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Abstract

What are the dominant shocks that drive movements of current account balances?

We estimate shocks that explain most of the variation in the current account both

at business cycle frequencies and over the long run. Using a standard open-economy

macro model, we explore which macroeconomic shocks are behind the empirical

dominant drivers of the current account at business-cycle frequency. Rather than

financial shocks or aggregate shocks to supply or demand, shocks to relative demand

between home and foreign goods are found to play the most important role in driving

the current account.
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1 Introduction

As a key metric of international macroeconomics, current account imbalances often re-

flect cross-country differences in (desirable) saving and investment, corresponding to the

international flows of goods and finance that are consistent with economic fundamentals.

But they can sometimes emanate from economic and financial distortions, and can mirror

rising vulnerabilities to crises (Obstfeld, 2012). The relative importance of these two types

of current account imbalances would eventually depend on the nature of underlying shocks

that drive them. Accordingly, numerous papers have examined the effects of various shocks

on current account movements.1

Adopting a slightly different angle from the existing literature, this paper explores

those shocks that explain most of the fluctuations in current account imbalances. Starting

with an agnostic examination of US and G7 data, we estimate Bayesian structural vector

autoregression (SVAR)-based shocks that account for the largest share of the volatility of

current account dynamics over the short-run and long-run horizons. The joint responses

of the current account, exchange rate, and several additional macroeconomic variables are

documented as potential guideposts in discerning the underlying economic shocks. We

next turn to a more structural investigation. Taking up a standard open-economy macro

model that also allows for international financial shocks and demand shifts, we explore

which estimated model-based macroeconomic shocks come close to the dominant short-

run driver of the current account uncovered by the SVAR analysis.

To uncover the primary drivers of current account movements (at business cycle fre-

quencies and in the long term), we use the max-share identification following Angeletos

et al. (2020) who examine the main determinants of business cycles. Similarly, Chahrour

et al. (2021) and Miyamoto et al. (2023) use the approach to study the main determinants

of exchange rates. We study current account fluctuations in G7 countries with relatively

long data: the US, Canada, France, Germany, Italy, Japan, and the UK, while putting

1See the next section for a discussion of the literature.
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special emphasis on the US.

We show that dominant current account shocks are distinct from dominant exchange

rate shocks that display a gradual current account response driven by expenditure switch-

ing, i.e., a strong initial appreciation leads to a gradual fall in the current account balance.

Despite some heterogeneity across countries, dominant shocks to the current account at

business cycle frequencies induce a strong and persistent improvement in the current ac-

count that tends to be accompanied by an appreciation in the exchange rate. The shocks

reduce domestic consumption and investment in the short to medium term while foreign

consumption tends to increase on impact.. For the current account’s major long-run de-

terminant, we instead observe a depreciating exchange rate when the current account im-

proves, as evidence for expenditure switching as a primary channel for rebalancing current

account imbalances in the long run.

As our identification strategy relies on minimal assumptions, the resulting shocks do not

necessarily need to correspond one-to-one to the shocks identified by particular structural

open-macro models. Still, they can provide informative guideposts for identifying such

structural economic shocks that play an important role in explaining the majority of the

variation in the current account. From this viewpoint, we next try to decode the VAR-

estimated dominant business-cycle CA shock using a dynamic open-macro model.

Our model augments a representative two-country new Keynesian open-economy macro

model (Itskhoki and Mukhin, 2021) by additional shocks. In particular, we introduce a

relative demand shock that alters the degree of home bias, as used in Stockman and Tesar

(1995) and Pavlova and Rigobon (2007). The two economies are symmetric, apart from

dominant currency pricing and the relative demand shock that is specific to the foreign

region. We estimate the model with Bayesian techniques using US data for the same

variables as in our empirical SVAR analysis.

Analyzing the impulse-response functions, the forecast error variance decomposition,

and the shock series, we find that the most prominent candidate for explaining the domi-

nant current account shock is a shock that shifts the international relative demand toward
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home goods. Increased relative demand for home goods appreciates the exchange rate

while bolstering the current account surplus. The same shock also lowers domestic expen-

diture in the short run while later increasing domestic investment. A regression analysis

using the dominant CA shock and the estimated model shocks shows that financial shocks–

that have been shown to play a major role in explaining exchange rate dynamics–play only

a secondary role in explaining current account dynamics. Moreover, applying the same

max-share VAR approach to different sets of model-simulated data yields further evidence

that the relative demand shock resembles the main CA shock closest.

1.1 Related Literature

In exploring the dominant drivers of current account movements, our paper offers one way

to compare numerous papers on current account dynamics. With this in mind, we try to

provide a brief review of the literature.

Before the inter-temporal approach to the current account emerged, the absorption ap-

proach (Alexander, 1952; Hahn, 1959) and elasticities approach (Magee, 1973; Goldstein

and Khan, 1985) highlighted the roles of overall spending and relative prices in accounting

for trade in goods and services, which in turn accounted for the bulk of current account

balances. The inter-temporal approach (Sachs et al., 1981; Obstfeld and Rogoff, 1995) syn-

thesized these two competing approaches by introducing the macroeconomic factors that

drive relative prices and spending over time, highlighting the role of temporary shocks

in determining the current account balance as the gap between the economy-wide saving

and investment. Subsequent dynamic open-economy macroeconomic models [ADD REF-

ERENCES?] have built on the intertemporal approach by embedding the current account

in a rich dynamic and often stochastic general equilibrium analysis, incorporating all key

insights of earlier approaches and risk sharing across countries.

Early time-series analyses of current account dynamics have yielded rather limited

success. Empirical implementations of the inter-temporal approach based on present value

tests had difficulties in explaining current account dynamics (e.g. Sheffrin and Woo,
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1990; Bergin and Sheffrin, 2000). Econometric analyses based on New Open-Economy

Macroeconomics models have found that current account dynamics were not primarily

driven by policy shocks but rather by financial shocks or technology shocks (Bergin, 2006;

Kim and Lee, 2015).

The large deficit of the U.S. has motivated several insightful papers. Engel and Rogers

(2006) examined the role of the expected share of the US in the world economy, which

is driven by stronger growth in the US than in other advanced economies. Blanchard

et al. (2005) examined the implications of the increased demand for US assets. Providing

a concrete context to one source of the demand for US assets, Caballero et al. (2008)

brought out the global excess demand for safe assets, of which the US is an undisputed

major supplier. Mendoza et al. (2009) highlighted the role of different degrees of financial

market developments in generating the large global imbalances. Although these papers

have focused on the US deficit (rather than the surplus and deficit of an average country),

they have highlighted the role of financial shocks and external (global) developments in

understanding the current account even of the US, the largest economy.

Papers that combined dynamic macro models and trade models put forward the role

of trade costs in current account movements. Obstfeld and Rogoff (2001) developed the

possible effects of trade costs on the effective interest rates and, ultimately, on the current

account. Alessandria and Choi (2021) find trade policy and resulting changes in trade

barriers were an important driver of the US trade balance since the 1980s. Mullen and

Woo (2024) develop a model framework that captures both financial and trade shocks

and successfully generates the comovement between the US real exchange rates and net

exports across different time horizons.

Regarding more traditional or low-frequency drivers of current accounts, a cross-

country panel empirical literature, initiated by Chinn and Prasad (2003), has identified

several main determinants (or correlates) of current account balances, which include struc-

tural fundamentals like demographics, institutional quality, and natural resources, as well

as macroeconomic fundamentals like expected real growth, economic policies, and cross-
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country differences in business cycles (see e.g., Lee et al. (2008), Allen et al. (2023), Chinn

and Ito (2022) and Coutinho et al. (2022)). This literature has put more emphasis on

medium-term movements in current accounts, using data at an annual frequency or aver-

aged over several years. Resonating with this empirical literature, the role of demographic

transitions has been developed in the context of dynamic models by Ferrero (2010), Backus

et al. (2014), and Barany et al. (2023).

However, no consensus emerged on the core drivers of current account movements.

Studies that highlight demographics, for example, do not necessarily find the demographic

factors to play the most important role. For example, Ferrero (2010) finds productivity

to have played a greater role than demographic factors. Similar limitations apply to other

studies, in that no set of variables have been widely recognized as the primary driver of

current account dynamics in quantitative terms.

We take a step back from these different factors identified in the literature and place

as few ex-ante restrictions on our empirical structural model as possible. Our approach

yields an agnostic description of the empirical comovements of macroeconomic aggregates

associated with unexpected fluctuations in the current account. Our findings point towards

international relative demand shocks as the major drivers behind the current account,

which might be better analyzed by a more sectoral approach.

The remainder of the paper is structured as follows. Section 2 briefly describes the

data and lays out the econometric methodology. It presents the empirical results of the

dominant current account shocks for the US and the G7, after contrasting the shocks to

the dominant exchange rate shock. Section 3 discusses the model and its estimation. In

section 4 we present the model results and reconcile them with the empirical evidence.

Finally, section 5 concludes.

2 Empirical Analysis

This section describes the empirical framework and presents its findings.
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2.1 Data and Empirical Framework

Our empirical exercise aims to discover the statistical properties of the main empirical

driver of current account fluctuations. To keep the structural identification restrictions to

a minimum, we rely on the max-share approach as in Angeletos et al. (2020), developed

by Faust (1998) and Uhlig (2003). The approach identifies one dominant shock that is the

largest contributor to the volatility of a single variable at a particular frequency. It has

the advantage that we do not need to form an a priori view on potentially problematic

timing or sign restrictions or come up with an instrument that might be difficult to find.

Moreover, the approach can easily be applied to different countries and allows for flexibility

in choosing the set of model variables.

We estimate a reduced-form VAR

yt = a+A1yt−1 + ...+Apyt−p + ut , (1)

with a lag length of p = 4 quarters, where a denotes a constant, Ai the reduced-form

VAR coefficients and ut the reduced-form forecast errors. These errors have no economic

interpretation.

The endogenous variables in yt include quarterly macroeconomic data on our country

of interest, i.e., the US, or the remaining G7 countries vis-à-vis a trade-weighted aggregate

of G6 economies as in Engel (2016) and Chahrour et al. (2021): (i) the current account

to GDP ratio, (ii) the nominal exchange rate expressed in domestic currency per foreign

currency (i.e., an increase is a depreciation of the domestic currency), (iii) domestic real

consumption and investment, (iv) foreign, i.e., G6, real consumption and investment,

(v) the CPI price level differential, (vi) the interest rate differential, (vii) a measure of

domestic total factor productivity.2 The sample runs from 1975:Q1-2022:Q3, and the

2We note the potential discrepancy that the current account relates to a country’s transactions with
all foreign countries while we focus on the G6 as the rest of the world for the remaining variables. As
a robustness exercise, we replace the nominal exchange rate vs. G6 with the nominal effective exchange
rate vs. 51 countries from Darvas (2021).
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variables enter the VAR in log levels except for the current account to GDP ratio which

is not transformed. Baseline results for the G6 countries are estimated without measures

of TFP. The appendix holds additional information on data sources and construction. To

estimate the VAR, we use a Minnesota-type prior implemented via a Gibbs sampler as in

Angeletos et al. (2020) and Miyamoto et al. (2023).3

The reduced-form VAR in (1) can be expressed in a structural form given by

B0yt = b+B1yt−1 + ...+Bpyt−p + εt. (2)

In equation (2), εt are independent structural shocks with an economic interpretation.

These are related to the reduced-form errors via the linear transformation ut = B−1
0 εt.

Thus, B−1
0 contains the impact effects of the structural shocks on the endogenous variables

in yt. By assuming a unit variance for the uncorrelated structural shocks, i.e., E(εtε′t) = In

(an identity matrix), the reduced-form covariance matrix Σu is related to the structural

impact multiplier matrix as Σu = E(utu′
t) = B−1

0 E(εtε′t)B−1
0

′
= B−1

0 B−1
0

′
.

There exists a large set of observationally equivalent B−1
0 matrices and we can write

B−1
0 = Σu,trQ where Σu,tr denotes the unique lower triangular Cholesky matrix of Σu

with non-negative diagonal coefficients, and Q is an orthogonal matrix, i.e., QQ′ = I and

Q−1 = Q′ (see Uhlig, 2005). Concentrating on the relation of reduced-form residuals to

structural shocks, we obtain ut = Σu,trQεt.

We denote the reduced-form VAR in equation (1) in its moving average representation

yt = B(L)ut where B(L) is an infinite matrix polynomial. Inserting for ut we obtain

yt = B(L)Σu,trQεt = Γ(L)εt (3)

where Γ(L) =
∑∞

T=0 ΓTL
T and {ΓT}∞T=0 represents the IRFs of the variables to the

3For estimation we drop the extreme observation 2020:Q2. Our results are robust to weighing down
the observations of 2020:Q2 and the following quarters as proposed in Lenza and Primiceri (2022).
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structural shocks.

To identify a single shock by the requirement that it exhibits the maximal share of

the contribution to the volatility of a particular variable in a particular frequency band,

we leverage the Q matrix. We pick that column q from Q which relates to the structural

shock that is the dominant driver of the current account balance at the business cycle

frequency between 6 and 32 quarters and separately in the long run, which refers to a

range between 80 quarters and ∞ following Angeletos et al. (2020) and Miyamoto et al.

(2023).

For that, we use the spectral density, a frequency domain characterization of time series

directly related to the autocovariance time domain representation. The spectral density

of the variable y at frequency w is given by

fX(y) =
1

2π
C(e−iw)QQ′C(e−iw)′, (4)

where C(L) = B(L)Σu,tr. The volatility of the variable y can be computed via the

integral of the spectral density function (4), in terms of contributions of all the Cholesky-

transformed residuals, over a frequency band, for instance, [w,w] = [2π/32, 2π/6] for the

business cycle frequency.

