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Abstract

We develop a framework to analyse affine jump diffusions using factor modelling tech-

niques, offering a novel method to study which and how many risk factors drive the price

process of a single asset. We use information contained in options to construct observa-

tions on the characteristic function of the returns on the underlying asset, without having

to specify a parametric model. We show how to form a linear factor model out of these

observations. Our asymptotic framework is one in which the number of observed options,

of varying strikes, tends to infinity. We prove asymptotic normality of the factor model,

and provide a feasible central limit theorem which can be used for testing. In addition, we

prove that diagnostic criteria based on the eigenvalues of the sample covariance matrix of

the constructed factor model are able to consistently estimate the number of factors, and

that principal component analysis is able to extract these factors. An empirical application

suggests that the main factor driving the S&P 500 returns is a stochastic variance process,

which explains 97% of the variation in the factor model.
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1 Introduction

The value of financial derivatives is determined by the stochastic behaviour of the price of the

underlying asset. A natural, fundamental question is then to ask what kind of process underlies

the price of such assets. The consensus is that asset pricing models need to be more involved

than in the seminal work of Black and Scholes (1973), but the literature has not yet settled on

what should be included in a “proper” model. The amount of research devoted to this question

is vast, with many new models or extensions being proposed (see, among many others, Merton,

1976; Hull and White, 1987; Heston, 1993; Bates, 2000; Aı̈t-Sahalia et al., 2015).

In this paper, we develop a model-free methodology to analyse what characteristics need to

modelled in order to appropriately represent the stochastic process underlying an equity price.

We propose a factor model of the characteristic function of the equity returns, exploiting infor-

mation contained in option prices. In usual factor models in asset pricing, a small number of

common risk factors drives the behaviour of a large set of returns. We, in contrast, are inter-

ested in the behaviour of the latent factors driving the distribution of a single asset price. These

factors are best understood as the state variables that need to be included in a model, e.g., a

stochastic volatility “factor”. We develop methods to perform inference on both the number of

factors, and their behaviour.

This question is not novel, nor is the use of options in answering it; the added value of our

approach lies in the theoretical validity of the factor model representation, which is not present

in the literature. Setting up a formal framework in which this factor analysis can be validly

applied starts by appropriately transforming the option data: we construct observations on the

characteristic function of the distribution of the returns on the underlying asset in a model-free

way, using the Carr and Madan (2001) spanning result (see also Todorov, 2019). We perform this

spanning for option panels differing in time-to-maturity, which allows us to study factors affecting

the term-structure of the option prices as well as factors causing cross-sectional differences.

Existing research used principal component analysis (PCA) to describe implied volatility (IV)

surfaces (Skiadopoulos et al., 2000; Cont and Da Fonseca, 2002; Andersen et al., 2015b). IVs

are usually considered as a method of quoting option prices, which result from the dynamics in

other state variables. However, by constructing a factor model directly for the IVs, the focal

point is shifted to the IVs as the process of interest, away from the underlying state variables;

an approach explicitly taken in Carr and Wu (2020). Another justification would be that IVs

are linear functions of the actual state variables, but this approach is not consistent with most

models, as usual option-pricing formulae are highly nonlinear.1 This divergence is not present in

our framework, but to ensure the validity of the linear factor model representation, a structural

form for the underlying dynamics has to be assumed. In our option-based setting, this “necessary

evil” presents itself as a restriction to the class of affine jump diffusions of Duffie et al. (2000).

This broad and widely used class naturally lends itself to factor modelling, as its characteristic

function is of the exponential affine form. By considering the characteristic function spanned by

1Volatility surface analysis is also the focal point of Aı̈t-Sahalia et al. (2021a,b), though they take a Taylor
expansion approach and examine derivatives, or “shape-characteristics”, to summarize the surface. The ad hoc
factor model assumption is then not required.
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the option prices, instead of the IV surface directly, we are thus able to construct a factor model

while maintaining the view that IVs are an outcome, and not the foundation, of a stochastic

process. The unavoidable trade-off is that we have to limit the scope of our framework to the

analysis of affine models. Fortunately, this affine class contains many popular option-pricing

models, and it is often used in the financial literature, such as in Black and Scholes (1973),

Heston (1993), Bates (2000), Pan (2002), and Aı̈t-Sahalia et al. (2015).

Though it allows for a wide variety of popular models, the restriction to the affine class clearly

limits the applicability of the developed framework. However, our characteristic function obser-

vations are generated in a model-free way; even if the true underlying process is not affine and

the linear representation is invalid, there is some merit in the idea that PCA extracts factors

that explain (part of) the dynamic behaviour of this characteristic function. The comparison to

the aforementioned studies on PCA in the IV surface can easily be drawn; even if the volatility

surface is not truly linearly dependent on some common factors, these studies still seek to learn

some general behaviour through its principal components. In the same sense, one can read this

current study as an exploratory analysis of what factors drive the dynamics of the characteristic

function: an interesting topic on its own.

We derive the asymptotic theory for our factor model. Our asymptotic scheme is one in which

we require the number of options, of varying strikes, to tend to infinity. Such an asymptotic

scheme is also implemented in, among others, Andersen et al. (2021), and in Boswijk et al.

(2022), of which our article can be seen as a non-parametric, more exploratory counterpart.

The resulting framework can be regarded as one using so-called “small-sigma” asymptotics: the

asymptotic set-up (indirectly) causes the errors to vanish, while the cross-sectional and time

series dimensions of the factor model stay finite. It is important to stress this final point:

as there is no requirement for the time series dimension, our method can be applied on any

scale ranging from intradaily to, e.g., weekly observations, as long as there are observations on

sufficiently many options. We provide a feasible CLT which can be used to construct tests,

e.g., for the number of factors using the Kleibergen and Paap (2006) rank test. In addition, we

prove the validity of the use of PCA to extract the state vector, and that inference based on the

eigenvalues of the sample covariance matrix of the factor model can consistently estimate the

number of factors.

We examine the performance of the developed methodology in a Monte Carlo study, considering

a setting mimicking the S&P 500 using an empirically relevant model with a (multi-factor)

stochastic volatility structure. Focusing on the aforementioned rank test for the number of

factors, we find excellent power in all considered settings, regardless of tuning parameters. The

same can be said about the size of the test, though finite sample biases cause it to slightly

over-reject in the more involved models. A small empirical application highlights that the most

important factor driving the S&P 500 index is related to a stochastic variance process, but that

more factors are necessary to explain higher order moments.

The main contribution of this paper is the development of the characteristic function-based

factor modelling approach to analyse option-pricing models. The framework is constructed to

answer the fundamental question of what processes drive an asset price, but in contrast to the
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existing factor literature, we do not focus on a large panel of equity returns or option prices

directly. To the best of our knowledge, our method is unique in its characteristic function-based

factor modelling approach.

The rest of this article is organised as follows. Section 2 discusses the affine models, and the

construction of the factor model. Section 3 contains the theoretical results. Section 4 presents

the simulation results. Section 5 contains an empirical application. Section 6 concludes.

2 Methodology

This section explains how to construct the linear factor model in the affine class, starting with

a short treatment of this affine class, and the option-based spanning of the conditional charac-

teristic function.

2.1 The affine jump diffusion

Consider an arbitrage-free, dynamic financial market, defined on a filtered probability space(
Ω(0),F (0),

{
F (0)
t

}
t
,P(0)

)
. Absence of arbitrage implies the existence of a locally equivalent

risk-neutral measure Q. Consider a single asset price St, of which the dynamics under Q are

driven by a d-dimensional state vector Xt, assumed to be a Markov process taking its values in

X ⊂ Rd. As usual, we describe the dynamics of logSt =: yt, instead of St directly. The dynamics

of (yt, X
′
t)
′ under the risk-neutral measure Q are described by the following jump diffusion:

dyt = µy(Xt) dt+ σy(Xt) dWt + Zy
t dNt ,

dXt = µX(Xt) dt+ σX(Xt) dWt + ZX
t dNt ,

(2.1)

whereWt is a d+1-dimensional standard Brownian motion, Nt is a counting process with arrival

rate λ(Xt), and the associated jump-sizes are represented by Zt := (Zy
t , Z

X
t

′)′. Conditional on

a jump-event at time t, the jump-size Zt is a random vector following the arbitrary, but fixed,

distribution ν. The size of the jumps is thereby independent of the current state.2 Assume

moreover the existence of a riskless asset offering, for simplicity, a constant rate of return of r.

In addition, assume µy satisfies no-arbitrage restrictions such that the discounted asset price is

a Q-local martingale.

We follow Duffie et al. (2000) and impose that the functions µ(·), σ(·)σ(·)′ and λ(·) are affine,

where µ(·) := (µy(·), µX(·)′)′, and with σ(·) defined similarly. That is, we assume that they can

be written as:
µ(x) = K0 +K1x, with K0 ∈ Rd+1,K1 ∈ Rd+1×d

σ(x)σ(x)′ = H0 +
∑d

j=1H
(j)
1 xj , with H0 ∈ Rd+1×d+1, H

(j)
1 ∈ Rd+1×d+1

λ(x) = l0 + l′1x, with l0 ∈ R, l1 ∈ Rd

(2.2)

2It is possible to extend (2.1) to include multiple jump processes, or jumps specific to prices or volatility, but
this is not a (direct) point of interest. Including multiple jump processes does allow for “changes” in the jump-size
distribution, by changing the frequency of small relative to big jumps.
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Herein, H0, H
(j)
1 must be taken such that σ(x)σ(x)′ is positive semi-definite for all x ∈ X , and

l0, l1 must be such that λ(x) ≥ 0 for all x ∈ X , and such that it does not explode to infinity

either. These so-called admissibility conditions, discussed in Duffie et al. (2003) and Singleton

(2006) among others. These admissibility conditions lead to restrictions on the parameter space:

a famous example is the Feller condition that ensures the stochastic volatility process stays

positive in the Heston (1993) model. We do not discuss this further, but it must be clear that

the applicability of our methodology is limited to models with admissible parameter values.

Assuming the state vector follows an affine jump diffusion seems restrictive, but it actually allows

for a variety of popular models, as showcased by its use in Black and Scholes (1973), Heston

(1993), Bates (2000), Duffie et al. (2000), Pan (2002), Aı̈t-Sahalia et al. (2015), Andersen et al.

(2015b), Boswijk et al. (2021), among others. The main appealing feature of the affine jump

diffusion is the result of Duffie et al. (2000), who have shown that its conditional characteristic

function (CCF) is of the exponential affine form. In particular, given the structure of (2.1), the

CCF of the log return on a futures contract can be written as:

ϕt(u, τ) := EQ
t [exp{iu log(Ft+τ/Ft)}]︸ ︷︷ ︸

CCF

= exp
{
α(u, τ) + β(u, τ)′Xt

}
, (2.3)

where τ ∈ R+ and u ∈ R. Both here and hereafter, EQ
t [·] := EQ[·|F (0)

t ] refers to the conditional

expectation under the risk-neutral measure Q given the filtration F (0)
t . The coefficients α and

β solve a known system of ODEs, that deterministically depends on the CCF argument u, the

parameters, and the jump distribution, but not on F (0)
t . There are some regularity conditions

in order to guarantee a (unique) solution to this set of ODEs, for which we refer the reader to

other work, such as Duffie et al. (2000).

Recall that the drift, diffusion, and intensity functions take only Xt as argument, and not yt.

This implies the intuitive, and standard, assumption that returns are distributed independently

of price levels. This does requires a simple adjustment to the standard definition of the ODEs,

but this is not relevant for our exposition, and it is therefore omitted. Solving these ODEs

is namely not required in our methodology, which is agnostic about the specific parametric

structure of the model as long as it is part of the affine class. This exponential affine structure

is the feature we aim to exploit, as it implies that the log3 conditional characteristic function

(CCF) of such a d-dimensional affine jump diffusion is affine in the state vector.

2.2 Spanning the characteristic function with an option-portfolio

Let Ft be the price associated to a futures contract expiring at T := t + τ , following some

arbitrary martingale-dynamics under the risk-neutral measure Q:

dFt

Ft−
= vtdWt + dJ̃t , (2.4)

3The logarithm of a complex number z = reiφ is not uniquely defined. The common solution, to focus on
the “principal branch” and take k ∈ Z such that Im(log z) = φ+ 2kπ ∈ (−π, π], introduces discontinuities at the
crossing of the interval’s boundaries. As the log CCF is required to be continuous, we simply recall that ϕ(0) = 1,
or log ϕ(0) = 0, and take the aforementioned k such that the function is continuous in u.
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with Wt a standard Brownian motion, vt an unspecified, but adapted and locally bounded

volatility process, and J̃t a similarly unspecified compensated jump process of finite variation.

Assume moreover, as before, the existence of a riskless asset with constant risk-free rate r. Note

that these dynamics are not necessarily of the affine form as discussed before, but more general.

As shown by Carr and Madan (2001), any twice continuously differentiable function f(·) of the
terminal price Ft+τ can be replicated by a portfolio of options as follows:

f(Ft+τ ) = f(x) + f ′(x)(Ft+τ − x) +

∫ ∞

x
f ′′(K)(Ft+τ −K)+ dK +

∫ x

0
f ′′(K)(K − Ft+τ )

+ dK ,

(2.5)

with x ∈ R+ fixed. Denote by Ot(τ,K) the time-t price of an out-of-the-money (OTM) European

option which matures at t+τ and has strikeK, that is, a put ifK ≤ Ft and a call ifK > Ft. Risk-

neutral pricing dictates that this price is equal to the discounted F (0)
t -conditional expectation

of the terminal payoff under the risk-neutral measure Q. As such, taking x = Ft, we can write:

EQ
t [f(Ft+τ )] = f(Ft) + erτ

∫ ∞

0
f ′′(K)Ot(τ,K) dK . (2.6)

Taking f(x) = eiu log(x/Ft) for u ∈ R, we find:

ϕt(u, τ) := EQ
t [exp{iu log(Ft+τ/Ft)}]

= 1− erτ (u2 + iu)

∫ ∞

0

1

K2
eiu log(K/Ft)Ot(τ,K) dK

= 1− erτ
u2 + iu

Ft

∫
R
e(iu−1)mOt(τ,m) dm,

(2.7)

with m := log(K/Ft) the log-moneyness of an option with strike price K. Note that we use

both Ot(τ,K) and Ot(τ,m) for the same option price; given the one-to-one relation between K

and m there should be no confusion. The left-hand side of (2.7) is the conditional characteristic

function of the log futures returns. As such, this spanning result allows us to construct functional

observations on the CCF by using the current futures price and a portfolio of OTM options on

a continuum of strikes. This idea is also used by Todorov (2019) to construct a spot volatility

estimator using the Lévy-Khintchine formula. Note that these observations are model-free, and

thereby do not rely on the assumption that the futures price follows an affine jump diffusion.

