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1 Introduction

One of the first decisions President Biden took upon taking office was to ask economists to come up with the best

evaluation of the social cost of carbon: the expected presented discounted value of all present and future damages

from emitting one ton of carbon today (SCC). In response to the President’s request, Rennert et al. (2022) have

used improved probabilistic socioeconomic projections, climate models, damage functions, and discounting meth-

ods to consistently value risk. This substantially increases previous estimates of the SCC, leading to a preferred

mean estimate of $185/tCO2 based on a near-term risk-free discount rate of 2%/year. This is 3.6 times higher

than the US government’s current value of $51/tCO2.1 Adding all the economic, climatic and damage uncertain-

ties thus substantially increases the SCC. This is crucial for policy formulation, since cost-benefit analysis then

implies that the implied higher benefits of mitigation call for more stringent climate policies across the board.

To take account of the effects of climate tipping points and feedback loops on the derivation of the optimal

risk-adjusted SCC as in, for example, Lemoine and Traeger (2016), Cai and Lontzek (2019), and Hambel et al.

(2021a) is a complicated and challenging numerical exercise. This requires solving Hamilton–Jacobi–Bellman

equations, which are notoriously difficult to solve, especially when they involve many state variables. Monte-

Carlo methods for obtaining the optimal SCC are much cheaper but give misleading results as has been shown

by Jensen and Traeger (2014). To properly allow for skewed distributions of shocks with gradual arrival of

impacts to the climate system and damages and of temperature-dependent disasters and irreversible climate

tipping points is still mostly uncharted territory. More importantly, it is difficult to obtain intuitive insights from

numerical optimisation exercises. For that reason, analytical results are of critical importance. This is not a

trivial undertaking, since the SCC has to be evaluated taking account of a wide range of uncertainties regarding

the evolution of the economy, temperature, and global warming damages.

Integrated assessment studies make very different assumptions and yield, not surprisingly, very different

estimates of the optimal SCC. Although much of the debate has centred on the choice of the utility discount rate (or

pure rate of time preference), differences persist in assumptions about the economic growth rate, its distribution,

and about the stochastic properties of the climate system and of global warming damages. The consequences of

these assumptions remain relatively unexplored. Given the “black-box” nature of many integrated assessment

models, it is not always clear where these differences come from. For example, they may arise from different rates

of time impatience, different degrees of risk aversion, different elasticities of intertemporal substitution, and/or

different damage coefficients. Substantial differences also result depending on whether stochastic shocks to the

economy and the climate system, including the temperature-dependent risks of recurring climate disasters and

irreversible climate tipping points, are taken account of or not.

1The estimate of $185/tCO2 incorporates updated scientific understanding throughout all components of the SCC in the open-source
Greenhouse Gas Impact Value Estimator (GIVE) model, and responds to the near-term recommendations by the National Academies of
Sciences, Engineering, and Medicine.
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To shed light on the various drivers of the SCC, we derive an analytical and intuitive rule for the SCC that

highlights the various determinants of the SCC under various types of uncertainty. This rule for the SCC also

means that the computational task of solving a complex stochastic dynamic programming problem numerically is

avoided. Furthermore, such a rule makes it easier to communicate with policy makers how preferences, attitudes

to risk, and the various types of uncertainty affect the SCC. The rule shows how the SCC is affected by the

adverse impact of global warming on aggregate output, the risk of recurring climate-related disasters, and the

risk of irreversible climate tipping points.

We have three key three objectives. First, we want to obtain a tractable and intuitive but approximate

expression for the optimal risk-adjustded SCC that internalises (1) the global warming externalities resulting

from the effect of global warming on total factor productivity, (2) the risk of recurring climate-related disasters,

and (3) the risk of irreversible climate tipping leading to an irreversible regime shift. To solve the Hamilton–

Jacobi–Bellman equations that are needed to calculate the optimal SCC, we use perturbation methods. These

methods have been used before in van den Bremer and van der Ploeg (2021) to obtain a rule for the optimal SCC

that internalises the adverse effect of global warming on total factor productivity. Our first contribution is thus

to extend this earlier rule to allow for recurring climate-related disasters and irreversible climate tipping points.

Second, we seek to evaluate the accuracy of this rule for the optimal risk-adjusted SCC by comparing it with

the numerical optimum obtained by a finite-difference method under a wide range of circumstances. It turns out

that the rule approximates the numerical optimum well, thus eliminating the computational burden of finding

optimal climate policy numerically and giving analytical insights into the drivers of the optimal carbon price.