Each column vector q can be used to represent the contribution of a corresponding

shock to the spectral density of the variable y as q′Θq where Θ is the integral of the

matrix obtained as the product of the complex conjugate transpose of C(e−iw)’s row that

applies to variable y and the row itself (see Angeletos et al., 2020 for more details). The

column vector q that corresponds to the dominant shock is then the eigenvector associated

with the largest eigenvalue of the matrix Θ and can thus be identified without making

assumptions on the matrix Q.

9



2.2 Dominant Exchange Rate Shock

Using our VAR system for seven (or six) variables, we first estimate the dominant (or

main) exchange rate shock at business cycle frequency for the US. This serves as a test

run of our choice of the VAR system in studying open macroeconomic questions. The

dominant exchange rate shock for the US is characterized by an appreciation of the US

dollar vis-à-vis G6 currencies, with a peak response of 4% on impact and reverting to its

steady state after around four years (Figure 1). The appreciated nominal exchange rate

leads to a gradual decline in the current account. After 14 quarters the CA/GDP ratio

has decreased by 0.2 percentage points and then slowly reverts back to its steady state.

The shock gradually increases domestic consumption, investment and TFP. Chahrour

et al. (2021) link this immediate appreciation to positive news about future fundamentals.

Miyamoto et al. (2023) emphasize the shock’s disconnect from macroeconomic aggregates

when they compare it to a major business cycle shock which explains most of the variation

in macroeconomic aggregates. The impact on consumption and investment (similarly

to the current account) builds up only gradually, and when displayed as US vs. G6

consumption or investment differences, is small compared to the 4% appreciation.

Alternatively or complementary to the interpretation as a news shock, the shock could

represent foreign financial inflows (e.g., foreign purchases of US dollars as FX reserves and

treasury bonds as safe assets) which induce an exchange rate appreciation and lead to

higher investment, consumption and imports in the US, as consumer prices decrease due

to a substitution of domestic production with imports. On impact the shock explains less

than 5% of the variation in the current account and its share increases to a maximum of

close to 30% five years out (see Figure B.1).
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Figure 1: Impulse Responses to the Dominant Exchange Rate Shock

Notes: Point-wise median impulse responses to the dominant business cycle frequency exchange rate shock
with 68% (dark gray) and 90% (light gray) highest posterior density credible sets based on 1000 draws.
An increase in the nominal exchange rate is a depreciation. The interest rate and CPI differentials are
expressed as US vs. G6. G6 countries include Canada, France, Germany, Italy, the UK and Japan.

2.3 Dominant Current Account Shocks

This section presents the structural impulse responses to the dominant drivers of the

current account (CA), denoted as dominant or main CA shocks, for the US and the

remaining G7 countries at business cycle frequency and over the long run. The dominant
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business-cycle frequency CA shock for the US displays a distinct pattern compared to

the dominant exchange rate shock analyzed in the last section and seems to be driven

by a different set of economic forces. This is in line with the main exchange rate shock’s

explanatory share below 30% for the current account, especially over the first quarters.

Figure 2 displays the dominant CA shock at business cycle frequency estimated for US

data. The shock induces a peak increase in the CA-to-GDP ratio by 0.25-0.3 percentage

points over the first year. The CA slowly reverts to its steady state over a protracted

period of four to five years. The nominal US dollar exchange rate vs. G6 economies

remains muted on impact but displays a persistent appreciation after one year and peaks

at -1% after 15 quarters.4 The shock is characterized by a short-lived decline in domestic

consumption and investment for around 2 years accompanied by a worsening of TFP.

After 3-4 years the investment response turns positive with a peak increase of 0.5% after

20 quarters. The G6 agglomerate consumption slightly increases on impact, while G6

investment decrease for several quarters. The CPI differential displays no discernible effect

which might result from the rather similar domestic and foreign investment responses.

The interest rate differential tends to rise over the medium term.5 Overall, this short-lived

recessionary shock, followed by a boom in investment that coincides with an exchange rate

appreciation, speaks against the role of exchange-rate induced expenditure switching in

driving CA variations at business cycle frequencies.

The shock explains around 80% of the volatility in the CA-to-GDP ratio for the first 4

quarters. Then the share drops to around 30% after 20 quarters where it remains(see the

forecast error variance decomposition in Figure B.2). The explained share of the nominal

exchange rate volatility is close to 0 on impact and rises above 10% several quarters out

while the shock explains less than 10% at all horizons of the remaining macroeconomic

variables.

4The real exchange rate behaves nearly identically (see Figure B.4).
5Replacing the interest rate differential with the US interest rate level we observe a slight decrease for

2 to 3 years. The US federal funds rate, instead, displays no change over the first three years.
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Figure 2: Impulse Responses to the Dominant Current Account Shock

Notes: Point-wise median impulse responses to the dominant business cycle frequency CA (current ac-
count) shock with 68% (dark gray) and 90% (light gray) highest posterior density credible sets based
on 1000 draws. An increase in the nominal exchange rate is a depreciation. The interest rate and CPI
differentials are expressed as US vs. G6. G6 countries include Canada, France, Germany, Italy, Japan
and the UK.

Turning to the dominant long-run CA shock’s impulse responses in Figure 3, we observe

a protracted increase in the CA with a peak response after 10-15 quarters before slowly

tapering off. Consumption, investment, and TFP drop on impact and remain persistently

depressed for several years, though with very low statistical significance. Relative US prices
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Figure 3: Impulse Responses to the Dominant Long Run CA Shock

Notes: Point-wise median impulse responses responses to the dominant long run CA (current account)
shock with 68% (dark gray) and 90% (light gray) highest posterior density credible sets based on 1000
draws. An increase in the nominal exchange rate is a depreciation. The interest rate and CPI differentials
are expressed as US vs. G6. G6 countries include Canada, France, Germany, Italy, Japan and the UK.
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increase somewhat while the interest rate differential shows no discernible response. In a

strong contrast to the CA-exchange rate relationship for the short-run dominant CA shock,

the nominal exchange rate depreciates strongly by around 2% remaining depreciated for 3-

4 years, implying a clear role of expenditure-switching for the long-run fluctuations in the

CA. The shock explains around two thirds of the forecast error variance of the CA-to-GDP

ratio several years out (see figure B.3). In contrast to the main driver at business-cycle

frequency, the main long-run CA shock explains a larger share of the nominal exchange

rate volatility: around 20-35% for the 10-year horizon.

2.3.1 Other Country Results

We run separate VARs for the remaining G7 countries relying on the same identification

strategy. For these countries, we do not have data on TFP for the sample 1975:Q1-2022Q3

and estimate the baseline VAR without TFP. In an extension we include the utilization-

adjusted TFP measures from Schmidt et al. (2021) for France, Germany, Italy and the

UK at the cost of a significantly shorter horizon 1991Q1 - 2019Q4 and from Cao (2021)

for Canada for the horizon 1976:Q1 - 2018:Q3.

Figure 4 displays the median impulse responses after the dominant CA shocks at

business cycle frequency for each G7 economy. The shocks drive up the CA-to-GDP ratio

by an average of around 0.5% on impact reverting back to zero over a horizon of 2 years

for Italy and more than 5 years for Germany. The shocks induce nominal exchange rate

appreciations for each country already on impact and for several years except for France

where the exchange rate response remains close to zero and appreciates only slightly after

several quarters.

All countries but the UK experience a delayed increase in investment. The CPI dif-

ferential displays an immediate or delayed decrease for all. Consumption mostly increases

after several quarters while the interest rate differential and foreign consumption and in-

vestment show less common responses.6

6Figure B.31 in the appendix displays impulse responses for the dominant long-run CA shocks of all G7
countries which are more inconclusive and display a positive correlation between the CA and the exchange
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Figure 4: Impulse Responses to the Dominant CA Shocks for G7 Countries
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Notes: Point-wise median impulse responses responses to the dominant business cycle frequency CA
(current account) shock for all G7 countries. An increase in the nominal exchange rate is a depreciation.
The interest rate and CPI differentials are expressed as individual country vs. G7 excluding the individual
country. G7 countries include Canada, France, Germany, Italy, Japan, the UK and the US.

Note that we would not necessarily expect the dominant current account shock to dis-

play the exact same types of characteristics across different countries. The seven economies

we have analyzed here have quite different historical patterns in their current account bal-

ances which can be due to different economic policies (e.g., social systems, trade policies,

or tax systems), structural characteristics (e.g., demographics or being part of a currency

union) and the exposure to different economic and financial shocks over time.

rate, i.e., evidence of expenditure switching, only for the US, Canada, Germany and Japan.
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2.4 Robustness

Our findings for the dominant business cycle CA shock in the US are robust to exchanging

the nominal exchange rate vs. G6 currencies with the real exchange rate vs. G6 countries

and with the nominal effective exchange rate (see figures B.5 and figure B.4).Results are

robust to ending the sample in 2019:Q4 (figure B.12, weighing down the Covid observations

following Lenza and Primiceri (2022) (figure B.14) or increasing the lag length to 8 quarters

(figure B.15). We also report results ending the sample before the Great Recession in

2007:Q4 for which the error bands become very wide but the negative correlation over

the first few quarters between the nominal exchange rate and the current account remains

intact (figure B.12). Moreover, we show additional responses for exports and imports

(figure B.18), the exports-to-imports ratio (Figure B.9, replacing CPI and interest rate

differentials with the US variables (figure B.10) and adding the federal funds rate (figure

B.11). We also show that the dominant CA business cycle shock is a mixture of the

two dominant shocks to its components: a dominant net exports shock (figure B.16)

and a dominant income balance shock (figure B.17) which are both rather similar to

the dominant CA shock. In contrast, a dominant shock to the exports-to-imports ratio

induces a positive correlation between the exchange rate and the exports-to-imports ratio

(figure B.18). A more conventional dominant business cycle shock that explains most

of the variation in domestic consumption shares the recessionary similarities on impact

with the dominant CA shock (figure B.19) but displays more protracted downswings in

consumption and investment. The exchange rate response is muted and the shock explains

merely a maximum of 10% of the current account after two years.

Results for the long run dominant CA shock are qualitatively robust to using the real

exchange rate and the nominal effective exchange rate (see figures B.6 and B.7).
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3 Model and Estimation

This section tries to interpret the empirical dominant CA shock at business-cycle frequency

through the lens of a structural open-economy macro model. We resort to a Dynamic

Stochastic General Equilibrium (DSGE) model with standard New Keynesian features

and investigate which structural shocks resemble the dominant CA shock. The model

encompasses eight shocks related to domestic fundamentals, international fundamentals,

and the international financial landscape. Estimating the model on US data, international

shocks to relative demand for domestic goods and assets stand out as the primary drivers

of the current account, explaining over 80 and 10 percent of its variation, respectively.

3.1 Key Model Elements

We adapt the open economy model with international financial market frictions of It-

skhoki and Mukhin (2021).While the model has addressed a series of exchange rate puz-

zles through a capital flow shock, the correlation between the exchange rate and current

account balance is close to one, far exceeding the data.7 Thus, we enhance the model by

incorporating three additional shocks considered in the open-macro literature.

In addition to shocks related to TFP, monetary policy, and capital flows, we include

domestic and foreign aggregate demand shocks and a shock to relative demand between

home and foreign goods originating in the foreign country.8 The aggregate demand shocks

are textbook-style subjective discount factor shocks (Gaĺı, 2015), and the relative demand

shock alters the weight of home goods in foreign households’ consumption basket, similar to

the preference shocks advocated in Stockman and Tesar (1995) and Pavlova and Rigobon

(2007).9 These shocks allow to decrease the current account-exchange rate correlation in

7Using quarterly data on the nominal exchange rate vs. G6 countries and the current account to GDP
ratio as used in section 2, the contemporaneous correlation is around 60% for the US, 3% for Germany
and -68% for the UK.

8This relative demand shock could equivalently be introduced to home preferences.
9In a closed-economy context, Fornaro and Romei (2023) studies a similarly specified demand reallo-

cation shock.
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the model and are found to be significantly related to the main CA shock estimated in the

previous section.

3.1.1 Households

The economy is populated by a unit continuum of identical households. The representative

household seeks to maximize the objective function:

E0

∞∑
t=0

βt
(
C1−σ
t − 1

1− σ
− N1+φ

t

1 + φ

)
eΩt for σ > 0 (5)

where Ct is final goods consumption, Nt denotes hours worked, and Ωt is an exogenous

preference shifter. Ct is a CES aggregator of home and foreign goods,

Ct =

(∫ 1

0

[
(1− γ)1/θCHt(i)

(θ−1)/θ + γ1/θCFt(i)
(θ−1)/θ

]
di

)θ/(θ−1)

,

where CHt denotes the quantity consumed of home goods, and CFt the quantity consumed

of foreign goods with the elasticity of substitution among goods θ. The parameter γ

reflects the weight of foreign goods in the home basket, which is less than 0.5. Hence,

households’ preferences display a home bias for domestically produced goods.

The preference shifter Ωt in equation (5) evolves as an AR(1) process,

Ωt = ρΩΩt−1 + ϵΩ,t, , ϵΩ,t ∼ iid(0, σ2
Ω), (6)

where ϵΩ,t denotes a domestic aggregate demand shock.