In practice, we must approximate the integral in (2.7): we do not have a continuum of options,

and the options we do have are noisy. In our framework, we indeed allow for observation errors

in the option prices:

Ôt(τ,m) := Ot(τ,m) + ζt(τ,m), (2.8)

where the observation errors can be factorized as ζt(τ,m) := σt(τ,m)κt(τ,m). Herein, σt(τ,m) is

an F (0)
t -adapted random variable capturing the conditional heteroskedasticity, and {κt(τ,mj)}j

is a random sequence defined on the outcome space Ω(1) =×t×τ R
R. Similar to, e.g., Andersen

et al. (2021), we require a probability space of this form as the in-fill asymptotics imply the need
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to define an error for every value in the moneyness-grid. We complete the probability space

with the product Borel σ-field F (1) and transition probability P(1)(ω(0), dω(1)). We join the two

spaces by defining the product space:

Ω = Ω(0) × Ω(1), F = F (0) × F (1), P(dω(0), dω(1)) = P(0)(dω(0))P(1)(ω(0),dω(1)).

To implement our approximation, we follow Todorov (2019) and employ a left Riemann sum.

There is no particular reason to take a left Riemann sum instead of a right or middle Riemann

sum, or even more involved techniques to approximate the integral. The employed approxima-

tion4 is as follows:

ϕ̂t(u, τ) := 1− erτ
u2 + iu

Ft

n∑
j=2

e(iu−1)mj−1Ôt(τ,mj−1)∆mj , (2.9)

where n is the number of observed options, with associated log-moneyness {mj}nj=1 and noisy

prices {Ôt(τ,mj)}nj=1, and ∆mj := mj −mj−1 is the difference in log-moneyness between the

j-th and (j − 1)-th OTM-option. In our exposition, n ≡ nt,τ and mj ≡ mt,τ (j) for all t, τ . This

can be relaxed to a time- and tenor-varying, F (0)
t -adapted grid, but doing so clutters notation:

asymptotic results would be denoted in terms of maxt,τ supj ∆mt,τ (j) ↓ 0 as mint,τ nt,τ → ∞.

As already apparent from (2.7), we could approximate the integral in terms of the strike prices

K as well. Though the value of the integral is invariant to the choice of variable, this choice

affects numerical approximations when only a finite number of strikes are available. It must be

noted that the difference is likely small, at least with the current form of the approximation:

the functions are evaluated in equivalent points, the only actual numerical difference is that we

replace log
Kj

Kj−1
by

∆Kj

Kj−1
in each term of the Riemann sum,5 which are well known to be close if

the steps in the strike grid are not too large. Nonetheless, it might be the case that the discrete

approximation is more stable when using m, or vice versa.

2.3 Observing the affine CCF

Aligning the affine CCF of (2.3) with its spanned counterpart defined in (2.9), and taking the

complex logarithm, we find the following observation equation:

ψ̂t(u, τ) := log ϕ̂t(u, τ) = α(u, τ) + β(u, τ)′Xt + ξt(u, τ), (2.10)

where the complex-valued noise ξt(u, τ) := ψ̂t(u, τ) − ψt(u, τ) captures the observation errors

in the option prices Ôt(τ,m), and the errors caused by truncation and discretization of the

integration interval in (2.9). These errors are discussed in more detail in Boswijk et al. (2022).

4Considering an inter-extrapolation scheme might lead to a better approximation (see Boswijk et al., 2022),
and can be used to reduce the finite-sample bias of this approximation. This is discussed below in more detail.

5Using K = Fte
m, this can be seen from the last equation (denoted by (∗)) in the string of identities below∫ ∞

0

1

K2
eiu log(K/Ft)Ot(τ,K) dK =

1

Ft

∫ ∞

0

e(iu−1)mOt(τ,K)
dK

K

(∗)
=

1

Ft

∫
R
e(iu−1)mOt(τ,m) dm,

such that the only difference in the numerical approximation is the replacement of ∆mj by
∆Kj

Kj−1
.
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This is in fact the same observation-equation used by Boswijk et al. (2022), who use it to

estimate parametric option pricing models using state space filtering techniques. We present to

some extent a non-parametric counterpart to their paper, using the same observation equation

but remaining more agnostic about the specific parametric structure. As such, our approach in

analysing this equation is clearly also very different.

Note that the CCF under consideration is of the futures returns, and not of the full state

vector. Even though the latter is more informative, we are not able to construct the required

observations: to be able to span the characteristic function with a portfolio of options, we require

it to be a function of the process on which the options are written. As options are written on the

price of the underlying, we are restricted to the CCF of the price level, which is transformed to

the CCF of returns. There are two main reasons to focus on returns. Firstly, the price process

is observable, and thereby not interesting to analyse as part of the factor model. Secondly, the

price process is generally assumed non-stationary, ensuring the log CCF is a factor model with a

non-stationary factor, which will dominate other stationary factors, and complicate the analysis.

2.4 Evaluating the functional factor model

Note that the relation in (2.10) holds for any value of (u, τ), forming a functional linear factor

model. Being interested not in this “direction” of the model, but in the state vector Xt, we

reduce this to a more practical setting by evaluating the functional model in a given set of

arguments for (u, τ).6

Assume at time t we have observations on the futures price and on OTM options of a variety of

strikes and of k ∈ N different maturities {τi}ki=1. In our setting, we assume daily observations

and let t = 1, . . . , T , such that we consider T trading days. The observed strike prices are

allowed to change, but the elements of {τi} are assumed to be constant. A constant τ implies

that the coefficients α(u, τ) and β(u, τ) in, e.g., (2.10), are time-constant, such that they can

indeed be interpreted as factor loadings. Given this information, we use (2.9) to construct the

CCF for each τi.

The spanned CCFs are then evaluated in q ∈ N different arguments, 0 < u1 < . . . < uq.

The focus on the positive real half-line forms no restriction as all characteristic functions are

Hermitian. How to optimally select these arguments {uj}qj=1 is an open question, which is a

point of interest in our simulations.

For a given maturity τi, with i = 1, . . . , k, we then stack our observations on the CCF evaluated

in different uj to arrive at the vector-valued equation below:

ψ̂t,i = αi + βiXt + ξt,i, (2.11)

with ψ̂t,i ∈ Cq with j-th element ψ̂t(uj , τi), and similar for αi, βi and ξt,i. Recall that αi and βi

are constant in time if we consider the same set of tenors τ throughout.

6Our method thus resembles functional PCA using a discretization method, though we do not perform any
interpolation afterwards. As mentioned, we do not interpolate, as the argument (u, τ) in which this is a functional
model is not the “direction” of interest; we are after the state vector Xt.
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2.4.1 “Realizing” the complex-valued log CCF

Through the complex-valued coefficients α and β, observations on the log CCF are complex-

valued even if the state vector is real-valued. As we do not want to lose any information (which

would be the case if we were, for instance, to only consider the real part of our factor model),

while maintaining the tractable form of a real random vector, we decompose the observed CCF

into its real and its imaginary part and stack these. That is, with ψ̂t,i the observations related

to a maturity τi as constructed in (2.11), we construct:

ψ̃t,i :=

Re
(
ψ̂t,i

)
Im
(
ψ̂t,i

) =

(
Re(αi)

Im(αi)

)
+

(
Re(βi)

Im(βi)

)
Xt +

Re
(
ξ
(1)
t,i

)
Im
(
ξ
(1)
t,i

)+ rt,i, (2.12)

or simply

ψ̃t,i = ai +BiXt + εt,i + rt,i, (2.13)

which is a real-valued 2q-dimensional factor model driven by the same d-dimensional Xt. Ap-

pendix A discusses the implications of this stacking on the further analysis. Note that we

have separated ξt,i into an error ξ
(1)
t,i , related to the observation error in the option prices, that

turns out to be of first order importance, and a remainder term rt,i, that can be shown to be

asymptotically negligible; see Boswijk et al. (2022) for a more in-depth discussion.

2.5 The factor model

Our method straightforwardly allows to consider different maturities, simply by stacking the

different maturities. This allows for detection of factors that affect the cross-section of options,

as well as factors that affect the term structure of the volatility surface. Our next step indeed

is to consider the model in this stacked form:

ψ̃t :=


ψ̃t,1

...

ψ̃t,k

 = a+BXt + εt + rt, (2.14)

which is a vector of length p := 2kq. By stacking in the time-dimension as well, setting ψ̃t as its

t-th column, we obtain the (p× T ) matrix Ψ̃:

Ψ̃ = aι′T +BX + ε+ r, (2.15)

where X = (X1, . . . , XT ), ε = (ε1, . . . , εT ), r = (r1, . . . , rT ), and ιT is the T -dimensional vector

of ones. In the analysis that follows, the intercept is not of interest; we are after the behaviour

of the state variable X. As such, we consider this equation after subtracting the mean over time.

To this end, define the projection-matrix MιT = IT − T−1ιT ι
′
T , and right-multiply to obtain

̂̈Ψ = BẌ + ε̈+ r̈, (2.16)

9



where Ẍ := XMιT , and ε̈ and r̈ are defined similarly.

In usual factor models, or with panel data in general, there are two dimensions in which it is

possible, or necessary, to take the sample size to infinity. Both the number of features in the

cross-section (i.e., p) can increase, as well as the number of time series observations T . However,

as we show in the next section, neither is necessary in our factor model: the asymptotics are in

terms of the observed number of options n.

3 Theoretical results

Recall that our interest in the state vector is twofold: we want to learn its unknown dimension

d, and extract the sample paths of the latent processes in Xt. This section provides the required

theoretical foundation. In the following, we require our state process to satisfy the following

assumptions:

Assumption 1.

(i) The state vector (yt, X
′
t)
′ follows, under the risk-neutral measure Q, an affine jump diffu-

sion, as specified in (2.1) and (2.2);

(ii) The (d× T )-dimensional matrix X has rank d;

(iii) The columns of B are linearly independent.

Clearly, the first part of this assumption underlies the validity of considering a linear factor model

for the log CCF, and is thereby central to our methodology. Note that the price yt does not

feed back into the dynamics of the state vector. As such, returns are distributed independently

of price levels. This is intuitive, and satisfied by most standard models. Implicitly, we also

assume here that the true model satisfies the admissibility conditions as briefly mentioned in

Section 2.1. The second part is straightforward, requiring that all state variables have positive

sample variance, and that we observe a time window long enough for us to identify them. The

last part states that none of the state variables are redundant, and consequently, not identifiable.

This additionally implies that the grid of (u, τ) is appropriate; some factors might for instance

drop out if the set of maturities is not sufficient. Note that we do not assume that the state

variables are stationary; this is not necessary as we do not consider large T asymptotics.

Moreover, in order to be able to derive limiting distributions, we make some assumptions on the

observation error in our option prices, introduced in (2.8):

Assumption 2. For all t, τ , we have

(i) EP[κt(τ,m)|F (0)] = 0, EP[κ2
t (τ,m)|F (0)] = 1, EP[κ4

t (τ,m)|F (0)] <∞;

(ii) κt(τ,m) are F (0)-conditionally independent along maturity τ , moneyness m, and time t;

(iii) σt(τ,m) is F (0)
t -measurable, 0 < infm σt(τ,m) ≤ supm σt(τ,m) <∞, σ4t (τ,m) is Lipschitz

in m, and
∫
R e

−4mσ4t (τ,m)dm+
∫
R |m|e−2mσ2t (τ,m)dm <∞.

This assumption decomposes the observation error in a stochastic component and an F (0)
t -

adapted part capturing heteroskedasticity in the observation errors. The error is assumed to
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be mean zero. The moment condition is required for feasible inference. The second part is

commonplace in the literature (see, e.g., Todorov (2019); Boswijk et al. (2022)). Andersen et al.

(2021) show that dependence in observation errors is indeed limited, and decreasing in recent

years, providing some empirical foundation. The last part is on the conditional variance of

the errors, and presents some high-level conditions necessary for feasible inference. These high-

level conditions are implied by standard parametrisations, such as a multiplicative pricing error

in either the option price or in the implied volatility, combined with some standard moment

conditions. These assumptions are all implied by those in Boswijk et al. (2022).

Lastly, we make some assumptions on the existence of certain moments, as well as the structure

of the moneyness grid:

Assumption 3.

(i) The true option price Ot(τ,m) is Lipschitz in m;

(ii) The forward price process satisfies EQ
t F

2
t+τ <∞ and EQ

t F
−2
t+τ <∞;

(iii) For the log-moneyness grid m = m1 < . . . < mn = m, there exists a deterministic sequence

∆m depending on n such that ∆m→ 0 as n→ ∞ and for some ι ∈ (0, 1]

ι∆m ≤ inf
j=2,...,n

|mj −mj−1| ≤ sup
j=2,...,n

|mj −mj−1| ≤ ∆m. (3.1)

In addition, for all t, τ , we have, as ∆m→ 0,

sup
j=2,...,n

∣∣∣∣mj −mj−1

∆m
− δ(mj)

∣∣∣∣ = op(
√
∆m), (3.2)

with δ : R → R+ a continuous function.

The Lipschitz continuity is satisfied whenever there are no atoms in the risk-neutral return

distribution. The moment conditions are necessary to bound the truncation and discretization

errors. The assumption on the shrinking moneyness grid forms the basis of the in-fill asymptotics,

see also Andersen et al. (2015a) or Todorov (2019). The convergence of the relative step size to

the function δ, as in Todorov (2021) or Andersen et al. (2021), is nothing more than a useful

vehicle allowing for a more clear and insightful presentation of the limiting results. To this end,

we also assume it is the same for different t, τ , though this can be relaxed. The function δ

appears in the limiting results, but does not need to be observed or estimated.

