now, attentive readers may have noticed that the automation effect and the substitution

effect are indeed opposite to each other. For instance, while capital accumulation (dK/K > 0)

can improve the level of wages through substitution effect, it can also lead to a scenario where

most tasks are taken over by capital, i.e., automation effect, when there is little need for labor,

wages will decrease. Labor accumulation follows the similar intuition. To visually display the

analysis above, Figure 1 depicts quantitative results of the demand-side elasticities at different

labor income quantiles.

Figure 1: Elasticity of wage with respect to labor and capital inputs

The left upper panel of Figure 1 shows how labor input affect his own wage directly, which

can be decomposed into automation effect, i.e., ϵwn,αn(ϵ
D
αn,Ln

+ ϵαn,Ln), and substitution effect,

i.e. ϵD
wn,Ln

+ ϵwn,Ln . While occupational labor input reduces his own wage through substitution

effect, it can also increase the own-wage through automation. The left bottom panel displays

7Kim (2000),p4: Inputs i and j are net q - complements (substitutes) in the production of a fixed output, so that
an increase in the quantity of the jth input increases (decreases) the price, or the marginal valuation.
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the matrix of total elasticity of wage with respect labor input, both own-occupational and cross-

occupational, the value on the diagonal corresponds to the effect of own-occupational labor

input on wages. It is a novel finding that the values on the matrix are numerically insignificant,

which is slightly positive, implying there exists counteracting forces between substitution effect

and automation effect. Due to automated technical change, wages are less sensitive to labor

inputs. The intuition behind is similar to Clemens et al. (2018) and Blundell et al. (2022), in

which a relative decrease of agricultural workers or a relative increase of educated people will

induce directed technical change, which counteracts with the effects of change in labor inputs

itself, thus wages do not change dramatically. Another interesting finding is that, relative to the

labor input of high income individual, wages are more sensitive to the labor input of middle or

bottom income individual, but is still far below the sensitivity of wage with respect to capital

input.

The right upper panel depicts how wage reacts to capital input through automation ef-

fect and substitution effect, ϵwn,αn ϵαn,K and ϵwn,K. As anticipated, capital inputs increase wages

through substitution but decrease them through automation effect. Moreover, we sum the two

effects and display the comprehensive effects in the right bottom panel. We find that the substi-

tution effect of capital input on wage dominates the automation effect in our baseline calibra-

tion, stimulating capital inputs may benefit the wage income of all individual. However, as we

can see, high income individuals benefits more.

There are two takeaways from the figure above. First, either labor input or capital input can

lead to the change in wages through automation effect and substitution effect in opposite direc-

tions. However, wages are more sensitive to capital input relative to labor income when taking

account the automation technology. Second, as Acemoglu and Autor (2011) have mentioned,

the U.S. labor market has witnessed stagnation in the real wage of bottom and middle income

populations. Our model sheds light on this phenomenon, since the right bottom panel shows

that wage stagnation in low skill occupation can go hand in hand with capital accumulation.

Proposition 1 Assume 0 < ρ < 1 and the equilibrium automation technology α exists at all wage

quantiles, then the automation effect and substitution effect of factor inputs on factor prices are always

in the opposite directions. Moreover, when η = 0, these two effects are totally counteracted.8

8From Table 2, let ϵµn(αn),αn = η = 0, one can find that ϵwn ,Ln′
+ ϵwn ,αn ϵαn ,Ln′

= 0, and ϵwn ,K + ϵwn ,αn ϵαn ,K = 0,
and so on.

16



3.2 Automation and Wage Distribution

We are not only concerned about the impact of factor inputs on the level of wages, but also care

about the impact of factor inputs on wage distribution, which plays a central role in the design

of optimal income taxation. Given any two individuals with different skill types, n, ñ ∈ N

and n > ñ. One could regard n as skilled college graduates and ñ as unskilled high school

graduates, then the implications of factor inputs for wage premium can be viewed through the

lens of the following decomposition.

Automation effect–We substitute the expressions of elasticities into equation (9), the automa-

tion effect on wage premium can be given as follows,

dwn

wn
|AE − dwñ

wñ
|AE = [1 − ρ(1 − αn)]

dLn

Ln
− [1 − ρ(1 − αñ)]

dLñ

Lñ

+

[
1 − ρ

η(1 − αñ)/αñ + 1
− 1 − ρ

η(1 − αn)/αn + 1

]
1

1 − η̃

∫
(1 − αn′)γn′

dLn′

Ln′
dn′

+

[
ρ(1 − η̃)αñ + φ

η(1 − αñ)/αñ + 1
− ρ(1 − η̃)αn + φ

η(1 − αn)/αn + 1

]
1

1 − η̃

dK
K

, ∀n > ñ.

(13)

Where φ = (1 − ρ)α + ρ
∫ ηαn(1−αn)γn

η+αn/(1−αn)
dn > 0, and η̃ =

∫ η(1−αn)γn
η+αn/(1−αn)

dn ∈ (0, 1). Note that we

have rewritten the expressions of ϵαn,Ln′
and ϵαn,K in Appendix C.1.

Substitution effect–As for the substitution effect on wage premium, we substitute the expres-

sions of elasticities into equation (11), then obtain,

dwn

wn
|SE − dwñ

wñ
|SE = [ρ(1 − αn)− 1]

dLn

Ln
− [ρ(1 − αñ)− 1]

dLñ

Lñ
+ ρ(αn − αñ)

dK
K

∀n > ñ. (14)

Proposition 2 Suppose 0 < ρ < 1 and α̇n < 0 are satisfied 9, given a change in the structure of

factor inputs, dLn/Ln = dLñ/Lñ = dL/L > 0, ∀n, ñ ∈ N and dK/K > 0, then labor inputs can

directly decrease wage premium through automation effect while increase it through substitution effect,

moreover, labor inputs can also indirectly increase wage premium through automation effect due their

spillover. Capital accumulation can increase wage premium through automation effect while decrease it

through substitution effect.

Proof. See Appendix C.2.

Proposition 2 shows the implications of automation effect and substitution effect for wage

distribution. To understand the intuition behind, we turn to figure 1 again. Taking capital ac-

cumulation for instance, the SE-line in the right upper panel shows that capital input increases
9The intuition behind αn decreases with n is that in the occupation of high skill-type, less task could be auto-

mated. We check it in the quantitative analysis.
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wages at all skill types, but it benefits low skilled workers more due to the substitution effect,

thus induces to a decrease in wage premium. On the contrary, the AE-line shows that capital

input reduce wages of all skill types through automation effect, but wage of low skill occu-

pation bear most of the brunt, leading to an increase in wage premium. A similar is for the

labor inputs. In a word, the automation effect and substitution effect of factor inputs on wage

distribution also stand on the opposite. As we shall see, these two effects play a central role in

the design of tax system. Moreover, in consideration of a continuum of wages, our model may

shed light on wage staganation, due to these heterogeneous effects across wages. Acemoglu and

Autor (2011) prove that a task-based framework could interpret several central trends in the US

labor market, which bolster our confidence that tax policy should make some responses to au-

tomated technical change. As automation induced by capital accumulation accounts for part of

the increasing in wage inequality, taxing capital may be desirable if redistribution is valuable.

However, the cost of taxing capital is that it curbs capital accumulation, leading to decreasing

in wages, then government revenue raised from labor income may incur losses. We turn to tax

incidence analysis to shed light on the trade-off between efficiency and equity in the following

section.

4 Tax Incidence Analysis

So far, we have clarified how factor inputs impact their prices through the automation effect

and substitution effect. In this section, we introduce tax reforms to initiate the analysis of tax

incidence. Drawing upon the central theoretical contribution made by Sachs et al. (2020), we

derive closed-form formulas for the first-order effects of tax reforms on individual labor and

capital supplies, wages and rental rate, government revenue, and then social welfare. As we

shall see, our extension supplements the work of Sachs et al. (2020) by introducing capital-

skill complementarity and automation technology, which can be viewed through the lens of a

revised integral equation system.

4.1 Effects on Factor Supplies

Given a nonlinear tax perturbation described in preceding, i.e., T̃i = Ti + κiτi with i ∈ [z, x], we

denote dln/ln as the percentage change in labor supply induced by the tax reform as κi → 0,

analogously, the change in capital supply daq/aq, the change in wage dwn/wn, and the change

in rental rate dR/R.
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With a separable tax function, we know that factor supplies depend on their prices and

marginal retention rate, that is

dln
ln

= −ϵln,1−T′
z

τ
′
z(zn)

1 − T′
z(zn)

+ ϵln,wn

dwn

wn
,

daq

aq
= −ϵaq,1−T′

x

τ
′
x(xq)

1 − T′
x(xq)

+ ϵaq,R
dR
R

. (15)

Where the first term captures the direct effect of tax reform and the the second term accounts

for the general-equilibrium feedback via factor prices. Bear in mind that the implications of

factor inputs for factor prices have been decomposed into substitution and automation effect,

armed with the foregoing analysis, we have the following lemma that

Lemma 3 Given any tax perturbation τi, and κi → 0 for i ∈ [z, x], the incidence of the tax reforms on

factor supplies can be depicted by the following integral equation system,

dln
ln

= −ϵln,1−T′
z

τ
′
z(zn)

1 − T′
z(zn)

+ ϵln,wn

[∫
ϵwn,Ln′

dLn′

Ln′
dn′ + ϵwn,K

dK
K

]
︸ ︷︷ ︸

Substitution Effect

+ ϵln,wn ϵwn,αn

[∫
ϵαn,Ln′

dLn′

Ln′
dn′ + ϵαn,K

dK
K

]
︸ ︷︷ ︸

Automation Effect

(16)

daq

aq
= −ϵaq,1−T′

x

τ
′
x(xq)

1 − T′
x(xq)

+ ϵaq,R

[∫
ϵR,Ln′

dLn′

Ln′
dn′ + ϵR,K

dK
K

]
︸ ︷︷ ︸

Substitution Effect

+ ϵaq,RϵR,α

[∫
ϵα,Ln′

dLn′

Ln′
dn′ + ϵα,K

dK
K

]
︸ ︷︷ ︸

Automation Effect

(17)

Note that ϵD
wn,Ln

+ ϵwn,αn ϵD
αn,Ln

= 0. Equation (16) counterparts to the integral equation proposed

by Sachs et al. (2020), but ours is distinct in two ways: First, they do not take into account

the capital-skill complementarity, which is captured by the second term in the second square

bracket, i.e., ϵln,wn ϵwn,K
dK
K . Second, while their general framework does not specify technology

change, we take automated technical change into consideration, which has been regarded to

have a profound impact on labor market, especially on wage inequality. This channel is cap-

tured by the third term of (16). The first term of (16) appears in many Mirrleesian taxation

literature where wage is exogenous, which captures the direct effect of tax reform on labor

supply. Parallel research has examined the implications of directed technical change for tax de-

sign (Loebbing, 2020), However, their work does not consider the interaction between capital
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and labor supply through the equilibrium effect, represented by the second term in the square

brackets.

Analogously, equation (17) characterizes the effect of tax reform on capital supply. The first

term captures the direct effect of tax reform, this term appears in Saez and Stantcheva (2018)

where the net return on capital is exogenous. The second and third terms capture the general

equilibrium feedback due to the endogenous rental rate, via substitution effect and automation

effect, respectively. To the best of our knowledge, there is limited literature that examines the

incidence of capital income tax reform in a general equilibrium framework, which could have

implications for the design of capital income taxation.

To make the incidence of tax reform on factor supplies more clear, we solve the simultaneous

equations (16) and (17) and obtain the following proposition.

Proposition 3 Denote ϵtotal
wn,i = ϵwn,i + ϵwn,αn ϵαn,i and ϵtotal

R,i = ϵR,i + ϵR,αϵα,i for i ∈ {L, K}, the

integral equation system can be reduced to

dln
ln

= −ϵln,1−T′
z

τ
′
z(zn)

1 − T′
z(zn)︸ ︷︷ ︸

DE

−ϵln,wn ϵtotal
wn,Kχ

∫
ωqϵaq,1−T′

x

τ
′
x(xq)

1 − T′
x(xq)

dq︸ ︷︷ ︸
CE

+ϵln,wn

∫ [
ϵtotal

wn,Ln′
+ ϵtotal

wn,Kχϵ̄K,Rϵtotal
R,Ln′

] dln′

ln′
dn′︸ ︷︷ ︸

GE

(18)

dK
K

= −χ
∫

ωqϵaq,1−T′
x

τ
′
x(xq)

1 − T′
x(xq)

dq + χϵ̄K,R

∫
ϵtotal

R,Ln′
dln′

ln′
dn′. (19)

Where χ = 1
1−ϵ̄K,Rϵtotal

R,K
, ϵ̄K,R =

∫
ωqϵaq,Rdq, and ωq =

aq fq(q)
K .

Moreover, denote ζwn,Ln′
= ϵtotal

wn,Ln′
+ ϵtotal

wn,Kχϵ̄K,Rϵtotal
R,Ln′

and assume
∫ ∫

(ϵln,wn ζwn,ln′ )
2dn′dn < 1,10

the integral equation for labor supply can be solved as follows

dln
ln

=
∞

∑
t=0

(
dln
ln

)t
, ∀n ∈ N. (20)

where (
dln
ln

)0

= −ϵln,1−T′
z

τ
′
z(zn)

1 − T′
z(zn)

− ϵln,wn ϵtotal
wn,Kχ

∫
ωqϵaq,1−T′

x

τ
′
x(xq)

1 − T′
x(xq)

dq

10This technical condition ensures that the series in (20) converges, and the technique details can be found in
Sachs et al. (2020). We verify it in the quantitative analysis.
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(
dln
ln

)t
=
∫

ζwn,Ln′

(
dln
ln

)t−1

dn′, ∀t > 0.

Proof. See Appendix D.1

Equation (18) in Proposition 3 is a revised integral equation that counterparts to the one in

Lemma 1 of Sachs et al. (2020). The first term captures the incidence of a reform in labor income

tax on labor supply, namely the direct effect. In addition, reform in capital income tax would also

has impact on capital supply, then on wages, and thus the labor supply. We call this channel

the cross effect. Though the tax function is restricted to be separable, the cross effect appears due

to capital-skill complementarity. In our baseline environment, we have ϵtotal
wn,K > 0, ∀n (See Fig-

ure 1), thus it is easy to know that a more aggressive tax reform, i.e., τ
′
z(zn), τ

′
x(xn) > 0, would

compress individual labor supply via DE and CE. The third term characterizes the general equi-

librium feedback, which is a standard term in general equilibrium framework. However, we

isolate two different channels, imperfect substitution between skills and capital-skill comple-

mentarity, captured by the first and second term in the square bracket. Turn to equation (19),

while it is intuitive that capital income tax reform impacts capital supply directly, symmetri-

cally, labor supplies induced by tax reform can also have implications for capital supply due to

capital-skill complementarity.

4.2 Effects on Factor Prices

Following our preceding analysis in Section 3, we know that the comprehensive effects on factor

prices can be given by

dwn

wn
=

dwn

wn
|AE +

dwn

wn
|SE,

dR
R

=
dR
R

|AE +
dR
R

|SE.

Plugging equation (19) into equation (9) - (12), it is easily to obtain the incidence of arbitrary tax

reform (τz, τx) on equilibrium factor prices.

Corollary 1 The incidence of tax reform on factor prices is given by

dwn

wn
= −ϵtotal

wn,Kχ
∫

ωqϵaq,1−T′
x

τ
′
x(xq)

1 − T′
x(xq)

dq +
∫ [

ϵtotal
wn,Ln′

+ ϵtotal
wn,Kχϵ̄K,Rϵtotal

R,Ln′

] dln′

ln′
dn′ (21)

dR
R

= −ϵtotal
R,K χ

∫
ωqϵaq,1−T′

x

τ
′
x(xq)

1 − T′
x(xq)

dq +
∫ [

ϵtotal
R,Ln′

+ ϵtotal
R,K χϵ̄K,Rϵtotal

R,Ln′

] dln′

ln′
dn′ (22)

Corollary 1 shows that the adjustment of factor prices can be given as a function of labor supply
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changes characterized by Proposition 3. Since ϵtotal
wn,K > 0 and ϵtotal

R,K < 0, 11 we know that the

incidence of an aggressive capital income tax reform may be negative on wages but positive on

rental rate, which is captured by the first term in equation (21) and (22). While the US tax code

has gone through a reduction in capital tax between 2000-2018(Acemoglu et al., 2020), to some

extent, our model might lend support to the decreasing in return to capital, and increasing in

average wage. Moreover, as tax reforms (τz, τx) lead to the changes in labor supply, which can

further induce factor price changes, i.e., the last term in equation (21) and (22).

4.3 Effects on Government Revenue

Now we move on to the incidence of tax reforms on government revenue. As depicted, the

government obtains revenue by levying tax on capital income and labor income separately. For

convenience, we denote fq(q) =
∫

N f (n, q)dn as the density of individuals with wealth type-q,

and fn(n) =
∫

Q f (n, q)dq the density of individuals with skill type-n, thus government revenue

is given by

B =
∫

Q
Tx(Raq) fq(q)dq +

∫
N

Tz(wnln) fn(n)dn.

Note that xq = Raq and zn = wnln. Given the tax reform (τx, τz), it is easily to derive the change

in government revenue as follow

dB =
∫

Q
τx(xq) fq(q)dq +

∫
N

τz(zn) fn(zn)dn︸ ︷︷ ︸
Mechanical Effect

+
∫

Q
T′

x(xq)

[
daq

aq
+

dR
R

]
xq fq(q)dq +

∫
N

T′
z(zn)

[
dln
ln

+
dwn

wn

]
zn fn(n)dn︸ ︷︷ ︸

Behavioral Effect

.
(23)

The first term on the right hand side of (23) is the mechanical effect of tax reform on govern-

ment revenue, holding factor supplies and factor prices unchanged. As individual labor and

capital supply respond to tax reform, which can further lead to the change in wages and rental

rate, thus resulting in government revenue changing with tax base, i.e., the behavioral effect, cap-

tured by the second term. In fact, equation (23) is an extension of equation (15) in Sachs et al.

(2020). For a CES production function, the Euler’s homogeneous function theorem still stands

but revised as in Appendix E.

However, by taking into account the automated technical change, the general-equilibrium

11From Table 2, it is easily to obtain ϵtotal
R,K = −

∫
(1 − αn)γnηϵα,Kdn < 0, and ϵtotal

wn ,K > 0 can be seen in Figure 1
directly.
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contribution of tax reform on government revenue distinct from the one in Sachs et al. (2020).

Firstly, neglecting the automation effect may result in an overestimation of the "trickle-down"

effects in general equilibrium, as the automation effect consistently operates in the opposite

direction to the substitution effect. Moreover, we illustrate the existence of additional "trickle-

down" mechanisms in the context of multi-base incomes. Considering a tax reform that de-

creases the marginal tax rate on capital income, the government loses some revenue collected

from individual capital income. However, lower capital tax rate stimulates investment, then

increases wages because of ϵtotal
wn,K > 0. As the labor share increases, raising the marginal tax

rates on high incomes will benefit government revenue collected from individual labor income.

In a word, relative to the exogenous-wage setting, tax reform that reduces marginal tax rate on

capital income while raising the marginal tax rate on labor income, has a general-equilibrium

contribution on government revenue.