Foreign households possess a utility structure analogous to domestic households with

the same discount factor β and relative risk-aversion σ. They are subject to an aggregate

demand shifter Ω∗
t , which also follows an AR(1) process similar to Ω, though their auto-

correlation and shock variance can differ. We assume the innovation terms to aggregate

demand shifters are positively correlated between the two countries. Like home households,
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foreign households’ final consumption is defined as

C∗
t =

(∫ 1

0

[
γ∗t

1/θC∗
Ht(i)

(θ−1)/θ + (1− γ∗t )
1/θC∗

Ft(i)
(θ−1)/θ

]
di

)θ/(θ−1)

They exhibit a consumption bias, γ∗t < 0.5, towards their domestically produced goods,

C∗
Ft, that in contrast to the domestic home bias evolves stochastically as

γ∗t − γ = ργ(γ
∗
t−1 − γ) + ϵγ,t

where ϵγ,t is the relative demand shock.

3.1.2 International Funds Intermediation

International capital markets are segmented. Home and foreign households can only trade

bonds denominated in their own currencies with international financiers and noise traders

(Itskhoki and Mukhin, 2021 and Gabaix and Maggiori, 2015). The modified uncovered

interest rate parity (UIP) condition, derived from the expected profit maximization of

international financiers, is given by

it − i∗t − Et∆et+1 = ψt − χbt (7)

where it and i
∗
t represent the domestic and foreign nominal interest rates between t and

t + 1, respectively. Et∆et+1 = Et[log(Et+1) − log(Et)] denotes the expected depreciation

of the nominal exchange rate, where Et is the nominal exchange rate, representing the

amount of local currency required to purchase one unit of foreign currency (an increased

Et indicates a home currency depreciation). Additionally, ψt represents noise traders’

demand for foreign currency bonds financed by issuing home currency bonds, and ϵψ,t is

the capital flow shock affecting this demand represented by the AR(1) process:

ψt = ρψψt−1 + ϵψ,t, ϵψ,t ∼ iid(0, σ2
ψ)
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3.1.3 Production

Firms’ production of domestic output is based on a Cobb-Douglas technology that involves

labor Lt, capital Kt, and intermediate inputs Xt:

Yt =
(
eatKϑ

t L
1−ϑ
t

)1−ϕ
Xϕ
t (8)

where ϑ is the elasticity of substitution between capital and labor, and ϕ is the elasticity

of substitution between ’value added” and intermediates.

Productivity (eat) follows an AR(1) process in logs,

at = ρaat−1 + ϵa,t, ϵa,t ∼ iid(0, σ2
a), (9)

where ϵa,t is the TFP shock.

Foreign firms have a production function of the same form with equal shares of capital,

labor, and intermediate goods. Their TFP process follows an AR(1) process similar to

equation (9). We allow positively correlated TFP shocks between the home and foreign

countries.

3.1.4 Price Setting

Both domestic and foreign markets are characterized by monopolistic competitition. Under

nominal price rigidity each domestic firm maximizes its expected discounted sum of profits,

E0

∞∑
t=0

ΘtΠt(i), with Πt(i) = (PHt(i)−MCt)YHt(i) + (P ∗
Ht(i)Et −MCt)Y

∗
Ht(i),

where Pt is the final consumption good price in home currency, PHt and P
∗
Ht are the home-

made good prices in home and foreign currencies, respectively, Θt ≡ βt
C−σ

t

Pt
represents the

nominal stochastic discount factor, and MCt is the nominal marginal cost of production,

common to all domestic firms. Calvo pricing implies that in every period, a firm has
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probability (1 − λp) of being able to adjust its prices. Under these conditions, we derive

the log-linearized New Keynesian Phillips Curve (NKPC) for domestically sold goods:

πHt = κp (mct − pHt) + βEtπHt+1 , (10)

where mct is the real marginal cost of one unit of home goods, and pHt is the relative price

of home goods to home final goods, both expressed in log deviations from their steady-

state values. The slope parameter κp ≡ (1−βλp)(1−λp)
λp

reflects how responsive the aggregate

price changes are to the marginal cost changes.

The NKPC for home exports depends on the price-setting regime. For countries like

the United States whose currency is the invoicing currency for its exports, we assume a

producer-currency-pricing regime (PCP). In this scenario, the NKPC is given by

π∗
Ht +∆et = κp (mct − qt − p∗Ht) + βEt(π

∗
Ht+1 +∆et+1) (11)

where qt is the home country’s real exchange rate in log-deviations, with a higher qt

denoting a depreciation of the home real exchange rate, and p∗Ht is the relative price of

home goods in the foreign consumption bundle.

Under local currency pricing (LCP), i.e., when the foreign currency is the invoicing

currency for exports, the NKPC is given by

π∗
Ht = κp (mct − qt − p∗Ht) + βEt(π

∗
Ht+1). (12)

3.1.5 Monetary Policy

We assume that central banks in both home and foreign countries adopt an inflation-

targeting monetary policy regime. The home monetary authority adjusts the nominal

interest rate it according to the following Taylor rule:

it = ρmit−1 + (1− ρm)(ϕππt + ϕyyt) + vt. (13)
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Here, ρm is the interest rate smoothing parameter, ϕπ is the Taylor coefficient for the CPI

inflation rate πt, and ϕy is the Taylor coefficient for detrended output yt. An exogenous

monetary policy shock vt evolves according to the AR(1) process:

vt = ρvvt−1 + ϵv,t, ϵv,t ∼ iid(0, σ2
v). (14)

A positive realization of ϵv,t represents a contractionary monetary policy shock, leading to

a rise in the nominal interest rate, given a certain level of inflation.

The foreign country has a similar monetary policy regime, although parameters re-

garding the Taylor rule and monetary policy shocks are not necessarily the same. Again,

we allow for a positive correlation between home and foreign monetary policy shocks.

3.1.6 Potential Candidates for the Dominant CA Shock

Consider net exports at period t, which are defined by

NXt ≡ EtP ∗
HtY

∗
Ht − PFtYFt.

If we linearize the model around a steady state with a zero net foreign asset position for

the home country, the current account balance equals the net export value.10

Denote nxt =
NXt

GDPt
as normalized net exports11, y∗Ht and yFt as the domestic demand

for home and foreign goods, respectively, and st = pFt − qt − p∗Ht as the terms of trade.12

With these notations, net exports can be expressed as

nxt =
γ

1− ϕ
(y∗Ht − yFt − st). (15)

10For many countries, net exports are the main driver of the current account with the income balance
being small. For example, the empirical correlation between the current account balance and net exports,
based on quarterly data since 1975, is 97%, 96% and 81% for the US, Germany and the UK, respectively.

11The economy’s output Yt is not equal to its GDP in our model due to expenditures on intermediate
goods.

12Excluding net exports and net foreign assets, lowercase variables indicate log deviations from their
steady-state values.
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Denote aggregate expenditure in Home by AEt ≡ Ct +Xt + Zt, aggregate expenditure in

Foreign by AE∗
t ≡ C∗

t +X
∗
t +Z

∗
t , where Z and Z∗ denote domestic and foreign investment,

and the home bias difference as γ̂∗t =
γ∗t −γ
γ

, then equation (15) can be expressed as

nxt =
γ

1− ϕ

(
(ϵ− 1)st + ϵ qt︸ ︷︷ ︸
expenditure switching

+ log(
AE∗

t

AEt
) + γ̂∗t︸ ︷︷ ︸

expenditure changing

)
(16)

Equation (16) decomposes the current account dynamics into two primary channels:

expenditure switching and expenditure changing. The first two terms on the right-hand

side of (16) encapsulate the expenditure switching effect. Specifically, under ϵ > 1, a

deterioration in the terms of trade (a higher st) or a depreciated real exchange rate (a higher

qt) would, all else equal, increase the current account balance (larger surplus or smaller

deficit). The last two terms embody the expenditure-changing effect, suggesting that an

increase in foreign aggregate expenditure relative to domestic aggregate expenditure or

a larger share of home-produced goods demanded (in the basket of foreign final goods)

results in a higher current account for the home economy.

Equation (16) alone does not enable us to identify the key shock that drives current

account movements because all variables are endogenous and affected by various shocks.

In terms of the expenditure switching channel, qt is sensitive to the capital flow shock, the

terms of trade st can be affected by the TFP shock (via marginal costs), the monetary

policy shock (via the nominal exchange rate and marginal costs), the capital flow shock

(via the nominal exchange rate), domestic and foreign demand shocks (via marginal costs),

and the relative demand shock (via marginal costs). Regarding the expenditure-changing

effect, TFP, aggregate demand, monetary policy, and relative demand shocks all affect the

demand for home versus foreign goods on the international goods market.

Given the complex and intertwined sources of current account dynamics, estimating

the model on data is one informative way to identify the contribution of each shock to

variations in the current account. Therefore, we conduct a Bayesian analysis to explore

the major determinants, i.e., the driving structural shock(s), of current account dynamics.
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3.2 Estimation

This section conducts a Bayesian analysis of the model. We first discuss several parameters

that are calibrated and then the rest that are estimated by Bayesian methods.

3.2.1 Calibrated Parameters

Table 1 shows the parameters that are kept constant during the estimation process. We

set the subjective discount factor at 0.99 and the demand elasticity between Home and

Foreign goods at 1.5. The macro Frisch elasticity, denoted as 1
φ
, is established at 1. The

proportion of intermediate goods, ϕ, is 0.5, while the capital’s share in the effective labor-

capital combination, ϑ, is 0.3. Additionally, the probability that firms cannot adjust their

prices, denoted by λp, is 0.75. These parameters reflect widely accepted values in the

international macroeconomics literature. Furthermore, we set the depreciation rate, δ,

at 0.05, slightly above its conventional value. While a lower value of δ = 0.02 would

align with the empirical investment-to-GDP ratio, it would also overstate the long-term

consumption share in GDP and result in overly volatile investments.

Table 1: Calibrated Parameters for Estimation

Parameter Symbol Value Source
Subjective discount factor β 0.99 Conventional value
Demand elasticity between Home and Foreign goods θ 1.5 Feenstra et al. (2018)
Macro Frisch elasticity φ−1 1 Conventional value
Share of intermediate goods ϕ 0.5 Conventional value
Capital share in the effective labor-capital combination ϑ 0.3 Conventional value
Depreciation rate δ 0.05 Conventional value
Calvo probability for prices λp 0.75 Conventional value

3.2.2 Prior Distributions of the Estimated Parameters

The remaining parameters, mostly concerning the exogenous shock processes, are esti-

mated using Bayesian techniques. We utilize the beta distribution for parameters that

are bounded between 0 and 1, including all autoregressive coefficients, the interest rate
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smoothness ρm and ρ∗m, correlations between identical types of shocks across the two coun-

tries, and the strength of home bias in consumption, 1 − γ. The prior mean is set at 0.6

for all autoregressive coefficients and at 0.3 for the cross-country shock correlations. For

shock standard deviations, we apply the inverse gamma distribution with all prior means

set at 0.01. Finally, the normal distribution is employed for unbounded parameters, with

prior means adhering to conventional values found in the literature. Table 2 shows priors

and posterior estimates. Notably, our estimation uses identical priors for all G7 countries.

3.2.3 Estimation Results

To estimate our model with eight exogenous shocks, we select eight observables for match-

ing, in line with our VAR specification: the current account ∆nxt, the nominal exchange

rate ∆et, domestic CPI inflation πt, foreign CPI inflation π∗
t , domestic consumption ct

(log-deviation), foreign consumption c∗t (log-deviation), domestic nominal interest rate it,

and foreign nominal interest rate i∗t .
13 We report the main estimation results for the US

in t able 2 and other G6 countries in the appendix table B.7.

Among the parameters not directly related to shocks, the posterior mean for trade

openness-related parameter, γ, is approximately 0.009, significantly below its prior mean

of 0.0714. The 90% highest posterior density (HPD) interval for γ is narrow, ranging from

0.0067 to 0.0109. This suggests that the low estimate of γ is data-driven, considering

the discrepancy with the prior mean. Regarding the Taylor rule coefficients, the posterior

mean of ϕπ and ϕy for Home are about 1.35 and 0.45, respectively, lower than their prior

mean of 1.5 and 0.5. Their foreign counterparts ϕ∗
π and ϕ∗

y are of similar values of 1.54 and

0.48, close to their prior mean. The capital adjustment cost coefficient, κ, is estimated at

13It is widely acknowledged in Bayesian estimation that a model cannot be estimated with fewer shocks
than observables, as this leads to stochastic singularity (Pfeifer, 2014). As a result, many influential studies
in the literature employ an equal number of shocks and observables (Rabanal and Rubio-Ramı́rez, 2005;
Smets and Wouters, 2007). However, it is not unusual to have more shocks than observables (Ireland,
2004; Schmitt-Grohé and Uribe, 2012), and this does not pose any issues as long as the parameters being
estimated are still identified.

