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Abstract

We propose a new rank-based test for the number of common dynamic factors q in a dynamic

factor model for a large panel of observations. After estimating a VAR(1) model on r static factors

extracted by principal component analysis, we estimate the number of common dynamic factors by

testing the rank of the VAR residuals’ covariance matrix. Our new rank test is based on the asymp-

totic distribution of the sum of the smallest r − q eigenvalues of the residuals’ covariance matrix.

We develop both plug-in and bootstrap versions of this eigenvalue-based test. The eigenvectors

associated to the q largest eigenvalues allow us to construct an easy-to-implement estimator of the

common dynamic factors and to derive its asymptotic properties. We consider applications of our

new tests and estimators on panels of macro-financial variables and individual stocks volatilities.
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1 Introduction

This paper proposes a new rank-based test for the number of common dynamic factors q in a dynamic

factor models of the type:

yt = Λ0ht + · · ·+ Λsht−s + εt, (1.1)

ht = Φ1ht−1 + · · ·Φpht−p + wt, (1.2)

where yt = [y1,t, . . . , yN,t]
′ is an N -dimensional vector of observables, ht is a q-dimensional vector of

latent common dynamic factors which evolve according to the stationary VAR(p) in equation (1.2), εt

is a vector of weakly correlated zero-mean innovations, wt is a non-degenerate q-dimensional vector

of mutually orthogonal common shocks, Λi for i = 0, . . . , s are N × q matrices of loadings and Φj

with j = 1, . . . , p are autoregressive matrices such that the VAR(p) is stationary. Dynamic factor

models have been extensively studied, starting from Stock and Watson (2002a) and Stock and Watson

(2002b). When p is finite, the vectors ht, . . . , ht−s can be stacked into the q(s+1)-dimensional vector

ft = [h′
t, h

′
t−1, . . . , h

′
t−s]

′ and the model in equations (1.1)-(1.2) has a static factor representation:

yt = Λft + εt, (1.3)

ft = Φft−1 + vt, (1.4)

where ft follows a singular Vector Autorgression of order 1 with innovations vt =
[
Iq 0 . . . 0

]′
wt

which have a variance-covariance matrix with rank q < r = q(s + 1), i.e. matrix V (vt) is rank

deficient. In this setting, estimation and inference for the number of dynamic factors q, and the factors

wt themselves has been studied by Bai and Ng (2007), Amengual and Watson (2007) and Breitung

and Pigorsch (2013) and is based on the estimation of the r latent factors ft by performing Principal

Component Analysis (PCA) on the panel of observables yt.

We contribute to the literature on dynamic factor models by establishing an estimator for the num-

ber of dynamic factors q based on a sequential testing procedure of the rank of V (vt). Our new

procedure relies on testing the rank of the residuals’ covariance matrix V (vt) obtained by estimating

a VAR(1) model on the Principal Components (PC) estimate f̂t of the r static factors ft. In particular,

our testing procedure is based on the asymptotic distribution of the sum of the smallest r− q estimated
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eigenvalues of V (vt). These are not zero in any finite sample due to the estimation error of the static

factors f̂t, which is reflected in the the estimation error of V (vt) and its eigenvalues. We propose two

implementations of this test: a first one based on the plug-in estimation of the bias and the variance of

the asymptotic distribution,and a second one relying on a residual (wild) bootstrap of the standardized

test statistics. Having estimated q, we also develop an easy-to-implement estimator for the common

dynamic factors. Given the eigenvectors associated to the largest q estimated eigenvalues of V (vt),

we estimate dynamic factors by multiplying these eigenvectors with the principal component (PC)

estimates of the static factors.

Consistent estimation procedures for the number q of dynamic factors based on Information Cri-

teria (IC) have been derived by relying on the convergence rate of the PC estimator of the common

factors by Amengual and Watson (2007), Bai and Ng (2007) and Breitung and Pigorsch (2013). Differ-

ently from these procedures, we consider a fully-fledged testing procedure for the number of dynamic

factors q ≤ r. Onatski (2009) tests and estimates the number of dynamic factors by exploiting the

asymptotic distribution of ratios of eigen-gaps of the spectral matrix of the data yt; this test is based

on the spectrum of yt instead of the variance-covariance matrix as it was developed for the generalized

dynamic factor model. 1 Under the same setting, Hallin and Liska (2007) derive a consistent selection

procedure for the number of common dynamic factors. Kapetanios (2010) derives an alternative to the

test of Onatski (2009) based on the largest eigenvalues of the covariance of the data yt. Importantly,

our testing procedure allows for more general relative convergence rates of N and T compared those

required for the asymptotic results in Hallin and Liska (2007), Onatski (2009) and Kapetanios (2010).

As discussed by Bai and Ng (2007) and Donald, Fortuna, and Pipiras (2010), testing the rank of

a finite-dimensional positive semi-definite (p.s.d.) matrix is a highly non-standard problem. While

the literature has developed plenty of methods to test the rank of a matrix, e.g. Gill and Lewbel

(1992), Cragg and Donald (1996), Robin and Smith (2000), Kleibergen and Paap (2006) and Donald,

Fortuna, and Pipiras (2007), all these results fail to hold when the matrix of interest is symmetric and

semi-definite. Indeed, Donald, Fortuna, and Pipiras (2007) showed that when the rank of a (negative or

positive) semi-definite matrix, say M0, needs to be estimated using another (negative or positive) semi-

1Generalized dynamic factor models, introduced by Forni, Hallin, Lippi, and Reichlin (2000) are extension of the model
(1.1) - (1.2) with an infinite number of factor lags in the RHS of equation (1.1) and/or equation (1.2). Hallin and Liska
(2007) referred to all dynamic factor models that can expressed with a finite number of lags in equation (1.1) as “restricted
dynamic factor model”. Our testing methodology can be used in its current version to estimate q in DFM with any finite
number of lags s and p in (1.1) - (1.2), but not in a generalized dynamic factor model with an infinite number of lags.
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definite matrix, say M̂, the asymptotic variance-covariance matrix of the estimator, say W0 = V (M̂),

is necessarily singular. Hence, the aforementioned rank tests for indefinite matrices cannot be applied

as they assume that W0 is full rank. To the best of our knowledge, we are the first to successfully

address the problem of testing the rank of a finite dimensional positive semi-definite (p.s.d.) matrix in

a panel framework where both the time series and cross-sectional dimension diverge.2

Our solution consists in a sequential testing procedure based on the asymptotic distribution of the

sum of the smallest r−q estimated eigenvalues of V (vt). This distribution is derived by using a higher

order expansion of the PC estimator of the factors, and applying perturbation methods to construct the

asymptotic, for N, T → ∞, expansion of the sum of the smallest r−q estimated eigenvalues of V (vt).

Remarkably, under the null hypothesis of V (vt) having rank q, the asymptotic distribution of the test

statistic is Gaussian, has a non-standard convergence rate of N
√
T , and features an asymptotic bias

term of order 1/N . The bias term is due to the measurement error in the eigenvalues of V (vt) caused

by the estimation error of the static factors. Its strictly positive sign is compatible with the intuition

that the factor estimation error drives the smallest eigenvalues away from zero while maintaining the

positive definiteness of the estimator of the covariance matrix of the factor VAR innovations. Starting

from this asymptotic distribution, we develop a consistent sequential testing procedure for determining

the rank of a p.s.d. matrix. The approach takes into account the usual issues related to multiple testing

in the spirit of, e.g., Robin and Smith (2000). To improve finite sample properties of the test, we

also develop a bootstrap implementation of the sequential testing procedure. Inspired by the work

of Goncalves and Perron (2014), we consider a wild bootstrap scheme for the residuals of the factor

model, when factors and loadings are estimated by PCA.

We study the empirical size and power of our asymptotic and bootstrap-based testing procedure in

a Monte Carlo analysis. We find that the asymptotic test is over-sized unless N and T are particularly

large. However, it exhibits a good empirical power even when controlling for the size distortion.

The bootstrap scheme drastically refines the size of test while preserving much of its power. These

results hold true across different data generating processes. We also look at the average accuracy of

the estimator for q based either on the asymptotic or on the bootstrap sequential procedure. The latter

provides reliable estimates for all data generating processes that we consider. Finally, we use the new

2Other rank-based testing procedures for the number r of static factors in panel data models woth a time observations
T is fixed and diverging number N of cross-sectional units N have been recently developed by Fortin, Gagliardini, and
Scaillet (2023a,b).
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test and related estimator to study the factor structure of US macro-financial variables and of volatility

measures on US stocks.

The rest of the paper is organized as follows: Section 2 formally introduces the modelling setting

of the paper as well as the identification strategy for the number of common dynamic factors, and

for the factors themselves. Section 3 introduces estimators of the static factors, the number q of dy-

namic factors, and of the dynamic factors themeselves. The large sample theory of these estimators

is presented in Section 4. Section 5 introduces the bootstrap test and sequential estimation procedure.

Section 6 shows results of different Monte Carlo studies, and Section 7 covers the empirical appli-

cations. Section 8 concludes the paper. Appendixes A and B provide the regularity conditions, and

the proofs of the Proposition and Theorems, respectively. The Online Appendix (OA), provides the

proofs of additional technical results (Section C), an alternative identification and testing strategies of

the q common dynamic factors and their number based on the distribution of the largest r − q canon-

ical correlations between contemporaneous and lagged static factors (Section D), all statistical details

of the bootstrap implementation of the tests based either on the smallest r − q eigenvalues or on the

largest r − q canonical correlations (Section E), a detailed discussion of the alternative estimators of

the number of dynamic factors proposed by the literature considered in our MC experiments (Section

F), and additional details and results for the Monte Carlo experiments (Section G).3

3 We use the following notation. We partition a generic r-dimensional vector xt as xt = [x′Ht, x
′
Lt]

′, where the index
H (resp. L) indicates that xHt (resp.xLt) its the upper (resp. bottom) q -dimensional (resp. (r−q)-dimensional) subvector.
Moreover, we partition a generic (r, r) matrix A in four blocks as:

A =

[
AHH AHL
ALH ALL

]
,

where AHH its the upper-left (q, q) block, AHL its the upper-right (q, r − q) block, ALH its the bottom-left (r − q, q)
block, and ALL its the bottom-right (r − q, r − q). Ir denotes the identity matrix of order r,while vec is the vectorization
operator. The acronym p.d. (resp. p.s.d.) means positive definite (resp. positive semi-definite).
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2 The model

We consider the following static factor representation of a dynamic factor model:

yt = Λ̆f̆t + εt (2.5)

f̆t = Φ̆f̆t−1 + v̆t, (2.6)

v̆t = Gηt, with ηt ∼ iid(0, Iq) (2.7)

where yt = [y1t, ..., yNt]
′ is the N -dimensional vector of observations for N individuals at time t =

1, . . . , T , Λ̆ = [λ̆1, ..., λ̆N ]
′ is the N × r matrix of factor loadings, f̆t is the r-dimensional vector

of latent static factors with 1 < r ≪ N, T and εt = [ε1t, ..., εNt]
′ is an N -dimensional vector of

weakly correlated error terms. Factors f̆t follow a stationary VAR(1) process where Φ̆ is the r ×

r autoregressive matrix, and the r-dimensional innovations’ vector v̆t can be represented as linear

combination of the q-dimensional vector of “dynamic factors shocks”, or “primitive shocks”, ηt which

are orthogonal and independent over time, with 1 ≤ q ≤ r. The r × q full-column rank matrix G

represents the linear mapping linking the primitive shocks ηt and the static factors t̆t. Equation (2.7)

implies

v̆t ∼ iid(0, Σ̆v), (2.8)

where Σ̆v := E(v̆tv̆
′
t) = GIqG

′ = GG′ is the covariance matrix of the primitive shocks v̆t.4 Critically,

if q < r then the r × r matrix Σ̆v has reduced rank q. Let σ2
ℓ be the ℓ-th largest eigenvalue of Σ̆v,

with ℓ = 1, ..., r. When q < r, the smallest r − q eigenvalues of Σ̆v are equal to zero, while its largest

q eigenvalues are strictly positive, i.e. σ2
1 ≥ σ2

2 ≥ ... ≥ σ2
q > σ2

q+1 = σ2
q+2 = ... = σ2

r = 0. The

main result in our paper consists in the derivation of the asymptotic distribution of the smallest r − q

eigenvalues when the VAR(1) model in (2.6) is estimated on static factors f̆t obtained as Principal

Components from the large panel of observables yt.

4The assumption V (ηt) = Iq implicit in equation (2.7) is simply an identification condition for the dynamic factors,
as different values of variance and (non-perfect) correlation among them can be obtained by appropriate values of the
coefficients in the generic r × q full-column rank matrix G.
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2.1 Identification of static and dynamic factors

Our identification strategy for the number of dynamic shocks is based on the number of zero eigen-

values of Σ̆v in model (2.5) - (2.8), i.e. the innovation’s covariance matrix of VAR(1) for the r static

factors f̆t, which are unobservable. Similarly, the dynamic factors and shocks are then identified by

using the eigenvectors of Σ̆v associated to its largest q eigenvalues.

It is well known, that the static factors f̆t are identified, up to a rotation (and change of sign) by

performing PCA on the panel of observables yt, if the following standard identification assumptions

for linear latent factor models are made

E(f̆t) = 0 and V (f̆t) = E(f̆tf̆
′
t) = Ir, (2.9)

where the zero mean assumption of the factors can be made as we do not include any (vector of)

intercepts in the r.h.s. of the model’s equations (2.5) and (2.6). We refer to (2.9) as Assumption A.2 ii)

in the list of regularity conditions in Appendix A.

Turning to the identification of the dynamic factors, when Σ̆v has reduced rank q < r, there exists

an equivalent way of expressing the Data Generating Process (DGP) in (2.5) - (2.8) which i) allows to

identify the q common dynamic primitive shocks ηt, and ii) simplifies the derivation of the distribution

of the test statistics for their number q. Let Σv be the r × r diagonal matrix collecting the the ordered

eigenvalues σ2
ℓ , with ℓ = 1, ..., r, of Σ̆v:

Σv := diag(σ2
1, ..., σ

2
q , 0, ..., 0), (2.10)

and let Wv = [Wv,q , Wv,r−q] be the r × r matrix collecting the associated orthonormal eigenvectors,

with Wv,q (resp. Wv,r−q) being the r × q (resp. r × (r − q)) matrix of the eigenvectors associated to

the largest (resp. smallest) q (resp. r − q) non-zero (resp. zero) eigenvalues. Then,

Σ̆vWv = WvΣv , with W ′
vWv = WvW

′
v = Ir. (2.11)

Let us define the rotated factors and their associated loadings as

ft =
[
f ′
H,t, f ′

L,t

]′
:= W ′

vf̆t, t = 1, ..., T and Λ = [λ′
1, ..., λ

′
N ]

′ := Λ̆Wv (2.12)
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with λi = W ′
vλ̆i for i = 1, ..., N , respectively. Then, the DGP for the observable variables yt in

equation (2.5) can be equivalently written as:

yt = Λft + εt. (2.13)

By defining Φ := W ′
vΦ̆Wv, the rotated innovation vector vt := W ′

vv̆t = [(W ′
v,qGηt)

′ (W ′
v,qGηt)

′]′, and

by premultiplying both sides of equation (2.6) by W ′
v we obtain W ′

vf̆t = W ′
vΦ̆WvW

′
vf̆t−1 + W ′

vv̆t,

which is an equivalent DGP for the rotated factors:

ft = Φft−1 + vt, with vt ∼ iid(0,Σv) (2.14)

and Σv := V (vt) = W ′
vΣ̆vWv. By definition (2.10), the lower (r − q) block vt,L of vt is distributed as

a degenerate multivariate random variable such that E[vt,L] = 0 and V (vt,L) = Σv,LL = 0(r−q)×(r−q),

which implies:

vt = [v′Ht , v
′
Lt]

′ = [v′Ht , 0(r−q)×1]
′ ∀t. (2.15)

Equivalently, the rotated DGP for the rotated factors ft = [f ′
Ht f ′

Lt]
′ in (2.14) can be re-written as:

 fHt

fLt

 =

 ΦHH ΦHL

ΦLH ΦLL

 fHt−1

fLt−1

+

 vHt

0

 , t = 1, ..., T. (2.16)

In this rotated DGP, the non-degenerate q-dimensional vector vHt = W ′
v,qGηt collects a one-to-one

linear transformation of the q primitive shocks ηt given by the full rank q×q matrix W ′
v,qG. On the other

hand, the degenerate r − q factors collected in fLt have degenerate innovations vLt = W ′
v,r−qGηt = 0

for all dates t: this special feature of the innovations of fLt is key in deriving the asymptotic distribution

of our test statistic for q. 5

5The special form of the innovations in model (2.16) also implies that there exist r− q different linear combinations of
ft (resp. f̆t) which are perfectly correlated with other r − q linear combinations of ft−1 (resp. f̆t−1) or, equivalently, that
there exist r − q unitary canonical correlations between ft (resp. f̆t) and ft−1 (resp. f̆t−1). In Appendix D we show that
the dynamic factor space dimension q is also identifiable using canonical correlation analysis applied to f̆t and f̆t−1. A
similar argument was first used by Breitung and Pigorsch (2013): we formalize it in Appendix D, where we also show the
analogies with our identification argument in this Section, and estimation and inference for the eigendecomposition of Σ̆v
proposed in the following sections.
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3 Estimators

In Section 3.1 we show that the OLS estimator of Σ̆v (or Σv) has r − q zero eigenvalues when the

true factor f̆t (or ft) are observed. In Section 3.2 we introduce estimators for the static and dynamic

factors, and for parameters of their VAR model when the static factors are not observed, but instead

estimated by PCA. In particular, we discuss the estimation of the eigenvalues and eigenvectors of Σ̆v.

In Section 3.3 we discuss the sequential testing strategy characterizing our estimator of the number q

of common dynamic factors, and the test statistics.

3.1 Estimation of Σv when factors are observed

Let ˜̆Φ = (
∑T

t=1 f̆tf̆
′
t−1)(

∑T
t=1 f̆t−1f̆

′
t−1)

−1 be the Ordinary Least Squares (OLS) estimator of Φ̆ when

the observable factor is f̆t, and let ˜̆vt = f̆t − ˜̆
Φf̆t−1 be the VAR residuals estimated by using ˜̆

Φ. In this

case, the OLS estimator of Σ̆v is:

˜̆
Σv =

1

T

T∑
t=1

˜̆vt ˜̆v
′
t. (3.1)

Moreover, let

Φ̃ :=

(
T∑
t=1

ftf
′
t−1

)(
T∑
t=1

ft−1f
′
t−1

)−1

=

 Φ̃HH Φ̃HL

Φ̃LH Φ̃LL

 , (3.2)

be the OLS estimator of Φ when the factors ft are observable, and ṽt = ft − Φ̃ft−1 be the VAR

residuals estimated by using Φ̃. In this case, the OLS estimator of Σv is:

Σ̃v =
1

T

T∑
t=1

ṽtṽ
′
t. (3.3)

Note that both estimators ˜̆
Σv and Σ̃v are unfeasible when the true factors are not observed.

3.2 Estimation when factors are unobserved

Let us first assume that the true number of static factors r is known, but the true factors f̆t are unob-

servable and q is unknown. Our estimation procedure for q starts by estimating factors f̆t by PCA.

Let ˆ̆
F = [

ˆ̆
f0,

ˆ̆
f1, ...,

ˆ̆
fT ]

′ be the (T + 1, r) matrix of estimated Principal Components (PCs) extracted

from the (T + 1, N) panel Y = [y0, y1, ..., yT ]
′ associated with the largest r eigenvalues of matrix
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1
N(T+1)

Y Y ′. That is ˆ̆
F satisfies the usual PCA eigenvalue-eigenvector equation:

1

N(T + 1)
Y Y ′ ˆ̆F =

ˆ̆
FV̂ , (3.4)

where V̂ is the (r, r) diagonal matrix containing the r largest sorted eigenvalues of matrix Y Y ′/(N(T+

1)), and the columns of matrix ˆ̆
F are the associated normalized eigenvectors such that 1

T+1

ˆ̆
F ′ ˆ̆F =

1
T+1

∑T
t=0

ˆ̆
ft
ˆ̆
f ′
t = Ir. 6

Let ˆ̆
Φ = (

∑T
t=1

ˆ̆
ft
ˆ̆
f ′
t−1)(

∑T
t=1

ˆ̆
ft−1

ˆ̆
f ′
t−1)

−1 be the OLS estimator of Φ̆ when the factor is f̆t is

estimated by PCA, and let ˆ̆vt =
ˆ̆
ft − ˆ̆

Φ
ˆ̆
ft−1 be the VAR residuals estimated by using ˆ̆

Φ. In this case,

the OLS estimator of Σ̆v is:

ˆ̆
Σv =

1

T

T∑
t=1

ˆ̆vt ˆ̆v
′
t. (3.5)

Let Ŵv be the (r, r) matrix collecting the eigenvectors associated to the ordered eigenvalues σ̂2
ℓ , with

ℓ = 1, ..., r, of ˆ̆
Σv:

ˆ̆
ΣvŴv = ŴvΣ̂v , (3.6)

where Σ̂v := diag(σ̂2
1, ..., σ̂

2
r) is the diagonal matrix collecting the sorted eigenvalues of ˆ̆

Σv, and

Ŵ ′
vŴv = ŴvŴ

′
v = Ir. From the definition of rotated factors in (2.12), we can define the estimator

f̂t := Ŵ ′
v
ˆ̆
ft of ft = W ′

vf̆t, and matrix F̂ := [f̂0, f̂1, ..., f̂T ]
′ =

ˆ̆
FŴv. Analogously, we can define the

estimator v̂t := Ŵ ′
v
ˆ̆vt of vt = W ′

vv̆t. By denoting as Ŵv,q (resp. Ŵv,r−q) the first q (resp. last r − q)

columns of Ŵv, i.e. Ŵv = [Ŵv,q, Ŵv,r−q], we can also define a natural estimator of fH,t and vH,t.