The rule not only performs well when only internalising the effects of global warming on total factor productivity,

but also performs well when the risks of recurring climate-related disasters and irreversible climate tipping

points are internalised too. Our estimate of the optimal risk-adjusted SCC is better (compared to the numerical

optimum) if damages are a small fraction of GDP, the risk of climate-related disasters does not react too strongly

to temperature, the risk of climate tipping is small enough, and discount rates are not too low.

Third, we examine the robustness of our rule for the optimal risk-adjusted SCC by performing various tests of

its accuracy outside the model for which it has been derived, namely by allowing for a falling cost of fossil fuel and

having a two-sector model of economic growth. For both these cases, the rule for the optimal SCC, even though

designed for a simpler model with constant cost of fossil fuel and one-sector growth, approximates the numerical

optimum surprisingly well.

To make headway, we simplify the DSGE model of global warming and the economy that was analysed in

van den Bremer and van der Ploeg (2021) by replacing the box models of the carbon stock and temperature

dynamics by a model in which temperature rises linearly in cumulative emissions.2 The cumulative emissions

model is a good approximation to the results from complex climate models (Allen et al., 2009; Matthews et al.,

2009; Dietz and Venmans, 2019). It is also in line with policy analysis of the Intergovernmental Panel on Climate

2Appendix F.2 discusses how more general carbon cycle and temperature dynamics affect our rule for the SCC.
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Change (IPCC) and avoids the problem of excessive inertia in the temperature response that most well-known

integrated assessment models of climate change and the economy suffer from (Dietz et al., 2021b).

We extend our earlier approach to macroeconomic uncertainty by including risks of rare macroeconomic dis-

asters (Barro, 2006, 2009; Barro and Jin, 2011) as well as normally distributed shocks to economic growth. To-

gether with Epstein–Zin preferences, this helps to deal with the equity premium and risk-free rate puzzles by

better matching the observed risk-free rate and equity risk premium. We also extend our earlier approach to not

only allow global warming to negatively impact total factor productivity (Nordhaus, 2017) but also to increase

the risks of rare, recurring climate-related disasters and irreversible climate tipping points. The latter allows for

the probability of an irreversible regime shift, in which the climate system shifts to one with a higher transient

climate response to cumulative emissions at an unknown future date.

Our rule for the optimal SCC in absence of climate tipping risk is given in Result 1. It consists of a term

to internalise the adverse effect of global warming on total factor productivity and a risk mitigation term that

corresponds to the effect of global warming on the expected loss of climate-related disasters. These terms and

thus the optimal SCC are proportional to the transient climate response to cumulative emissions and aggregate

economic activity and inversely proportional to the risk- and growth adjusted discount rate. The optimal SCC

in the presence of irreversible climate tipping is given in Result 2 and consists of three terms. The first term

internalises the adverse effects of global warming on total factor productivity and the risk of climate-related

disasters. The second term is a repricing term to take account of the probability that at some uncertain future time

the transient climate response to cumulative emissions jumps up. The third term mitigates risk by internalising

the adverse effect of global warming on the risk of climate tipping.

Our analysis builds on simple rules for the optimal SCC from deterministic growth models of climate and the

economy. For example, Nordhaus (1991) derives an approximate rule for the optimal SCC under certainty, which is

proportional to aggregate economic activity. Golosov et al. (2014) obtain a similar rule and give conditions under

which the rule yields the exact welfare-maximising outcome in a DGSE framework.3 Barrage (2014), van den

Bijgaart et al. (2016), Rezai and van der Ploeg (2016), and Hambel et al. (2021b) perform a detailed numerical

analysis of the performance of such approximate rules for the SCC under certainty and show that these are

generally good approximations.

We follow Lemoine (2021), van den Bremer and van der Ploeg (2021) and Traeger (2023), and derive ap-

proximate,intuitive rules for the optimal SCC under uncertainty using stochastic integrated assessment, general

equilibrium models of the economy and the climate. Our main innovation is that we allow for the effects of recur-

ring temperature-dependent risks of recurring disasters and of irreversible climate tipping points. We also allow

for standard forms of macroeconomic uncertainty (exogenous risk of rare macroeconomic disasters as well as

3These are logarithmic utility, Cobb–Douglas production, 100% depreciation of capital each period, a linear two-box model for the dynamics
of atmospheric carbon, and damages to the logarithm of total factor productivity rising linearly in atmospheric carbon. This exact expression
for the deterministic rule is extended to more general settings with a negative linear effect of atmospheric carbon on utility, mean reversion
in the effects of damages on total factor productivity, less than 100% logarithmic depreciation, and policy makers who are more patient than
private agents by van der Ploeg and Rezai (2022).
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Brownian shocks). Our rule for the SCC thus internalises the three externalities resulting from emissions curb-

ing economic production, increasing the frequency of climate-related disasters, and bringing forward the expected

date of a climate tipping point.