14The prior mean of 0.07 is the calibrated value of γ in Itskhoki and Mukhin (2021), which is an attempt
to match U.S. trade openness.
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Table 2: Parameters Estimation

Parameters Prior Mean Post. Mean Mode 90% HPD Interval Prior Prior stdev

γ 0.07 0.0086 0.0088 [0.0067,0.0109] Beta 0.02
κ 8.7 7.5907 7.517 [6.6445,8.4225] Normal 0.5
ϕπ 1.5 1.3485 1.3653 [1.2063,1.5281] Normal 0.1
ϕ∗
π 1.5 1.5402 1.5422 [1.3788,1.6966] Normal 0.1
ϕy 0.5 0.4545 0.4526 [0.3649,0.5364] Normal 0.05
ϕ∗
y 0.5 0.4798 0.4774 [0.3990,0.5556] Normal 0.05
χ2 0.001 0.0014 0.0016 [0.0002,0.0028] Normal 0.001
ρa 0.6 0.6757 0.6662 [0.5517,0.7830] Beta 0.1
ρ∗a 0.6 0.6817 0.6804 [0.6047,0.7502] Beta 0.1
ρψ 0.6 0.7146 0.708 [0.6504,0.7743] Beta 0.1
ρm 0.6 0.7606 0.75 [0.7007,0.7994] Beta 0.1
ρ∗m 0.6 0.7912 0.7837 [0.7407,0.8275] Beta 0.1
ρv 0.6 0.1576 0.1733 [0.1055,0.2450] Beta 0.1
ρ∗v 0.6 0.2171 0.232 [0.1513,0.3135] Beta 0.1
ρΩ 0.6 0.7042 0.7032 [0.6311,0.7665] Beta 0.1
ρ∗Ω 0.6 0.7084 0.7008 [0.6495,0.7569] Beta 0.1
ργ 0.6 0.8012 0.8045 [0.7431,0.8720] Beta 0.1
σa 0.01 0.0191 0.0194 [0.0154,0.0228] Inverse Gamma Inf
σ∗
a 0.01 0.0129 0.013 [0.0112,0.0147] Inverse Gamma Inf
σψ 0.01 0.0127 0.013 [0.0101,0.0157] Inverse Gamma Inf
σv 0.01 0.0054 0.0056 [0.0047,0.0065] Inverse Gamma Inf
σ∗
v 0.01 0.0033 0.0034 [0.0029,0.0038] Inverse Gamma Inf
σΩ 0.01 0.02 0.0201 [0.0183,0.0220] Inverse Gamma Inf
σ∗
Ω 0.01 0.0166 0.0167 [0.0151,0.0181] Inverse Gamma Inf
σγ 0.01 0.0016 0.0016 [0.0015,0.0017] Inverse Gamma Inf
ρa,a∗ 0.3 0.3641 0.3619 [0.2700,0.4641] Beta 0.1
ρv,v∗ 0.3 0.2267 0.2333 [0.1341,0.3253] Beta 0.1
ρΩ,Ω∗ 0.3 0.3387 0.338 [0.2475,0.4350] Beta 0.1

Note: The posterior distribution is obtained using the Metropolis-Hastings algorithm.
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approximately 7.6, with its prior mean of 8.7 outside its 90% HPD interval. The interest

rate smoothing parameters, ρm and ρ∗m, are both around 0.8. Lastly, the estimate of ξ2

aligns well with its prior means, falling within the 90% HPD intervals.

Our estimation shows that shocks are generally less persistent than previously sug-

gested in the literature. Specifically, monetary policy shocks display minimal persistence

domestically and abroad, characterized by AR(1) coefficients near 0.2. This observation

is consistent with some specifications incorporating an i.i.d. innovation term within the

Taylor rule (13) (e.g., Gaĺı and Rabanal 2004). In contrast, other types of shocks exhibit

notably higher persistence. The persistence of TFP shocks is identified at approximately

0.68 for each country. This value is close to the persistence found in non-tradable goods

(0.63) and markedly surpasses that of tradable goods (0.15) in Stockman and Tesar (1995).

Both capital flow and aggregated demand shocks demonstrate a persistence level of around

0.70. The relative demand shock stands out with the highest persistence of around 0.8. It

is important to note that, aside from TFP shocks—which can be estimated using micro-

level data—all other shock types are unobservable and necessitate estimation within a

DSGE model.

The posterior standard deviations of shock terms are not far from their priors, with

narrow 90% HPD intervals, which supports the rationale for employing a first-order lin-

earized model. If we measure a shock’s volatility in terms of its log deviation from the

steady state, then the relative demand shock displays the largest volatility around 0.19.

The estimated inter-country correlations for identical shock types range from 0.3 to 0.4,

aligning with the calibrations for TFP and monetary policy shocks used in Itskhoki and

Mukhin (2021) and other papers.

3.3 Model Fit

Table B.1 evaluates the model fit of the G7 countries by comparing the theoretical moments

to their empirical counterparts. In general, the unconditional moments of the model are

close to the actual data. However, there is some degree of heterogeneity in the model fit
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across different variables for the same country and across different countries for the same

variable.

Our model accurately captures the volatility of the current account for all countries

examined, closely matching aggregate data. However, it diverges slightly from actual do-

mestic consumption data, with the degree of deviation varying across countries. Notably,

the model demonstrates high accuracy for the US, UK, and Germany and relatively low ac-

curacy for France, Canada, and Japan. Regarding foreign consumption, the US stands out

as its model-implied foreign consumption volatility is very close to the empirical moment,

while other countries see substantial discrepancies between the two. Additionally, our

analysis reveals that the model overestimates investment volatility across the G7 nations.

This tendency towards higher volatility primarily arises because investment dynamics are

not the central focus of our Bayesian estimation process. The observed high volatility is

not unique to our model; similar observations have been reported in other studies, includ-

ing Stockman and Tesar (1995), which suggests incorporating a non-tradable goods sector

to address this issue.

The model closely approximates actual exchange rate volatility but presents noticeable

deviations for the UK, France, and Italy. It consistently forecasts higher volatility for both

domestic and foreign interest rates, with the most pronounced overprediction for Italy. In

contrast, the model matches CPI inflation rates more precisely, with negligible differences

for domestic inflation rates and slightly larger, yet reasonable, discrepancies for foreign

inflation rates.

Regarding the correlation coefficient between current account balances and exchange

rate changes, our model significantly reduces the traditionally strong linkage between

the two variables by incorporating relative demand shocks, which we will explain later.

Although some differences between the model-implied and actual data correlations exist

for individual countries, they are within a tolerable range. This represents a considerable

improvement over the high correlation of over 0.95 reported in Itskhoki and Mukhin (2021)

where all shocks induce an expenditure-switching effect. Notably, our model tends to

29



underpredict this correlation for the UK, Italy, and Canada while overestimating it for

other countries.

4 Which Shock Matters

This section brings together the SVAR analysis and the estimated model part to show

which structural shocks drive current account dynamics across the business cycle and are

potentially behind the empirical dominant CA shock. We begin by conducting a forecast

error variance decomposition (FEVD) to assess each estimated shock’s contribution to

current account variability at different horizons. Subsequently, we provide an analysis of

the impulse responses. Using regression analysis, we then link the empirically identified

shocks from the max-share SVAR analysis to the structural shocks. Finally, we provide

additional evidence by applying the max-share identification to the model-simulated data.

All these practices indicate that, despite some heterogeneity across countries, the relative

demand shock is pivotal in influencing current account dynamics over the business cycle.

4.1 Variance Decomposition

The left panel of figure 5 illustrates the FEVD of current account dynamics ∆nxt for the

US. Across all horizons, the relative demand shock indicated by the red bars emerges as

the predominant factor influencing the US current account, accounting for more than 80%

of its variation. The capital flow shock (the blue bars) contributes another non-negligible

share of over 10 percent. This finding markedly differs from the results presented in

Itskhoki and Mukhin (2021) and Miyamoto et al. (2023), where the primary influence on

exchange rate fluctuations also drives current account fluctuations.

The right panel of figure 5 displays the FEVD of US nominal exchange rate fluctua-

tions ∆et. Capital flow shocks are identified as the dominant driver across all horizons,

corroborating the popular argument that short-term exchange rate movements often reflect

fluctuations in international asset markets more than economic fundamentals. Together,
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relative demand shocks, domestic monetary policy shocks, and foreign monetary policy

shocks account for approximately 10% of the variance in nominal exchange rate fluctua-

tions, both in the short and long term.

Figures B.39 and B.40 present the FEVD of ∆nxt and ∆et for the other six countries.

Across all horizons, the relative demand shock accounts for the largest share of current

account fluctuations, and the capital flow shock explains the largest share of exchange rate

fluctuations. These findings suggest a considerable degree of generality of the relevance of

the relative demand shock for current account volatility.

Figure 5: Forecast Error Variance Decomposition: US

4.2 Why Relative Demand Shocks: An Impulse-Response View

The preceding FEVD analysis indicates that relative demand shocks are the major driving

forces of current account (CA) fluctuations in the estimated model. An inspection of the

impulse responses to the different shocks explains why this is the case (see the appendix

figures in section B.5). Among the structural shocks analyzed, only relative demand and

monetary policy shocks display a negative correlation between the exchange rate and the

current account that characterizes the dominant CA shock at business-cycle frequency.

In other words, only these shocks can suppress expenditure switching in the short term.

Thus, it is essential for current account dynamics to reflect shocks that inhibit expenditure
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switching.

Our model estimation, aimed at aligning with empirical data on the joint dynamics

of the current account and the exchange rate, indicates a preeminent role for relative

demand shocks in influencing current account fluctuations. The relative demand shock is

characterized by foreigners placing more weight on home goods, i.e., foreign households

demand relatively more home goods relative to the demand of foreign goods by home

households. It improves the domestic current account balance and yields a real exchange

rate appreciation (see figure B.48). Home consumption and investment decrease as home-

made goods, the major component of the home final goods, are temporarily shifted to the

foreign country’s use. The higher bias towards home goods, i.e., increased γ, is a negative

demand shock to foreign goods, which generates PPI deflation in the foreign country (i.e.,

π∗
Ft < 0). Although imports inflation π∗

Ht > 0, the overall CPI inflation π∗
t is still negative

due to the larger share of foreign goods in the foreign consumption basket. Negative CPI

inflation and negative detrended output (y∗t < 0) in the foreign country urges the central

bank to lower the interest rate. As a result, foreign investment and consumption increase.

The relative demand shock is expansionary to the home country as the overall demand for

home goods increases. This pushes up domestic inflation as well as the nominal interest

rate. Therefore, we observe positive inflation and interest rate differentials in the short to

medium term after the shock.

Monetary policy shocks, in contrast, cannot be the main driver behind the dominant

CA shock because they exhibit low persistence in both home and foreign contextsyielding

a temporary positive current account balance effect lasting up to four quarters as depicted

in figure B.46–the SVAR findings (shown in figure 2) demonstrate that current account

improvements may persist for approximately 20 quarters. In addition, monetary policy

shocks cannot generate positive foreign consumption and negative domestic consumption.

This extended duration suggests a need for shocks with greater persistence, with the

relative demand shock’s high AR(1) coefficient positioning it as the primary candidate.
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4.3 A Regression Examination

The previous FEVD and impulse-response analysis underscores the importance of the

relative demand shock in accounting for current account fluctuations. This subsection

relates the empirical dominant CA shock series more systematically to the model-based

individual shock series. As shocks contributing to CA fluctuations with a small share

might be crucial in influencing some particular macro variables we conduct a regression

approach to identify those structural shocks that most closely relate to the dominant CA

shock.

We estimate the following regression equation with OLS separately for each country

dominant CA shockt =
∑
i

βi ∗ structural DSGE shocki,t + ut

The dominant CA shockt is the empirical dominant CA shock series uncovered by the

max-share SVAR, and structural DSGE shocki,t are the Kalman-filtered smoothed shock

series extracted from the estimated DSGE model, where t is the quarter indicator, and

ut is the error term in quarter t. βi is the parameter for shock series i, e.g., the relative

demand shock. The regression results are reported in table 3.

The regression results identify two structural shocks as critical components of the domi-

nant CA shock: the capital flow shock and the relative demand shock, showing statistically

significant coefficients across all G7 countries. A larger coefficient in magnitude signifies

a larger share of the shock in the main CA driver. Consistent with the FEVD findings,

the relative demand shock exhibits the most sizable coefficient.15 This result is still valid

if we normalize all structural shocks by their standard deviations. Therefore, the relative

demand shock contributes to the CA variation across these countries the most among all

shocks.

In addition to capital flow and relative demand shocks, each G7 country has its unique

15The correlation between the dominant CA shock and the relative demand shock is 0.75 for the US.
figure B.38 in the appendix plots the SVAR and estimated model shock series.
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shock-type composition within its main CA driver. For instance, the TFP shock is integral

to the main CA driver in the UK, France, Italy, and Canada, whereas the foreign TFP

shock plays a similar role in the US, UK, Italy, and Canada. Such notable cross-country

heterogeneity is also evident in aggregate demand and monetary policy shocks. The es-

timated model can account for a significant portion of the empirical main CA driver’s

variation, including country-specific shocks, capital flow, and relative demand shocks, as

shown by high R2 values exceeding 0.7 for all G7 countries.

Table 3: Regression Results: Short-run Main CA Drivers

US UK DE FR IT CA JP

TFP 0.014 0.041** 0.022 0.058** -0.107** -0.075** 0.025
(0.048) (0.018) (0.031) (0.030) (0.052) (0.032) (0.021)

TFPG6 0.113* -0.038* -0.050 0.008 -0.048 0.122*** -0.035
(0.063) (0.022) (0.031) (0.031) (0.037) (0.035) (0.025)

Capital Flow 0.278*** 0.213*** 0.191*** 0.136* 0.296*** 0.246*** 0.238***
(0.063) (0.053) (0.071) (0.077) (0.095) (0.066) (0.063)

Aggregate Demand -0.038 -0.012 -0.034 -0.017 -0.064** 0.004 -0.062**
(0.042) (0.017) (0.033) (0.032) (0.032) (0.037) (0.031)

Aggregate DemandG6 0.050 0.032** 0.035* 0.009 0.030 -0.042 0.030**
(0.049) (0.014) (0.018) (0.019) (0.023) (0.028) (0.015)

Monetary Policy -0.170 -0.242* 0.208 -0.081 0.163*** 0.488** 0.904***
(0.187) (0.137) (0.418) (0.060) (0.057) (0.244) (0.218)

Monetary PolicyG6 -0.178 0.128 -0.155 -0.312 -0.182 -0.223 -0.744**
(0.227) (0.229) (0.235) (0.346) (0.350) (0.231) (0.290)

Relative Demand 4.818*** 1.394*** 2.021*** 2.507*** 1.877*** 3.277*** 2.183***
(0.479) (0.101) (0.182) (0.199) (0.230) (0.289) (0.156)

R2 0.726 0.874 0.783 0.803 0.712 0.791 0.843
Robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1. The sample is 1976Q1-2022Q3.