4.4 Effects on Social Welfare

Tax instruments are not only used to raise government revenue, but play a central role in in-

come redistribution. As tax reforms lead to the change in individual utilities, it would also

have implications for social welfare since the government values individual utilities in differ-

ent weights. We define the social welfare function as follow,

W =
1
λ

G
(
{V(n, q)}n×q∈N×Q

)
+ B (24)

where V(n, q) denotes the indirect utility function after solving the individual utility maxi-

mization problem as given in (1). The function G(·) is defined over individual utilities, and is

assumed continuously differentiable, increasing, and concave. λ is the marginal value of pub-

lic funds (MVPF). To characterize the redistributive motivation of the government, we further

define the social welfare weight assigned to individuals as

g(n, q) =
1
λ

dG
dV(n, q)

, ∀n ∈ N, q ∈ Q.

Thus for a government that favors the low-skilled individuals endowed with little wealth, we

have g(n, q) > g(n′, q′) for n < n′ and q < q′. Without loss of generality, we normalize g(n, q)

such that
∫

N

∫
Q g(n, q) f (n, q)dndq = 1. Moreover, we denote gn(n) =

∫
Q g(n, q) f (n, q)dq/ fn(n)

and gq(q) =
∫

N g(n, q) f (n, q)dn/ fq(q) as the social welfare weight of individuals with skill

type-n and wealth type-q, respectively. Now we are allowed to investigate how social welfare
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responses to tax reforms.

Proposition 4 The incidence of tax reforms (τz, τx) on social welfare is given by

dW =
∫
(1 − gn(n))τz(zn) fn(n)dn +

∫
(1 − gq(q))τx(xq) fq(q)dq︸ ︷︷ ︸

ME

−
∫ [

T′
z(zn)zn

ϵln ,1−T′
z
τ′

z

1 − T′
z(zn)

]
fn(n)dn −

∫ [
T′

x(xq)xq
ϵaq ,1−T′

x
τ′

x

1 − T′
x(xq)

]
fq(q)dq︸ ︷︷ ︸

BE

+
∫ [

gn(n)(1 − T′
z(zn)) + T

′
z(zn)(1 + ϵln ,wn )

]
zn

dwn

wn
|SE fn(n)dn +

∫ [
gq(q)(1 − T′

x(xq)) + T
′
x(xq)(1 + ϵaq ,R)

]
xq

dR
R

|SE fq(q)dq︸ ︷︷ ︸
SE

+
∫ [

gn(n)(1 − T′
z(zn)) + T

′
z(zn)(1 + ϵln ,wn )

]
zn

dwn

wn
|AE fn(n)dn +

∫ [
gq(q)(1 − T′

x(xq)) + T
′
x(xq)(1 + ϵaq ,R)

]
xq

dR
R

|AE fq(q)dq︸ ︷︷ ︸
AE

(25)

Proof. See Appendix D.2.

The first term on the right hand of equation (25) is mechanical effect, assuming that individual

is irresponsive to tax reform. It captures the redistributive gains of tax reform since revenue is

transferred between the government and individuals. The second term, known as behavior ef-

fect, captures individual behavior in response to the tax perturbation. These two effects coincide

with the classical intuition of equity-efficiency trade-off, which can be dated back to Mirrlees

(1971) and Saez (2001). However, in the context of multiple factor incomes, one should take into

account the incidence of both labor income tax reform and capital income tax reform simulta-

neously. In addition, as depicted in Corollary 1, tax reforms impact factor prices through two

channels: substitution effect and automation effect, these adjustments of factor prices in general

equilibrium further lead to the change in social welfare, which are captured by the third and

fourth term on the right hand of equation (25). The incidence of tax reform on social welfare

differs from the one in Sachs et al. (2020) along two key dimensions: our analysis takes into ac-

count multiple factor incomes and automated technical change. Because of these two elements,

the second integral in the third term and the two integrals in the fourth term are new channels

of the general equilibrium effect.

To elucidate the general equilibrium effect, we take one of these integrals for instance,

∫ [
gn(n)(1 − T′

z(zn)) + T
′
z(zn)(1 + ϵln,wn)

]
zn

dwn

wn
|SE fn(n)dn (26)

Suppose that tax reforms increase wage through substitution effect, dwn
wn

|SE>0, it could be a

reduction in the marginal capital income tax rate or a raise in the marginal labor income tax rate,

so that his labor income increases (1 + ϵln,wn)zn
dwn
wn

|SE, leading to an increase in government

revenue T
′
z(1 + ϵln,wn)zn

dwn
wn

|SE, the second term in the square bracket. Moreover, an increase
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in his after-tax labor income would contribute to the social welfare by gn(n)(1 − T′
n)zn

dwn
wn

|SE,

the first term in the square bracket. Note that ϵln,wn does not appear here due the envelope

theorem. Finally, aggregating these effects across individuals weighted by their density fn(n)

leads to (26). The analysis is similar for the rest of integrals in the third and fourth terms in

equation (25).

Next, we show that the incidence of tax reforms on social welfare may shed light on the

design of optimal (welfare-maximizing) tax system. Considering a given tax reform that en-

hances the progressivity of labor income tax combined with a reduction of capital income tax

rate, through substitution effect, this kind of tax reform may raise government revenue ob-

tained from individual labor income as well as improve individual utility. The cost of this tax

reform is compressing individual labor supply as well as reducing capital share in the econ-

omy, thus a loss of government revenue obtained from individual capital income. As long as

this "trickle down" forces contributes to the social welfare, the tax reform is desirable relative to

the exogenous price setting. Moreover, taking into account the automated technical change, i.e.,

automation effect, the implications for tax design would be revised. Bear in mind that automa-

tion effect and substitution effect always stand on the opposite, it is intuitive that the optimal

labor income tax should be less progressive relative to the exogenous automation technology

setting. Since as the "trickle down" forces weakens, the marginal welfare gain from enhanc-

ing the progressivity of labor income tax is reduced. We characterize the optimal tax system

theoretically and quantitatively in the following analysis.

5 Optimal Taxation

In this section, we extend the variational techniques proposed by Sachs et al. (2020) to the case

with multiple factor incomes. Following the dual approach, we derive the optimal (welfare-

maximizing) tax system expressed with sufficient statistics. In Appendix F, we also provide

nonlinear income tax formulas using primal approach (mechanism design). As anticipated, tax

formulas derived by the two approaches are indeed equivalent.

5.1 Nonlinear Labor Income Taxation

Part of the optimal tax system is a nonlinear labor income taxation (NLIT), extensive literature

has studied it since the seminal work of Mirrlees (1971). In the context of general equilibrium,

Sachs et al. (2020) has proposed several equivalent ways to deduce the optimal tax formula,

one of which is a novel tax reform approach, as known as the dual approach. As we shall
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see, this basic approach can be applied to multiple factor incomes. Consider a multiple tax

perturbations (τz, τx), from equation (17) and (18), we know that the incidence of the given tax

reform on factor supplies can be given by

daq

aq
= −ϵaq,1−T′

x

τ
′
x(xq)

1 − T′
x(xq)

+ ϵaq,R

∫
ϵtotal

R,Ln′
dLn′

Ln′
dn′ + ϵaq,Rϵtotal

R,K
dK
K

(27)

dln
ln

= −ϵln,1−T′
z

τ
′
z(zn)

1 − T′
z(zn)

− ϵln,wn ϵtotal
wn,Kχ

∫
ωqϵaq,1−T′

x

τ
′
x(xq)

1 − T′
x(xq)

dq + ϵln,wn

∫
ζwn,Ln′

dln′

ln′
dn′

(28)

Now, by specifying an elementary labor income tax reform τ1
z at income z = z∗, we are aimed to

find the counteracting perturbation τ2
z and τx, such that equation (27) and (28) can be reduced

to
daq

aq
= 0,

dln
dln

= −ϵln,1−T′
z

τ1′
z (zn)

1 − T′
z(zn)

.

Lemma 4 Given a Dirac labor income tax perturbation τ1
z , i.e., τ1

z = Iz≥z∗ and τ1′
z (z) = δz∗(z), the

counteracting tax perturbation τ2
z and τx should be

τ2
z (zn) = −

ϵln∗ ,1−T′
z

1 − T′
z(zn∗)

(
dzn∗

dn∗

)−1 ∫ zn

0
ϵtotal

w,Ln∗
[1 − T′

z(z)− T′′
z (z)z]dz (29)

τx(xq) = (1 − T
′
x(xq))xq

∫
ϵtotal

R,Ln′
dln′

ln′
dn′, (30)

Moreover, the incidence of tax reform on wage and rental rate can be given as follows

dwn

wn
= −ϵtotal

wn,Ln∗

ϵln∗ ,1−T′
z∗

1 − T′
z(zn∗)

(
dzn∗

dn∗

)−1

,
dR
R

= −ϵtotal
R,Ln∗

ϵln∗ ,1−T′
z∗

1 − T′
z(zn∗)

(
dzn∗

dn∗

)−1

. (31)

Proof. See Appendix E.1

The intuition behind Lemma 4 is that we use tax perturbation τ2
z to counteract the adjust-

ment of wages, and τx is used to counteract the adjustment of rental rate. As factor supplies

are given by aq(1 − T′
x, R) and ln(1 − T′

z, wn), it is easily obtained that daq
aq

= 0 and dln
ln

=

−ϵln,1−T′
z

τ1′
z

1−T′
z
. While the capital supply has been fixed, the impact of tax reform on factor prices

can only through the adjustment of labor supply, i.e., equation (31). In this way, we are allowed

to avoid involving integral terms, and the deduction of optimal nonlinear labor income taxation

becomes more tractable.

The dual approach implies that, for any tax reform, there is no marginal improvement on
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social welfare (24) when tax system is at optimal. In other words, the incidence of tax reform

on social welfare must equal zero while solving the optimal tax formula, i.e.,

dW =
∫ ∫

g(n, q)dV(n, q) f (n, q)dndq + dB = 0. (32)

For convenience, we define the average weight above a given skill-type n as

ḡzn ≡ ḡn =

∫
n′>n

∫
Q g(n′, q) f (n′, q)dqdn′∫

n′>n

∫
Q f (n′, q)dqdn′ =

∫
n′>n gn′(n′) fn′(n′)dn′

1 − Fn(n)
.

Armed with the incidence analysis in subsection 4.4, the optimal NLIT can be deduced by

specifying the tax reform and the corresponding incidence on factor supplies and factor prices

in Lemma 4.

Proposition 5 Consider a given tax reform in Lemma 4, with dW = 0 satisfied, the function of optimal

nonlinear labor income tax can be given as follow12,

T
′
z(zn∗)

1 − T′
z(zn∗)

=
1

ϵln∗ ,1−T′
z

(1 − ḡzn∗ )
1 − Fz(zn∗)

zn∗ fz(zn∗)

−
(

dzn∗

dn∗

)−1 ∫ [
(1 − ḡzn)

(
1 − T

′
z(zn)

1 − T′
z(zn∗)

)(
1 − Fz(zn)

zn∗ fz(zn∗)

)
zn

]′

ϵSE
wn,Ln∗

dzn︸ ︷︷ ︸
Substitution Effect

−
(

dzn∗

dn∗

)−1 ∫ [
(1 − ḡzn)

(
1 − T

′
z(zn)

1 − T′
z(zn∗)

)(
1 − Fz(zn)

zn∗ fz(zn∗)

)
zn

]′

ϵAE
wn,Ln∗

dzn︸ ︷︷ ︸
Automation Effect

(33)

where ϵSE
wn,Ln∗

= ϵD
wn∗ ,Ln∗

∆n∗(n) + ϵwn,Ln∗ , ϵAE
wn,Ln∗

= ϵwn∗ ,αn∗ ϵD
αn∗ ,Ln∗

∆n∗(n) + ϵwn,αn ϵαn,Ln∗ .

Proof. See Appendix E.2.

Note that ∆n∗(n) = 1 if n = n∗, else, ∆n∗(n) = 0, so that ϵSE
wn,Ln∗

and ϵAE
wn,Ln∗

denote the channels

of substitution effect and automation effect, respectively. The first term on the right hand of

equation (33) in Proposition 5 is known colloquially as ABC rule of optimal income tax (Di-

amond, 1998; Saez, 2001). There are three elements in this term that determine optimal in-

come tax rates: the behavior elasticity ϵln,1−T′
z
, the redistributive motivation of the government

12Loebbing (2020) derived the optimal nonlinear labor income tax formula considering directed technical
change, however, he adopted mechanism design method, i.e., primal approach. In appendix F, we shows that
primal approach and dual approach are indeed equivalent in deducing optimal tax formula.
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1− ḡzn , and the income (or skill) distribution 1−Fz(zn∗ )
zn∗ fz(zn∗ )

. As the skill distribution is bounded, i.e.,

ḡn = Fn(n̄) = 1, it leads to a well known result that the marginal tax rate should be zero at the

top or bottom income level (Seade, 1977).

The second term on the right hand of equation (33) captures implications of imperfect substi-

tution between skills for optimal income tax rates, which can be dated back to Stiglitz (1982). In

their two type individuals model, the general equilibrium forces lead to a lower (resp., higher)

top (resp., bottom) marginal tax rate. Sachs et al. (2020) has generalized Stiglitz (1982) to a

setting with a continuum of skills, and show that if the tax system is initially suboptimal and

progressive, the general-equilibrium "trickle-down" forces may raise the benefits of increasing

the marginal tax rates on high incomes. In this paper, as ϵSE
wn,Ln∗

< 0 for n = n∗, and ϵSE
wn,Ln∗

> 0

for n ̸= n∗, the second term coincides with the conventional "trickle down" forces. Raising

the marginal tax rate on high income individuals may raise government revenue due to this

general equilibrium effect.

The third term is our novel finding since it accounts for the implications of automated tech-

nical change for optimal marginal income tax rate. As has been discussed in Section 3, the au-

tomation effect is always contrary to the substitution effect, it is intuitive that optimal marginal

tax rate on the high income individuals should be lower relative to exogenous-automation set-

ting.

5.2 Capital Income Taxation

Our model can also be used to the discussion of optimal capital income taxation, which com-

poses an important part of the tax system. In this subsection, we derive formulas for optimal

nonlinear and linear capital income taxation in the context of automated technical change.13

5.2.1 Nonlinear Capital Income Taxation

The deduction of optimal nonlinear capital income taxation is analogously to the one of labor

income taxation. We aim to specify a tax perturbation τ1
x , and find another counteracting tax

perturbation τ2
x and τz, such that the general equilibrium feedback can be counteracted. Sym-

metrically, consider a tax reform τx = τ1
x + τ2

x and τz, such that

daq

aq
= −ϵaq,1−T′

x

τ1′
x (xq)

1 − T′
x(xq)

,
dln
ln

= 0.

13Saez and Stantcheva (2018) derive formulas for optimal nonlinear and linear capital income taxation in a
partial-equilibrium setting, we extend it to a general-equilibrium setting and take into account automation tech-
nology.
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Armed with the integral equation system given by (27) and (28), it is easy to derive that

Lemma 5 Given a Dirac capital income tax perturbation τ1
x , i.e., τ1

x = Ix≥x∗ and τ1′
x (x) = δx∗(x), the

counteracting tax perturbation τ2
x and τz are given by

τ2
x (xq) = −ϵtotal

R,K

ωq∗ϵaq∗ ,1−T′
x

1 − T′
x(xq∗)

(
dxq∗

dq∗

)−1

(1 − T
′
x(xq))xq

τz(zn) = −
ωq∗ϵaq∗ ,1−T′

x

1 − T′
x(xq∗)

(
dxq∗

dq∗

)−1 ∫ zn

0
ϵtotal

w,K [1 − T′
z(z)− T′′

z (z)z]dz

Moreover, the incidence of above tax reform on wage and rental rate can be given by

dwn

wn
= −ϵtotal

wn,K

ωq∗ϵaq∗ ,1−T′
x

1 − T′
x(xq∗)

(
dxq∗

dq∗

)−1

,
dR
R

= −ϵtotal
R,K

ωq∗ϵaq∗ ,1−T′
x

1 − T′
x(xq∗)

(
dxq∗

dq∗

)−1

.

Proof. See Appendix E.3.

The intuition behind Lemma 5 is that we use τ2
x to counteract the adjustment of rental rate,

such that capital supply is only determined by tax reform τ1
x . As for labor supply, we use τz to

counteract dwn/wn, such that the incidence of the comprehensive tax reform on labor supply

is shut down, i.e., dln/ln = 0. This preliminary work is use to avoid the involving of integral

term, thus making the derivation of the optimal formula more tractable.

Proposition 6 Consider the tax reform given in Lemma 5, with dW = 0 satisfied, the optimal nonlinear

capital income tax formula can be given by

T
′
x(xq∗)

1 − T′
x(xq∗)

=
1

ϵaq∗ ,1−T′
x

(1 − ḡxq∗ )
1 − Fx(xq∗)

xq∗ fx(xq∗)

− 1
RK(1 − T′

x(xq∗))

∫ [
(1 − ḡzn)

(
1 − T

′
z(zn)

)
(1 − Fz(zn)) zn

]′
ϵSE

wn,Kdzn︸ ︷︷ ︸
Substitution Effect

− 1
RK(1 − T′

x(xq∗))

∫ [
(1 − ḡzn)

(
1 − T

′
z(zn)

)
(1 − Fz(zn)) zn

]′
ϵAE

wn,Kdzn︸ ︷︷ ︸
Automation Effect

(34)

Proof. See Appendix E.4.

Proposition 6 shows that the optimal nonlinear capital income tax formula is determined

by three terms. The first term on the right hand of equation (34), captures the ABC rule for

capital income tax, which first appears in Saez and Stantcheva (2018). In a partial-equilibrium
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setting, there are three elements that govern the optimal marginal tax rate: the behavior elastic-

ity of capital supply, the social welfare weights and the capital income distribution. The more

unequal the distribution, i.e., higher
1−Fx(xq∗ )

xq∗ fx(xq∗ )
, the higher the marginal tax rate at the level of

capital income xq∗ .

The second term on the right hand of equation (34) captures the implications of the capital-

skill complementarity for optimal marginal tax rates, namely, substitution effect. As capital

accumulation can raise the all individual wages through substitution effect, i.e., ϵSE
wn,K > 0, ∀n,

this term is negative. The intuition behind is that lower marginal tax rate can stimulate in-

vestment, then increase individual wages. This general equilibrium effect contributes to the

government revenue raised from individual labor incomes. However, higher wages lead to

the increasing in labor supply, hence rental rate due to general equilibrium effect (Note that

ϵR,Ln > 0, ∀n), which may increase capital income inequality, i.e., higher
1−Fx(xq∗ )

xq∗ fx(xq∗ )
. Thus, taking

into account the general equilibrium effect may also raise the optimal marginal tax rate, espe-

cially at the high level of capital income, for the motivation of redistribution. Thus, we predict

that the optimal capital income tax may become more progressive relative the exogenous prices

setting.

The third term shows how optimal marginal tax rate responses to automated technical

change. As capital accumulation compresses individual wages through automation effect, i.e.,

ϵAE
wn,K < 0, this term is positive. In the context of automation technology, raising marginal capi-

tal tax rate may have general equilibrium contribution to government revenue since it prevents

the decrease of individual wages or labor income. However, one should not neglect the general

equilibrium effect on capital income distribution, which composes an important ingredient for

the design of optimal taxation. As the foregoing analysis suggests that substitution effect is

always contrary to automation effect, it is intuitive that the automated technical change may

reduce the progressivity of optimal capital tax to some extent.