Section 2 presents our stochastic integrated assessment model. Section 3 derives solutions to the model

(in terms of the value function) using perturbation methods. These solutions are used in Section 4 to derive

approximate rules for the optimal risk-adjusted SCC that take account of the three global warming externalities,

considering the scenarios without (Section 4.1) and with climate tipping (Section 4.2) in turn. Section 5 discusses

our calibration. Section 6 evaluates the numerical accuracy of our rules for the SCC by comparing to the SCC

obtained from full numerical optimisation. Section 7 road-tests the numerical accuracy of our rules for the optimal

risk-adjusted SCC in more general models than have been used to derive the rule. Section 8 concludes.

2 Stochastic Integrated Assessment Model

We specify a macroeconomic DSGE model with endogenous growth and add fossil fuel as a production factor whose

combustion gives rise to global warming. The pure rate of time preference (or utility discount rate) is denoted by

ρ ≥ 0. The coefficient of relative risk aversion is denoted by γ ≥ 0, the coefficient of intergenerational inequality

aversion by η ≥ 0, and the elasticity of intertemporal substitution by 1/η. We use Epstein–Zin preferences to

distinguish relative risk aversion, γ, from the inverse of the elasticity of intertemporal substitution, 1/η (Epstein

and Zin, 1989). Empirical evidence suggests γ> η, which reflects a preference for early resolution of uncertainty

(Vissing-Jørgensen and Attanasio, 2003). Much of the macro-finance literature sets 1/η< 1, so that macroeconomic

volatility depresses share prices. Other empirical evidence suggests 1/η> 1 (Hall, 1988; Campbell, 1999; Vissing-

Jørgensen, 2002), which is also common in climate economics (e.g., Nordhaus (2007); Gollier (2018)).

We use continuous-time recursive preferences (Duffie and Epstein, 1992):

Jt = Et

[∫ ∞

t
f (Cs, Js)ds

]
with f (Ct, Jt)= 1

1−η
C1−η

t −ρ[(1−γ)Jt]
1−η
1−γ

[(1−γ)Jt]
1−η
1−γ−1

, (1)

where the recursive aggregator f (Ct, Jt) depends on aggregate consumption Ct and the value function Jt. If aver-

sion to risk is the same as that to intertemporal fluctuations, γ = η, the aggregator function becomes f (Ct, Jt) =
C1−γ

t
1−γ −ρJt, in which case we have CRRA utility.

The dynamics of the aggregate capital stock, denoted by K t, is given by

dK t =
[
I t −δK t − 1

2
ϕ

I2
t

K t

]
dt+K tσdWtk −K t−ℓedNte −K t−ℓcdNct, (2)

where I t denotes aggregate investment, δ ≥ 0 the depreciation rate of capital, ϕ the parameter for investment

adjustment costs, Wtk a Wiener process modeling economic shocks, σ≥ 0 the relative volatility of capital, and K0
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is the given initial capital stock. Nte is a Poisson point process capturing the risk of macroeconomic disasters

that are independent of climate change. Ntc is another Poisson point process that models climate-related disaster

shocks. The parameters ℓe ≥ 0 and ℓc ≥ 0 indicate the relative sizes of the jumps, which are stochastic but

independent of Nte, Ntc, and Wtk. The macroeconomic recovery rate Zi ≡ 1−ℓi follows a power distribution with

parameter βi, so its probability density function is f i(Zi)=βiZ
βi−1
i with Zi ∈ (0,1), where E[Zi]= βi

βi+1 for i is e or

c. The jump intensity of Nte is constant and denoted by λe. The expected time until the next disaster is 1/λe.

The temperature anomaly is the difference in temperature since pre-industial times and is referred to as

temperature Tt. It is driven by cumulative emissions since initial time zero, denoted by E t, so that

Tt = T0 +χE t (3)

with χ> 0 the transient climate response to cumulative emissions (TCRE) and T0 initial temperature relative to

pre-industrial times. Since temperature responds immediately to cumulative emissions, we do not have excessive

inertia in the temperature response to marginal emissions, for which the main integrated assessment models

used by economists have been criticised (Dietz et al., 2021b).