DEFINITION 1. The estimator of the non-redundant static factors fH,t is f̂H,t = Ŵ ′
v,q

ˆ̆
ft, and the

estimator of the q dynamic factors vH,t is v̂H,t := Ŵ ′
v,q
ˆ̆vt, for all t = 1, ..., T .

Then, the loadings Λ of model (2.13) are estimated by the time-series regressions of yit on the

estimated factors f̂t. Therefore, the N × r matrix of estimated loadings Λ̂ = [λ̂1, ..., λ̂N ]
′ is computed

as:

Λ̂ = Y ′F̂ (F̂ ′F̂ )−1 =
1

T + 1
Y ′F̂ , (3.7)

where the second equality follows from F̂ ′F̂ /(T + 1) =
ˆ̆
F ′WvW

′
v
ˆ̆
F/(T + 1) =

ˆ̆
F ′ ˆ̆F/(T + 1) = Ir.

6Let F̂ ∗ be the orthonormal eigenvectors of 1
N(T+1)Y Y

′, s.t. 1
N(T+1)Y Y

′F̂ ∗ = F̂ ∗V̂ and F̂ ∗′F̂ ∗ = Ir, then the

normalized factor estimator ˆ̆
F is computed as ˆ̆

F =
√
T + 1 · F̂ ∗.
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Let ε̂t = yt − Λ̂j f̂t be the N -dimensional vector of residuals of the regressions of yit on f̂t, and let

Ξ̂ := [ε̂0, ε̂1, ..., ε̂T ]
′ = Y − F̂ Λ̂ the (T,N) matrix collecting all residuals.

Let Φ̂ be the OLS estimator of Φ in the rotated factor VAR(1) in equation (2.14):

Φ̂ =

(
T∑
t=1

f̂tf̂
′
t−1

)(
T∑
t=1

f̂t−1f̂
′
t−1

)−1

=

 Φ̂HH Φ̂HL

Φ̂LH Φ̂LL

 . (3.8)

By using the definitions of f̂t, Ŵv and v̂t, it is easy to show that v̂t = f̂t − Φ̂f̂t−1 for all t = 1, ..., T

i.e. v̂t are the VAR(1) residuals estimated on the rotated estimated factors f̂t. Then, it also follows that

(1/T )
∑T

t=1 v̂tv̂
′
t, i.e. the consistent estimator of Σv, is equal to Σ̂v:

1

T

T∑
t=1

v̂tv̂
′
t = Σ̂v. (3.9)

Equations (3.6) and (3.9) imply that the ℓ-th eigenvalue of ˆ̆
Σv is equal to the element in position

(ℓ, ℓ) of the estimator 1
T

∑T
t=1 v̂tv̂

′
t of Σv (which is itself a diagonal matrix of ordered eigenvalues).

Importantly, in Section 4 we show that all estimated eigenvalues σ̂2
ℓ are strictly positive w.p.a. 1, for

all ℓ = 1, ..., r, as the smallest r − q eigenvalues are functions of the estimation error in the principal

component estimator ˆ̆
ft.

3.3 Sequence of tests of hypotheses on the number of dynamic factors

From Section 2, the number of dynamic factors q coincides with the number of non-zero eigenvalues

of matrix Σ̆v, which are contained in the diagonal matrix Σv. In order to develop an estimator for q,

we consider the sequence of hypotheses in Table 1, which are expressed in terms of the number of

non-zero eigenvalues of Σ̆v. The generic hypothesis H(q) corresponds to the presence of q primitive

shocks, with 1 ≤ q ≤ r, and implies that the r − q smallest eigenvalues of Σ̆v are all equal to zero,

while the q largest ones are strictly positive. 7

7Note that the assumption 1 ≤ q ≤ r implies that there exists at least one factor in our model (2.5), and therefore we do
not consider the degenerate case H(0) =

{
σ2
1 = σ2

2 = ... = σ2
r = 0

}
, which corresponds to the absence of any dynamic

and static factor. This degenerate case is easy to detect empirically by applying the usual tests for the number of static
factors mentioned below.

11



Table 1 – Hypotheses on the number of dynamic factors q

H(q) Eigenvalues of Σ̆v

H(1) σ2
1 > σ2

2 = σ2
3 = ... = σ2

r = 0

H(2) σ2
1 ≥ σ2

2 > σ2
3 = ... = σ2

r = 0

... ...

H(q) σ2
1 ≥ σ2

2 ≥ ... ≥ σ2
q > σ2

q+1 = ... = σ2
r = 0

... ...

H(r − 1) σ2
1 ≥ σ2

2 ≥ ... ≥ σ2
r−1 > σ2

r = 0

H(r) σ2
1 ≥ σ2

2 ≥ ... ≥ σ2
r−1 ≥ σ2

r > 0

To select the number of primitive shocks q, let us consider the following sequence of tests:

H0 = H(q) vs. H1 =
⋃

q<s≤r

H(s), for q = 1, 2, ..., r − 1 . (3.10)

Given q = 1, 2, ..., r − 1, testing H0 against H1 is based on the following test statistics:

ξ̂(q) =

r−q∑
ℓ=1

σ̂2
r−ℓ+1, (3.11)

which corresponds to the sum of the r − q smallest sample eigenvalues of ˆ̆
Σv, that is ξ̂(q) = σ̂2

q+1 +

σ̂2
q+2+...+σ̂2

r . We reject the null H0 = H(q) when ξ̂(q) is positive and large, corresponding to the case

that at least one of the r − q smallest eigenvalues is significantly different from zero. Critical values

of the test are obtained from the large sample distribution of the statistic when N, T → ∞, which is

derived in Section 4.2. The number of primitive shocks q is estimated by sequentially applying the

tests for the null H(q) starting from q = 1, progressively increasing q if the null H(q) is rejected, and

stopping the procedure for the smallest value of q for which the null hypothesis H(q) is not rejected,

as described in Section 4.3.

When the true number of static factors r is unknown, but a consistent estimators r̂ is available,

the asymptotic distribution and rate of convergence for the test statistic ξ̂(q) based on r̂ is the same

as those based on the true number of factors.8 Therefore, the asymptotic distributions and rates of

8See, e.g., the discussion in Section 3.2 in AGGR and the reference therein.
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convergence of the test statistics will be derived assuming that the true dimension r is known, as also

done in Amengual and Watson (2007) and Bai and Ng (2007). 9 Examples of consistent estimators for

the numbers of pervasive factors r are, e.g., those proposed by Bai and Ng (2002), Alessi, Barigozzi,

and Capasso (2010), Onatski (2010), Ahn and Horenstein (2013) and Trapani (2018).

4 Large sample theory

In Section 4.1 we show that the OLS estimator of Σv has r− q zero eigenvalues when the true factor f̆t

(or ft) are observed, that is they have a degenerate finite sample distribution distribution, for any finite

sample of dimension T , with mean and variance both equal to 0. This implies that when all factors

are observed without error, that is they do not need to be estimated, testing for the number of dynamic

factors is a degenerate problem. Then, in Section 4.2 we derive the large sample distribution of ξ̂(q),

which is the sum of the smallest r− q eigenvalues σ̂2
ℓ of ˆ̆Σv, and provide an implementation of the test

based on consistent plug-in estimators of its asymptotic bias and variance. We also define a consistent

selection procedure for the number of primitive shocks q.

4.1 Distribution of eigenvalue estimators when static factors are observed

We first study the eigenvalues of the OLS estimator matrices ˜̆
Σv (resp. Σ̃v) of Σ̆v (resp. Σv), obtained

by estimating the VAR(1) model in equation (2.6) (resp. (2.14)) by OLS from the T -dimensional

sample of true factors f̆t (resp. ft).

PROPOSITION 1. Let f̆t (resp. ft), with t = 1, ..., T ≥ r2, be a T -dimensional sample of observa-

tions of the true factors f̆t (resp. ft) generated by model (2.6)-(2.8) (resp. model (2.14)), and let the

r × r matrix ˜̆
Σv (resp. Σ̃v) be the OLS estimator of Σ̆v (resp. Σv) defined in (3.1) (resp. (3.3)) based

on the T observations of f̆t (resp. ft).

Then, (i) matrices ˜̆
Σv and Σ̃v have the same eigenvalues σ̃2

ℓ ≥ 0, with ℓ = 1, ..., r:

σ̃2
1 ≥ σ̃2

2 ≥ ... ≥ σ̃2
q−1 ≥ σ̃2

q ≥ σ̃2
q+1 = σ̃2

q+2 = ... = σ̃2
r = 0 (4.1)

9As in AGGR, a word of caution is warranted. It is known that pre-testing generates problems in terms of lack of
uniform properties, and we therefore abstract from uniformity.
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for any T ≥ r2. (ii) The smallest r − q (resp. largest q) sample eigenvalues of both matrices Σ̃v and
˜̆
Σv are equal to (resp. strictly larger than) zero, i.e. as T → ∞

σ̃2
1 ≥ σ̃2

2 ≥ ... ≥ σ̃2
q−1 ≥ σ̃2

q > σ̃2
q+1 = σ̃2

q+2 = ... = σ̃2
r = 0 w.p.a. 1. (4.2)

(iii) Assume that the largest q eigenvalues σ2
1, . . . , σ

2
q of Σ̆v are distinct. Then, the largest q eigenvalues

of ˜̆Σv (resp. Σ̃v) converge in distribution to the largest q eigenvalues of Σ̆v (resp. Σv) at the conventional

convergence rate
√
T , that is

√
T (σ̃2

ℓ−σ2
ℓ )

d→ N(0, Vasy(σ̃
2
ℓ )), as T → ∞, where Vasy(σ̃2

ℓ ) = e′q,ℓ(e
′
q,ℓ⊗

Iq) · V1 · (eq,ℓ ⊗ Iq)eq,ℓ, where V1 := E[vec(vtv
′
t − Σv) · vec(vtv′t − Σv)

′] and eq,ℓ is the ℓ-th column

of Iq.

Proof: see Appendix B.1.

Proposition 1 implies that if the factors f̆t (or ft) were observable, there would be no need for a test

for the number of dynamic factors. Indeed, simply looking at the eigenvalues of ˜̆
Σv or Σ̃v, computed

from any (sufficiently large) sequence of observations og f̆t (or ft) would allow exact identification

of the number of primitive shocks: the q largest eigenvalues of ˜̆
Σv and Σ̃v will be strictly positive,

while the smallest r − q ones will be exactly zero. Similarly to the other cases discussed in Donald,

Fortuna, and Pipiras (2014), this is another example of where testing for the rank of a p.s.d. matrix ( ˜̆Σv

in our case) is a degenerate problem as the (asymptotic) variance-covariance matrix of this estimator

is necessarily singular. Hence, if the true factors f̆t were observed, testing for the number of common

dynamic shocks - by testing for the number of zero eigenvalues of Σv by using those of Σ̃v- results

in a degenerate problem, as it would involve testing for the existence of deterministic relationships

between the random vectors ft and ft−1.

Notably, Proposition 1 shows that when factors are observed the estimation error of Σv affects only

the largest q eigenvalues, but not the smallest r − q. Thus, this result refines the claim in Section 2

of Bai and Ng (2007) on the eigenvalues of ˜̆
Σv: we establish that the smallest r − q eigenvalues are

exactly equal to 0 for any finite sample size T ≥ r2, while they claim that the same r − q smallest

eigenvalues converge to 0 as T → ∞. Moreover, as shown in Sections 3.2 and 4, when factors ft

are estimated by PCA and matrix Σv is estimated using the estimated factors instead of the true ones,

all its r eigenvalues are strictly larger than 0 (w.p.a. 1) for any finite sample, and converge to 0 only

asymptotically when N, T → ∞. Importantly, the smallest r − q eigenvalues converge to zero at rate
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N
√
T . On the other hand, the largest q eigenvalues of ˆ̆

Σv converge faster at rate min(
√
N,

√
T ), as in

Bai and Ng (2007).

4.2 Distribution of eigenvalue estimators when static factors are estimated by

PCA

We consider the joint asymptotics N, T → ∞ and assume that:

√
T/N = o(1), N/T 5/2 = o(1), (4.3)

which we refer to as Assumption A.1 in the list of regularity conditions in Appendix A. The condi-

tions in (4.3) allow for a wide range of relative growth rates for the time-series and cross-sectional

panel dimensions as long as N grows faster than T 1/2 and slower than T 5/2. To derive the large

sample distribution of the test statistic for the number of common factors we deploy the refined

asymptotic expansion for the estimated PCs derived by AGGR. This expansion extends results in

Bai and Ng (2002), Stock and Watson (2002a), Bai (2003), and Bai and Ng (2006), and is reported

for convenience as Proposition B.1 in Appendix B. For t = 1, . . . , T the estimate ˆ̆
ft is asymptot-

ically equivalent (see details in Proposition B.1), up to negligible terms, to Ĥ
(
f̆t +

1√
N
ŭt +

1
T
b̆t

)
,

where ŭt =
(

1
N

∑N
i=1 λ̆iλ̆

′
i

)−1
1√
N

∑N
i=1 λ̆iεi,t, Ĥ is a nonsingular stochastic factor rotation matrix,

b̆t =
(

1
N

∑N
i=1 λ̆iλ̆

′
i

)−1 (
1
T

∑T
t=1 f̆tf̆

′
t

)−1

η2t f̆t, and η2t = plim
N→∞

1
N

∑N
i=1E[ε2i,t|Ft] is the limit average

error variance conditional on the sigma field Ft = σ(f̆s, s ≤ t) generated by current and past factor

values f̆t. The zero-mean term ŭt drives the randomness in factor estimates conditional on factor path.

Vector b̆t is measurable with respect to the factor path and induces a bias term at order T−1 in principal

components estimates. 10 Let us also define ut :=
(

1
N

∑N
i=1 λiλ

′
i

)−1
1√
N

∑N
i=1 λiεi,t.

Let Σ̃u,t(h) = Cov(ut, ut−h|Ft) be the conditional covariance between ut and ut−h, i.e.

Σ̃u,t(h) =

(
1

N

N∑
i=1

λiλ
′
i

)−1
1

N

N∑
i=1

N∑
ℓ=1

λiλ
′
ℓCov(εi,t, εℓ,t−h|Ft)

(
1

N

N∑
i=1

λiλ
′
i

)−1

,

and Σ̃u,t(−h) = Σ̃u,t(h)
′, for h= 0, 1, . . .. We set Σ̃u,t ≡ Σ̃u,t(0)., and define Σu,t(h) = plim

N→∞
Σ̃u,t(h)

10Vectors ŭt and b̆t depend on sample sizes but, for convenience, we omit the indices N , T .
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and Σλ = lim
N→∞

1
N

∑N
i=1 λiλ

′
i.

THEOREM 1. Under Assumptions A.1 - A.7, and the null hypothesis H0 = H(q) of q primitive

shocks, we have:

N
√
TΩ

−1/2
U,1

[
ξ̂(q)− 1

N
tr {BU}

]
d−→ N (0, 1) , (4.4)

with ΩU,1 = 2
∑∞

h=−∞ E [tr {ΣU,t(h)ΣU,t(h)
′}],

ΣU,t(h) = Σu,t,LL(h)− Φ̃LHΣu,t,LH(h− 1)′ − Φ̃LLΣu,t,LL(h− 1)′

−Σu,t,LH(h+ 1)Φ̃′
LH + Φ̃LHΣu,t,HH(h)Φ̃

′
LH + Φ̃LLΣu,t,LH(h)Φ̃

′
LH

−Σu,t,LL(h+ 1)Φ̃′
LL + Φ̃LHΣu,t,HL(h)Φ̃

′
LL + Φ̃LLΣu,t,LL(h)Φ̃

′
LL , h = ...,−1, 0, 1, ... ,

BU = Σ̃u,t,LL(0)− Φ̃LHΣ̃u,t,LH(−1)′ − Φ̃LLΣ̃u,t,LL(−1)′

−Σ̃u,t,LH(+1)Φ̃′
LH + Φ̃LHΣ̃u,t,HH(0)Φ̃

′
LH + Φ̃LLΣ̃u,t,LH(0)Φ̃

′
LH

−Σ̃u,t,LL(+1)Φ̃′
LL + Φ̃LHΣ̃u,t,HL(0)Φ̃

′
LL + Φ̃LLΣ̃u,t,LL(0)Φ̃

′
LL .

Proof: See Appendix B.2.

Matrix ΣU,t(h) is the limit covariance matrix between the (r−q)-dimensional vector uLt+Φ̃LHuHt−1+

Φ̃LLuLt−1 and the (r − q)-dimensional vector uLt−h + Φ̃LHuHt−h−1 + Φ̃LLuLt−h−1. The estimation

error of the PC estimator of the factors and its lagged value determines the asymptotic distribution of

the statistic.

The asymptotic Gaussian distribution when testing a hypothesis for parameters at their boundary,

i.e. eigenvalues of a positive definite matrix to be equal to zero, is obtained because the non-negative

test-statistic ξ̂(q) is re-centered by subtracting a strictly (a.s.) positive asymptotic bias term of order

N−1 generated by the sampling error in the first step estimates of the PCs.

To get a feasible distributional result for the statistic ξ̂(q), we need consistent estimators for the

unknown scalars tr{BU} and ΩU,1, and matrices Φ̃LH and Φ̃LH in Theorem 1. The natural estimators

of the latter two matrices are the corresponding blocks of the feasible estimator Φ̂ provided in equation

(3.8), namely Φ̂LH and Φ̂LL. To estimate the first two scalars, at this stage and as in AGGR, we make

the simplifying assumptions that the errors εi,t are (i) uncorrelated across individuals i, at all leads
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and lags, and (ii) a conditionally homoschedastic martingale difference sequence for each individual

i, conditional on the factor path, i.e.

Cov(εi,t, εj,t−h|Ft) = 0, if i ̸= j,

E[εi,t|{εi,t−h}h≥1,Ft] = 0, E[ε2i,t|{εi,t−h}h≥1,Ft] = γii (say), (4.5)

for all i, t, h (see Assumption A.9). These assumptions imply Σ̃u,t = Σu,t(h) = 0 for all h ̸= 0, and

therefore:

BU = Σ̃u,LL(0) + Φ̃LHΣ̃u,HH(0)Φ̃
′
LH + Φ̃LLΣ̃u,LH(0)Φ̃

′
LH + Φ̃LHΣ̃u,HL(0)Φ̃

′
LL + Φ̃LLΣ̃u,LL(0)Φ̃

′
LL ,

(4.6)

ΣU (0) ≡ ΣU,t(0)

= Σu,LL(0) + Φ̃LHΣu,HH(0)Φ̃
′
LH + Φ̃LLΣu,LH(0)Φ̃

′
LH + Φ̃LHΣu,HL(0)Φ̃

′
LL + Φ̃LLΣu,LL(0)Φ̃

′
LL ,

ΣU (1) ≡ ΣU,t(1) = − Φ̃LHΣu,LH(0)
′ − Φ̃LLΣu,LL(0)

′,

ΣU (−1) ≡ ΣU,t(−1) = − Σu,LH(0)Φ̃
′
LH − Σu,LL(0)Φ̃

′
LL,

and ΣU,t(h) = 0, for all h ̸= 0, 1, implying ΩU,1 = 2tr {ΣU(0)ΣU(0)
′ + ΣU(1)ΣU(1)

′ + ΣU(−1)ΣU(−1)′}.

Importantly, we have that Σ̃u,jℓ(h) ≡ Σ̃u,t,jℓ(h) for all dates t, that is these matrices do not depend on

time, for j, ℓ = L,H . Also matrices Σ̃U(h) ≡ Σ̃U,t(h) and Σ̃u ≡ Σ̃u,t(0) do not depend on time. The

same holds for matrices ΣU(0) ≡ ΣU,t(0).11

In Theorem 2 below, we replace matrices Σ̃U and ΣU by consistent estimators. We show that

the estimation error for 1
N
tr{B̂U} in the bias adjustment is of order op

(
1

N
√
T

)
, implying that the

asymptotic distribution of the feasible statistic is unchanged compared to infeasible one of Theorem 1.

THEOREM 2. Let

Σ̂u =

(
1

N
Λ̂′Λ̂

)−1(
1

N
Λ̂′Γ̂Λ̂

)(
1

N
Λ̂′Λ̂

)−1

=

 Σ̂u,HH Σ̂u,HL

Σ̂u,LH Σ̂u,LL

 , (4.7)

where Λ̂ are the loadings estimators defined in equation (3.7), Γ̂ = diag(γ̂ii, i = 1, ..., N) with

11If the errors are weakly correlated across series and/or time, consistent estimation of Σ̃U and ΩU,1 requires thresholding
of estimated cross-sectional covariances and/or HAC-type estimators. If the errors are conditionally heteroskedastic, we
need consistent estimators of ΩU,2 and Σ̃B as well.
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γ̂ii =
1
T

∑T
t=1 ε̂

2
i,t, and ε̂i,t = yi,t − λ̂′

if̂t. Let also Φ̂ be the estimator of Φ defined in (3.8). Define also:

B̂U = Σ̂u,LL + Φ̂LHΣ̂u,HHΦ̂
′
LH + Φ̂LLΣ̂u,LHΦ̂

′
LH + Φ̂LHΣ̂u,HLΦ̂

′
LL + Φ̂LLΣ̂u,LLΦ̂

′
LL ,

Σ̂U(0) = Σ̂u,LL + Φ̂LHΣ̂u,HHΦ̂
′
LH + Φ̂LLΣ̂u,LHΦ̂

′
LH + Φ̂LHΣ̂u,HLΦ̂

′
LL + Φ̂LLΣ̂u,LLΦ̂

′
LL ,

Σ̂U(1) = −Φ̂LHΣ̂
′
u,LH − Φ̂LLΣ̂

′
u,LL,

Σ̂U(−1) = −Σ̂u,LHΦ̂
′
LH − Σ̂u,LLΦ̂

′
LL,

Ω̂U,1 = 2tr
{
Σ̂U(0)Σ̂U(0)

′ + Σ̂U(1)Σ̂U(1)
′ + Σ̂U(−1)Σ̂U(−1)′

}
,

the test statistic:

ξ̃(q) := N
√
T
(
Ω̂U,1

)−1/2
[
ξ̂(q)− 1

N
tr
{
B̂U

}]
, (4.8)

and let Assumptions A.1 - A.9 hold. Then: (i) under the null hypothesis H0 = H(q) of q primitive

shocks, with 1 ≤ q ≤ r − 1, we have: ξ̃(q) d−→ N (0, 1) ;

(ii) under the alternative hypothesis H1 =
⋃

q<s≤r
H(s), we have: ξ̃(q)

p−→ +∞.