5.2.2 Linear Capital Income Taxation

We now turn to optimal linear capital income taxation, which is more implementable in prac-

tice. Following the same techniques, we first specify an elementary tax reform τ1
x , then find the

correspondingly counteracting tax perturbation τ2
x and τz, the only difference it that we convert

the elementary tax reform from Dirac perturbation to Uniform perturbation.

Lemma 6 Given an Uniform capital income tax perturbation τ1
x , i.e., τ1

x (x) = x and τ1′
x (x) = 1, the
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counteracting tax perturbation τ2
x and τz can be given by

τ2
x (xq) = −ϵtotal

R,K

∫
ωq

ϵaq,1−T′
x

1 − T′
x(xq)

dq(1 − T′
x(xq))xq

τz(zn) = −
∫

ωq

ϵaq,1−T′
x

1 − T′
x(xq)

dq
∫ zn

0
ϵtotal

w,K (1 − T
′
z(z)− T

′′
z (z)z)dz.

Moreover, the adjustments of wage and rental rate can be given by

dwn

wn
= −ϵtotal

wn,K

∫
ωq

ϵaq,1−T′
x

1 − T′
x(xq)

dq,
dR
R

= −ϵtotal
R,K

∫
ωq

ϵaq,1−T′
x

1 − T′
x(xq)

dq.

Proof. See Appendix E.5

Proposition 7 Consider the tax reform given in Lemma 6, with dW = 0 satisfied, the optimal linear

capital income tax formula is given as follow

tx

1 − tx
=

∫
(1 − gq(q))xq fq(q)dq∫

ϵaq,1−T′
x
xq fq(q)dq

−
∫ 1

RK(1 − tx)

[
(1 − ḡzn)(1 − T

′
z(zn))(1 − Fz(zn))zn

]′
ϵSE

wn,Kdzn︸ ︷︷ ︸
Substitution Effect

−
∫ 1

RK(1 − tx)

[
(1 − ḡzn)(1 − T

′
z(zn)(1 − Fz(zn))zn

]′
ϵAE

wn,Kdzn︸ ︷︷ ︸
Automation Effect

(35)

Proof. See Appendix E.6

Proposition 7 provides an expression that decomposes the optimal linear capital income tax

formula into three terms. When wage is set to be exogenous, only the first term exists, which is

in line with Saez and Stantcheva (2018). It actually depicts the classic trade-off between equity,

captured by the numerator, and efficiency, captured by the denominator.
∫

gq(q) fq(q)dq = 1

means there is no redistributive concern along the capital income dimension, so that tx = 0. As∫
gq(q) fq(q)dq = 0, it collapses to a revenue maximizing tax rate, i.e., tx = 1/(1 + eK), where

we assume ϵaq,1−T′
x

equals constant eK.

Our formula is distinct with Saez and Stantcheva (2018) in two ways: First, we introduce

general equilibrium substitution effect, captured by the second term on the right hand of equa-

tion (35). Due to the "trickle down" forces on wage and labor income, it is desirable to lower

capital income tax rate. However, this general equilibrium effect may promote the redistribu-
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tive motivation of the government, i.e., higher
∫
(1 − gq(q))xq fq(q)dq, which can in turn raise

the optimal tax rate. Second, we take into account the automated technical change, which is

depicted by the third term. As automation effect is on the contrary of substitution effect, the

optimal capital income tax may be lower. One caveat is that, no matter nonlinear or linear capi-

tal income taxation, the general equilibrium effects for capital income taxation, i.e., substitution

effect or automation effect, involve the schedule of nonlinear labor income taxation Tz(·). Thus,

the design of the optimal income tax is not isolated, but needs to consider the relevance of

tax instruments. We apply these optimal tax formulas to quantitative analysis in the following

section.

6 Quantitative Analysis

To quantitatively assess these general equilibrium effects on optimal tax system, we first cal-

ibrate a model of the U.S. economy in 2019, then we apply our formulas in Section 5 to the

designs of optimal tax system: separable nonlinear capital income tax system (NLIT-NCIT),

and separable linear capital income tax system (NLIT-LCIT), respectively.

6.1 Calibration

Our model with multiple factor incomes requires us to calibrate both of the distribution of labor

income and capital income. We use the Distributional National Accounts (DINAs) micro-files

of Piketty et al. (2018), which provides both of pretax labor income (plinc) and pretax capital

income (pkinc) at the individual level. Discretizing the observed factor incomes, we are able to

calibrate the probability density functions (PDF) of labor and capital income directly, i.e., fz(zn)

and fx(xq). Figure 2 displays the distributional features of observed factor incomes.14

14The details for calibrating the income distributions can be found in Appendix G.1.
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Figure 2: Labor and capital income distribution

The left two panels depict the density across labor income and capital income respectively.

One takeaway is that capital income is more concentrated at low income levels, implying capi-

tal income is more unequally distributed than labor income (Piketty, 2013)15. The right panels

reflect the corresponding inverse Hazard Ratios of labor and capital income, which are decreas-

ing with the level of factor incomes. As appeared in the first term of equation (33) and (34), they

make an important component of the optimal tax system. Intuitively, the unequal distribution

of capital income needs for capital income tax in addition to an optimal nonlinear labor income

tax. In the aggregate, the labor share in the 2019 economy is about 52.7%. It indicates the auto-

mated technical change to some extent, while Hubmer and Restrepo (2021) has shown that the

US labor share declined from a peak of 62% in the 1980s to 55% in 2012, and one of the driver is

automating more tasks. Technically, we have two sets of income distribution data in addition

to the labor share, thus we are able to calibrate two sets of parameter, Bq and δn, and one com-

parative advantage parameter η. To save space, we leave the calibration details in Appendix

G.1. Table 3 summarizes the calibrated parameters.

15Saez and Stantcheva (2018) use IRS tax data for 2007 on labor and capital income distributions, they find that
the bottom 80% earn essentially zero capital income.
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Table 3: List of calibrated parameter values

Description Value Target/Source

Preference

Bq One source of heterogeneity vector Target capital income distribution

ϵk Elasticity of capital supply 0.65 Acemoglu et al. (2020)

ϵl Elasticity of labor supply 0.33 Chetty (2012)

Technology

δn Comparative advantage across skills vector Target labor income distribution

η Comparative advantage parameter 5.54 Target labor share 52.7%

σ = 1
1−ρ Substitution elasticity between skills 3 Sachs et al. (2020)

αn Automation technology across skills vector Target wage distribution

R Capital rental rate 0.15 Target K/Y = 3

Government

κ Parameter for redistribution motivation 1 Sachs et al. (2020),Saez (2001)

τ Parameter for tax function -3 Heathcote et al. (2017)

ϕ Parameter of progressivity 0.181 Heathcote et al. (2017)

τk Initinal capital income tax rate 0.1 Acemoglu et al. (2020)

For the individual preference, we borrow the following utility function from Acemoglu et al.

(2020) :

u(yq − aq) = −Bq
a1+1/ϵk

q

1 + 1/ϵk
− aq, v(ln) =

l1+1/ϵl
n

1 + 1/ϵl
.

The parameter Bq is calibrated to match the distribution of pretax capital income. ϵk and ϵl

denote the Hicksian capital and labor supply elasticities respectively. We set our baseline capital

supply elasticity to 0.65 (Acemoglu et al., 2020), and labor supply elasticity to 0.33 (Chetty,

2012). As for the comparative advantage in Definition 1, µn(i) = δn · iη, the parameter δn is

calibrated to match the distribution of pretax labor income, and η is calibrated to match labor

share in the 2019 U.S. economy, that is 52.7%. We take a capital-output ratio of K/Y = 3,

which implies a rental rate of capital R = 15%, which is greater than R = 11.5% in the 1980

economy(see Moll et al. (2021)). Turn to the government, we adopt a concave social welfare

function G(V) = V1−κ

1−κ , where κ governs the desire for redistribution, as κ = 0, the government

is utilitarian. We set κ = 1 in our baseline calibration, we also provide sensitivity analyses

for alternative κ = 3. The initial nonlinear labor income tax function is given by T0(z) =

z − 1−τ
1−ϕ z1−ϕ. ϕ = 0.181 is the rate of progressivity, and τ governs the marginal tax rate in the
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lower bound (Heathcote et al., 2017). The initial capital income tax rate is set to 10% following

Acemoglu et al. (2020). Finally, the elasticity of substitution between skills in production is

set to 3 (Sachs et al., 2020), which indicates ρ = 2/3. We also consider an alternative value

ρ = 9/10. Thus, the substitution elasticity in production is 10, for sensitivity analyses.

To gain insights into the intuition behind our model, Figure 3 displays the calibration char-

acterizes along the level of labor income, which can also be indexed by skill or occupation type.

The left upper panel shows that the level of automation is almost monotonically decreasing in

the skill of occupation, with 0.87 at the lowest skill and 0.24 at the highest skill. The average

level of automation is 0.47, which is consistent with the capital income share in the economy.

The intuition behind is that the more complex the occupation, the fewer tasks can be replaced

by capital, thus the less level of automation. For example, in highly skilled occupations like

teachers, doctors and lawyers, more productive tasks are actually thinking, reading, writing

and speaking, which can hardly be replaced by robots. In other words, almost all produced

tasks in these occupations require labor input. On the contrary, for ordinary workers, many of

their tasks such as driving, carrying, building, and assembling can be replaced by robots, there-

fore, in these occupations, the degree of automation is high. Moll et al. (2021) has adopted the

shift-share specification to calibrate the share of automated tasks at each wage percentile, which

also finds greater exposure to the automation of routine jobs among workers at the middle and

bottom of the wage distribution.
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Figure 3: Calibration features across occupation

We also display the output share of each occupation type, γn, see the right upper panel of

Figure 3. The share of output in occupation with higher incomes is lower, mainly due to there

is few of them in the whole populations. However, the middle income group contributes to the

most of the total output. In addition, the trend of capital density along occupation, Kn/Ln, is

on the contrary of automation, as showed in the lower-left panel. Individuals with high skill

leverage more capitals in their occupation, but these capitals are concentrated in a small set of

tasks, thus lowering degree of automation.16 The lower-right panel of Figure 3 shows the trend

of occupational total factor productivity (TFP). It is intuitive that occupation with high-skilled

individual is more productive than low-skilled individual.

16An alternative explanation is that, the level of automation in occupation with skill type n is αn = RKn
wn Ln+RKn

,
which is increasing with capital density Kn/Ln, but decreasing with wn/R. When the price driver dominates, it is
intuitive that αn decreases with n as well as Kn/Ln increases with n.
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6.2 Simulation

Thanks to the optimal tax formulas, (33)-(35), being expressed in sufficient statistics, we are al-

lowed to simulate optimal tax system following the fixed-point algorithm provided by Mankiw

et al. (2009). The simulation details are provided in Appendix G.2. We first consider two al-

ternative tax systems, as depicted, NLIT-NCIT tax system and NLIT-LCIT tax system, which

are counterpart to separable nonlinear (SN) and separable linear (SL) tax systems in Ferey et al.

(2021), where they study tax on saving. Finally, we investigate optimal capital income tax when

suppose the nonlinear labor income is held at the status quo, that is restricting the NLIT to HSV

tax functional form(see Heathcote et al. (2017)).

6.2.1 NLIT-NCIT Tax System

Figure 4: Optimal NLIT-NCIT Tax System
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Figure 4 displays the optimal NLIT-NCIT tax system. The upper two panels are our baseline

results, i.e., the case of κ = 1 and σ = 3. For the optimal nonlinear labor income tax, we find that

substitution effect, the case of exogenous automation, makes optimal NLIT more progressive

relative to the exogenous-wage setting. That is the marginal labor income tax rate becomes

higher on the high income individuals, but the marginal tax rate is lower for the low income

individuals. The intuition follows the general equilibrium "trickle-down" forces proposed by

Sachs et al. (2020). However, in the case of endogenous automation, the general equilibrium

"trickle-down" forces will be moderated, since the automation effect is always on the contrary

of substitution effect in our previously analyses (see Section 3). The intuition behind is that,

lower tax rate raises the incentive of high individual’s labor supply, which can increase their

wages through automation effect. Thus, automated technical change makes the optimal NLIT

more regressive relative the exogenous-automation setting, but sill more progressive than the

exogenous-wage setting, implying that the substitution effect dominates the automation effect.

Turn to the optimal nonlinear capital income tax (NCIT), we find that it shares the similar

shape as NLIT. The intuition behind is that the distribution of capital income is unequal, NCIT

are desirable for redistribution. The general equilibrium effects also have implications for NCIT.

Relative to the exogenous-wage setting, we find that substitution effect makes optimal NCIT

more progressive. To some extent, it may stimulate the investment of middle capital income

individuals, then increasing the level of wage due to capital-skill complementarity, which can

ultimately benefit the government revenue raising from labor income. In addition, automation

effect regulates the substitution effect again, it makes the optimal NCIT becomes less progres-

sive relative to the exogenous-automation setting.

We display some robust results in the rest of panels. In the middle two panels, we consider

a more redistributive government and set κ = 3. In the bottom two panels, we consider an

alternative case where σ = 10. Compared to the baseline results, the above intuitions are robust.

The caveat is that, the automated technical change is not negligible in the design of optimal tax

system. When moved from the initial tax system to optimal NLIT-NCIT, labor share raises to

57.8%.
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6.2.2 NLIT-LCIT Tax System

Figure 5: Optimal NLIT-LCIT Tax System

In this subsection, we restrict capital income tax to be linear, which are more implementable in

practice, then consider an alternative NLIT-LCIT tax system. The discussion of NLIT follows

the same intuition as the NLIT-NCIT tax system. Figure 5 shows that the general equilibrium

effect reduces the optimal linear capital income tax rate. The intuition behind is direct, since

lower tax rate can stimulate investment, which can increase wages through general equilib-

rium effect, then benefit the government revenue raising from labor income. The adjustment

of optimal LCIT due to automated technical change is light. Moreover, the more redistributive

the government (higher κ), the higher the optimal LCIT. Moving to the optimal NLIT-LCIT tax

system, labor share in the economy will raise to 58.7%.

6.2.3 NCIT or LCIT Tax System

We now consider a more practical case, by assuming the nonlinear labor income tax follows

the functional form of Heathcote et al. (2017), that is Tz(z) = z − 1−τ
1−ϕ z1−ϕ, where τ = −3,
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and ϕ = 0.181 governs the progressivity of NLIT. We resimulate the optimal NCIT and LCIT

respectively.

Figure 6: Optimal NLIT or LCIT Tax System

The left panel of Figure 6 displays the optimal NCIT in difference case. Relative to the

exogenous-wage setting, the general equilibrium effect makes the optimal NCIT more progres-

sive. In addition, automated technical change plays a central role in governing the progressivity

of taxation. Moving from the initial capital tax to the optimal NCIT, labor share raises to 57%.

The right panel of Figure 6 displays the optimal LCIT. As anticipated above, optimal LCIT is

lower in the general equilibrium framework. Moving to the optimal LCIT, labor share raises to

57.8%.

7 Conclusion

This paper develops a tractable model to investigate tax incidence and optimal income taxation

in general equilibrium with multiple factor incomes and automation technology.

Our model indicates that there are two contrary channels through which factor inputs affect

factor prices, i.e., substitution effect and automation effect. When taken into account the auto-

mated technical change, we find that the real wage stagnation of bottom- and middle-income

individuals can go hand-in-hand with capital accumulation, and the responses of wages with

respect to labor input are less sensitive than that of capital input. Moreover, capital accumu-

lation induces the adjustment of automation technology, which leads to the increase of wage

inequality.

The implications of factor inputs and automation technology for both level and distribution

of wages, play a central role in our tax incidence analysis. We first give an integral equation
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system of labor and capital supply. Then, we find that both labor income tax reform and capital

income tax reform have general equilibrium "trickle down" forces on the government revenue.

In addition, these tax reforms are equipped with redistributive forces on both labor income

and capital income, thus having implications for social welfare through substitution effect and

automation effect.

In the context of multiple factor incomes, we derive optimal tax system, NLIT-NCIT and

NLIT-LCIT, using variational approach (namely, dual approach). We show that both labor in-

come and capital income tax formulas can be expressed in sufficient statistics. Both substitution

effect and automation effect play a central role in the design of optimal tax system. In addition,

we prove the equivalence between dual approach and primal approach in the context of dual-

tax system.

After calibrating the U.S. economy in 2019, we find that the degree of automation is de-

creasing with occupational earnings. We then simulate three alternative tax systems. For the

NLIT-NCIT tax system, while substitution effect makes both labor income taxation and capi-

tal income taxation more progressive relative to the exogenous-wage setting, automation effect

regulates the substitution effect and makes the nonlinear tax system less progressive relative to

the exogenous-automation setting. When we restrict capital income taxation to be linear, which

is the NLIT-LCIT tax system, we find that the general equilibrium "trickle down" forces reduce

the optimal capital income tax rate relative to the exogenous-wage setting. However, due to

the redistributive forces on capital income, the optimal capital income tax rate is higher than

the current capital income tax rate. Finally, we restrict nonlinear labor income tax with constant

progressivity, and simulate optimal NCIT and LCIT respectively. Capital income tax reform is

still desirable relative the current U.S. tax system. The goal of this paper is not to provide a

precisely calculated value of the "correct" optimal marginal tax rates, As an extensive literature

points out, there are many drivers that determine the optimal tax. Our major conclusion is that

one should not ignore automated technical change when designing the optimal tax system.

This paper can be extended in several respects. First, our methods can be applied to higher

multi-dimensional heterogeneity, e.g., more kinds of factor incomes. Second, by introducing

heterogeneous returns of capital, or income-shifting between labor and capital income, the

practical implications of this theoretical work can become more abundant. Finally, one can

study alternative optimal tax system based on our model, such as a linear earning-dependent

capital tax. We leave these issues for further studies.
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Appendices

A Macro Aggregation

A.1 Proof of Lemma 1

Proof. Let pn and pn(i) denote the price of output Yn in skill-type n and the price of output

Yn(i) produced within the task i respectively. From the skill output production function,

ln Yn =
∫ 1

0
ln Yn(i)di,

the relationship between skill output and task-level output is Yn(i) = pnYn/pn(i). From the

task-level production function,

Yn(i) =

{
ψk

n(i)Kn(i) if i ∈ [0, αn]

ψl
n(i)Ln(i) if i ∈ (αn, 1]

we obtain that Kn(i) = Yn(i)/ψk
n(i), R = pn(i)ψk

n(i) for 0 ≤ i ≤ αn and Ln(i) = Yn(i)/ψl
n(i),

wn = pn(i)ψl
n(i) for αn ≤ i ≤ 1. Combining with the expression of Yn(i), it is easy to get

Kn(i) =
pnYn

R
, ∀i ∈ [0, αn]; Ln(i) =

pnYn

wn
, ∀i ∈ (αn, 1].

Remember that Kn =
∫ αn

0 Kn(i)di and Ln =
∫ 1

αn
Ln(i)di, thus capital and labor assigned to skill-

type n and corresponding task i satisfy the following relationships

Kn(i) =
Kn

αn
, Ln(i) =

Ln

1 − αn
∀n ∈ N, i ∈ [0, 1].