Before we move to our results, we want to draw attention specifically to how the noise enters

our factor model. Note that there is no idiosyncratic noise, as in usual factor models. After all,

all elements of the factor model are constructed based on the same set of options. Apart from

the observable price process, these options form the only input of the model, and they are the

sole cause of the errors as in (2.10). As such, it is intuitive that the asymptotic scheme is one

in the number of options, and specifically one that ensures the errors vanish in (2.10), and in

extension, that the errors disappear from the model asymptotically. Clearly, this requires the

CCF spanning to become exact, so the Riemann sum of (2.9) needs to converge to the integral

of (2.7). Denoting K := maxt,τ Fte
m and K := mint,τ Fte

m, this intuition is summarized in the
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following Lemma:

Lemma 1. Suppose Assumptions 1-3 hold. If n → ∞, K ≍ n−α, K ≍ nα for some α, α > 0,

and (p ∧ T − 1) > d, the first d singular values of ̂̈Ψ are bounded away from zero, while the

d+ 1-th singular value tends to zero in probability.

Proof. See Appendix B.3.

This result combines the consistency of the spanned factor model with the fact that its limiting

value is a rank-d matrix. This result only requires an asymptotic scheme on the number of

options, and not on the cross-sectional or the time series dimension. Note the resemblance

with so-called “small-sigma” asymptotics, in which the errors disappear even though the model

dimensions stay constant. We have phrased this result in terms of singular values, as this makes

it more intuitive to extend it to selection criteria for the number of factors:

Corollary 1. Suppose the assumptions of Lemma 1 hold. Denote M = (p ∧ T ). Denote by

σ1 ≥ . . . ≥ σM the singular values of ̂̈Ψ. Then, d̂ := max{j : σj > γn} consistently estimates d

for any deterministic sequence γn such that γn → 0 and

√
n−1 logn
γn

→ 0.

Not any sequence γn is allowed: its convergence rate needs to be slower than that of the maximal

non-systematic eigenvalue. This rate can be found using Proposition 1 of Boswijk et al. (2022).

Some standard options for γn are, e.g., n−1/3 or (log n)−1. This result essentially shows the

validity of basing inference on the number of factors on the scree plot. This can be extended to

include popular selection criteria, such as eigenvalue differences (Onatski, 2010) or eigenvalue

ratios (Ahn and Horenstein, 2013), though the latter might require some form of perturbation

to avoid potential division by zero, as pointed out by Pelger (2019). Clearly, other selection

criteria can be thought of as well. At their core, all such criteria are transformations of the scree

plot, which is commonly used in practice.

Additionally, as the spanned factor model consistently estimates the true d-dimensional factor

model, the following well-known result follows, stating that PCA extracts the factors up to a

rotation:

Corollary 2. Suppose the assumptions of Lemma 1 hold. Denote the (d × T )-dimensional

matrix formed by the first d right-singular vectors of ̂̈Ψ by ̂̈X. Then, for some invertible matrix

H, we have maxt

∥∥∥ ̂̈Xt −H ′Ẍt

∥∥∥ = op(1).

This result can straightforwardly be shown using the singular value decomposition of ̂̈Ψ. This

result is also obtained, in some form, in Bai and Ng (2002) and Bai (2003), among others;

consider for instance Proposition 2 in Bai (2003) and recall that our asymptotics are in terms

of n. Replacing d by a consistent estimator d̂ satisfying the conditions of Corollary 1 does not

alter this result.

In our atypical framework, we can do better than consistency. By Lemma 1, the rank of our

consistent estimator ̂̈Ψ is in the limit equal to the number of factors. As such, a natural approach

is to appeal to the literature in rank testing, such as Kleibergen and Paap (2006). This contrasts
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with the conventional factor modelling literature, where such tests are unavailable as the non-

systematic eigenvalues, though small, do not vanish. Clearly, testing does require a distributional

result, which we present next.

In order to construct a feasible CLT for ̂̈Ψ, we need a consistent estimator for the variance

matrix. Following Todorov (2021), we construct estimators of our observation error7 by setting

for j = 2, . . . , n− 1:

ζ̂t(τi,mj) =

√
2

3

(
Ôt(τi,mj)−

1

2

(
Ôt(τi,mj−1) + Ôt(τi,mj+1)

))
, (3.3)

and setting ζ̂t(τi,m1) = ζ̂t(τi,m2) and ζ̂t(τi,mn) = ζ̂t(τi,mn−1). Lastly, let j
∗ denote the index

corresponding to the smallest absolute log-moneyness, i.e., j∗ = argminj |mj |. Then, set

ζ̂t(τi,mj∗) =
1

2

(
|ζ̂t(τi,mj∗−1)|+ |ζ̂t(τi,mj∗+1)|

)
. (3.4)

As explained by Todorov (2021), this latter adjustment is to incorporate the no-arbitrage re-

striction that prices are monotonic.

Define

ξ̂t,i(j, u) := − u2 + iu

ϕ̂t(u, τi)
e(iu−1)mj−1 ζ̂t(τi,mj−1)∆mj . (3.5)

Let ξ̂t,i(j) = (ξ̂t,i(j, u1), . . . , ξ̂t,i(j, uq))
′, and define ε̂t,i(j) :=

(
Re
(
ξ̂t,i(j)

)′
Im
(
ξ̂t,i(j)

)′)′
.

Then, define

Ĥt,i :=
e2rτi

F 2
t

n∑
j=2

ε̂t,i(j)ε̂t,i(j)
′. (3.6)

Lastly, compose the variance estimator as follows:

Ĥ := (MιT ⊗ Ip) blkdiag

{(
Ĥt,i

)
(t,i)∈{1,...,T}×{1,...,k}

}
(MιT ⊗ Ip) , (3.7)

Theorem 1. Suppose Assumptions 1-3 hold. If n → ∞, K ≍ n−α, K ≍ nα for some α, α >

1/4, then, with L − s denoting F (0)-stable convergence in distribution,

(∆m)−1/2
(
vec
(̂̈Ψ)− vec

(
BẌ

))
L−s→ N (0,H), (3.8)

7Alternative estimators of ζ̂t(τi,mj) can be used as well. Sufficient conditions for the ensuing variance matrix
to be consistent are asymptotic unbiasedness for σ2

t (τ,mj), except for maybe a finite number of indices j, and∑n
l=1 Cov

P
t

(
ζ̂2t (τ,mj), ζ̂

2
t (τ,ml)

)
= Op(1). We elect to employ iCOS-implied errors based on the techniques of

Vladimirov (2023), which outperform comparable methods in the simulations with reasonable sample sizes. Those
based on Todorov (2021) are presented in the text as they are a well-performing alternative, and are much simpler
to explain.
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where H is some F (0)-measurable random matrix, and, additionally,

∥(∆m)−1Ĥ − H∥ = op(1). (3.9)

Proof. See Appendix B.4.

As the covariance matrix in the limiting distribution is random, our factor model is F (0)-mixing

normally distributed. Our feasible variance estimator does allow for hypothesis testing. Though

the mesh ∆m explicitly enters these expressions, this term does not appear in a standardized

version which would be used for such tests. Note that the limiting variance H is singular, due

to the demeaning, but potentially also due to the choice of u. This requires an adjustment to

the rank test of Kleibergen and Paap (2006), which is presented in the next subsection.

A decomposed version can be found using the results of Bai and Ng (2020), and can for instance

be used to construct confidence bounds around the extracted factors. A feasible variance matrix

estimator is presented in Bai (2003), though we can base an estimator on the previously used

Ĥ as well.

Proposition 1. Suppose the assumptions of Theorem 1 hold. Assume the nonzero singular

values of Ψ̈ are distinct. Recall that ̂̈X are the first d right-singular vectors of ̂̈Ψ, and define

B̂ := ̂̈Ψ ̂̈X ′. Then, for some invertible matrix H
p→ Q−1,

(i) (∆m)−1/2
(
B̂j −H−1Bj

)
L−s→ N

(
0, Q′−1Ẍ(IT ⊗ e

(p)
j )′H(IT ⊗ e

(p)
j )Ẍ ′Q−1

)
,

(ii) (∆m)−1/2
( ̂̈Xt −H ′Ẍt

)
L−s→ N

(
0, S−2QB′(e

(T )
t ⊗ Ip)

′H(e
(T )
t ⊗ Ip)BQ

′S−2
)
,

where e
(j)
i is the j-dimensional vector with a 1 at the i-th position and zeroes elsewhere, and S

is the diagonal matrix containing the d nonzero singular values of Ψ̈ in descending order.

Proof. See Appendix B.5

3.1 Testing for the number of factors

As briefly mentioned, the asymptotic rank of our factor model is equal to the number of factors,

or the dimension of the state vector Xt. As such, we implement a rank test in order to perform

inference on this quantity. We propose to use a restricted version of the Kleibergen and Paap

(2006) rank test.

In our factor model, the standard test of Kleibergen and Paap (2006) jointly tests (p−d)(T−1−d)
restrictions on the singular values. Given that we look at a single equity, it is reasonable to

assume that a proportion of these are zero without a need to test for them; i.e., we assume an

upper bound for the number of factors, say dmax. This implies our alternative hypothesis changes

from, e.g., H1 : d > 2 to H1 : 2 < d ≤ dmax, reducing the power against the set {d : d > dmax}.
The main benefits of this added assumption are that the degrees of freedom in the test is much

reduced, increasing the power of the test, and that the variance matrix that needs to be inverted
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is of a smaller dimension and is more likely to be non-singular, which benefits the size of the

test.

Next, we briefly discuss the construction of the test, in relation to the Kleibergen and Paap

(2006) test. However, we first have to deal with the singularity that arises when demeaning

the factor model. As a solution, we elect to simply remove the last of its columns. That is,

we post-multiply our factor model by the (T × (T − 1))-dimensional deletion-matrix DT :=

(IT−1
... 0T−1)

′. Our proposed test is a restricted version of the rank test of Kleibergen and Paap

(2006), superimposing that some of the smallest singular values are exactly zero. Write the SVD

decomposition of our factor model as follows:

Y := BẌDT =
(
U1 U2 U3

)S1 0 0

0 S2 0

0 0 0


V

′
1

V ′
2

V ′
3

 .

In this decomposition, S1 is a d×d-dimensional matrix, S2 is (dmax−d)×(dmax−d)-dimensional,

and 0 is a (p−dmax)×(T−1−dmax)-dimensional matrix of zeroes. Superimposing that this lower-

right block is identically zero implies that there is no need to test for it. With Ũ ′ =
(
U1 U2

)
the p× dmax-dimensional submatrix containing the first dmax left singular values of the factor

model, we consider instead:

Ỹ := ŨY =

(
U ′
1

U ′
2

)
Y =

(
Id 0 0

0 Idmax−d 0

)S1 0 0

0 S2 0

0 0 0


V

′
1

V ′
2

V ′
3



=

(
Id 0

0 Idmax−d

)(
S1 0 0

0 S2 0

)V
′
11 V ′

21 V ′
31

V ′
12 V ′

22 V ′
32

V ′
13 V ′

23 V ′
33

 .

This is simply a projection onto the lower-dimensional subspace spanned only by the first dmax

left-singular vectors. We propose to perform the Kleibergen and Paap (2006) test on this reduced

matrix instead. Note that we reduce the row dimension, not the column dimension. We do so

as any singularity problem would likely be caused by the fact that the loadings can be very

comparable for (τ, u) close, which forms the row dimension.

Following Kleibergen and Paap (2006), we write

Ỹ = AdCd +Ad,⊥ΛdCd,⊥.

Applying the results of Kleibergen and Paap (2006) to our restricted setting, with

Ṽ ′ =

(
V ′
22 V ′

32

V ′
23 V ′

33

)
,
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a (T − 1− d)× (T − 1− d)-dimensional matrix, we have the following expressions:

Λd = S2Ṽ
′(Ṽ Ṽ ′)−1/2,

Ad,⊥ =

(
0

Idmax−d

)
,

Cd,⊥ = (Ṽ Ṽ ′)1/2(Ṽ ′)−1

(
V ′
12 V ′

22 V ′
32

V ′
13 V ′

23 V ′
33

)
,

which are (dmax − d)× (T − 1− d), dmax × (dmax − d), and (T − 1− d)× (T − 1)−dimensional

matrices, respectively. We denote sample counterparts by a hat, e.g., Λ̂d.

Assumption 4. The (dmax − d)(T − 1− d)× (dmax − d)(T − 1− d) covariance matrix

Ωd = (Cd,⊥ ⊗A′
d,⊥)(DT ⊗ Ũ)H(D′

T ⊗ Ũ ′)(C ′
d,⊥ ⊗Ad,⊥) (3.10)

is non-singular.

It can straightforwardly be shown that a sufficient, though much stronger, condition is assum-

ing that Ht,i is full rank for all (t, i). Though we by no means prefer to make this stronger

assumption, it does provide the intuition that taking appropriate u is highly important.

Corollary 3. Suppose Assumptions 1-4 hold. Denote λ̂d = vec
(
Λ̂d

)
. If n → ∞, K ≍ n−α,

K ≍ nα for some α, α > 1/4, p ≥ dmax, and T − 1 > d, then

λ̂′dΩ̂
−1
d λ̂d

L→ χ2 ((dmax − d)(T − 1− d)) , (3.11)

where Ω̂d is the feasible counterpart of the variance matrix defined in Assumption 4

Proof. This follows from Theorem 1 by the results of Kleibergen and Paap (2006).

