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Abstract

A growing number of central authorities use assignment mechanisms to allocate students to schools in a way that

reflects student preferences and school priorities. However, most real-world mechanisms give students an incentive to

be strategic and misreport their preferences. In this paper, we provide an identification approach for causal effects of

school assignment on future outcomes that accounts for strategic misreporting. Misreporting may invalidate existing

point-identification approaches, and we derive sharp bounds for causal effects that are robust to strategic behavior.

Our approach applies to any mechanism as long as there exist placement scores and cutoffs that characterize that

mechanism’s allocation rule. We use data from a deferred acceptance mechanism that assigns students to more

than 1,000 university-major combinations in Chile. Students behave strategically because the mechanism in Chile

constrains the number of majors that students submit in their preferences to eight options. Our methodology takes

that into account and partially identifies the effect of changes in school assignment on various graduation outcomes.
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1 Introduction

One of the most important decisions made by students is the choice of their fields and institu-

tions of education. Identification of the impact of such choices on future outcomes is a critical step

in the study of the decision process as well as public education policies. Causal effects of schooling

on outcomes may vary widely across economic agents because of heterogeneous skills and prefer-

ences. Moreover, individuals’ expectations about their potential returns trigger strategic choices

of schools. Heterogeneity and selection make identification of causal effects very challenging, es-

pecially when students face a large number of unordered options. On the positive side, a growing

number of schools use centralized assignment mechanisms that create credible instruments from

discontinuities that randomly assign comparable students into different schools (Kirkeboen et al.

(2016) and Abdulkadiroglu et al. (2022)). Discontinuities arise from unpredictable admission cut-

offs that characterize the matching of students to schools, which is generated by the assignment

mechanism.

Many centralized school assignment mechanisms produce a quasi-experimental design where

two groups of individuals share similar scores but are assigned into different schools, based on how

their scores relate to admission cutoffs. The assignment in a matching with cutoff characterization

depends on the student’s preferences over feasible schools. Unlike a typical regression discontinuity

(RD) design, this setting does not ensure that students on the same side of the cutoff have the

same assignment. For example, individuals with similar scores just above a certain cutoff may all

prefer to go to the same school a; however, they could have very different second-best options if

they were on the other side of that cutoff. In such a context, Kirkeboen et al. (2016) construct

comparable groups of individuals near a cutoff by controlling for local preferences; that is, by

selecting students whose preferences yield identical first- and second-best options, respectively, if

above and if below that cutoff. Controlling for local preferences that equal a pair of schools, e.g.,

(a, b), allows the RD to identify causal effects of changing school assignment from b to a, averaged

over individuals that prefer a over b. Although powerful, this relies on students reporting their true

preferences to the centralized mechanism. A natural question to ask is how often students submit

their true preferences. In fact, most real-world school assignment mechanisms create incentives

for misreporting preferences. Agarwal and Somaini (2018) and Fack et al. (2019) provide thorough

discussions with several real-world examples.

This paper derives sharp bounds on causal effects of school assignment on future outcomes

in mechanisms with a cutoff representation and students behaving strategically. We propose a

two-step identification approach that is robust to strategic reporting of preferences. In the first

step, the researcher partially identifies local preferences and constructs local-preference sets for

each student. We provide several tools for constructing these sets in the context of the student-

proposing deferred-acceptance (DA) mechanism, where constraints on submissions lead to strategic

behavior. Outside of that context, researchers may employ alternative tools to partially identify

local preferences as our second-step procedures do not require a particular method to be used in

the first-step. For example, the identification method of Agarwal and Somaini (2018) applies to a
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general class of mechanisms with cutoff representation that includes variants of the DA, Boston

mechanism, First Preferences First, Chinese Parallel Mechanism, etc. Finally, in the second step,

the researcher employs an RD identification strategy that controls for local-preference sets and

partially identifies causal effects of school assignment.

The strategic behavior of students depends on the characteristics of the assignment mechanism.

A mechanism is said to be strategy proof for students if submitting true preferences is a weakly

dominant strategy for all students. For example, Dubins and Freedman (1981) demonstrate that

the DA mechanism is strategy proof. However, this result breaks down when the mechanism

imposes constraints on students’ submissions. In many real-world school assignment mechanisms,

the number of schools is too large for students to feasibly rank all schools. The central authorities

running these systems may either limit the number of schools that students may rank or impose

costs on the number of schools submitted. See Table 1, Panel B by Fack et al. (2019) for examples.

Our first-step tools for partial identification of local preferences naturally require assumptions

on the strategic behavior of students. We motivate our assumptions after important contributions

of Haeringer and Klijn (2009). They study the game where students submit constrained preference

rankings and a central mechanism allocates students to schools. One of their important findings is

that it is rational for students to submit partial orders of their true preferences in some mechanisms.

Specifically, suppose a mechanism is strategy proof when students are free to rank any number of

schools, e.g., the unconstrained DA or Top Trading Cycles (TTC) mechanisms. Then, if preference

rankings are constrained to have at most K schools, a student can do no better than selecting K

schools among acceptable schools and ranking them according to the student’s true preferences.

The key assumption for our first-step methods is that students submit partial orders of their

preferences. That comes in addition to the cutoff characterization of the matching, which we as-

sume throughout the paper. Cutoff characterization means that students are matched to their best

feasible schools, where “best” is defined according to true preferences. A school is feasible for a stu-

dent if that student’s placement score clears the admission cutoff for that school. Our requirement

of cutoff characterization is satisfied when the matching outcome is stable (Azevedo and Leshno,

2016). Stability means that each student is matched to an acceptable school and better schools are

full with people that have better placement scores. In constrained DA and TTC mechanisms, sta-

bility occurs in Nash equilibrium of the preference revelation game under appropriate conditions on

the placement scores (Theorems 6.3 and 6.4, Haeringer and Klijn (2009)). Stability occurs in Nash

equilibrium without restrictions on scores in the constrained serial dictatorship (SD) mechanism,

which is a particular case of DA. We characterize sharp local-preference sets for every individual that

are compatible with the observed data and these model assumptions. Our random local-preference

sets contain the true local-preference random variable with probability one. We also show a way

to shrink these sets by imposing assumptions on students’ expectations regarding the outcome of

the match and by assuming students maximize expected utility in line with Agarwal and Somaini

(2018).

The form of our local-preference sets reveals two important implications for applied work. First,
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if we ignore strategic behavior and only control for reported local preferences, the RD strategy may

be inconsistent. The reason is that our local-preference sets change discontinuously at a cutoff

once we select individuals with the same reported local preferences. The problem is akin to the

manipulation problem in RD: we control for a variable that is manipulable, that is, reported

preferences. Second, suppose we select individuals with reported local preferences that equal a

given pair of schools (a, b) and see that local-preference sets are all singletons {(a, b)}; in other

words, our selection only contains individuals that do not manipulate. Even in this case, the RD

strategy that controls for reported local preferences may still be inconsistent. The reason is that

local-preference sets may well contain the pair (a, b) for someone whose reported local preferences

differ from (a, b). Thus, selecting individuals that report (a, b) that does select all individuals whose

true local preferences equal (a, b).

Our second-step approach relies on local-preference sets constructed in the first step, either

with our methods or alternative methods. Given interest in a pair of schools (a, b), we select all

individuals whose local-preference sets contain (a, b) and placement scores are close to the cutoff

for admission at school a. This sub-population of individuals contains all individuals whose true

local preferences equal (a, b), but also other individuals. The average outcome in the sub-population

equals a weighted average of two averages: first, the average outcome for individuals with true local

preferences (a, b), which is interesting for the identification of causal effects; and second, the average

outcome for individuals with true local preferences that differ from (a, b). We do not know which

individuals have preferences (a, b), but we do characterize sharp bounds on the proportion of such

individuals in the sub-population using the random sets constructed in the first step. Thus, our

setting fits the identification problem with corrupted data studied by Horowitz and Manski (1995).

This allows us to derive closed-form bounds on the first out of the two average outcomes above,

which then leads to bounds on average causal effects. The closed form provides intuition for cases

when the bounds become informative or are equal (i.e., point identification). Although practical

and intuitive, these closed-form bounds may not be sharp. We also characterize sharp bounds using

random set theory that are numerically computable when outcomes take finitely many values.

The combination of RD identification with school matching data has been popular among ap-

plied and theoretical researchers in economics (Jackson, 2010; Bertanha, 2020). To the best of

our knowledge, our paper is the first to prove RD identification of returns of school assignment in

matching mechanisms with strategically reported preferences. We note that our two-step approach

differs from the usual control function approach because our first step partially identifies the control

variable instead of point identifying it as in the usual approach. This paper unifies and complements

two branches of the literature. One branch has methods proposed by Agarwal and Somaini (2018)

and Fack et al. (2019) that take into account strategic reporting and identify students’ true prefer-

ences; their focus is not on causal effects of matched school on future outcomes. The other branch

has methods by Kirkeboen et al. (2016) and Abdulkadiroglu et al. (2022) that identify causal effects

of different assignments but control for reported instead of true preferences.

We apply our two-step identification strategy to matching data from Chile. Chile has a cen-

4



tralized DA mechanism that assigns students to university-major pairs. In 2010, 88,000 students

ranked at most eight university-major pairs out of a total of 1,092 options available. Thus, the

mechanism constrains the preference rankings, and students have incentives to behave strategically.

We focus on popular university-major pairs and compute bounds on the average effect of match-

ing assignment on various outcome variables such as graduating from program of assignment, ever

graduating, reapplying, or graduating from a STEM program.

The methods proposed by Kirkeboen et al. (2016) and Abdulkadiroglu et al. (2022) are not

directly applicable to the Chilean case even if students reported their preferences truthfully. In

fact, Kirkeboen et al. (2016)’s methods apply to the SD mechanism, which is the particular case

of the DA mechanism when all schools utilize the same placement score. In the SD case, the

counterfactual set of schools for students just above or just below a cutoff does not vary across

students. For example, for students just above the cutoff, their counterfactual set has all schools

whose cutoffs are smaller than the cutoff in question. The same does not apply to DA. Students

have multiple placement scores and the set of feasible schools may vary widely across students. The

definition of a counterfactual set is an important step in the RD identification strategy, because

local preferences are defined over these sets, which then become the control variable in the RD

strategy. Abdulkadiroglu et al. (2022) propose a clever solution to the problem by constructing

a propensity score variable in the DA case. They study the New York City public high schools,

where placement scores are functions of integer priority scores plus a continuously distributed

variable with full support. That particular structure of school priorities does not cover the Chilean

case. In Chile, there are program-specific placement scores that are computed as functions of

five primitive scores: math, language, history, science, and an average score from high school.

These functions are different across programs and sometimes non-linear. This requires a careful

definition of counterfactual set of schools such that controlling for local preferences does not violate

the continuity assumptions required by RD. We therefore propose a general method that applies

to such empirical contexts and leads to point identification if students are truthful but partial

identification otherwise.

The rest of this paper proceeds as follows. Section 2 lays down the matching model for a con-

tinuum population of students and a finite number of schools. Section 3 studies point identification

of average treatment effects when students are truth tellers. Section 4 studies partial identification

when students strategically report their preferences. That section has two sub-sections. Section

4.1 provides tools for constructing local-preference sets that apply to constrained DA mechanisms.

Section 4.2 uses local-preference sets to derive bounds on average treatment effects. We illustrate

our identification approach with the Chilean data in Section 5. The appendix collects all proofs in

the paper.

2 Model

We consider a continuum population of students and a set of J schools, J := {1, . . . , J}, that
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have capacities {q1, . . . , qJ} defined in terms of shares of the student population. Denote by Ω the

set of all students in the universe of interest and use ω to index an individual student type. The

student type consists of three objects. First, Q(ω) denotes the true (strict) preference relation of

student ω over the set of options J 0 := J ∪ {0}, which includes schools J and an outside option

0. For example, if J = 2 and Q(ω) = {1, 2, 0}, then 1 is preferred to 2 (i.e., 1Q(ω)2), 1 is preferred

to 0 (i.e., 1Q(ω)0), and 2 is preferred to 0 (i.e., 2Q(ω)0). Let Q be the set of all strict preference

relations over J 0 that admit at least one school that is acceptable. A school j ∈ J is “acceptable”

for student ω if it is preferred to that student’s outside option, i.e., jQ(ω)0. We define Q̄ as the

weak preference relation induced by Q, i.e., jQ̄k ⇔ jQk or j = k. The second object of the student

type is a vector of scores R(ω) := (R1(ω), . . . , RJ(ω)) ∈ R ⊆ RJ , where each school j utilizes Rj to

rank students for admission. Third and last object, Y (ω, d) is the potential outcome of student ω

if the student is assigned to option d ∈ J 0. Each student has a potential outcome function Y (ω, ·)

that maps from J 0 to Y ⊆ R. We call Γ the set of all possible potential outcome functions. The

set of all student types is Ω := Q×R×Γ. In a continuum economy, there is a probability measure

P over Ω and the Borel σ-algebra of the product space Ω. We suppress the argument ω whenever

it is unnecessary for ease of notation, e.g., Y (d) vs. Y (ω, d) and Q vs. Q(ω).

A “matching” is described by a measurable function µ : Ω → J 0 that satisfies two conditions:

for every j ∈ J , (i) the mass of students matched to j is less than or equal to the capacity of school

j, i.e., P{ω : µ(ω) = j} ≤ qj; and, (ii) the set of students that weakly prefer option j ∈ J 0 over

their matching, i.e., {ω : jQ̄(ω)µ(ω)}, is an open set.1 For every student type ω, µ(ω) is either the

school j that the student is matched or zero. When µ(ω) = 0, the student is unmatched and takes

an outside option. An important definition for this paper is stability.

Definition 1 (Stability). We say the matching µ : Ω → J 0 is a stable matching if three condi-

tions are satisfied for every ω ∈ Ω: (i) µ(ω)Q̄(ω)0 (individual rationality); (ii) for any j ∈ J ,

if jQ(ω)µ(ω), then j is full (no waste); and (iii) for any j ∈ J that is full, if µ(ω′) = j and

jQ(ω)µ(ω), then Rj(ω
′) > Rj(ω) (no justified envy).

A mechanism ϕ matches students to schools by mapping scores and submitted preference lists

to schools. Student ω submits a preference list P (ω) ⊆ J which is an ordered list of acceptable

schools for student ω. For example, for J = 3, if Q(ω) = {1, 2, 0, 3}, then P (ω) = {1, 2}, as long

as the student submits the true list of acceptable schools. The number of schools in P , denoted

|P |, is at least one because everyone participating in the match has at least one acceptable school.

As with Q̄, we also define P̄ as the weak preference relation induced by P . A mechanism takes as

inputs the submitted preferences of everyone (i.e., a correspondence P : Ω ⇒ J ) and the scores of

everyone (i.e., a vector-valued function R : Ω → R) and gives rise to a matching function. Formally,

ϕ(P,R) : Ω → J 0. We say a mechanism ϕ is “strategy proof” if submitting the true ranking of

acceptable schools is weakly dominant for every student. In other words, misreporting P for any

student ω never leads to a better option and sometimes leads to a worse option, depending on what

1Azevedo and Leshno (2016) impose the same condition to rule out multiplicity of stable matchings that differ in
a set of types with measure zero.
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other students submit. We say a student is a truth-teller if the student’s P equals the student’s

true ranking of acceptable schools. Otherwise, we say the student is strategic or not a truth-teller.

The ability to characterize a matching allocation using cutoffs is fundamental for this paper.