Proof: See Appendix B.3.

The feasible asymptotic distribution in Theorem 2 is the building block for a one-sided test of the

null hypothesis of q primitive shocks. The rejection region for a test of the null hypothesis at asymptotic

level α is ξ̃(q) > z1−α, where z1−α is the (1 − α)-quantile of the standard Gaussian distribution for

α ∈ (0, 1). Similarly, we can define an acceptance region at significance level α as

ARα =

{
x ∈ R : 0 ≤ x ≤ 1

N
√
T

√
Ω̂U,1z1−α +

1

N
B̂U

}
, (4.9)

so that we cannot reject the null of q common dynamic factors as long as ξ̂(q) ∈ ARα. From Theorem

2 (ii), the test is consistent. To the best of our knowledge no existing test of hypothesis for the rank of

matrices allows to estimate the rank of the symmetric matrix Σ̆v when both N and T diverge.
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4.3 Sequential tests for the number of common dynamic factors q

One way to estimate the number primitive shocks consists in testing sequentially the null hypothesis

H0 = H(k), against the alternative H1 =
⋃

k<ℓ≤r
H(ℓ), using the test statistic ξ̃(k) defined in Theorem 2

for any generic number k of primitive shocks. A “naive” estimation procedure is initiated by testing the

null of k = 1, proceeds by increasing k by one unit and performing the test of the null k = 2, and so on,

for k = 1, ..., r−1. The estimation procedure is stopped at the smallest integer q̂naive = k such that the

null H(k) cannot be rejected by performing a one-sided test with significance level α, i.e. ξ̃(k) ≤ z1−α.

Otherwise, set q̂naive = r if the test rejects the null H(k) for all k = 1, ..., r−1. This “naive” procedure

is not a consistent estimator of the number of common factors. Indeed, asymptotically a non-zero

probability α of underestimating q exists coming from the type I error of the test of H(q0) against⋃
q0<ℓ≤r

H(ℓ).

Building on the results in Pötscher (1983), Cragg and Donald (1997), and Robin and Smith (2000),

a consistent estimator of the true number of common factors q > 0 is obtained implementing the

above naive procedure but allowing the asymptotic size α of the test to go to zero as N , T → ∞. The

following Proposition 2 (proved in OA Appendix C.2) defines a consistent inference procedure for the

number primitive shocks.

PROPOSITION 2. Let αN,T be a sequence of real scalars defined in the interval (0, 1) for any N, T ,

such that (i) αN,T → 0 and (ii) (N
√
T )−1z1−αN,T

→ 0 for N, T → ∞, with z1−αN,T
> 0. Define also

zαN,T
= −z1−αN,T

< 0. Consider the estimator q̂ for the number primitive shocks q defined as:

q̂ = min
{
k : 1 ≤ k ≤ r − 1, ξ̃(k) ≤ z1−αN,T

}
,

or q̂ = r if ξ̃(k) > z1−αN,T
for all k = 1, ..., r − 1.

Then, under Assumptions A.1 - A.9, the estimator q̂ is consistent, i.e. P (q̂ = q) −→ 1 under H(q), for

any integer q ∈ [1, r].

Condition (i) ensures asymptotically zero probability of type I error when testing H(q0) against
⋃

q0<ℓ≤r
H(ℓ).

Condition (ii) is a lower bound on the convergence rate to zero of the asymptotic size, and is used to

keep asymptotically zero probability of type II error of each step of the procedure. The conditions in
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Proposition 2 are satisfied e.g. for αN,T such that:

z1−αN,T
= c(N

√
T )γ, (4.10)

for constants c > 0 and 0 < γ < 1. From the above definition it follows that zαN,T
= −c(N

√
T )γ .

The estimator for the rank q of matrix Σv proposed by Bai and Ng (2007) is based on (functions of)

the smallest eigenvalues of the residual covariance matrix ˆ̆
Σv. Their sequential estimation procedure

is based on the rate of convergence of (functions of the sum of) the eigenvalues of ˆ̆
Σv, but, differently

from our, it is not based on a testing procedure.

5 Bootstrap

Starting from the seminal work of Gonçalves and Perron (2014), we propose a residual-based wild

bootstrap implementation of the test for the number of dynamic factors q. That is, we develop a

bootstrap counterpart of the test in Theorem 2. This new approach relies on PCA estimation of the

pervasive factors given Nb bootstrapped panels of observations
{
y
(b)
1 , . . . , y

(b)
T

}
with b = 1, . . . , Nb.

Differently from the recent work of Cavaliere, Gonçalves, Nielsen, and Zanelli (2023), we do not use

the bootstrap to overcome the issue that the bias and/or the variances of our test statistics cannot be

consistently estimated. Indeed, we derived consistent estimators of these quantities under the assump-

tions of Theorem 2. What we do is to use the bootstrap to improve the small sample properties of our

test based on the rescaled (using the expression for the variance) and recentered (using the expression

for the bias) feasible statistic in equation (4.8). Monte Carlo experiments reported in Section 6 show

that this bootstrap approach delivers better small sample properties than the test of Theorem 2. In

particular, its actual size is much closer to the nominal one, especially when sample sizes are relatively

small and comparable to values often encountered in macro-financial applications, e.g., N = 100 and

T = 100.

5.1 Bootstrap data generating process, estimation and testing procedure

This section describes the non-parametric bootstrap implementation of our test for the number of com-

mon dynamic factors. In particular, this new testing procedure relies on a wild bootstrap resampling

20



scheme and can be implemented as a three-step procedure.

• Step (1): Estimate the r static factors ft by using the PCA estimator f̂t defined in Section 3.2.

Estimate a VAR(1) model on the factors f̂t, and let Φ̂ be the estimated autoregressive matrix.

Construct the vector of estimated VAR residuals v̂t = f̂t−Φ̂f̂t−1. Additionally, use the estimated

loadings Λ̂ (see equation (3.7)) to obtain the estimated residuals ε̂t = yt − Λ̂f̂t.

• Step (2): For each value of q = 1, . . . , r − 1, define the new r-dimensional vector:

v̂
H0(q)
t :=

[
v̂′H,t, 0

′
(r−q,1)

]′
, (5.1)

where v̂H,t is the upper q-dimensional subvector of v̂t, and consider the next steps:

– Step (2.a): For each bootstrap iteration b = 1, ..., Nb, with Nb large, construct a boot-

strap sample ε
(b)
t = [ε

(b)
1t , ..., ε

(b)
Nt]

′ from ε̂t using a wild bootstrap scheme similar to that of

Gonçalves and Perron (2014). In particular, for any t = 1, . . . , T define:

ε
(b)
it = ε̂it · ηε,it, i = 1, ..., N, (5.2)

where ηε,it is a zero-mean and unit-variance “external” random variable that is i.i.d. across

all individuals and dates.12 Starting from the variables in equations (5.1) and (5.2), con-

struct the following bootstrap analogous of the DGP in equations (2.13)-(2.16) for all

t = 0, 1..., T :

y
(b)
t = Λ̂f

(b)
t + ε

(b)
t , (5.3)

f
(b)
t = Φ̂f

(b)
t−1 + v̂

H0(q)
t , (5.4)

where the VAR(1) is initialized at f (b)
0 which is a bootstrapped value of f̂0.

– Step (2.b): As detailed in Section E.1 of the Online Appendix, use bootstrapped data y
(b)
t

to construct the sum of the smallest r − q eigenvalues σ̂2(b)
q+1, . . . , σ̂

2(b)
r of the estimator for

12We assume that ηε,it ∼ iiN(0, 1) is Gaussian in our Monte Carlo analysis and empirical applications. Experiments
with other distributions such as the Rademacher distribution led to very similar results.
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the variance covariance matrix of v̂H0(q)
t :

ξ̂(b)(q) =

r−q∑
ℓ=1

σ̂
2(b)
r−ℓ+1, (5.5)

which is the bootstrap counterpart of ξ̂(q) in equation (3.11). Then, consider the bootstrap

analogous of Σ̂u in equation (4.7):

Σ̂(b)
u =

(
1

N
Λ̂(b)′Λ̂(b)

)−1(
1

N
Λ̂(b)′Γ̂(b)Λ̂(b)

)(
1

N
Λ̂(b)′Λ̂(b)

)−1

=

 Σ̂
(b)
u,HH Σ̂

(b)
u,HL

Σ̂
(b)
u,LH Σ̂

(b)
u,LL

 ,(5.6)

where Γ̂(b) = diag(γ̂
(b)
ii , i = 1, ..., N) with γ̂

(b)
ii = 1

T

∑T
t=1 ε̂

(b)2
i,t , for ε̂(b)i,t the estimator of ε(b)t

based on the b-th bootstrap sample (expressions for all quantities can be found in Section

E.1 of the Online Appendix). Using Σ̂
(b)
u to derive bootstrap equivalents of matrices B̂U

and Ω̂U,1 in Theorem 2, one obtains a bootstrap-based version of the feasible test statistic

in equation (4.8)

ξ̃(b)(q) := N
√
T
(
Ω̂

(b)
U,1

)−1/2
[
ξ̂(b)(q)− 1

N
tr
{
B̂

(b)
U

}]
. (5.7)

– Step (2.c): Iterating Steps (2.a) and (2.b) Nb times yields Nb bootstrapped values of the

feasible test statistic under the null hypothesis of q dynamic factors. Using these values, one

can evaluate the cumulative distribution function of ξ̃(q) under the bootstrap probability

measure at any c∗ ∈ R:

F̂B
ξ̃
(c∗; q) :=

1

Nb

Nb∑
b=1

1
{
ξ̃(b)(q) ≤ c∗

}
, (5.8)

where 1
{
ξ̃(b)(q) ≤ c∗

}
= 1 if ξ̃(b)(q) ≤ c∗, and 0 otherwise. For any α ∈ (0, 1), the

α-percentile of the bootstrapped distributions of ξ̃(q) is

p̂Bα (q) := inf
{
p : F̂B

ξ̃
(p; q) ≥ α

}
, (5.9)
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from which we can construct the bootstrap-based acceptance rejection as

ARB
α =

{
x ∈ R : 0 ≤ x ≤ 1

N
√
T

√
Ω̂U,1p̂

B
1−α(q) +

1

N
B̂U

}
, (5.10)

for Ω̂U,1 and B̂U as in Theorem 2, and which implies not rejecting the null of q common

dynamic factors when ξ̂(q) ∈ ARB
α .

• Step (3): Define the bootstrap-based estimator of the number of dynamic factors q as done in

Proposition 2, this time replacing the (size-adjusted) critical values zαN,T
with the bootstrapped

percentiles p̂Bα (r). Hence, the bootstrap-based estimator of q is

q̂B = min
{
k : 1 ≤ k ≤ r − 1, ξ̃(k) ≤ p̂B1−α(q)

}
,

or q̂B = r if ξ̃(k) > q̂B1−α(k) for all k = 1, ..., r − 1,

which selects the right number of common dynamic factors with probability approaching 1−α.

We remark that the bootstrap DGP in equations (5.3)-(5.4) satisfies by construction the null hypothesis

of q dynamic factors, as the VAR for f (b)
t = [ f

(b)′
Ht , f

(b)′
Lt ]′ reads:

 f
(b)
Ht

f
(b)
Lt

 =

 Φ̂HH Φ̂HL

Φ̂LH Φ̂LL

 f
(b)
Ht−1

f
(b)
Lt−1

+

 v̂Ht

0

 ,

showing that the innovations on the factor VAR(1) in the bootstrap DGP have reduced rank q, being

the lower (r− q) block of the VAR innovations equal to zero under the bootstrap DGP for all dates t.

6 Monte Carlo simulation analysis

The objectives of the Monte Carlo (MC) simulation study are: i) assessing the adequacy of the asymp-

totic standard Gaussian distribution of ξ̃(q) to approximate its small sample counterpart; ii) evaluating

the finite sample size and power of both the plug-in and bootstrap versions of the test of q dynamic

factors based on ξ̃(q), and iii) comparing the estimator of q based on Proposition 2 and Section 5 with

some of the alternatives suggested in the literature.
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6.1 Simulation Design

We simulate the observation yi,t for i = 1, ..., N , t = 0, 1, ..., T from the following factor model:

yi,t = λ̆′
if̆t + εi,t.

The N -dimensional vectors of idiosyncratic innovations {ε1, . . . , εT} with εt = [ε1,t, ..., εi,t, ...εN,t]
′

are i.i.d. draws from a Gaussian random variable with zero mean and covariance matrix Σϵ = {β|i−j|}ij ,

for i, j = 1, ..., N . The scalar β ∈ [0, 1) induces cross-sectional dependence among the idiosyncratic

innovations. We consider the case β = 0 in the main analysis, i.e. zero cross-sectional dependence,

and resample these innovations in each MC simulation. For each individual i, the loadings are drawn

from N independent Gaussian distributions as follows: λ̆i = λ∗ · λ̃i, where λ̃i ∼ i.i.N ( 0, Ir ) for

i = 1, ..., N and λ∗ > 0 controls the signal-to-noise ratio of the factors. In this analysis, we let λ∗ = 1.

The r-dimensional vector f̆t follows the stationary VAR(1) process:

f̆t = Φ̆f̆t−1 + v̆t, and v̆t = Gηt,

where Φ̆ is an (r, r) autoregressive matrix. The (r, q) matrix G links the q primitive shocks to the r

factor innovations v̆t, and is simulated at each iteration as in Section 5 of Bai and Ng (2007). That is, we

start from an (r, r) diagonal matrix S whose first q non-zero elements are drawn from q independent

uniform distributions U(.01, 0.31) so that S has rank q. We also consider an arbitrary orthonormal

matrix R, i.e. RR′ = Ir, that we obtain in Matlab through “R = orth(rand(r, r))” at each MC iteration.

Having generated these matrices, we set G = RSR′ and keep it constant across all i and t for a given

MC sample. Note that the variance-covariance matrix of v̆t is Σ̆v = RS2R′ and has rank q.

We consider a data generating process characterised by r = 7 static factors and q0 = 5 dynamic

ones.13 Such design is consistent with the number of static factors often documented in macroeconomic

studies (see Onatski, 2010, among others). The autoregressive matrix of the VAR(1) process is given

by

Φ̆ = diag(0.2, 0.2875, 0.375, 0.55, 0.725, 0.8125, 0.9),

13The notation q0 highlights that this is the true number of dynamic factors which we estimate with q̂ as in Proposition
2 and Section 5.
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while the q0 primitive shocks ηt are always simulated as ηt ∼ i.i.d.N(0, Iq0). Results using other data

generating processes are reported in Section G.1 of the OA. We always consider M = 2000 Monte

Carlo samples.

6.2 Asymptotic and bootstrap distribution; size and power properties

First, we study whether the asymptotic Gaussian distribution and the one based on Nb bootstrap sam-

ples provide a good approximation to the small-sample distribution of the “plug-in” test statistics ξ̃(q)

in Theorem 2. Blue histograms in Figure 1 display the empirical distribution of ξ̃(q) under the null

hypothesis of q = q0 dynamic factors. Histograms are based on data coming from the DGP of Sec-

tion 6.1 and overlapped with the the density of the asymptotic N(0, 1) distribution (red solid lines).

The empirical distribution is slightly shifted to the right with respect to the asymptotic one when

(N, T ) = (100, 100). A leftward shift makes the two much more similar when (N, T ) = (400, 600),

become Table 13, in the OA (Section G.2), reports summary statistics of the small sample distribution

of ξ̃(q0). Yellow histograms visualize the distribution of ξ̃(b)(q0) across Nb = 499 bootstrap replicates

for the first Monte Carlo sample. The bootstrap distribution is very close to the empirical one. This

suggests that for the smallest sample sized a test based on its percentiles will perform better than one

based on the asymptotic Gaussian distribution.

Figure 1 – Small sample and bootstrapped distribution of the test statistic ξ̃(q0).

(a) N = 100, and T = 100. (b) N = 400, and T = 600.

Blue histograms report the empirical distribution of the test statistic ξ̃(q0) for (N,T ) = (100, 100) and (N,T ) =
(400, 600) across M = 2000 Monte Carlo samples. Red solid lines correspond to the asymptotic distribution N(0, 1)
of the re-centered and re-scaled statistic. Yellow histograms visualize the bootstrap distribution of the test statistic for the
first Monte Carlo sample.

Table 2 presents the empirical size and power of the one-sided test for the null hypothesis of
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Table 2 – Empirical size and power of the plug-in and of the bootstrap versions of the test of the number of
dynamic factors q

Plug-in: Th. 2 Bootstrap: Th. 2
size power size power

N T 1% 5% 10% H(3) H(4) 1% 5% 10% H(3) H(4)
100 100 0.07 0.17 0.25 1.00 0.99 0.03 0.09 0.15 0.98 0.95
100 200 0.13 0.28 0.39 1.00 1.00 0.02 0.08 0.14 0.99 0.96
200 100 0.03 0.09 0.13 1.00 1.00 0.02 0.08 0.14 0.99 0.98
200 200 0.03 0.12 0.19 1.00 1.00 0.02 0.07 0.12 0.99 0.99
200 300 0.05 0.15 0.22 1.00 1.00 0.01 0.06 0.12 0.99 0.99
400 100 0.02 0.06 0.09 1.00 1.00 0.02 0.07 0.13 1.00 1.00
400 200 0.02 0.07 0.13 1.00 1.00 0.02 0.06 0.12 1.00 1.00
400 300 0.02 0.07 0.13 1.00 1.00 0.01 0.06 0.12 1.00 1.00
400 600 0.02 0.11 0.18 1.00 1.00 0.01 0.06 0.11 1.00 0.99

This table reports the empirical size and power of the one-sided test for the null hypothesis of q common dy-
namic factors. Results in the left panel are based on the plug-in version of the feasible test statistic in Theorem 2.
Those in the right panel pertain to the bootstrap counterpart of this test. Simulated data come from the DGP of Section
6.1 with r = 7 and q0 = 5. The empirical size is assessed at significance levels α ∈ {0.01, 0.05, 0.1}. For the plug-in
version of the test, the null hypothesis of q is rejected when simulated data return a value of the test statistic larger
than the (1 − α)-quantile of the asymptotic distribution of ξ̃(q). The rejection region for the bootstrap test is based
on the same percentile of the bootstrap distribution obtained from Nb = 499 bootstrap iterations. For both tests,
empirical powers represent the empirical rejection frequency of the null hypotheses H0 = H(3) and H0 = H(4)
under the alternatives q > 3 and q > 4, respectively. These powers are assessed at the 5% significance level. Results
are based on M = 2000 MC simulations.

q dynamic factors based on ξ̃(q) in Theorem 2. Results are presented for both the plug-in version

(left panel) and the bootstrap one (right panel). The actual size is assessed as the empirical rejection

frequency of the null hypothesis H0 = H(5) given that q0 = 5, i.e. the null holds. For the plug-in

test, we consider significance levels α ∈ {0.01, 0.05, 0.1} and reject H(5) when the test statistics is

larger than the (1− α)-quantile of the standard Gaussian distribution. In the bootstrap case, we look

at the same percentiles but computed from the bootstrapped distribution of the test statistic. The latter

is based on Nb = 499 bootstrap iterations for each MC sample. Empirical powers are computed as

the rejection frequency of the null hypotheses H0 = H(3) and H0 = H(4), i.e. either three or four

dynamic factors, against the alternatives q > 3 and q > 4, respectively. Powers for other two null

hypotheses (H(1) and H(2)) always equal to one and have been omitted to save space. We report

powers for a test performed at the 5% significance level.

The plug-in version is oversized even when N = 400 and T = 600, which are values larger

than what usually encountered in macro-financial analyses, e.g. the FRED-MD database of monthly

macroeconomic indicators of the US economy. The bootstrap test corrects this over-rejection of the

null, especially when N < 200. The asymptotic test has power one irrespectively of H (q) and of the
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combination of N and T .14 The bootstrap implementation also returns good power results. Table 10 in

the Online Appendix shows actual size of the asymptotic test becomes very close to the nominal one

when N and T are very large.

6.3 Estimation of the number of primitive shocks

We compare our estimators of q based on different implementations of the sequential testing proce-

dures against alternative estimators already proposed in the literature. In particular, we focus on: q̂3

and q̂4 introduced by Bai and Ng (2007); q̂aw,A and q̂aw,B developed by Amengual and Watson (2007)

and q̂bp proposed by Breitung and Pigorsch (2013). As for our approach, all these estimators were de-

veloped or dynamic factor models estimated from their static factors representation, i.e. model (2.5) -

(2.6). Appendix F summarizes these alternative estimators. Section G.3 of the Online Appendix shows

that our estimators perform well also with respect to those of Hallin and Liska (2007). We defer this

comparison to the Online Appendix because the estimator of Hallin and Liska (2007) was designed

for selecting the number of dynamic factors in generalized dynamic factors models, i.e. in a setting

different from the one of all estimators considered in this section.

We consider the DGP of Section 6.1 and report results both for the plug-in and for the bootstrap

versions of the test. For the asymptotic test, we consider both the standard sequential procedure and

the one based on the adjusted critical values as in Proposition 2. The former selects the right number of

factors with probability approaching 1−α while the latter is a consistent selection procedure. Similarly

to the standard asymptotic test, also the bootstrap sequential procedure selects the right number of

dynamic factors with probability approaching 1 − α. In what follows, we fix α = 0.05. Constants c

and γ in Equation (4.10) are set to 0.95 and 0.1, respectively. As before, we always consider M = 2000

Monte Carlo iterations.