Substituting them back into the task-level production function and using the Cobb-Douglas

aggregator, we derive the skill output production function,

Yn = An(αn)Kαn
n L1−αn

n , where An(αn) =
e
∫ αn

0 ln ψk
n(i)di+

∫ 1
αn ln ψl

n(i)di

ααn
n (1 − αn)1−αn

. (A.1)

Without loss of generality, we normalize the price of aggregate output as one. Using the CES

production function of aggregate output Y =
{∫ n̄

n βnYρ
n dn

}1/ρ
, one obtains the relationship
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between skill output and aggregate output as Yn = β
1

1−ρ
n p

1
ρ−1
n Y. Since Kn =

∫ αn
0 Kn(i)di = αn pnYn

R

and K =
∫ n̄

n Kndn, the share of capital allocated to skill-type n over aggregate capital can be

given as follow,

ϕn(αn) =
Kn

K
=

αnβ
1

1−ρ
n p

ρ
ρ−1
n∫ n̄

n αnβ
1

1−ρ
n p

ρ
ρ−1
n dn

.

Substituting ϕn(αn) and Yn = An(αn)Kαn
n L1−αn

n into Y =
{∫ n̄

n βnYρ
n dn

}1/ρ
, aggregate output

could be expressed in the following reduced form:

Y ≡ F(K,L; α) =

{∫ n̄

n
βn

[
Ãn(αn)Kαn L1−αn

n

]ρ
dn
}1/ρ

, where Ãn(αn) = An(αn)ϕ
αn
n (αn).

(A.2)

A.2 Proof of Lemma 2

Proof. We know that the skill output function is given as Yn = An(αn)Kαn
n L1−αn

n , profit maxi-

mizing means that factor prices equal their marginal productivity, thus we have the following

first-order conditions:

wn =
(1 − αn)pnYn

Ln
, R =

αn pnYn

Kn
.

Denote γn = pnYn/Y as the share of output value produced by skill-type n in the total output

value,
∫ n̄

n γndn = 1 since aggregate production function is CES. Moreover, we denote α =∫ n̄
n αnγndn as the average degree of automation in economy. Using K =

∫ n̄
n Kndn and rewrite

above two first-order conditions, equilibrium factor prices can be given as follows,

wn(K,L; α) =
∂F(K,L; α)

∂Ln
=

(1 − αn)γnY
Ln

, R(K,L; α) =
∂F(K,L; α)

∂K
=

αY
K

. (A.3)

As for the equilibrium automation technology, there is an indifference condition µn(αn) ≡
ψl

n(αn)

ψk
n(αn)

= wn
R , such that producing with capital or labor is indifference in task αn. Combining

with (A.3), one obtains

αn = 1 − α

γn

µn(αn)Ln

K
.
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Remember that α =
∫ n̄

n αnγndn, so the equilibrium automation can be solved by the following

equations:

αn ≡ αn(K,L) = 1 − 1
γn

µn(αn)Ln

K +
∫ n̄

n µn(αn)Lndn
, ∀n ∈ N α ≡ α(K,L) = K

K +
∫ n̄

n µn(αn)Lndn
.

(A.4)

We do not give the analytical expression of automation technology, but turn to numerical solu-

tion in Section 6.

B Proof of Elasticities

B.1 Proof of Supply-side Elasticities.

Proof. First, we consider linear labor and capital income tax system with marginal tax rate tz

and tx. From equation (1), individuals maximize their utilities according to the following two

first-order conditions

v′(ln) = (1 − tz)wn, u′(yq − aq) = 1 + (1 − tx)R. (B.1)

Differentiating above equations with respect to marginal retention rate 1 − tz, 1 − tx, we obtain

v′′(ln)
dln

d(1 − tz)
= wn, −u′′(yq − aq)

daq

d(1 − tx)
= R.

Following the definition of elasticity, the behavior elasticities in the context of linear tax system

can be derived as follows:

eln,1−tz ≡ −1 − tz

ln
dln
dtz

=
v′(ln)

lnv′′(ln)
, eaq,1−tx ≡ −

aq

1 − tx

daq

dtx
= −

u′(yq − aq)− 1
aqu′′(yq − aq)

.

Rearrange and one get

v′′(ln) =
v′(ln)

lneln,1−tz

, −u′′(yq − aq) =
u′(yq − aq)− 1

aqeaq,1−tx

. (B.2)

Next we turn to the behavior elasticities under nonlinear tax system. Bear in mind that we have

given the form of tax perturbation in equation (7), i.e., T̃i = Ti + κiτi with i ∈ [z, x], thus as
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κi → 0, the two first-order conditions can be rewritten as follows,

v′(ln) = (1 − T′
z(zn)− κzτ′

z(zn))wn, ∀n ∈ N

u′(yq − aq) = 1 + (1 − T′
x(xq)− κxτ′

x(xq))R, ∀q ∈ Q.
(B.3)

Taking derivative of above equations with respect to κz and κx respectively, one obtains

v′′(ln)
dln
dκz

|κz=0 = −wn

[
T

′′
z (zn)wn

dln
dκz

|κz=0 + τ′
z(zn)

]
,

−u′′(yq − aq)
daq

dκx
|κx=0 = −R

[
T

′′
x (xq)R

daq

dκx
|κx=0 + τ′

x(xq)

]
.

Plug (B.2) into above equations,we have

dln
dκz

|κz=0 = − τ
′
z(zn)

T′′
z (zn)wn +

1−T′
z(zn)

lneln ,1−tz

,
daq

dκx
|κx=0 = −

τ
′
x(xq)

T′′
x (xq)R +

1−T′
x(xq)

aqeaq ,1−tx

,

where we use v
′
(ln) = (1 − T

′
z(zn))wn and u′(yq − aq) = 1 + (1 − T

′
x(xq))R. The elasticities of

factor supply with respect to marginal retention tax rate can be expressed as follows,

ϵln,1−T′
z
≡ −1 − T

′
z(zn)

ln
dln

τ′
z(zn)dκz

|κz=0 =
[1 − T′

z(zn)] eln,1−tz

1 − T′
z(zn) + eln,1−tz T′′

z (zn)zn
,

ϵaq,1−T′
x
≡ −

1 − T
′
x(xq)

aq

daq

τ′
x(xq)dκx

|κx=0 =

[
1 − T′

x(xq)
]

eaq,1−tx

1 − T′
x(xq) + eaq,1−tx T′′

x (xq)xq
.

As for the elasticities of factor supply with respect to price, we take derivative of equation (B.3)

about wn and R at κi → 0, respectively, then get

v
′′
(ln)

dln
dwn

= 1 − T
′
z(zn)− T

′′
z (zn)

[
ln + wn

dln
dwn

]
wn,

−u
′′
(yq − aq)

daq

dR
= 1 − T

′
x(xq)− T

′′
x (xq)

[
aq + R

daq

dR

]
R.

Following the same techniques, one obtains

dln
dwn

=
1 − T

′
z(zn)− T

′′
z (zn)zn

(1−T′
z(zn))wn

lneln ,1−tz
+ wnT′′

z (zn)wn

,
daq

dR
=

1 − T
′
x(xq)− T

′′
x (xq)xq

(1−T′
x(xq))R

aqeaq ,1−tx
+ RT′′

x (xq)R
.
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Thus,

ϵln,wn ≡ wn

ln
dln
dwn

=
[1 − T′

z(zn)− T′′
z (zn)zn] eln,1−tz

1 − T′
z(zn) + eln,1−tz T′′

z (zn)zn
,

ϵaq,R ≡ R
aq

daq

dR
=

[
1 − T′

x(xq)− T′′
x (xq)xq

]
eaq,1−tx

1 − T′
x(xq) + eaq,1−tx T′′

x (xq)xq
.

B.2 Proof of Demand-side Elasticities

Proof. Bear in mind that the equilibrium factor prices are given as

wn ≡ wn(K,L; α) =
(1 − αn)γnY

Ln
, R ≡ R(K,L; α) =

αY
K

.

where γn = pnYn
Y , pn = βn

(
Yn
Y

)ρ−1
, and Yn = Ãn(αn)Kαn Lαn

n . Taking the logarithm on both side

of the above equations, one obtains

ln wn = ln βn + ln(1 − αn) + (1 − ρ) ln Y + ρ ln Yn − ln Ln, ln R = ln α + ln Y − ln K, (B.4)

where ln Yn = ln Ãn(αn) + αn ln K + (1 − αn) ln Ln. Next we differentiate equation (B.4) with

respect to labor input L and following the definition of elasticity, we have

ϵD
wn,Ln

=
d ln wn

d ln Ln
= ρ(1− αn)− 1, ϵwn,Ln′

=
d ln wn

d ln Y
d ln Y

d ln Ln′
= (1− ρ)(1− αn′)γn′ , ∀n, n′ ∈ N.

where we use wn′Ln′ = (1 − αn′)γn′Y and wn′ = dY/dLn′ . Since the price of aggregate out is

normalized to one, thus, ϵR,Ln = d ln R
d ln Y

d ln Y
d ln Ln

= (1 − αn)γn.

As for the elasticities with respect to capital input K, we take derivative of equation (B.4)

about K, then get

ϵwn,K =
d ln wn

d ln K
=

d ln wn

d ln Y
d ln Y
d ln K

+
d ln wn

d ln Yn

d ln Yn

d ln K
= (1 − ρ)α + ραn,

where we use RK
Y = α, R = dY

dK , and α = d ln Y
d ln K . Moreover, ϵR,K = α − 1.

Turn to the elasticities with respect to automation technology α, following the same tech-

niques, one could obtain

ϵwn,αn =
d ln wn

d ln αn
= − αn

1 − αn
, ϵR,α =

d ln R
d ln α

= 1.
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Here we use envelope conditions, i.e. d ln Y
d ln α = d ln Yn

d ln αn
= 0 in equilibrium. To elucidate the

intuition, one should know that there is no improvement in production at the optimal level of

automation technology, i.e., dF(K,L,α)
dα = 0.

The rest of demand-side elasticities are about automation technology. From lemma 2, we

know that

αn ≡ αn(K,L) = 1 − 1
γn

µn(αn)Ln

K +
∫ n̄

n µn(αn)Lndn
, α ≡ α(K,L) = K

K +
∫ n̄

n µn(αn)Lndn
, ∀n ∈ N.

Rearrange and take the logarithm, one obtains

ln(1 − αn) = − ln βn + ln µn(αn) + ln Ln + ρ ln Y − ρ ln Yn − ln
(

K +
∫ n̄

n
µn(αn)Lndn

)
, (B.5)

ln α = ln K − ln
(

K +
∫ n̄

n
Lnµn(αn)dn

)
, (B.6)

where we use γn = pnYn/Y and pn = βn

(
Yn
Y

)ρ−1
. Following the same process, it is easy to

show that

ϵD
αn,Ln

=
d ln αn

d ln(1 − αn)

d ln(1 − αn)

d ln Ln
= −1 − αn

αn
(1 − ρ(1 − αn)),

ϵαn,Ln′
=

d ln αn

d ln(1 − αn)

d ln(1 − αn)

d ln Ln′
= −1 − αn

αn

[
d ln µn(αn)

d ln Ln′
+ ρ

d ln Y
d ln Ln′

−
d ln(K +

∫ n̄
n µn(αn)Lndn)

d ln Ln′

]
.

Denote ϵµn(αn),αn = dlnµn(αn)
dlnαn

as the elasticity of comparative advantage with respect to automa-

tion. With

d ln(K +
∫ n̄

n µn(αn)Lndn)

d ln Ln′
=

Ln′

K +
∫ n̄

n µn(αn)Lndn

(
µn′(αn′) +

∫ n̄

n
Lnµ′

n(αn)
dαn

dLn′
dn
)

= (1 − αn′)γn′ +

∫ n̄
n Lnµn(αn)

µ′
n(αn)αn
µn(αn)

Ln′
αn

dαn
dLn′

dn

K +
∫ n̄

n µn(αn)Lndn

= (1 − αn′)γn′ +
∫ n̄

n
(1 − αn)γnϵµn(αn),αn ϵαn,Ln′dn,

thus

ϵαn,Ln′
= −1 − αn

αn

[
ϵµn(αn),αn ϵαn,Ln′

+ ρ(1 − αn′)γn′ − (1 − αn′)γn′ −
∫ n̄

n
(1 − αn)γnϵµn(αn),αn ϵαn,Ln′dn

]
.
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Rearrange then we prove that

ϵαn,Ln′
=

(1 − ρ)(1 − αn′)γn′ +
∫ n̄

n (1 − αn)γnϵµn(αn),αn ϵαn,Ln′dn

ϵµn(αn),αn + αn/(1 − αn)
, ∀n ∈ N.

As for the automation elasticity of capital, we differentiate (B.5) with respect to K, thus

ϵαn,K = −1 − αn

αn

[
dlnµn(αn)

dlnK
+ ρ

dlnY
dlnK

− ρ
dlnYn

dlnK
−

dln(K +
∫ n̄

n µn(αn)Lndn)

dlnK

]
.

Symmetrically, we have

d ln(K +
∫ n̄

n µn(αn)Lndn)

d ln K
=

K

K +
∫ n̄

n µn(αn)Lndn

(
1 +

∫ n̄

n
Lnµ′

n(αn)
dαn

dK
dn
)

= α +

∫ n̄
n Lnµn(αn)

µ′
n(αn)αn
µn(αn)

K
αn

dαn
dK dn

K +
∫ n̄

n µn(αn)Lndn

= α +
∫ n̄

n
(1 − αn)γnϵµn(αn),αn ϵαn,Kdn,

plug into above equation, one obtains

ϵαn,K = −1 − αn

αn

[
ϵµn(αn),αn ϵαn,K + ρα − ραn − α −

∫ n̄

n
(1 − αn)γnϵµn(αn),αn ϵαn,Kdn

]
.

Thus we can prove that

ϵαn,K =
(1 − ρ)α + ραn +

∫
(1 − αn)γnϵµn(αn),αn ϵαn,Kdn

ϵµn(αn),αn + αn/(1 − αn)
, ∀n ∈ N.

Finally, differentiating equation (B.6) with respect to factor inputs, we have

ϵα,Ln =
d ln α

d ln Ln
= −

d ln(K +
∫ n̄

n µn(αn)Lndn)

d ln Ln

= −(1 − αn)γn −
∫ n̄

n
(1 − αn′)γn′ϵµn′ (αn′ ),αn′

ϵαn′ ,Ln dn′, ∀n ∈ N,

and

ϵα,K =
d ln α

d ln K
= 1 −

d ln(K +
∫ n̄

n µn(αn)Lndn)

d ln K
= 1 − α −

∫ n̄

n
(1 − αn)γnϵµn(αn),αn ϵαn,Kdn.
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C Proof of Automated Technical Change

C.1 Proof of Section 3.1

Proof. Under the assumption of 0 < ρ < 1 and 0 < αn < 1, ∀n ∈ N, the demand-side

elasticities in Table 2 except ϵαn,Ln′
,ϵαn,K, ϵα,Ln and ϵα,K can be signed directly, we do not go

into details. Bear in mind that Definition 1 means the elasticity of comparative advantage with

respect to automation is constant in equilibrium, i.e., ϵµn(αn),αn = η > 0, thus ϵαn,Ln′
and ϵαn,K

can be rewritten as follows,

ϵαn,Ln′
=

(1 − ρ)(1 − αn′)γn′ +
∫
(1 − αn)γnηϵαn,Ln′

dn
η + αn/(1 − αn)

,

ϵαn,K =
(1 − ρ)α + ραn +

∫
(1 − αn)γnηϵαn,Kdn

η + αn/(1 − αn)
.

Multiply (1 − αn)γn on both sides, one obtains

(1− αn)γnϵαn,Ln′
=

(1 − αn)γn

η + αn/(1 − αn)
(1− ρ)(1− αn′)γn′ +

η(1 − αn)γn

η + αn/(1 − αn)

∫
(1− αn)γnϵαn,Ln′

dn,

(1 − αn)γnϵαn,K =
(1 − αn)γn

η + αn/(1 − αn)
((1 − ρ)α + ραn) +

η(1 − αn)γn

η + αn/(1 − αn)

∫
(1 − αn)γnϵαn,Kdn.

Integrate both sides and rearrange, we have

∫
(1 − αn)γnϵαn,Ln′

dn =
(1 − ρ)(1 − αn′)γn′

∫ (1−αn)γn
η+αn/(1−αn)

dn

1 −
∫ η(1−αn)γn

η+αn/(1−αn)
dn

,

∫
(1 − αn)γnϵαn,Kdn =

(1 − ρ)α
∫ (1−αn)γn

η+αn/(1−αn)
dn + ρ

∫ αn(1−αn)γn
η+αn/(1−αn)

dn

1 −
∫ η(1−αn)γn

η+αn/(1−αn)
dn

.

Substitute them back into above equations, ϵαn,Ln′
and ϵαn,K can be given in the following forms,

ϵαn,Ln′
=

(1 − ρ)(1 − αn′)γn′

[η + αn/(1 − αn)]
[
1 −

∫ η(1−αn)γn
η+αn/(1−αn)

dn
] > 0, (C.1)
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ϵαn,K =
(1 − ρ)α + ραn

(
1 −

∫ η(1−αn)γn
η+αn/(1−αn)

dn
)
+ ρ

∫ ηαn(1−αn)γn
η+αn/(1−αn)

dn

[η + αn/(1 − αn)]
[
1 −

∫ η(1−αn)γn
η+αn/(1−αn)

dn
] > 0. (C.2)

In the last inequality, we use 1 −
∫ η(1−αn)γn

η+αn/(1−αn)
dn > 1 −

∫
(1 − αn)γndn = α > 0.

Next we turn to the signs of ϵα,Ln and ϵα,K. In appendix B.2, we have proven that

ϵα,Ln = −(1 − αn)γn −
∫ n̄

n
(1 − αn′)γn′ηϵαn′ ,Ln dn′, ∀n ∈ N.

it is obviously that ϵα,Ln < 0 since ϵαn,Ln′
> 0 for all n, n′ ∈ N.

With ϵαn,K =
(1−ρ)α+ραn+

∫
(1−αn)γnηϵαn ,Kdn

η+αn/(1−αn)
, eliminating the integral term, then ϵα,K can be

rewritten as follow,

ϵα,K = 1 − α + (1 − ρ)α + ραn −
(

η +
αn

1 − αn

)
ϵαn,K.

Substituting equation (C.2), one would get

ϵα,K = 1 − α + (1 − ρ)α −
(1 − ρ)α + ρ

∫ ηαn(1−αn)γn
η+αn/(1−αn)

dn

1 −
∫ η(1−αn)γn

η+αn/(1−αn)
dn

= 1 − α −
(1 − ρ)α

∫ η(1−αn)γn
η+αn/(1−αn)

dn + ρ
∫ ηαn(1−αn)γn

η+αn/(1−αn)
dn

1 −
∫ η(1−αn)γn

η+αn/(1−αn)
dn

> 1 − α − (1 − ρ)α(1 − α) + ρα(1 − α)

α
= 0.