Definition 2 (Cutoff Characterization). For placement scores S : Ω → S ⊆ RJ , S(ω) := (S1(ω),

. . . , SJ(ω)), and admission cutoffs c ∈ S, c := (c1, . . . , cJ ), the set of feasible options of a student

ω equals all schools for which the student’s placement scores clear the admission cutoffs plus the

outside option: {0} ∪ {j ∈ J : Sj(ω) ≥ cj}; student ω’s best feasible option is the option that ranks

first according Q(ω) among the student’s best feasible options. We say the matching µ : Ω → J 0

has cutoff characterization if there exists placement scores S : Ω → S, and admission cutoffs c ∈ S

such that for every ω ∈ Ω the matching µ(ω) equals student ω’s best feasible option according to

Q(ω).

This paper considers mechanisms that produce matching functions that have a cutoff character-

ization according to Definition 2. Placement scores S may or may not equal school priority scores

R. The definition gives researchers freedom to construct special placement scores S in case their

mechanism does not admit cutoff characterization using priority scores R. The idea comes from

the general class of mechanisms of Agarwal and Somaini (2018). Moreover, we assume throughout

that for any j ∈ J , Sj has distribution that is absolutely continuous with respect to (wrt) the

Lebesgue measure and support Sj that contains a closed interval around cj . The support of S is

S. For any two scores, Sj and Sl, we assume that either P[Sj = Sl] = 1 or P[f(Sj) = Sl] < 1 for

any measurable function f . This says that the only deterministic function relating any two scores

may be the identity function.

If the matching function is stable, Azevedo and Leshno (2016) demonstrate that the matching

has cutoff characterization with S = R and admission cutoffs constructed as follows. For each

j ∈ J , cj := inf{Sj(ω) : for ω with µ(ω) = j} if some individuals are matched to j or cj := inf Sj

if nobody is matched to j. Many mechanisms produce stable matchings. For example, SD and

DA are strategy proof and lead to stable matchings if agents are truth-tellers. If agents are not

truth-tellers, e.g., because they face constraints in the submission of P , Haeringer and Klijn (2009)

study settings where the SD, DA, Boston, and TTC mechanisms lead to stable matchings.

This paper is about identification of moments of treatment effects Y (d′)− Y (d). The econome-

trician has access to an infinite amount of data and observes the joint distribution of the following

random objects: P (ω), S(ω), µ(ω), and Y (ω) := Y (ω, µ(ω)), where we abuse the notation and

employ the letter Y for both observed outcome, Y (ω), and potential outcome of being assigned to

school d, Y (ω, d).

3 Identification with Truthfull Reports

In this section, we consider identification of causal effects when all students are truth tellers,

that is, they submit their true ranking of acceptable schools. That is the rational behavior in

mechanisms that are strategy proof. For instance, Dubins and Freedman (1981) and Roth (1982)
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show that the DA mechanism without constraints on preference submission is strategy proof in the

finite economy; Abdulkadiroglu et al. (2015) show the same for the continuum economy.2 The SD

is also strategy proof as it is a special case of DA.

Assumption 1 (Truth-telling). Students submit their true list of acceptable schools.

Although submitting the true list of acceptable schools is a weakly dominant strategy under

strategy-proof mechanisms, Assumption 1 explicitly says that students do so in light of recent

evidence against this behavior (Chen and Sönmez (2006), Pais and Pintér (2008)).

The identification strategy of this paper resembles a regression discontinuity design that is sharp.

Our goal is to identify effects of school of assignment on future outcomes. Another interesting

problem is the effect of school of graduation on future outcomes, which resembles a fuzzy RD

because some students do not graduate from the same school they are assigned to. We defer this

identification problem to future work as several issues beyond the scope of this paper arise in that

case, e.g., multiple compliance types with unordered treatments.

Unlike a standard sharp RD, the fact that Sj(ω) clears the cutoff cj does not automatically

determine that student ω is allocated to school j. It is only when j is the most preferred school

among the schools that the student affords; that is, when j is the favorite school in the set of schools

for which the student clears the cutoff.

The first step in RD is to correctly identify the marginal individuals for a given cutoff and a

given change in school, e.g., cutoff cj and a change from school k to school j. For example, for

any individual with score Sj just to the right of cj , we need to determine two things: that the

individual is matched to school j; and that the individual would have been matched to school k if

the score were just to the left of cj. The cutoff representation implies that these two things depend

on the counterfactual sets of available schools in either side of the cutoff and on the individual’s

preferences over these sets.

It is straightforward to obtain counterfactual sets of available schools in the case where all

schools rely on the same placement score, that is, Sj = S1 for every j. For example, this is the case

of the SD mechanism. In this case, the set of feasible schools is all schools with cutoff less than or

equal to score S1. Note that everybody just above (or just below) cutoff cj has exactly the same

set of feasible schools. For someone with S1 ≥ cj , the counterfactual scenario has the score crossing

to the left of cutoff cj , and school j gets dropped from the set of feasible schools. Vice versa, for

someone with S1 < cj , the counterfactual scenario adds school j to the set of feasible schools.3

2See also work by Azevedo and Budish (2019), who advocate for a robust notion of strategy-proofness in a large
economy.

3A common practice in applied work consists of “cleaning” the submitted preference lists from irrelevant schools in
cases where Sj = S1 for every j. For instance, say an individual submits P = {1, 2, 3} and c2 > S1 > c1 > c3. Given
the cutoff characterization and truth telling, the matching assignment of this individual is school 1; the counterfactual
assignment is school 3 even though 2P3; this is the case because school 2 has cutoff higher than the cutoff of school 1.
The irrelevant school to be cleaned from P is school 2 in this case. The general idea is to remove all schools ranked
below 1 that have cutoffs higher than c1. See a description of this practice by Estrada and Gignoux (2017). The
practice cannot be used to identify counterfactual assignments in cases where different schools use different placement
scores, e.g., the DA mechanism.
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Unlike SD, agents close and on the same side of a cutoff in DA differ in their sets of feasible schools.

It is not immediate to think about their counterfactual sets. In DA, schools use different scores, and

these scores may be functions (e.g., weighted averages) of a small set of primitive scores. That is the

case in our application with the Chilean data. This makes the joint support of the distribution of

scores highly dependent and complicates the counterfactual analysis. Dealing with this complexity

is empirically relevant since many higher-education assignment mechanisms in the real world use

DA. See Table 1, Panel B by Fack et al. (2019) for a list of examples.

Our framework allows for a variety of joint distributions on the vector of scores S and works

with the definition of counterfactual budget sets below.

Definition 3 (Counterfactual Budget Sets). Consider a student with a vector of scores S. The

budget set for such student is the student’s set of feasible options,

B(S) :={0} ∪ {m ∈ J : Sm ≥ cm}.

Fix a school j ∈ J with cutoff cj . The right-counterfactual budget set for this student at cutoff cj

is B+
j (S) := B(S) ∪ {m : Sm = Sj and cm = cj}; the left-counterfactual is B−

j (S) := B(S) \ {m :

Sm = Sj and cm = cj}, where C \D equals the set C minus the elements of set D.

To help fix ideas, we run a simple example throughout the paper in the context of the SD

mechanism.

Example (SD Example). In SD, Sj = S1 for every j, and the definition of budget set above equals

to: B(S) = {m : S1 ≥ cm}. Suppose we have four schools with cutoffs c1 < c2 < c3 < c4. Individuals

in this economy have five different budget sets possible: {0}, {0, 1}, {0, 1, 2}, {0, 1, 2, 3}, and {0, 1,

2, 3, 4}. For individuals near cutoff c4, the counterfactual budget sets are: B−
4 (S) = {0, 1, 2, 3} and

B+
4 (S) = {0, 1, 2, 3, 4}.4

Next, we define the concept of local preferences which involves the first- and second- best choices

for a marginal individual at any given cutoff.

Definition 4 (Local Preferences). Fix a school j ∈ J with cutoff cj. Consider a student ω with

preference Q(ω) and scores S(ω). For any pair of options (k, l) ∈ J 0 × J 0, we say that (k, l)

is the local preference of student ω at cutoff cj if the favorite feasible option of student ω shifts

from l to k as we exogenously increase Sj(ω) from being smaller than cj to being larger than

cj . We define the true local preference of this student as the pair Qj(ω) := (k, l). Formally, for

a set of options B ⊆ J 0, define the best option in B according to Q as Q(B). We have that

Q(B) = m ⇔ m ∈ B and mQ̄(ω)n ∀n ∈ B. Finally, Qj(ω) = (k, l) if, and only if, Q(B+
j (S)) = k

and Q(B−
j (S)) = l. Moreover, the reported local preference Pj(ω) is defined in a similar fashion.

If B ∩ P 6= ∅, P (B) = m⇔ m ∈ B and mP̄ (ω)n ∀n ∈ B; otherwise, if B ∩ P = ∅, P (B) = 0. We

have that Pj(ω) = (k, l) if, and only if, P (B+
j (S)) = k and P (B−

j (S)) = l.
4In SD or in DA with independent placement scores, the definitions of counterfactual equal to: B+

j (S) = B(S) ∪

{m : cm = cj} and B−

j (S) = B(S) \ {m : cm = cj}; moreover, if cutoffs are unique: B+

j (S) = B(S) ∪ {j} and

B−

j (S) = B(S) \ {j}.
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Example (SD Example, Continued). Consider four individuals whose submitted preferences are:

P (1) = {3, 4, 2, 1}, P (2) = {4, 1, 2, 3}, P (3) = {4, 2, 3, 1}, and P (4) = {4, 3, 1, 2}. Their corresponding

local preferences are: P
(1)
4 = (3, 3), P

(2)
4 = (4, 1), P

(3)
4 = (4, 2), and P

(4)
4 = (4, 3).

There is no distinction between Pj and Qj at this stage because of Assumption 1. Students

submit their true list of acceptable schools so that P equals the schools that are listed higher than

0 in Q and Pj = Qj . Section 4 considers the case of misreporting due to strategic behaviors. In

that case, Pj is observed but Qj is not. Cutoff characterization implies that an individual with

Qj = (k, l) is matched to school k if Sj is just above cj or to school l if Sj is just below cj. Same

thing applies to individuals with Pj = (k, l) under Assumption 1.

The local preference pair (j, k) at a certain cutoff cj is only useful for identification if there

exists a positive fraction of individuals in the data near cutoff cj with those local preferences. We

collect such useful pairs in the set P.

Definition 5 (Comparable Pairs). We say (j, k) ∈ J×J , j 6= k, is a comparable pair of alternatives

if (i) cj is an interior point of the support Sj; and (ii) P[Qj = (j, k)|Sj = s] is bounded away from

zero for s in an open neighborhood of cj . Finally, we define P ⊆ J ×J as the set of all comparable

pairs.

We adopt the convention that comparable pairs do not involve the outside option 0. We do this

because it may be hard to interpret treatment effects involving changes from an outside option to

a school when the outside option varies across individuals. We do not consider pairs with j = k

because the initial school assignment does not change for those individuals. We also exclude pairs

Qj = (j′, k) with j′ 6= j from P to avoid redundancy. We may find individuals with Qj = (j′, k)

whenever schools j and j′ use the same score and have the same cutoff. As the score Sj = Sj′ crosses

the cutoff cj = cj′ , access is granted to both schools j and j′ and individuals may differ in their

preferences for these schools. Individuals that prefer j′ won’t appear in P as having Qj = (j′, k),

but they will appear in P with Qj′ = (j′, k).

The purpose of defining counterfactual sets and local preferences is to construct a local pref-

erence variable for every student and use that as a control variable in the RD. In this section,

this variable is Pj , which equals to Qj because of Assumption 1. By focusing on students with

Pj = (j, k), k 6= j, the marginal switch in allocation around cutoff cj becomes a function of Sj .

Controlling for Pj ensures that we apply the RD strategy to all individuals that switch assignment

from k to j at the cutoff; this identifies the effect of changing assignment, as long as the typical

RD continuity assumptions are satisfied.

RD identification requires continuity assumptions on the distribution of individual types con-

ditional on the relevant placement score. In our case, we also need to verify continuity after we

condition on Pj = Qj. After all, we don’t want to condition on something that hurts the central

argument for identification in RD: individuals on the right and on the left of the cutoff are “similar

on average”. Below, we state an assumption on the continuity of types and prove that it implies the

kind of smoothness required by RD. Before we do so, we define the following set of events. For every
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school j ∈ J , partition the placement scores S as the score of school j and all other scores: S ≡ (Sj ,

S−j). Define A−j to be the collection of events on S−j that determine the availability of all non-j

schools. There are 2J−1 such events in A−j. For example, if J = 2, A−1 = {{S2 ≥ c2}, {S2 < c2}};

if J = 3, A−1 = {{S2 ≥ c2, S3 ≥ c3}, {S2 ≥ c2, S3 < c3}, {S2 < c2, S3 ≥ c3}, {S2 < c2, S3 < c3}};

and so forth.

Assumption 2. (Continuity of Types) Consider a school j with cutoff cj in the interior of the

support Sj. Assume the following functions of s are all continuous at s = cj : (i) P[S−j ∈ A0,

Q = Q0|Sj = s] for any A0 ∈ A−j and Q0 ∈ Q; and (ii) E[ g(Y (d)) I{S−j ∈ A0, Q = Q0} | Sj = s]

for any A0 ∈ A−j, Q0 ∈ Q, and g ∈ G, where G is a set of measurable functions g : R → R that

includes the constant function g(y) = 1 and the identity function g(y) = y.

Lemma 1. Suppose Assumption 2 holds. Consider a school j with cutoff cj in the interior of the

support Sj, and choose two schools k, l ∈ J 0 such that P[Qj = (k, l)|Sj = cj ] > 0. Then, for any

function g ∈ G and any d ∈ J 0 we have that E[g(Y (d))|Qj = (k, l), Sj = s] and P[Qj = (k, l)|Sj = s]

are continuous functions of s at s = cj .

The proof of this lemma and all other proofs are found in the appendix. Finally, Assumptions 1

and 2 give sufficient conditions for identification for comparable pairs of school changes.

Proposition 1. Suppose Assumptions 1–2 hold. For any pair (j, k) ∈ P,

E[g(Y (j))|Qj = (j, k), Sj = cj ] = E[g(Y )|Pj = (j, k), Sj = c+j ]

E[g(Y (k))|Qj = (j, k), Sj = cj ] = E[g(Y )|Pj = (j, k), Sj = c−j ]

E[g(Y (j)) − g(Y (k))|Qj = (j, k), Sj = cj]

= E[g(Y )|Pj = (j, k), Sj = c+j ]− E[g(Y )|Pj = (j, k), Sj = c−j ],

where the condition Sj = c+j denotes the limit as Sj ↓ cj and the condition Sj = c−j denotes the

limit as Sj ↑ cj .

Proposition 1 shows that a standard RD is valid in the truth-telling case, as long as we control

for Pj . The parameter of interest is the average treatment effect on g(Y ) from changing the school

of assignment from j to k, averaged over individuals at the cutoff cj and with true local preferences

(j, k). Indeed, these are the parameters of interest for the rest of this paper,

E [g(Y (j)) − g(Y (k)) |Qj = (j, k), Sj = cj ] , (j, k) ∈ P, g ∈ G. (1)

Parameters like these are of economic interest to evaluate the current mechanism in place but also

to study the effects of counterfactual assignments, for example, when students near cj currently

at school k are offered admission into school j. The fact that the parameter is conditional on Qj

instead of Pj is important for the external validity of (1) when P is manipulable by agents.
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4 Identification with Strategic Reports

This section studies identification of causal effects when students strategically report their rank-

ings of acceptable schools. Strategic reports make Pj generally different from Qj and Qj is not

observed. Identification strategies that condition on the observed Pj are potentially invalid for two

reasons. First, unlike Proposition 1, controlling for Pj does not identify the parameters of interest

in (1), which condition on Qj. Second, controlling for Pj breaks the internal validity of the RD in

some cases because Pj is a variable subject to manipulation by agents.