This is a test whether the elements of Λd are zero, which is equivalent to the elements of Σ2

being zero. This is true if the rank of the factor model is d. If the true rank is greater than d,

this test-statistic diverges, such that a test based on this statistic has asymptotic power equal

to one. Without Assumption 4, a similar, but less powerful, test can be based on Robin and

Smith (2000). We propose a sequential test: start with i = 0, and test H(i)
0 : d0 = i against

H(i)
a : i < d0 ≤ dmax; if H(i)

0 : d0 = i is rejected, set i 7→ i + 1, continuing until the null can no

longer be rejected or i = dmax; if the null is not rejected, conclude that d = i. This approach can

be justified by appealing to Goeman and Solari (2010), as it clearly satisfies their monotonicity

condition and the first, and only, true hypothesis being tested has asymptotically correct size,

such that it also satisfies their familywise error control. The intuition behind the size control in

this procedure is simple: as the test is consistent, the sequential testing asymptotically rejects

almost surely until we reach i = d, at which point the test is size correct (cf. Johansen (1988)’s

cointegration test). Of course, this presumes that for the true value d we have d ≤ dmax.
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3.2 Analysis in non-affine models

This section shortly discusses the possibilities for inference in non-affine models. Clearly, the

assumption of the affine jump diffusion as the driver of price dynamics is key in the above

analysis. Relaxing this assumption reduces the earlier derived techniques to approximations in

the best case, and renders them invalid in the worst. The rank test, for instance, will overselect

the number of factors, as the true model is no longer reduced rank. PCA however still delivers

the best linear approximation to the dynamics in the CCF. As affine models are by far the most

popular class in the literature, it might be interesting to address the question of how well such

a linear representation can fit the data. To measure this goodness of fit, we investigate the

correlations between the principal components and higher order risk-neutral moments. As the

distribution of the log returns is essentially what is needed to accurately price options, we argue

that the linear approximation to the CCF, by proxy of the PCs, needs to be well correlated with

these objects.

Bakshi et al. (2003) use the Carr and Madan (2001) spanning result displayed in (2.6) to obtain

a portfolio representation of the second, third, and fourth risk-neutral moment of log returns.

In general, the h-th risk-neutral moment can be spanned as:

RQ
t (h, τ) := EQ

t

[
(log(Ft+τ/Ft))

h
]
=
erτ

Ft

∫
R
h(h− 1−m)mh−2e−mOt(τ,m)dm.

We denote the feasible, Riemann sum-based counterpart by R̂Q(h, τ). Asymptotic normality of

these spanned moments follows along the same lines as in Theorem 1:

Proposition 2. Suppose Assumptions 2 and 3 hold. If n → ∞, K ≍ n−α, K ≍ nα for some

α, α > 1/4, then, with L − s denoting F (0)-stable convergence in distribution,

(∆m)−1/2
(
R̂Q

t (h, τ)−RQ
t (h, τ)

)
L−s→ N (0,Vt(h)), (3.12)

with

Vt(h) :=

∫
R
h2(h− 1−m)2m2h−4e−2mσ2t (τ,m)δ(m)dm,

for h ∈
{
k ∈ R : |RQ

t (k, τ)| <∞,∃δ > 0 :
∫
R
(
|k − 1−m| |m|k−2e−mσt(τ,m)

)2+δ
dm <∞]

}
.

Proof. See Appendix B.6.

A feasible version of the (scaled) variance can be found by replacing the integral by a Riemann

sum, δ(m) by ∆mj , and the unknown {σ2t (τ,m)} by the estimators {ζ̂2t (τ,m)}. This can easily

be extended to the time-stacked (T × 1)-vector R̂Q
h,τ :=

(
R̂Q

1 (h, τ), . . . , R̂
Q
T (h, τ)

)′
by making

use of the time-independence of Assumption 2.

Canonical correlations and regression R2s can be derived as eigenvalue problems. In particular,

if we are interested in the canonical correlations of our extracted principal components ̂̈X with a

different set of mean-zero factors G, possibly observed with error, we can study the eigenvalues
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of the matrix ( ̂̈X ′ ̂̈X)−1 ̂̈X ′
G(G′G)−1G′ ̂̈X. Distributional results for the (sums of) eigenvalues

of this matrix are established in Gaussian or other elliptical settings (see the discussion in Bai

and Ng, 2006), in group factor models (Andreou et al., 2019), and in high-frequency settings

(Pelger, 2019). Unfortunately, the assumptions in these papers do not align with our framework.

Nonetheless, the general idea behind the proof of Pelger (2019) still works in our case, providing

us with the following result:

Proposition 3. Suppose the conditions of Propositions 1 and 2 hold, and τ /∈ {τi}ki=1. Then,

with R̂2 the R-squared of the regression of R̂Q
h,τ onto ̂̈X and a constant, and R2 < 1 its infeasible

counterpart,

(∆m)−1/2(R̂2 −R2)
L−s→ N (0, ξ′DΠD′ξ), (3.13)

where, with R̈Q
h,τ =MιTR

Q
h,τ

Π =

[
K(d,T )(IT ⊗ S−2QB′)H(IT ⊗ S−2QB′)′K(T,d) 0

0 MιT diag{{Vt(h)}t=1,...,T }M ′
ιT

]
,

ξ = vec

([
−

(
(ẌẌ′)−1ẌR̈Q

h,τ (R̈
Q
h,τ

′R̈Q
h,τ )

−1R̈Q
h,τ

′Ẍ′(ẌẌ′)−1
)′

(ẌẌ′)−1ẌR̈Q
h,τ (R̈

Q
h,τ

′R̈Q
h,τ )

−1

(R̈Q
h,τ

′R̈Q
h,τ )

−1R̈Q
h,τ

′Ẍ′(ẌẌ′)−1 −
(
(R̈Q

h,τ
′R̈Q

h,τ )
−1R̈Q

h,τ
′Ẍ′(ẌẌ′)−1ẌR̈Q

h,τ (R̈
Q
h,τ

′R̈Q
h,τ )

−1
)′

])
,

D =
([

H′Ẍ
R̈Q

h,τ
′

]
⊗ Id+1

)
K(T,d+1) +

(
Id+1 ⊗

[
H′Ẍ
R̈Q

h,τ
′

])
,

(3.14)

with K the commutation matrix such that K vec(A) = vec(A′)

Proof. See Appendix B.7.

This result can directly be extended to the sum of the canonical correlations between ̂̈X and

a general set of factors G; the proof is completely identical, so long as the errors in ̂̈X are

independent8 of those in G. To bring this into practice, we need consistent estimators of the

components in the variance matrix. For the matrices ξ and D, we can construct simple feasible

analogues by plugging in ̂̈X (note that ̂̈X ̂̈X ′
= I) and ̂̈RQ

h,τ , which leads to consistent estimators

by the continuous mapping theorem. As mentioned in the discussion after Proposition 2, a

feasible estimator of Vt(h) can be constructed in a similar manner to how we estimate H: a

discretization of the integral and the replacement of {σ2t (τ,m)} by the estimators {ζ̂2t (τ,m)}.
Such an estimator is consistent under suitable integrability conditions. What remains is an

estimator for the quantity S−2QB′; based on Proposition 1, this role can be taken on by Ŝ−2B̂′,

with Ŝ the diagonal matrix with the singular values of ̂̈Ψ.

In contrast to the test of Andreou et al. (2019), this test is not applicable in the boundary case

of R2 = 1 (or unit canonical correlations in a multivariate extension). This rules out the case

where the PCs are an exact rotation of the other set of factors. As Pelger (2019) explains, this

corner case leads to atypical behaviour, similar to unit-root tests.

8This can be relaxed, but a joint CLT such as in Lemma 8 needs to be satisfied.
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4 Simulation study

In this section, we study the finite-sample performance of our factor modeling framework. For

that, we consider three different AJD specifications: a one-factor, two-factor, and three-factor

option pricing models.

4.1 One-factor model

As a starting point, we consider a one-factor option pricing model of Duffie et al. (2000) with a

Gaussian jump size distribution in returns and co-jumps in volatility. The likelihood of jumps

is additionally made stochastic and proportional to the stochastic variance. In particular, we

assume the following process, referred to in shorthand as ‘SVCJ’, for the log forward price under

both the P and Q probability measures:

d logFt = (−1
2vt − µλt) dt+

√
vtdW1,t + JtdNt, (4.1)

dvt = κ(v̄ − vt) dt+ σ
√
vtdW2,t + Jv

t dNt, (4.2)

where two Brownian motions W1,t and W2,t are assumed to be correlated with the coefficient ρ;

Nt is a Poisson jump process with intensity λt = δvt; J
v ∼ exp(1/µv) are jump sizes in volatility

and J ∼ N (µj , σ
2
j ) are jump sizes in prices. Given the jump size distributions, the expected

relative jump size in returns µ = exp
(
µj +

1
2σ

2
j

)
− 1. In the simulation, the initial underlying

price is set to F0 = 3000, but the initial variance value v0 is drawn for each iteration from the

Gamma distribution with shape and scale parameters of 1.25 and 0.016. The parameters of the

model are set as follows:

κ = 5.0, v̄ = 0.02, ρ = −0.95, σ = 0.4, δ = 60, µj = −0.08, σj = 0.04, µv = 0.02.

Although the model in (4.1)-(4.2) is a one-factor AJD model, it exhibits all main features of

option pricing models: stochastic volatility, (co-)jumps in returns and volatility, time-varying

stochastic jump intensity and self-excitation feature. Furthermore, it embeds many popular

one-factor option pricing models such as Heston (1993), Pan (2002), and Bates (1996).

The option price simulation roughly mimics the S&P 500 index option data. In particular, we

fix the strike prices on an equidistant grid in increments of 5 and keep simulated option prices

that exceed 0.1, which corresponds to a minimum ask price. We consider three fixed maturities

of 10, 30, and 60 days, i.e., k = 3. The true option prices are simulated using the COS method

of Fang and Oosterlee (2009) and then are distorted with the observation errors, which reflect

Assumption 2:

Ôt(τ,m) = Ot(τ,m) + ζt(τ,m), with ζt(τ,m) = 0.001 · κt(τ,m)νt(τ,m) · ϵ√
τ

where ϵ is an i.i.d. standard random normal variable, κt(τ,m) is the Black-Scholes implied

volatility and νt(τ,m) the corresponding vega. The division by
√
τ makes errors comparable

along the maturity dimension.
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Given the log futures price process and the observed noisy option prices, we span the log CCF

following (2.9) at each time t, for each maturity τ . To reduce the impact of truncation and

discretization errors in finite samples, we additionally simulate option prices by increasing and

decreasing strike prices up until the OTM call and put option values reach 10−8 and interpo-

late all option prices using a cubic spline on the implied volatility domain. Importantly, the

interpolated and extrapolated option contracts are used only to estimate the CCF, i.e., these

additional contracts are not used to estimate the covariance matrix. As discussed in Boswijk

et al. (2022), the discretization and truncation errors are Ft-measurable and, thus, affect only

the mean, but not the variance of the CCF approximation. Furthermore, these errors (and,

hence, biases they induce) are asymptotically negligible, but they affect the estimation in finite

samples. Therefore, this interpolation-extrapolation scheme can be seen as a bias correction of

the CCF estimators without an effect on the CLT.

In the simulation, we experiment with different time dimensions and different sets of argument

values for the CCF to explore the limits of the novel test procedure. In particular, we consider

T = {5, 10, 50, 100} with the smaller time series being always the beginning of the larger one.

To experiment with different sets of CCF arguments, we consider the arguments of the form:

uj =
jL√
τ
, j = 1, . . . , q,

where q ∈ N is the number of the CCF arguments in consideration and L > 0 is some constant

that defines the grid of the argument set. The division by
√
τ again makes different maturities

more comparable. Similar scaling is used by Todorov (2019). In simulations, we vary L and q.

To test the dimension of the (latent) state vector we use the (adjustments of) rank test of

Kleibergen and Paap (2006) as detailed in Section 4.1. For the SVCJ model d = 1, but in the

simulations, we test the null hypotheses d = 0 and d = 1 against the alternatives d ≥ 1 and

d ≥ 2, respectively, to analyze the power and the size of the test. We estimate the covariance

matrix Ωd using the observation-based feasible estimators ζ̂t(τ,m), which we obtain using the

iCOS method following Vladimirov (2023). In the following tables, we display the rejection

frequency of the corresponding null hypothesis. The number of Monte Carlo simulations is

N = 1000.

Table 1: Monte Carlo results for the rank test size under one-factor model

T = 50 T = 100

L = 0.2 L = 1.0 L = 0.2 L = 1.0
q\α 10 5 1 10 5 1 10 5 1 10 5 1

1.0 7.7 4.2 0.6 7.8 4.6 0.6 5.7 2.3 0.6 6.1 2.7 0.7
2.0 4.1 1.4 0.2 4.7 1.8 0.2 1.3 0.6 0.1 1.7 0.8 0.1
3.0 50.1 50.1 50.1 2.0 0.8 0.1 49.6 49.6 49.6 0.7 0.3 0.0
4.0 49.2 49.2 49.2 19.3 17.7 15.9 49.5 49.5 49.5 26.7 25.5 23.4

Note: This table provides Monte Carlo simulation results for the rejection frequencies of the rank test at
10%, 5% and 1% significance levels, based on 1000 replications from the SVCJ model. Each panel lists,
the rejection frequencies for different null hypotheses, numbers of argument values, and grid sizes.

We start with the standard rank test of Kleibergen and Paap (2006) that jointly tests (p−d)(T−
1− d) restrictions on the singular values. Table 1 provides the Monte Carlo results for the one-
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factor SVCJ model for different values of L and q. The results are indicative of problems with

the standard rank test applied to our setting: the cross-sectional dependence between the log

CCFs with different arguments leads to singularity issues in the constructed covariance matrix

H, which, in turn, distort the power and the size of the test. In fact, the size typically increases

with the decrease of L, i.e., when the grid of arguments shrinks, and with the increase of the

number of arguments q. The power and the size of the test for q = 1, on the other hand, are

very close to their nominal level. This indicates that there is a clear separation between the first

and the second eigenvalues that helps to identify the number of latent factors.

As mentioned in Section 2, we can set an upper bound for the number of factors dmax, which

allows us to reduce the set of alternatives, e.g., to H1 : 2 ≤ d ≤ dmax when testing H0 : d = 1.

This in turn helps to reduce the dimension of the covariance matrix H, limiting its singularity

issues. In the simulations, we set dmax = 6 since this is the dimension of the covariance matrix

Ht,i for a fixed maturity with a single CCF argument. The number of factors is also unlikely

to exceed dmax = 6 for option contracts on a single underlying. In fact, most of the parametric

AJD option pricing models do not exceed 3 latent factors. Andersen et al. (2015b), for instance,

formally show that their three-factor model captures most of the variation in option data9.