In the last inequality, we use
∫ η(1−αn)γn

η+αn/(1−αn)
dn <

∫
(1 − αn)γndn = 1 − α, and

∫ ηαn(1−αn)γn
η+αn/(1−αn)

dn <∫
αn(1 − αn)γndn < α(1 − α).17

C.2 Proof of Proposition 2

Proof. From equation (9), we know that,

dwn

wn
|AE = ϵwn,αn

[
ϵD

αn,Ln

dLn

Ln
+
∫ n̄

n
ϵαn,Ln′

dLn′

Ln′
dn′ + ϵαn,K

dK
K

]
, ∀n.

17Note that E[αn(1 − αn)] = E[αn]E[1 − αn] + cov[αn, 1 − αn], obviously, the covariance between αn and 1 − αn
is negative.
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For the sake of brevity, we denote η̃ =
∫ η(1−αn)γn

η+αn/(1−αn)
dn and φ = (1 − ρ)α + ρ

∫ ηαn(1−αn)γn
η+αn/(1−αn)

dn.

Appendix C.1 shows that 0 < η̃ < 1 and φ > 0, thus ϵαn,Ln′
and ϵαn,K are reduced to

ϵαn,Ln′
=

(1 − ρ)(1 − αn′)γn′

(η + αn/(1 − αn)) (1 − η̃)
, ϵαn,K =

ραn (1 − η̃) + φ

(η + αn/(1 − αn)) (1 − η̃)
.

For any n, ñ ∈ N and n > ñ, we substitute these expressions of elasticities into above equation

and subtract, one obtains,

dwn

wn
|AE − dwñ

wñ
|AE = [1 − ρ(1 − αn)]

dLn

Ln
− [1 − ρ(1 − αñ)]

dLñ

Lñ

+

[
1 − ρ

η(1 − αñ)/αñ + 1
− 1 − ρ

η(1 − αn)/αn + 1

]
1

1 − η̃

∫
(1 − αn′)γn′

dLn′

Ln′
dn′

+

[
ρ(1 − η̃)αñ + φ

η(1 − αñ)/αñ + 1
− ρ(1 − η̃)αn + φ

η(1 − αn)/αn + 1

]
1

1 − η̃

dK
K

, ∀n > ñ.

Under the conditions of dLn/Ln = dln′/Ln′ = dL/L > 0, dK/K > 0, 0 < ρ < 1 and α̇n < 0, it is

easy to find that

[1 − ρ(1 − αn)]
dLn

Ln
< [1 − ρ(1 − αñ)]

dLñ

Lñ
,

1 − ρ

η(1 − αñ)/αñ + 1
>

1 − ρ

η(1 − αn)/αn + 1
,

ρ(1 − η̃)αñ + φ

η(1 − αñ)/αñ + 1
>

ρ(1 − η̃)αn + φ

η(1 − αn)/αn + 1
.

Thus for automation effect, labor inputs decrease wage premium directly but increase wage

premium indirectly, while capital input always increase wage premium. As for substitution

effect, equation (11) shows that,

dwn

wn
|SE = ϵD

wn,Ln

dLn

Ln
+
∫ n̄

n
ϵwn,Ln′

dLn′

Ln′
dn′ + ϵwn,K

dK
K

, ∀n.

Subtract between n and ñ and leverage the demand-side elasticities in Table 2, the following

equation can be deduced,

dwn

wn
|SE − dwñ

wñ
|SE = [ρ(1 − αn)− 1]

dLn

Ln
− [ρ(1 − αñ)− 1]

dLñ

Lñ
+ ρ(αn − αñ)

dK
K

∀n > ñ.

Under the same conditions, we have

[ρ(1 − αn)− 1]
dLn

Ln
> [ρ(1 − αñ)− 1]

dLñ

Lñ
, ρ(αn − αñ)

dK
K

< 0.

Thus, labor inputs increase wage premium directly through substitution effect, while capital
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input decrease it.

D Tax Incidence Analysis

D.1 Proof of Proposition 3

Proof. In equilibrium, as labor market clear, i.e., ln = Ln, equation (16) can be rewritten as

follow directly,

dln
ln

= −ϵln,1−T′
z

τ
′
z(zn)

1 − T′
z(zn)

+ ϵln,wn

∫
ϵtotal

wn,Ln′
dln′

ln′
dn′ + ϵln,wn ϵtotal

wn,K
dK
K

, (D.1)

where we denote ϵtotal
wn,Ln′

= ϵwn,Ln′
+ ϵwn,αn ϵαn,Ln′

and ϵtotal
wn,K = ϵwn,K + ϵwn,αn ϵαn,K. The rest of work

is to eliminate dK/K. Note that capital market clearing means K =
∫

N

∫
Q aq f (n, q)dqdn =∫

Q aq fq(q)dq, where fq(q) =
∫

N f (n, q)dn. It is easily to derive that

dK
K

=
∫

ωq
daq

aq
dq, with ωq =

aq fq(q)
K

.

Substitute the expression of daq/aq in equation (16) into above equation, one obtains

dK
K

= −
∫

ωqϵaq,1−T′
x

τ′
x(xq)

1 − T′
x(xq)

+
∫

ωqϵaq,Rdq
∫

ϵtotal
R,Ln′

dLn′

Ln′
dn′ +

∫
ωqϵaq,Rdqϵtotal

R,K
dK
K

.

Denote ϵ̄K,R =
∫

ωqϵaq,Rdq and χ = 1
1−ϵ̄K,Rϵtotal

R,K
. Rearrange above equation, the change in aggre-

gate capital can be reduced as

dK
K

= −χ
∫

ωqϵaq,1−T′
x

τ
′
x(xq)

1 − T′
x(xq)

dq + χϵ̄K,R

∫
ϵtotal

R,Ln′
dln′

ln′
dn′.

That is equation (19). Substitute it back into equation (D.1), the integral equation of labor supply

can be reduced as follow

dln
ln

= −ϵln,1−T′
z

τ
′
z(zn)

1 − T′
z(zn)︸ ︷︷ ︸

DE

−ϵln,wn ϵtotal
wn,Kχ

∫
ωqϵaq,1−T′

x

τ
′
x(xq)

1 − T′
x(xq)

dq︸ ︷︷ ︸
CE

+ϵln,wn

∫ [
ϵtotal

wn,Ln′
+ ϵtotal

wn,Kχϵ̄K,Rϵtotal
R,Ln′

] dln′

ln′
dn′︸ ︷︷ ︸

GE

.
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D.2 Proof of Proposition 4

Proof. Solve the individual utility maximization problem (1), one obtains the following indirect

utility function,

V(n, q) = u(yq − aq) + wnln + (1 + R)aq − Tz(wnln)− Tx(Raq)− v(ln). (D.2)

Moreover, government revenue is given by

B =
∫ ∫ [

Tz(wnln) + Tx(Raq)
]

f (n, q)dndq. (D.3)

With the definition of social welfare function W = 1
λ G
(
{V(n, q)}n×q∈N×Q

)
+ B and social wel-

fare weight g(n, q) = 1
λ

dG
dV(n,q) , the change in social welfare can be given by

dW =
∫ ∫

g(n, q)dV(n, q) f (n, q)dndq + dB. (D.4)

In the following process, we show that how individual utility V(n, q) and government revenue
B response to a given tax reform (τz, τx), through mechanical effect (ME), behavior effect (BE),
substitution effect (SE) and automation effect (AE), respectively. Bear in mind that tax reform
leads to the change in factor supplies and factor prices, i.e., dln

ln
, daq

qq
, dwn

wn
and dR

R , armed with
equation (D.2), it is easily to deduce that

dV(n, q) = −τz(zn)− τx(xq)︸ ︷︷ ︸
ME

+
[
wn − T′

z(zn)wn − v′(ln)
]

ln(−ϵln ,1−T′
z
)

τ′
z(zn)

1 − T′
z(zn)

+
[
1 + R − T′

x(xq)R − u′(yq − aq)
]

aq(−ϵaq ,1−T′
x
)

τ′
x(xq)

1 − T′
x(xq)︸ ︷︷ ︸

BE

+ (1 − T′
z(zn))zn

dwn

wn
|SE + (1 − T′

x(xq))xq
dR
R

|SE︸ ︷︷ ︸
SE

+ (1 − T′
z(zn))zn

dwn

wn
|AE + (1 − T′

x(xq))xq
dR
R

|AE︸ ︷︷ ︸
AE

.
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Note that individual first-order conditions imply wn − T′
z(zn)wn − v′(ln) = 0 and 1 + R −

T′
x(xq)R − u′(yq − aq) = 0, thus dV(n, q) can be reduced to

dV(n, q) = −τz(zn)− τx(xq)︸ ︷︷ ︸
ME

+ (1 − T′
z(zn))zn

dwn

wn
|SE + (1 − T′

x(xq))xq
dR
R

|SE︸ ︷︷ ︸
SE

+ (1 − T′
z(zn))zn

dwn

wn
|AE + (1 − T′

x(xq))xq
dR
R

|AE︸ ︷︷ ︸
AE

.
(D.5)

Follow the same logic, armed with equation (D.3), the change in government revenue can be

given by

dB =
∫ ∫ [

τz(zn) + τx(xq)
]

f (n, q)dndq︸ ︷︷ ︸
ME

+
∫ ∫

T′
z(zn)zn(−ϵln,1−T′

z
)

τ′
z(zn)

1 − T′
z(zn)

f (n, q)dndq +
∫ ∫

T′
x(xq)xq(−ϵaq,1−T′

x
)

τ′
x(xq)

1 − T′
x(xq)

f (n, q)dndq︸ ︷︷ ︸
BE

+
∫ ∫

T′
z(zn)zn [1 + ϵln,wn ]

dwn

wn
|SE f (n, q)dndq +

∫ ∫
T′

x(xq)xq

[
1 + ϵaq,R

] dR
R

|SE f (n, q)dndq︸ ︷︷ ︸
SE

+
∫ ∫

T′
z(zn)zn [1 + ϵln,wn ]

dwn

wn
|AE f (n, q)dndq +

∫ ∫
T′

x(xq)xq

[
1 + ϵaq,R

] dR
R

|AE f (n, q)dndq︸ ︷︷ ︸
AE

.

(D.6)

To simply our exposition, we denote gn(n) =

∫
Q g(n,q) f (n,q)dq

fn(n)
and gq(q) =

∫
N g(n,q) f (n,q)dn

fq(q)
, note

that we have defined fn(n) =
∫

Q f (n, q)dq and fq(q) =
∫

N f (n, q)dn. Substitute equation (D.5)

and (D.6) into (D.4), then the incidence of tax reform on social welfare can be given by equation

(25).
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E Variational Approach for Optimal Taxation

E.1 Proof of Lemma 4

Proof. Shutting down the general equilibrium feedback requires that daq/aq = 0. As K =∫
aq fq(q)dq, it is easily to verify that dK/K = 0. Remember that

daq

aq
= −ϵaq,1−T′

x

τ′
x(xq)

1 − T′
x(xq)

+ ϵaq,R

∫
ϵtotal

R,Ln′
dln′

ln′
dn′ + ϵaq,Rϵtotal

R,K
dK
K

, (E.1)

thus we have

τ′
x(xq) =

(1 − T′
x(xq))ϵaq,R

ϵaq,1−T′
x

∫
ϵtotal

R,Ln′
dln′

ln′
dn′.

Substitute the expressions of ϵan,R and ϵan,1−T′
x
, which have been summarized in table 1, into

above equation, one obtains

τ′
x(xq) = (1 − T′

x(xq)− T′′
x (xq)xq)

∫
ϵtotal

R,Ln′
dln′

ln′
dn′.

Integrating across xq, the counteracting tax perturbation on capital income is given by

τx(xq) = (1 − T
′
x(xq))xq

∫
ϵtotal

R,Ln′
dln′

ln′
dn′.

Turn to the counteracting perturbation τ2
z , as the integral equation of labor supply is given by

dln
ln

= −ϵln,1−T′
z

τ
′
z(zn)

1 − T′
z(zn)

− ϵln,wn ϵtotal
wn,K · χϵ̄K,R

∫
ϵtotal

R,Ln′
dln′

ln′
dn′ + ϵln,wn

∫
ζwn,Ln′

dln′

ln′
dn′.

Replacing dln
dn

= −ϵln,1−T′
z

τ1′
z (zn)

1−T′
z(zn)

and τ′
z(zn) = τ1′

z (zn) + τ2′
z (zn), one can obtain

−ϵln,1−T′
z

τ1′
z (zn)

1 − T′
z(zn)

=− ϵln,1−T′
z

τ1′
z (zn) + τ2′

z (zn)

1 − T′
z(zn)

+ ϵln,wn ϵtotal
wn,K · χϵ̄K,R

∫
ϵtotal

R,Ln′
ϵln′ ,1−T′

z

τ1′
z (zn′)

1 − T′
z(zn′)

dn′

− ϵln,wn

∫
ζwn,Ln′

ϵln′ ,1−T′
z

τ1′
z (zn′)

1 − T′
z(zn′)

dn′.
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Rearrange and use the definition τ1′
z (zn) = δzn∗ (zn), one obtains

τ2′
z (zn) =

(1 − T
′
z(zn))ϵln,wn

ϵln,1−T′
z

(
ϵtotal

wn,Kχϵ̄K,Rϵtotal
R,Ln∗

− ζwn,Ln∗

) ϵln∗ ,1−T′
z

1 − T′
z(zn∗)

(
dzn∗

dn∗

)−1

=− ϵtotal
wn,Ln∗

(1 − T
′
z(zn))ϵln,wn

ϵln,1−T′
z

ϵln∗ ,1−T′
z

1 − T′
z(zn∗)

(
dzn∗

dn∗

)−1

,

where we use ζwn,Ln′
= ϵtotal

wn,Ln′
+ ϵtotal

wn,Kχϵ̄K,Rϵtotal
R,Ln′

for any n ∈ N. Remember that, in Table 1, we

have

ϵln,wn =
[1 − T′

z(zn)− T′′
z (zn)zn] eln,1−tz

1 − T′
z(zn) + eln,1−tz T′′

z (zn)zn
, ϵln,1−T′

z
=

[1 − T′
z(zn)] eln,1−tz

1 − T′
z(zn) + eln,1−tz T′′

z (zn)zn
.

Substitute them into above equation and integrate across zn, τ2
z (zn) can be given by

τ2
z (zn) = −

ϵln∗ ,1−T′
z

1 − T′
z(z∗)

(
dzn∗

dn∗

)−1 ∫ zn

0
ϵ̃total

w,Ln∗
[1 − T′

z(z)− T′′
z (z)z]dz.

Finally, we are going to show how these perturbations affect wages and rental rate. In sec-

tion 4.2, we investigate the channels through which tax perturbation affects wages and rental

rate, with elasticities defined previously, the implications of tax perturbation for them have be

reduced as follows (i.e., equation (21) and (22))

dwn

wn
= −ϵtotal

wn,Kχ
∫

ωqϵaq,1−T′
x

τ
′
x(xq)

1 − T′
x(xq)

dq +
∫ [

ϵtotal
wn,Ln′

+ ϵtotal
wn,Kχϵ̄K,Rϵtotal

R,Ln′

] dln′

ln′
dn′,

dR
R

= −ϵtotal
R,K χ

∫
ωqϵaq,1−T′

x

τ
′
x(xq)

1 − T′
x(xq)

dq +
∫ [

ϵtotal
R,Ln′

+ ϵtotal
R,K χϵ̄K,Rϵtotal

R,Ln′

] dln′

ln′
dn′.

As daq/aq = dK/K = 0, integrate equation (E.1), we know that

∫
ωqϵaq,1−T′

x

τ
′
x(xq)

1 − T′
x(xq)

dq = ϵ̄K,R

∫
ϵtotal

R,Ln′
dln′

ln′
dn′.

Substitute it into above equations, we have

dwn

wn
=
∫

ϵtotal
wn,Ln′

dln′

ln′
dn′,

dR
R

=
∫

ϵtotal
R,Ln′

dln′

ln′
dn′.
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Bear in mind that dln
ln

= −ϵln,1−T′
z

τ1′
z (zn)

1−T′
z(zn)

, thus, with the tax perturbations τ1
z , τ2

z and τx defined

as above, the incidence of tax reform on factor prices can be given as follows

dwn

wn
= −ϵtotal

wn,Ln∗

ϵln∗ ,1−T′
z∗

1 − T′
z(zn∗)

(
dzn∗

dn∗

)−1

,
dR
R

= −ϵtotal
R,Ln∗

ϵln∗ ,1−T′
z∗

1 − T′
z(zn∗)

(
dzn∗

dn∗

)−1

.

E.2 Proof of Proposition 5

Proof. The key idea is that when the tax system is at optimal, there should be no marginal

improvement on social welfare given any tax perturbation. Normally,

dW =
∫ ∫

g(n, q) f (n, q)dV(n, q)dndq + dB = 0.

We know that the adjustment of individual utility V(n, q) and government revenue B actually

come from the adjustments of factor supplies and factor prices. In Appendix D.2, we have

shown that

dV(n, q) = zn(1 − T
′
z(zn))

dwn

wn
+ xq(1 − T

′
x(xq))

dR
R

− τz(zn)− τx(xq),

dB =
∫ ∫

d[Tz(zn) + Tx(xq)] f (n, q)dndq

=
∫ ∫ [

T
′
z(zn)zn

(
dwn

wn
+

dln
ln

)
+ τz(zn) + T

′
x(xq)xq

(
dR
R

+
daq

aq

)
+ τx(xq)

]
f (n, q)dndq.

In Appendix E.1, we have derived the expressions of these adjustments, dwn/wn, dR/R, dln/ln
and daq/aq, under certain tax perturbation τz = τ1

z + τ2
z and τx. The rest of work is to sub-

stitute them into above equations, we display the calculation in turn. For the incidence of tax
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perturbation on individual utility, we have

dVn =zn(1 − T
′
z(zn))

dwn

wn
+ xq(1 − T

′
x(xq))

dR
R

− τ1
z (zn)− τ2

z (zn)− τx(xq)

=zn(1 − T
′
z(zn))

∫
ϵtotal

wn,Ln′
dln′

ln′
dn′ + xq(1 − T

′
x(xq))

∫
ϵtotal

R,Ln′
dln′

ln′
dn′

− τ1
z (zn)− τ2

z (zn)− (1 − T
′
x(xq))xq

∫
ϵtotal

R,Ln′
dln′

ln′
dn′

=−
ϵln∗ ,1−T′

z

1 − T′
z(zn∗)

(
dzn∗

dn∗

)−1

ϵtotal
wn,Ln∗

zn(1 − T
′
z(zn))

− Izn≥zn∗ +
ϵln∗ ,1−T′

z

1 − T′
z(zn∗)

(
dzn∗

dn∗

)−1 ∫ zn

0
ϵtotal

w,Ln∗
[1 − T′

z(z)− T′′
z (z)z]dz.

Thus,∫ ∫
g(n, q) f (n, q)dV(n, q)dndq

=−
ϵln∗ ,1−T′

z

1 − T′
z(zn∗)

(
dzn∗

dn∗

)−1 ∫ ∫
ϵtotal

wn,Ln∗
zn(1 − T

′
z(zn))g(n, q) f (n, q)dndq −

∫ ∫
n∗

g(n, q) f (n, q)dndq

+
ϵln∗ ,1−T′

z

1 − T′
z(zn∗)

(
dzn∗

dn∗

)−1 ∫ ∫ ∫ zn

0
ϵtotal

w,Ln∗
[1 − T′

z(z)− T′′
z (z)z]dzg(n, q) f (n, q)dndq

=−
ϵln∗ ,1−T′

z

1 − T′
z(zn∗)

(
dzn∗

dn∗

)−1 ∫
ϵtotal

wn,Ln∗
zn(1 − T

′
z(zn))gn(n) fn(n)dn −

∫
n∗

gn(n) fn(n)dn

+
ϵln∗ ,1−T′

z

1 − T′
z(zn∗)

(
dzn∗

dn∗

)−1 ∫
ϵtotal

w,Ln∗
[1 − T′

z(z)− T′′
z (z)z]

(∫
z

gz(zn) fz(zn)dzn

)
dz.