Table 3 reports the average estimated number of factors using the five approaches. The third and

fourth columns report the estimators q̂3 and q̂4 of Bai and Ng (2007). Both estimators consistently

underestimate the number of common dynamic factors, though their performances improve when N

and T increase. For all sample sizes, all estimators that we propose improve upon those of Bai and Ng

(2007). Estimators q̂aw,A and q̂aw,B by Amengual and Watson (2007) underestimates q0 when N and

14The same conclusion holds when we consider the size-adjusted power of the test. These further results are available
upon request.
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T are small but their performance improves when both sizes diverge. Note that our bootstrap-based

estimator delivers better results than those of Amengual and Watson (2007) when N < 400 and T is at

most 200 (performances of the bootstraped-based estimator and of the one based on adjusted critical

values are very similar to those of q̂aw,A and q̂aw,B in all other cases). Results on q̂bp by Breitung and

Pigorsch (2013) point to a consistent underestimation of q0. Notably, all our estimators improve upon

q̂bp for any sample size. Our asymptotic sequential procedure based on the quantiles of the standard

Gaussian (eight column, labelled by N(0,1)) always overestimates the number of dynamic. This is a

by-product of the test being oversized for the considered sample sizes. Results significantly improved

when we adjust the critical value of the test to allow for a consistent selection procedure (ninth column,

labelled by zαN,t
). The bootstrap-based estimator (tenth column, labelled by Boot) delivers the best

results when N = 100 and its performance is rather stable across different sample sizes.

Table 3 – Comparison of estimators of q
N T q̂3 q̂4 q̂aw,A q̂aw,B q̂bp N(0,1) zαN,T

Boot
100 100 4.48 4.49 4.86 4.88 4.23 5.17 5.12 5.01
100 200 4.49 4.50 4.92 4.93 4.39 5.30 5.20 5.03
200 100 4.45 4.46 4.90 4.92 4.34 5.07 5.04 5.06
200 200 4.63 4.63 4.94 4.95 4.55 5.12 5.06 5.05
200 300 4.64 4.64 4.96 4.96 4.63 5.17 5.06 5.05
400 100 4.44 4.45 4.92 4.93 4.40 5.04 5.01 5.07
400 200 4.62 4.62 4.96 4.97 4.63 5.06 5.02 5.06
400 300 4.70 4.70 4.97 4.98 4.71 5.08 5.02 5.06
400 600 4.74 4.74 4.99 4.99 4.79 5.12 5.03 5.05

This table reports the average estimated number of dynamic factors q under the DGP of Section 6.1, i.e. r = 7
and q0 = 5. The third and the fourth columns present results for estimators q̂3 and q̂4 introduced by Bai and Ng
(2007). The fifth and sixth columns consider q̂aw,A by q̂aw,B Amengual and Watson (2007), while the seventh one is
based on q̂bp of Breitung and Pigorsch (2013). Details on these estimators can be found in Section F of the Online
Appendix. The eighth and ninth columns show results for our estimator q̂ based on the asymptotic sequential testing
procedure. The former is based on the 95% quantile of the asymptotic N (0, 1) distribution while the latter considers
quantiles adjusted for a consistent selection procedure. The last column is based on the bootstrap version of the
sequential testing procedure that we perform at the 5% significance level. The whole table is based on M = 2000
MC simulations.

7 Common factors in volatility and macro-financial panels

7.1 Common dynamic factors in US macro-financial data

We consider a macro-financial application where we test the number of common dynamic factors in

the FRED-MD monthly dataset of McCracken and Ng (2016). In particular, we work with a balanced

28



panel of N = 120 monthly indicators of the US economic and financial system ranging between

January 1960 and December 2019 (T = 720). This is the longest dataset not contaminated by the

COVID-crisis. We consider the September 2022 vintage and make all the series stationary following

the suggestions of McCracken and Ng (2016). As recommended when using this dataset, we remove

outliers following the procedure of McCracken and Ng (2016).

Figure 2 – Eigenvalue analysis for the covariance matrix of VAR innovations v̆t when r̂ = 7.

(a) Estimated eigenvalues when r̂ = 7. (b) ξ̂(q) when r̂ = 7.

Left panel: estimated eigenvalues of the covariance matrix of Factors’ VAR(1) when r̂ = 7. Right panel: sum of the
smallest r− q eigenvalues ξ̂(q) (blue solid line) when r̂ = 7 for multiple values of the number of dynamic factors q. In the
right panel, vertical bars denote the acceptance region when testing the null hypothesis of q dynamic factors, i.e. H0(q),
at the 5% significance level. Yellow bars pertain to the bootstrap-based test while orange ones come from the asymptotic
version of the test.

Both the information criteria ICp1 and ICp2 of Bai and Ng (2002), and their modifications by

Alessi, Barigozzi, and Capasso (2010), suggest the presence of r = 7 static factors. We use this value

as starting point for our sequential testing procedure. Following results of the Monte Carlo analysis, we

use the bootstrap version of our estimator for the number of common dynamic factors. For coherence

with the Monte Carlo analysis, we run the testing procedure at the 5% level of significance. Running

the procedure with Nb = 999 bootstrap samples returns q = 4 dynamic factors. The same result

holds when the procedure is run at the 1% level of significance and if Nb = 499 and Nb = 1499

bootstrap samples are considered. Thus, we conclude that the US macro-financial system can be fully

characterised by four primitive shocks.15 The remaining static factors are just linear combinations of

past values of themselves and of the dynamic ones.

Figure 2a shows the estimated eigenvalues when r̂ = 7. Estimates for the first four eigenvalues

15Note that Bai and Ng (2007) reach same conclusions in terms of (IC-based) r̂ and q̂ when analysing the monthly
dataset of Stock and Watson (2005).

29



of the VAR innovations’ covariance matrix Σ̆v range between 0.98 and 0.83. We then observe a

sharp decrease in the magnitude of the eigenvalues, with the fifth one being 0.41. Our test signals

that we cannot reject the hypothesis that this eigenvalue (together with the 2 smaller ones) is zero at

least at the 5% significance level. Remaining eigenvalues are estimated at 0.15 and 0.05. The blue

solid line in Figure 2b represents the sum of the smallest r − q eigenvalues, i.e. ξ̂(q), when r = 7

and q varies between one and six. Vertical bars denote the acceptance region when testing the null

hypothesis of q dynamic factors, i.e. H0(q), at the 5% significance level. Orange ones denote the

plug-in version (see equation (4.9)) while yellow bars are for the bootstrap-based implementation of

the test(see equation (5.10)). In line with results from the Monte Carlo analysis, acceptance regions

for the plug-in implementation are much larger than those for the bootstrap-based version so that the

former estimates a larger number of dynamic factors (five instead of four).

Figure 3 – Estimated dynamic factors between January 1960 and December 2019.

(a) First dynamic factor (b) Second dynamic factor

(c) Third dynamic factor (d) Fourth dynamic factor

Monthly values of the estimated dynamic factors f̂H,t between January 1960 and December 2019. Grey shaded areas
denote official NBER recession dates. Dynamic factors are estimated as in Definition 1.

Figure 3 plots the four estimated dynamic factors between January 1960 and December 2019, while
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Table 4 – Macro-financial variables exhibiting the highest absolute correlation with the estimated dynamic
factors from a panel of US macro-financial variables

Factor 1 Factor 2
IP: Final Products 0.74 S&P 500 -0.64
IP: Consumer Goods 0.73 S&P Index: Industrials -0.62
IP: Final Products and Nonindustrial Supplies 0.71 S&P Index: Dividend Yield 0.61
IP: Total Index 0.67 CPI: All Items Less Shelter 0.57
IP: Manufacturing (SIC) 0.65 CPI: All Items 0.56
CU: Manufacturing 0.64 CPI: Commodities 0.56
IP: Durable Consumer Goods 0.64 PCE: Non-durable good 0.56
IP: Materials 0.52 CPI: All Items Less Medical Care 0.55
IP: Durable Goods Materials 0.51 S&P Index: Price-Earnings Ratio -0.53
IP: Business Equipment 0.50 CPI: All Items Less Food 0.48

Factor 3 Factor 4
CPI: Commodities -0.69 5-Year Treasury Rate 0.76
PCE: Non-durable goods -0.69 1-Year Treasury Rate 0.76
CPI: All Items Less Shelter -0.68 10-Year Treasury Rate 0.74
PCE: Chain Index -0.67 6-Month Treasury Bill 0.72
CPI: All Items -0.66 AAA Corporate Bond Yield 0.72
CPI: Transportation -0.56 BAA Corporate Bond Yield 0.64
CPI: All Items Less Medical Care -0.65 3-Month Treasury Bill 0.64
CPI: All Items Less Food -0.67 Effective Fed Funds Rate 0.39
PPI: Intermediate Materials -0.60 CHF/USD ForEx rate 0.35
PPI: Finished Consumer Goods -0.57 IP: Consumer Goods 0.33

This table reports the ten macro-financial variables characterised by the highest absolute correlation with each
of the four estimated dynamic factors. For each variable, the value of the estimated correlation coefficient is also
reported.

Table 4 reports the ten observable macro-financial variables that exhibit the highest absolute correlation

with the estimated factors. This is done separately for each of the four estimated processes. The first

factor is positively correlated with time series that characterise the output of the US economy.16 Hence,

this is a cyclical factor that we can view as a proxy of the state of the US economy. The second factor

is exposed to fluctuations in price indexes and in the stock market, while the third one is solely driven

by the level of prices in the economy. Thus, the second and the third factors gauge the behaviour of

month-over-month inflation in the US. Finally, the fourth factor is influenced by interest and exchange

rates, and therefore behaves as an indicator of the US financial system: the higher its value the worsen

the financial outlook, especially for what regards the funding market.

16All this discussion is based on the eight groups of variables constructed by McCracken and Ng (2016). These groups
are: Output and Income; Labor Market; Housing; Consumption, orders, and inventories; Money and Credit; Interest and
Exchange Rates; Prices; Stock Market.

31



7.2 Common dynamic factors in volatility measures

We now study the common dynamic factors in a panel of volatility measures for the constituents of the

S&P 500 index.17 We obtain daily prices from the Datastream platform for a period ranging between

December 28, 2018 and December 28, 2023 (T = 1256). Following Brownlees and Gallo (2010) and

Barigozzi, Cho, and Owens (2023), we measure volatility for the i-th stock on the t-th day using the

high-low range:

σ2
i,t = 0.361

(
phighi,t − plowi,t

)2
,

where phighi,t (plowi,t ) is the highest (lowest) log-price on day t for stock i. We set Yi,t = log
(
σ2
i,t

)
in what

follows.

The same information criteria of Section 7.1 suggest the presence of r = 7 static factors, while

our bootstrap-based procedure estimates q = 4 dynamic factors.18 Figure 4 plots the four estimated

dynamic factors for the sample of interest. To interpret these time series, table 5 reports the ten stocks

which exhibit the highest absolute correlation with the estimated factors. This is done separately for

each of the four estimated processes. We also report linear correlation coefficients between the stocks

and the factor of interest. The first dynamic factors is significantly negatively related to providers

of electricity and natural gas.19 These firms experienced periods of higher volatility during both the

COVID pandemic and the energy crisis driven by the Russian invasion of Ukraine. The second factor

is negatively related to firms that deal with oil extraction, while it exhibits a positive correlation with

healthcare providers. Volatility on oil firms peaked during the COVID pandemic as a consequence of

extremely low oil prices. The third factor is highly correlated with technology firms that are heavily

reliant on microchips. The global shortage of semi-conductors that occurred between 2020 and 2023

explains the importance of these firms for our dataset. Such a shortage was driven by a combination

of the COVID pandemic, and of a trade war between the US and China. Finally, the fourth factor

correlates with US commercial banks, particularly regional ones. These firms were extremely volatile

during the spring 2023 amid the failure of three US commercial banks and the rescue of Credit Suisse.

17We consider the S&P 500 composition of December 2023.
18As in the previous application, we consider Nb = 999 bootstrap samples and check for the robustness of our findings

with respect to this value. The bootstrap test is run at the 5% level of significance and we check robustness with to the
respect to the 1% level of significance.

19All stocks are categorised according to the sub-industry code of the Global Industry Classification Standard.
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Figure 4 – Estimated dynamic factors between December 28, 2018 and December 28, 2023.

(a) First dynamic factor (b) Second dynamic factor

(c) Third dynamic factor (d) Fourth dynamic factor

Daily values of the estimated dynamic factors f̂H,t between December 28, 2018 and December 28, 2023. Dynamic factors
are estimated as in Definition 1.
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Table 5 – Stocks exhibiting the highest absolute correlation with the estimated dynamic factors from a panel of
volatility measures

Factor 1 Factor 2
Alliant Energy -0.35 Halliburton -0.31
Ameren -0.35 Schlumberger -0.28
WEC Energy -0.34 Marathon Oil -0.27
CMS Energy -0.34 Devon Energy -0.26
Consolidated Edison -0.33 APA Corporation -0.26
Duke Energy -0.33 ConocoPhillips -0.25
American Electric Power -0.33 Agilent Technologies 0.25
Eversource -0.31 Diamondback Energy -0.24
NiSource -0.31 Pioneer Natural Resources -0.24
Xcel Energy -0.30 Idexx Laboratories 0.24

Factor 3 Factor 4
Nvidia 0.39 KeyCorp 0.50
Applied Materials 0.38 Comerica 0.46
Micron Technology 0.37 Citizens Financial Group 0.44
Lam Research 0.35 Zions Bancorporation 0.44
Advanced Micro Devices 0.35 Truist 0.44
Microchip Technology 0.34 U.S. Bank 0.42
Teradyne 0.33 Huntington Bancshares 0.42
Analog Devices 0.32 Fifth Third Bank 0.41
Broadcom Inc. 0.32 PNC Financial Services 0.40
Skyworks Solutions 0.31 Regions Financial Corporation 0.39

This table reports the ten stocks that exhibit the highest absolute correlation with each of the four estimated
dynamic factors. For each variable, the value of the estimated correlation coefficient is also reported.
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8 Conclusions

We present new tests and estimators for the number of common dynamic factors in large panel data.

The starting point of our testing procedure is the static factor representation of a dynamic factor model

where r static factors evolve as a VAR(1) whose innovations have rank-deficient covariance matrix

Σv. In particular, its rank q ≤ r coincides with the number of common dynamic factors in the data.

Hence, we test the number of dynamic factors by testing the rank of Σv. In doing it, we are the first to

provide a way to test for the rank of a finite dimensional positive semi-definite matrix in a panel context

where both the cross-sectional and the time dimension go to infinity. Despite the well known problems

with such a type of test, we manage to construct a test statistic whose distribution under the null of q

dynamic factors is Gaussian. This is done by exploiting the estimation error of the principal component

estimator of the r static factors and of related quantities, e.g. Σv and its eigenvalues/eigenvectors. We

propose two implementations of the test: one is based on the asymptotic distribution of a consistent

plug-in estimator for the test statistic, while the other relies on a wild bootstrap scheme. We also

introduce estimators of the number of dynamic factors based on both implementations. Monte Carlo

results suggest that the bootstrap-based test and estimator perform well for sample sizes similar to

those encountered in financial and macro-financial applications.

An analysis of the factor structure of the FRED-MD dataset suggests that output measures and

price indexes explain most of the temporal variation in the US macro-financial system between January

1960 and December 2019. An application to volatility measures of US stocks shows that the COVID

pandemic and the bank crisis of March 2023 were key drivers of volatility between January 2019 and

January 2024.

The tests and estimators of this paper can be naturally extended to the Factor Augmented VAR

(FAVAR) model of Bernanke, Boivin, and Eliasz (2005) where both latent factors estimated by PCA

and observable factors follow a Singular VAR model with a smaller number q of primitive shocks.

This extension is in our current research agenda.

35



References

AHN, S. C., AND A. R. HORENSTEIN (2013): “Eigenvalue Ratio Test for the Number of Factors,” Economet-

rica, 81, 1203–1227.

ALDOUS, D., AND G. EAGLESON (1963): “On Mixing and Stability of Limit Theorem,” Annals of Probability,

6, 325–331.

ALESSI, L., M. BARIGOZZI, AND M. CAPASSO (2010): “Improved penalization for determining the number

of factors in approximate factor models,” Statistics & Probability Letters, 80(23-24), 1806–1813.

AMENGUAL, D., AND M. W. WATSON (2007): “Consistent Estimation of the Number of Dynamic Factors in a

Large N and T Panel,” Journal of Business and Economic Statistics, 25, 91–96.

BAI, J. (2003): “Inferential Theory for Factor Models of Large Dimensions,” Econometrica, 71, 135–171.

BAI, J., AND S. NG (2002): “Determining the Number of Factors in Approximate Factor Models,” Economet-

rica, 70, 191–221.

BAI, J., AND S. NG (2006): “Confidence Intervals for Diffusion Index Forecasts and Inference for Factor-

Augmented Regressions,” Econometrica, 74, 1133–1150.

(2007): “Determining the Number of Primitive Shocks in Factor Models,” Journal of Business and

Economic Statistics, 25, 52–60.

BARIGOZZI, M., H. CHO, AND D. OWENS (2023): “FNETS: Factor-adjusted network estimation and forecast-

ing for high-dimensional time series,” Journal of Business & Economic Statistics, pp. 1–13.

BERNANKE, B. S., J. BOIVIN, AND P. ELIASZ (2005): “Measuring the Effects of Monetary Policy: A Factor-

Augmented Vector Autoregressive (FAVAR) Approach,” Quarterly Journal of Economics, 120(1), 387–422.

BILLINGSLEY, P. (1995): Probability and Measure. Wiley.

BREITUNG, J., AND U. PIGORSCH (2013): “A Canonical Correlation Approach for Selecting theNumber of

Dynamic Factors,” Oxford Bulletin of Economics and Statistics, 75(1), 23–36.

BROWNLEES, C. T., AND G. M. GALLO (2010): “Comparison of volatility measures: a risk management

perspective,” Journal of Financial Econometrics, 8(1), 29–56.

36
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Appendices
We use the following notation. ⊗ denotes the Kronecker product. ∥A∥ =

√
tr(A′A) denote the Frobenius norm

of matrix A. We denote by ∥Z∥p = (E[∥Z∥p])1/p the Lp-norm of random matrix Z, for p > 0. We denote by
d→ convergence in distribution. For a sigma-field F , we denote by Zn

d→ Z (F-stably) the stable convergence
on F of a sequence of random vectors, that is, P (Zn ∈ A,U) → P (Z ∈ A,U) as n → ∞, for any Borel set
A with P (Z ∈ ∂A) = 0, where ∂A is the boundary of set A, and any measurable set U ∈ F (see e.g. Renyi
(1963), Aldous and Eagleson (1963), Hall and Heyde (1980), Kuersteiner and Prucha (2013)). In particular, for
a symmetric positive definite random matrix Ω measurable with respect to F , by Zn

d→ N(0,Ω) (F-stably) we

mean Zn
d→ Ω1/2ε (F-stably), where ε ∼ N(0, I) is independent of F .

A Assumptions
We make the following assumptions:

Assumption A.1. We have N,T → ∞ such that the conditions in (4.3) hold, that is:
√
T/N = o(1), N/T 5/2 = o(1).

Assumption A.2. i) The factor process f̆t = Φ̆f̆t−1 + v̆t in (2.6) is stationary, that is all the eigenvalues of the
autoregressive matrix Φ̆ have modulus (strictly) smaller then one, ii) it satisfies the normalization restrictions in
(2.9), that is:

E(f̆t) = 0 and V (f̆t) = E(f̆tf̆
′
t) = Ir,

and the VAR innovations v̆H,t, are such that v̆H,t ∼ iid(0, Iq), with E[∥v̆H,t∥4] ≤ M , for a constant M < ∞.
Therefore, we also have iii) the “rotated” factor process ft = Φft−1 + vt in (2.14) is stationary, that is all the
eigenvalues of the autoregressive matrix Φ have modulus (strictly) smaller then one, iv) it satisfies analogous
normalization restrictions:

E(ft) = 0 and V (ft) = E(ftf
′
t) = Ir,

and the VAR innovations vH,t, are such that vH,t ∼ iid(0, Iq), with E[∥vH,t∥4] ≤M , for a constant M <∞

Assumption A.3. The loadings matrix Λ = [ λ1, . . . , λN ]′ is such that lim
N→∞

1
NΛ′Λ = Σλ, where Σλ is a

positive-definite (r, r) matrix with distinct eigenvalues.
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Assumption A.4. Moreover, the error terms εi,t and the factors ft are such that for all i, t ≥ 1: a) E[εi,t|Ft] =
0 and E[ε2i,t|Ft] ≤ M , a.s., where Ft = σ(Fs, s ≤ t), b) E[ε8i,t] ≤ M and E[∥ft∥2r∨8] ≤ M , for a constant
M <∞, where r > 2 is defined in Assumption A.5 b).

Assumption A.5. Define the variables ξt = 1√
N

∑N
i=1 λiεi,t and κt = 1√

N

∑N
i=1(ε

2
i,t − η2t ), indexed by N ,

where η2t = plim
N→∞

1
N

∑N
i=1E[ε2i,t|Ft]. a) For any t ≥ 1 and h ≥ 0 have:

[ξ′t, ξ
′
t−h]

′ d→ N(0,Ωt(h)), (Ft-stably),

as N → ∞, where the asymptotic variance matrix is:

Ωt(h) =

[
Ωt(0) Ωt(h)

Ωt−h(0)

]
,

for Ωt(h) = plim
N→∞

1
N

∑N
i=1

∑N
ℓ=1 λiλ

′
ℓcov(εi,t, εℓ,t−h|Ft), for any k, h.

Moreover, for N ≥ 1 we have: b) E(∥ξt∥2r|Ft) ≤ M , a.s., and c) E
[
|κt|4

]
≤ M , for constants M < ∞ and

r > 2.

Assumption A.6. a) The triangular array processes Vt ≡ VN,t = [f ′t , ξ
′
t]
′ and V ∗

t ≡ V ∗
N,t = [κt, η

2
t ]

′ are strong
mixing of size − r

r−2 , uniformly in N ≥ 1. 20 Moreover,
b) ∥E(ξtξ

′
t|Ft)− E(ξtξ

′
t|Ft, ..., Ft−m)∥2 = O(m−ψ), as m→ ∞, uniformly in N ≥ 1, and

c) ∥η2t −E(η2t |Vt+mt−m )∥8 = O(m−ψ), asm→ ∞, uniformly inN ≥ 1, where Vt+mt−m = σ(Vs, t−m ≤ s ≤ t+m)
and ψ > 1.