The risk of climate-related disasters increases linearly in temperature, that is, λc,t =λc
0T+λc

1T Tt with λc
1T ≥ 0.

Using the temperature equation (3) and with λc
0 ≡ λc

0T +λc
1T T0 and λc

1 ≡ χλc
1T , the jump intensity for the point

process Nc can be written as

λc(λc
1E t)=λc

0 +λc
1E t. (4)

Here, λidt is the probability of a jump to occur in the infinitesimally small time interval dt. We thus allow global

warming to increase the intensity (or arrival rate) of climate-related disasters (but not the distribution of the size

of these disasters).

Aggregate investment is I t = Yt −Ct − bFt, where Yt is aggregate production, Ft fossil-fuel use, and b the

fixed production cost per unit of fossil fuel. The final goods production function is Yt = AKα
t F1−α

t , where 0<α< 1

and total factor productivity A is assumed to be constant.4 Global warming induces proportional losses in total

factor productivity, At ≡ A∗(1−Dt), where the damage ratio, Dt = D0T +D1T Tt with D1T ≥ 0, rises linearly in

temperature. The expected marginal effect of temperature on the damage ratio is thus D1T . With D0 ≡ D0T +
4This production function stems from Y = AKβF1−α(KaL)α−β, where L denotes labour employed (without loss of generality set to 1), Ka

denotes the economy-wide capital stock, and 0<β< 1. The economy-wide capital stock thus boosts the efficiency of labour, leading to a growth
externality. In equilibrium, all firms are the same, so that the individual capital stock equals the economy-wide capital stock, K = Ka, and
we have Y = AKαF1−α. The exponents of K and F add up to one, so there is endogenous growth. A production subsidy internalises the
growth externality. It is easy to allow for renewable energy as a factor input. We assume that this is already optimised out and captured in
A. We allow for technical progress in Section 7. We also abstract from labour-augmenting technical progress and population growth. Neither
extension affects the derivation of our estimate of the optimal SCC presented in Results 1 and 2.

5

Electronic copy available at: https://ssrn.com/abstract=4666508



D1T T0 and D1 ≡ χD1T , the damage ratio and total factor productivity become

D(D1E t)= D0 +D1E t, A(D1E t)= A∗[
1− (D0 +D1E t)

]
. (5)

The damage ratio thus rises and total factor productivity falls linearly in cumulative emissions.

The emissions rate is ϖtFt, where ϖt is the emissions intensity, which falls due to technical progress at the

rate of economic growth: ϖt = exp(−∫ t
0 gsds). Cumulative emissions follow from

dE t =ϖFtdt, (6)

where E0 = 0 (as cumulative emissions are measured from t = 0).

To allow for the risk of an irreversible climate tipping point, there is a probability of a regime shift at an

unknown date in the future, when the transient climate response to cumulative emissions jumps from χ to χ> χ.

The hazard rate of this tipping point increases with temperature as h = h0T +h0T Tt or, defining h0 ≡ h0T +h1T T0

and h1 ≡ χh1T , with cumulative emissions as

h(h1E t)= h0 +h1E t. (7)

The probability that this tipping point occurs in an infinitesimally small period between time t and time t+dt

equals h(t)dt. Global warming thus makes a climate tipping point more likely to arrive soon. The probability that

the tipping point has not occurred in the period up to t is exp
(−∫ t

0 h(s)ds
)
.

Finally, we assume that the parameters in the equations for λc(λc
1E t) (4), D(D1E t) (5), and h(h1E t) (7),

including the pre- and post-tip values of the TCRE, χ and χ, are known and not stochastic, but we will consider

stochastic shocks to the damage ratio and the TCRE in Appendix C. A detailed discussion of the effects of these

stochastic shocks can be found in van den Bremer and van der Ploeg (2021).

3 Value Function Solutions using Perturbation Methods

Here we apply perturbation methods to derive an approximate solution for the value function that will be used to

derive an estimate for the optimal SCC in Section 4. We must distinguish the pre-tip Hamilton–Jacobi–Bellman

(HJB) equation (denoted without an overbar and characterized by the lower climate sensitivity χ) and the post-tip

HJB equation (denoted with an overbar and characterized by the higher climate sensitivity χ, with χ> χ), which

we will consider in reverse order.
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3.1 The Hamilton–Jacobi–Bellman equations

3.1.1 Post-tip HJB equation

The post-tip value function J = J(K ,E) depends on the capital stock K and the stock of cumulative emissions E.