In the last equation, we use gz(zn) ≡ gn(n) =
∫

g(n,q) f (n,q)dq
fn(n)

, and exchange the order of inte-

gration. Bear in mind that we have defined the average welfare weight above a certain labor

income zn as ḡzn ≡ ḡn =
∫

n′>n gn′ (n
′) fn′ (n

′)dn′

1−Fn(n)
, thus we have

∫ ∫
g(n, q) f (n, q)dV(n, q)dndq

=− ḡzn∗ (1 − Fz(zn∗))

+
ϵln∗ ,1−T′

z

1 − T′
z(zn∗)

(
dzn∗

dn∗

)−1 ∫
ϵtotal

w,Ln∗

[(
1 − T

′
z(z)− T

′′
z (z)z

)
ḡz(1 − Fz(z))− z(1 − T

′
z(z))gz(z) fz(z)

]
dz

=− ḡzn∗ (1 − Fz(zn∗)) +
ϵln∗ ,1−T′

z

1 − T′
z(zn∗)

(
dzn∗

dn∗

)−1 ∫
ϵtotal

wn,Ln∗

[
(1 − T

′
z(zn))zn ḡzn(1 − Fz(zn))

]′
dzn.
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We now turn to the incidence of the given tax perturbation on government revenue,

dB =
∫ ∫ [

T
′
z(zn)zn

(
dwn

wn
+

dln
ln

)
+ τz(zn) + T

′
x(xq)xq

(
dR
R

+
daq

aq

)
+ τx(xq)

]
f (n, q)dndq

=
∫ [

T
′
z(zn)zn

(∫
ϵtotal

wn,Ln′
dln′

ln′
dn′ +

dln
ln

)
+ τ1

z (zn) + τ2
z (zn)

]
fn(n)dn

+
∫ [

T
′
x(xq)xq

(∫
ϵtotal

R,Ln′
dln′

ln′
dn′ + 0

)
+ (1 − T

′
x(xq))xq

∫
ϵtotal

R,Ln′
dln′

ln′
dn′
]

fq(q)dq

=−
ϵln∗ ,1−T′

z

1 − T′
z(zn∗)

(
dzn∗

dn∗

)−1 ∫
ϵtotal

wn,Ln∗
T

′
z(zn)zn fn(n)dn −

∫ ϵln,1−T′
z

1 − T′
z(zn)

δzn∗ (zn)T
′
z(zn)zn fn(n)dn

+
∫

Izn≥zn∗ fn(n)dn −
ϵln∗ ,1−T′

z

1 − T′
z(zn∗)

(
dzn∗

dn∗

)−1 ∫ ∫ zn

0
ϵ̃total

w′ ,Ln∗

[
1 − T

′
z(z

′)− T
′′
z (z

′)z′
]

dz′ fz(zn)dzn

−
ϵln∗ ,1−T′

z∗

1 − T′
z(zn∗)

(
dzn∗

dn∗

)−1 ∫
xqϵtotal

R,Ln∗
fq(q)dq.

By adjusting the order of integration, we convert the double integral into a single integral, thus

dB =−
ϵln∗ ,1−T′

z

1 − T′
z(zn∗)

(
dzn∗

dn∗

)−1 ∫
ϵtotal

wn,Ln∗
T

′
z(zn)zn fz(zn)dzn −

ϵln∗ ,1−T′
z

1 − T′
z(zn∗)

T
′
z(zn∗)zn∗ fz(zn∗)

+ (1 − Fz(zn∗))−
ϵln∗ ,1−T′

z

1 − T′
z(zn∗)

(
dzn∗

dn∗

)−1 ∫
ϵtotal

w′,Ln∗

[
1 − T′

z(z
′)− T′′

z (z
′)z′
]
(1 − Fz(z′))dz′

−
ϵln∗ ,1−T′

z∗

1 − T′
z(zn∗)

(
dzn∗

dn∗

)−1 ∫
xqϵtotal

R,Ln∗
fq(q)dq

=1 − Fz(zn∗)−
ϵln∗ ,1−T′

z

1 − T′
z(zn∗)

T′
z(zn∗)zn∗ fz(zn∗)−

ϵln∗ ,1−T′
z∗

1 − T′
z(zn∗)

(
dzn∗

dn∗

)−1 ∫
xqϵtotal

R,Ln∗
fq(q)dq

−
ϵln∗ ,1−T′

z

1 − T′
z(zn∗)

(
dzn∗

dn∗

)−1 ∫
ϵtotal

wn,Ln∗

[
T′

z(zn)zn fz(zn) +
(
1 − T′

z(zn)− T′′
z (zn)zn

)
(1 − Fz(zn))

]
dzn

=1 − F(zn∗)−
ϵln∗ ,1−T′

z

1 − T′
z(zn∗)

T′
z(zn∗)zn∗ fz(zn∗)

−
ϵln∗ ,1−T′

z

1 − T′
z(zn∗)

(
dzn∗

dn∗

)−1 ∫
ϵtotal

wn,Ln∗

[
(1 − T′

z(zn))zn(1 − F(zn))
]′ dzn

−
ϵln∗ ,1−T′

z∗

1 − T′
z(zn∗)

(
dzn∗

dn∗

)−1 [∫
xqϵtotal

R,Ln∗
fq(q)dq +

∫
znϵtotal

wn,Ln∗
fn(n)dn

]
=1 − F(zn∗)−

ϵln∗ ,1−T′
z

1 − T′
z(zn∗)

T′
z(zn∗)zn∗ fz(zn∗)

−
ϵln∗ ,1−T′

z

1 − T′
z(zn∗)

(
dzn∗

dn∗

)−1 ∫
ϵtotal

wn,Ln∗

[(
1 − T′

z(zn)
)

zn(1 − Fz(zn))
]′ dzn.
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In the last equation, we use the following Euler’s homogeneous function theorem,

Theorem 1 Given an aggregate CES production function described in Lemma 1, Euler’s homogeneous

function theorem implies that18

∫
xqϵtotal

R,Ln∗
fq(q)dq +

∫
znϵtotal

wn,Ln∗
fn(n)dn = 0. (E.2)

Armed with these expressions, the marginal effects of the tax perturbation on social welfare can

be given by

dW =
∫ ∫

g(n, q) f (n, q)dV(n, q)dndq + dB

=− ḡzn∗ (1 − F(zn∗)) +
ϵln∗ ,1−T′

z

1 − T′
z(zn∗)

(
dzn∗

dn∗

)−1 ∫
ϵtotal

wn,Ln∗

[
(1 − T

′
z(zn))zn ḡzn(1 − Fz(zn))

]′
dzn

+ 1 − Fz(zn∗)−
ϵln∗ ,1−T′

z

1 − T′
z(zn∗)

T′
z(zn∗)zn∗ fz(zn∗)

−
ϵln∗ ,1−T′

z

1 − T′
z(zn∗)

(
dzn∗

dn∗

)−1 ∫
ϵtotal

wn,Ln∗

[(
1 − T

′
z(zn)

)
zn(1 − Fz(zn))

]′
dzn

=(1 − ḡzn∗ )(1 − Fz(zn∗))−
ϵln∗ ,1−T′

z

1 − T′
z(zn∗)

T′
z(zn∗)zn∗ fz(zn∗)

−
ϵln∗ ,1−T′

z

1 − T′
z(zn∗)

(
dzn∗

dn∗

)−1 ∫
ϵtotal

wn,Ln∗

[
(1 − ḡzn)

(
1 − T

′
z(zn)

)
zn(1 − Fz(zn))

]′
dzn.

Equate dW to zero and rearrange, the optimal nonlinear labor income tax formula can be elicited

as follow,

T
′
z(zn∗)

1 − T′
z(zn∗)

=
1

ϵln∗ ,1−T′
z

(1 − ḡzn∗ )
1 − Fz(zn∗)

zn∗ fz(zn∗)

−
(

dzn∗

dn∗

)−1 ∫ [
(1 − ḡzn)

(
1 − T

′
z(zn)

1 − T′
z(zn∗)

)(
1 − Fz(zn)

zn∗ fz(zn∗)

)
zn

]′

ϵtotal
wn,Ln∗

dzn.

Denote ϵSE
wn,Ln∗

= ϵD
wn∗ ,Ln∗

∆n∗(n) + ϵwn,Ln∗ and ϵAE
wn,Ln∗

= ϵwn∗ ,αn∗ ϵD
αn∗ ,Ln∗

∆n∗(n) + ϵwn,αn ϵαn,Ln∗ , we

have ϵtotal
wn,Ln∗

= ϵSE
wn,Ln∗

+ ϵAE
wn,Ln∗

. Thus, the optimal tax formula can be further decomposed into

(33).

18Using F(K,L, α) = R
∫

aq fq(q)dq +
∫

wnln fn(n)dn, take the derivative of Ln∗ and rearrange, one can obtain
theorem 1 directly.
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E.3 Proof of Lemma 5

Proof. Our goal is to find the counteracting tax perturbation τ2
x and τz corresponding to the

elementary τ1
x , such that

daq

aq
= −ϵaq,1−T′

x

τ1′
x (xq)

1 − T′
x(xq)

,
dln
ln

= 0.

Bear the integral equation of capital supply in mind, that is

daq

aq
= −ϵaq,1−T′

x

τ
′
x(xq)

1 − T′
x(xq)

+ ϵaq,R

∫
ϵtotal

R,Ln′
dln′

ln′
dn′ + ϵaq,Rϵtotal

R,K
dK
K

.

As τ′
x(xq) = τ1′

x (xq) + τ2′
x (xq), it is easily to obtain that

τ2′
x (xq) =

ϵaq,R

ϵaq,1−T′
x

(
1 − T

′
x(xq)

)
ϵtotal

R,K
dK
K

=
(
1 − T′

x(xq)− T′′
x (xq)xq

)
ϵtotal

R,K
dK
K

.

In the last equation, we use the expressions of ϵaq,R and ϵaq,1−T′
x

displayed in Table 1. Integrate

across xq, the counteracting perturbation τ2
x (xq) can be given by

τ2
x (xq) = (1 − T

′
x(xq))xqϵtotal

R,K
dK
K

. (E.3)

As shown in Proposition 3, the integral equation system can be expressed as follows,

dln
ln

= −ϵln,1−T′
z

τ
′
z(zn)

1 − T′
z(zn)

− ϵln,wn ϵtotal
wn,Kχ

∫
ωqϵaq,1−T′

x

τ′
x(xq)

1 − T′
x(xq)

dq + ϵln,wn

∫
ζwn,Ln′

dln′

ln′
dn′,

dK
K

= −χ
∫

ωqϵaq,1−T′
x

τ′
x(xq)

1 − T′
x(xq)

dq + χϵ̄K,R

∫
ϵtotal

R,Ln′
dln′

ln′
dn′.

Using dln/ln = 0, ∀n, we have dK
K = −χ

∫
ωqϵaq,1−T′

x

τ′
x(xq)

1−T′
x(xq)

dq and

τ
′
z(zn) =

ϵln,wn

ϵln,1−T′
z

(1 − T′
z(zn))ϵ

total
wn,K

dK
K

= (1 − T′
z(zn)− T′′

z (zn)zn)ϵ
total
wn,K

dK
K

.
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Again, the supply-side elasticities ϵln,wn and ϵln,1−T′
z

defined in Table 1 are used in the last equa-

tion. Integrate across zn, the counteracting perturbation τz(zn) is given as follow

τz(zn) =
∫ zn

0
(1 − T′

z(z)− T′′
z (z)z)ϵ

total
w,K dz

dK
K

. (E.4)

Substitute dK
K = −χ

∫
ωqϵaq,1−T′

x

τ′
x(xq)

1−T′
x(xq)

dq and dln
ln

= 0, ∀n into the expressions of factor price

adjustments, that is Corollary 1,

dwn

wn
= −ϵtotal

wn,Kχ
∫

ωqϵaq,1−T′
x

τ
′
x(xq)

1 − T′
x(xq)

dq +
∫ [

ϵtotal
wn,Ln′

+ ϵtotal
wn,Kχϵ̄K,Rϵtotal

R,Ln′

] dln′

ln′
dn′,

dR
R

= −ϵtotal
R,K χ

∫
ωqϵaq,1−T′

x

τ
′
x(xq)

1 − T′
x(xq)

dq +
∫ [

ϵtotal
R,Ln′

+ ϵtotal
R,K χϵ̄K,Rϵtotal

R,Ln′

] dln′

ln′
dn′.

the incidence of above tax reform on wage and rental rate can be reduced to

dwn

wn
= ϵtotal

wn,K
dK
K

,
dR
R

= ϵtotal
R,K

dK
K

. (E.5)

As the aggregate adjustment of capital supply can be expressed as follow

dK
K

=
∫

ωq
daq

aq
dq = −

∫
ωqϵaq,1−T′

x

τ1′
x (xq)

1 − T′
x(xq)

dq. (E.6)

The remaining work is to specify the elementary tax perturbation τ1
x (xq). Consider a Dirac tax

perturbation τ1
x = Ix≥x∗ and τ1′

x (x) = δx∗(x), we have dK
K = −

ωq∗ϵaq∗ ,1−T′x
1−T′

x(xq∗ )

( dxq∗
dq∗

)−1
, plug it back

into equation (E.3), (E.4) and (E.5), we prove that

τ2
x (xq) = −ϵtotal

R,K

ωq∗ϵaq∗ ,1−T′
x

1 − T′
x(xq∗)

(
dxq∗

dq∗

)−1

(1 − T
′
x(xq))xq,

τz(zn) = −
ωq∗ϵaq∗ ,1−T′

x

1 − T′
x(xq∗)

(
dxq∗

dq∗

)−1 ∫ zn

0
ϵtotal

w,K [1 − T′
z(z)− T′′

z (z)z]dz,

and
dwn

wn
= −ϵtotal

wn,K

ωq∗ϵaq∗ ,1−T′
x

1 − T′
x(xq∗)

(
dxq∗

dq∗

)−1

,
dR
R

= −ϵtotal
R,K

ωq∗ϵaq∗ ,1−T′
x

1 − T′
x(xq∗)

(
dxq∗

dq∗

)−1

.
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E.4 Proof of Proposition 6

The proof of optimal nonlinear capital income tax formula is indeed symmetric with the one

of optimal nonlinear labor income tax. The incidence analysis of tax reform on social welfare

imply that

dV(n, q) = zn(1 − T′
z(zn))

dwn

wn
+ xq(1 − T′

x(xq))
dR
R

− τ1
x (xq)− τ2

x (xq)− τz(zn).

Bear Lemma 5 in mind, it is easily to obtain

dV(n, q) =zn(1 − T
′
z(zn))ϵ

total
wn,K

dK
K

+ xq(1 − T
′
x(xq))ϵ

total
R,K

dK
K

− Ixq≥xq∗

− (1 − T
′
x(xq))xqϵtotal

R,K
dK
K

−
∫ zn

0
(1 − T

′
z(z)− T

′′
z (z)z)ϵ

total
w,K dz

dK
K

=− Ixq≥xq∗ − zn(1 − T
′
z(zn))ϵ

total
wn,K

ωq∗ϵaq∗ ,1−T′
x

1 − T′
x(xq∗)

(
dxq∗

dq∗

)−1

+
ωq∗ϵaq∗ ,1−T′

x

1 − T′
x(xq∗)

(
dxq∗

dq∗

)−1 ∫ zn

0
(1 − T

′
z(z)− T

′′
z (z)z)ϵ

total
w,K dz.

Aggregate across individuals, one obtains∫ ∫
g(n, q) f (n, q)dV(n, q)dndq

=−
∫ ∫

q∗
g(n, q) f (n, q)dndq −

ωq∗ϵaq∗ ,1−T′
x

1 − T′
x(xq∗)

(
dxq∗

dq∗

)−1 ∫
ϵtotal

wn,Kzn(1 − T
′
z(zn))gn(n) fn(n)dn

+
ωq∗ϵaq∗ ,1−T′

x

1 − T′
x(xq∗)

(
dxq∗

dq∗

)−1 ∫ ∫ ∫ zn

0
(1 − T

′
z(z)− T

′′
z (z)z)ϵ

total
w,K dzg(n, q) f (n, q)dndq

=− ḡxq∗ (1 − Fx(xq∗))−
ωq∗ϵaq∗ ,1−T′

x

1 − T′
x(xq∗)

(
dxq∗

dq∗

)−1 ∫
ϵtotal

wn,Kzn(1 − T
′
z(zn))gz(zn) fz(zn)dzn

+
ωq∗ϵaq∗ ,1−T′

x

1 − T′
x(xq∗)

(
dxq∗

dq∗

)−1 ∫
(1 − T

′
z(z)− T

′′
z (z)z)ϵ

total
w,K

∫
z

gz(zn) fz(zn)dzndz

=− ḡxq∗ (1 − Fx(xq∗))−
ωq∗ϵaq∗ ,1−T′

x

1 − T′
x(xq∗)

(
dxq∗

dq∗

)−1 ∫
ϵtotal

wn,Kzn(1 − T
′
z(zn))gz(zn) fz(zn)dzn

+
ωq∗ϵaq∗ ,1−T′

x

1 − T′
x(xq∗)

(
dxq∗

dq∗

)−1 ∫
ϵtotal

w,K (1 − T
′
z(z)− T

′′
z (z)z)ḡz(1 − Fz(z))dz

=− ḡxq∗ (1 − Fx(xq∗))

+
ωq∗ϵaq∗ ,1−T′

x

1 − T′
x(xq∗)

(
dxq∗

dq∗

)−1 ∫
ϵtotal

wn,K

[
(1 − T

′
z(zn))zn ḡzn(1 − Fz(zn))

]′
dzn.
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In the last equation, we use

[
(1 − T

′
z(zn))zn ḡzn(1 − Fz(zn))

]′
=
[
(1 − T

′
z(zn)− T

′′
z (zn)zn)ḡzn(1 − Fz(zn))− zn(1 − T

′
z(zn)gz(zn) fz(zn)

]
.

Next, we turn to the incidence of tax reform on government revenue, bear in mind that

dB =
∫ ∫

d
[
Tz(zn) + Tx(xq)

]
f (n, q)dndq

=
∫ ∫ [

T
′
z(zn)zn

(
dwn

wn
+

dln

ln

)
+ τz(zn) + T

′
x(xq)xq

(
dR
R

+
daq

aq

)
+ τ1

x (xq) + τ2
x (xq)

]
f (n, q)dndq.