We propose a two-step identification approach that is robust to strategic reporting. In the first

step, the researcher characterizes the set of true local preferences Qj that is compatible with the

data and appropriate behavioral assumptions. In the second step, the researcher controls for local-

preference sets and partially identifies the parameters in (1). We discuss first and second steps in

Sections 4.1 and 4.2, respectively. Note that our two-step approach differs from the usual two-step

control function approach in econometrics. The usual approach point identifies the control variable

in the first step, while our approach partially identifies the control variable.

Section 4.1 presents several identification tools for local-preference sets. These tools rely on

assumptions that are known to be appropriate in SD and DA contexts, although we do not exclude

other mechanisms; e.g., the TTC mechanism satisfies one of those assumptions and some of the

identification tools from Section 4.1 are still useful. More generally, researchers may utilize pref-

erence identification tools that work under alternative assumptions, for example, the methods of

Agarwal and Somaini (2018) and Fack et al. (2019). Either way, the researcher must construct a

set of local preferences for each individual in the first step.

Section 4.2 describes our second step procedure. The procedure places high-level assumptions

on local-preference sets that do not restrict the researcher to the methods of Section 4.1.

4.1 Partial Identification of Local Preferences

This section provides tools for set identification of local preferences using assumptions on the

agents’ behavior and the mechanism. These assumptions are specific to this subsection and we

motivate them in the context of the constrained DA mechanism studied by Haeringer and Klijn

(2009). Haeringer and Klijn (2009) study the game where students submit constrained preference

rankings and a mechanism matches students to schools as a function of P , R, and schools capacities.

Although the unconstrained DA mechanism is strategy proof, many real-world implementations of

DA restrict the number of schools that students submit in their rankings. In this case, there is a

quota K < J such that 1 ≤ |P | ≤ K, and the submitted ranking P is generally different from the

list of acceptable schools in Q. The DA mechanism implemented in this way is not strategy proof,

and there are no dominant strategies. Strategy-proofness also breaks down if, instead of a quota

constraint, students incur a cost as a function of the number of schools submitted (Fack et al.,

2019).

Lemma 4.2 by Haeringer and Klijn (2008) shows that, if a mechanism is strategy proof when
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K = J , then, in the game with K < J , any constrained ranking of schools is weakly dominated

by the same set of schools ranked according to true preferences. This result implies that a student

cannot lose and may possibly gain by taking any arbitrary list with less than or equal to K schools,

drop unacceptable schools, and rank acceptable schools according to the student’s true preferences.

A further implication is that if a student’s number of acceptable schools is less than or equal to K,

then the student’s dominant strategy is to submit the true list of acceptable schools (Proposition

4.2 by Haeringer and Klijn (2009)). These implications lead to a class of undominated strategies

according to the following definitions of partial order.

Definition 6. (Weak and Strong Partial Order) We say P is a weak partial order of Q if P is

any selection of up to K schools among the acceptable schools in Q, and that selection of schools

is ranked according to Q. Formally, (i) 1 ≤ |P | ≤ K, P ⊆ {d ∈ Q : dQ0}; and (ii) for every

d, d′ ∈ P , d′Pd ⇔ d′Qd. We say P is a strong partial order of Q when a third condition holds

in addition to (i) and (ii). Namely, (iii) |P | = min{K, |{d ∈ Q : dQ0}|}. In other terms, if the

number of acceptable schools in Q is less than or equal to K and P is a strong partial order of Q,

then P equals the list of acceptable schools in Q; otherwise, if the number of acceptable schools in

Q is greater than K, P is a subset of K schools among the acceptable schools in Q.

Lemma 2 in Section A.3 of the appendix summarizes the implications of the result on partial

orders by Haeringer and Klijn (2008, 2009) in terms of Definition 6. In short, for a student with

true preferences Q, any P is weakly dominated by a weak partial order P ∗ of Q that has the same

acceptable schools as P ; in turn, P ∗ is weakly dominated by a strong partial order P ∗∗ of Q that

contains the same set of acceptable schools as P ∗. Every strong partial order is a weak partial

order, but not the other way around.

Assuming agents always submit a strong partial order implies they reveal their true ordered

list of acceptable schools whenever they submit P with less schools than the quota constraint K.

That could be a strong behavioral assumption in some contexts where agents have more than K

acceptable schools but have a strong prior for admission into a smaller than K set of schools. In

this case, they may submit |P | < K not because that’s their full list of acceptable schools but

simply because they may not want to incur the mental costs of ranking all schools up to K. In

the rest of this subsection, we consider mechanisms that impose a quota K on P and assume that

students submit a weak partial order of their true preferences.

Assumption 3 (Submission of Weak Partial Order). Students submit a weak partial order of their

true preferences.

Assumption 3 replaces Assumption 1 to accommodate mechanisms that are not strategy proof.

Submitting a weak partial order is the rational thing to do in DA mechanisms with quota con-

straints. That is true in any mechanism that becomes strategy proof once we remove the quota

constraint, for example, the TTC mechanism.

A maintained assumption throughout this paper is the cutoff characterization of Definition

2. That assumption says that µ(ω) = Q(B(S(ω)) for every ω ∈ Ω. Azevedo and Leshno (2016)
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show that stability is equivalent to cutoff characterization with S = R and cutoffs that equal the

minimum score of admitted students in each school. Thus, it is worth discussing stability of the

constrained DA mechanism. Theorem 6.3 by Haeringer and Klijn (2009) demonstrates that any

Nash equilibrium in constrained DA where R satisfies Ergin-acyclicity leads to a stable matching

in the finite economy.5 Even without Ergin-acyclicity, some Nash equilibria still produce stability.

SD always satisfies Ergin-acyclicity, thus every Nash equilibrium in SD produces a stable match-

ing. Fack et al. (2019) also study the constrained DA mechanism. They extend Theorem 6.3 of

Haeringer and Klijn (2009) to (pure-strategy) Bayesian Nash equilibria in the continuum economy

(Proposition A3, Online Appendix A.2.5, Fack et al. (2019)). Fack et al. (2019) also provide prim-

itive conditions for finite economies where students play partial orders to converge to a continuum

economy with a stable equilibrium (Proposition 5, Fack et al. (2019)). They further provide a

test for implications of stability and do not find empirical or simulation evidence against it. In

the context of the constrained TTC mechanism, any Nash equilibrium leads to a stable matching

as long as R satisfies Kesten-acyclicity (Theorem 6.4 by Haeringer and Klijn (2009)). Therefore,

constrained SD, DA, and TTC all satisfy the cutoff characterization of Definition 2 with S = R

under the appropriate conditions.

There is another interesting feature of the cutoff characterization of DA mechanisms. We know

that DA produces a stable matching if agents are truth tellers. In case agents are not truth tellers,

the matching outcome continues to be “stable” if we replace Q with P in the definition of stability.

Definition 7 (Stability wrt P ). We say the matching µ : Ω → J 0 is a stable matching wrt P if

three conditions are satisfied for every ω ∈ Ω: (i) µ(ω)P̄ (ω)0 (individual rationality); (ii) for any

j ∈ J , if jP (ω)µ(ω), then j is full (no waste); and (iii) for any j ∈ J that is full, if µ(ω′) = j and

jP (ω)µ(ω), then Rj(ω
′) > Rj(ω) (no justified envy), where we adopt the convention that mP0 for

every m ∈ P . This is the same as Definition 1 except for P in the place of Q.

The DA mechanism, constrained or unconstrained, produces a matching that is stable wrt

reported preferences P . Stability wrt P leads to a cutoff characterization wrt P by the work of

Azevedo and Leshno (2016). That cutoff characterization has scores S = R and admission cutoffs

that equal the smallest scores of admitted students in each school. In other words, this is the same

cutoff characterization from Definition 2 except that Q is replaced with P . Cutoff characterization

wrt P is natural in DA but not necessarily in other mechanisms, so we state it in the following

assumption.

Assumption 4 (Cutoff Characterization wrt P ). In addition to the maintained assumption of

cutoff characterization as in Definition 2, the matching function µ also satisfies µ(ω) = P (B(S(ω))

for every ω ∈ Ω.

Assumption 4 essentially says that agents are matched to their best feasible options, where

best is now defined according to P . Assumption 4 is convenient because it allows us to write

5Ergin-acyclicity ensures that no student can block a potential improvement for any other two students without
affecting the first student’s own assignment. See Ergin (2002) for the formal definition.
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a simple expression for the identified set of local preferences in Proposition 2 below; however it

is not a necessary assumption to identify those sets. The convenience comes from the fact that

Assumption 4 implies µ = P (B(S)) = Q(B(S)), where both µ and P are observed and P and Q

are related via the weak partial order assumption. If we drop Assumption 4, we only have one

equality µ = Q(B(S)), which leads to bigger sets of local preferences in Proposition 2 below. This

is useful to know for cases like the TTC mechanism, which is not stable wrt P and thus not a

natural candidate for Assumption 4.

Next, we characterize all possible pairs of local preferences at a cutoff that are compatible with

the data and Assumptions 3 and 4.

Proposition 2 (Identification of Local-Preference Sets). Suppose Assumptions 3 and 4 hold. Select

a school j with cutoff cj. Consider a student with scores S ≡ (Sj ,S−j) and submitted preferences P .

Call (a, b) = Pj . For such student, define N+
j = B+

j (S) \ {P ∪ {0}} and N−
j = B−

j (S) \ {P ∪ {0}},

respectively, the sets of unlisted feasible schools in the counterfactual budget sets on the right and

on the left of the cutoff. Then, the Qj of this student belongs to Qj, where the set Qj is defined as

follows:

Qj =





{(a, b)}, if Sj ≥ cj and a = b,

{(a, b)} ∪
(
{a} ×N−

j

)
, if Sj ≥ cj and a 6= b,

{(a, b)} ∪
(
(N+

j \N−
j )× {b}

)
if Sj < cj ,

(2)

where
(
{a} ×N−

j

)
denotes the set formed by the Cartesian product of a and elements in N−

j and
(
{a} ×N−

j

)
= ∅ if N−

j = ∅.

Moreover, assume P is a strong partial order of Q. Then, Qj becomes:

Qj =





{(a, b)}, if |P | < K, or if |P | = K, Sj ≥ cj , and a = b,

{(a, b)} ∪
(
{a} ×N−

j

)
, if |P | = K, Sj ≥ cj , and a 6= b,

{(a, b)} ∪
(
(N+

j \N−
j )× {b}

)
if |P | = K and Sj < cj .

(3)

Finally, the characterization in (2) is sharp if the distribution of Q conditional on P and S has

full support, that is, every Q that satisfies Assumptions 3 and 4 is in that support. Likewise, (3)

is sharp if the distribution of Q conditional on P and S has full support under Assumptions 3, 4,

and P being a strong partial order.

Example (SD Example, Continued). Suppose the quota constraint is K = 3 and the four schools

are acceptable for everyone. We consider all agents whose P4 = (4, 2). For example, if agents

submit strong partial orders, they submit either P = {4, 2, 1} or P = {4, 2, 3}. The assumption

of cutoff characterization wrt P (Assumption 4) says that these agents are matched to school 4

if S1 ≥ c4, otherwise to school 2. To keep things simple, consider five different types of true

preferences: Q(1) = {4, 2, 3, 1, 0}, Q(2) = {4, 3, 2, 1, 0}, Q(3) = {4, 1, 3, 2, 0}, Q(4) = {3, 4, 2, 1,

0}, and Q(5) = {1, 3, 2, 4, 0}. The weak partial order assumption rules out Q(5) because 2Q(5)4
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contradicts 4 being reported preferred to 2. The maintained assumption of cutoff characterization

(Definition 2) further rules out more types of Q, depending on whether S1 ≥ c4 or S1 < c4:

1. if S1 ≥ c4, Q
(4) is not possible because the matching assignment is 4 but the best feasible

option according to Q(4) is 3; in this case, the possible true local preferences are: Q
(1)
4 = (4, 2),

Q
(2)
4 = (4, 3), and Q

(3)
4 = (4, 1); for a student that submits P = {4, 2, 1}, Q4 = {(4, 2), (4, 3)};

otherwise, for someone that submits P = {4, 2, 3}, Q4 = {(4, 2), (4, 1)};

2. if S1 < c4, none of Q(2), Q(3), or Q(4) is possible because the matching assignment is 2 but

the best feasible options according to these Qs differ from 2; in this case, the only possible

true local preference is Q
(1)
4 = (4, 2), so that Q4 = {(4, 2)}.

This example illustrates why an RD that only controls for P4 = (4, 2) may fail to identify the

treatment effect of changing assignment from school 4 to school 2. As the score S1 crosses the cutoff

c4, the support of the distribution of true local preference types generally changes discontinuously

from having only (4, 2) to having (4, 1), (4, 2), and (4, 3).

Proposition 2 identifies all possible values of Qj for students near a cutoff cj as function of

their scores and submitted preferences. In some settings, there may be a large number of unlisted

programs that are feasible to students, which translates into sets Qj that have many values. For

example, the Chilean data has K = 8 but more than 1,000 options; a student may have numerous

feasible options but not consider many of them. It is possible to obtain smaller sets Qj by imposing

further assumptions on the expectations that students have when they submit P .

Agarwal and Somaini (2018) propose a general framework to rationalize strategic reports as

being the optimal solution to an expected utility maximization problem. Agents have private

information about their preferences and scores. They form beliefs about the distribution of other

people’s preferences and scores. These beliefs plus knowledge of the mechanism lead the rational

agent to derive probabilities of admission into the various schools as a function of the agent’s

private information and expectations on other agents. The agent then chooses the submission P

that maximizes expected utility.

We assume that agents are expected-utility maximizers and note that it is sufficient for each

individual to consider beliefs on admission cutoffs. This is the case in our continuum economy with

cutoff characterization because cutoffs and scores fully characterize the agent’s budget set. Given

the student’s scores, a distribution of possible cutoffs translates into a distribution of possible

budget sets. Under Assumption 4, the student is admitted to the best school according to the

submission P among the available schools in the budget set. Therefore, beliefs on cutoffs translate

into probabilities of admission into various schools for any given P . We make an assumption on

the distribution of cutoffs expected by agents that has to do with the concept of uniformly more

accessible schools.

Definition 8 (Uniformly More Accessible Schools). For a pair of distinct schools (d, e), we say e

is uniformly more accessible than d if two conditions are satisfied. First, access to school d implies
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access to school e,

{ω : Sd(ω) ≥ cd} ⊆ {ω : Se(ω) ≥ ce}.

Second, replacing option d with option e in any submission P alters the likelihood of admission of

at least one school listed in P ; formally, for any two fixed (i.e., non-random) submissions P and

P̃ such that P has d but does not have e and P̃ equals P except for e in the place of d, there exists

u ∈ {0, 1, . . . , |P |} for which

P [P (B(S)) = P u] 6= P

[
P̃ (B(S)) = P̃ u

]
,

where P (B) denotes the best choice in set B according to P (Definition 4) and P u denotes the

school ranked in the u-th position in P . In short, we say (d, e) ∈ UMAS, where UMAS ⊆ J × J

is the set of all such pairs.