4.4 Max-share SVAR on Model-Simulated Data

This subsection tests the consistency of the empirical main CA driver with our open

economy NewKeynesian model, aimed to investigate the pivotal role of the relative demand

shock in influencing the main CA drivers. More specifically, we use the max-share SVAR
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approach to identify the main CA based on model-simulated data. We compare such

model-based main CA driver with its empirical counterpart and other model-based main

CA drivers under alternative shock specifications.

Figure 6: Impulse Responses to the Dominant CA Shock from Simulated Data

Notes: Point-wise median impulse responses to the dominant business cycle frequency exchange rate shock
with 68% (dark gray) and 90% (light gray) highest posterior density credible sets based on 1000 draws.
An increase in the nominal exchange rate is a depreciation.

First, we simulate the model over 1000 periods and utilize the max-share SVAR ap-

proach to identify the dominant CA shock. Figure 6 illustrates the impulse responses
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of this hypothetical dominant CA driver. It reveals that the current account increases

upon impact while domestic consumption and investment decrease, consistent with empir-

ical observations. Additionally, foreign consumption also exhibits a short-term increase.

The trajectory of TFP, initially declining before rising, also aligns with empirical trends.

However, the nominal exchange rate initially depreciates over three quarters16, diverging

from empirical findings, but subsequently shows a persistent appreciation for more than

35 quarters, in line with observed data. Despite these similarities to the empirics, the

model-based dominant CA driver does not accurately reflect empirical patterns in CPI

and interest rate differentials and fails to capture the initial decline of foreign investment,

which suggests room for future improvement of the model.

Next, we exclude all shocks other than the relative demand shock and simulate the

calibrated model for 1000 periods. We then apply the max-share SVAR to the model-

simulated data. We plot the IRFs of the obtained main CA shock in figure 7. While

the dynamics of aggregate quantity variables are qualitatively similar to those of the

dominant CA shock based on the complete set of shocks, the nominal exchange appreciates

immediately after the shock.

As a comparison, we also simulate the model excluding only the relative demand shock

and present the IRFs of the obtained dominant CA shock in figure B.49 in the appendix.

We can see a significant expenditure switching in the short run after the main CA shock,

which contradicts the data and the full-shock model. In addition, consumption and in-

vestment display some irregular dynamics not observed in the empirical, full-shock, and

single relative demand shock scenarios.

Overall, our max-share SVAR identification of model-simulated data demonstrates the

unique role of the relative demand shock in shaping the joint dynamics of the current

account and other macro variables.

16The transitory exchange depreciation is mainly a result of a negative capital flow shock, which has
been shown highly correlated with the dominant empirical CA driver in Table 3.
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Figure 7: Impulse Responses to the Dominant CA Shock from Simulated Data with only
the Relative Demand Shock

Notes: Point-wise median impulse responses to the dominant business cycle frequency exchange rate shock
with 68% (dark gray) and 90% (light gray) highest posterior density credible sets based on 1000 draws.
An increase in the nominal exchange rate is a depreciation.

4.5 Discussion

We find that for the US and also for the other G7 countries, relative demand shocks play an

important role in accounting for current account fluctuations at business cycle frequency.

The dominant CA shock is characterized by an increase in the current account balance

and an exchange rate appreciation, which implies a shift in preferences for domestic over

foreign goods, thereby more than offsetting a potential expenditure switching effect from

other underlying structural shocks. Conventional aggregate shocks, be they demand or
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supply, will work through the expenditure switching channel and thus do not induce the

observed comovement that is generated by the dominant CA shock. The relative demand

shock’s importance is reminiscent of the thesis of Stockman and Tesar (1995) that taste

shocks are needed to bring about data-consistent comovements between consumption and

prices in open-economy real business cycle models.

Ironically, the role of relative demand shocks seems to diminish in the long term,

though with some heterogeneity. In the case of the US, the long-run dominant CA shock

brings about an increase in the current account balance and exchange rate depreciation.

The resurgence of the expenditure switching effect in the long run could be due to the

low persistence of the relative demand shock, the lagged supply response to the persistent

relative demand shock, which allows the expenditure switching channel to resurface, or the

combination of both. The lagged supply response appears consistent with the recovery of

investment over the medium term, even in response to the dominant CA shock at business

cycle frequency.

5 Conclusion

Although current account imbalances frequently capture economic and political attention,

their primary drivers remain elusive. This paper narrows this knowledge gap by empirically

documenting the dominant CA shocks and comparing them with the shocks uncovered

from an open-economy DSGE model, focusing on seven advanced economies.

We estimated the dominant CA shocks at business cycle frequency and over the long

run using the max-share identification that places minimal restriction on the data. Our

findings contradict the belief in the expenditure-switching effects dominate in the short

term: associated with higher (smaller) current account surpluses (deficits), we often ob-

serve the real exchange rate appreciating or remaining relatively stable rather than depre-

ciating. In addition, these dominant CA shocks are frequently associated with reductions

in consumption and investment expenditure in the near to medium term, albeit with some
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cross-country heterogeneity.

By employing a DSGE model for our analysis, we shed light on the structural factors

that help to interpret the dominant CA shock. A key result is the pivotal role of relative

demand shocks driving the dominant CA shock. The relative demand shock is closely

correlated with the dominant CA shock, when the estimated shock series are regressed on

one another. When we apply the max-share identification to the simulated data generated

only on the basis of the relative demand shock, the dominant CA shock uncovered from

the simulated data exhibits impulse responses that come close to those of the dominant

CA shock uncovered from the actual data.

These results, of course, do not imply that traditional aggregate shocks play no sig-

nificant roles in current account movements, as they will be key factors behind current

account movements orthogonal to the main CA shock. Current account movements are

bound to reflect all major shocks, when consumption, saving, and investment are deter-

mined by the interaction of all shocks. Rather, the results highlight the importance of

relative demand, which has hitherto received little attention in the literature on current

account determinants.

Several extensions can be considered for future research. First, the model’s data-

matching ability and explanatory power can be strengthened by adding additional struc-

tures (e.g. consumption habits and non-tradables) or by deconstructing relative demand

shocks into more primitive shocks. Second, models better suited for long-run analyses

can be developed to interpret the dominant long-run CA shock. Third, in emerging mar-

kets that include commodity exporters and countries actively engaged in foreign exchange

interventions, different factors might emerge behind the dominant CA shock.
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Appendices

A Data

Table A.1: Data Description, Sources and Coverage

Variable Description Source Sample

Baseline Variables
Consumption Real private consumption IMF Global Data Source 1975q1 - 2022q3

Investment
Real gross fixed capital
formation

IMF Global Data Source 1975q1 - 2022q3

Nominal Exchange
Rates

Bilateral USD exchange rates:
Foreign Exchange Rates H.10

Board of Governors of the
Federal Reserve System

1975q1 - 2022q3

Current Account

Sum of net primary income,
net secondary income and
net exports, all in % of GDP,
seasonally adjusted

IMF International
Financial Statistics

1975q1 - 2022q3

Interest Rates

1 month deposit rates:
ECCAD1M, ECFFR1M,
ECITL1M, ECWGM1M,
ECJAP1M, ECUKP1M,
ECUSD1M

Refinitiv Eikon
Datastream

1975q1 - 2022q3

CPI Consumer Price Index IMF Global Data Source 1975q1 - 2022q3
Utilization-adjusted
US TFP

Fernald (2014) Fernald’s webpage 1975q1 - 2022q3

Additional Variables

BOGZ1FL072052006Q Effective Federal Funds Rate FRED 1975q1 - 2022q3
Exports Real exports (s.a.) IMF Global Data Source 1975q1 - 2022q3
Imports Real imports (s.a.) IMF Global Data Source 1975q1 - 2022q3
Utilization-adjusted
TFP (DE, FR, IT, UK)

Schmidt et al. (2021) Elstner’s webpage 1991q1 - 2019q4

TFP Canada Cao (2021) Cao’s webpage 1976q1 - 2018q3

Current Account
Japan

Sum of net primary income,
net secondary income and
net exports, all in % of GDP,
seasonally adjusted

CEIC Data
Global Database

1975q1 - 2022q3

The interest rate data from Refinitiv Eikon Datastream are midpoint of the offer and

bid rates. The quarterly nominal exchange rates are calculated as the end-of-period daily

rates from the Fed Board. The weights for each country to calculate the G6 averages are

yearly world trade weights taken from the IMF Direction of Trade Statistics. To calculate

the averages for the nominal exchange rate, consumption, investment, the interest rate
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and CPI, we calculate a geometric average, e.g. as cpiG6 = Π6
j=1(1 + cpij)

weightj for the

average G6 CPI and iG6 = Π6
j=1(1 + ij/100)

weightj − 1 for the average G6 interest rate.

The interest rate differential for country j is calculated as log((1 + ij/100)/log(1 + iG6))

and the CPI differential as log(CPIj/CPIG6).
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B Empirical Part - Additional Results

B.1 Additional US Results

B.1.1 Forecast Error Variance Decomposition

Figure B.1: Forecast Error Variance Decomposition for the Dominant Business Cycle
Exchange Rate Shock

Notes: Forecast error variance decomposition with 68% highest posterior density credible sets based on
1000 draws.
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Figure B.2: Forecast Error Variance Decomposition for the Dominant Business Cycle CA
Shock

Notes: Forecast error variance decomposition with 68% highest posterior density credible sets based on
1000 draws. Note the different y-axis scales.
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Figure B.3: Forecast Error Variance Decomposition for the Dominant Long Run CA Shock

Notes: Forecast error variance decomposition with 68% highest posterior density credible sets based on
1000 draws.
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B.1.2 Different Exchange Rate Variables: Dominant Business Cycle Frequency CA

Shock

Figure B.4: Impulse Responses to the Dominant Business Cycle Frequency CA Shock:
Real Exchange Rate

Notes: Point-wise median impulse responses with 68% (dark gray) and 90% (light gray) highest posterior
density credible sets based on 1000 draws. An increase in the real exchange rate is a depreciation vs. G6
countries’ currencies. The interest rate and CPI differential are expressed as US vs. G6. G6 countries
include Canada, France, Germany, Italy, Japan and the UK.
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Figure B.5: Impulse Responses to the Dominant Business Cycle CA Shock: Nominal Eff.
Exchange Rate

Notes: Notes: Point-wise median impulse responses with 68% (dark gray) and 90% (light gray) highest
posterior density credible sets based on 1000 draws. An increase in the nominal effective exchange rate
vs. 51 countries is a depreciation. The interest rate and CPI differential are expressed as US vs. G6. G6
countries include Canada, France, Germany, Italy, Japan and the UK.
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B.1.3 Different Exchange Rate Variables: Dominant Long Run CA Shock

Figure B.6: Impulse Responses to the Dominant Long Run CA Shock: Real Exchange
Rate

Notes: Point-wise median impulse responses with 68% (dark gray) and 90% (light gray) highest posterior
density credible sets based on 1000 draws. An increase in the real exchange rate is a depreciation vs. G6
countries’ currencies. The interest rate and CPI differential are expressed as US vs. G6. G6 countries
include Canada, France, Germany, Italy, Japan and the UK.
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Figure B.7: Impulse Responses to the Dominant Long Run CA Shock: Nominal Eff.
Exchange Rate

Notes: Notes: Point-wise median impulse responses with 68% (dark gray) and 90% (light gray) highest
posterior density credible sets based on 1000 draws. An increase in the nominal effective exchange rate
vs. 51 countries is a depreciation. The interest rate and CPI differential are expressed as US vs. G6. G6
countries include Canada, France, Germany, Italy, Japan and the UK.
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B.1.4 Further US Specifications: Dominant Business Cycle Frequency CA Shock

Figure B.8: Impulse Responses to the Dominant Business Cycle CA Shock: Total Exports
and Imports Added

Notes: Point-wise median impulse responses with 68% (dark gray) and 90% (light gray) highest posterior
density credible sets based on 1000 draws. An increase in the nominal exchange rate is a depreciation.
The interest rate and CPI differential are expressed as US vs. G6. G6 countries include Canada, France,
Germany, Italy, Japan and the UK.
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Figure B.9: Impulse Responses to the Dominant Business Cycle CA Shock: Exports/Im-
ports Ratio Added

Notes: Point-wise median impulse responses with 68% (dark gray) and 90% (light gray) highest posterior
density credible sets based on 1000 draws. An increase in the nominal exchange rate is a depreciation.
The interest rate and CPI differential are expressed as US vs. G6. G6 countries include Canada, France,
Germany, Italy, Japan and the UK.
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Figure B.10: Impulse Responses to the Dominant Business Cycle CA Shock: CPI and
Interest Rate Level

Notes: Point-wise median impulse responses with 68% (dark gray) and 90% (light gray) highest posterior
density credible sets based on 1000 draws. An increase in the nominal exchange rate is a depreciation.
The interest rate and CPI differential are expressed as US vs. G6. G6 countries include Canada, France,
Germany, Italy, Japan and the UK.
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Figure B.11: Impulse Responses to the Dominant Business Cycle CA Shock: Federal
Funds Rate Added