Table 2: Monte Carlo results for the restricted rank test size under one-factor model

(a) dmax = 6

T = 50 T = 100

L = 0.2 L = 1.0 L = 0.2 L = 1.0
q\α 10 5 1 10 5 1 10 5 1 10 5 1

1.0 7.7 4.2 0.6 7.8 4.6 0.6 5.7 2.3 0.6 6.1 2.7 0.7
2.0 7.7 4.2 0.6 9.4 5.1 0.8 5.8 2.3 0.6 7.4 3.4 0.9
3.0 7.7 4.2 0.6 11.0 6.2 1.0 5.8 2.3 0.6 8.6 3.6 1.0
4.0 7.7 4.3 0.6 13.7 6.8 1.7 5.9 2.5 0.6 10.2 5.3 1.5

(b) dmax = 8

T = 50 T = 100

L = 0.2 L = 1.0 L = 0.2 L = 1.0
q\α 10 5 1 10 5 1 10 5 1 10 5 1

1.0 8.6 4.8 0.9 9.6 4.9 1.2 5.8 3.0 0.6 6.5 4.1 0.7
2.0 8.6 4.8 0.9 9.6 4.9 1.2 5.8 3.0 0.6 6.5 4.1 0.7
3.0 8.4 4.6 0.9 11.8 6.9 2.0 5.7 3.1 0.6 9.9 5.8 1.8
4.0 8.5 4.4 0.8 15.2 8.7 3.3 5.5 3.1 0.7 13.3 7.7 2.0

Note: This table provides Monte Carlo simulation results for the rejection frequencies of the adjusted
rank test at 10%, 5% and 1% significance levels, based on 1000 replications from the SVCJ model. Each
panel lists, the rejection frequencies for different null hypotheses, numbers of argument values, and grid
sizes.

Table 2 provides the Monte Carlo results for the adjusted rank test with dmax = 6. We restrict

our attention to the cases T = 50 and T = 100, since the dimension of the covariance matrix

H cannot be further reduced for small T . With the adjusted rank test, the empirical rejection

frequencies are very close to the chosen significance level for almost all cases of L and q. The

9In practice, one could select dmax by applying standard tests/information criteria for the number of factors
on the implied volatility domain. By doing so, Andersen et al. (2015b) found seven to eight factors, which, as
they mention, “likely reflects the failure of the linear approximation rather than the true number of underlying
(linear) factors”.
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size of the test is the largest for L = 2 with q = 5. This is likely due to the increase of the

approximation errors in the CCF for large argument values.

4.2 Two-factor model

Next, we extend the SVCJ model to a two-factor option pricing model by adding the second

stochastic volatility component. In particular, we consider the following model dynamics:

d logFt = (−1
2v1,t −

1
2v2,t − µλt) dt+

√
v1,tdW1,t +

√
v2,tdW3,t + JtdNt,

dv1,t = κ1(v̄1 − v1,t) dt+ σ1
√
v1,tdW2,t + Jv

t dNt,

dv2,t = κ2(v̄2 − v2,t) dt+ σ2
√
v2,tdW4,t,

where v1,t is the same stochastic volatility as in the one-factor specification and v2,t is the second

stochastic volatility component without jumps. Two additional Brownian motionsW3,t andW4,t

are assumed to be correlated with the coefficient ρ2 but are independent of W1,t and W2,t. The

distributions of jump sizes are the same as in the one-factor specification, and the jump intensity

is a linear function of two volatility factors, i.e., λt = δ1v1,t+δ2v2,t. The parameters of the model

are set as follows:

κ1 = 15, v̄1 = 0.02, ρ1 = −0.95, σ1 = 0.4, δ1 = 60, µv = 0.02,

κ2 = 1, v̄2 = 0.01, ρ2 = −0.5, σ2 = 0.1, δ2 = 30, µj = −0.08, σj = 0.04.

This two-factor model allows for short-term and long-term stochastic volatility components

and is related to popular two-factor models considered in Bates (2000), Christoffersen et al.

(2009) and Andersen et al. (2015b). Due to the co-jumps in the short-term volatility v1,t and

the specification of the jump intensity λt, the first stochastic volatility also absorbs some self-

excitation features with fast mean-reversion.

The simulation scheme of option prices and estimation of the CCF is exactly the same as for the

one-factor model. The main difference is, of course, that d = 2 for the two-factor model, and in

the simulation, we test the null hypotheses d = 1 and d = 2. Motivated by the simulation results

for the one-factor model, here we provide the results of the adjusted rank test with dmax = 6

and two time periods of T = 50 and T = 100. The simulation results are provided in Table 3.

We notice a very good power of the test in all settings and a very good size for T = 50. The

size of the rank test for T = 100 is slightly larger than the nominal level.
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Table 3: Monte Carlo results for the restricted rank test size under two-factor model

(a) dmax = 6

T = 50 T = 100

L = 0.2 L = 1.0 L = 0.2 L = 1.0
q\α 10 5 1 10 5 1 10 5 1 10 5 1

1.0 9.0 4.5 0.9 9.3 4.7 0.9 9.1 2.7 0.8 9.8 3.6 0.8
2.0 9.1 4.5 0.9 10.8 6.0 1.4 9.1 2.8 0.8 12.0 4.9 1.0
3.0 9.2 4.5 0.9 13.0 6.9 1.9 9.2 3.0 0.8 13.1 7.0 1.2
4.0 9.3 4.7 0.9 14.5 8.1 2.3 9.5 3.3 0.8 14.6 8.6 2.3

(b) dmax = 8

T = 50 T = 100

L = 0.2 L = 1.0 L = 0.2 L = 1.0
q\α 10 5 1 10 5 1 10 5 1 10 5 1

1.0 8.5 3.8 0.8 9.2 4.3 1.1 7.3 3.3 0.6 9.9 4.3 0.9
2.0 8.5 3.8 0.8 9.2 4.3 1.1 7.3 3.3 0.6 9.9 4.3 0.9
3.0 8.0 3.2 0.8 14.2 6.5 1.4 7.3 3.4 0.5 14.6 7.7 1.8
4.0 7.7 3.3 0.7 20.6 11.2 2.9 7.2 3.4 0.4 22.3 12.2 3.6

Note: This table provides Monte Carlo simulation results for the rejection frequencies of the adjusted
rank test at 10%, 5% and 1% significance levels, based on 1000 replications from the two-factor model.
Each panel lists, the rejection frequencies for different null hypotheses, numbers of argument values, and
grid sizes.

5 Empirical application

This section contains a sketch of the empirical application that we are currently working on.

5.1 Data

In this paper, we consider ‘weekly’ options on the S&P 500 stock market index, obtained through

OptionMetrics. In particular, we focus on ‘weeklies’ traded on Wednesdays and expiring in one,

two, three, and four weeks. As emphasized in Andersen et al. (2017), weekly options have ex-

perienced a rapidly increased trading volume throughout the last decade and now represent the

most actively traded segment of the option market. For now, we consider the option data span-

ning the period of 2019, resulting in T = 47 time series observations, although our methodology

can be extended to larger time periods.

For each of the specified maturities, we select all option contracts that have positive bid prices

and work with mid-quotes data as option observations. We define the moneyness of each contract

with respect to the implied forward price, which we obtain as the median of the five forward

prices implied from the put-call parity using the pairs closest to the at-the-money level. The

risk-free rates are obtained by interpolating the LIBOR rates to each tenor.

The construction of the option-implied CCF requires a wide coverage of moneyness range. There-

fore, to reduce the impact of truncation and discretization errors in practice, we employ an

interpolation-extrapolation scheme. In particular, following Boswijk et al. (2022), we inter-

polate option prices using cubic splines with carefully selected knot sequences and extrapolate

beyond the observable range of strike prices based on a parametrization that satisfies the asymp-

totic results of Lee (2004). As discussed in Section 4, the interpolation-extrapolation scheme
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can be seen as a bias correction technique of the CCF estimators that does not affect the derived

CLT results.

The calculation of the option-implied CCF then uses the Riemann sum approximation following

(2.9). As in the simulations, we use the CCF arguments of the form:

uj =
jL√
τ
, j = 1, . . . , q,

where we set L = 0.5 and q = 3. This results in p = 2kq = 24 cross-section dimension of the

constructed dataset. The time series of the resulting factor model is displayed in Figure 1.

Figure 1: Time series plot of the factor model.

Note: This figure displays the time series of the factor model. Each line represents a row of the factor model
and displays its behaviour over the sample period. The factor model is constructed as outlined in Section 2,
using weekly observations on S&P 500 index options. The used options have expiration dates in one, two, three,
and four weeks.

5.2 Results

Constructing the factor model as outlined in Section 2, we find that the first principal component

explains 97.6% of the variation in the factor model. Applying the rank test as proposed in

Section 3, we reject any level of reduced rank. A naive interpretation would be that at least

p = 2kq = 24 factors are driving the dynamics of the options market. This is at odds with the

literature and indeed seems highly unlikely: it might instead simply be a rejection of the affine

model. Given the performance of the rank test in the simulations of Section 4, this is the most

straightforward explanation.

With the potential failure of the affine model in mind, we take a different perspective; instead

of asking how many factors are present in the data, we ask how many linear factors are required

to provide a proper approximation to the underlying process. As a first, preliminary analysis,

we consider the correlation of the set of principal components with the risk-neutral moments of

Bakshi et al. (2003). They use the same spanning result of Carr and Madan (2001), presented

in (2.6), to find portfolios that replicate the second, third, and fourth moment of log returns,

and use this to find the risk-neutral variance, skewness, and kurtosis. The Bakshi et al. (2003)

risk-neutral moments require options of a single tenor. We select the shortest, most liquid,

seven-day tenor, but the results are robust to selecting a different tenor.
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Figure 2: First principal components and selected proxies.

(a) First PC and the squared VIX. (b) Second PC and jump variation.

Note: This figure displays the time series of first two principal component of the factor model, and two relevant
proxies. In subfigure (a), the first principal component is plotted with the square of the CBOE VIX index
(correlation |ρ| = 0.972). The VIX is a measure of risk-neutral expected volatility, which the first principal
component clearly also tracks closely. In subfigure (b), the second principal component is displayed along with
the difference between the square of the VIX and the square of the risk neutral spot volatility of Todorov (2019)
(|ρ| = 0.611). This difference series is a crude measure of the jump variation.

Table 4 provides the results for the R2 from regressing the time series of the risk-neutral moments

onto the space spanned by up to the first ten principal components as extracted from the log

CCF factor model. Clearly, the variance can be well explained by a single factor (see also

Figure 2); it is in the higher order moments that the linear approximation struggles. If we use

the raw moments, instead of the centered and scaled skewness and kurtosis, the performance

increases by a fair amount, as displayed in the bottom half of the table. This is mainly due to

the significantly better explanatory power of the first PC, and therefore seems to be driven by

its high correlation with the variance, which is scaled out in the top half of the table.10

Table 4: R2 of projection of risk-neutral moments onto the PCs.

#PCs 1 2 3 4 5 6 7 8 9 10

Variance 0.971 0.999 0.999 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Skewness 0.299 0.327 0.646 0.661 0.745 0.792 0.798 0.803 0.812 0.813
Kurtosis 0.379 0.383 0.625 0.626 0.657 0.665 0.682 0.684 0.687 0.693

EQ
t [log(Ft+7/Ft)

2] 0.965 0.999 0.999 1.000 1.000 1.000 1.000 1.000 1.000 1.000

EQ
t [log(Ft+7/Ft)

3] 0.740 0.847 0.924 0.940 0.975 0.989 0.992 0.993 0.994 0.998

EQ
t [log(Ft+7/Ft)

4] 0.697 0.765 0.865 0.878 0.917 0.922 0.940 0.940 0.951 0.987

Note: This table provides the R2 that results from regressing the time series of Bakshi et al. (2003) risk-neutral
moments onto the space spanned by up to the first ten principal components as extracted from the characteristic
function-based factor model. The top half of the table contains the scaled and centered variance, skewness and
kurtosis, the bottom half uses the raw moments on which these are based.

10Proposition 3 can be used to analyse these results with more statistical rigour, but is not implemented in
this version of the paper.
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6 Conclusion

In this paper, we have developed a novel methodology to examine how many risk factors drive

the price of a single asset, and what their behaviour is. We have proposed a linear factor model

representation of the log discounted characteristic function of returns, on which we construct

observations by exploiting information contained in options. The analysis further only uses

standard and well-known factor modelling techniques, such as singular value decompositions.

No specific parametric specification is necessary to perform this analysis, beyond the assumption

that the underlying stochastic process is of the affine class. Our asymptotic framework is one

in which the number of observed options, of varying strikes, tends to infinity. We have proved

a feasible stable central limit theorem. In addition, we have proved that standard diagnostic

criteria based on the sample eigenvalues of the covariance matrix can be used to consistently

estimate the number of factors that drive the dynamics of the characteristic function over time.

Moreover, we have shown the validity of the use of principal component analysis to extract these

underlying factors from the constructed factor model.

Appendices

A Decomposing the complex-valued factor model

Let Zt = Xt + iYt, t = 1, . . . , T , be a complex, vector-valued time series of dimension d, and

assume for simplicity it has mean zero. Let Γ̂T = T−1
∑T

t=1 ZtZ
H
t be its sample covariance

matrix, where AH denotes the conjugate transpose of any matrix A. Next, define the stacked

process Z̃t = (X ′
t, Y

′
t )

′, with sample covariance matrix Σ̂T = T−1
∑T

t=1 Z̃tZ̃
′
t.

The k-th (for k = 1, . . . , d) principal component (PC) of Zt is defined as the linear combination

ωH
k Zt, with ωk = uk+ivk, such that ωk maximizes the (real-valued) sample variance λ̂k of ωH

k Zt:

λ̂k = ωH
k Γ̂ωk = T−1

T∑
t=1

ωH
k ZtZ

H
t ωk = T−1

T∑
t=1

(ωH
k Zt)(ωH

k Zt), (A.1)

under the constraint that ωH
k ωi = 1{i=k} for all i = 1, . . . , k. The linear combination itself can

be written as

ωH
k Zt = (u′ − iv′)(Xt + iYt) = u′Xt + v′Yt − i(u′Yt − v′Xt), (A.2)

which implies the k-th PC of Zt is a complex-valued time series unless u′Yt − v′Xt = 0 for all t.