Definition 8 says that e is uniformly more accessible than d if everyone that qualifies for school

d also qualifies for school e. Schools d and e must also be relevant in the sense of the second

condition: there is always a strictly positive fraction of individuals for which listing e in the place

of d changes their best feasible options. In the SD case, a sufficient condition for Assumption 5 is

that cd > ce and cutoffs are distinct interior points in the support of the placement score. Uniformly

more accessible schools do not always exist. Existence depends on the mechanism in place and the

joint distribution of the placement scores. We use this definition to impose a mild restriction on

the expectations of agents regarding cutoffs.

Assumption 5. Consider a student with scores s ∈ S who views uncertain cutoffs as random

variables C1, . . . , CJ before the matching assignment. Let B̃ = {0} ∪ {j ∈ J : sj ≥ Cj} be the

corresponding random budget set of the student. For every pair (d, e) ∈ UMAS, the distribution of

cutoffs for this student is such that two conditions are satisfied. First,

{sd ≥ Cd} ⊆ {se ≥ Ce}.

Second, for any two fixed (i.e., non-random) submissions P and P̃ such that P has d but does not

have e and P̃ equals P except for e in the place of d, there exists u ∈ {0, 1, . . . , |P |} for which

P

[
P (B̃) = P u

]
6= P

[
P̃ (B̃) = P̃ u

]
.

This is true for every student in the economy.

Assumption 5 says that students correctly anticipate which schools will be uniformly more

accessible after the matching assignment. For example, agents may learn that by observing past

realizations of the matching in the economy. If a school e is well known to be accessible to everyone

who has access to school d, then it is natural that a student expects to have access to e if he ever

has access to school d. Note that the assumption does not pin down the expected probability of

admission or the set of schools the student will have access to in the ex-post economy. It only
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restricts the hierarchy of school access according to UMAS. This assumption has implications for

the joint distribution of (P,Q).

Proposition 3. Suppose Assumptions 3–5 hold. Consider a student with reported preference rank-

ing P . Let (P × P c) be the Cartesian product of listed and unlisted schools, respectively, P and P c.

If (d, e) ∈ UMAS ∩ (P × P c), then dQe.

Proposition 3 says that if an agent lists school d but does not list the uniformly more accessible

school e it must be that this agent prefers d over e. The result offers a refinement to Proposition 2

above.

Corollary 1. Consider the setup of Proposition 2 and suppose Assumption 5 holds. Define

A−
j = N−

j \
{
e : ∃d ∈ P with which (d, e) ∈ UMAS and bP̄ d

}
and

A+
j =

(
N+

j \N−
j

)
\
{
e : ∃d ∈ P with which (d, e) ∈ UMAS and aP̄d

}
. Then, under weak partial

order,

Qj =





{(a, b)}, if Sj ≥ cj and a = b,

{(a, b)} ∪
(
{a} ×A−

j

)
, if Sj ≥ cj and a 6= b,

{(a, b)} ∪
(
A+

j × {b}
)

if Sj < cj .

(4)

This characterization is sharp if (2) is sharp and P [eQd|P,S] = 0 for every (d, e) ∈ UMAS ∩

(P × P c).

Under strong partial order,

Qj =





{(a, b)}, if |P | < K, or if |P | = K, Sj ≥ cj , and a = b,

{(a, b)} ∪
(
{a} ×A−

j

)
, if |P | = K, Sj ≥ cj , and a 6= b,

{(a, b)} ∪
(
A+

j × {b}
)

if |P | = K and Sj < cj .

(5)

This characterization is sharp if (3) is sharp and P [eQd|P,S] = 0 for every (d, e) ∈ UMAS ∩

(P × P c).

Corollary 1 describes how to use Proposition 3 to potentially reduce the number of elements in

the Qj constructed in Proposition 2. The intuition runs as follows. Suppose a student submits P

and Pj = (a, b). If school e is uniformly more accessible than school d, d is listed in P , but e is

not listed in P , then we know the student truly prefers d over e. This excludes some possibilities

of Qj in the Qj defined by Proposition 2. For instance, this person cannot have Qj = (a, e) if bP̄ d

because the latter implies that bQ̄dQe, a contradiction with dQe. Likewise, this person cannot have

Qj = (e, b) if aP̄d.

Example (SD Example, Continued). The set of uniformly more accessible schools is UMAS = {(2,

1), (3, 2), (3, 1), (4, 3), (4, 2), (4, 1)}. Assumption 5 shrinks the set Q4 of those agents with S1 ≥ c4

and P = {4, 2, 3}. Applying the assumption changes Q4 = {(4, 2), (4, 1)} to Q4 = {(4, 2)} because

4 is uniformly more accessible than 1, 4 is listed, 1 is not listed, and 2P1.
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4.2 Partial Identification of Causal Effects

In this section, we lay down conditions and derive bounds on average treatment effects. We

assume that the researcher has already identified the set of local preferences at a cutoff of interest.

That means the researcher has a set-valued variable Qj for all students in the vicinity of a cutoff j

corresponding to a comparable pair (j, k) in P. Researchers may construct Qj using the methods

of Section 4.1 if they find reasonable to rely on at least some of the specific assumptions of that

subsection; otherwise, they may use any other method to construct Qj . There is no restriction

on the choice of the method to construct Qj except for a couple of high-level conditions that we

assume in this section. We start by defining the conditional support of partially-identified true

local preferences.

Definition 9 (Support of Local-Preference Sets). Consider a pair (j, k) ∈ P and corresponding

cutoff cj . The support of partially-identified true local preferences conditional on Sj = s is defined

as,

Λj(s) =
{
B ⊆ J 0 × J 0 : P

[
Qj = B|Sj = s

]
> 0

}
.

The union set of that support is defined as the collection of all unions of sets in Λj(s), namely,

Λ∪
j (s) =

{
B∪ ⊆ J 0 × J 0 : ∃B1, B2, . . . ∈ Λj(s) with B

∪ = ∪iBi

}
.

The set Λj(s) collects all values of Qj that occur with positive probability conditional on Sj = s.

In the specific context of Section 4.1, Qj is constructed from mapping observables (P,S) to a subset

of J 0 ×J 0, i.e., Qj = ψj(P,S). For example, Proposition 2 and Corollary 1 give examples of such

mapping ψj . A set B of pairs (a, b) ∈ J 0 × J 0 belongs to the support set Λj(s) if there is a set

of values in the support of the conditional distribution of (P,S) given Sj = s such that ψj maps

those values to the set B. The union set Λ∪
j (s) collects all possible unions of support points of

Qj conditional on Sj = s. These definitions are instrumental in the computation of the partially

identified distribution of Qj, as explained in Proposition 4 below.

Sharpness of identification of the distribution of Qj requires sharpness in the construction of

the sets Qj . Proposition 2 and Corollary 1 gave conditions for sharpness of Qj in the context of

Section 4.1. Outside of that context, researchers may construct Qj in a different way, so we impose

sharpness of Qj in the general form of the assumption below.

Assumption 6 (Sharp Local Preference Sets). Consider a pair (j, k) ∈ P and corresponding cutoff

cj . Assume that:

(i) the random variable Qj and the random set Qj are both measurable maps on the same

probability space and P
[
Qj ∈ Qj | Sj

]
= 1 with probability 1;

(ii) supp
[
Qj | Qj , Sj

]
= Qj with probability 1, where supp [Y | X] denotes the support set of

the distribution of Y conditional on X.

Assumption 6(i) says thatQj(ω) of individual ω contains the true pair of local preferences Qj(ω)

of that individual (for almost all individuals), which is a minimum requirement for the construction
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of Qj(ω). This does not say anything on the sharpness of Qj. For example, Qj = J 0 × J 0 is

completely uninformative and trivially satisfies Assumption 6(i). The sharpness requirement is

stated in Assumption 6(ii). It says that all possibilities of local preferences listed in Qj actually

occur in the data with positive probability. That rules out unnecessarily big sets Qj. Assumption

6(ii) may be dropped at the cost of not having sharp identified sets in the rest of this section.

Partial identification of true local preferences and treatment effects occur at the limit, as Sj

approaches cj, and is conditional on Qj . For that to work, we impose regularity conditions on the

distribution of potential outcomes and Qj conditional on Sj at the limit cj .

Assumption 7 (Distribution of Local Preference Sets). Consider a pair (j, k) ∈ P and correspond-

ing cutoff cj . Assume that:

(i) there exist a small ε > 0 and collections of subsets of J 0 × J 0 denoted Λ+
j and Λ−

j such

that Λ+
j = Λj(cj + e) ∀e ∈ [0, ε) and Λ−

j = Λj(cj − e) ∀e ∈ (0, ε); consistent with Definition 9, we

define Λ∪+
j and Λ∪−

j as union sets of Λ+
j and Λ−

j , respectively;

(ii) for any g ∈ G of Assumption 2 and any τ , τ ∈ R ∪ {−∞,+∞}, τ < τ , the side-limits of

the following expectations are well defined: E

[
g(Y )I{Qj = A, τ < g(Y ) < τ} | Sj = c+j

]
∀A ∈ Λ+

j

and E

[
g(Y )I{Qj = A, τ < g(Y ) < τ} | Sj = c−j

]
∀A ∈ Λ−

j .

Assumption 7(i) concerns the distribution of Qj conditional on Sj: the support set of Qj is

constant as Sj = s approaches the cutoff cj from either side of it. Part (ii) of the assumption

concerns the joint distribution of potential outcomes and Qj conditional on Sj . For example,

Assumption 7(ii) implies that P

[
Qj = A | Sj = c+j

]
and E[Y | Qj = A,Y < τ, Sj = c+j ] are well

defined limits for any A ∈ Λ+
j and τ ∈ R ∪ +∞ provided that P[Qj = A,Y < τ | Sj = c+j ] > 0.

The next result gives inequalities to construct bounds on P[Qj = (a, b)|Sj = cj ] for any pair (a, b).

Proposition 4 (Sharp Set of Distributions of Local Preferences). Consider a pair (j, k) ∈ P.

Suppose Assumptions 2, 6, and 7 hold. Then, the sharp set of all possible discrete probability

distributions of Qj conditional on Sj = cj is characterized as follows. For every A ∈ Λ∪+
j ∪Λ∪−

j ,

each probability distribution in that set implies a value for P [Qj ∈ A|Sj = cj] that satisfies one of

the three inequalities below:

(i) if A ∈ Λ∪+
j ∩Λ∪−

j ,

P [Qj ∈ A|Sj = cj ] ≥ max
{

P

[
Qj ⊆ A|Sj = c+j

]
; P

[
Qj ⊆ A|Sj = c−j

] }
;

(ii) if A ∈ Λ∪+
j \Λ∪−

j ,

P [Qj ∈ A|Sj = cj ] ≥ P

[
Qj ⊆ A|Sj = c+j

]
; or

(iii) if A ∈ Λ∪−
j \Λ∪+

j ,

P [Qj ∈ A|Sj = cj ] ≥ P

[
Qj ⊆ A|Sj = c−j

]
.
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Proposition 4 provides a way to construct the sharp partially-identified set of all possible

distributions of Qj conditional on Sj = cj . A distribution of Qj conditional on Sj = cj con-

sists of values pa,b ∈ [0, 1] for every (a, b) ∈ J 0 × J 0 such that
∑

(a,b)∈J 0×J 0 pa,b = 1, where

pa,b = P [Qj = (a, b)|Sj = cj ] . The sharp set is constructed by finding all values of pa,b where
∑

(a,b)∈A pa,b satisfies the inequalities of Proposition 4 for every A ∈ Λ∪+
j ∪Λ∪−

j .

Example (SD Example, Continued). Continue to assume that the four schools are acceptable for

everyone. Suppose for a moment that all combinations of (P,Q) that satisfy Assumptions 3–5 exist

in the economy, both for S1 ≥ c4 and S1 < c4. Then, this is the list of all possible Q4:

1. if S1 ≥ c4, {(1, 1)}, {(2, 2)}, {(3, 3)}, {(4, 1)}, {(4, 2)}, {(4, 3)}, {(4, 1), (4, 2), (4, 3)}, {(4, 1),

(4, 3)}, and {(4, 2), (4, 3)};

2. if S1 < c4, {(1, 1)}, {(2, 2)}, {(3, 3)}, {(4, 1)}, {(4, 2)}, {(4, 3)}, {(1, 1), (4, 1)}, {(2, 2), (4, 2)},

and {(3, 3), (4, 3)}.

Let’s focus on the case that S1 ≥ c4. To keep things simple, suppose three types of Q4 occur

with positive probability conditional on S1 = s for any s ≥ c4: {(4, 2)} with probability 0.1, {(4, 3)}

with probability 0.3, and {(4, 2), (4, 3)} with probability 0.6. It follows that Λ4(s) = Λ+
4 = {{(4, 2)},

{(4, 3)}, {(4, 2), (4, 3)}} and Λ∪
4 (s) = Λ∪+

4 = {{(4, 2)}, {(4, 3)}, {(4, 2), (4, 3)}}. The lower bounds

P[Q4 ⊆ A|S1 = c+4 ] of Proposition 4 are as follows: 0.1 for A = {(4, 2)}; 0.3 for A = {(4, 3)}; and

1 for A = {(4, 2), (4, 3)}. Thus, P[Q4 = (4, 2)|S1 = c+4 ] has lower bound 0.1, P[Q4 = (4, 3)|S1 = c+4 ]

has lower bound 0.3, and the sum of the two equals 1. Looking at each individual probability, the

bounds are [0.1, 0.7] on P[Q4 = (4, 2)|S1 = c+4 ] and [0.3, 0.9] on P[Q4 = (4, 3)|S1 = c+4 ].

Recall that the construction of the random set Qj depends on assumptions regarding the be-

havior of agents when they submit P . For example, Section 4.1 characterizes Qj by assuming

weak partial order and cutoff characterization wrt P . Alternatively, the identification approach

of Agarwal and Somaini (2018) makes different types of assumptions on agents’ expectations and

requires data variation on the choice environment. The theoretical credibility of these types of as-

sumptions depends on the mechanism faced by agents; in practice, these assumptions imply testable

implications for the observed data. It is therefore useful to characterize a falsification test based

on these implications to aid researchers to screen out assumptions rejected by the data. The test

relies on the fact that the right-hand sides of the inequalities in Proposition 4 must provide a lower

bound for a probability mass function if the model assumptions are correct. For any partition A of

J 0 ×J 0, we must have
∑

A∈A P [Qj ∈ A|Sj = cj ] = 1 for any given distribution in the sharp set of

Proposition 4. Thus the same sum applied to the right-hand sides of the inequalities above must

be less than or equal to one.

Corollary 2 (Model’s Falsification Test). Assume the setup of Proposition 4, which presupposes

that the model assumptions utilized to construct Qj are true. Then, for any partition A of J 0×J 0
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we have that

∑

A∈A

{
I
{
A ∈ Λ∪+

j ∩Λ∪−
j

}
max

{
P
[
Qj ⊆ A|Sj = c+j

]
; P

[
Qj ⊆ A|Sj = c−j

] }

+ I

{
A ∈ Λ∪+

j \Λ∪−
j

}
P

[
Qj ⊆ A|Sj = c+j

]

+ I
{
A ∈ Λ∪−

j \Λ∪+
j

}
P
[
Qj ⊆ A|Sj = c−j

] }
≤ 1.

Partial identification of the distribution of local preferences allows us to bound the fraction of

individuals near cutoff cj that have Qj = (j, k). The average outcome near the cutoff is a weighted

average of average outcomes from two different groups: first, individuals with Qj = (j, k), who

interest us for the identification of treatment effects; and second, individuals with Qj 6= (j, k). The

overall average is identified but not the average in each of the groups. A strictly positive lower

bound on the fraction of individuals in the Qj = (j, k) group allows us to construct lower and upper

bounds on the average outcome for that group.