Notes: Point-wise median impulse responses with 68% (dark gray) and 90% (light gray) highest posterior
density credible sets based on 1000 draws. An increase in the nominal exchange rate is a depreciation.
The interest rate and CPI differential are expressed as US vs. G6. G6 countries include Canada, France,
Germany, Italy, Japan and the UK.
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Figure B.12: Impulse Responses to the Dominant Business Cycle CA Shock: Sample ends
in 2019q4

Notes: Point-wise median impulse responses with 68% (dark gray) and 90% (light gray) highest posterior
density credible sets based on 1000 draws. An increase in the nominal exchange rate is a depreciation.
The interest rate and CPI differential are expressed as US vs. G6. G6 countries include Canada, France,
Germany, Italy, Japan and the UK.
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Figure B.13: Impulse Responses to the Dominant Business Cycle CA Shock: Sample ends
in 2007q4

Notes: Point-wise median impulse responses with 68% (dark gray) and 90% (light gray) highest posterior
density credible sets based on 1000 draws. An increase in the nominal exchange rate is a depreciation.
The interest rate and CPI differential are expressed as US vs. G6. G6 countries include Canada, France,
Germany, Italy, Japan and the UK.
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Figure B.14: Impulse Responses to the Dominant Business Cycle CA Shock: Estimation
via Lenza-Primiceri (2021) algorithm

Notes: The reduced-form VAR is estimated as in Lenza and Primiceri (2022); Giannone et al. (2015) by
downweighing the importance of observations during the Covid period and selecting the Minnesota prior
parameters via prior hyper-parameters to maximize the marginal data density. Point-wise median impulse
responses with 68% (dark gray) and 90% (light gray) highest posterior density credible sets based on 1000
draws. An increase in the nominal exchange rate is a depreciation. The interest rate and CPI differential
are expressed as US vs. G6. G6 countries include Canada, France, Germany, Italy, Japan and the UK.
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Figure B.15: Impulse Responses to the Dominant Business Cycle CA Shock: Lag Length
of 8 Quarters

Notes: Point-wise median impulse responses with 68% (dark gray) and 90% (light gray) highest posterior
density credible sets based on 1000 draws. An increase in the nominal exchange rate is a depreciation.
The interest rate and CPI differential are expressed as US vs. G6. G6 countries include Canada, France,
Germany, Italy, Japan and the UK.

61



B.1.5 Further US Specifications: Related Dominant Business Cycle Frequency Shocks

Figure B.16: Impulse Responses to the Dominant Business Cycle Net Exports Shock

Notes: The shock is identified as maximizing the explained variation of US net exports/GDP at business
cycle frequency. Point-wise median impulse responses with 68% (dark gray) and 90% (light gray) highest
posterior density credible sets based on 1000 draws. An increase in the nominal exchange rate is a
depreciation. The interest rate and CPI differential are expressed as US vs. G6. G6 countries include
Canada, France, Germany, Italy, Japan and the UK.
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Figure B.17: Impulse Responses to the Dominant Business Cycle Income Balance Shock

Notes: The shock is identified as maximizing the explained variation of the US income balance/GDP at
business cycle frequency. Point-wise median impulse responses with 68% (dark gray) and 90% (light gray)
highest posterior density credible sets based on 1000 draws. An increase in the nominal exchange rate is
a depreciation. The interest rate and CPI differential are expressed as US vs. G6. G6 countries include
Canada, France, Germany, Italy, Japan and the UK.
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Figure B.18: Impulse Responses to the Dominant Business Cycle Export/Import Ratio
Shock

Notes: The shock is identified as maximizing the explained variation of US total exports over total imports
at business cycle frequency. Point-wise median impulse responses with 68% (dark gray) and 90% (light
gray) highest posterior density credible sets based on 1000 draws. An increase in the nominal exchange
rate is a depreciation. The interest rate and CPI differential are expressed as US vs. G6. G6 countries
include Canada, France, Germany, Italy, Japan and the UK.
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Figure B.19: Impulse Responses to the Dominant Business Cycle (Consumption) Shock

Notes: The shock is identified as maximizing the explained variation of US consumption at business
cycle frequency. Point-wise median impulse responses with 68% (dark gray) and 90% (light gray) highest
posterior density credible sets based on 1000 draws. An increase in the nominal exchange rate is a
depreciation. The interest rate and CPI differential are expressed as US vs. G6. G6 countries include
Canada, France, Germany, Italy, Japan and the UK.
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B.1.6 Additional Country Results: Dominant Business Cycle Frequency CA Shocks

for other G7 Countries

Figure B.20: Impulse Responses to the Dominant Business Cycle CA Shock: Canada

Notes: Point-wise median impulse responses with 68% (dark gray) and 90% (light gray) highest posterior
density credible sets based on 1000 draws. An increase in the nominal exchange rate is a depreciation.
The interest rate and CPI differential are expressed as US vs. G6. G6 countries include France, Germany,
Italy, Japan, the UK and the US.
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Figure B.21: Impulse Responses to the Dominant Business Cycle CA Shock: France

Notes: Point-wise median impulse responses with 68% (dark gray) and 90% (light gray) highest posterior
density credible sets based on 1000 draws. An increase in the nominal exchange rate is a depreciation.
The interest rate and CPI differential are expressed as US vs. G6. G6 countries include Canada, Germany,
Italy, Japan, the UK and the US.
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Figure B.22: Impulse Responses to the Dominant Business Cycle CA Shock: Germany

Notes: Point-wise median impulse responses with 68% (dark gray) and 90% (light gray) highest posterior
density credible sets based on 1000 draws. An increase in the nominal exchange rate is a depreciation.
The interest rate and CPI differential are expressed as US vs. G6. G6 countries include Canada, France,
Italy, Japan, the UK and the US.
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Figure B.23: Impulse Responses to the Dominant Business Cycle CA Shock: Italy

Notes: Point-wise median impulse responses with 68% (dark gray) and 90% (light gray) highest posterior
density credible sets based on 1000 draws. An increase in the nominal exchange rate is a depreciation.
The interest rate and CPI differential are expressed as US vs. G6. G6 countries include Canada, France,
Germany, Japan, the UK and the US.
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Figure B.24: Impulse Responses to the Dominant Business Cycle CA Shock: Japan

Notes: Point-wise median impulse responses with 68% (dark gray) and 90% (light gray) highest posterior
density credible sets based on 1000 draws. An increase in the nominal exchange rate is a depreciation.
The interest rate and CPI differential are expressed as US vs. G6. G6 countries include Canada, France,
Germany, Italy, the UK and the US.
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Figure B.25: Impulse Responses to the Dominant Business Cycle CA Shock: UK

Notes: Point-wise median impulse responses with 68% (dark gray) and 90% (light gray) highest posterior
density credible sets based on 1000 draws. An increase in the nominal exchange rate is a depreciation.
The interest rate and CPI differential are expressed as US vs. G6. G6 countries include Canada, France,
Germany, Italy, Japan, and the US.
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B.1.7 Additional Country Results: Dominant Business Cycle Frequency CA Shocks

for other G7 Countries Including TFP

Figure B.26: Impulse Responses to the Dominant Business Cycle CA Shock including
TFP: Canada

Notes: Point-wise median impulse responses with 68% (dark gray) and 90% (light gray) highest posterior
density credible sets based on 1000 draws. An increase in the nominal exchange rate is a depreciation.
The interest rate and CPI differential are expressed as US vs. G6. G6 countries include France, Germany,
Italy, Japan, the UK and the US. Sample 1976q1 - 2018q3.
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Figure B.27: Impulse Responses to the Dominant Business Cycle CA Shock including
TFP: France

Notes: Point-wise median impulse responses with 68% (dark gray) and 90% (light gray) highest posterior
density credible sets based on 1000 draws. An increase in the nominal exchange rate is a depreciation.
The interest rate and CPI differential are expressed as US vs. G6. G6 countries include Canada, Germany,
Italy, Japan, the UK and the US. Sample 1991q1 - 2019q4.
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Figure B.28: Impulse Responses to the Dominant Business Cycle CA Shock including
TFP: Germany

Notes: Point-wise median impulse responses with 68% (dark gray) and 90% (light gray) highest posterior
density credible sets based on 1000 draws. An increase in the nominal exchange rate is a depreciation.
The interest rate and CPI differential are expressed as US vs. G6. G6 countries include Canada, France,
Italy, Japan, the UK and the US. Sample 1991q1 - 2019q4.
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Figure B.29: Impulse Responses to the Dominant Business Cycle CA Shock including
TFP: Italy

Notes: Point-wise median impulse responses with 68% (dark gray) and 90% (light gray) highest posterior
density credible sets based on 1000 draws. An increase in the nominal exchange rate is a depreciation.
The interest rate and CPI differential are expressed as US vs. G6. G6 countries include Canada, France,
Germany, Japan, the UK and the US. Sample 1991q1 - 2019q4.
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Figure B.30: Impulse Responses to the Dominant Business Cycle CA Shock including
TFP: UK

Notes: Point-wise median impulse responses with 68% (dark gray) and 90% (light gray) highest posterior
density credible sets based on 1000 draws. An increase in the nominal exchange rate is a depreciation.
The interest rate and CPI differential are expressed as US vs. G6. G6 countries include Canada, France,
Germany, Italy, Japan and the US. Sample 1991q1 - 2019q4.
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B.1.8 Additional Country Results: Dominant Long Run CA Shocks for other G7 Coun-

tries

Figure B.31: Impulse Responses to the Dominant Long Run CA Shocks for G7 Countries
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Figure B.32: Impulse Responses to the Dominant Long Run CA Shock: Canada

Notes: Point-wise median impulse responses with 68% (dark gray) and 90% (light gray) highest posterior
density credible sets based on 1000 draws. An increase in the nominal exchange rate is a depreciation.
The interest rate and CPI differential are expressed as US vs. G6. G6 countries include France, Germany,
Italy, Japan, the UK and the US.
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Figure B.33: Impulse Responses to the Dominant Long Run CA Shock: France

Notes: Point-wise median impulse responses with 68% (dark gray) and 90% (light gray) highest posterior
density credible sets based on 1000 draws. An increase in the nominal exchange rate is a depreciation.
The interest rate and CPI differential are expressed as US vs. G6. G6 countries include Canada, Germany,
Italy, Japan, the UK and the US.
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Figure B.34: Impulse Responses to the Dominant Long Run CA Shock: Germany

Notes: Point-wise median impulse responses with 68% (dark gray) and 90% (light gray) highest posterior
density credible sets based on 1000 draws. An increase in the nominal exchange rate is a depreciation.
The interest rate and CPI differential are expressed as US vs. G6. G6 countries include Canada, France,
Italy, Japan, the UK and the US.
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Figure B.35: Impulse Responses to the Dominant Long Run CA Shock: Italy

Notes: Point-wise median impulse responses with 68% (dark gray) and 90% (light gray) highest posterior
density credible sets based on 1000 draws. An increase in the nominal exchange rate is a depreciation.
The interest rate and CPI differential are expressed as US vs. G6. G6 countries include Canada, France,
Germany, Japan, the UK and the US.
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Figure B.36: Impulse Responses to the Dominant Long Run CA Shock: Japan

Notes: Point-wise median impulse responses with 68% (dark gray) and 90% (light gray) highest posterior
density credible sets based on 1000 draws. An increase in the nominal exchange rate is a depreciation.
The interest rate and CPI differential are expressed as US vs. G6. G6 countries include Canada, France,
Germany, Italy, the UK and the US.
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Figure B.37: Impulse Responses to the Dominant Long Run CA Shock: the UK

Notes: Point-wise median impulse responses with 68% (dark gray) and 90% (light gray) highest posterior
density credible sets based on 1000 draws. An increase in the nominal exchange rate is a depreciation.
The interest rate and CPI differential are expressed as US vs. G6. G6 countries include Canada, France,
Germany, Italy, Japan and the US.

83



Figure B.38: Empirical to Model Shock Series Comparison: US
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B.2 The Full Quantitative Model

B.2.1 Case of the United States

We adapt the full-fledged model in Itskhoki and Mukhin (2021) by replacing the Kimball

consumption function with a CES function and removing the wage rigidity. We direct

readers to the online appendix of the IM paper for a more comprehensive understanding

of the model details.