In contrast, the k-th (for k = 1, . . . , 2d) PC of Z̃t is defined as the linear combination ω̃′
kZ̃t, with

ω̃k = (ũ′k, ṽ
′
k)

′, such that ω̃k maximizes λ̃k = ω̃′
kΣ̂ω̃k = T−1

∑T
t=1

(
ω̃′
kZ̃t

)2
under the constraint

that ω̃′
kω̃i = 1{i=k} for all i = 1, . . . , k. It is obvious that the sets {ωk} and {ω̃k} solve different

optimisation problems and are therefore generally not related. The exception to this is the case

of circular symmetry, i.e., when the distribution of eiϕZt is invariant to the choice of ϕ ∈ (−π, π],
but this is a highly restrictive setting and not one we are likely to encounter. In any case, it is
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clear that

ω̃′
kZ̃t = ũ′Xt + ṽ′Yt, (A.3)

which, by comparison to Equation (A.2), implies that the first optimisation problem does reduce

to the second if we impose the restriction that the linear combination ωH
k Zt must be real-valued.

B Theorems and proofs

This section contains the theorems, lemmas, and proofs omitted from the main text. The

first subsections contain definitions and technical lemmas necessary for the proof of the stable

CLT, which can be found in the subsection thereafter. Smaller results are collected in the last

subsection.

B.1 Definitions

Throughout the proofs, we denote by Ct an F (0)
t -adapted random variable that is allowed to

change from line to line. In addition, we use the following definitions:

χj−1(c) := (c1 cos(umj−1) + c2 sin(umj−1))e
−mj−1ζt(τ,mj−1)∆mj ,

s2j−1(c) := (c1 cos(umj−1) + c2 sin(umj−1))
2e−2mj−1σ2t (τ,mj−1)(∆mj)

2,

ζ̃t(u, τ) :=
n∑

j=2

e(iu−1)mj−1ζt(τ,mj−1)∆mj ,

εt(u, τ) := −e
rτ

Ft

Re
(

u2+iu
ϕt(u,τ)

ζ̃t(u, τ)
)

Im
(

u2+iu
ϕt(u,τ)

ζ̃t(u, τ)
) ,

Σ̂ζ
t,i(u, v) :=

n∑
j=2

(
cos(umj−1) cos(vmj−1) cos(umj−1) sin(vmj−1)

sin(umj−1) cos(vmj−1) sin(umj−1) sin(vmj−1)

)
e−2mj−1 ζ̂2t (τi,mj−1)(∆mj)

2,

Σζ
t,i(u, v) :=

∫
R

(
cos(um) cos(vm) cos(um) sin(vm)

sin(um) cos(vm) sin(um) sin(vm)

)
e−2mσ2t (τi,m)δ(m)dm.

B.2 Technical lemmas

Lemma 2. Suppose Assumptions 2 and 3 hold. If n → ∞, K ≍ n−α, K ≍ nα for some

α, α > 0, then, for all c ∈ R2 \ {(0, 0)′},∑n
j=2 χj−1(c)√∑n
j=2 s

2
j−1(c)

L|F(0)

−→ N (0, 1),

with L|F (0) denoting F (0)-conditional convergence in distribution.

Proof. Introduce the shorthand notation c̃j−1 := c1 cos(umj−1) + c2 sin(umj−1) and note that

c̃j−1 ≤ |c1| + |c2|. As the χ2
j (c) are independent but heteroskedastic random variables, with

EP
[
χ2
j−1(c)

∣∣∣F (0)
]
≡ s2j−1(c), we appeal to the Lyapunov central limit theorem. Write, for some
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δ > 0,

∑n
j=2 EP

[
|χj−1(c)|2+δ

∣∣∣F (0)
]

(√∑n
j=2 s

2
j−1(c)

)2+δ
=

∑n
j=2 EP

[
|c̃j−1e

−mj−1ζt(τ,mj−1)∆mj |2+δ
∣∣∣F (0)

]
(√∑n

j=2 c̃
2
j−1e

−2mj−1σ2t (τ,mj−1)(∆mj)2
)2+δ

≤
(∆m)1+δ

∑n
j=2 |c̃j−1|2+δe−(2+δ)mj−1EP

[
|ζt(τ,mj−1)|2+δ

∣∣∣F (0)
]
∆mj(√

ι∆m
∑n

j=2 c̃
2
j−1e

−2mj−1σ2t (τ,mj−1)∆mj

)2+δ

= (∆m)δ/2

∑n
j=2 |c̃j−1|2+δe−(2+δ)mj−1EP

[
|ζt(τ,mj−1)|2+δ

∣∣∣F (0)
]
∆mj

ι1+δ/2
(√∑n

j=2 c̃
2
j−1e

−2mj−1σ2t (τ,mj−1)∆mj

)2+δ

= Ct(∆m)δ/2.

The Lyapunov condition is satisfied if Ct <∞. As the denominator is bounded away from zero,

this is equivalent to the numerator being bounded. Using that the F (0)-conditional distribution

of κt(τ,m) does not depend on m, we have∫
R
EP
[∣∣e−mζt(τ,m)

∣∣2+δ
∣∣∣F (0)

]
dm = EP

[
|κt(τ,m)|2+δ

∣∣∣F (0)
]
·
∫
R
e−(2+δ)mσ2+δ

t (τ,m)dm <∞,

by Assumption 2. As such, we have

n∑
j=2

|c̃j−1|2+δe−(2+δ)mj−1EP
[
|ζt(τ,mj−1)|2+δ

∣∣∣F (0)
]
∆mk

≤ (|c1|+ |c2|)2+δ
n∑

j=2

EP
[∣∣e−mj−1ζt(τ,mj−1)

∣∣2+δ
∣∣∣F (0)

]
∆mj

→ (|c1|+ |c2|)2+δ

∫
R
EP
[∣∣e−mζt(τ,m)

∣∣2+δ
∣∣∣F (0)

]
dm <∞,

such that the Lyapunov condition is indeed satisfied. The result follows.

Lemma 3. Suppose Assumptions 2 and 3 hold. If n → ∞, K ≍ n−α, K ≍ nα for some

α, α > 0, then, for any compact U ⊂ R,

(∆m)−1/2

Re
(
ζ̃t(u, τ)

)
Im
(
ζ̃t(u, τ)

) L−s→ N (0,Σζ
t (u, τ)),

uniformly in u ∈ U , where (Σζ
t (u, τ))ij =

∫
R ςij(u,m)e−2mσ2t (τ,m)δ(m)dm, with ς11(u,m) =

cos2(um), ς22(u,m) = sin2(um) and ς12(u,m) = cos(um) sin(um), is F (0)
t -adapted.

Proof. By the stable Cramér-Wold device, random vectors Xn ∈ Rp satisfy Xn
L−s→ X if and

only if c′Xn
L−s→ c′X for all c ∈ Rp. Note that the desired F (0)-stable convergence is implied by

the stronger F (0)-conditional convergence; this trivially follows from their respective definitions
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and the Dominated Convergence Theorem. As

c1Re
(
ζ̃t(u, τ)

)
+ c2 Im

(
ζ̃t(u, τ)

)
≡

n∑
j=2

χj−1(c),

pointwise convergence thus follows after an appropriate definition of the covariance matrix, on

account of Lemma 2. This asymptotic covariance is clearly related to the sj(c). Note that, upon

taking c = (1, 0)′ or c = (0, 1)′, we have a univariate CLT for the real and imaginary parts of

ζ̃t(u, τ) separately. Specifically, we have

(∆m)−1VarP
(
Re
(
ζ̃t(u, τ)

)∣∣∣F (0)
)
= (∆m)−1

n∑
j=2

s2j−1((1, 0)
′)

=
n∑

j=2

cos2(umj−1)e
−2mj−1σ2t (τ,mj−1)

(∆mj)
2

∆m

p→
(
Σζ
t (u, τ)

)
11
,

(∆m)−1VarP
(
Im
(
ζ̃t(u, τ)

)∣∣∣F (0)
)
= (∆m)−1

n∑
j=2

s2j−1((0, 1)
′)

p→
(
Σζ
t (u, τ)

)
22
,

and lastly,

(∆m)−1CovP
(
Re
(
ζ̃t(u, τ)

)
, Im

(
ζ̃t(u, τ)

)∣∣∣F (0)
)

=
n∑

j=2

cos(umj−1) sin(umj−1)e
−2mj−1σ2t (τ,mj−1)

(∆mj)
2

∆m

p→
(
Σζ
t (u, τ)

)
12
.

Note that all three terms are uniformly continuous in u. Upon developing the square in our

expression for sj−1(c), it follows that the limiting variance of the linear combination corresponds

to the variance of the limit of the linear combination. Therefore, the Cramér-Wold device can

be applied. The limiting distribution for fixed u ∈ R directly follows from the properties of

the multivariate normal distribution. The extension to the uniform variant is straightforward,

noting that

EP
[∣∣∣ζ̃t(u, τ)− ζ̃t(v, τ)

∣∣∣2∣∣∣∣F (0)

]

= EP

∣∣∣∣∣∣
n∑

j=2

e(iu−1)mj−1ζt(τ,mj−1)∆mj −
n∑

j=2

e(iv−1)mj−1ζt(τ,mj−1)∆mj

∣∣∣∣∣∣
2∣∣∣∣∣∣F (0)


≤ 3

n∑
j=2

∣∣eiumj−1 − eivmj−1
∣∣2 EP

[∣∣e−mj−1ζt(τ,mj−1)
∣∣2 (∆mj)

2
∣∣∣F (0)

]
= 3

n∑
j=2

∣∣∣∣∫ u

v
imj−1e

ixmj−1dx

∣∣∣∣2 e−2mj−1EP
[
ζ2t (τ,mj−1)(∆mj)

2
∣∣∣F (0)

]
≤ 3 (u− v)2

n∑
j=2

|mj−1|e−2mj−1σ2t (τ,mj−1)(∆mj)
2 = Ct (u− v)2∆m,

with Ct finite-valued by Assumption 2. The result follows from Theorems 8.1 and 12.3 of

Billingsley (1968).
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Lemma 4. Suppose Assumptions 2 and 3 hold. If n → ∞, K ≍ n−α, K ≍ nα for some

α, α > 0, then, for any u, v ∈ R,∥∥∥(∆m)−1EP
[
Σ̂ζ
t,i(u, v)

∣∣∣F (0)
]
− Σζ

t,i(u, v)
∥∥∥ = op(1).

Proof. It suffices to show that EP
[
ζ̂2t (τi,mj)

∣∣∣F (0)
]

p→ σ2t (τi,mj), as the result then follows from

the convergence of the Riemann sum, which holds by Assumption 2. We focus on the “standard”

values of j, as the finite number of adjusted terms have a negligible effect on the full sum. By

the Lipschitz continuity of Assumption 3, we have

ζ̂t(τi,mj) =
√

2
3

(
ζt(τi,mj)− 1

2 (ζt(τi,mj−1) + ζt(τi,mj+1))
)
+ op(1).

Then,

EP
[
ζ̂2t (τi,mj)

∣∣∣F (0)
]
= EP

[(√
2
3

(
ζt(τi,mj)− 1

2 (ζt(τi,mj−1) + ζt(τi,mj+1))
)
+ op(1)

)2
∣∣∣∣∣F (0)

]
= 2

3E
P
[(
ζ2t (τi,mj) +

1
4

(
ζ2t (τi,mj−1) + ζ2t (τi,mj+1)

))∣∣∣F (0)
]
+ op(1)

= σ2t (τ,mj)EP
[
2
3

(
κ2
t (τi,mj) +

1
4

(
κ2
t (τi,mj−1) + κ2

t (τi,mj+1)
))∣∣∣F (0)

]
+ op(1)

= σ2t (τ,mk) + op(1),

using Assumption 2.

Lemma 5. Suppose Assumptions 2 and 3 hold. If n → ∞, K ≍ n−α, K ≍ nα for some

α, α > 0, then,

VarP
(
ζ̂2t (τi,mj−1)

∣∣∣F (0)
)
= 1

2σ
4
t (τ,mj)

(
EP
[
κ4
t

∣∣∣F (0)
]
+ 1
)
+ op(1).

Proof. Using the Lipschitz continuity of Assumption 3, we write:

VarP
(
ζ̂2t (τi,mj−1)

∣∣∣F (0)
)

= σ4t (τ,mj)VarP
(
2
3

(
κt(τi,mj)− 1

2κt(τi,mj−1)− 1
2κt(τi,mj+1)

)2∣∣∣F (0)
)
+ op(1)

= 4
9σ

4
t (τ,mj)VarP

(
κ2
t (τi,mj) +

1
4κ

2
t (τi,mj−1) +

1
4κ

2
t (τi,mj−1)

− κt(τi,mj−1)κt(τi,mj)− κt(τi,mj)κt(τi,mj+1) +
1
2κt(τi,mj−1)κt(τi,mj+1)

∣∣∣∣F (0)

)
+ op(1)

= σ4t (τ,mj)
(
1
2 Var

P
(
κ2
t (τi,mj)

∣∣∣F (0)
)
+ VarP

(
κt(τi,mj−1)κt(τi,mj)

∣∣∣F (0)
))

+ op(1)

= 1
2σ

4
t (τ,mj)

(
EP
[
κ4
t

∣∣∣F (0)
]
+ 1
)
+ op(1),

using Assumption 2.

Lemma 6. Suppose Assumptions 2 and 3 hold. If n → ∞, K ≍ n−α, K ≍ nα for some
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α, α > 0, then, for any u, v ∈ R,∥∥∥Σ̂ζ
t,i(u, v)− EP

[
Σ̂ζ
t,i(u, v)

∣∣∣F (0)
]∥∥∥ = op(∆m).