Start with all individuals above and near cutoff cj whose Qj contain the comparable pair of

interest, (j, k) ∈ P. The fraction of those individuals that have Qj = (j, k) equals to

δ+j,k =
P [Qj = (j, k)|Sj = cj]

P

[
Qj ∩ {(j, k)} 6= ∅|Sj = c+j

] ,

where both numerator and denominator are strictly positive by virtue of (j, k) being a comparable

pair (Definition 5) and sharpness of Qj (Assumption 6). The denominator of δ+j,k is identified from

the data, and Proposition 4 bounds the numerator. All we need for identification of treatment effects

is a lower bound on δ+j,k, which comes from a lower bound on its numerator. Let p
j,k

denote the

infimum over all probability values for P [Qj = (j, k)|Sj = cj ] that belong to the partially identified

set of Proposition 4. The sharp lower bound on δ+j,k equals to

δ+j,k =
p
j,k

P

[
Qj ∩ {(j, k)} 6= ∅|Sj = c+j

] .

The denominator of δ+j,k is strictly positive, but p
j,k

may or may not be strictly positive.

Same idea applies for individuals just below the cutoff. Select all individuals whose Qj contain

the comparable pair of interest, (j, k) ∈ P. The fraction of those that have Qj = (j, k) equals to

δ−j,k =
P [Qj = (j, k)|Sj = cj]

P

[
Qj ∩ {(j, k)} 6= ∅|Sj = c−j

] ,
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and the sharp lower bound on δ−j,k is

δ−j,k =
p
j,k

P

[
Qj ∩ {(j, k)} 6= ∅|Sj = c−j

] .

Example (SD Example, Continued). We have that P
[
Q4 ∩ {(4, 2)} 6= ∅|S1 = c+4

]
= 0.7 and the

bounds on P [Q4 = (4, 2)|S1 = c4] are [0.1, 0.7]. These imply p
4,2

= 0.1 and δ+4,2 = 1/7.

The following result utilizes the proportions δ+j,k and δ−j,k to partially identify average outcomes

for individuals with Qj = (j, k) on either side of the cutoff. Taking differences of these bounds yield

bounds for averages of treatment effects Y (j) − Y (k).

Proposition 5. Suppose Assumptions 2, 6, and 7 hold. Consider a pair (j, k) ∈ P such that

p
j,k
> 0.

(i) If g(Y ) is a continuous random variable for g ∈ G of Assumption 2, then we have the following

bounds on E[g(Y (j))|Qj = (j, k), Sj = cj ] and E[g(Y (k))|Qj = (j, k), Sj = cj ]:

E

[
g(Y )

∣∣∣Qj ∩ {(j, k)} 6= ∅, g(Y ) < F−1
j,k+(δ

+
j,k), Sj = c+j

]

≤ E [g(Y (j)) |Qj = (j, k), Sj = cj ] ≤

E

[
g(Y )

∣∣∣Qj ∩ {(j, k)} 6= ∅, g(Y ) > F−1
j,k+(1− δ+j,k), Sj = c+j

]
,

and

E

[
g(Y )

∣∣∣Qj ∩ {(j, k)} 6= ∅, g(Y ) < F−1
j,k−(δ

−
j,k), Sj = c−j

]

≤ E [g(Y (k)) |Qj = (j, k), Sj = cj ] ≤

E

[
g(Y )

∣∣∣Qj ∩ {(j, k)} 6= ∅, g(Y ) > F−1
j,k−(1− δ−j,k), Sj = c−j

]
,

where F−1
j,k+(u) := inf

{
y : P

[
g(Y ) ≤ y

∣∣∣Qj ∩ {(j, k)} 6= ∅, Sj = c+j

]
≥ u

}
and

F−1
j,k−(u) := inf

{
y : P

[
g(Y ) ≤ y

∣∣∣Qj ∩ {(j, k)} 6= ∅, Sj = c−j

]
≥ u

}
.

(ii) If Y is a binary random variable, then we have the following bounds on E[Y (j)|Qj = (j, k),

Sj = cj ] and E[Y (k)|Qj = (j, k), Sj = cj ]:

max

{
1−

1

δ+j,k
P

[
Y = 0

∣∣∣Qj ∩ {(j, k)} 6= ∅, Sj = c+j

]
, 0

}

≤ E [Y (j) |Qj = (j, k), Sj = cj ] ≤

min

{
1

δ+j,k
P
[
Y = 1

∣∣∣Qj ∩ {(j, k)} 6= ∅, Sj = c+j

]
, 1

}
,
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and

max

{
1−

1

δ−j,k
P
[
Y = 0

∣∣∣Qj ∩ {(j, k)} 6= ∅, Sj = c−j

]
, 0

}

≤ E [Y (k) |Qj = (j, k), Sj = cj ] ≤

min

{
1

δ−j,k
P

[
Y = 1

∣∣∣Qj ∩ {(j, k)} 6= ∅, Sj = c−j

]
, 1

}
.

The bounds in Proposition 4 build on work by Horowitz and Manski (1995). To see the intuition,

take part (i) of the proposition, make g(Y ) = Y , and focus on individuals just above the cutoff.

Among all individuals in the sub-population with Qj ∩ {(j, k)} 6= ∅ and Sj = c+j there is δ+j,k
of them that have Qj = (j, k) and Y = Y (j) by the cutoff characterization. We don’t know

who these individuals are among those in the sub-population. However, the lowest possible value

for E[Y (j)|Qj = (j, k), Sj = cj ] occurs if all such individuals are located at the lower tail of the

distribution of outcomes in the sub-population. Likewise, the highest possible value for E[Y (j)|Qj =

(j, k), Sj = cj ] occurs if that same fraction of individuals are all located at the upper tail of the

distribution of outcomes. We don’t know δ+j,k, but we do know that it is no smaller than δ+j,k > 0.

The bounds only get wider as the fraction δ+j,k decreases, so the bounds evaluated at δ+j,k = δ+j,k take

into account all possible values for δ+j,k. The expressions for the bounds in the case that g(Y ) = Y

is binary change relatively to g(Y ) continuous, but the derivation of the bounds follows the same

intuition. We refer the reader to the proof in the appendix for the details (Section A.8).

Although intuitive, these bounds are not necessarily sharp because δ+j,k is not exogenously

given as in Horowitz and Manski (1995); δ+j,k is constructed using only the distribution of Qj .

The complete characterization of sharp bounds is complex because it involves bounds on the joint

distribution of potential outcomes and Qj and may not be practical to implement when potential

outcomes are continuous. For the sake of simplicity, we relegate the sharp characterization to

Section B in the appendix. The bounds of Proposition 4 contain the sharp bounds of Section B, as

long as our model assumptions are true. The lack of sharpness may not matter in practice when

Proposition 4 yields tight bounds for a given dataset. However, if our assumptions are not true, the

bounds of Proposition 4 may not contain the sharp bounds of Section B. That being said, we may

obtain tight bounds from the data using Proposition 4 but that does not mean they contain the

true parameter (Kédagni et al., 2020). Therefore, it is advisable to assess the testable implications

of Corollary 2 as a matter of routine.

5 Assignment to College Majors in Chile

In this section, we illustrate our method using data from college applications in Chile. Before

estimating bounds for the effect of assignment to a program on graduation outcomes, we exemplify

the presence of strategic behavior in this setting.
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5.1 Data, Institutional Setting, and Evidence of Strategic Behavior.

Centralized college application in Chile. We use publicly available data on centralized college

applications and assignments in Chile from 2004 to 2010, as well as graduation from 2007 to 2020.

The institutional setting is described in detail by Hastings et al. (2013); Larroucau and Rios (2020,

2021), among others. College choice in Chile is organized as a semi-centralized system —a subset

of universities participate in a centralized market in which a clearinghouse collects ranked order

lists from applicants and determines assignments using a variant of the DA algorithm. Students

can submit ranked order lists of up to eight major-university pairs (“programs”) out of more than

1,000.6 Priorities are program-specific and determined by a weighted average of scores obtained at

a national standardized test (“PSU”, for “Prueba de Selección Universitaria”) and of high-school

GPA.7 Descriptive statistics about the sample of students and programs are shown in the left panel

of Tables 2 and 3 in Appendix C.

Strategic behavior. The fact that Chilean college applicants behave strategically has been thor-

oughly documented by Larroucau and Rios (2020, 2021). Using a 2014 survey linked to adminis-

trative data on applications, they show that listed programs often do not coincide with the truly

preferred programs explicitly elicited by the survey. Focusing on application to Medicine programs,

they find for instance that “among the 40,000 students who answered the survey, close to 10%

(3,797) reported Medicine as their top preference, and 2,987 of these students ended-up applying to

the system. Among these, only 1,360 listed Medicine as their top preference.” Moreover, students’

probability of not including Medicine at the top of their submitted list (while declaring it as most

preferred in the survey) increases as application scores decrease; and the probability to apply to

Medicine drops after the 600–750 application score range, where most Medicine cutoffs lie. This

suggests that students tend to omit Medicine as their admission chances get lower, despite prefer-

ring it over other programs. These findings are confirmed in a 2019 survey, where they find that

“most students who did not include their first true preference in their application list expected a

higher cutoff than the cutoff for their first listed preference.”

We construct Figure 1 to provide additional evidence of strategic behavior. Consider a program

j with cutoff cj . Suppose, (consistently with the general finding of the empirical literature on college

choice), that students tend to prefer programs of higher quality. If applicants behave strategically,

one would expect applications to program j to peak among students with application score close to

cj . If cutoffs tend to remain in the same neighborhood across years, students with application scores

much higher than cj can expect to be admissible to more selective, higher-quality programs than

j, which they prefer over j. Hence, we expect very few of these students to include j in their list.

As application scores get lower and closer to cj , students’ admission chances to the most selective

programs decrease, and program j becomes one of the most selective (desirable) program among

6The quota was increased to ten in 2012.
7In 2014, students’ relative rank within their high school has been added as one of the “primary” scores to be

averaged to construct priorities.
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those they still have a high admission probability. Hence, we expect applications to cj to increase

as application scores decrease and get closer to cj . As application scores decrease below cj , students

realize that their admission probability to program j gets lower, and while program j remains a

relatively desirable (selective) alternative, we expect these expectations to drive applications down.

This application pattern, expected if students behave strategically, is exactly what we observe on

the top panel of Figure 1. Pooling all programs j together, the top panel of Figure 1 shows the

fraction of students listing program j in their rank-order lists (ROL or P in terms of our notation),

as a function of the distance between their application for program j and the cutoff cj .

It may be difficult to disentangle the role of preferences from the role of expectations about

admission probabilities when both may enter students’ choice of which programs to include in their

ROLs (Manski (2004); Agarwal and Somaini (2018)). The pattern observed in the top panel of

Figure 1 could, alternatively, be consistent with students not behaving strategically but preferring

programs that “are a good fit in terms of quality”, that is, programs in which their skill level would

be close to the average skill level. If that is the case, applications should peak among students

whose skills (proxied by application score) are close to the mean skill level in the program. This is

not what we observe in the bottom panel of Figure 1. Pooling all programs j together, the bottom

panel of Figure 1 shows the fraction of students including program j in their list, as a function of the

distance between their application for program j and the mean application score among students

admitted to j. Conditional on application score, the share of students applying to a program j is

not the highest for application scores close to the mean score among students admitted to j. It

reaches its highest point well below this level, showing that students do not systematically prefer

programs in which they would be the “average” student. This further confirms the hypothesis that

students behave strategically.

5.2 Results

Regardless of strategic behavior, the aggregation of treatment effects across different programs

brings additional challenges not tackled in this paper; therefore, to more clearly illustrate the

importance of accounting for strategic behavior, we focus on a single program. We are interested

in identifying the effects of assignment to a given post-secondary program on college graduation.

College returns are typically thought of as tied to college graduation, motivating our focus on

graduation-related outcomes (see Kirkeboen et al. (2016) and Altonji et al. (2016) for a detailed

argument). For the average college program, initial enrollment and eventual graduation are far

from being perfectly correlated (OECD 2019, Larroucau and Rios (2021)). We first look at whether

assignment to a given program increases one’s probability to graduate from that same program.

Students who don’t graduate from their initially assigned program either drop out entirely or

participate again in the application procedure in a subsequent year, and possibly go on to graduate

from another program. Therefore, we also consider outcomes such reapplication and graduation

from any program to investigate alternative trajectories to graduation from the assigned program.
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Figure 1: Applications to a program peak among applicants with score close to the cutoff

Finally, we consider graduation from a STEM program and graduation from a top university as

other outcomes. This is in line with the literature on returns to education and college choice, which

focuses on the role of field of study and institution quality in driving returns (see Kirkeboen et al.

(2016) and Altonji et al. (2016) for more references). We follow the classification of the OECD and

define as STEM programs those pertaining to the physical sciences, life sciences, engineering, and

mathematics. This for instance includes chemistry and biology, but excludes economics, medicine,

or logistics. We define as “top” universities Pontificia Universidad Católica de Chile (PUC) and

Universidad de Chile (UChile).

As noted earlier, the identification proposed in this paper resembles an RD design that is sharp,

and is therefore well suited to study the effects of assignment to a program on graduation-related

outcomes. In contrast, estimating the effects of graduation from a program on earnings typically

involves a fuzzy design, which we study in separate ongoing work.

In practice, we use Bachelor of Arts (BA) in Business Administration (“Licencia, Ingeneŕıa

Comercial”) at PUC in Santiago as our illustrative program j. The choice of this program is driven

by two considerations. First, to get reasonably precise estimates, we need a sufficient number of

observations, and this program is popular. Second, with regard to the outcomes above, assignment

to this program is interesting in itself; the chosen program is a very popular program from a

selective university, with a field typically of interest for both STEM-oriented and non STEM-

oriented students, making it particularly interesting to look at the outcomes above. Descriptive
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statistics about the program and its applicants are shown in the right panel of Tables 2 and 3 in

Appendix C.

The first step of the exercise is to recover Qj for each student. Absent strategic behavior, next-

best alternatives are straightforwardly given by application lists. In other terms, direct observation

of P and placement scores lead us to compute cutoffs, budget sets, and finally Pj , which equals Qj

under truth telling. When accounting for strategic behavior, we need to construct Qj, a set that

contains the true Qj of each individual. Section 4.1 shows how to construct Qj under the Strong

Partial Order (SPO) or the Weak Partial Order (WPO) assumptions. TheWPO assumption implies

that any submitted list is a subset of acceptable programs ordered just as in the student’s true

preferences. The SPO assumption implies, in addition, that any student submitting a list strictly

shorter than permitted reveals the student’s complete true list of acceptable schools. Under the

SPO assumption, true local preferences Qj are observed for students submitting fewer than eight

choices (in the case of our empirical application). For students ranking eight choices, Qj is only

observed if Qj is a singleton. The SPO assumption is a strong assumption, especially in light of the

argument in Larroucau and Rios (2020). Deriving bounds under the SPO assumption is, however,

sufficient to illustrate the importance of our method relative to the naive approach of comparing

mean outcomes of marginal applicants by simply conditioning on Pj , that is, the reported local

preferences.

Results are shown in Table 1.8 For simplicity and clarity, we focus on just the four most frequent

second-best choices of Qj among applicants to our program j; they are shown in the first column

of Table 1.