The conditions in our model are presented in a conventional manner: a set of equa-

tions corresponding to an equivalent number of endogenous variables. Specifically, the

equilibrium is defined over 46 stationary endogenous variables:

ct : Final good consumption for Home

c∗t : Final good consumption for Foreign

lt : Domestic Labor input

l∗t : Foreign Labor input

wt : Domestic real wages

w∗
t : Foreign real wages

mct : Real marginal cost of home goods production

mc∗t : Real marginal cost of foreign goods production

kt : Pre-determined Home capital stock at period t

k∗t : Pre-determined Foreign capital stock at period t

zt : Domestic gross investment

z∗t : Foreign gross investment

yt : Domestic Output

y∗t : Foreign Output

yHt : Domestic demand for home goods
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y∗Ht : Foreign demand for home goods

yFt : Domestic demand for Foreign goods

y∗Ft : Foreign demand for Foreign goods

pHt : Relative price of home produced goods to home final goods

p∗Ht : Relative price of home produced goods to foreign final goods

pFt : Relative price of foreign produced good to home final goods

p∗Ft : Relative price of foreign produced good to foreign final goods

xt : Domestic intermediate goods

x∗t : Foreign intermediate goods

it : Home nominal interest rate

i∗t : Foreign nominal interest rate

rkt : Domestic real capital rental price

rk∗t : Foreign real capital rental price

bt : Real net foreign asset position of Home, bt =
Bt

P̄ Ȳ

nxt : Real net exports for Home, nxt =
NXt

P̄ Ȳ

πt : Home CPI inflation

πHt : Home PPI inflation

π∗
Ht : PPI of Home exports

πFt : Home imports inflation

π∗
Ft : Foreign PPI inflation

∆et : et − et−1 Exchange rate depreciation of Home currency

qt : Real exchange rate

st : Terms of trade

at : Domestic TFP
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a∗t : Foreign TFP

ψt : Noise traders’ demand over foreign assets

Ωt : Home Aggregate Demand shifter

Ω∗
t : Foreign Aggregate Demand shifter

vt : Domestic nominal interest rate shifter

v∗t : Foreign nominal interest rate shifter

γt : Expenditure share of home goods in Foreign’s consumption basket

satisfying the following 33 equilibrium conditions

Domestic Households’ Problem:

σct + νlt = wt (C.1)

ct = Etct+1 −
1

σ
(it − Etπt+1) +

1

σ
(1− ρΩ)Ωt (C.2)

−σct + κδzt − κδkt = −σEtct+1 + βκδEtzt+1 − βκδkt+1 + Etβ(
1

β
− 1 + δ)rkt+1 (C.3)

kt+1 = δzt + (1− δ)kt (C.4)

Foreign Households’ Problem:

σc∗t + νl∗t = w∗
t (C.5)

c∗t = Etc
∗
t+1 −

1

σ
(i∗t − Etπ

∗
t+1) +

1

σ
(1− ρ∗Ω)Ω

∗
t (C.6)

−σc∗t + κδz∗t − κδk∗t = −σEtc∗t+1 + βκδEtz
∗
t+1 − βκδk∗t+1 + Etβ(

1

β
− 1 + δ)rk∗t+1 (C.7)

k∗t+1 = δz∗t + (1− δ)k∗t (C.8)
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Domestic Firms’ Problem:

wt + lt = mct + yt (C.9)

rkt + kt = mct + yt (C.10)

xt = mct + yt (C.11)

yt = (1− ϕ)at + (1− ϕ)ϑkt + (1− ϕ)(1− ϑ)lt + ϕxt (C.12)

Foreign Firms’ Problem:

w∗
t + l∗t = mc∗t + y∗t (C.13)

rk∗t + k∗t = mc∗t + y∗t (C.14)

x∗t = mc∗t + y∗t (C.15)

y∗t = (1− ϕ)a∗t + (1− ϕ)ϑk∗t + (1− ϕ)(1− ϑ)l∗t + ϕx∗t (C.16)

Market Clearing of Home Goods:

yt = (1− γ)yHt + γy∗Ht (C.17)

yHt = ϕmct + ϕyt − θpHt + (1− ϕ)dct + (1− ϕ)(1− d)zt (C.18)

y∗Ht = ϕmc∗t + ϕy∗t − θp∗Ht + (1− ϕ)dc∗t + (1− ϕ)(1− d)z∗t + (γt − γ)/γ (C.19)

(1− γ)pHt + γpFt = 0 (C.20)

Market Clearing of Foreign Goods:

y∗t = (1− γ)y∗Ft + γyFt (C.21)

y∗Ft = ϕmc∗t + ϕy∗t − θp∗Ft + (1− ϕ)dc∗t + (1− ϕ)(1− d)z∗t − (γt − γ)/γ (C.22)

yFt = ϕmct + ϕyt − θpFt + (1− ϕ)dct + (1− ϕ)(1− d)zt (C.23)

(1− γ)p∗Ht + γp∗Ft = 0 (C.24)
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Home Resource Constraint:

βbt − bt−1 = nxt (C.25)

nxt =
γ

1− ϕ
(y∗Ht − yFt − st) (C.26)

Domestic Interest Rate Rule:

it = ρmit−1 + (1− ρm)ϕππt + vt (C.27)

Foreign Interest Rate Rule:

i∗t = ρ∗mi
∗
t−1 + (1− ρ∗m)ϕ

∗
ππt + v∗t (C.28)

Definition of Terms of Trade:

st = pFt − qt − p∗Ht (C.29)

Definition of Nominal Exchange Depreciation:

∆et = qt − qt−1 + πt − π∗
t (C.30)

NKPC for Home Goods in Home:

πHt = pHt − pHt−1 + πt (C.31)

πHt = κp(mct − pHt) + βEtπHt+1 (C.32)
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NKPC for Home’s Exports:

π∗
Ht = p∗Ht − p∗Ht−1 + π∗

t (C.33)

PCP: π∗
Ht +∆et = κp(mct − qt − p∗Ht) + βEt(π

∗
Ht+1 +∆et+1)

LCP: π∗
Ht = κp(mct − qt − p∗Ht) + βEtπ

∗
Ht+1 (C.34)

NKPC for Foreign Goods in Foreign:

π∗
Ft = p∗Ft − p∗Ft−1 + π∗

t (C.35)

π∗
Ft = κp(mc

∗
t − p∗Ft) + βEtπ

∗
Ft+1 (C.36)

NKPC for Foreign’s Exports:

πFt = pFt − pFt−1 + πt (C.37)

PCP: : πFt −∆et = κp(mc
∗
t − pFt + qt) + βEt(πFt+1 −∆et+1)

LCP: πFt = κp(mc
∗
t − pFt + qt) + βEtπFt+1 (C.38)

Shock Processes:

ψt = ρψψt−1 + ϵψt (C.39)

at = ρaat−1 + ϵat (C.40)

a∗t = ρ∗aa
∗
t−1 + ϵ∗at (C.41)

Ωt = ρΩΩt−1 + ϵΩt (C.42)

Ω∗
t = ρ∗ΩΩ

∗
t−1 + ϵ∗Ωt (C.43)

vt = ρvvt−1 + ϵvt (C.44)

v∗t = ρvv
∗
t−1 + ϵ∗vt (C.45)

γt = (1− ργ)γ + ργγt−1 + ϵγ,t (C.46)
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Note: We linearize our model around the symmetric steady state where PH = PF =

P ∗
H = P ∗

F = Q = 1 and B = B∗ = N̄X = 0. The parameter d ≡ 1 − ϑδ
( 1
β
−1+δ)

is the

steady-state share of consumption in GDP.

B.3 Model Fit
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B.4 FEVD: G6

Figure B.40: FEVD of the Nominal Exchange Rate Fluctuation ∆et: G6
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Figure B.39: FEVD of the Current Account Dynamics ∆nxt: G6
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B.5 IRFs of Individual Structural Shocks for the US

Figure B.41: Impulse-Responses of the TFP Shock

Point-wise median impulse responses with 90% highest posterior density credible sets based
on 100000 draws. An increase in the real exchange rate is a depreciation. The interest rat
and CPI differentials are expressed as US vs. G6. G6 countries include France, Germany,
Italy, Japan, the UK and the US.
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Figure B.42: Impulse-Responses of the Foreign TFP Shock

Point-wise median impulse responses with 90% highest posterior density credible sets based
on 100000 draws. An increase in the real exchange rate is a depreciation. The interest rat
and CPI differentials are expressed as US vs. G6. G6 countries include France, Germany,
Italy, Japan, the UK and the US.
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Figure B.43: Impulse-Responses of the Capital Flow Shock

Point-wise median impulse responses with 90% highest posterior density credible sets based
on 100000 draws. An increase in the real exchange rate is a depreciation. The interest rat
and CPI differentials are expressed as US vs. G6. G6 countries include France, Germany,
Italy, Japan, the UK and the US.

97



Figure B.44: Impulse-Responses of the Aggregate Demand Shock

Point-wise median impulse responses with 90% highest posterior density credible sets based
on 100000 draws. An increase in the real exchange rate is a depreciation. The interest rat
and CPI differentials are expressed as US vs. G6. G6 countries include France, Germany,
Italy, Japan, the UK and the US.
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Figure B.45: Impulse-Responses of the Foreign Aggregate Demand Shock

Point-wise median impulse responses with 90% highest posterior density credible sets based
on 100000 draws. An increase in the real exchange rate is a depreciation. The interest rat
and CPI differentials are expressed as US vs. G6. G6 countries include France, Germany,
Italy, Japan, the UK and the US.
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Figure B.46: Impulse-Responses of the Monetary Policy Shock

Point-wise median impulse responses with 90% highest posterior density credible sets based
on 100000 draws. An increase in the real exchange rate is a depreciation. The interest rat
and CPI differentials are expressed as US vs. G6. G6 countries include France, Germany,
Italy, Japan, the UK and the US.
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Figure B.47: Impulse-Responses of the Foreign Monetary Policy Shock

Point-wise median impulse responses with 90% highest posterior density credible sets based
on 100000 draws. An increase in the real exchange rate is a depreciation. The interest rat
and CPI differentials are expressed as US vs. G6. G6 countries include France, Germany,
Italy, Japan, the UK and the US.
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Figure B.48: Impulse-Responses of the Relative Demand Shock

Point-wise median impulse responses with 90% highest posterior density credible sets based
on 100000 draws. An increase in the real exchange rate is a depreciation. The interest rat
and CPI differentials are expressed as US vs. G6. G6 countries include France, Germany,
Italy, Japan, the UK and the US.
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B.6 SVAR on Simulated Data

Figure B.49: Impulse Responses to the Dominant CA Shock from Simulated Data Shutting
off the Relative Demand Shock

Notes: Point-wise median impulse responses to the dominant business cycle frequency exchange rate shock
with 68% (dark gray) and 90% (light gray) highest posterior density credible sets based on 1000 draws.
An increase in the nominal exchange rate is a depreciation.

B.7 Estimation for G6 Countries
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Table B.2: Parameters Estimation: UK

Parameters Prior Mean Post. Mean Mode 90% HPD Interval Prior Prior stdev

γ 0.07 0.0133 0.014 [0.0097,0.0182] Beta 0.02
κ 8.7 7.6542 7.7059 [6.8347,8.5268] Normal 0.5
ϕπ 1.5 1.5164 1.51 [1.3433,1.6643] Normal 0.1
ϕ∗
π 1.5 1.6072 1.6113 [1.4647,1.7713] Normal 0.1
ϕy 0.5 0.4634 0.4585 [0.3727,0.5433] Normal 0.05
ϕ∗
y 0.5 0.4457 0.4434 [0.3607,0.5335] Normal 0.05
χ2 0.001 0.0012 0.0014 [0.0002,0.0026] Normal 0.001
ρa 0.6 0.6116 0.6114 [0.5321,0.6907] Beta 0.1
ρ∗a 0.6 0.5388 0.5352 [0.4691,0.5999] Beta 0.1
ρψ 0.6 0.7308 0.7206 [0.6566,0.7867] Beta 0.1
ρm 0.6 0.8995 0.8967 [0.8760,0.9176] Beta 0.1
ρ∗m 0.6 0.9138 0.9115 [0.8942,0.9303] Beta 0.1
ρv 0.6 0.3076 0.3125 [0.2440,0.3858] Beta 0.1
ρ∗v 0.6 0.1399 0.1459 [0.0941,0.1956] Beta 0.1
ρΩ 0.6 0.6336 0.6313 [0.5771,0.6913] Beta 0.1
ρ∗Ω 0.6 0.5901 0.5886 [0.5316,0.6462] Beta 0.1
ργ 0.6 0.4508 0.4554 [0.3623,0.5508] Beta 0.1
σa 0.01 0.0308 0.0309 [0.0265,0.0355] Inverse Gamma Inf
σ∗
a 0.01 0.032 0.0324 [0.0279,0.0364] Inverse Gamma Inf
σψ 0.01 0.0108 0.0114 [0.0086,0.0140] Inverse Gamma Inf
σv 0.01 0.0047 0.0047 [0.0040,0.0053] Inverse Gamma Inf
σ∗
v 0.01 0.0025 0.0026 [0.0023,0.0029] Inverse Gamma Inf
σΩ 0.01 0.0348 0.0352 [0.0322,0.0384] Inverse Gamma Inf
σ∗
Ω 0.01 0.0474 0.0479 [0.0436,0.0519] Inverse Gamma Inf
σγ 0.01 0.0055 0.0056 [0.0051,0.0060] Inverse Gamma Inf
ρa,a∗ 0.3 0.2135 0.2121 [0.1292,0.2973] Beta 0.1
ρv,v∗ 0.3 0.2209 0.2237 [0.1372,0.3109] Beta 0.1
ρΩ,Ω∗ 0.3 0.1782 0.1875 [0.1019,0.2699] Beta 0.1

Note: The posterior distribution is obtained using the Metropolis-Hastings algorithm.
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Table B.3: Parameters Estimation: DE