Proof. For the F (0)-conditional variance of the (g, h)-th element of Σ̂ζ
t,i(u, v), we have

VarP
(
(∆m)−1

(
Σ̂ζ
t,i(u, v)

)
gh

∣∣∣∣F (0)

)

≤ VarP
(∆m)−1

n∑
j=2

e−2mj−1 ζ̂2t (τi,mj−1)(∆mj)
2

∣∣∣∣∣∣F (0)


= (∆m)−2

n∑
j=2

e−4mj−1 VarP
(
ζ̂2t (τi,mj−1)

∣∣∣F (0)
)
(∆mj)

4

+ (∆m)−2
∑

|l−j|=1

e−2ml−2mj CovP
(
ζ̂2t (τi,ml), ζ̂

2
t (τi,mj)

∣∣∣F (0)
)
(∆mj)

2(∆ml)
2

≤ 3
n∑

j=2

e−4mj−1 VarP
(
ζ̂2t (τi,mj−1)

∣∣∣F (0)
)
(∆mj)

2 + op(1)

≤ Ct∆m

n∑
j=2

e−4mj−1σ4t (τ,mj)∆mj + op(1) = Op(∆m),

using Lemma 5 and Assumption 3. The result follows from Chebyshev’s inequality.

Lemma 7. Suppose Assumptions 2 and 3 hold. If n → ∞, K ≍ n−α, K ≍ nα for some

α, α > 0, then, for any compact U ⊂ R,∥∥∥(∆m)−1Σ̂ζ
t,i(u, v)− Σζ

t,i(u, v)
∥∥∥ = op(1),

uniformly in u, v ∈ U .

Proof. Pointwise convergence follows from Lemma 4 and 6, and the triangle inequality. As the

dependence on the argument (u, v) is through bounded and (uniformly) continuous trigonometric

functions, uniform consistency directly follows.

B.3 Proof of Lemma 1

Denote M = (p ∧ T ), i.e., the smaller of the row and column dimension of the factor model.

Denote by σ1(A) ≥ . . . ≥ σM (A) the singular values of a matrix A ∈ Rp×T .

Given (p ∧ T − 1) > d, Assumption 1 trivially implies rank
(
BẌ

)
= d, such that σj

(
BẌ

)
> 0

for j = 1, . . . , d, while σd+1

(
BẌ

)
= 0.

By Weyl’s inequality for singular values (Theorem 3.3.16 in Horn and Johnson (1991)), we have
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for all j = 1, ...,M :

σj(BẌ) = σj

(̂̈Ψ− ε̈− r̈
)

≤ σj

(̂̈Ψ)+ σ1 (−ε̈) + σ1 (−r̈)

= σj

(̂̈Ψ)+ σ1 (ε̈) + σ1(r̈),

using that the singular values of A and −A are equivalent, being defined as the square roots

of the eigenvalues of A′A. As for j = 1, . . . , d we have σj(BẌ) > 0, so too is σj

(̂̈Ψ) bounded

away from zero, provided that σ1 (ε̈) and σ1(r̈) tend to zero. This can easily be shown. Note

that for any matrix A with column dimension T , we have for all j = 1, . . . ,M :

σj (A) ≥ σj (AMιT ) ,

as the demeaning matrix MιT = IT − T−1ιT ι
′
T only has eigenvalues 0 or 1, being a projection

matrix. This implies that σ1 (ε̈) ≤ σ1 (ε). This tends to zero if the spanned CCF is consistent,

which is a straightforward corollary to Proposition 1 of Boswijk et al. (2022). The same line of

reasoning holds up for σ1(r̈). As such, we indeed have that σj

(̂̈Ψ) ≥ σj

(
BẌ

)
− op(1) > 0 for

n large, for all j = 1, . . . , d. This proves the first statement of the lemma.

We continue by focusing on the d + 1-th singular value specifically. Weyl’s inequality can also

be used to write:

σd+1(
̂̈Ψ) = σd+1

(
BẌ + ε̈+ r̈

)
≤ σd+1

(
BẌ

)
+ σ1 (ε̈) + σ1(r̈)

= σ1 (ε̈) + σ1(r̈) = op(1),

which proves the second part of the lemma.

B.4 Proof of Theorem 1.

We can write

vec
(̂̈Ψ)− vec

(
BẌ

)
= vec(ε̈+ r̈) = vec(ε̈) + op(

√
∆m),

using Proposition 1 of Boswijk et al. (2022), who show that rt = op(
√
∆m), while εt =

Op(
√
∆m). As such, the object of interest is the εt,i, as defined in Equation (2.13), or indeed

its functional counterpart εt(u, τ), which we can write as:

εt(u, τ) = − erτ

Ft|ϕt(u, τ)|2

(
u2 u

u −u2

)(
Re(ϕt(u, τ)) Im(ϕt(u, τ))

Im(ϕt(u, τ)) −Re(ϕt(u, τ))

)Re
(
ζ̃t(u, τ)

)
Im
(
ζ̃t(u, τ)

) .

This is an F (0)-measurable linear transformation of the ζ̃t(u, τ), for which we have derived a

F (0)-stable CLT in Lemma 3. By the properties of the normal distribution, (∆m)−1/2εt(u, τ) is

also asymptotically F (0)-mixed normal, uniformly in u ∈ U . Upon evaluation in the finite grid
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{uj}j , this implies asymptotic normality for (∆m)−1/2εt,i. The limiting covariance matrixHt,i :=

plim
(
(∆m)−1VarP(εt,i|F (0))

)
is simply a reordering of a block-matrix with the

{
Σζ
t,i(ug, uh)

}
g,h

as blocks, combined with a pre- and post-multiplication by an F (0)-measurable matrix. In

practice, it is far easier to use a more direct, algebraically equivalent expression for Ht,i and its

estimate, which we have used in the statement of this theorem.

The F (0)-conditional independence of the option pricing errors in both time t and tenor τ imply

that the limiting distributions can be “stacked”: (∆m)−1/2 vec(ε) remains asymptotically nor-

mal, with a block-diagonal covariance matrix H̃ := plim
(
(∆m)−1VarP

(
vec(ε)

∣∣F (0)
))
. Clearly,

this is the case for the demeaned vec(ε̈) as well, as this is a linear transformation:

vec(ε̈) = vec(εMιT ) = (MιT ⊗ Ip) vec(ε) .

This results in the (reduced rank) covariance matrix

H := plim
(
(∆m)−1VarP

(
vec(εMιT )

∣∣∣F (0)
))

= (MιT ⊗ Ip) blkdiag{H1,1, . . . ,H1,k, H2,1, . . . ,HT,k} (MιT ⊗ Ip) .

We denote the feasible counterpart as Ĥ, replacing the Ht,i by their unscaled estimators Ĥt,i.

Clearly, the scaled consistency of Lemma 7 carries over to this quantity. The result follows.

B.5 Proof of Proposition 1.

Define H := (B′B)(Ẍ ̂̈X ′)S−2. Bai and Ng (2020) show the asymptotic equivalence of a set of

alternative rotation matrices Hl for l = 1, 2, 3, 4. We use this result as well, though we do not

normalize by p or T as the dimensions are fixed and finite in our setting.

(i). With H3 = ( ̂̈XẌ ′)−1, we have

B̂ = ̂̈Ψ ̂̈X ′ = BẌ ̂̈X ′ + ε̈ ̂̈X ′ + r̈ ̂̈X ′

= BH ′
3
−1 + ε̈Ẍ ′H3 + ε̈

( ̂̈X −H ′
3Ẍ
)′

+ op(
√
∆m).

As ε̈
( ̂̈X −H ′

3Ẍ
)′

= Op(∆m), it is asymptotically dominated by the Op(
√
∆m) term ε̈Ẍ ′H3.

We find

(∆m)−1/2
(
B̂ −BH ′

3
−1
)
= (∆m)−1/2ε̈Ẍ ′H3 + op(1).

A mixed normal limit for ε is derived in the proof of Theorem 1 as presented in Appendix B.4,

and post-multiplication simply changes the variance matrix. This asymptotic variance can be

found as in Bai and Ng (2020), using that

plim
(
(∆m)−1VarP

(
ε̈′e

(p)
j

∣∣∣F (0)
))

= (IT ⊗ e
(p)
j )′H(IT ⊗ e

(p)
j ).

33



(ii). With H4 = B′B̂(B̂′B̂)−1, we can write

̂̈X = (B̂′B̂)−1B̂′ ̂̈Ψ = (B̂′B̂)−1B̂′BẌ + (B̂′B̂)−1B̂′ε̈+ (B̂′B̂)−1B̂′r̈

= H ′
4Ẍ + (B̂′B̂)−1H−1

4 B′ε̈+ (B̂′B̂)−1
(
B̂ −BH ′

4
−1
)′
ε̈+ op(

√
∆m).

The result follows analogously to part (i). Straightforward algebra shows that

plim
(
(∆m)−1VarP

(
ε̈e

(T )
t

∣∣∣F (0)
))

= (e
(T )
t ⊗ Ip)

′H(e
(T )
t ⊗ Ip),

and the asymptotic variance follows.

B.6 Proof of Proposition 2.

We can write

R̂Q
t (h, τ)−RQ

t (h, τ) =

erτ

Ft

n∑
j=2

h(h− 1−mj−1)m
h−2
j−1e

−mj−1ζt(τ,mj−1)∆mj︸ ︷︷ ︸
=:ν(1)(h,τ)

− erτ

Ft

∫ m

−∞
h(h− 1−m)mh−2e−mOt(τ,m)dm− erτ

Ft

∫ ∞

m
h(h− 1−m)mh−2e−mOt(τ,m)dm︸ ︷︷ ︸

=:ν(2)(h,τ)

+
erτ

Ft

n∑
j=2

∫ mj

mj−1

[
h(h− 1−mj−1)m

h−2
j−1e

−mj−1Ot(τ,mj−1)− h(h− 1−m)mh−2e−mOt(τ,m)
]
dm︸ ︷︷ ︸

=:ν(3)(h,τ)

,

which form the stochastic spanning error, and the F (0)
t -measurable truncation and discretization

bias, respectively. This proof consists of three parts: finding a CLT for the sequence of random

variables

ωj−1 := h(h− 1−mj−1)m
h−2
j−1e

−mj−1ζt(τ,mj−1)∆mj ,

to find the limit behaviour of ν(1)(h, τ), and the asymptotic order of the bias terms ν(2)(h, τ)

and ν(3)(h, τ).

Part 1: spanning error. Define

s2ω(j − 1) : = EP
[
ω2
j−1

∣∣∣F (0)
]
= h2(h− 1−mj−1)

2m2h−4
j−1 e−2mj−1σ2t (τ,mj−1)(∆mj)

2.
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Write, for some δ > 0:

∑n
j=2 EP [|ωj−1|2+δ

∣∣F (0)
](√∑n

j=2 s
2
ω(j − 1)

)2+δ
=

∑n
j=2 EP

[
|h(h− 1−mj−1)m

h−2
j−1e

−mj−1ζt(τ,mj−1)∆mj |2+δ
∣∣∣F (0)

]
(√∑n

j=2 h
2(h− 1−mj−1)2m

2h−4
j−1 e−2mj−1σ2t (τ,mj−1)(∆mj)2

)2+δ

≤ (∆m)δ/2
∑n

j=2 |(h− 1−mj−1)|2+δ|mj−1|(2+δ)(h−2)e−(2+δ)mj−1EP [|ζt(τ,mj−1)|2+δ
∣∣F (0)

]
∆mj

ι1+δ/2
(√∑n

j=2(h− 1−mj−1)2m
2h−4
j−1 e−2mj−1σ2t (τ,mj−1)∆mj

)2+δ
,

wherein the denominator is bounded away from zero. As such, for the fraction to tend to zero,

what remains to be shown is that the numerator is bounded. Consider∫
R
|h− 1−m|2+δ|m|(2+δ)(h−2)e−(2+δ)mσ2+δ

t (τ,m)dm

=

∫
R

(
|h− 1−m| |m|h−2e−mσt(τ,m)

)2+δ
dm,

which is finite by assumption. As such, the Riemann sum converges, and the Lyapunov condition

is satisfied. The conditional convergence in distribution implies the desired stable convergence

in distribution. The expression for the limiting variance is obvious.

Part 2: truncation error. As for the bias terms, analogous to Lemma 2 of Boswijk et al. (2022),

we have∣∣∣∣∫ ∞

m
h(h− 1−m)mh−2e−mOt(τ,m)

Ft
dm

∣∣∣∣ ≤ Ct

∫ ∞

m

∣∣∣(h− 1−m)mh−2e−(1+p)m
∣∣∣ dm

= Op(m
h−1e−(1+p)m),∣∣∣∣∫ m

−∞
h(h− 1−m)mh−2e−mOt(τ,m)

Ft
dm

∣∣∣∣ ≤ Ct

∫ m

−∞

∣∣∣(h− 1−m)mh−2eqm
∣∣∣ dm

= Op(m
h−1eqm),

with (p, q) = sup(l,k){l : E
Q
t [(Ft+τ/Ft)

l] < ∞} × {k : EQ
t [(Ft+τ/Ft)

−k] < ∞}. As such, the

truncation-induced bias is of order

Op

(
|m|h−1 e−(1+p)|m|

)
+Op

(
|m|h−1 e−q|m|

)
= Op

(
log(n)h−1n−(qα∧(1+p)α)

)
,

which is asymptotically negligible compared to the spanning error under the assumptions on

α, α and the existing moments.

Part 3: discretization error. What remains to be shown is the order of the discretization error.

We write

h(h− 1−mj−1)m
h−2
j−1e

−mj−1Ot(τ,mj−1)− h(h− 1−m)mh−2e−mOt(τ,m)

= h
(
(h− 1−mj−1)m

h−2
j−1e

−mj−1 − (h− 1−m)mh−2e−m
)
Ot(τ,mj−1)

+ h(h− 1−m)mh−2e−m (Ot(τ,mj−1)−Ot(τ,m)) .

We first focus on the first term. Using Lemma 1 of Boswijk et al. (2022) and the mean value
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theorem, we find∣∣∣h((h− 1−mj−1)m
h−2
j−1e

−mj−1 − (h− 1−m)mh−2e−m
)
Ot(τ,mj−1)

∣∣∣
≤ Ct

∣∣∣((m∗)2 + (2h− 2)m∗ + h2 − 3h+ 2)(m∗)h−3e−m∗
∣∣∣ e−pmj−1∧(1+q)mj−1∆mj

≤ Ct

∣∣∣((m∗)2 + (2h− 2)m∗ + h2 − 3h+ 2)(m∗)h−3
∣∣∣ e−(p+1)mj−1∧qmj−1∆mj

≤ Cte
−pmj−1∧(q−1)mj−1∆mj .