First, it is worth noting that estimated bounds are relatively informative. The width of the

estimated set is smaller than .1 in eleven out of twenty cases and exceeds .3 only once. The bounds

identify the sign of the effect in sixteen out of twenty cases. Naive estimates fall within the bounds

except in one case, but the sign and magnitude of naive estimates may disagree with those of the

true effect in cases where bounds are wide and uninformative about the sign. In our context, the

narrowness of bounds is little surprising, given the SPO assumption and the large share of students

ranking fewer than eight choices. Interestingly, the narrowness does not depend on whether we

impose the UMAS assumption. Reassuringly, estimates show that admission to the case-study

program, Business Administration at PUC Santiago, increases students’ probability to graduate

from that program. The effect is particularly strong for those whose next-preferred alternative is

Economics at UChile or Social Sciences and Humanities at PUC Santiago.

Admission to our case-study program also strongly decreases students’ probability to reapply

through the centralized system in subsequent years for students whose local next-preferred option is

Science and Engineering at UChile, Economics at UChile, or Social Sciences and Humanities at PUC

Santiago. Interestingly, for students with the latter two next-best alternatives, it also decreases the

probability to graduate from any program. For students whose next-best alternative is Science &

8Inference is beyond the scope of this paper. Besides the fact that admission cutoffs are estimated, the fact that
the δ’s used in the construction of bounds are partially identified needs to be taken into account when deriving
confidence bands —a task that we leave for future research.
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Engineering at UChile, the naive estimate indicates a small negative effect on graduation from any

program while our bounds show that this effect cannot be signed and may be 50 times larger in

magnitude. Bounds do suggest that admission to Business Administration at PUC Santiago has a

negative effect on reapplication for these students. While we generally see magnitudes of 0.1 or 0.2

in the effects on graduation from Business Administration or any program, we see much smaller

magnitudes on the students’ probability to graduate from a STEM program —which is reassuring

given that our definition of STEM does not include Business Administration. Finally, we find a

strong positive effect on the probability to graduate from a top institution for those whose local

next-best alternative is Law or Social Sciences and Humanities at PUC Santiago.

6 Conclusion

Centralized mechanisms for the assignment of students to educational programs are growing

in popularity across the world. These systems provide a valuable source of exogenous variation

through discontinuities around admission cutoffs. This along with individual-level data on admis-

sions, preferences, and future outcomes allow researchers to identify a wide range of causal effects of

education on outcomes. The variation is useful for identification as long as we control for students’

true preferences; however, true preferences generally differ from what students report to the mech-

anism given that most implementations of mechanisms generate incentives for students to behave

strategically.

This paper provides a novel approach to partially identify effects from mechanism assignment

on future outcomes that is robust to strategic behavior. We illustrate our approach using data

from a deferred-acceptance mechanism that assigns roughly 70,000 students to more than 1,000

university-major programs every year in Chile. First, we find substantial evidence of strategic

behavior which confirms earlier findings from the literature on Chile. Second, we compute bounds

on the average effect of program assignment on graduation outcomes. We do so for students whose

scores are marginal to the cutoff of admission into one of the most popular and selective programs

in the system: business administration at the Catholic University of Santiago. Although admission

into this program increases the likelihood of graduating from that same program, its effect on the

likelihood of ever graduating from university varies depending on what students prefer as their

second-best option. We compare our bounds to naive estimates that simply control for reported

preferences as if they were true preferences. Naive estimates generally fall within our bounds but

may lead to erroneous conclusions in some cases where bounds are wide and do not pin down the

sign of the true effect.
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Table 1: Results under SPO

Estimate bounds Naive estimate

Graduation from Bus. Adm., PUC Santiago
Economics, UChile Santiago [.319 ; .418] .369
Science & Engineering, UChile Santiago [.000 ; .188] .159
Social Sciences & Humanities, PUC Santiago [.230 ; .239] .272
Law, PUC Santiago [.087 ; .407] .321

Reapplication
Economics, UChile Santiago [-.178 ; -.079] -.114
Science & Engineering, UChile Santiago [-.369 ; -.107] -.199
Social Sciences & Humanities, PUC Santiago [-.164 ; -.155] -.156
Law, PUC Santiago [.065 ; .174] .116

Graduation from any program
Economics, UChile Santiago [-.218 ; -.029] -.084
Science & Engineering, UChile Santiago [-.126 ; .164] -.003
Social Sciences & Humanities, PUC Santiago [-.055 ; -.064] -.063
Law, PUC Santiago [.032 ; .139] .058

Graduation from STEM program
Economics, UChile Santiago [-.016 ; .021] .004
Science & Engineering, UChile Santiago [.000 ; .076] .064
Social Sciences & Humanities, PUC Santiago [.000 ; .015] .000
Law, PUC Santiago [.000 ; .000] .000

Graduation from a top university (PUC Santiago or UChile)
Economics, UChile Santiago [-.086 ; .013] -.040
Science & Engineering, UChile Santiago [-.058 ; .232] .060
Social Sciences & Humanities, PUC Santiago [.209 ; .218] .210
Law, PUC Santiago [.123 ; .411] .193

Outcomes and second-best options k in Qj = (j, k) are shown in the leftmost column of
the table. For out parameter of interest, the first-best option in Qj is always j =“BA
in Business administration at PUC Santiago”. The second column shows bounds for our
parameter of interest (Equation 1). Bounds are estimated using local linear polynomials,
and without imposing UMAS (Assumption 5). Bandwidths are set to 30 points, except if
another program ℓ has its cutoff within 30 points of cj . Then, the bandwidth is reduced
to the distance between cj and cℓ. Naive estimates in the third column are computed as
the difference in mean outcomes between applicants above vs. below the admission cutoff,
within the same bandwidths, and conditional on reported local preferences Pj being equal
to (j, k), where k is given in the leftmost column of the table.
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A Proofs

A.1 Proof of Lemma 1

Consider a school j with cutoff cj in the interior of the support Sj . Once you fix an event A ∈ A−j , you

fix the availability of those schools with non-j scores S−j . The right- and left-counterfactual budget sets

B−
j (S) and B+

j (S) become fixed (i.e., non random), regardless of the value of Sj . Once we fix Sj on top of

that, the actual budget set B(S) is also fixed.

Fix an event A ∈ A−j and Sj in a small neighborhood of cj . Pick schools k, l ∈ J 0 such that P[Qj = (k,

l)|Sj = cj ] > 0. Define Q(A) to be the set of all preference relations Q ∈ Q such that Q(B+
j (S)) = k and

Q(B−
j (S)) = l. Note that Q(A) is a fixed set of preferences (i.e., non random).

Enumerate the mutually exclusive events inA−j asA1, . . . , AM , whereM = 2J−1. We have that Qj = (k,

l) is equivalent to Q ∈ Q(A1) if A1, . . ., Q ∈ Q(AM ) if AM . Therefore, for s in a small neighborhood of

cj ,

E[g(Y (d))I{Qj = (k, l)}|Sj = s]

=
M∑

l=1

E[g(Y (d))I{Qj = (k, l),S−j ∈ Al}|Sj = s]

=

M∑

l=1

E[g(Y (d))I{Q ∈ Q(Al),S−j ∈ Al}|Sj = s]

=

M∑

l=1

∑

Q0∈Q(Al)

E[g(Y (d))I{Q = Q0,S−j ∈ Al}|Sj = s].

It follows that E[g(Y (d))I{Qj = (k, l)}|Sj = s] is a continuous function of s at s = cj because

E[g(Y (d))I{Q = Q0,S−j ∈ Al}|Sj = s] is continuous at s = cj for every l and Q0 by assumption.

Likewise,

P[Qj = (k, l)|Sj = s]

=
M∑

l=1

P[Qj = (k, l),S−j ∈ Al|Sj = s]

=

M∑

l=1

P[Q ∈ Q(Al),S−j ∈ Al|Sj = s]

=

M∑

l=1

∑

Q0∈Q(Al)

P[Q = Q0,S−j ∈ Al|Sj = s],

which is continuous at s = cj for every l and Q0 by assumption.

Therefore,

E[g(Y (d))|Qj = (k, l), Sj = s]

=
E[g(Y (d))I{Qj = (k, l)}|Sj = s]

P[Qj = (k, l)|Sj = s]

is continuous at s = cj

�
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A.2 Proof of Proposition 1

Take (j, k) ∈ P . Start with school j, s ≥ cj ,

lim
s↓cj

E[g(Y )|Pj = (j, k), Sj = s] = lim
s↓cj

E[g(Y )|Qj = (j, k), Sj = s]

= lim
s↓cj

E[g(Y (j))|Qj = (j, k), Sj = s]

= E[g(Y (j))|Qj = (j, k), Sj = cj ].

For school k, s < cj ,

lim
s↑cj

E[g(Y )|Pj = (j, k), Sj = s] = lim
s↑cj

E[g(Y )|Qj = (j, k), Sj = s]

= lim
s↑cj

E[g(Y (k))|Qj = (j, k), Sj = s]

=E[g(Y (k))|Qj = (j, k), Sj = cj ].

�

A.3 Proof that Partial Orders Dominate Non-Partial Orders

First, some definitions. The strategy for each student ω is an ordered list of schools P (ω) ⊆ J that

has at least one and at most K < J schools in it. The strategy profile of the economy is a correspondence

P : Ω ⇒ J (random set). The score profile of individuals in the economy is denoted by the random vector

S : Ω → S. A mechanism ϕ takes the whole correspondence P and function S as givens and produces school

assignments for each individual ω ∈ Ω, such that ϕ(P,S) : Ω → J 0. The assignment of student ω for profiles

(P,S) is ϕ(P,S)[ω].

For this proof, it is convenient to focus on the assignment of an individual ω0 as a function of his

individual ranking submission p ⊆ J , the ranking submissions of others P−ω0 : Ω \ {ω0} ⇒ J , and the

scores of everybody S : Ω → S. We write that assignment as ϕ((p, P−ω0),S)[ω0].

For individual ω0 with true preferences Q(ω0), we say p′ weakly dominates p if

ϕ((p′, P−ω0),S)[ω0] Q̄(ω0) ϕ((p, P
−ω0),S)[ω0] for every P

−ω0 . In addition, we say ϕ is strategy proof with

unrestricted lists if submitting the true list of acceptable schools weakly dominates submitting anything else

for every individual ω.

Lemma 2. Assume ϕ is strategy proof with unrestricted lists. Consider student ω with true preference Q(ω).

Fix an arbitrary ranking of schools p ⊆ J . For such student, p is weakly dominated by any weak partial

order p′ of Q(ω) that contains all the acceptable schools in p. In turn, p′ is weakly dominated by any strong

partial order p′′ of Q(ω) that contains all the acceptable schools in p′.

Moreover, suppose the number of acceptable schools in Q(ω) is less than or equal to K. Then, the

dominant strategy is to submit the unique strong partial order of Q(ω) which equals the true list of acceptable

schools.

Proof of Lemma 2:

This proof is due to Haeringer and Klijn (2008), Lemma 4.2. We expand it here in terms of our framework

and definitions of partial order.
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From the main text, everybody has at least one acceptable school. Take student ω and consider an

arbitrary list of schools p that has at least one acceptable school for that student. If p does not have any

acceptable schools, then it is clearly dominated by any weak partial order.

First, remove the non-acceptable schools from p (if any), keep the relative ordering of the acceptable

schools, and call the resulting list p̄. It follows that p̄ weakly dominates p for student ω.

Second, let p′ be a weak partial order of Q(ω) that contains the schools listed in p̄. Construct a new

“true” preference ranking q ⊆ J 0 as follows: (a) take the acceptable schools of p′ and place them first in q,

in the same order as they are in p′; (b) add a 0 to q after the last school in part (a); (c) fill the remaining

positions below 0 in q with the schools not listed in p′, in any order. Note that p′ equals the true list of

acceptable schools from q, p′ is a weak partial order of q, and p′ is the unique strong partial order of q.

Third, suppose for a moment that the true preference of individual ω were q instead of Q(ω). In that

case, strategy-proofness of ϕ implies that

ϕ((p′, P−ω),S)[ω] q̄ ϕ((p̄, P−ω),S)[ω] for every P−ω.

Given that p′ is a weak partial order of both Q(ω) and q, for any two options d, d′ in p′, we have d′ q̄ d

implies d′Q̄(ω)d. Therefore,

ϕ((p′, P−ω),S)[ω] Q̄(ω) ϕ((p̄, P−ω),S)[ω] for every P−ω.

It then follows that p′ weakly dominates p̄, which weakly dominates p, so p′ weakly dominates p.

It follows that any strong partial order p′′ of Q(ω) that contains the same acceptable schools as p′ weakly

dominates p′. To see that, repeat the argument above by replacing p with p′ and replacing p′ with p′′.

The second claim of the lemma follows from strategy-proofness of ϕ since the quota constraint is not

binding for an individual whose number of acceptable schools is less than or equal to K, and submission of

the true list of acceptable schools is feasible.

�

A.4 Proof of Proposition 2

The true preference list Q is unobserved. The submitted preference list P is observed and a weak

partial order of Q. Note that all the schools listed in P appear in Q ranked before 0 (i.e., as acceptable

schools). There may be other elements in Q that were not listed in P . These remaining schools might appear

anywhere in Q, as long as the relative ordering of schools in P is preserved in Q. Our focus is on students

with Pj = (a, b), so we know that aQ̄b, where aQb if a 6= b.

We consider all possibilities of Q that are consistent with the observed P and assumptions, and that

affect Qj . In such cases, the acceptable schools in Q include all the schools in P and possibly more; in fact,

since |P | ≤ K < J , the J − |P | > 0 unlisted schools in P may appear as acceptable in Q. The additional

acceptable schools in Q may be schools that are feasible or not within the budget set of the individual.

The proposition defines two sets of unlisted feasible schools for an individual with scores S and submitted

preferences P : N+
j = B+

j (S) \ {P ∪ {0}} and N−
j = B−

j (S) \ {P ∪ {0}}. The only difference between B+
j

and B−
j is the set of schools whose priority scores equal Sj and cutoffs equal cj .

The rest of the proof builds on the following reasoning. Ignore Assumption 4 for a moment. The first

coordinate of Qj depends on Pj and the set N+
j . In fact, the first coordinate of Pj is the best option in

B+
j (S) according to P : that’s option a. The best option in B+

j (S) according to Q may also be a as long

as there are no unlisted options in P that are available in B+
j (S) and rank higher than a in Q. A similar
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argument applies to the second coordinate of Q: that is a function of Pj and the set N−
j . Now, Assumption

4 further restricts Qj because it implies that P (B(S)) = Q(B(S)) and P (B(S)) is observed.

Regarding the outside option 0, the only way that Qj will have a zero is if Pj has a zero. In fact, if a 6= 0

and b 6= 0, we have that aP̄ bP0 which implies aQ̄bQ0, so none of the coordinates of Qj will be zero. That’s

why the sets of unlisted feasible options, N+
j and N−

j , do not contain zero.

Case 1: Sj ≥ cj .

By Assumption 4 we have that the mechanism assignment µ equals the best option according to P in

the set B(S) = B+
j (S). An individual with Pj = (a, b) has a = P (B+

j (S)) = P (B(S)), therefore µ = a. The

cutoff characterization dictates that a = Q(B(S)) = Q(B+
j (S)), so the first coordinate of Qj equals a. It

remains to determine the second coordinate of Qj, which depends on Pj and the set N−
j .

Case 1.1: N−
j = ∅.

None of the unlisted schools in P are feasible in the counterfactual below the cutoff. These unlisted schools

may rank higher than b in Q, but none of them will ever be the best feasible option in the counterfactual

below the cutoff. Thus, the 2nd coordinate of Qj equals b and Qj = {Pj}.

Case 1.2: N−
j 6= ∅.

For any option d ∈ N−
j , we have that d 6= a, d 6= b, d ∈ N+

j , and aQd.

Case 1.2.1: If a 6= b, we have aQb. We can always find a Q such that dQb and the second coordinate of

Qj equals d; and we can always find another Q such that bQd and the second coordinate of Qj equals b.