Lemma 5 implies that

dB =
∫

T
′
z(zn)znϵtotal

wn,K fz(zn)dzn
dK
K

+
∫ ∫ zn

0
(1 − T

′
z(z)− T

′′
z (z)z)ϵ

total
w,K dz fn(n)dn

dK
K

+
∫

T
′
x(xq)xq fq(q)dqϵtotal

R,K
dK
K

+
∫

T
′
x(xq)xq

daq

aq
fq(q)dq

+ (1 − Fx(xq∗)) +
∫
(1 − T

′
x(xq))xq fq(q)dqϵtotal

R,K
dK
K

=1 − Fx(xq∗)−
∫

T
′
x(xq)xqϵaq,1−T′

x

τ1′
x (xq)

1 − T′
x(xq)

fq(q)dq +
∫

ϵtotal
R,K xq fq(q)dq

dK
K

+
∫

T
′
z(zn)znϵtotal

wn,K fz(zn)dzn
dK
K

+
∫
(1 − T

′
z(z)− T

′′
z (z)z)ϵ

total
w,K

∫
z

fz(zn)dzndz
dK
K

=1 − Fx(xq∗)− T
′
x(xq∗)xq∗ fx(xq∗)

ϵaq∗ ,1−T′
x

1 − T′
x(xq∗)

+
∫

ϵtotal
R,K xq fq(q)dq

dK
K

+
∫

ϵtotal
wn,K

[
T

′
z(zn)zn fz(zn) + (1 − T

′
z(zn)− T

′
z(zn)zn)(1 − Fz(zn))

]
dzn

dK
K

=1 − Fx(xq∗)− T
′
x(xq∗)xq∗ fx(xq∗)

ϵaq∗ ,1−T′
x

1 − T′
x(xq∗)

−
ωq∗ϵaq∗ ,1−T′

x

1 − T′
x(xq∗)

(
dxq∗

dq∗

)−1 ∫
ϵtotal

wn,K

[
(1 − T

′
z(zn))zn(1 − Fz(zn))

]′
dzn

−
ωq∗ϵaq∗ ,1−T′

x

1 − T′
x(xq∗)

(
dxq∗

dq∗

)−1 (∫
ϵtotal

R,K xq fq(q)dq +
∫

ϵtotal
wn,Kzn fn(n)dn

)
=1 − Fx(xq∗)− T

′
x(xq∗)xq∗ fx(xq∗)

ϵaq∗ ,1−T′
x

1 − T′
x(xq∗)

−
ωq∗ϵaq∗ ,1−T′

x

1 − T′
x(xq∗)

(
dxq∗

dq∗

)−1 ∫
ϵtotal

wn,K

[
(1 − T

′
z(zn))zn(1 − Fz(zn))

]′
dzn.
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In the last equation, we use the Euler’s homogeneous function theorem about K, which is sym-

metric with Theorem 1, that is∫
ϵtotal

R,K xq fq(q)dq +
∫

ϵtotal
wn,Kzn fn(n)dn = 0.

Equalizing dW =
∫ ∫

g(n, q) f (n, q)dV(n, q)dndq + dB to zero, one obtains

0 =(1 − ḡxq∗ )(1 − Fx(xq∗))− T
′
x(xq∗)xq∗ fx(xq∗)

ϵaq∗ ,1−T′
x

1 − T′
x(xq∗)

−
ωq∗ϵaq∗ ,1−T′

x

1 − T′
x(xq∗)

(
dxq∗

dq∗

)−1 ∫
ϵtotal

wn,K

[
(1 − ḡzn)(1 − T

′
z(zn))zn(1 − Fz(zn))

]′
dzn.

Rearrange above equation, the optimal nonlinear capital income tax formula can be derived as

follow

T
′
x(xq∗)

1 − T′
x(xq∗)

=
1

ϵaq∗ ,1−T′
x

(1 − ḡxq∗ )
1 − Fx(xq∗)

xq∗ fx(xq∗)

− 1
RK(1 − T′

x(xq∗))

∫ [
(1 − ḡzn)

(
1 − T

′
z(zn)

)
(1 − Fz(zn)) zn

]′
ϵtotal

wn,Kdzn.

Note that

ωq∗(dxq∗/dq∗)−1

xq∗ fx(xq∗)
=

(aq∗ fq(q∗)/K)(dxq∗/dq∗)−1

Raq∗ fx(xq∗)
=

aq∗ fx(xq∗)/K
Raq∗ fx(xq∗)

=
1

RK
.

Denote ϵtotal
wn,K = ϵwn,K + ϵwn,αn ϵαn,K = ϵSE

wn,K + ϵAE
wn,K, the optimal tax formula can be further

decomposed into (34).

E.5 Proof of Lemma 6

In the case of Uniform tax perturbation τ1
x (x) = x and τ1′

x (x) = 1, equation (E.6) converts to

dK
K

= −
∫

ωq
ϵaq,1−T′

x

1 − T′
x(xq)

dq,

Plug back into equation (E.3) - (E.5), the counteracting tax perturbations can be given by

τ2
x (xq) = −ϵtotal

R,K

∫
ωq

ϵaq,1−T′
x

1 − T′
x(xq)

dq(1 − T′
x(xq))xq,
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τz(zn) = −
∫

ωq
ϵaq,1−T′

x

1 − T′
x(xq)

dq
∫ zn

0
ϵtotal

w,K (1 − T′
z(z)− T′′

z (z)z)dz,

and the corresponding adjustment of factor prices can be given by

dwn

wn
= −ϵtotal

wn,K

∫
ωq

ϵaq,1−T′
x

1 − T′
x(xq)

dq,
dR
R

= −ϵtotal
R,K

∫
ωq

ϵaq,1−T′
x

1 − T′
x(xq)

dq.

E.6 Proof of Proposition 7

Proof. Armed with Lemma 6, we now have dK
K = −

∫
ωq

ϵaq ,1−T′x
1−T′

x(xq)
dq. Follow the same processes

in Appendix E.4, the incidence of tax reform on individual utilities can be given by

dV(n, q) =zn(1 − T
′
z(zn))

dwn

wn
+ xq(1 − T

′
x(xq))

dR
R

− τ1
x (xq)− τ2

x (xq)− τz(zn)

=zn(1 − T
′
z(zn))ϵ

total
wn,K

dK
K

+ xq(1 − T
′
x(xq))ϵ

total
R,K

dK
K

− xq − (1 − T′
x(xq))xqϵtotal

R,K
dK
K

−
∫ zn

0
ϵtotal

w,K (1 − T
′
z(z)− T

′′
z (z)z)dz

dK
K

=− xq − zn(1 − T
′
z(zn))ϵ

total
wn,K

∫
ωq

ϵaq,1−T′
x

1 − T′
x(xq)

dq

+
∫

ωq

ϵaq,1−T′
x

1 − T′
x(xq)

dq
∫ zn

0
ϵtotal

w,K (1 − T
′
z(z)− T

′′
z (z)z)dz.

Thus, we have∫ ∫
g(n, q) f (n, q)dV(n, q)dndq

=−
∫

xqgq(q) fq(q)dq −
∫

ωq

ϵaq,1−T′
x

1 − T′
x(xq)

dq
∫

zn(1 − T
′
z(zn))ϵ

total
wn,Kgn(n) fn(n)dn

+
∫

ωq

ϵaq,1−T′
x

1 − T′
x(xq)

dq
∫ ∫ ∫ zn

0
ϵtotal

w,K (1 − T
′
z(z)− T

′′
z (z)z)dzg(n, q) f (n, q)dndq

=−
∫

xqgq(q) fq(q)dq −
∫

ωq

ϵaq,1−T′
x

1 − T′
x(xq)

dq
∫

zn(1 − T
′
z(zn))ϵ

total
wn,Kgn(n) fn(n)dn

+
∫

ωq

ϵaq,1−T′
x

1 − T′
x(xq)

dq
∫

ϵtotal
w,K (1 − T

′
z(z)− T

′′
z (z)z)ḡz(1 − Fz(z))dz

=−
∫

xqgq(q) fq(q)dq +
∫

ωq

ϵaq,1−T′
x

1 − T′
x(xq)

dq
∫

ϵtotal
wn,K

[
(1 − T

′
z(zn))zn ḡzn(1 − Fz(zn)

]′
dzn.
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As for the government revenue, we have

dB =
∫ ∫

d
[
Tz(zn) + Tx(xq)

]
f (n, q)dndq

=
∫ ∫ [

T
′
z(zn)zn

(
dwn

wn
+

dln
ln

)
+ τz(zn) + τ1

x (xq) + τ2
x (xq) + T

′
x(xq)xq

(
dR
R

+
daq

aq

)]
f (n, q)dndq

=
∫

T
′
z(zn)znϵtotal

wn,K fn(n)dn
dK
K

+
∫ ∫ ∫ zn

0
(1 − T

′
z(z)− T

′′
z (z)z)ϵ

total
w,K dz f (n, q)dndq

dK
K

+
∫

xq fq(q)dq

+
∫
(1 − T

′
x(xq))xq fq(q)dqϵtotal

R,K
dK
K

+
∫

T
′
x(xq)xq fq(q)dqϵtotal

R,K
dK
K

+
∫

T
′
x(xq)xq

daq

aq
fq(q)dq

=
∫

xq fq(q)dq −
∫

ϵaq,1−T′
x

T
′
x(xq)

1 − T′
x(xq)

xq fq(q)dq +
∫

xq fq(q)dqϵtotal
R,K

dK
K

+
∫

T
′
z(zn)znϵtotal

wn,K fn(n)dn
dK
K

+
∫

ϵtotal
w,K (1 − T

′
z(z)− T

′′
z (z)z)(1 − Fz(z))dz

dK
K

.

Restrict the tax function to be linear, i.e., Tx(xq) = tx for all q ∈ Q, thus we have

dB =
∫

xq fq(q)dq − tx

1 − tx

∫
ϵaq,1−tx xq fq(q)dq −

∫
ωq

ϵaq,1−tx

1 − tx
dq
∫

ϵtotal
wn,K

[
(1 − T

′
z(zn))zn(1 − Fz(zn))

]′
dzn

−
∫

ωq
ϵaq,1−tx

1 − tx
dq
(∫

ϵtotal
R,K xq fq(q)dq +

∫
ϵtotal

wn,Kzn fn(n)dn
)

=
∫

xq fq(q)dq − tx

1 − tx

∫
ϵaq,1−tx xq fq(q)dq −

∫
ωq

ϵaq,1−tx

1 − tx
dq
∫

ϵtotal
wn,K

[
(1 − T

′
z(zn))zn(1 − Fz(zn))

]′
dzn.

In the last equation, we use the Euler’s homogeneous function theorem again. Equalizing

dW =
∫ ∫

g(n, q) f (n, q)dV(n, q)dndq + dB, one obtains

0 =
∫ ∫

g(n, q) f (n, q)dV(n, q)dndq + dB

=
∫
(1 − gq(q))xq fq(q)dq − tx

1 − tx

∫
ϵaq,1−tx xq fq(q)dq

−
∫

ωq
ϵaq,1−tx

1 − tx
dq
∫

ϵtotal
wn,K

[
(1 − ḡzn)(1 − T

′
z(zn))zn(1 − Fz(zn))

]′
dzn.

Rearranging above equation leads to the optimal linear capital income tax formula,

tx

1 − tx
=

∫
(1 − gq(q))xq fq(q)dq∫

ϵaq,1−tx xq fq(q)dq

− 1
RK(1 − tx)

∫ [
(1 − ḡzn)(1 − T

′
z(zn))zn(1 − Fz(zn))

]′
ϵtotal

wn,Kdzn.
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Note that ∫
ωqϵaq,1−tx dq∫

ϵaq,1−tx xq fq(q)dq
=

∫ aq fq(q)
K ϵaq,1−tx dq

R
∫

ϵaq,1−tx aq fq(q)dq
=

1
RK

.

Using ϵtotal
wn,K = ϵSE

wn,K + ϵAE
wn,K, the optimal tax formula can be further decomposed into (35).

F Equivalence to Primal Approach

In the main text, we derive the optimal tax formulas with dual approach, or variational ap-

proach. We now turn to primal approach, or mechanism design method, to solve the optimal

tax formulas in general general equilibrium, then we prove these two approaches are indeed

equivalent.

F.1 Tax formulas of Primal Approach

Proof. Bear in mind that there is multi-dimensional heterogeneity in our model, wealth endow-

ment indexed by q ∈ Q, and individual skill indexed by n ∈ N, both of them are unobserved

for the government. While individual derives utility in the form of V(n, q) = u(yq − aq) +

c(n, q)− v(ln), then incentive compatibility requires that

u(yq − aq) + c(n, q)− v(ln) ≥ u(yq − aq′) + c(n′, q′)− v(
wn′ ln′

wn
), ∀n′, q′.

the incentive compatibility constraint (IC) can be given by

∇c(n, q) = [∇nc(n, q),∇qc(n, q)] =
[

v′(ln)(ẇnln + wn l̇n)
1

wn
, u′(yq − aq)ȧq

]
, ∀n, q. (F.1)

and the resource constraint (RC) is given by∫ ∫
c(n, q) f (n, q)dndq = F(K,L, α) + K − B. (F.2)

In the same spirit of Loebbing (2020), we go through the following steps to derive the optimal

tax formulas.
Step 1: Combine IC (F.1) and RC (F.2) to get an integrated constraint condition, that c(n, q)
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is represented as a function of ln and aq,

c(n, q) = c(n, q) +
∫ n

n
∇nc(n′, q)dn′ +

∫ q

q
∇qc(n, q′)dq

= c(n, q) +
∫ n

n
v′(ln′)(ẇn′ ln′ + wn′ l̇n′)

1
wn′

dn′ −
∫ q

q
u′(yq′ − aq′)(ẏq′ − ȧq′)dq′ +

∫ q

q
u′(yq′ − aq′)ẏq′dq′

= c(n, q) +
∫ n

n
v′(ln′)ŵn′ ln′dn′ + v(ln)− v(ln)− u(yq − aq) + u(yq − aq) +

∫ q

q
u′(yq′ − aq′)ẏq′dq′.

Integrating both sides and using RC, we obtain

F(K,L; α) + K − B =c(n, q) +
∫ ∫ n

n
v′(lñ)ŵñlñdñ fn(n)dn +

∫
v(ln) fn(n)dn − v(ln)

−
∫

u(yq − aq) fq(q)dq + u(yq − aq) +
∫ ∫ q

q
u′(yq̃ − aq̃)ẏq̃dq̃ fq(q)dq

=c(n, q) +
∫ ∫ n̄

ñ
fn(n)dnv′(lñ)ŵñlñdñ +

∫
v(ln) fn(n)dn − v(ln)

−
∫

u(yq − aq) fq(q)dq + u(yq − aq) +
∫ ∫ q̄

q̃
fq(q)dqu′(yq̃ − aq̃)ẏq̃dq̃

=c(n, q) +
∫
(1 − Fn(ñ))v′(lñ)ŵñlñdñ +

∫
v(ln) fn(n)dn − v(ln)

−
∫

u(yq − aq) fq(q)dq + u(yq − aq) +
∫
(1 − Fq(q̃))u′(yq̃ − aq̃)ẏq̃dq̃.

Eliminating c(n, q), the integrated constraint condition can be given as follow,

c(n, q) =F(K,L; α) + K − B −
∫

(1 − Fn(ñ)) v′(lñ)ŵñlñdñ −
∫

v(lñ) fn(ñ)dñ +
∫ n

n
v′(lñ)ŵñlñdñ + v(ln)

+
∫

u(yq̃ − aq̃) fq(q̃)dq̃ − u(yq − aq) +
∫ q

q
u′(yq̃ − aq̃)ẏq̃dq̃ −

∫
(1 − Fq(q̃))u′(yq̃ − aq̃)ẏq̃dq̃.

(F.3)

Step 2: Substituting c(n, q) back into V(n, q), then differentiating social welfare W with

respect to ln and aq to get the first-order conditions for social planner,

V(n, q) =u(yq − aq) + c(n, q)− v(ln)

=F(K,L; α) + K − B −
∫

(1 − Fn(ñ)) v′(lñ)ŵñlñdñ −
∫

v(lñ) fn(ñ)dñ +
∫ n

n
v′(lñ)ŵñlñdñ

+
∫

u(yq̃ − aq̃) fq(q̃)dq̃ +
∫ q

q
u′(yq̃ − aq̃)ẏq̃dq̃ −

∫
(1 − Fq(q̃))u′(yq̃ − aq̃)ẏq̃dq̃.

Given the social welfare function as W = 1
λ G
(
{V(n, q)}n×q∈N×Q

)
+ B, the spirit of primal ap-

proach is to choose optimal allocations {ln}N and {aq}Q such that social welfare is maximized.
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Differentiate W with respect to ln and aq, and denote Ṽ = V + B, we have

∂W
∂ln

=
∫ ∫

g(n′, q′) f (n′, q′)
∂V(n′, q′)

∂ln
dn′dq′ +

∂B
∂ln

=
∫ ∫

g(n′, q′) f (n′, q′)
∂Ṽ(n′, q′)

∂ln
dn′dq′

(F.4)
∂W
∂aq

=
∫ ∫

g(n′, q′) f (n′, q′)
∂V(n′, q′)

∂aq
dn′dq′ +

∂B
∂aq

=
∫ ∫

g(n′, q′) f (n′, q′)
∂Ṽ(n′, q′)

∂aq
dn′dq′.

(F.5)

The remaining work is to find ∂Ṽ(n′,q′)
∂ln

and ∂Ṽ(n′,q′)
∂aq

. Since

∂Ṽ(n′, q′)
∂ln

=wn fn(n)− v′(ln) fn(n)

− (1 − Fn(n))(v′′(ln)ln + v′(ln))ŵn −
∫

(1 − Fn(ñ)) v′(lñ)lñ
∂ŵñ

∂ln
dñ

+ (v′′(ln)ln + v′(ln))ŵn · 1n′≥n +
∫ n′

n
v′(lñ)lñ

∂ŵñ

∂ln
dñ,

∂Ṽ(n′, q′)
∂aq

= (1 + R) fq(q)−
∫

(1 − Fn(ñ)) v′(lñ)lñ
∂ŵñ

∂aq
dñ +

∫ n′

n
v′(lñ)lñ

∂ŵñ

∂aq
dñ − u′(yq − aq) fq(q)

− u′′(yq − aq)ẏq · 1q′≥q + (1 − Fq(q))u′′(yq − aq)ẏq,

plug above equations into (F.4) and (F.5), the derivations of social welfare W with respect to
factor supplies can be given by

∂W
∂ln

=wn fn(n)− v′(ln) fn(n)

− (1 − Fn(n))(v′′(ln)ln + v′(ln))ŵn −
∫

(1 − Fn(ñ)) v′(lñ)lñ
∂ŵñ

∂ln
dñ

+
∫ ∫ n̄

n
g(n′, q′) f (n′, q′)(v′′(ln)ln + v′(ln))ŵndn′dq′ +

∫ ∫
g(n′, q′) f (n′, q′)

∫ n′

n
v′(lñ)lñ

∂ŵñ

∂ln
dñdn′dq′

=wn fn(n)− v′(ln) fn(n)

− (1 − Fn(n))(v′′(ln)ln + v′(ln))ŵn −
∫

(1 − Fn(ñ)) v′(lñ)lñ
∂ŵñ

∂ln
dñ

+ ḡn(n)(1 − Fn(n))(v′′(ln)ln + v′(ln))ŵn +
∫ ∫ ∫ n̄

ñ
g(n′, q′) f (n′, q′)dn′dq′v′(lñ)lñ

∂ŵñ

∂ln
dñ

=wn fn(n)− v′(ln) fn(n)− (1 − ḡn(n))(1 − Fn(n))(v′′(ln)ln + v′(ln))ŵn

−
∫
(1 − ḡn(ñ)) (1 − Fn(ñ)) v′(lñ)lñ

∂ŵñ

∂ln
dñ.
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Note that
∫ ∫

g(n, q) f (n, q)dndq = 1 and ḡn =
∫ ∫

n g(n′,q′) f (n′,q′)dn′dq′

1−Fn(n)
. Similarly, one obtains

∂W
∂aq

=(1 + R) fq(q)− u′(yq − aq) fq(q)

+ (1 − Fq(q))u′′(yq − aq)ẏq −
∫

(1 − Fn(ñ)) v′(lñ)lñ
∂ŵñ

∂aq
dñ

−
∫ ∫ q̄

q
g(n′, q′) f (n′, q′)u′′(yq − aq)ẏqdn′dq′ +

∫ ∫
g(n′, q′) f (n′, q′)

∫ n′

n
v′(lñ)lñ

∂ŵñ

∂ln
dñdn′dq′

=(1 + R) fq(q)− u′(yq − aq) fq(q) + (1 − ḡq(q))(1 − Fq(q))u′′(yq − aq)ẏq

−
∫
(1 − ḡn(ñ)) (1 − Fn(ñ)) v′(lñ)lñ

∂ŵñ

∂aq
dñ.