Parameters Prior Mean Post. Mean Mode 90% HPD Interval Prior Prior stdev

γ 0.07 0.0207 0.0209 [0.0167,0.0255] Beta 0.02
κ 8.7 8.027 7.9711 [7.1658,8.8764] Normal 0.5
ϕπ 1.5 1.5434 1.5447 [1.3829,1.7028] Normal 0.1
ϕ∗
π 1.5 1.5857 1.585 [1.4314,1.7534] Normal 0.1
ϕy 0.5 0.4778 0.4771 [0.3975,0.5644] Normal 0.05
ϕ∗
y 0.5 0.4422 0.4401 [0.3585,0.5244] Normal 0.05
χ2 0.001 0.0012 0.0013 [0.0002,0.0024] Normal 0.001
ρa 0.6 0.5842 0.5805 [0.5011,0.6562] Beta 0.1
ρ∗a 0.6 0.6269 0.6236 [0.5561,0.6877] Beta 0.1
ρψ 0.6 0.7122 0.7054 [0.6395,0.7755] Beta 0.1
ρm 0.6 0.9172 0.9153 [0.9003,0.9302] Beta 0.1
ρ∗m 0.6 0.8974 0.8933 [0.8721,0.9149] Beta 0.1
ρv 0.6 0.3001 0.3054 [0.2217,0.3819] Beta 0.1
ρ∗v 0.6 0.1364 0.1474 [0.0945,0.1982] Beta 0.1
ρΩ 0.6 0.5852 0.5807 [0.5166,0.6478] Beta 0.1
ρ∗Ω 0.6 0.5853 0.5826 [0.5264,0.6399] Beta 0.1
ργ 0.6 0.7106 0.7105 [0.6352,0.7927] Beta 0.1
σa 0.01 0.0251 0.0254 [0.0219,0.0287] Inverse Gamma Inf
σ∗
a 0.01 0.0262 0.0266 [0.0228,0.0305] Inverse Gamma Inf
σψ 0.01 0.0103 0.0106 [0.0080,0.0129] Inverse Gamma Inf
σv 0.01 0.0018 0.0019 [0.0017,0.0021] Inverse Gamma Inf
σ∗
v 0.01 0.0032 0.0033 [0.0029,0.0037] Inverse Gamma Inf
σΩ 0.01 0.0225 0.0227 [0.0209,0.0247] Inverse Gamma Inf
σ∗
Ω 0.01 0.0444 0.0446 [0.0410,0.0481] Inverse Gamma Inf
σγ 0.01 0.0039 0.0039 [0.0036,0.0042] Inverse Gamma Inf
ρa,a∗ 0.3 0.2044 0.2065 [0.1238,0.2867] Beta 0.1
ρv,v∗ 0.3 0.1931 0.2038 [0.1175,0.2910] Beta 0.1
ρΩ,Ω∗ 0.3 0.1873 0.1881 [0.1071,0.2692] Beta 0.1

Note: The posterior distribution is obtained using the Metropolis-Hastings algorithm.
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Table B.4: Parameters Estimation: FR

Parameters Prior Mean Post. Mean Mode 90% HPD Interval Prior Prior stdev

γ 0.07 0.0133 0.0135 [0.0095,0.0170] Beta 0.02
κ 8.7 7.5329 7.4602 [6.6109,8.3916] Normal 0.5
ϕπ 1.5 1.4876 1.4895 [1.3385,1.6620] Normal 0.1
ϕ∗
π 1.5 1.6083 1.6118 [1.4363,1.7682] Normal 0.1
ϕy 0.5 0.4774 0.4804 [0.3947,0.5573] Normal 0.05
ϕ∗
y 0.5 0.433 0.4374 [0.3527,0.5247] Normal 0.05
χ2 0.001 0.0013 0.0015 [0.0001,0.0027] Normal 0.001
ρa 0.6 0.5053 0.5117 [0.4172,0.6176] Beta 0.1
ρ∗a 0.6 0.5881 0.5826 [0.5144,0.6498] Beta 0.1
ρψ 0.6 0.7048 0.6972 [0.6312,0.7613] Beta 0.1
ρm 0.6 0.5381 0.5137 [0.4148,0.6019] Beta 0.1
ρ∗m 0.6 0.9218 0.9204 [0.9049,0.9355] Beta 0.1
ρv 0.6 0.155 0.1712 [0.1054,0.2353] Beta 0.1
ρ∗v 0.6 0.2396 0.2483 [0.1800,0.3249] Beta 0.1
ρΩ 0.6 0.4969 0.4948 [0.4139,0.5727] Beta 0.1
ρ∗Ω 0.6 0.5776 0.5748 [0.5178,0.6317] Beta 0.1
ργ 0.6 0.5728 0.5723 [0.4850,0.6566] Beta 0.1
σa 0.01 0.0251 0.025 [0.0221,0.0284] Inverse Gamma Inf
σ∗
a 0.01 0.0285 0.0289 [0.0248,0.0330] Inverse Gamma Inf
σψ 0.01 0.0098 0.0101 [0.0079,0.0125] Inverse Gamma Inf
σv 0.01 0.0132 0.0139 [0.0115,0.0163] Inverse Gamma Inf
σ∗
v 0.01 0.0022 0.0023 [0.0020,0.0025] Inverse Gamma Inf
σΩ 0.01 0.0218 0.0219 [0.0200,0.0239] Inverse Gamma Inf
σ∗
Ω 0.01 0.0448 0.0453 [0.0418,0.0491] Inverse Gamma Inf
σγ 0.01 0.0033 0.0034 [0.0031,0.0036] Inverse Gamma Inf
ρa,a∗ 0.3 0.2188 0.2221 [0.1366,0.3020] Beta 0.1
ρv,v∗ 0.3 0.2945 0.2913 [0.2020,0.3875] Beta 0.1
ρΩ,Ω∗ 0.3 0.1698 0.1791 [0.0988,0.2555] Beta 0.1

Note: The posterior distribution is obtained using the Metropolis-Hastings algorithm.
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Table B.5: Parameters Estimation: IT

Parameters Prior Mean Post. Mean Mode 90% HPD Interval Prior Prior stdev

γ 0.07 0.0183 0.0188 [0.0143,0.0231] Beta 0.02
κ 8.7 7.7623 7.7415 [6.8977,8.5769] Normal 0.5
ϕπ 1.5 1.585 1.5857 [1.4216,1.7380] Normal 0.1
ϕ∗
π 1.5 1.5954 1.5837 [1.4228,1.7378] Normal 0.1
ϕy 0.5 0.4969 0.4981 [0.4206,0.5758] Normal 0.05
ϕ∗
y 0.5 0.4353 0.4286 [0.3420,0.5261] Normal 0.05
χ2 0.001 0.0009 0.0012 [0.0001,0.0023] Normal 0.001
ρa 0.6 0.6614 0.6553 [0.5816,0.7302] Beta 0.1
ρ∗a 0.6 0.5644 0.5628 [0.5002,0.6343] Beta 0.1
ρψ 0.6 0.7227 0.7146 [0.6530,0.7839] Beta 0.1
ρm 0.6 0.4485 0.4376 [0.3411,0.5351] Beta 0.1
ρ∗m 0.6 0.9083 0.9035 [0.8845,0.9243] Beta 0.1
ρv 0.6 0.1477 0.1546 [0.0944,0.2090] Beta 0.1
ρ∗v 0.6 0.186 0.1948 [0.1283,0.2596] Beta 0.1
ρΩ 0.6 0.5918 0.5882 [0.5237,0.6532] Beta 0.1
ρ∗Ω 0.6 0.5713 0.5658 [0.5080,0.6254] Beta 0.1
ργ 0.6 0.7634 0.758 [0.6945,0.8255] Beta 0.1
σa 0.01 0.018 0.0183 [0.0158,0.0211] Inverse Gamma Inf
σ∗
a 0.01 0.0288 0.0292 [0.0253,0.0329] Inverse Gamma Inf
σψ 0.01 0.0098 0.0102 [0.0077,0.0125] Inverse Gamma Inf
σv 0.01 0.0155 0.016 [0.0134,0.0184] Inverse Gamma Inf
σ∗
v 0.01 0.0025 0.0026 [0.0023,0.0029] Inverse Gamma Inf
σΩ 0.01 0.0272 0.0274 [0.0248,0.0297] Inverse Gamma Inf
σ∗
Ω 0.01 0.0459 0.0463 [0.0423,0.0504] Inverse Gamma Inf
σγ 0.01 0.0036 0.0037 [0.0033,0.0040] Inverse Gamma Inf
ρa,a∗ 0.3 0.246 0.2478 [0.1574,0.3301] Beta 0.1
ρv,v∗ 0.3 0.1725 0.1796 [0.1027,0.2553] Beta 0.1
ρΩ,Ω∗ 0.3 0.1979 0.2039 [0.1239,0.2985] Beta 0.1

Note: The posterior distribution is obtained using the Metropolis-Hastings algorithm.
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Table B.6: Parameters Estimation: CAD

Parameters Prior Mean Post. Mean Mode 90% HPD Interval Prior Prior stdev

γ 0.07 0.0176 0.0181 [0.0139,0.0220] Beta 0.02
κ 8.7 7.6343 7.6256 [6.7728,8.5228] Normal 0.5
ϕπ 1.5 1.4178 1.4059 [1.2355,1.5714] Normal 0.1
ϕ∗
π 1.5 1.6175 1.6155 [1.4558,1.7735] Normal 0.1
ϕy 0.5 0.4617 0.4611 [0.3683,0.5513] Normal 0.05
ϕ∗
y 0.5 0.4439 0.4351 [0.3578,0.5271] Normal 0.05
χ2 0.001 0.0013 0.0015 [0.0002,0.0025] Normal 0.001
ρa 0.6 0.5501 0.5524 [0.4311,0.6813] Beta 0.1
ρ∗a 0.6 0.5437 0.5407 [0.4691,0.6098] Beta 0.1
ρψ 0.6 0.7655 0.7576 [0.6970,0.8209] Beta 0.1
ρm 0.6 0.9073 0.9038 [0.8848,0.9234] Beta 0.1
ρ∗m 0.6 0.9247 0.9212 [0.9040,0.9366] Beta 0.1
ρv 0.6 0.2332 0.2424 [0.1748,0.3105] Beta 0.1
ρ∗v 0.6 0.1353 0.146 [0.0927,0.1978] Beta 0.1
ρΩ 0.6 0.7452 0.7392 [0.6818,0.7959] Beta 0.1
ρ∗Ω 0.6 0.5954 0.5964 [0.5432,0.6515] Beta 0.1
ργ 0.6 0.6096 0.6061 [0.5288,0.6873] Beta 0.1
σa 0.01 0.038 0.0379 [0.0316,0.0443] Inverse Gamma Inf
σ∗
a 0.01 0.034 0.0346 [0.0294,0.0390] Inverse Gamma Inf
σψ 0.01 0.009 0.0094 [0.0069,0.0118] Inverse Gamma Inf
σv 0.01 0.004 0.0041 [0.0035,0.0047] Inverse Gamma Inf
σ∗
v 0.01 0.0024 0.0025 [0.0022,0.0028] Inverse Gamma Inf
σΩ 0.01 0.0228 0.0229 [0.0210,0.0250] Inverse Gamma Inf
σ∗
Ω 0.01 0.053 0.0535 [0.0492,0.0582] Inverse Gamma Inf
σγ 0.01 0.004 0.0041 [0.0038,0.0045] Inverse Gamma Inf
ρa,a∗ 0.3 0.2102 0.2146 [0.1222,0.3011] Beta 0.1
ρv,v∗ 0.3 0.3791 0.3755 [0.2762,0.4666] Beta 0.1
ρΩ,Ω∗ 0.3 0.1967 0.2033 [0.1193,0.2876] Beta 0.1

Note: The posterior distribution is obtained using the Metropolis-Hastings algorithm.
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Table B.7: Parameters Estimation: JP

Parameters Prior Mean Post. Mean Mode 90% HPD Interval Prior Prior stdev

γ 0.07 0.009 0.0093 [0.0068,0.0116] Beta 0.02
κ 8.7 7.9093 7.8827 [7.0552,8.7699] Normal 0.5
ϕπ 1.5 1.5345 1.539 [1.3891,1.6906] Normal 0.1
ϕ∗
π 1.5 1.5661 1.5722 [1.4271,1.7394] Normal 0.1
ϕy 0.5 0.4796 0.4824 [0.3991,0.5623] Normal 0.05
ϕ∗
y 0.5 0.4792 0.4756 [0.3944,0.5520] Normal 0.05
χ2 0.001 0.0014 0.0017 [0.0003,0.0029] Normal 0.001
ρa 0.6 0.5721 0.5697 [0.4885,0.6626] Beta 0.1
ρ∗a 0.6 0.5793 0.5754 [0.4929,0.6528] Beta 0.1
ρψ 0.6 0.7984 0.7878 [0.7252,0.8454] Beta 0.1
ρm 0.6 0.8604 0.8553 [0.8245,0.8831] Beta 0.1
ρ∗m 0.6 0.853 0.8479 [0.8180,0.8777] Beta 0.1
ρv 0.6 0.2232 0.2369 [0.1606,0.3159] Beta 0.1
ρ∗v 0.6 0.1949 0.21 [0.1247,0.2832] Beta 0.1
ρΩ 0.6 0.5132 0.5058 [0.4223,0.5905] Beta 0.1
ρ∗Ω 0.6 0.6224 0.6194 [0.5660,0.6770] Beta 0.1
ργ 0.6 0.8148 0.8138 [0.7492,0.8823] Beta 0.1
σa 0.01 0.0264 0.0265 [0.0227,0.0300] Inverse Gamma Inf
σ∗
a 0.01 0.0223 0.0225 [0.0194,0.0256] Inverse Gamma Inf
σψ 0.01 0.0102 0.0108 [0.0078,0.0140] Inverse Gamma Inf
σv 0.01 0.0037 0.0038 [0.0033,0.0044] Inverse Gamma Inf
σ∗
v 0.01 0.003 0.0031 [0.0027,0.0035] Inverse Gamma Inf
σΩ 0.01 0.0202 0.0204 [0.0187,0.0223] Inverse Gamma Inf
σ∗
Ω 0.01 0.028 0.0284 [0.0258,0.0311] Inverse Gamma Inf
σγ 0.01 0.0024 0.0025 [0.0022,0.0027] Inverse Gamma Inf
ρa,a∗ 0.3 0.2159 0.2193 [0.1309,0.3089] Beta 0.1
ρv,v∗ 0.3 0.2191 0.2186 [0.1221,0.3074] Beta 0.1
ρΩ,Ω∗ 0.3 0.1845 0.1902 [0.0945,0.2700] Beta 0.1

Note: The posterior distribution is obtained using the Metropolis-Hastings algorithm.
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