Therefore, Qj = {Pj} ∪ {(a×N−
j )}.

Case 1.2.2: If a = b, then we have bQd because aQd. Thus, Qj = {Pj}.

Case 2: Sj < cj .

By Assumption 4 we have that the mechanism assignment µ equals the best option according to P in

the set B(S) = B−
j (S). An individual with Pj = (a, b) has b = P (B−

j (S)) = P (B(S)), therefore µ = b. The

cutoff characterization dictates that b = Q(B(S)) = Q(B−
j (S)), so the second coordinate of Qj equals b. It

remains to determine the first coordinate of Qj , which depends on Pj and the set N+
j .

Case 2.1: N+
j = ∅.

None of the unlisted options in P are feasible in the counterfactual above the cutoff. These unlisted op-

tions may rank higher than a in Q, but none of them will ever be the best feasible option in the counterfactual

above the cutoff. Thus, the first coordinate of Qj equals a and Qj = {Pj}.

Case 2.2: N+
j 6= ∅

For any option d ∈ N+
j ∩N−

j , we have that d 6= a, d 6= b, d is in B−
j (S) but bQd since the 2nd coordinate

of Qj equals b. We have that aQ̄b and it follows that aQd. In this case, we can never find a Q such that the

best choice in B+
j (S) is d.

Consider there is an option d ∈ N+
j \N−

j . We have that d 6= a, d 6= b, d is in B+
j (S) but not in B−

j (S).

It is possible to find Q such that dQa, in which case the best choice in B+
j (S) is d. It is also possible to

find another Q such that aQd, in which case the best choice in B+
j (S) is a. Therefore, Qj = {Pj} ∪ ((N+

j \

N−
j )× {b}).

Moreover, assume P is a strong partial order of Q. This implies that |P | = min{K, |{d ∈ Q : dQ0}|} in

addition to P being a subset of {d ∈ Q : dQ0}. If |P | < K then |P | = |{d ∈ Q : dQ0}| and P equals the

true list of acceptable schools in Q. Therefore, Qj = Pj and Qj = {Pj}. On the other hand, if |P | = K, P

may or may not be the true list of acceptable schools in Q, and Qj continues to be as defined in the case of

weak partial order.
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Finally, the proof above is constructive as it considers all possibilities of Q given P and S that are

consistent with the assumptions. Thus, it leads to the sharp set of possible Qjs under the full support

assumption.

�

A.5 Proof of Proposition 3

Before the matching mechanism is run, the agent knows his placement scores s = (s1, . . . , sJ ), his true

preferences Q, but does not know what the admission cutoffs will be after the matching is run. He sees

admission cutoffs as random variables (C1, . . . , CJ ). The strict preference relation Q is represented by a

vector of distinct utility values (U0, U1, ..., UJ) so that aQb ⇔ Ua > Ub for any a, b ∈ J 0. We normalize

U0 = 0 for simplicity.

The agent has to decide on a ranking of acceptable schools P to submit. The number of schools ranked

in P is |P | and a feasible ranking has 1 ≤ |P | ≤ K. The set of all feasible rankings is defined as ∆P .

We let Pu denote the u-th school listed in P , for u = 1, . . . , |P |. We define LP
u to be the agent’s expected

probability of being assigned to school u when submitting ranking P , u = 1, . . . , |P |. LP
0 denotes the expected

probability of remaining unassigned, that is, of taking the outside option. Naturally, LP
u ≥ 0 for every u and∑|P |

u=0 L
P
u = 1. Cutoff characterization wrt P (Assumption 4) implies:

LP
0 = P

[
∩
|P |
v=1 {sPv < CPv}

]
,

LP
u = P

[
∩u−1
v=1{sPv < CPv} ∩ {sPu ≥ CPu}

]
, u = 1, . . . , |P |,

where we adopt the convention that ∩u−1
v=1{sPv < CPv} ∩ A = A for any measurable set A if u = 1;

in other words, if the intersection ∩v∈V is to be computed over an empty set of indices, V = ∅, then

P [∩v∈V {sPv < CPv} ∩ A] = P [A] , for any measurable set A.

The agent’s optimal ranking to be submitted is the solution to the following problem,

max
P∈∆P

|P |∑

u=1

UPuLP
u .

From now on, let P be the optimal choice of this agent. Suppose there is a pair of schools (d, e) ∈

UMAS ∩ (P × P c). Let n be the position in P where d appears, i.e., Pn = d. Construct P̃ by taking P and

replacing option d with option e. This implies that P̃u = Pu for every u 6= n and P̃n = e.

Suppose eQd⇔ Ue > Ud by contradiction. In what follows, we compare the expected utility of submitting

P to the expected utility of submitting P̃ for this agent and show a contradiction. In order to do that, we

first establish some implications of Assumption 5 on the probabilities of admission:

LP
u = LP̃

u for any u such that 1 ≤ u < n if n > 1, (6)

LP
n ≤ LP̃

n , (7)

LP
u ≥ LP̃

u for any u such that n < u ≤ |P | if n < |P |, (8)

LP
0 ≥ LP̃

0 , (9)

where at least one of the inequalities (7)–(9) is strict if n < |P |; or, if n = |P |, at least one of the inequalities

(7) and (9) is strict. Below, we prove (6)–(9).

37



Equation 6 comes from the fact that P̃u = Pu for every 1 ≤ u < n if n > 1. The admission probability

depends on u being the lowest ranked school for which the agent qualifies. Thus,

P
[
∩u−1
v=1{sPv < CPv} ∩ {sPu ≥ CPu}

]
= P

[
∩u−1
v=1{sP̃v < C

P̃v} ∩ {s
P̃u ≥ C

P̃u}
]
,

for every 1 ≤ u < n if n > 1.

For Equation 7, we have that P[sd ≥ Cd] ≤ P[se ≥ Ce] is implied by the first condition of Assumption 5.

This further implies that

P
[
∩n−1
v=1{sPv < CPv} ∩ {sd ≥ Cd}

]
≤ P

[
∩n−1
v=1{sPv < CPv} ∩ {se ≥ Ce}

]
,

which is equivalent to LP
n ≤ LP̃

n .

For Equation 8, note that the first condition of Assumption 5 implies P[sd < Cd] ≥ P[se < Ce]. This

further implies that,

LP
u =P

[
∩n−1
v=1{sPv < CPv} ∩ {sd < Cd} ∩u−1

v=n+1 {sPv < CPv} ∩ {sPu ≥ CPu}
]

≥

P
[
∩n−1
v=1{sPv < CPv} ∩ {se < Ce} ∩u−1

v=n+1 {sPv < CPv} ∩ {sPu ≥ CPu}
]
= LP̃

u ,

for u such that n < u ≤ |P | if n < |P |.

For Equation 9, again we have that P[sd < Cd] ≥ P[se < Ce] implies

LP
0 =P

[
∩n−1
v=1{sPv < CPv} ∩ {sd < Cd} ∩

|P |
v=n+1 {sPv < CPv}

]

≥

P

[
∩n−1
v=1{sPv < CPv} ∩ {se < Ce} ∩

|P |
v=n+1 {sPv < CPv}

]
= LP̃

0 .

Finally, the second condition in Assumption 5 (relevance condition) implies that at least one of the

inequalities (7)–(9) is strict if n < |P |; or, if n = |P |, at least one of the inequalities (7) and (9) is strict.

Having established these facts, we now move on to compare the expected utility of submitting P to the

expected utility of submitting P̃ .

Define ǫ = Ue −Ud = U
P̃n −UPn > 0. Note that LP

0 = 1−
∑|P |

u=1 L
P
u and LP

0 −LP̃
0 =

∑|P |
u=1

(
LP̃
u − LP

u

)

=
(
LP̃
n − LP

n

)
+

∑|P |
u=n+1

(
LP̃
u − LP

u

)
, where we adopt the convention that a sum over an empty set of

indices equals zero, i.e.,
∑|P |

u=n+1

(
LP̃
u − LP

u

)
= 0 if n+ 1 > |P |. This leads to

(
LP̃
n − LP

n

)
=

(
LP
0 − LP̃

0

)
−

∑|P |
u=n+1

(
LP̃
u − LP

u

)
. Next, we combine these definitions with the inequalities in Equations 7–9 to evaluate

the difference between the expected utility of submitting P and the expected utility of submitting P̃ :

|P |∑

u=1

UPuLP
u − U

P̃uL
P̃
u = UPnLP

n − U
P̃nL

P̃
n +

|P |∑

u=n+1

UPu(LP
u − LP̃

u )

= UPn(LP
n − LP̃

n )− ǫLP̃
n +

|P |∑

u=n+1

UPu(LP
u − LP̃

u )

= UPn



−
(
LP
0 − LP̃

0

)
+

|P |∑

u=n+1

(
LP̃
u − LP

u

)


− ǫLP̃
n +

|P |∑

u=n+1

UPu(LP
u − LP̃

u )
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= −UPn

(
LP
0 − LP̃

0

)
− UPn

|P |∑

u=n+1

(
LP
u − LP̃

u

)
− ǫLP̃

n +

|P |∑

u=n+1

UPu

(
LP
u − LP̃

u

)

= −UPn

(
LP
0 − LP̃

0

)
− ǫLP̃

n −

|P |∑

u=n+1

(UPn − UPu)
(
LP
u − LP̃

u

)
< 0,

where we use the fact that weak partial order (Assumption 3) implies UP 1 > . . . > UP |P | > 0, ǫ > 0, and

at least one of
(
LP
0 − LP̃

0

)
, LP̃

n , and
(
LP
u − LP̃

u

)
for u > n is strictly positive if n < |P |. If n = |P |, at

least one of
(
LP
0 − LP̃

0

)
and LP̃

n is strictly positive. The inequality above shows that submitting P̃ increases

the expected utility relatively to submitting P , which is a contradiction with P being the optimal choice.

Therefore, dQe.

�

A.6 Proof of Corollary 1

Let (d, e) be an arbitrary pair of distinct schools such that e is uniformly more accessible than school d;

d ∈ P , e /∈ P . Call (a, b) = Pj . Proposition 3 implies dQe. This fact weakly decreases the set of possible

Qs each individual has and thus potentially affects only the non-singleton cases in the definition of Qj in

Proposition 2. These correspond to cases 1.2.1 and 2.2 in the proof of Proposition 2. We re-examine these

cases below for the arbitrary pair (d, e).

Case 1.2.1: Sj ≥ cj , N
−
j 6= ∅, and a 6= b.

We have aQb. For any option f ∈ N−
j , we have that f 6= a, f 6= b, f ∈ B−

j (S), and f ∈ B+
j (S).

Case 1.2.1(a): Suppose bP̄d.

bP̄ d implies that bQ̄d. Given that dQe, we have bQe. In case e ∈ N−
j , it is no longer true that we can

construct Q such that fQl for any f ∈ N−
j . We can only do so for f 6= e. Therefore, Qj = (a, e) does not

belong to Qj .

Case 1.2.1(b): Suppose dPb.

This implies that dQb. The fact that dQe does not restrict us from having two possibilities: dQeQb or

dQbQe. It is again possible to construct Q such that fQb for any f ∈ N−
j , including f = e if e ∈ N−

j .

Therefore, Qj = (a, e) does belong to Qj in this case.

Case 2.2: Sj < cj , N
+
j 6= ∅

Consider there is an option f ∈ N+
j \N−

j . We have that f 6= a, f 6= b, f is in B+
j (S) but not in B

−
j (S).

Case 2.2(a): Suppose aP̄d

aP̄ d implies that aQ̄d. Given that dQe, we have that aQe. If f = e, we cannot construct Q such that

fQa. Thus, it is no longer true that we can find Q such that fQa for every f ∈ N+
j \N−

j ; that’s true only

for f 6= e. Therefore, Qj = (e, b) does not belong to Qj in this case.

Case 2.2(b): Suppose dPa.

dPa implies dQa. The fact that dQe does not restrict us from having two possibilities: dQeQa or dQaQe.

It is again possible to construct Q such that fQa for every f ∈ N+
j \N−

j , including f = e if e ∈ N+
j \N−

j .

Therefore, Qj = (e, b) does belong to Qj in this case.

Sharpness follows because we remove all Qs that violate the implication of Proposition 3.

�
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A.7 Proof of Proposition 4

The random set Qj is a measurable map from Ω to J 0×J 0, so it is compact valued. Following Definition

A.1 by Molinari (2020), we say that Qj is a random closed set because for every compact set K ∈ R2, the set

{ω ∈ Ω : Qj(ω)∩K 6= ∅} is a measurable event. By Assumption 6(i), the random vector Qj and the random

set Qj are measurable maps on the same probability space; and P
[
Qj ∈ Qj |Sj = s

]
= 1 for any s ∈ Sj .

Artstein’s inequality (Theorem A.1 by Molinari (2020)) characterizes all possible probability mass func-

tions P [Qj = (a, b)|Sj = s] over (a, b) ∈ J 0×J 0 for any Qj such that P
[
Qj ∈ Qj |Sj = s

]
= 1 for any s ∈ Sj .

Since Qj is sharp (Assumption 6(ii)), the Artstein’s inequality yields the sharp set of all probability mass

functions P [Qj = (a, b)|Sj = s]. For any s ∈ Sj , the inequality says that

P
[
Qj ⊆ A|Sj = s

]
≤ P [Qj ∈ A|Sj = s] ∀A ∈ 2J

0×J 0

, (10)

where 2J
0×J 0

denotes the power set of J 0 × J 0.

Lemma 1 of Chesher and Rosen (2017) applied to our case shows that the inequalities (10) are equivalent

to:

P
[
Qj ⊆ A | Sj = s

]
≤ P [Qj ∈ A | Sj = s] ∀A ∈ Λ∪

j (s).

Next, consider any s ∈ [cj , cj + ε) for ε of Assumption 7(i). We have that

P
[
Qj ⊆ A | Sj = s

]
≤ P [Qj ∈ A | Sj = s] ∀A ∈ Λ∪+

j ,

and taking limits on both sides as s ↓ cj leads to

P
[
Qj ⊆ A | Sj = c+j

]
≤ P [Qj ∈ A | Sj = cj ] ∀A ∈ Λ∪+

j , (11)

where we use continuity of P [Qj ∈ A | Sj = s] wrt s (Assumption 2) and existence of the side-limit

P
[
Qj ⊆ A | Sj = c+j

]
(Assumption 7(ii)). Applying an analogous argument on the left of the cutoff cj leads

to

P
[
Qj ⊆ A | Sj = c−j

]
≤ P [Qj ∈ A | Sj = cj ] ∀A ∈ Λ∪−

j . (12)

If there is A ∈ Λ∪+
j ∩Λ∪−

j , then both (11) and (12) are true which leads to

max
{
P
[
Qj ⊆ A|Sj = c+j

]
; P

[
Qj ⊆ A|Sj = c−j

] }
≤ P [Qj ∈ A | Sj = cj ] . (13)

In summary, we have an inequality for every A ∈ Λ∪+
j ∪ Λ∪−

j . There are three possibilities: A ∈

Λ∪+
j ∩Λ∪−

j (Inequality 13), A ∈ Λ∪+
j \Λ∪−

j (Inequality 11), and A ∈ Λ∪−
j \Λ∪+

j (Inequality 12).

�

A.8 Proof of Proposition 5

Define

δj,k(s) =
P [Qj = (j, k)|Sj = s]

P
[
Qj ∩ {(j, k)} 6= ∅|Sj = s

] ,

where we know δj,k(s) is well defined for s in a neighborhood of cj because (j, k) is a comparable pair

(Definition 5) and Assumption 6.