Step 3: Using individual’s first-order conditions to reintroduce the optimal marginal income

tax rates.

Individual first-order conditions are given by

v′(ln) = (1 − T′
z(zn))wn, u′(yq − aq) = 1 + (1 − T′

x(xq))R.

Bear in mind that eln,1−tz =
v′(ln)

v′′(ln)ln
and eaq,1−tx = −u′(yq−aq)−1

aqu′′(yq−aq)
. Thus we have

v′′(ln)ln =
(1 − T′

z(zn))wn

eln,1−tz

, u′′(yq − aq)aq = −
(1 − T′

x(xq))R
eaq,1−tx

.

Equalize ∂W
∂ln

= ∂W
∂aq

= 0, and plug into above equations, one obtains

0 =T′
z(zn)wn fn(n)−

(
1 +

1
ϵln,1−tz

)
(1 − ḡn(n))(1 − Fn(n))(1 − T′

z(zn))ẇn

−
∫
(1 − ḡn(ñ)) (1 − Fn(ñ)) (1 − T′

z(zñ))zñ
∂ŵñ

∂ln
dñ,

0 =T′
x(xq)R fq(q)−

1
ϵaq,1−tx

(1 − ḡq(q))(1 − Fq(q))(1 − T′
x(xq))R

ẏq

aq

− fq(q)
∫
(1 − ḡn(ñ)) (1 − Fn(ñ)) (1 − T′

z(zñ))zñ
∂ŵñ

∂K
dñ.
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Rearrange, then lead to the following optimal tax formulas

T
′
z(zn)

1 − T′
z(zn)

=

(
1 +

1
eln,1−tz

)
(1 − ḡn(n))

1 − Fn(n)
fn(n)

ŵn

+
∫
(1 − ḡn(ñ))

(
1 − T

′
z(zñ)

1 − T′
z(zn)

)(
1 − Fn(ñ)
zn fn(n)

)
zñ

∂ŵñ

∂Ln/Ln
dñ,

(F.6)

T′
x(xq)

1 − T′
x(xq)

=
1

eaq,1−tx

(1 − ḡq(q))
1 − Fq(q)

fq(q)aq
ẏq

+
∫
(1 − ḡn(ñ))

(
1 − T

′
z(zñ)

1 − T′
x(xq)

)(
1 − Fn(ñ)

RK

)
zñ

∂ŵñ

∂K/K
dñ.

(F.7)

F.2 Equivalence

We now show that equation (F.6) and (F.7) are indeed equivalent to equation (33) and (34),

that is, primal approach is equivalence to dual approach in general equilibrium with multi-

heterogeneity.

Equivalence of labor income taxation. Start from the first term of (F.6), with Fz(zn) = Fw(wn) =

Fn(n), we know that fw(wn)ẇn = fn(n) and fz(zn)
dzn
dwn

= fw(wn). Moreover, zn = wnln implies

that dzn/dwn = ln(1 + ϵln,wn). Since ŵn = ẇn/wn, it easily to show that

1 − Fn(n)
fn(n)

ŵn =
1 − Fz(zn)

wn fw(wn)
=

1 − Fz(zn)

(1 + ϵln,wn)zn fz(zn)
.

Given the expressions of ϵln,wn and ϵln,1−T′
z

in Table 1, that is

ϵln,1−T′
z
=

[1 − T′
z(zn)] eln,1−tz

1 − T′
z(zn) + eln,1−tz T′′

z (zn)zn
, ϵln,wn =

[1 − T′
z(zn)− T′′

z (zn)zn] eln,1−tz

1 − T′
z(zn) + eln,1−tz T′′

z (zn)zn
.

One can verify that 1
ϵln ,1−T′z

= 1
1+ϵln ,wn

(1+ 1
eln ,1−tz

). Therefore the first term of (F.6) can be rewritten

as (
1 +

1
eln,1−tz

)
(1 − ḡn(n))

1 − Fn(n)
fn(n)

ŵn =
1

ϵln,1−T′
z

(1 − ḡzn)
1 − Fz(zn)

zn fz(zn)
,

which is equivalent to the first term of equation (33).

We now turn to the general equilibrium term in the optimal nonlinear labor income tax

formula. With dŵñ
dLn/Ln

= d(d ln wñ/d ln Ln)
dñ =

dϵtotal
wñ ,Ln
dñ , the second term in equation (F.6) derived by
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primal approach can be rewritten as

∫
(1 − ḡñ)

(
1 − T

′
z(zñ)

1 − T′
z(zn)

)(
1 − Fn(ñ)
zn fn(n)

)
zñdϵ̃total

wñ,Ln
.

Next, using integration by parts, we have

∫
(1 − ḡñ)

(
1 − T

′
z(zñ)

1 − T′
z(zn)

)(
1 − Fn(ñ)
zn fn(n)

)
zñdϵ̃total

wñ,Ln

= (1 − ḡñ)

(
1 − T

′
z(zñ)

1 − T′
z(zn)

)(
1 − Fn(ñ)
zn fn(n)

)
zñϵtotal

wñ,Ln
|n̄n −

∫
ϵtotal

wñ,Ln
d

[
(1 − ḡñ)

(
1 − T

′
z(zñ)

1 − T′
z(zn)

)(
1 − Fn(ñ)
zn fn(n)

)
zñ

]
.

Bear in mind that ḡn =
∫ ∫ n̄

n g(n′,q) f (n′,q)dn′dq
1−Fn(n)

, and
∫ ∫ n̄

n g(n′, q) f (n′, q)dn′dq has been normalized

to one, thus we have 1− ḡn = 0. In addition, with 1− F(n̄) = 0, the first part of above equation

equals to zero, which leads to

∫
(1 − ḡñ)

(
1 − T

′
z(zñ)

1 − T′
z(zn)

)(
1 − Fn(ñ)
zn fn(n)

)
zñdϵtotal

wñ,Ln

= −
∫

ϵtotal
wñ,Ln

d

[
(1 − ḡñ)

(
1 − T

′
z(zñ)

1 − T′
z(zn)

)(
1 − Fn(ñ)
zn fn(n)

)
zñ

]

= −
∫ [

(1 − ḡñ)

(
1 − T

′
z(zñ)

1 − T′
z(zn)

)(
1 − Fn(ñ)
zn fn(n)

)
zñ

]′
ϵtotal

wñ,Ln
dzñ

= −
(

dzn

dn

)−1 ∫ [
(1 − ḡzñ)

(
1 − T

′
z(zñ)

1 − T′
z(zn)

)(
1 − Fz(zñ)

zn fz(zn)

)
zñ

]′
ϵtotal

wñ,Ln
dzñ,

which is consistent with the second term derived by dual approach. Using the definition of

ϵtotal
wñ,Ln

= ϵSE
wñ,Ln

+ ϵAE
wñ,Ln

, the proving of equivalence between (F.6) and (33) is completed.

Equivalence of capital income taxation. Start from the first term of (F.7), our goal is to replace

ẏq by ȧq. Bear in mind that u′(yq − aq) = 1 + (1 − T′
x(xq))R, this first-order condition implies

u′′(yq − aq)(ẏq − ȧq) = −R2T′′
x (xq)ȧq.

thus we have

ẏq =

(
1 −

R2T′′
x (xq)

u′′(yq − aq)

)
ȧq =

1 − T′
x(xq) + eaq,1−tx T′′

x (xq)xq

1 − T′
x(xq)

ȧq.
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in the last equation, we use u′′(yq − aq)aq = − (1−T′
x(xq))R

eaq ,1−tx
. Now the first term of (F.7) can be

rewritten as

1
eaq,1−tx

(1 − ḡq(q))
1 − Fq(q)

fq(q)aq
ẏq =

1
eaq,1−tx

1 − T′
x(xq) + eaq,1−tx T′′

x (xq)xq

1 − T′
x(xq)

(1 − ḡxq)
1 − Fx(xq)

xq fx(xq)

=
1

ϵaq,1−T′
x

(1 − ḡxq)
1 − Fx(xq)

xq fx(xq)
.

In the second equation, we use Fx(xq) = Fa(aq) = Fq(q), and in the last equation, we use the

expression of ϵaq,1−T′
x

given in Table 1. Thus, the first terms of (F.7) and (34) are equivalence.

The equivalence of the general equilibrium term between (F.7) and (34) can be proved following

the same techniques as the one of nonlinear labor income tax formula.

G Details for Quantitative Analysis

G.1 Calibration

Data description-We use the Distributional National Accounts micro-files of Piketty et al. (2018),

this dataset combines tax, survey, and national accounts data to estimate the distribution of

national income in the United States since 1913. The advantage of this dataset is that it captures

100% of national income relative to IRS tax return data, which is always used to calibrate the

earning distribution(Saez and Stantcheva, 2018). Instead of specifying a certain distributional

function of incomes, we calibrate the labor and capital income distribution using the observed

income distribution directly. The DINAs micro-files contain the pretax labor income (plinc)

and pretax capital income (pkinc) at the individual level. To bring the data to our model, we

first restrict the value of plinc and pkinc between 5,000 and 10,000,000. Where plinc= 5, 000

correspond to n in our model. The number of observations is 31387, and the median value of

labor income is about 33, 000$. Next, we discretize the income using bins, and the length of

bin is 2, 000. By counting the number of observations in each bin as a proportion of the total

number of observations, we approximate the probability density of the mean income of each

bin, that is fn(n) and fq(q). After the processes of normalizing and smoothing, we can calculate

the inverse Hazard Ratio at each bins, that is (1 − Fz(zn))/ fz(zn)zn. Note that Fz(zn) = Fn(n),

so fz(zn)dzn = fn(n)dn. The same is for capital income distribution. After calibrating the

distribution of labor income and capital income, we turn to the calibration of the 2019 U.S.

economy.
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On the preference side, we have u(yq − aq) = −Bq
a

1+1/ϵk
q

1+1/ϵk
− aq and v(ln) = l

1+1/ϵl
n

1+1/ϵl
, given the

initial tax system Tz(zn) = zn − 1−ζ
1−ϕ z1−ϕ

n and tx = 10%, we can use the following first-order

conditions

v′(ln) = (1 − T′
z(zn))wn, u′(yq − aq) = 1 + (1 − tx)R,

to calibrate parameter Bq and the distribution of labor supply ln and wage wn. Note that we

have xq = Raq and zn = wnln, and xq, zn can be observed from the data.

On the technology side, bear in mind that we have given the aggregate production function

in Appendix A.1,

Y =

{∫
βnYρ

n dn
} 1

ρ

, with Yn = An(αn)Kαn
n L1−αn

n .

We specify the distributional parameter βn = f ρ
n (n). Profit maximizing means that wn =

∂Y/∂Ln, one can obtain the following equation,

w1−ρ
n = Y1−ρ(1 − αn)

1−ρLρ−1
n p−ρ

n f ρ
n (n) (I.1)

Where we use Yn = wnLn
1−αn

1
pn

, the rest of work is to find pn. Substitute Kn = αn pnYn/R and

Ln = (1 − αn)pnYn/wn into Yn = An(αn)Kαn
n L1−αn

n , one obtains

An(αn)α
αn
n (1 − αn)

1−αn

(
R

wn

)1−αn pn

R
= 1.

Rearrange above equation, pn can be given by

pn =

(wn
R
)1−αn R

e
∫ αn

0 ln ψk
n(i)di+

∫ 1
αn

ln ψl
n(i)di

. (I.2)

Note that we have An(αn) =
e
∫ αn

0 ln ψk
n(i)di+

∫ 1
αn ln ψl

n(i)di

ααn
n (1−αn)1−αn . Without loss of generality, we assume ψk

n(i) =

1 and ψl
n(i) = δn · iη, thus the price of occupational output can be reduced to pn = w1−αn

n Rα
n

δ1−αn
n e−η(1−αn)(αn)−ηαn

.

In the context of endogenous automated technical change, we have wn
R = ψl

n(αn)

ψk
n(αn)

= δnα
η
n in equi-

librium, thus the price can be reduced to pn = eη(1−αn)Rα
η
n.

Substitute pn = eη(1−αn)Rα
η
n into (I.1), we get,

w1−ρ
n = Y1−ρ(1 − αn)

1−ρLρ−1
n (Rα

η
n)

−ρ f ρ
n (n)e−ηρ(1−αn), ∀n. (I.3)
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In addition, set the labor share to 52.7%, the following equation must be satisfied,∫
wnLn fn(n)dn∫
αnwnLn

1−αn
fn(n)dn

=
52.7%

1 − 52.7%
. (I.4)

Equation (I.1) and (I.4) are used to calibrate the set of automation {αn}N and the comparative

parameter η. Then {δn}N can be calibrated using wn
R = ψl

n(αn)

ψk
n(αn)

= δnα
η
n. After that, it is easily to

calculate An(αn), γn and Kn/Ln.

G.2 Simulation

The simulation of optimal tax system is just following the fixed-point algorithm introduced by

Mankiw et al. (2009).

Step 1: Given the tax systems, we solve the equilibrium. Namely, We find a set of prices

{wn}n∈N and R, allocations {ln, aq}n×q∈N×Q, and automation levels {αn}n∈N such that the first-

order conditions for workers and firms are satisfied. Moreover factors and final goods markets

must be clearing.

Starting from a given {wn}n∈N and R, we use the two first-order conditions of individuals

to indicate optimal factor supplies {ln, aq}n×q∈N×Q,

l1/ϵl
n = wn(1 − T′

z), Bna1/ϵk
n = (1 − T′

x)R.

then we are allowed to update the level of automation using equation (I.3), and calculate alter-

native pn, Kn and Yn using the following equations,

pn = eη(1−αn)Rα
η
n, Kn =

αnwnln
1 − αn

1
R

, Yn = An(αn)Kαn
n L1−αn

n .

We calculate iterative aggregate output Y and capital K using

Yiter =
∫

pnYn fn(n)dn, Kiter

∫
Kn fn(n)dn.

and iterative government revenue B and social welfare W using

Biter =
∫

znT′
z(zn) fn(n)dn +

∫
xqT′

x(xq) fq(q)dq, Witer =
1
λ

∫ ∫ V1−κ(n, q)
1 − κ

f (n, q)dndq + B.

80



Finally, we update factor prices using

R =
αY
K

, wn =
(1 − αn)RKn

αnLn
.

where α =
∫

αnγndn. In equilibrium, Yiter, Kiter, Biter and Witer must converge, which is our

condition to terminate the first loop.

Step 2: After calculating the equilibrium results, we will further calculate the sufficient statistics

required for the optimal tax expressions. The supply-side elasticities ϵln,1−T′
z

and ϵan,1−T′
z

can be

found in Table 1, and the demand-side elasticities have been given in Table 2. The remaining

work is to update the social welfare weights,

g(n, q) =
V−κ(n, q)

λ
, ḡzn =

∫ ∫
zn′>zn

g(n′, q) f (n′, q)dn′dq

1 − Fz(zn)
, ḡxq =

∫ ∫
xq′>xq

g(n, q′) f (n, q′)dndq′

1 − Fx(xq)
.

and the inverse Hazard Ratio 1−Fz(zn)
fz(zn)zn

and 1−Fx(xq)

fx(xq)xq
.

Step 3: Given above sufficient statistics, compute the alternative tax schedules using the plan-

ner’s first-order condition, i.e., the optimal tax formulas. For NLIT-NCIT tax system, we use

T
′
z(zn∗)

1 − T′
z(zn∗)

=
1

ϵln∗ ,1−T′
z

(1 − ḡzn∗ )
1 − Fz(zn∗)

zn∗ fz(zn∗)

−
(

dzn∗

dn∗

)−1 ∫ [
(1 − ḡzn)

(
1 − T

′
z(zn)

1 − T′
z(zn∗)

)(
1 − Fz(zn)

zn∗ fz(zn∗)

)
zn

]′

ϵSE
wn,Ln∗

dzn︸ ︷︷ ︸
Substitution Effect

−
(

dzn∗

dn∗

)−1 ∫ [
(1 − ḡzn)

(
1 − T

′
z(zn)

1 − T′
z(zn∗)

)(
1 − Fz(zn)

zn∗ fz(zn∗)

)
zn

]′

ϵAE
wn,Ln∗

dzn︸ ︷︷ ︸
Automation Effect

T
′
x(xq∗)

1 − T′
x(xq∗)

=
1

ϵaq∗ ,1−T′
x

(1 − ḡxq∗ )
1 − Fx(xq∗)

xq∗ fx(xq∗)

− 1
RK(1 − T′

x(xq∗))

∫ [
(1 − ḡzn)

(
1 − T

′
z(zn)

)
(1 − Fz(zn)) zn

]′
ϵSE

wn,Kdzn︸ ︷︷ ︸
Substitution Effect

− 1
RK(1 − T′

x(xq∗))

∫ [
(1 − ḡzn)

(
1 − T

′
z(zn)

)
(1 − Fz(zn)) zn

]′
ϵAE

wn,Kdzn︸ ︷︷ ︸
Automation Effect
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Turn to NLIT-LCIT tax system, we consider an alternative optimal capital income tax formula

tx

1 − tx
=

∫
(1 − gq(q))xq fq(q)dq∫

ϵaq,1−T′
x
xq fq(q)dq

−
∫ 1

RK(1 − tx)

[
(1 − ḡzn)(1 − T

′
z(zn))(1 − Fz(zn))zn

]′
ϵSE

wn,Kdzn︸ ︷︷ ︸
Substitution Effect

−
∫ 1

RK(1 − tx)

[
(1 − ḡzn)(1 − T

′
z(zn)(1 − Fz(zn))zn

]′
ϵAE

wn,Kdzn︸ ︷︷ ︸
Automation Effect

When the nonlinear labor income tax is restricted to be the following functional form

Tz(zn) = zn −
1 − τ

1 − ϕ
z1−ϕ

n ,

we calculate the alternative capital income tax rate using above NCIT and LCIT formulas.

Step 4: Repeat above steps until the updating is negligible. When the fixed point system is

solved, the resource constraint must be satisfied∫ ∫
c(n, q) f (n, q)dndq + B = Y + K.
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