Assumption A.7. For j = 1, 2: a) 1
T

∑T
t=1

∑t−1
s=1E[η4ts] ≤ M , E

[(
1√
N

∑N
i=1(εi,tεi,s − η2ts)

)2]
≤ M , for

any s < t and a constant M , where η2ts = plim
N→∞

1
N

∑N
i=1E[εi,tεi,s|Ft]; b) 1√

T

∑T
t=1(1 + η2t )ftα

′
t = Op(1),

1
T

∑T
t=1 ξtα

′
t = op(1), E[∥αt∥2] = O(1), where αt = 1√

NT

∑N
i=1

∑T
s=1,s ̸=t εi,tεi,sfs;

c) E[∥βt∥2] = O(1) and E[∥β̄t∥2] = O(1), where βt = 1√
NT

∑N
i=1

∑T
s=1,s ̸=t εi,t(εi,sζs − E[εi,sζs]) and

β̄t =
1
T

∑N
i=1

∑T
s=1,s ̸=t εi,tE[εi,sζs], where ζt = (η2t f

′
t , κtf

′
t , ξ

′
t, α

′
t)
′.

Assumption A.8. a) P [∥ft∥ ≥ δ] ≤ c1 exp(−c2δb), for large δ; b)
∑N

ℓ=1:ℓ̸=iE[εℓ,tεi,t] ≤ M , for all i ≥ 1;
c) P [∥ 1

T

∑T
t=1 zt∥ ≥ δ] ≤ c1T exp(−c2δ2T η) + c3Tδ

−1 exp(−c4T η̄), for all i ≥ 1 and δ > 0, where either
zi,t = ftεi,t, or zi,t = ε2i,t − E[ε2i,t], or zi,t = 1√

N

∑N
ℓ=1:ℓ̸=i εℓ,tεi,t − E[ 1√

N

∑N
ℓ=1:ℓ ̸=i εℓ,tεi,t]; d) ∥λi∥ ≤ M ,

for all i ≥ 1; where b, c1, c2, c3, c4, η, η̄,M > 0 are constants, and η ≥ 1/2.

Assumption A.9. The error terms are such that: a)Cov(εi,t, εℓ,t−h|Ft) = 0, if i ̸= ℓ, b)E[εi,t|{εi,t−h}h≥1,Ft] =
0, c) E[ε2i,t|{εi,t−h}h≥1,Ft] = γii, say, where γii > 0, for all i, t, h.

Assumption A.1 defines the asymptotic scheme. Assumption A.2 concerns the stationarity of the dynamic
factor process (VAR) , and the first- and second-order moments of the static factor vector. All the remaining
assumptions are the same as in AGGR, and we refer to their Appendix A for a detailed discussion of each of
them e their relationship with analogous assumptions made in the literature.

20That is, α(h) = O(h−ϕ) for some ϕ > r
r−2 , where α(h) = sup

N1,N2≥1
sup
t≥1

sup
A∈Vt

−∞,B∈V∞
t+h

|P (A ∩ B) − P (A)P (B)|,

where Vt+mt−m = σ(Vs, t−m ≤ s ≤ t+m), and similarly for V ∗
t .
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Assumption A.9 simplifies the derivation of the feasible asymptotic distribution of the statistic in Theorem
2. This condition excludes correlation of the error terms across individuals and time (conditional on the factors),
as well as conditional heteroschedasticity, and implies a “strict factor model” for each group. In that sense, it is
more restrictive than Assumptions A.5, A.6, A.7 and A.8 b)-c). Moreover, under Assumption A.9, the matrix
Ωt(0) in Assumption A.5 a) simplifies to Ω = limN→∞(1/N)

∑N
i=1 λiλ

′
iγii , while Ωt(h) = 0 if h ̸= 0. We

note that, Assumption A.9 simplifies substantially the proof of Theorems 2 and ??, but is not needed in the
proofs of Theorem 1.

B Proofs
Section B.1 presents the proof of Proposition 1, Section B.2 presents the proof of Theorem 1, and Section B.3
presents the proof of Theorem 2. To save space, the proofs of all technical Lemmas are provided In Section C.1
in the Online Appendix.

Let us provide some fundamental moments of the rotated static factors ft which will turn out to be useful
in the following proofs. We define V11 := E(ft−1f

′
t−1), V22 := E(ftf

′
t), and V12 := E(ft−1f

′
t) = V ′

21. The
stationarity of the factor process for f̆t from Assumption A.2 i) implies that also the factor process of ft in (2.14)
is stationary, and that V22 = V11, irrespectively of the normalization in (2.9). Moreover, as W is an orthonormal
(r, r) eigenvector matrix, from the normalization in (2.9) it follows that V11 = Ir.

B.1 Proof of Proposition 1
In Section B.1.1 we characterize the eigenvalues and eigenvectors of the population variance-covariance matrices
Σv = V (vt) and its OLS estimator, Σ̃v =

∑T
t=1 ṽtṽ

′
t/T , and in particular show that their smallest r − q

eigenvalues are all equal to zero. Then, in Section B.1.2 we show the r − q smallest eigenvalues of the sample
variance-covariance matrix ˜̆

Σv obtained by OLS estimation of the VAR(1) for the factors f̆t =Wvft in (2.6) on
the observed (without error) static factors are equal to 0, which proves part (i) of Proposition 1. Then, in Section
B.1.3 we show that the largest q eigenvalues converge, as T → ∞ to the largest non-zero q eigenvalues of Σ̃v,
which, together with the result in part (i), proves part (ii) of Proposition 1. Finally, we derive their asymptotic
distribution of the largest q eigenvalues of ˜̆

Σv, which corresponds to part (iii) of Proposition 1.

B.1.1 Eigendecomposition of Σv and Σ̃v

Define the following two matrices:

EH
(r×q)

=

[
Iq
0(r−q,q)

]
, EL

(r×(r−q))
=

[
0(q,r−q)
Ir−q

]
. (B.1)

The columns of matrices EH and EL span the space Rr. Then, given the special form of Σv = E[vtv
′
t] =

diag(σ21, ..., σ
2
q , 0, ..., 0), the eigenvectors associated with the smallest r− q zero eigenvalues of Σv are spanned

by the columns of matrix EL. Analogously, the eigenvectors associated with the largest q non-zero eigenvalues
of Σv are spanned by the columns of matrix EH If we make the additional assumption that all the q largest
eigenvalues of Σv are distinct, that is σ21 > σ22 > ...... > σ2q > 0, then the orthonormal eigenvectors associated
with the largest q non-zero eigenvalues of Σv are given exactly by the columns of matrix EH .
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Let us now characterize matrix Σ̃v and its eigenvalues, which are denoted by σ̃1, ..., σ̃r. Let us define:

Ṽ11 :=
1

T

T∑
t=1

ft−1f
′
t−1 , Ṽ22 :=

1

T

T∑
t=1

ftf
′
t , Ṽ12 :=

1

T

T∑
t=1

ft−1f
′
t , Ṽ21 := Ṽ ′

12 .

(B.2)

and

Ṽv,11 :=
1

T

T∑
t=1

vt−1v
′
t−1 , Ṽv,22 :=

1

T

T∑
t=1

vtv
′
t , Ṽvf,21 :=

1

T

T∑
t=1

vtf
′
t−1 , (B.3)

From the definition of Σ̃v in Section 3.1, and the one of the OLS residuals ṽt = ft − Φ̃ft−1 obtained by
estimating the VAR(1) model in equation (2.14) by OLS from the T -dimensional sample of true factors ft, we
get:

Σ̃v =
1

T

T∑
t=1

ṽtṽ
′
t =

1

T

T∑
t=1

(ft − Φ̃ft−1)(ft − Φ̆ft−1)
′ = Ṽ22 − Ṽ21Ṽ

−1
11 Ṽ12, (B.4)

where the third equality follows from the definitions in (B.2) and the definition of the OLS estimator Φ̃ of Φ
in equation (3.2), which can be rewritten as Φ̃ = Ṽ21Ṽ

−1
11 . By straightforward matrix algebra, we get the next

Lemma.

LEMMA B.1. The matrix Σ̃v = Ṽ22 − Ṽ21Ṽ
−1
11 Ṽ12 is such that:

Σ̃v = Ṽv,22 − Ṽvf,21Ṽ
−1
11 Ṽ

′
vf,21 =

[
Σ̃v,HH 0(q,r−q)
0(r−q,q) 0(r−q,r−q)

]
, (B.5)

where the q × q matrix Σ̃v,HH is:

Σ̃v,HH =
1

T

T∑
t=1

vH,tv
′
H,t −

 1

T

T∑
t=1

vH,tf
′
t−1

(
1

T

T∑
t=1

ft−1f
′
t−1

)−1
1

T

T∑
t=1

ft−1v
′
H,t

 . (B.6)

Proof: see Online Appendix C.1.

From Lemma B.1 it follows immediately that the r − q smallest eigenvalues of matrix Σ̃v are σ̃q+1 = ... =
σ̃r = 0. This is our first non-trivial result, which shows that the smallest r − q sample eigenvalues of the
covariance matrix Σ̃v of the the VAR(1) innovations ṽt obtained by OLS estimation of the sample of observed
factors ft (assuming they are observable without errors), are exactly equal to the smallest (null) r−q eigenvalues
of the population covariance matrix Σv = V (vt) of vt, for any finite sample of dimension T ≥ r2. From (B.5),
it immediately follows that the orthonormal eigenvectors associated to the r − q zero eigenvalues of Σ̃v are
spanned by the columns of matrix EL. Let W̃v,r−q be the matrix having as columns each of the r− q associated
eigenvectors, then W̃v,r−q = EL · A, where A is an r × (r − q) orthogonal matrix, i.e. A′A = AA′ = Iq, from
which it follows: Σ̃vW̃v,r−q = W̃v,r−q · 0(r−q,r−q), and W̃ ′

v,r−qW̃v,r−q = Ir−q.

Moreover, the q × q matrix Σ̃v,HH in (B.6) is the sample variance-covariance matrix of the residuals ob-
tained by estimating a multivariate regression of the non-zero VAR innovation vector vH,t on the realizations
of all the r (lagged) factors ft−1.21 This can be easily shown by noting that the estimated matrix of regression

21Equivalently, Σ̃v,HH is the sample variance matrix of the orthogonal projection of vH,t on ft−1.
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coefficients of such multivariate regression is
∑T

t=1 vH,tf
′
t−1(

∑T
t=1 ft−1ft−1)

−1 = Ṽvf,12Ṽ
−1
11 , the residuals

are vt − Ṽvf,12Ṽ
−1
11 ft−1, from which it immediately follows that the OLS residuals’ covariance matrix is:

1

T

T∑
t=1

(vH,t − Ṽvf,12Ṽ
−1
11 ft−1)(vH,t − Ṽvf,12Ṽ

−1
11 ft−1)

′ = Σ̃v,HH .

As Σ̃v,HH is a sample variance-covariance matrix, it is positive semi-definite, and therefore all its eigenvalues
are non-negative. Therefore the largest q eigenvalues of matrix Σ̃v, denoted as σ̃21, ..., σ̃

2
q , are such that σ̃21 ≥

... ≥ σ̃2q ≥ 0, which implies
σ̃21 ≥ ... ≥ σ̃2q ≥ σ̃2q+1 = ...σ̃2r = 0. (B.7)

From (B.5), it immediately follows that the orthonormal eigenvectors associated to the q largest eigenvalues of
Σ̃v are spanned by the columns of matrixEH . Let W̃v,q be the matrix having as columns each of the q associated
eigenvectors, then W̃v,q = EH ·B, where B is a q × q orthogonal matrix, i.e. B′B = BB′ = Iq, from which it
follows: Σ̃vW̃v,q = W̃v,qΣ̃

eig
v,HH , and W̃ ′

v,qW̃v,q = Iq, and Σ̃eigv,HH := diag(σ̃21, ..., σ̃
2
q )

Let Σ̃eigv be the r × r diagonal matrix collecting the the ordered eigenvalues σ̃2ℓ , with ℓ = 1, ..., r, of Σ̃v:

Σ̃eigv := diag(σ̃21, ..., σ̃
2
r ) = diag(σ̃21, ..., σ̃

2
q , 0, ..., 0), (B.8)

and let W̃v := [W̃v,q , W̃v,r−q] be the r × r matrix collecting the associated orthonormal eigenvectors. Then,

Σ̃vW̃v = W̃vΣ̃
eig
v , with W̃ ′

vW̃v = W̃vW̃
′
v = Ir. (B.9)

B.1.2 Eigendecomposition of ˜̆
Σv

Let us define

˜̆
V11 :=

1

T

T∑
t=1

f̆t−1f̆
′
t−1 ,

˜̆
V22 :=

1

T

T∑
t=1

f̆tf̆
′
t ,

˜̆
V12 :=

1

T

T∑
t=1

f̆t−1f̆
′
t =

˜̆
V ′
12 (B.10)

From the definition of ˜̆
Σv in Section 3.1, and the one of the OLS residuals ˜̆vt = f̆t − ˜̆

Φf̆t−1 obtained by
estimating the VAR(1) model in equation (2.14) from the T -dimensional sample of true factors f̆t, we get:

˜̆
Σv =

1

T

T∑
t=1

˜̆vt ˜̆v
′
t =

1

T

T∑
t=1

(f̆t − Φ̃f̆t−1)(f̆t − Φ̆f̆t−1)
′ =

˜̆
V22 − ˜̆

V21
˜̆
V −1
11

˜̆
V12. (B.11)

where the third equation follows from (B.10) and the expression of the OLS estimator of Φ̆, which can be written
as ˜̆

Φ =
˜̆
V21

˜̆
V −1
11 . Recalling that ft =W ′

vf̆t and W ′
vWv = Ir, we get f̆t =Wvft, which also implies:

˜̆
V11 = W ′

vṼ11Wv ,
˜̆
V22 = W ′

vṼ22Wv ,
˜̆
V12 = W ′

vṼ12Wv =
˜̆
V ′
21, (B.12)

and

˜̆
Σv = WvV̆22W

′
v −WvṼ21W

′
vWvṼ

−1
11 W

′
vWvṼ12W

′
v = WvΣ̃vW

′
v. (B.13)
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Equation (B.9) implies Σ̃v = W̃vΣ̃
eig
v W̃ ′

v, and therefore ˜̆
Σv = WvW̃vΣ̃

eig
v W̃ ′

vW
′
v. As W̃ ′

vW
′
vWvW̃v =

W̃ ′
vIrW̃v = Ir, it also implies

˜̆
Σv(WvW̃v) = (WvW̃v)Σ̃

eig
v , (B.14)

i.e., Σ̃eigv is the diagonal matrix containing the sorted eigenvalues of ˜̆
Σv, with associated orthonormal eigen-

vectors being the r columns of matrix WvW̃v. As Σ̃eigv is also the matrix of the sorted eigenvalues of Σ̃v, this
concludes the proof of part (i) of Proposition 1.

B.1.3 Convergence of the eigenvalues of Σ̃v

From the assumption on the DGP of the innovations vH,t made in (2.14), that is vt ∼ iid(0,Σv), which together
with Assumption A.2 implies the stationarity of the VAR(1) process for ft, and from Assumption A.2:

√
T · vec

(
1

T

T∑
t=1

vH,tv
′
H,t − Σv,HH

)
d−→ N(0, V1), where V1 := E[vec(vtv

′
t − Σv) · vec(vtv′t − Σv)

′],

(B.15)

as T → ∞, or equivalently
∑T

t=1 vH,tv
′
H,t/T − Σv,HH = Op(1/

√
T ), by a standard application of the Central

Limit Theorem (CLT). Under the same assumptions it is easy to show that

1

T

T∑
t=1

vH,tf
′
t−1 = Op(1/

√
T ), and

1

T

T∑
t=1

ft−1f
′
t−1 = V11 +Op(1/

√
T ).

Substituting these equations into (B.6) we get Σ̃v,HH = Σv,HH +Op(1/
√
T ) and, by substituting the last result

in (B.5), also

Σ̃v =

[
Σv,HH +Op(1/

√
T ) 0(q,r−q)

0(r−q,q) 0(r−q,r−q)

]
. (B.16)

We know from the Subsection B.1.1 that the eigenspace associated with the smallest eigenvalue of Σ̃v (equal to
0) has dimension r− q and is spanned by the columns of matrix EL. Therefore, from (B.16), (B.8) and (B.9) we
can write the following expansions for the eigenvalue matrix Σ̃eigv,HH = diag(σ̃21, ..., σ̃

2
q ) collecting the largest q

eigenvalues of Σ̃v, and the associated eigenvector matrix W̃v,q:

W̃v,q = EHUv,q, Σ̃eigv,HH = Σv,HH +Mv,q = diag(σ̃21, ..., σ̃
2
q ) +Mv,q, (B.17)

whereEL is defined in equation (B.1), the stochastic (r−q)×(r−q) matrix Uv,q is nonsingular with probability
approaching (w.p.a.) 1 and stochastic matrix Mv,q is diagonal. By the continuity of the matrix eigenvalue and
eigenfunction mappings, as Σ̃v = Σv + Op(1/

√
T ), the largest q eigenvalues and the associated eigenvectors

converge at the same rate to the eigenvalues and eigenvectors of Σv. Therefore, Mv,q converge in probability to
a null matrix as T → ∞ at rate Op(1/

√
T ), that is Mv,q = 0(r−q),(r−q) +Op(1/

√
T ), which implies:

σ̃2ℓ = σ2ℓ +Op(1/
√
T ), ℓ = 1, ..., q, (B.18)

and Uv,q converge in probability to a nonsingular matrix at the same rate. Therefore, from the set of inequalities
(B.7), the definition Σv,HH = diag(σ21, ..., σ

2
q ), and the assumption σ21 ≥ σ22 ≥ ... ≥ σ2q > 0, we have

σ̃21 ≥ ... ≥ σ̃2q > σ̃2q+1 = ...σ̃2r = 0 w.p.a. 1, (B.19)
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at T → ∞, which concludes the proof of part (ii) of Proposition 1.

To simplify the proof of the convergence in distribution of the largest q eigenvalues of Σ̃v, that is the proof
of part (iii) of Proposition 1, we make the assumption that all the q non-zero eigenvalues of Σv are distinct,
namely:

σ21 > ... > σ2q > 0. (B.20)

This assumption implies that the orthonormal eigenvectors associated with the largest q non-zero eigenvalues
of Σv are given exactly by the columns of matrix Iq. We denote each of these columns, i.e. each one of these
eigenvectors, as eq,ℓ := [0, ..., 0, 1, 0, ...., 0]′, which is a q-dimensional vector of zeros, with the exception of the
element in row ℓ which is equal to 1, with ℓ = 1, ..., q. This implies Iq = [eq,1, ..., eq,q].

By noting that

Ṽ12 =
1

T

T∑
t=1

ft−1f
′
t =

1

T

T∑
t=1

ft−1(Φft−1 + vt)
′ = Ṽ11Φ

′ +
1

T

T∑
t=1

ft−1v
′
t

= Ṽ11Φ
′ + Ṽ −1

11

[
1
T

∑T
t=1 ft−1v

′
H,t, 0

′
(r−q,1)

]
we get

Φ̃ = Ṽ21Ṽ
−1
11 = Φ+ Ṽ −1

11

[
1
T

∑T
t=1 vH,tf

′
t−1

0(r−q,1)

]
. (B.21)

By using Assumption (A.2), which allow the application of the CLT for the term 1
T

∑T
t=1 vH,tft−1, we get

Φ̃HL = ΦHL +Op(1/
√
T ) and Φ̃HL = ΦHL +Op(1/

√
T ), which implies

ṽH,t = fH,t − Φ̃HHfH,t−1 − Φ̃HLfL,t−1

= (fH,t − ΦHHfH,t−1 − ΦHLfL,t−1)− (Φ̃HH − ΦHH)fH,t−1 − (Φ̃HL − ΦHL)fL,t−1

= vH,t +Op(1/
√
T ).

Therefore, 1
T

∑T
t=1 ṽH,tṽ

′
H,t =

1
T

∑T
t=1 vH,tv

′
H,t +Op(1/T ), which together with (B.15) implies:

1

T

T∑
t=1

ṽH,tṽ
′
H,t − Σv,HH =

1

T

T∑
t=1

vH,tv
′
H,t − Σv,HH +

(
1

T

T∑
t=1

ṽH,tṽ
′
H,t −

1

T

T∑
t=1

vH,tv
′
H,t

)
+Op

(
1

T

)

=
1

T

T∑
t=1

(
vH,tv

′
H,t − Σv,HH

)
+ op

(
1√
T

)
.

and
√
T · vec

(
1

T

T∑
t=1

ṽH,tṽ
′
H,t − Σv,HH

)
d−→ N(0, V1), (B.22)

where V1 is defined in (B.15).
Then, from the result on the asymptotic distribution of eigenvalues and eigenvectors of symmetric random

matrices in Section 1 of Ruymgaart and Yang (1997), which was originally derived in Watson (1983) using
Kato’s (1966) perturbation theory, the convergence result in (B.22), and the assumption that the eigenvalues σ2ℓ ,

45



ℓ = 1, ..., q are all distinct, it follows that:

√
T (σ̃2ℓ − σ2ℓ ) = tr

{
√
T ·

(
1

T

T∑
t=1

ṽH,tṽ
′
H,t − Σv,HH

)
eq,ℓe

′
q,ℓ

}
+ op(1)

=
√
T · e′q,ℓ

(
1

T

T∑
t=1

ṽH,tṽ
′
H,t − Σv,HH

)
eq,ℓ + op(1)

which can also be written as

√
T (σ̃2ℓ − σ2ℓ ) =

√
Te′q,ℓ

(
1

T

T∑
t=1

ṽH,tṽ
′
H,t − Σv,HH

)
eq,ℓ + op(1)

= e′q,ℓ(e
′
q,ℓ ⊗ Im)

√
T · vec

(
1

T

T∑
t=1

ṽH,tṽ
′
H,t − Σv,HH

)
+ op(1), (B.23)

where the last result follows from the equality tr(ABC) = vec(A′)′(C′ ⊗ I·)vec(B), where A, B and C are
conformable matrices. Therefore, results (B.22) and (B.23) imply

√
T (σ̃2ℓ − σ2ℓ )

d−→ N(0, V2), where V2 := e′q,ℓ(e
′
q,ℓ ⊗ Iq) · V1 · (eq,ℓ ⊗ Im)eq,ℓ. (B.24)

which concludes the proof of part (iii) of Proposition 1.