40



By Assumptions 2 and 7, side limits of δj,k(s) as s ↓ cj and s ↑ cj are well defined and equal to δ+j,k and

δ−j,k, respectively.

Take g ∈ G of Assumption 2. For s ≥ cj ,

E
[
g(Y )

∣∣Qj ∩ {(j, k)} 6= ∅, Sj = s
]

= δj,k(s) E
[
g(Y )

∣∣Qj = (j, k),Qj ∩ {(j, k)} 6= ∅, Sj = s
]

+ (1− δj,k(s)) E
[
g(Y )

∣∣Qj 6= (j, k),Qj ∩ {(j, k)} 6= ∅, Sj = s
]

= δj,k(s) E [g(Y (j)) |Qj = (j, k), Sj = s ]

+ (1− δj,k(s)) E
[
g(Y )

∣∣Qj 6= (j, k),Qj ∩ {(j, k)} 6= ∅, Sj = s
]
,

where we use the cutoff characterization and the fact that {Qj = (j, k)} ⊆ {Qj ∩ {(j, k)}}. Taking the limit

as s ↓ cj ,

E
[
g(Y )

∣∣Qj ∩ {(j, k)} 6= ∅, Sj = c+j
]

= δ+j,k E [g(Y (j)) |Qj = (j, k), Sj = cj ]

+ (1 − δ+j,k) E
[
g(Y )

∣∣Qj 6= (j, k),Qj ∩ {(j, k)} 6= ∅, Sj = c+j
]
,

where again all limits are well defined by Assumptions 2 and 7. Repeating the derivation for s < cj and

making s ↑ cj ,

E
[
g(Y )

∣∣Qj ∩ {(j, k)} 6= ∅, Sj = c−j
]

= δ−j,k E [g(Y (k)) |Qj = (j, k), Sj = cj ]

+ (1− δ−j,k) E
[
g(Y )

∣∣Qj 6= (j, k),Qj ∩ {(j, k)} 6= ∅, Sj = c−j
]
.

We know the expectations on the left-hand sides of the last two equations, but we do not know

the δs or the expectations on the right-hand sides. Above the cutoff, the goal is to partially identify

E [g(Y (j)) |Qj = (j, k), Sj = cj ] using the distribution of g(Y ) conditional on Qj ∩ {(j, k)} 6= ∅ and Sj = c+j
plus knowledge of a strictly positive lower bound on δ+j,k, i.e., δ

+
j,k. Likewise, below the cutoff, the goal is

to partially identify E [g(Y (k)) |Qj = (j, k), Sj = cj ] using the distribution of g(Y ) conditional on Qj ∩ {(j,

k)} 6= ∅ and Sj = c−j plus δ−j,k. This problem fits the setting of Horowitz and Manski (1995), specifically,

Propositions 1–4 and Corollary 4.1 of their paper.

Part (i)

Assume g(Y ) is a continuous random variable. Assume for the time being that we know the fraction of

individuals with Qj = (j, k), that is, δ+j,k > 0. The lowest possible value for the mean E[g(Y (j))|Qj = (j,

k), Sj = cj ] occurs when all individuals with Qj = (j, k) are at the lower tail of the distribution of g(Y )

conditional on Qj ∩ {(j, k)} 6= ∅ and Sj = c+j . This gives the lower bound

E

[
g(Y )

∣∣∣Qj ∩ {(j, k)} 6= ∅, g(Y ) < F−1
j,k+(δ

+
j,k), Sj = c+j

]
.

On the other hand, the highest possible value for the mean E [g(Y (j)) |Qj = (j, k), Sj = cj ] occurs when

all individuals with Qj = (j, k) are at the upper tail of the distribution of g(Y ) conditional onQj∩{(j, k)} 6= ∅
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and Sj = c+j . This gives the upper bound

E

[
g(Y )

∣∣∣Qj ∩ {(j, k)} 6= ∅, g(Y ) > F−1
j,k+(1− δ+j,k), Sj = c+j

]
.

We don’t know δ+j,k but we know that 0 < δ+j,k ≤ δ+j,k, so all values δ+j,k ∈ [δ+j,k, 1] are possible. As the

fraction δ+j,k decreases, the lower bound derived above decreases and the upper bound increases. Thus, we

widest bounds occur when δ+j,k = δ+j,k, that is,

E

[
g(Y )

∣∣∣Qj ∩ {(j, k)} 6= ∅, g(Y ) < F−1
j,k+(δ

+
j,k), Sj = c+j

]

and

E

[
g(Y )

∣∣∣Qj ∩ {(j, k)} 6= ∅, g(Y ) > F−1
j,k+(1− δ+j,k), Sj = c+j

]
.

Bounds for E [g(Y (k)) |Qj = (j, k), Sj = cj ] are derived in an analogous fashion.

Part (ii)

Assume g(Y ) = Y and Y is binary. The expressions for the bounds in Part (i) are not valid in this case.

To see that, take the lower bound for the mean of Y (j) as an example. The quantile function F−1
j,k+(δ

+
j,k)

equals either 0 or 1, so that the conditioning event Y < F−1
j,k+(δ

+
j,k) is either empty or has probability that

is generally different from δ+j,k.

To start, note that

E [g(Y (j)) |Qj = (j, k), Sj = cj ] = P [Y (j) = 1 |Qj = (j, k), Sj = cj ] .

Define

q+j,k := E
[
Y
∣∣Qj ∩ {(j, k)} 6= ∅, Sj = c+j

]
= P

[
Y = 1

∣∣Qj ∩ {(j, k)} 6= ∅, Sj = c+j
]
.

Assume for the time being that we know δ+j,k.

Case (a): Suppose 1 − q+j,k ≥ δ+j,k, that is, the fraction of individuals with Y = 0 in the population of

individuals withQj∩{(j, k)} 6= ∅ and Sj = c+j is greater than or equal to the fraction of individuals with Qj =

(j, k) in that same population. In this case, the lowest possible value for P [Y (j) = 1 |Qj = (j, k), Sj = cj ]

occurs when all δ+j,k individuals have Y equal 0. That lowest value is zero.

Case (b): Now, suppose 1− q+j,k < δ+j,k. It is no longer possible to have all δ+j,k individuals with Y equal

0. The lowest possible value for P [Y (j) = 1 |Qj = (j, k), Sj = cj ] has as many of δ+j,k individuals as we can

with Y = 0, that is, 1 − q+j,k of them. The remaining δ+j,k − (1 − q+j,k) individuals must have Y = 1. That

lowest possible value is (1− q+j,k)/δ
+
j,k × 0 + [δ+j,k − (1 − q+j,k)]/δ

+
j,k × 1 = 1− (1− q+j,k)/δ

+
j,k.

The lower bound expression for P [Y (j) = 1 |Qj = (j, k), Sj = cj ] that covers both cases (a) and (b) is as

follows,

max

{
1−

1− q+j,k

δ+j,k
, 0

}
.

Next, we consider the upper bound for P [Y (j) = 1 |Qj = (j, k), Sj = cj ].

Case (c): Suppose q+j,k ≥ δ+j,k, that is, the fraction of individuals with Y = 1 in the population of

individuals with Qj ∩ {(j, k)} 6= ∅ and Sj = c+j is greater than or equal to the fraction of individuals with
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Qj = (j, k) in that same population. The highest possible value for P [Y (j) = 1 |Qj = (j, k), Sj = cj ] occurs

when all δ+j,k individuals have Y = 1. That highest value is 1.

Case (d): Now, suppose q+j,k < δ+j,k. It is no longer possible to have all δ+j,k individuals with Y equal

1. The highest possible value for P [Y (j) = 1 |Qj = (j, k), Sj = cj ] has as many of the δ+j,k individuals as we

can with Y = 1, that is, q+j,k of them. The remaining δ+j,k − q+j,k individuals must have Y = 0. That highest

possible value is q+j,k/δ
+
j,k × 1 + (δ+j,k − q+j,k)/δ

+
j,k × 0 = q+j,k/δ

+
j,k.

The upper bound expression for P [Y (j) = 1 |Qj = (j, k), Sj = cj ] that covers both cases (c) and (d) is

as follows,

min

{
q+j,k

δ+j,k
, 1

}
.

We don’t know δ+j,k, but we only know the lower bound δ+j,k > 0. As in Part (i) above we compute the

bounds at δ+j,k because they get weakly wider as δ+j,k decreases.

Bounds for P[Y (k) = 1|Qj = (j, k), Sj = cj ] are derived in an analogous fashion.

�

B Sharp Bounds on Treatment Effects

In this section we utilize Artstein’s inequality (Theorem A.1 by Molinari (2020)) to characterize sharp

bounds on the joint distribution of potential outcomes and true local preferences. That set of distributions

produces sharp bounds on averages of treatment effects Y (j)− Y (k) conditional on Qj = (j, k) and Sj = cj

for any comparable pair (j, k) ∈ P . Recall that we denote the space of possible outcomes Y as Y. Let

2J
0×J 0

denote the power set of J 0 × J 0 and 2Y denote the power set of Y.

Theorem 1. Suppose Assumptions 2, 6, and 7 hold. Assume Y is compact. Consider a pair (j, k) ∈ P.

Then, the inequalities below characterize the sharp set of all probability values of P [Y (d) ∈ A,Qj = (b, b′)|Sj = cj ]

for A ⊆ Y, (b, b′) ∈ J 0 × J 0, and d ∈ {b, b′}:

P
[
Y ∈ A,Qj ⊆ B|Sj = c+j

]
≤

∑

(b,b′)∈B

P [Y (b) ∈ A,Qj = (b, b′)|Sj = cj ] ∀A ∈ 2Y , B ∈ Λ∪+
j ,

P
[
Y ∈ A,Qj ⊆ B|Sj = c−j

]
≤

∑

(b,b′)∈B

P [Y (b′) ∈ A,Qj = (b, b′)|Sj = cj ] ∀A ∈ 2Y , B ∈ Λ∪−
j .

Proof of Theorem 1: The random set ({Y } ×Qj) is a measurable map from Ω to Y × J 0 ×J 0, so it is

compact valued. Following Definition A.1 by Molinari (2020), we say that ({Y } ×Qj) is a random closed

set because for every compact set K ∈ R3, the set {ω ∈ Ω : ({Y (ω)} × Qj(ω)) ∩ K 6= ∅} is a measurable

event. By Assumption 6(i), the random vector (Y,Qj) and the random set ({Y }×Qj) are measurable maps

on the same probability space, and P
[
(Y,Qj) ∈ ({Y } ×Qj)|Sj = s

]
= 1 for any s ∈ Sj .

Artstein’s inequality (Theorem A.1 by Molinari (2020)) characterizes the sharp set of all possible prob-

ability distributions for (Y,Qj) that are consistent with our observation of ({Y } × Qj) and the fact that

P[(Y,Qj) ∈ ({Y } ×Qj)|Sj = s] = 1. For any s ∈ Sj , the inequality says that

P
[
Y ∈ A,Qj ⊆ B|Sj = s

]
≤ P [Y ∈ A,Qj ∈ B|Sj = s] ∀A ∈ 2Y , B ∈ 2J

0×J 0

. (14)
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Next, we use the cutoff characterization and rewrite the right-hand side of (14) as a sum. For s ≥ cj ,

P [Y ∈ A,Qj ∈ B|Sj = s] =
∑

(b,b′)∈B

P [Y ∈ A,Qj = (b, b′)|Sj = s]

=
∑

(b,b′)∈B

P [Y (b) ∈ A,Qj = (b, b′)|Sj = s] . (15)

Substitute (15) into (14) and take the limit as s ↓ cj on both sides,

P
[
Y ∈ A,Qj ⊆ B|Sj = c+j

]
≤

∑

(b,b′)∈B

P [Y (b) ∈ A,Qj = (b, b′)|Sj = cj ] ∀A ∈ 2Y , B ∈ 2J
0×J 0

, (16)

where the limits of the left- and right-hand sides of the inequality are well defined by Assumptions 7 and 2,

respectively.

Similarly, for s > cj ,

P [Y ∈ A,Qj ∈ B|Sj = s] =
∑

(b,b′)∈B

P [Y ∈ A,Qj = (b, b′)|Sj = s]

=
∑

(b,b′)∈B

P [Y (b′) ∈ A,Qj = (b, b′)|Sj = s] . (17)

Use (17) into (14) and take the limit as s ↑ cj on both sides,

P
[
Y ∈ A,Qj ⊆ B|Sj = c−j

]
≤

∑

(b,b′)∈B

P [Y (b′) ∈ A,Qj = (b, b′)|Sj = cj ] ∀A ∈ 2Y , B ∈ 2J
0×J 0

. (18)

Lemma 1 of Chesher and Rosen (2017) applied to our case shows that the inequalities (16) and (18) are

equivalent to:

P
[
Y ∈ A,Qj ⊆ B|Sj = c+j

]
≤

∑

(b,b′)∈B

P [Y (b) ∈ A,Qj = (b, b′)|Sj = cj ] ∀A ∈ 2Y , B ∈ Λ∪+
j ,

P
[
Y ∈ A,Qj ⊆ B|Sj = c−j

]
≤

∑

(b,b′)∈B

P [Y (b′) ∈ A,Qj = (b, b′)|Sj = cj ] ∀A ∈ 2Y , B ∈ Λ∪−
j .

�

Theorem 1 characterizes the sharp set of all possible probability values of P [Y (d) ∈ A,Qj = (b, b′)|Sj = cj ]

for A ⊆ Y, (b, b′) ∈ J 0 × J 0, and d ∈ {b, b′}. For a fixed g ∈ G of Assumption 2, that set of distributions

allows us to define the sharp set of all possible means of potential outcomes,

E [g(Y (d))|Qj = (j, k), Sj = cj ] ,

for (j, k) ∈ P such that p
j,k

> 0 and d ∈ {j, k}. The set of possible means in turn allows us to define the

sharp set of all average treatment effects of the form

E [g(Y (j))− g(Y (k))|Qj = (j, k), Sj = cj ] .
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In case of continuous Y , it is impossible to directly evaluate all inequalities of Theorem 1 because there

are uncountably many sets A ∈ 2Y . This is one of the drawbacks of the Artstein’s inequality approach which

has been extensively discussed by Beresteanu et al. (2012). In case Y takes finitely many values, e.g., when

Y is binary, the number of such inequalities is feasible to evaluate because 2Y × Λ∪+
j (or 2Y × Λ∪−

j ) has

finitely many elements. In fact, the number of inequalities is slightly higher than the number of inequalities

in Proposition 4 of the main text, which we utilize to compute lower bounds on δ+j,k and δ−j,k.

C Empirical Appendix

Table 2: Descriptive statistics: students

All students Applicants to BA
Bus. Adm., PUC Santiago

Mean Std. deviation Mean Std. deviation

Number of programs in ROL 4.86 2.20 4.48 1.94
ROL strictly shorter than permitted .80 .40 .87 .34
Assigned (to any prog.) .65 .48 .73 .44
Rank of assigned program, cond. on assigned 2.24 1.59 2.10 1.45
Reapplies .19 .39 .12 .32
Graduates from assigned prog., cond. on assigned .33 .47 .40 .49
Graduates from any program .77 .42 .86 .34

Number of students 519,409 9,398

Table 3: Descriptive statistics: programs

All programs BA Business Adm., PUC
Santiago (across years)

Mean Std. deviation Mean Std. deviation

Number of applicants (per year) 473 369 1,541 261
Number of admitted students (per year) 66 49 245 3
Year-to-year absolute change in cutoff (points) 7.4 93 4.1 4.2

Cutoff 720 10
Number of programs 1,191
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