For the second term, we use the mean value theorem once more, along with the proof of Lemma

2 of Boswijk et al. (2022):∣∣∣h(h− 1−m)mh−2e−m (Ot(τ,mj−1)−Ot(τ,m))
∣∣∣

≤ Ct

∣∣∣(h− 1−m)mh−2
∣∣∣ e−(p+1)m̃∧qm̃e∆m∆mj

≤ Ct

∣∣∣(h− 1−m)mh−2
∣∣∣ e−(p+1)mj−1∧qmj−1e∆m∆mj

≤ Cte
−pmj−1∧(q−1)mj−1∆mj .

Hence, we conclude that∣∣∣h(h− 1−mj−1)m
h−2
j−1e

−mj−1Ot(τ,mj−1)− h(h− 1−m)mh−2e−mOt(τ,m)
∣∣∣

≤ Cte
−pmj−1∧(q−1)mj−1∆mj ,

and thus that∣∣∣∣∣∣
n∑

j=2

∫ mj

mj−1

[
h(h− 1−mj−1)m

h−2
j−1e

−mj−1Ot(τ,mj−1)− h(h− 1−m)mh−2e−mOt(τ,m)
]
dm

∣∣∣∣∣∣
≤ Ct

n∑
j=2

e−pmj−1∧(q−1)mj−1(∆mj)
2

≤ Ct∆m

n∑
j=2

e−pmj−1∧(q−1)mj−1∆mj .

Note that this Riemann sum converges to a positive constant:

n∑
j=2

e−pmj−1∧(q−1)mj−1∆mj →
∫ m

m
e−pm∧(q−1)mdm =

∫ 0

m
e(q−1)mdm+

∫ m

0
e−pmdm

= (q − 1)−1
(
1− e(q−1)m

)
+ p−1

(
1− e−pm

)
= (q − 1)−1 + p−1 +Op

(
n−((q−1)α∧pα)

)
.

Finally, we can conclude that the discretization error is of order

Op(∆m) +Op (∆m)Op

(
n−((q−1)α∧pα)

)
= Op(∆m),
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which is dominated by the spanning error as well.

B.7 Proof of Proposition 3

The proof of Pelger (2019)’s Theorem 7 assumes a useful but infeasible central limit theorem,

then shows that sample quantities are able to approximate this central limit theorem, and then

makes a clever appeal to the delta method. We can skip the middle step, by proving the required

CLT directly. We start this approach with the following intermediate result:

Lemma 8. Suppose the conditions of Propositions 1 and 2 hold, and τ /∈ {τi}ki=1, then

(∆m)−1/2 vec
([ ̂̈X ′ ̂̈RQ

h,τ

]
−
[
Ẍ ′H R̈Q

h,τ

])
L−s→ N (0,Π), (B.1)

with

Π =

[
K(d,T )(IT ⊗ S−2QB′)H(IT ⊗ S−2QB′)′K(T,d) 0

0 MιT diag{Vt(h)}t=1,...,T }M ′
ιT

]
, (B.2)

with K the commutation matrix such that K vec(A) = vec(A′).

Proof. The CLT for ̂̈X is proved as an intermediate result in Appendix B.5, the commutation

matrix allows us to write a similar result in terms of its transpose. The CLT for ̂̈RQ
h,τ follows

from Proposition 2 by the time-independence of errors in Assumption 2. The joint result follows

from the same assumption as different tenors are used for both series.

This result can be used to show asymptotic normality of the sample covariances, on which

canonical correlations are based.

Lemma 9. Suppose the conditions of Lemma 8 hold, then

(∆m)−1/2 vec

 ̂̈X ̂̈X ′ ̂̈X ̂̈RQ
h,τ̂̈RQ

h,τ
′ ̂̈X ′ ̂̈RQ

h,τ
′ ̂̈RQ

h,τ

−

[
H ′ẌẌ ′H H ′ẌR̈Q

h,τ

R̈Q
h,τ

′Ẍ ′H R̈Q
h,τ

′R̈Q
h,τ

] L−s→ N (0, DΠD′), (B.3)

where

D =
([

H′Ẍ
R̈Q

h,τ
′

]
⊗ Id+1

)
K(T,d+1) +

(
Id+1 ⊗

[
H′Ẍ
R̈Q

h,τ
′

])
. (B.4)

Proof. This follows from the delta method using the mapping vec(A) 7→ vec(A′A). For an

(n×m)-dimensional matrix A, this has the derivative

∂ vec(A′A)

∂ vec(A)′
=
(
A′ ⊗ Im

) ∂ vec(A′)

∂ vec(A)′
+
(
Im ⊗A′) ∂ vec(A)

∂ vec(A)′
=
(
A′ ⊗ Im

)
K(n,m) +

(
Im ⊗A′) .

Important to note is that DΠD′ is a reduced rank matrix by construction, as it is the covariance

matrix of a vectorized symmetric matrix. A proper formulation uses the vech-operator, but the

difference is immaterial for our purposes.
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Recalling the Frisch-Waugh result thatMιT takes on the role of the constant, Proposition 3 now

follows from Lemma 9 by the delta method, using the mapping

vec
([

a b
c d

])
7→ Tr

{
a−1bd−1c

}
.

Its derivative, which leads to the expression for ξ, is computed in Pelger (2019). The matrix H

is irrelevant in the final results, as the canonical correlations are unaffected by this invertible

transformation.

C Additional simulation results

This section contains additional simulation results.

C.1 Infeasible versions

We additionally illustrate the results of the rank test with the true simulated errors. The

simulation scheme is exactly the same as described in Section 4, but instead of estimating the

errors ζ̂t(τ,m), here we construct the covariance matrix estimator using the true errors ζt(τ,m).

Tables 5 and 7 contain the results for the rank test for one- and two-factor models, respectively.

Tables 6b and 8b provide the results for the restricted versions with dmax = 6.

Table 5: Monte Carlo results for one-factor model, infeasible version

T = 50 T = 100

L = 0.2 L = 1.0 L = 0.2 L = 1.0
q\α 0.9 0.95 0.99 0.9 0.95 0.99 0.9 0.95 0.99 0.9 0.95 0.99

1.0 10.0 5.8 1.1 10.1 5.8 1.1 9.1 4.7 1.2 9.0 4.6 1.2
2.0 12.1 6.1 1.2 12.4 6.5 1.1 10.2 5.0 1.0 10.2 4.9 1.0
3.0 50.8 50.8 50.7 9.9 4.6 0.9 50.1 50.1 50.1 11.1 5.4 0.9
4.0 52.1 52.1 52.1 29.1 24.1 20.0 53.2 53.2 53.2 34.8 33.0 30.3
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Table 6: Monte Carlo results for one-factor model, infeasible version

(a) dmax = 6

T = 50 T = 100

L = 0.2 L = 1.0 L = 0.2 L = 1.0
q\α 0.9 0.95 0.99 0.9 0.95 0.99 0.9 0.95 0.99 0.9 0.95 0.99

1.0 10.0 5.8 1.1 10.1 5.8 1.1 9.1 4.7 1.2 9.0 4.6 1.2
2.0 10.1 5.8 1.1 9.8 6.3 1.0 9.0 4.7 1.2 9.2 4.5 1.2
3.0 10.2 5.9 1.2 10.6 6.1 1.4 9.1 4.6 1.2 9.4 5.2 1.1
4.0 10.1 5.8 1.1 12.0 6.7 1.2 9.1 4.6 1.2 10.3 5.3 1.2

(b) dmax = 8

T = 50 T = 100

L = 0.2 L = 1.0 L = 0.2 L = 1.0
q\α 0.9 0.95 0.99 0.9 0.95 0.99 0.9 0.95 0.99 0.9 0.95 0.99

1.0 13.8 8.1 1.6 12.9 6.7 1.5 13.0 6.9 1.4 11.4 6.6 1.2
2.0 13.8 8.1 1.6 12.9 6.7 1.5 13.0 6.9 1.4 11.4 6.6 1.2
3.0 13.4 8.2 1.5 13.3 7.5 2.0 12.2 6.7 1.2 12.5 7.4 1.4
4.0 13.2 7.8 1.5 15.3 8.6 2.5 12.4 6.5 1.2 13.2 8.3 1.7

Note: This table provides Monte Carlo simulation results for the rejection frequencies of the adjusted
rank test at a 5% significance level with dmax = 6 and dmax = 8, based on 1000 replications from the
two-factor model. Each panel lists, the rejection frequencies for different null hypotheses, numbers of
argument values, and grid sizes.

Table 7: Monte Carlo results for two-factor model, infeasible version

T = 50 T = 100

L = 0.2 L = 1.0 L = 0.2 L = 1.0
q\α 0.9 0.95 0.99 0.9 0.95 0.99 0.9 0.95 0.99 0.9 0.95 0.99

1.0 9.2 4.4 0.8 9.2 4.3 0.8 8.4 2.6 0.6 8.4 2.6 0.6
2.0 9.4 4.6 0.8 9.5 4.7 0.9 10.7 5.3 0.4 10.8 5.4 0.5
3.0 50.3 50.3 50.2 9.5 4.5 1.1 49.4 49.4 49.3 10.7 4.7 1.2
4.0 50.5 50.5 50.5 11.7 5.7 1.1 50.6 50.6 50.6 13.1 7.7 2.0
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Table 8: Monte Carlo results for two-factor model, infeasible version

(a) dmax = 6

T = 50 T = 100

L = 0.2 L = 1.0 L = 0.2 L = 1.0
q\α 0.9 0.95 0.99 0.9 0.95 0.99 0.9 0.95 0.99 0.9 0.95 0.99

1.0 9.2 4.4 0.8 9.2 4.3 0.8 8.4 2.6 0.6 8.4 2.6 0.6
2.0 9.2 4.4 0.8 9.2 4.1 0.8 8.4 2.6 0.6 8.3 3.3 0.5
3.0 9.3 4.3 0.8 9.6 4.9 0.9 8.4 2.6 0.6 8.9 3.7 0.5
4.0 9.3 4.3 0.8 10.7 5.6 1.2 8.4 2.6 0.6 9.5 4.9 0.6

(b) dmax = 8

T = 50 T = 100

L = 0.2 L = 1.0 L = 0.2 L = 1.0
q\α 0.9 0.95 0.99 0.9 0.95 0.99 0.9 0.95 0.99 0.9 0.95 0.99

1.0 12.2 5.0 1.1 10.0 4.1 1.1 11.5 5.1 1.1 10.5 4.7 1.0
2.0 12.2 5.0 1.1 10.0 4.1 1.1 11.5 5.1 1.1 10.5 4.7 1.0
3.0 11.0 4.4 0.9 11.4 5.3 1.2 11.2 4.8 1.2 11.7 5.5 1.4
4.0 10.4 4.2 0.8 16.0 7.7 1.7 10.9 4.7 1.1 14.6 6.6 1.4

Note: This table provides Monte Carlo simulation results for the rejection frequencies of the adjusted
rank test at a 5% significance level with dmax = 6 and dmax = 8, based on 1000 replications from the
two-factor model. Each panel lists, the rejection frequencies for different null hypotheses, numbers of
argument values, and grid sizes.
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Duffie, D., D. Filipović, and W. Schachermayer (2003): “Affine Processes and Applica-
tions in Finance,” The Annals of Applied Probability, 13, 984–1053.

Duffie, D., J. Pan, and K. Singleton (2000): “Transform Analysis and Asset Pricing for
Affine Jump-diffusions,” Econometrica, 68, 1343–1376.

Fang, F. and C. W. Oosterlee (2009): “A novel pricing method for European options based
on Fourier-cosine series expansions,” SIAM Journal on Scientific Computing, 31, 826–848.

Goeman, J. J. and A. Solari (2010): “The sequential rejection principle of familywise error
control,” The Annals of Statistics, 3782–3810.

Heston, S. L. (1993): “A Closed-Form Solution for Options with Stochastic Volatility with
Applications to Bond and Currency Options,” The Review of Financial Studies, 6, 327–
343.

Horn, R. A. and C. R. Johnson (1991): Topics in Matrix Analysis, Cambridge University
Press.

Hull, J. and A. White (1987): “The pricing of options on assets with stochastic volatilities,”
The Journal of Finance, 42, 281–300.

Johansen, S. (1988): “Statistical analysis of cointegration vectors,” Journal of economic dy-
namics and control, 12, 231–254.

Kleibergen, F. and R. Paap (2006): “Generalized reduced rank tests using the singular value

41



decomposition,” Journal of Econometrics, 133, 97–126.

Lee, R. W. (2004): “The moment formula for implied volatility at extreme strikes,” Math-
ematical Finance: An International Journal of Mathematics, Statistics and Financial
Economics, 14, 469–480.

Merton, R. C. (1976): “Option pricing when underlying stock returns are discontinuous,”
Journal of Financial Economics, 3, 125–144.

Onatski, A. (2010): “Determining the number of factors from empirical distribution of eigen-
values,” The Review of Economics and Statistics, 92, 1004–1016.

Pan, J. (2002): “The jump-risk premia implicit in options: evidence from an integrated time-
series study,” Journal of Financial Economics, 63, 3–50.

Pelger, M. (2019): “Large-dimensional factor modeling based on high-frequency observations,”
Journal of Econometrics, 208, 23–42.

Robin, J.-M. and R. J. Smith (2000): “Tests of rank,” Econometric Theory, 16, 151–175.

Singleton, K. J. (2006): Empirical Dynamic Asset Pricing: Model Specification and Econo-
metric Assessment, Princeton University Press.

Skiadopoulos, G., S. Hodges, and L. Clewlow (2000): “The dynamics of the S&P 500
implied volatility surface,” Review of Derivatives Research, 3, 263–282.

Todorov, V. (2019): “Nonparametric spot volatility from options,” The Annals of Applied
Probability, 29, 3590–3636.

——— (2021): “Higher-order small time asymptotic expansion of Itô semimartingale characteris-
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