B.2 Proof of Theorem 1
The proof of Theorem 1 is structured as follows. We start by reporting the asymptotic expansion for the estimates
of the pervasive factors estimated by PCA as in AGGR (Subsection B.2.1). This result yields an asymptotic
expansion for the VAR residual matrix Σ̂v defined in equation (3.9) (Subsection B.2.2), and in turn it is used
to obtain the asymptotic expansions of the eigenvalues and eigenvectors of matrix Σ̂v by perturbation methods
(Subsections B.1.1 and B.2.3). This yields the asymptotic expansions of the canonical correlations and of the
test statistic ξ̂(q) (Subsection B.2.4). Finally, the asymptotic Gaussian distribution of the test statistic follows by
applying a suitable CLT for dependent triangular arrays (Subsection B.2.5), similarly to AGGR.

B.2.1 Asymptotic expansion of the factor estimates f̂t
PROPOSITION B.1. Under Assumptions A.1-A.4, A.5 b), c), A.6 a), and A.7, we have:

ˆ̆
ft = Ĥ(f̆t + ψ̆t), ψ̆t :=

1√
N
ŭt +

1

T
b̆t +

1√
NT

d̆t + ϑ̆t, (B.25)

for t = 1, . . . , T , where ŭt =
(

1
N

∑N
i=1 λ̆iλ̆

′
i

)−1
1√
N

∑N
i=1 λ̆iεi,t,

b̆t =
(

1
N

∑N
i=1 λ̆iλ̆

′
i

)−1 (
1
T

∑T
t=1 f̆tf̆

′
t

)−1
η2t f̆t,

d̆t =
(

1
N

∑N
i=1 λ̆iλ̆

′
i

)−1 (
1
T

∑T
t=1 f̆tf̆

′
t

)−1 (
1√
NT

∑N
i=1

∑T
s=1 εi,sf̆sλ̆

′
i

)
f̆t, and terms ϑ̆t are such that

1
T

∑T
t=1

(
1√
N
ŭt +

1
T b̆t +

1√
NT

d̆t + ϑ̆t

)
ϑ̆′t = op

(
1

N
√
T

)
and 1

T

∑T
t=1 f̆tϑ̆

′
t = Op

(
1
N + 1

T 2

)
as N,T → ∞,

and the matrix Ĥ converges in probability to a nonstochastic orthogonal (k, k) matrix.
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This Proposition corresponds to Proposition 3 in AGGR and the proof is analogous as the one in their paper, and
therefore is omitted.

From the definitions of ft := W ′
vf̆t and λi = W ′

vλ̆i, and the fact that Wv is an orthonormal (r, r) matrix,
the next Corollary 1 follows immediately from Proposition B.1.

COROLLARY 1. Under Assumptions A.1-A.4, A.5 b), c), A.6 a), and A.7, we have:

f̂t = ĤWv(ft + ψt), ψt :=
1√
N
ut +

1

T
bt +

1√
NT

dt + ϑt, (B.26)

for t = 1, . . . , T , where ut =
(

1
N

∑N
i=1 λiλ

′
i

)−1
1√
N

∑N
i=1 λiεi,t,

bt =
(

1
N

∑N
i=1 λiλ

′
i

)−1 (
1
T

∑T
t=1 ftf

′
t

)−1
η2t ft,

dt =
(

1
N

∑N
i=1 λiλ

′
i

)−1 (
1
T

∑T
t=1 ftf

′
t

)−1 (
1√
NT

∑N
i=1

∑T
s=1 εi,sfsλ

′
i

)
ft, and terms ϑt are such that

1
T

∑T
t=1

(
1√
N
ut +

1
T bt +

1√
NT

dt + ϑt

)
ϑ′t = op

(
1

N
√
T

)
and 1

T

∑T
t=1 ftϑ

′
t = Op

(
1
N + 1

T 2

)
as N,T → ∞,

and the matrix Ĥ is defined in Proposition B.1.

B.2.2 Asymptotic expansion of matrix ˆ̆
Σv

We can re-write matrix ˆ̆
Σv by using the following quantities:

ˆ̆
V11 =

1

T

T∑
t=1

ˆ̆
ft−1

ˆ̆
f ′t−1 =

1

T

T∑
t=1

ĤWv (ft−1 + ψt−1) (ft−1 + ψt−1)
′W ′

vĤ′ = ĤWv(Ṽ11 + X̂11)WvĤ′,

(B.27)

ˆ̆
V22 =

1

T

T∑
t=1

ˆ̆
ft

ˆ̆
f ′t =

1

T

T∑
t=1

ĤWv (ft + ψt) (ft1 + ψt)WvĤ = ĤWv(Ṽ22 + X̂22)W
′
vĤ′, (B.28)

ˆ̆
V12 =

1

T

T∑
t=1

ˆ̆
ft−1

ˆ̆
f ′t =

1

T

T∑
t=1

ĤWv (ft−1 + ψt−1) (ft + ψt)
′W ′

vĤ′ = ĤWv(Ṽ12 + X̂12)W
′
vĤ′,

ˆ̆
V21 =

ˆ̆
V ′
12 (B.29)

where:

Ṽ11 =
1

T

T∑
t=1

ft−1f
′
t−1 , Ṽ22 =

1

T

T∑
t=1

ftf
′
t , Ṽ12 =

1

T

T∑
t=1

ft−1f
′
t , Ṽ21 = Ṽ ′

12 (B.30)

and

X̂11 =
1

T

T∑
t=1

(ft−1ψ
′
t−1 + ψt−1f

′
t−1) +

1

T

T∑
t=1

ψt−1ψ
′
t−1, (B.31)

X̂22 =
1

T

T∑
t=1

(ftψ
′
t + ψtf

′
t) +

1

T

T∑
t=1

ψtψ
′
t, (B.32)

X̂12 =
1

T

T∑
t=1

(ft−1ψ
′
t + ψt−1f

′
t) +

1

T

T∑
t=1

ψt−1ψ
′
t, X̂21 = X̂ ′

12. (B.33)

47



From the definition of matrix ˆ̆
Σv =

1
T

∑T
t=1

ˆ̆vt ˆ̆v
′
t and ˆ̆

Φ :=
ˆ̆
V21

ˆ̆
V −1
11 from definitions (B.27)-(B.27) we get:

ˆ̆
Σv =

1

T

T∑
t=1

ˆ̆vt ˆ̆v
′
t =

1

T

T∑
t=1

(
ˆ̆
ft − ˆ̆

Φ
ˆ̆
ft−1)(

ˆ̆
ft − ˆ̆

Φ
ˆ̆
ft−1)

′ =
ˆ̆
V22 − ˆ̆

V21
ˆ̆
V −1
11

ˆ̆
V12. (B.34)

Then, using ˆ̆
V −1
11 = ĤWv(Ṽ11 + X̂11)

−1WvĤ′ = ĤW ′
vṼ

−1
11

(
Ir + X̂11Ṽ

−1
11

)−1
W ′
vĤ′, we get:

ˆ̆
Σv = ĤWvΣ̂vW

′
vĤ′, (B.35)

where:

Σ̂v := Ṽ22 + X̂22 − (Ṽ21 + X̂21)Ṽ
−1
11

(
Ir + X̂11Ṽ

−1
11

)−1
(Ṽ12 + X̂12). (B.36)

By using the definition of ψt in Corollary 1, in the next Lemma we derive an upper bound for terms X̂j,k,
j, k = 1, 2.

LEMMA B.2. Under Assumptions A.1-A.4, A.5 b)-c), A.6 a) and A.7 we have X̂jk = Op (δN,T ), for j, k = 1, 2,
where δN,T := (min{N,T})−1.

LEMMA B.3. Under Assumptions A.1-A.4, A.5 b)-c), A.6 a) and A.7, the second-order asymptotic expansion

of matrix ˆ̆
Σv is:

ˆ̆
Σv = ĤWv(Σ̃v + Ψ̂)W ′

vĤ′ +Op(δ
2
N,T ), (B.37)

where Σ̃v = Ṽ22 − Ṽ21Ṽ
−1
11 Ṽ12 and Ψ̂ = Ψ̂∗ (I) + Ψ̂∗ (II),

Ψ̂∗ (I) = X̂22 − Φ̃X̂12 − X̂21Φ̃
′ + Φ̃X̂11Φ̃

′, (B.38)

and Φ̃ = Ṽ21Ṽ
−1
11 .

Equation (B.37) represents matrix ˆ̆
Σv as (a function of) the sum of the sample VAR errors matrix ˜̆

Σ =W ′
vΣ̃uWv

(from (B.13)) computed with the true factor values f̆t = Wvft, the estimation error term W ′
vΨ̂Wv that consists

of first-order and second-order components WvΨ̂
∗ (I)W ′

v and WvΨ̂
∗ (II)W ′

v, and the third-order remainder term
Op(δ

3
N,T ).

B.2.3 Eigenvalues and eigenvectors of matrix ˆ̆
Σv obtained by perturbation methods

The estimators of the smallest r − q zero eigenvalues of ˆ̆
Σv are σ̂2ℓ , for ℓ = q + 1, ..., r, that is the r − q

smallest eigenvalues of matrix ˆ̆
Σv. We now derive their asymptotic expansion under the null hypothesis H(q)

using perturbations arguments applied to equation (B.37). Let Ŵ ∗
1 be a (r, r − q) matrix whose columns are

eigenvectors of matrix ˆ̆
Σv associated with the eigenvalues σ̂2ℓ , with ℓ = q + 1, ..., r. We have:

ˆ̆
ΣvŴ

∗
1 = Ŵ ∗

1 Λ̂v, (B.39)

where Λ̂v = diag(σ̂2ℓ , ℓ = q + 1, ..., r) is the (r − q, r − q) diagonal matrix containing the r − q smallest

eigenvalues of ˆ̆
Σv. We know from Subsection B.1.1 that the eigenspace associated with the eigenvalue zero

of Σ̃v has dimension r − q and is spanned by the columns of matrix EL, which implies that the eigenspace
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associated with the eigenvalue zero of WvΣ̃vW
′
v has also dimension r − q and is spanned by the columns of

matrix WvEL. Since the columns of EL and EH span Rr, from (B.37) we can write the following expansions:

Ŵ ∗
1 = (Ĥ′)−1Wv[EL Û + EH α̂], Λ̂v = 0(r−q,r−q) + M̂, (B.40)

where EL and EH are defined in equation (B.1), the stochastic (r − q, r − q) matrix Û is nonsingular with
probability approaching (w.p.a.) 1, stochastic matrix M̂ is diagonal, and α̂ is a q × (r − q) stochastic matrix.
By the continuity of the matrix eigenvalue and eigenfunction mappings, and Lemma B.2, we have that α̂ and M̂
converge in probability to null matrices as N,T → ∞ at rate Op(δN,T ). By substituting the expansions (B.37)
and (B.40) into the eigenvalue-eigenvector equation (B.39), using the characterization of matrix Σ̃v obtained in
Lemma B.1, and keeping terms up to order Op(δ2N,T ), we get expressions for matrices α̂ and M̂ . These yield
the asymptotic expansions of the smallest r − q eigenvalues and associated eigenvectors of matrix Σ̂v provided
in the next Lemma.

LEMMA B.4. Under Assumptions A.1-A.4, A.5 b)-c), A.6 a) and A.7, we have:

Λ̂v = Û−1Ψ̂LLÛ +Op(δ
2
N,T ) (OLD,WRONG!!!!!!!!!!!!!), (B.41)

Λ̂v = Û−1
[
E′
LW

′
v(Ĥ−1)(Ĥ′)−1WvEL

]−1
Ψ̂LLÛ +Op(δ

2
N,T ) (NEW ), (B.42)

Ŵ ∗
1 = (Ĥ′)−1Wv

(
EL − EHΣ̃

−1
v,HHΨ̂HL

)
Û +Op(δ

2
N,T ), (B.43)

where Ψ̂LL, and Ψ̂LH denote the lower-right (r−q, r−q) block and the lower-left (r−q, q) block, respectively,
of matrix Ψ̂ defined in Lemma B.3.

Note that the approximation in (B.41) holds for the terms in the main diagonal, as matrix Λ̂v has been defined
to be diagonal.

B.2.4 Asymptotic expansion of
∑r−q

ℓ=1 σ̂
2
r−ℓ+1

Let us now derive an asymptotic expansion for the sum of the r − q smallest eigenvalues
∑r−q

ℓ=1 σ̂
2
r−ℓ+1. Using∑r−q

ℓ=1 σ̂
2
r−ℓ+1 = tr

{
Λ̂v

}
, we get:

r−q∑
ℓ=1

σ̂2r−ℓ+1 = tr
{
Ψ̂LL

}
+Op(δ

2
N,T ), (B.44)

by the commutative property of the trace and including third-order terms in Op(δ3N,T ). In the following Lemma
B.5 we provide the asymptotic expansions of the terms within the trace operator in the r.h.s. of (B.44) by plugging
the expressions of Ψ̂LL and its components from Lemma B.3, and noting that :

Φ̃ =

(
T∑
t=1

ftf
′
t−1

)(
T∑
t=1

ft−1f
′
t−1

)−1

= Ṽ21Ṽ
−1
11 =

[
Φ̃HH Φ̃HL
Φ̃LH Φ̃LL

]
. (B.45)
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LEMMA B.5. Under Assumptions A.1-A.4, A.5 b)-c), A.6 a) and A.7 we have:

r−q∑
ℓ=1

σ̂2
r−ℓ+1 =

1

N
tr

{
1

T

T∑
t=1

E[(uLt − Φ̃LHuHt−1 − Φ̃LLuLt−1)(uLt − Φ̃LHuHt−1 − Φ̃LLuLt−1)
′|Ft]

}

+
1

N
√
T
tr

{
1√
T

T∑
t=1

[
(uLt − Φ̃LHuHt−1 − Φ̃LLuLt−1)(uLt − Φ̃LHuHt−1 − Φ̃LLuLt−1)

′

−E[(uLt − Φ̃LHuHt−1 − Φ̃LLuLt−1)(uLt − Φ̃LHuHt−1 − Φ̃LLuLt−1)
′|Ft]

]}
+op (ϵN,T ) , (B.46)

where ϵN,T := 1
N
√
T

. The terms in the curly brackets are Op(1).

Let us define the process

Ut := uLt − Φ̃LHuHt−1 − Φ̃LLuLt−1

= Φ̆(r − q, q)

[
ut
ut−1

]
= Φ̆(r − q, q)


uHt
uLt
uHt−1

uLt−1

 , (B.47)

where matrix Φ̆(r − q, q) is defined as:

Φ̆(r − q, q) := [ 0(r−q,q)
... Ir−q

... − Φ̃LH
... − Φ̃LL ]. (B.48)

Process Ut depends on N , but we do not make this dependence explicit for expository purpose. By using the
above definitions, from Lemma B.5 we get:

r−q∑
ℓ=1

σ̂2r−ℓ+1 −
1

N
tr {BU} =

1

N
√
T

(
1√
T

T∑
t=1

[
U ′
tUt − E(U ′

tUt|Ft)
])

+ op (ϵN,T ) , (B.49)

where:

BU :=
1

T

T∑
t=1

E(UtU
′
t |Ft), (B.50)

with

E(UtU
′
t |Ft) = E

[
(uLt − Φ̃LHuHt−1 − Φ̃LLuLt−1)(uLt − Φ̃LHuHt−1 − Φ̃LLuLt−1)

′|Ft
]
. (B.51)

Under our set of assumptions, term 1√
T

∑T
t=1 [U

′
tUt − E(U ′

tUt|Ft)] is Op(1). In fact, in the next subsection we
show that this term is asymptotically Gaussian distributed. The remainder term op (ϵN,T ) in the r.h.s. of (B.49)
is negligible with respect to the first term in the r.h.s.

B.2.5 Asymptotic distribution of the test statistic under the null hypothesis H(q)

From the asymptotic expansion (B.49) we obtain the asymptotic distribution of ξ̂(q) =
∑r−q

ℓ=1 σ̂
2
r−ℓ+1 under the

null hypothesisH(q) of q common dynamic factors. First, we apply a CLT for weakly dependent triangular array
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data to prove the asymptotic normality of 1√
T

∑T
t=1ZN,t as N,T → ∞, where ZN,t := U ′

tUt − E(U ′
tUt|Ft)

depends on N via process Ut defined in (B.47).

i) CLT for Near-Epoch Dependent (NED) processes

Let process VN,t ≡ Vt be as defined in Assumption A.6, and let Vt+mt−m = σ(Vs, t −m ≤ s ≤ t +m) for any
positive integer m, with Vt ≡ Vt−∞.

LEMMA B.6. Under Assumptions A.3, A.4 a), b), A.5 b) and A.6 a)-c) we have:

(i) ZN,t is measurable w.r.t. Vt, and E[ZN,t] = 0 for all t ≥ 1 and N ≥ 1,

(ii) sup
t≥1,N≥1

E [∥ZN,t∥r] <∞, for a constant r > 2,

(iii) Process (ZN,t) is L2 Near Epoch Dependent (L2-NED) of size −1 on process (Vt), and (Vt) is strong
mixing of size −r/(r − 2), uniformly in N1, N2 ≥ 1, 22

(iv) Matrix ΩU := limT,N→∞ V
(

1√
T

∑T
t=1ZN,t

)
is positive definite and such that

ΩU =
∞∑

h=−∞
Γ(h), Γ(h) := lim

N→∞
Cov (ZN,t,ZN,t−h) . (B.52)

Then, by an application of the univariate CLT in Corollary 24.7 in Davidson (1994) and the Cramér-Wold device,
we have that:

1√
T

T∑
t=1

ZN,t
d−→ N (0,ΩU ) , (B.53)

as T,N → ∞. Let us now compute the limit autocovariance matrix Γ(h) explicitly. By the Law of Iterated
Expectation and E[ZN,t|Ft] = 0, we have:

Γ(h) = lim
N→∞

E [Cov (ZN,t,ZN,t−h|Ft)] . (B.54)

Moreover, from Assumptions A.3 and A.5 a), the vector (U ′
t , U

′
t−h)

′ is asymptotically Gaussian for any h, t
as N → ∞: (

Ut
Ut−h

)
d→
(

U∞
t

U∞
t−h

)
∼ N

(
0(2r,1),

[
ΣU,t(0) ΣU,t(h)
ΣU,t(h)

′ ΣU,t(0)

])
, (Ft-stably), (B.55)

22That is,
∥∥ZN,t − E[ZN,t|Vt+mt−m ]

∥∥
2
≤ ξ(m), uniformly in t ≥ 1 andN ≥ 1, where ξ(m) = O(m−ψ) for some ψ > 1.
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where

ΣU,t(h) = Cov(U∞
t , U

∞
t−h|Ft) = E[U∞

t U
∞′
t−h|Ft]

= Φ̆(r − q, q) ·
(

plim
N→∞

[
E[utut|Ft] E[utut−1|Ft]
E[ut−1ut|Ft] E[ut−1ut−1|Ft]

])
· Φ̆(r − q, q)′

= Φ̆(r − q, q) ·
[
Σ̃u,t(h) Σ̃u,t(h− 1)

Σ̃u,t(h− 1)′ Σ̃u,t(h)

]
· Φ̆(r − q, q)′

= [ 0(r−q,q)
... Ir−q

... − Φ̃LH
... − Φ̃LL ]×

×


Σu,t,HH(h) Σu,t,HL(h) Σu,t,HH(h− 1) Σu,t,HL(h− 1)
Σu,t,LH(h) Σu,t,LL(h) Σu,t,LH(h− 1) Σu,t,LL(h− 1)
Σu,t,HH(h− 1)′ Σu,t,LH(h− 1)′ Σu,t,HH(h) Σu,t,HL(h)
Σu,t,HL(h− 1)′ Σu,t,LL(h− 1)′ Σu,t,LH(h) Σu,t,LL(h)

 ·


0(r−q,q)
Ir−q
−Φ̃′

LH

−Φ̃′
LL


= Σu,t,LL(h)− Φ̃LHΣu,t,LH(h− 1)′ − Φ̃LLΣu,t,LL(h− 1)′

−Σu,t,LH(h− 1)Φ̃′
LH + Φ̃LHΣu,t,HH(h)Φ̃

′
LH + Φ̃LLΣu,t,LH(h)Φ̃

′
LH

−Σu,t,LL(h− 1)Φ̃′
LL + Φ̃LHΣu,t,HL(h)Φ̃

′
LL + Φ̃LLΣu,t,LL(h)Φ̃

′
LL , (B.56)

and ΣU,t(0) = V (U∞
t |Ft) = E[U∞

t U
∞′
t |Ft]. Using analogous arguments,we can also compute explicitly BU :

BU =
1

T

T∑
t=1

E(UtU
′
t |Ft) =

1

T

T∑
t=1

Σ̃U,t(0)

=
1

T

T∑
t=1

{
Σ̃u,t,LL(0)− Φ̃LHΣ̃u,t,LH(−1)′ − Φ̃LLΣ̃u,t,LL(−1)′

−Σ̃u,t,LH(−1)Φ̃′
LH + Φ̃LHΣ̃u,t,HH(0)Φ̃

′
LH + Φ̃LLΣ̃u,t,LH(0)Φ̃

′
LH

−Σ̃u,t,LL(−1)Φ̃′
LL + Φ̃LHΣ̃u,t,HL(0)Φ̃

′
LL + Φ̃LLΣ̃u,t,LL(0)Φ̃

′
LL

}
. (B.57)

We use the Lebesgue Lemma to interchange the limes for N → ∞ and the outer expectation in the r.h.s. of
(B.54), and the fact that convergence in distribution plus uniform integrability imply convergence of the expec-
tation for a sequence of random variables (see Theorem 25.12 in Billingsley (1995)) to show the next lemma.

LEMMA B.7. Under Assumptions A.3 and A.5 b), we have:

Γ(h) = E
[
Cov(U∞ ′

t U∞
t , U

∞ ′
t−hU

∞
t−h|Ft)

]
.

Lemma B.7 allows to deploy the joint asymptotic Gaussian distribution of (U∞ ′
t , U∞ ′

t−h)
′ to compute the limit

autocovariance Γ(h). To compute the upper-left block of matrix Γ(h), we use Theorem 12 p. 284 in Magnus
and Neudecker (2007) and Theorem 10.21 in Schott (2005) which provide the covariance between two quadratic
forms of Gaussian vectors. We get Cov(U∞ ′

t U∞
t , U

∞ ′
t−hU

∞
t−h|Ft) = 2tr {ΣU,t(h)ΣU,t(h)′}. Therefore, from

(B.52) and Lemma B.7 we get:

ΩU = ΩU,1 =

∞∑
h=−∞

2tr
{
E
[
ΣU,t(h)ΣU,t(h)

′]} . (B.58)
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ii) Asymptotic Gaussian distribution of the test statistic

Let us define vector DN,T = 1
N
√
T

. From equations (B.49) and (B.58), and by using:

(DN,TΩU,1DN,T )
1/2 =

(
1

(N
√
T )2

ΩU,1

)1/2

=
1

N
√
T
Ω
1/2
U,1 ,

and N
√
TΩ

−1/2
U,1 = O

(
N
√
T
)

= O(ϵ−1
N,T ), under the hypothesis of q common factors in each group the

statistics ξ̂(q) =
∑r−q

ℓ=1 σ̂r−ℓ+1 is such that:

N
√
TΩ

−1/2
U,1

[
ξ̂(q)− 1

N
tr {BU}

]
= Ω

−1/2
U

(
1√
T

T∑
t=1

ZN,T

)
+ op(1)

From equation (B.53), the r.h.s. converges in distribution to a standard normal distribution, which yields Theo-
rem 1.

B.3 Proof of Theorem 2
[TO BE COMPLETED ]
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C Proofs of Lemmas

C.1 Proof of Lemma B.1
By substituting the expression for ft provided in (2.14) into the definitions of Ṽ22 and Ṽ12 in (B.2) we
get:

Ṽ22 =
1

T

T∑
t=1

ftf
′
t =

1

T

T∑
t=1

(Φft−1 + vt)(Φft−1 + vt)
′

= ΦṼ11Φ
′ + Φ

(
1

T

T∑
t=1

ft−1v
′
t

)
+

(
1

T

T∑
t=1

vtf
′
t−1

)
Φ′ +

1

T

T∑
t=1

vtv
′
t, (C.1)

Ṽ12 =
1

T

T∑
t=1

ft−1f
′
t =

1

T

T∑
t=1

ft−1(Φft−1 + vt)
′ = Ṽ11Φ

′ +
1

T

T∑
t=1

ft−1v
′
t. (C.2)

By plugging-in the last two expressions in the definition of Σ̃v = Ṽ22 − Ṽ21Ṽ
−1
11 Ṽ12, and simplifying

terms we get:

Σ̃v = Ṽ22 − Ṽ21Ṽ
−1
11 Ṽ12

= ΦṼ11Φ
′ + Φ

(
1

T

T∑
t=1

ft−1v
′
t

)
+

(
1

T

T∑
t=1

vtf
′
t−1

)
Φ′ +

1

T

T∑
t=1

vtv
′
t

−

(
ΦṼ11 +

1

T

T∑
t=1

vtf
′
t−1

)
Ṽ −1
11

(
Ṽ11Φ

′ +
1

T

T∑
t=1

ft−1v
′
t

)

=
1

T

T∑
t=1

vtv
′
t −

(
1

T

T∑
t=1

vtf
′
t−1

)
Ṽ −1
11

(
1

T

T∑
t=1

ft−1v
′
t

)
. (C.3)

By by substituting the definition vt = [v′Ht , 0q×1]
′ from (2.15) into (C.3) it follows that

Σ̃v =

[
1
T

∑T
t=1 vH,tv

′
H,t 0q×(r−q)

0(r−q)×q 0(r−q)×(r−q)

]
−
[

1
T

∑T
t=1 vH,tf

′
t−1

0(r−q)×r

]
Ṽ −1
11

[
1
T

∑T
t=1 ft−1v

′
H,t 0r×(r−q)

]
=

[
1
T

∑T
t=1 vH,tv

′
H,t 0q×(r−q)

0(r−q)×q 0(r−q)×(r−q)

]
−

[
1
T

∑T
t=1 vH,tf

′
t−1Ṽ

−1
11

(
1
T

∑T
t=1 ft−1v

′
H,t

)
0q×(r−q)

0(r−q)×q 0(r−q)×(r−q)

]
,

(C.4)

which concludes the proof.

C.2 Proof of Lemma B.2
[ TO BE COMPLETED ]
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C.3 Proof of Lemma B.3
[ TO BE COMPLETED ]

C.4 Proof of Lemma B.4
[ TO BE COMPLETED ]

C.5 Proof of Lemma B.5
[ TO BE COMPLETED ]

C.6 Proof of Lemma B.6
[ TO BE COMPLETED ]

C.7 Proof of Lemma B.7
[ TO BE COMPLETED ]

D Alternative identification and testing of dynamic factors based
on canonical correlation analysis

E Estimation of the test statistics under the wild Bootstrap scheme
This Section provides details for the construction of the test statistics in equation (5.7) starting from

the (T +1, N) bootstrapped panel of observables Y (b) =
[
y
(b)
0 , y

(b)
1 , . . . , y

(b)
T

]′
. This panel is generated

from the bootstrap DGP in equations (5.3)-(5.4), that we report here for the sake of illustration:

y
(b)
t = Λ̂f

(b)
t + ε

(b)
t ,

f
(b)
t = Φ̂f

(b)
t−1 + v̂

H0(q)
t ,

for Λ̂ and Φ̂ defined in Section 3.2, while ε(b)t and v̂
H0(q)
t are defined in Section 5.1 (equations (5.1) and

(5.2), respectively).

E.1 Test based on the smallest eigenvalues

Let ˆ̆
F (b) = [

ˆ̆
f
(b)
0 ,

ˆ̆
f
(b)
1 , ...,

ˆ̆
f
(b)
T ]′ be the (T + 1, r) matrix of estimated Principal Components (PCs)

extracted from panel Y (b) associated with the largest r eigenvalues of matrix 1
N(T+1)

Y (b)Y (b)′. That is,
ˆ̆
F (b) satisfies the usual PCA eigenvalue-eigenvector equation:

1

N(T + 1)
Y (b)Y (b)′ ˆ̆F (b) =

ˆ̆
F (b)V̂ (b),
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where V̂ (b) is the (r, r) diagonal matrix of the r largest eigenvalues of matrix 1
N(T+1)

Y (b)Y (b)′, and

the columns of matrix ˆ̆
F (b) are the associated normalized eigenvectors such that 1

T+1

ˆ̆
F (b)′ ˆ̆F (b)′ =

1
T+1

∑T
t=0

ˆ̆
f
(b)
t

ˆ̆
f
(b)′
t = Ir. 4

Let ˆ̆Φ(b) = (
∑T

t=1
ˆ̆
f
(b)
t

ˆ̆
f
(b)′
t−1)(

∑T
t=1

ˆ̆
f
(b)
t−1

ˆ̆
f
(b)′
t−1)

−1 be the OLS estimator of Φ̆(b), and let ˆ̆v(b)t =
ˆ̆
f
(b)
t −

ˆ̆
Φ(b) ˆ̆f

(b)
t−1 be the VAR residuals estimated by using ˆ̆

Φ(b). In this case, the OLS estimator of ˆ̆
Σ

(b)
v is:

ˆ̆
Σ(b)
v =

1

T

T∑
t=1

ˆ̆v
(b)
t
ˆ̆v
(b)′
t .

Let Ŵ (b)
v be the (r, r) matrix collecting the (orthonormal) eigenvectors associated to the ordered eigen-

values σ̂2(b)
ℓ , ℓ = 1, ..., r, of ˆ̆

Σ
(b)
v :

ˆ̆
Σ(b)
v Ŵ (b)

v = Ŵ (b)
v Σ̂(b)

v ,

where Σ̂
(b)
v := diag(σ̂

2(b)
1 , ..., σ̂

2(b)
r ) is the diagonal matrix collecting the ordered eigenvalues of ˆ̆

Σ
(b)
v ,

and Ŵ
(b)′
v Ŵ

(b)
v = Ŵ

(b)
v Ŵ

(b)′
v = Ir. Let us define the estimator f̂ (b)

t := Ŵ
(b)′
v

ˆ̆
f
(b)
t of ft, and matrix

F̂ (b) := [f̂
(b)
1 , ..., f̂

(b)
T ]′= Ŵ

(b)′
v

ˆ̆
F (b). The (N, r) matrix of estimated loadings Λ̂(b) = [λ̂

(b)
1 , ..., λ̂

(b)
N ]′ is

computed as:
Λ̂(b) = Y (b)′F̂ (b)(F̂ (b)′F̂ (b))−1

Let ε̂(b)t = y
(b)
t − Λ̂

(b)
j f̂

(b)
t , Ξ̂(b) := [ε̂

(b)
0 , ε̂

(b)
1 , ..., ε̂

(b)
T ]′ = Y (b) − F̂ (b)Λ̂(b), and define

Φ̂(b) =

(
T∑
t=1

f̂
(b)
t f̂

(b)′
t−1

)(
T∑
t=1

f̂
(b)
t−1f̂

(b)′
t−1

)−1

=

[
Φ̂

(b)
HH Φ̂

(b)
HL

Φ̂
(b)
LH Φ̂

(b)
LL

]
.

Let also v̂
(b)
t = f̂

(b)
t − Φ̂(b)f̂

(b)
t−1 be the VAR residuals estimated by using Φ̂(b).

Consider also the estimator of Σ(b)
v :

Σ̂(b)
v =

1

T

T∑
t=1

v̂
(b)
t v̂

(b)′
t , (E.1)

and let σ̂2(b)
ℓ be the ℓ-th largest eigenvalue of matrix Σ̂

(b)
v . Then the sum of the smallest r− q estimated

eigenvalues σ̂2(b)
q+1, . . . , σ̂

2(b)
r is what we use when constructing ξ̂(b)(q) in equation (5.5).

4Let F̂ (b)∗ be the orthonormal eigenvectors of 1
N(T+1)Y

(b)Y (b)′, s.t. 1
N(T+1)Y

(b)Y (b)′F̂ ∗ = F̂ (b)∗V̂ (b) and

F̂ (b)∗′F̂ (b)∗ = Ir, then the normalized factor estimator ˆ̆
F (b) is computed as ˆ̆

F (b) =
√
T + 1 · F̂ (b)∗.
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Starting from Σ̂
(b)
u in equation (5.6), we can also define the quantities:

B̂
(b)
U = Σ̂

(b)
u,LL + Φ̂

(b)
LHΣ̂

(b)
u,HHΦ̂

(b)′
LH + Φ̂

(b)
LLΣ̂

(b)
u,LHΦ̂

(b)′
LH + Φ̂

(b)
LHΣ̂

(b)
u,HLΦ̂

(b)′
LL + Φ̂

(b)
LLΣ̂

(b)
u,LLΦ̂

(b)′
LL ,

Σ̂
(b)
U (0) = Σ̂

(b)
u,LL + Φ̂

(b)
LHΣ̂

(b)
u,HHΦ̂

(b)′
LH + Φ̂

(b)
LLΣ̂

(b)
u,LHΦ̂

(b)′
LH + Φ̂

(b)
LHΣ̂

(b)
u,HLΦ̂

(b)′
LL + Φ̂

(b)
LLΣ̂

(b)
u,LLΦ̂

(b)′
LL ,

Σ̂
(b)
U (1) = −Φ̂

(b)
LHΣ̂

(b)′
u,LH − Φ̂

(b)
LLΣ̂

(b)′
u,LL, Σ̂

(b)
U (−1) = − Σ̂

(b)
u,LHΦ̂

(b)′
LH − Σ̂

(b)
u,LLΦ̂

(b)′
LL ,

Ω̂
(b)
U,1 = 2tr

{
Σ̂

(b)
U (0)Σ̂

(b)′
U (0) + Σ̂

(b)
U (1)Σ̂

(b)′
U (1) + Σ̂

(b)
U (−1)Σ̂

(b)′
U (−1)

}
,

which are instrumental to scale and shift ξ̂(b)(q) so as to obtain ξ̃(b)(q) in equation (5.7).

E.2 Test based on the largest canonical correlations

F Estimators of q proposed in the literature

F.1 Estimators of q of Bai and Ng (2007)
As in Bai and Ng (2007) we define:

D̂1,k =

(
σ̂2
k+1∑r
ℓ=1 σ̂

2
ℓ

)0.5

, D̂2,k =

(∑r
ℓ=k+1 σ̂

2
ℓ∑r

ℓ=1 σ̂
2
ℓ

)0.5

K3 =

{
k : D̂1,k < m3

min(N0.5−δ,T 0.5−δ)

}
, and K4 =

{
k : D̂2,k < m4

min(N0.5−δ,T 0.5−δ)

}
, where

sNT := min (N, T ), with δ = 0.1, implying :

K3 =

{
k : D̂1,k <

m3

s
2/5
NT

}
K4 =

{
k : D̂2,k <

m4

s
2/5
NT

}
,

Then, the estimator of q considered by Bai and Ng (2007) are:

q̂bn,3 = min (k ∈ K3) , q̂bn,4 = min (k ∈ K4) . (G.1)

Bai and Ng (2007) set either m3 = m4 = 1, or m3 = 1.25 and m4 = 2.25. The former combination
is to be preferred when working with covariance matrices while the latter shall be adopted when the
focus is on correlation matrices.
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F.2 Estimators of q of Amengual and Watson (2007)
Amengual and Watson (2007) define the N -dimensional vectors ẐA

t = [ẐA
1t, ..., Ẑ

A
Nt]

′ and ẐB
t =

[ẐB
1t, ..., Ẑ

B
Nt]

′ as:

ẐA
t := Yt −

p∑
i=1

ˆ̆
Λ
ˆ̆
Φi

ˆ̆
Ft−i,

ẐB
t := Yt −

p∑
i=1

ˆ̆
Π
ˆ̆
Ft−i,

where ˆ̆
Φ1,

ˆ̆
Φ2, ...,

ˆ̆
Φp denote the OLS estimators from the regression of ˆ̆

Ft on (
ˆ̆
Ft−1,

ˆ̆
Ft−2, ...,

ˆ̆
Ft−p),

while ˆ̆
Π1,

ˆ̆
Π2, ...,

ˆ̆
Πp are OLS estimators from regressing Yt on (

ˆ̆
Ft−1,

ˆ̆
Ft−2, ...,

ˆ̆
Ft−p). Starting from

these new panels, they introduce the estimators

q̂aw,A = argmin
0≤k≤r

{
ln[σ̂2

ẐA −R(k, ẐA)] + k × ln[sNT ] · (N + T )

NT

}
, (G.2)

q̂aw,B = argmin
0≤k≤r

{
ln[σ̂2

ẐB −R(k, ẐB)] + k × ln[sNT ] · (N + T )

NT

}
, (G.3)

where σ̂2
ẐA := 1

NT

∑T
t=1

∑N
i=1(Ẑ

A
it )

2, R(k, ẐA) is defined as

R(k, ẐA) :=
k∑
ℓ=1

ωAℓ , (G.4)

for ωAi the largest ℓ- eigenvalue of
1

NT
ẐAẐA′ with ẐA := [ẐA′

1 , ..., ẐA′
T ]′. Identical definitions hold

for the quantities based on panel ẐB. Because our MC analysis is comparable to ours, we follow
Amengual and Watson (2007) and set p = 2 in Section 6. Finally, note that q̂aw,A and q̂aw,B correspond
to the “IPC2” estimator of the number of r static factors of Bai and Ng (2002) applied to the panels
ẐA and ẐB.

F.3 Estimator of q of Breitung and Pigorsch (2013)

Breitung and Pigorsch (2013) define Ĝt−1 := [
ˆ̆
F ′
t−1,

ˆ̆
F ′
t−2, ...,

ˆ̆
F ′
t−m], and consider the matrices:

S̃00 :=
T∑

t=m+1

ˆ̆
Ft

ˆ̆
F ′
t S̃01 :=

T∑
t=m+1

ˆ̆
FtĜ

′
t−1, S̃11 :=

T∑
t=m+1

Ĝt−1Ĝ
′
t−1. (G.5)

Let ˆ̃Rbp = S̃−1
00 S̃01S̃

−1
11 S̃

′
01, then the k largest eigenvalues of ˆ̃Rbp, denoted as ρ̂2bp,ℓ, ℓ = 1, ..., k, are the

first squared sample canonical correlations between ˆ̆
Ft and Ĝt−1, with k ≤ r. They also define the
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following quantity:

ξ̂bp(k) = C̃2−δ
NT ·

r−k∑
ℓ=1

(1− ρ̂bp,ℓ), k = 1, ..., r − 1

ξ̂bp(r) = 0 ,

for C̃ =
√
NT/

√
N + T . Starting from ξ̂bp(k), they estimate q with:

q̂bp = min
(
k : ξ̂bp(k) < τ

)
.

Because δ = 1/2 and τ = 4.5 deliver good results in their MC simulations, we can write their preferred
estimator as:

q̂bp = min
(
k : ξ̂∗bp(k) < 4.5

)
, (G.6)

where:

ξ̂∗bp(k) = C̃
4/3
NT ·

r−k∑
ℓ=1

(1− ρ̂bp,ℓ), k = 1, ..., r − 1 (G.7)

ξ̂bp(r) = 0 . (G.8)

G Monte Carlo: additional results

G.1 Alternative data generating processes
This section repeats the Monte Carlo analysis of Section 6 but using alternative data generating pro-
cesses. In particular, we work under the same setting of Section 6.1 but consider different values of
(r, q0) and of the auto-regressive matrices. The first alternative DGP, that we call Design 1, is based
on r = 5 static factors, q0 = 3 dynamic ones and autoregressive matrix

Φ = diag(0.2, 0.375, 0.55, 0.725, 0.9).

The second DGP of this section relies on r = 9 static factors, q0 = 8 dynamic ones and autoregressive
matrix

Φ = diag(0.2, 0.2875, 0.375, 0.4625, 0.55, 0.6375, 0.725, 0.8125, 0.9).

Design 1 is very similar to that of Amengual and Watson (2007) and Bai and Ng (2007), while the
second one extends it to allow for a richer factor space.

For both DGPs, the empirical distribution is poorly approximated by the asymptotic one when
(N, T ) = (100, 100). The approximation improves substantially when we move to (N, T ) = (1000, 600).

Blue histograms in Figure 1 display the empirical distribution of ξ̃(q) under the null hypothesis
of q = q0 dynamic factors. Histograms are based on data simulated from Design 1 (first row) and
Design 2 (second row). Red solid lines denote the probability density function of the asymptotic
N(0, 1) distribution. Under Design 1, the empirical distribution is a bit far from the asymptotic one
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when (N, T ) = (100, 100). The difference is smaller yet still present when Design 2 is consider.
Results for both designs improve when (N, T ) = (400, 600), in which case the empirical distribution
becomes quite similar to a standard Gaussian one. The DGP notwithstanding, the distribution based
on Nb = 499 bootstrap replicates for the first Monte Carlo sample (yellow histogram) provides a more
accurate approximation to the empirical one of ξ̃(q0). As for the DGP in the main body, summary
statistics for ξ̃(q0) are reported in Table 13 of Section G.2.

Figure 5 – Small sample and bootstrapped distribution of the test statistic ξ̃(q0).

(a) ξ̃(3), N = 100, and T = 100; Design 1 (b) ξ̃(3), N = 400, and T = 600; Design 1

(c) ξ̃(8), N = 100, and T = 100; Design 2 (d) ξ̃(8), N = 400, and T = 600; Design 2

Empirical distribution of the test statistic ξ̃(q0) for (N,T ) = (100, 100) and (N,T ) = (400, 600). The first row refers to
Design 1, while the second one is based on Design 2. Red solid lines correspond to the asymptotic distribution N(0, 1) of
the re-centered and re-scaled statistic.

Tables 6 and 7 exhibit the empirical size and power of the two testing procedures. As far as power
is concerned, we test the null hypotheses H0 = H(2) and H0 = H(3) for Design 1, and H0 = H(6)
and H0 = H(7). In all cases, the alternative hypothesis is given by q > k for k the number of factors
that is being tested. For both tables, the left panel pertains to the asymptotic test while the right one
studies the Bootstrap test. The DGP notwithstanding, the asymptotic tests is always oversized and has
unit power.5 Adopting a bootstrap procedure always improves the size of the test at the cost of some
loss of power under Design 1.

5The asymptotic tests consistently returns unit power also when controlling for the size distortion.
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Table 6 – Empirical size and power of the plug-in and of the bootstrap versions of the test of the number of
dynamic factors q; Design 1

Plug-in: Th. 2 Bootstrap: Th. 2
size power size power

N T 1% 5% 10% H(1) H(2) 1% 5% 10% H(1) H(2)
100 100 0.07 0.16 0.24 1.00 1.00 0.02 0.07 0.14 1.00 0.84
100 200 0.09 0.22 0.31 1.00 1.00 0.01 0.06 0.12 1.00 0.85
200 100 0.03 0.09 0.14 1.00 1.00 0.01 0.07 0.13 1.00 0.90
200 200 0.04 0.11 0.19 1.00 1.00 0.01 0.06 0.11 1.00 0.90
200 300 0.04 0.13 0.21 1.00 1.00 0.01 0.06 0.11 1.00 0.90
400 100 0.02 0.06 0.11 1.00 1.00 0.02 0.07 0.12 1.00 0.93
400 200 0.02 0.06 0.12 1.00 1.00 0.01 0.06 0.12 1.00 0.93
400 300 0.02 0.08 0.13 1.00 1.00 0.01 0.06 0.11 1.00 0.93
400 600 0.03 0.10 0.17 1.00 1.00 0.01 0.05 0.11 1.00 0.93

This table reports the empirical size and power of the one-sided test for the null hypothesis of q common dy-
namic factors. Results in the left panel are based on the plug-in version of the feasible test statistic in Theorem 2.
Those in the right panel pertain to the bootstrap counterpart of this test. Simulated data come from Design 1 so that
r = 5 and q0 = 3. The empirical size is assessed at significance levels α ∈ {0.01, 0.05, 0.1}. For the plug-in version
of the test, the null hypothesis of q is rejected when simulated data return a value of the test statistic larger than the
(1 − α)-quantile of the asymptotic distribution of ξ̃(q). The rejection region for the bootstrap test is based on the
same percentile of the bootstrap distribution obtained from Nb = 499 bootstrap iterations. For both tests, empirical
powers represent the empirical rejection frequency of the null hypotheses H0 = H(1) and H0 = H(2) under the
alternatives q > 1 and q > 2, respectively. These powers are assessed at the 5% significance level. Results are based
on M = 2000 MC simulations.

Table 7 – Empirical size and power of the plug-in and of the bootstrap versions of the test of the number of
dynamic factors q; Design 2

Plug-in: Th. 2 Bootstrap: Th. 2
size power size power

N T 1% 5% 10% H(6) H(7) 1% 5% 10% H(6) H(7)
100 100 0.08 0.15 0.22 1.00 0.98 0.04 0.11 0.17 0.99 0.96
100 200 0.12 0.25 0.34 1.00 1.00 0.03 0.08 0.14 0.99 0.98
200 100 0.02 0.07 0.11 1.00 0.99 0.03 0.08 0.15 1.00 0.99
200 200 0.03 0.10 0.16 1.00 1.00 0.02 0.07 0.13 1.00 1.00
200 400 0.04 0.11 0.19 1.00 1.00 0.01 0.07 0.13 1.00 1.00
400 100 0.01 0.03 0.07 1.00 1.00 0.02 0.07 0.14 1.00 1.00
400 200 0.02 0.06 0.10 1.00 1.00 0.01 0.06 0.12 1.00 1.00
400 300 0.02 0.06 0.11 1.00 1.00 0.01 0.06 0.11 1.00 1.00
400 600 0.03 0.09 0.15 1.00 1.00 0.02 0.06 0.11 1.00 1.00

This table reports the empirical size and power of the one-sided test for the null hypothesis of q common dy-
namic factors. Results in the left panel are based on the plug-in version of the feasible test statistic in Theorem 2.
Those in the right panel pertain to the bootstrap counterpart of this test. Simulated data come from Design 2 so that
r = 9 and q0 = 8. The empirical size is assessed at significance levels α ∈ {0.01, 0.05, 0.1}. For the plug-in version
of the test, the null hypothesis of q is rejected when simulated data return a value of the test statistic larger than the
(1 − α)-quantile of the asymptotic distribution of ξ̃(q). The rejection region for the bootstrap test is based on the
same percentile of the bootstrap distribution obtained from Nb = 499 bootstrap iterations. For both tests, empirical
powers represent the empirical rejection frequency of the null hypotheses H0 = H(6) and H0 = H(7) under the
alternatives q > 6 and q > 7, respectively. These powers are assessed at the 5% significance level. Results are based
on M = 2000 MC simulations.
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Tables 8, 9 and 10 report empirical sizes and powers when N and T are large for the DGPs of this
section and of the main body. Given that bootstrap inference is usually employed when sample sizes
are small, we only rpeort results for the asymptotic test. Actual sizes are now very close to nominal
ones while powers are unaltered.

Table 8 – Empirical size and power of the plug-in version of the feasible test of the number of dynamic factors
q when N and T are large; Design 1

Plug-in: Th. 2
size power

N T 1% 5% 10% H(1) H(2)
1000 100 0.01 0.05 0.09 1.00 1.00
1000 200 0.01 0.05 0.09 1.00 1.00
1000 300 0.02 0.05 0.10 1.00 1.00
1000 600 0.02 0.07 0.12 1.00 1.00
1000 1000 0.02 0.07 0.13 1.00 1.00
1000 2000 0.02 0.08 0.15 1.00 1.00
2000 100 0.01 0.05 0.09 1.00 1.00
2000 200 0.01 0.05 0.08 1.00 1.00
2000 300 0.01 0.05 0.09 1.00 1.00
2000 600 0.01 0.05 0.09 1.00 1.00
2000 1000 0.01 0.05 0.10 1.00 1.00
2000 2000 0.01 0.06 0.11 1.00 1.00

This table reports the empirical size and power of the one-sided test for the null hypothesis of q common dy-
namic factors. Results are based on the plug-in version of the feasible test statistic in Theorem 2. Simulated data come
from Design 1 so that r = 5 and q0 = 3. The empirical size is assessed at significance levels α ∈ {0.01, 0.05, 0.1}.
The null hypothesis of q is rejected when simulated data return a value of the test statistic larger than the (1 − α)-
quantile of the asymptotic distribution of ξ̃(q). Empirical powers represent the empirical rejection frequency of the
null hypotheses H0 = H(1) and H0 = H(2) under the alternatives q > 1 and q > 2, respectively. These powers are
assessed for a test performed at the 5% significance level. All empirical probabilities are based on M = 2000 MC
simulations.
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Table 9 – Empirical size and power of the plug-in version of the feasible test of the number of dynamic factors
q when N and T are large; Design 2

Plug-in: Th. 2
size power

N T 1% 5% 10% H(6) H(7)
1000 100 0.01 0.03 0.04 1.00 1.00
1000 200 0.01 0.03 0.06 1.00 1.00
1000 300 0.01 0.03 0.07 1.00 1.00
1000 600 0.01 0.05 0.09 1.00 1.00
1000 1000 0.01 0.06 0.11 1.00 1.00
1000 2000 0.02 0.08 0.14 1.00 1.00
2000 100 0.01 0.02 0.05 1.00 1.00
2000 200 0.01 0.03 0.06 1.00 1.00
2000 300 0.01 0.03 0.07 1.00 1.00
2000 600 0.01 0.05 0.09 1.00 1.00
2000 1000 0.01 0.04 0.10 1.00 1.00
2000 2000 0.01 0.06 0.10 1.00 1.00

This table reports the empirical size and power of the one-sided test for the null hypothesis of q common dy-
namic factors. Results are based on the plug-in version of the feasible test statistic in Theorem 2. Simulated data come
from Design 2 so that r = 9 and q0 = 8. The empirical size is assessed at significance levels α ∈ {0.01, 0.05, 0.1}.
The null hypothesis of q is rejected when simulated data return a value of the test statistic larger than the (1 − α)-
quantile of the asymptotic distribution of ξ̃(q). Empirical powers represent the empirical rejection frequency of the
null hypotheses H0 = H(6) and H0 = H(7) under the alternatives q > 6 and q > 7, respectively. These powers are
assessed for a test performed at the 5% significance level. All empirical probabilities are based on M = 2000 MC
simulations.
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Table 10 – Empirical size and power of the plug-in version of the feasible test of the number of dynamic factors
q when N and T are large

Plug-in: Th. 2
size power

N T 1% 5% 10% H(3) H(4)
1000 100 0.01 0.03 0.07 1.00 1.00
1000 200 0.01 0.04 0.07 1.00 1.00
1000 300 0.01 0.04 0.09 1.00 1.00
1000 600 0.01 0.05 0.10 1.00 1.00
1000 1000 0.01 0.07 0.13 1.00 1.00
1000 2000 0.03 0.09 0.16 1.00 1.00
2000 100 0.01 0.03 0.05 1.00 1.00
2000 200 0.01 0.03 0.06 1.00 1.00
2000 300 0.01 0.03 0.07 1.00 1.00
2000 600 0.01 0.04 0.09 1.00 1.00
2000 1000 0.01 0.05 0.10 1.00 1.00
2000 2000 0.01 0.06 0.11 1.00 1.00

This table reports the empirical size and power of the one-sided test for the null hypothesis of q common dy-
namic factors. Results are based on the plug-in version of the feasible test statistic in Theorem 2. Simulated data
come from the DGP of Section 6.1 with r = 7 and q0 = 5. The empirical size is assessed at significance levels
α ∈ {0.01, 0.05, 0.1}. The null hypothesis of q is rejected when simulated data return a value of the test statistic
larger than the (1 − α)-quantile of the asymptotic distribution of ξ̃(q). Empirical powers represent the empirical
rejection frequency of the null hypotheses H0 = H(3) and H0 = H(4) under the alternatives q > 3 and q > 4,
respectively. These powers are assessed for a test performed at the 5% significance level. All empirical probabilities
are based on M = 2000 MC simulations.

Finally, Tables 11 and 12 repeat the comparison with some alternative estimators already proposed
in the literature. The former deals with Design 1 while the latter with Design 2. The estimators of
Amengual and Watson (2007) perform very well for Design 1 but tends to underestimate q0 under
Design 2. The estimators of Bai and Ng (2007) and Breitung and Pigorsch (2013) perform on par with
our bootstrap based estimator under Design 1 but are substantially outperformed when we consider a
richer factor structure, i.e. for Design 2. In this second case, both the bootstrap based procedure and
the (adjusted) asymptotic one always outperform all the other estimators.
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Table 11 – Comparison of estimators of q under Design 1
N T q̂3 q̂4 q̂aw,A q̂aw,B q̂bp N(0,1) zαN,T

Boot
100 100 2.94 2.95 2.98 2.99 2.82 3.19 3.13 2.93
100 200 2.94 2.95 2.99 2.99 2.88 3.27 3.19 2.93
200 100 2.94 2.94 2.99 2.99 2.86 3.09 3.05 2.97
200 200 2.96 2.96 2.99 2.99 2.93 3.13 3.06 2.98
200 300 2.96 2.96 2.99 3.00 2.94 3.16 3.06 2.98
400 100 2.94 2.94 2.99 2.99 2.88 3.07 3.03 3.02
400 200 2.96 2.96 3.00 3.00 2.94 3.07 3.02 3.02
400 300 2.97 2.97 3.00 3.00 2.96 3.09 3.02 3.01
400 600 2.98 2.98 3.00 3.00 2.97 3.12 3.03 3.02

This table reports the average estimated number of dynamic factors q under Design 1 so that r = 5 and
q0 = 3. The third and the fourth columns present results for estimators q̂3 and q̂4 introduced by Bai and Ng (2007).
The fifth and sixth columns consider q̂aw,A by q̂aw,B Amengual and Watson (2007), while the seventh one is based on
q̂bp of Breitung and Pigorsch (2013). Details on these estimators can be found in Section F of the Online Appendix.
The eighth and ninth columns show results for our estimator q̂ based on the asymptotic sequential testing procedure.
The former is based on the 95% quantile of the asymptotic N (0, 1) distribution while the latter considers quantiles
adjusted for a consistent selection procedure. The last column is based on the bootstrap version of the sequential
testing procedure that we perform at the 5% significance level. The whole table is based on M = 2000 MC
simulations.

Table 12 – Comparison of estimators of q under Design 2
N T q̂3 q̂4 q̂aw,A q̂aw,B q̂bp N(0,1) zαN,T

Boot
100 100 6.44 6.58 7.50 7.58 6.53 8.13 8.09 8.05
100 200 6.51 6.63 7.71 7.74 6.77 8.25 8.18 8.05
200 100 6.42 6.54 7.62 7.70 6.68 8.06 8.03 8.07
200 200 6.84 6.90 7.77 7.79 6.95 8.10 8.04 8.07
200 300 6.85 6.90 7.84 7.84 7.06 8.11 8.05 8.06
400 100 6.41 6.52 7.69 7.75 6.76 8.03 8.01 8.07
400 200 6.82 6.88 7.84 7.85 7.07 8.06 8.02 8.06
400 300 7.00 7.04 7.88 7.88 7.20 8.06 8.02 8.06
400 600 7.12 7.14 7.92 7.92 7.37 8.09 8.02 8.06

This table reports the average estimated number of dynamic factors q under Design 2, i.e. r = 9 and q0 = 8.
The third and the fourth columns present results for estimators q̂3 and q̂4 introduced by Bai and Ng (2007). The
fifth and sixth columns consider q̂aw,A by q̂aw,B Amengual and Watson (2007), while the seventh one is based on
q̂bp of Breitung and Pigorsch (2013). Details on these estimators can be found in Section F of the Online Appendix.
The eighth and ninth columns show results for our estimator q̂ based on the asymptotic sequential testing procedure.
The former is based on the 95% quantile of the asymptotic N (0, 1) distribution while the latter considers quantiles
adjusted for a consistent selection procedure. The last column is based on the bootstrap version of the sequential
testing procedure that we perform at the 5% significance level. The whole table is based on M = 2000 MC
simulations.

G.2 Summary statistics for the empirical distribution of ξ̃(q)
Table 13 reports the mean, median, standard deviation and interquartile range for the simulated distri-
bution of the test statistic ξ̃(q) when q = q0, i.e. the null hypothesis holds. The central panel pertains
to the Design of Section 6.1 while the left (right) one is based on Design 1 (2) of Section G.1.
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Table 13 – Summary statistics for the empirical distribution of the test statistic ξ̃(q0) in Theorem 2.
r = 5, q0 = 3 r = 7, q0 = 5 r = 9, q0 = 8

N T m. med. std. iqr m. med. std. iqr m. med. std. iqr
100 100 0.50 0.44 1.16 1.54 0.52 0.42 1.26 1.62 0.43 0.27 1.52 1.73
100 200 0.81 0.73 1.13 1.47 0.97 0.93 1.19 1.61 0.86 0.77 1.33 1.71
200 100 0.11 0.03 1.08 1.42 0.03 -0.08 1.13 1.48 -0.11 -0.24 1.24 1.51
200 200 0.32 0.27 1.06 1.42 0.30 0.25 1.09 1.51 0.20 0.14 1.11 1.42
200 300 0.43 0.38 1.05 1.38 0.47 0.44 1.10 1.46 0.35 0.31 1.09 1.43
400 100 -0.01 -0.07 1.04 1.34 -0.17 -0.24 1.09 1.45 -0.29 -0.37 1.12 1.34
400 200 0.11 0.08 1.01 1.34 0.02 -0.05 1.05 1.42 -0.08 -0.10 1.05 1.37
400 300 0.17 0.14 1.01 1.34 0.10 0.06 1.04 1.42 0.03 0.00 1.03 1.39
400 600 0.31 0.26 1.02 1.35 0.30 0.29 1.04 1.44 0.24 0.22 1.02 1.37

1000 100 -0.11 -0.13 1.01 1.34 -0.30 -0.34 1.04 1.41 -0.46 -0.54 0.99 1.30
1000 200 -0.04 -0.03 1.02 1.37 -0.19 -0.22 1.01 1.31 -0.30 -0.35 1.00 1.33
1000 300 -0.01 -0.03 1.01 1.36 -0.12 -0.13 1.01 1.36 -0.18 -0.22 1.00 1.36
1000 600 0.08 0.05 1.01 1.33 0.01 -0.01 1.02 1.43 -0.03 -0.07 0.99 1.35
1000 1000 0.16 0.16 1.02 1.40 0.12 0.10 1.00 1.33 0.07 0.04 1.00 1.39
1000 2000 0.25 0.25 1.01 1.33 0.30 0.30 1.00 1.32 0.20 0.19 1.01 1.35
2000 100 -0.16 -0.21 1.03 1.39 -0.36 -0.41 0.98 1.27 -0.49 -0.56 0.99 1.33
2000 200 -0.10 -0.11 1.01 1.36 -0.28 -0.32 0.98 1.28 -0.34 -0.38 1.00 1.31
2000 300 -0.08 -0.13 1.01 1.32 -0.21 -0.23 0.99 1.31 -0.24 -0.29 1.00 1.35
2000 600 -0.01 -0.06 0.99 1.28 -0.11 -0.11 1.01 1.34 -0.08 -0.10 1.01 1.35
2000 1000 0.02 0.03 0.99 1.27 -0.03 -0.06 0.99 1.37 -0.02 -0.05 0.98 1.29
2000 2000 0.10 0.13 0.99 1.32 0.09 0.07 0.99 1.37 0.04 0.04 0.97 1.32

This table reports the mean (m.), median (med.), standard deviation (std.) and interquartile range (iqr.) of the empirical
distribution of the statistic ξ̃(q) in Theorem 2. The first four columns pertain to Design 1 in Section G.1 (r = 5,
q0 = 3), the second four columns refer to the Design of Section 6.1 (r = 7, q0 = 5) and the last four ones are based
on Design 2 of Section G.1 (r = 9, q0 = 8). Empirical distributions are obtained for different sample sizes (N , T ) and
using M = 2000 MC simulations. The asymptotic distribution of the statistics is always N(0, 1) and has interquartile
range of approximately 1.35.

G.3 Comparison with the estimators of HL
In this section, we compare our estimators for the number of common dynamic factors with those
of Hallin and Liska (2007). Because the approach of Hallin and Liska (2007) is based on frequency
domain analysis and is developed within the context of generalized dynamic factor models, we dot no
present it in details as done for the estimators in Section F.

We combine their information criteria IC1 and IC2 with their penalty terms p1, p2 and p3, thus
ending up with six different estimators. Their implementation always follows the same steps and
modelling choices of Onatski (2009).6 Comparisons are done for the data generating process of the
main body, as well as for Design 1 and Design 2 of the previous sections.

Table 14 presents results for Design 1, i.e. five static factors and three dynamic ones. The first six
columns contain results for the estimators of Hallin and Liska (2007), where HL11 labels the one based
on information criterion IC1 and penalty term p1; other columns are similarly labelled. The bootstrap-
based estimator delivers is the most accurate one for all sample sizes but (N, T ) = (400, 200), in which
case there is a slight outperformance from estimator HL12. The latter is also the best performer among
all estimators of Hallin and Liska (2007) for most sample sizes. The asymptotic estimator based on

6We are grateful to Alexey Onatskiy for sharing codes of his paper.
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the consistent selection procedure also outperforms all estimators of Hallin and Liska (2007) for most
combinations of N and T .

Table 14 – Comparison of estimators of q based on Hallin and Liska (2007) under Design 1
N T HL1,1 HL1,2 HL1,3 HL2,1 HL2,2 HL2,3 N(0,1) zαN,T

Boot
100 100 3.80 3.81 3.92 3.94 3.86 3.87 3.19 3.13 2.93
100 200 3.34 3.18 3.41 3.98 3.97 3.98 3.27 3.19 2.93
200 100 3.84 3.81 3.92 3.96 3.91 3.91 3.09 3.05 2.97
200 200 3.20 3.04 3.28 3.98 3.94 3.98 3.13 3.06 2.98
200 300 3.30 3.16 3.46 3.99 3.98 3.99 3.16 3.06 2.98
400 100 3.83 3.83 3.92 3.96 3.91 3.92 3.07 3.03 3.02
400 200 3.18 3.00 3.27 3.97 3.92 3.98 3.07 3.02 3.02
400 300 3.31 3.18 3.42 3.98 3.97 3.99 3.09 3.02 3.01
400 600 2.90 2.73 3.03 3.97 3.95 3.98 3.12 3.03 3.02

Results for the data generating process of the main body are in Table 15. One of our estimators
outperforms those of Hallin and Liska (2007) for all sample sizes but (N, T ) = (200, 300), in which
case estimator HL1,2 delivers the best results. Identical results hold for Design 2 of the previous
sections, as can be seen from Table 16.

Table 15 – Comparison of estimators of q based on Hallin and Liska (2007) under the DGP of main body
N T HL1,1 HL1,2 HL1,3 HL2,1 HL2,2 HL2,3 N(0,1) zαN,T

Boot
100 100 5.67 5.62 5.82 5.76 5.61 5.62 5.17 5.12 5.01
100 200 5.29 5.62 5.37 5.96 5.95 5.96 5.30 5.20 5.03
200 100 5.71 5.67 5.85 5.84 5.73 5.74 5.07 5.04 5.06
200 200 5.14 4.95 5.23 5.97 5.93 5.97 5.12 5.06 5.05
200 300 5.22 5.03 5.38 5.96 5.95 5.96 5.17 5.06 5.05
400 100 5.76 5.68 5.86 5.86 5.75 5.75 5.04 5.01 5.07
400 200 5.09 4.94 5.20 5.97 5.93 5.97 5.06 5.02 5.06
400 300 5.26 5.03 5.40 5.96 5.95 5.96 5.08 5.02 5.06
400 600 4.82 4.50 4.92 5.97 5.95 5.97 5.12 5.03 5.05

Table 16 – Comparison of estimators of q based on Hallin and Liska (2007) under Design 2
N T HL1,1 HL1,2 HL1,3 HL2,1 HL2,2 HL2,3 N(0,1) zαN,T

Boot
100 100 7.65 7.50 7.73 7.22 7.14 7.26 8.13 8.09 8.05
100 200 7.52 7.34 7.52 7.89 7.86 7.90 8.25 8.18 8.05
200 100 7.66 7.54 7.75 7.38 7.41 7.48 8.06 8.03 8.07
200 200 7.33 7.22 7.41 7.94 7.89 7.94 8.10 8.04 8.07
200 300 7.23 7.09 7.41 7.97 7.97 7.97 8.11 8.05 8.06
400 100 7.68 7.57 7.78 7.48 7.47 7.54 8.03 8.01 8.07
400 200 7.30 7.20 7.38 7.94 7.87 7.95 8.06 8.02 8.06
400 300 7.25 7.05 7.39 7.97 7.96 7.97 8.06 8.02 8.06
400 600 6.77 6.52 6.92 7.97 7.96 7.98 8.09 8.02 8.06
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