The optimal solution must satisfy the HJB equation,

max
C,F

[
f (C, J)+ 1

dt
Et

[
dJ(K ,E)

]]= 0, (8)

where 1
dtEt[dJ] is Ito’s differential operator applied to J. Using Ito’s lemma, the HJB equation becomes

max
C,F

[
f
(
C, J

)+ JK

[
A(D1E)KαF1−α−C−bF −δK − 1

2
ϕ

I2

K

]
+ 1

2
JKK K2σ2 + JEϖF (9)

+λeE
[
J

(
(1−ℓe)K ,E

)− J(K ,E)
]+λc(λ

c
1E)E

[
J

(
(1−ℓc)K ,E

)− J(K ,E)
]]= 0,

where D1 = χD1T and λ
c
1 = χλc

1T have both been evaluated using the post-tip value of the TCRE, χ.

3.1.2 Pre-tip HJB equation

The pre-tip problem requires us to solve the HJB equation

max
C,F

[
f
(
C, J

)+ JK

[
A(D1E)KαF1−α−C−bF −δK − 1

2
ϕ

I2

K

]
+ 1

2
JKK K2σ2 + JEϖF

+λeE
[
J

(
(1−ℓe)K ,E

)− J(K ,E)
]+λc(λc

1E)E
[
J

(
(1−ℓc)K ,E

)− J(K ,E)
]

(10)

+h(h1E)
(
J(K ,E)− J(K ,E)

)]
= 0,

where the absence of overbars on D1 = χD1T , λc
1 = χλc

1T , and h1 = χh1T now denotes evaluation using the pre-tip

value of the TCRE, χ. Compared with the post-tip HJB equation (9), the additional final term in (10) represents

the expected loss from a climatic tipping point.

3.2 Optimality conditions

The pre- and post-tip first-order conditions are of equivalent form, and we present the results in this section,

which are valid for both circumstances, without overbars for convenience. Optimality requires equalising the

marginal values of consumption and investment,

fC(C, J)= C−η((1−γ)J
) η−γ

1−γ = JK

(
1+ϕ I

K

)
, (11)
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and setting the marginal product of fossil fuel equal to its production cost, b, plus the SCC

(1−α)
Y
F

= b+ϖP, (12)

where the optimal SCC, denoted by P, is the marginal disvalue of emitting an additional ton of carbon divided by

the marginal value of consumption, P ≡−JE / fC > 0. One way to implement the resulting first-best outcome in a

decentralised market economy is to set the carbon price to the SCC and rebate the revenue to the private sector

as lump-sum payments.

Since optimal use of fossil fuel is proportional to Y , we have, in equilibrium, an “AK” model of endogenous

growth with the reduced-form aggregate production function

Y = B(D1E,P)K , (13)

where B(D1E,P) ≡ [
A(D1E)

( 1−α
b+ϖP

)1−α]1/α. Aggregate output (and fossil fuel use) decrease in global warming,

captured by E, the carbon price, P, the sensitivity of (expected) damages to temperature, D1T , and the transient

climate response to cumulative emissions, χ (the latter two via D1 = χD1T ). The carbon price P depends in turn

on the state variables K and E.

3.3 Perturbation analysis

As in van den Bremer and van der Ploeg (2021), we assume that the damage coefficient D1 is a small parameter.

Since we want to extend the analysis with two additional global warming externalities, we now also assume that

the sensitivity of the intensity of climate-related disasters with respect to cumulative emissions dλc,t/dE t =λc
1 and

the hazard rate of the tipping point h are small parameters. We assume that all three parameters are equally

small5:

D1 =O (ϵ) , λc
1 =O (ϵ) and h =O (ϵ) . (14)

5Formally, small parameters must be non-dimensional. We thus require the (non-dimensional) damage ratio D to be small for all relevant
values of E. The increase in jump intensity of climate disasters due to increases in the stock of cumulative emissions, ∆λc = λc

1∆E (%/year)
and the hazard rate of climate tipping h (%/year) have be small relative to other rates (%/year) in the model, such as the growth rate of
GDP g(0), for all relevant values of E. To make an assessment of whether the assumptions in (14) are reasonable, we use a temperature
anomaly of T = 1.5◦C and the parameter values in our calibration (see Section 5, using pre-tip values). We obtain D = D1T T = 1.4%, ∆λcE[1−
Zc]/g(0) = λc

1T∆TE[1−Zc]/g(0) = 2.9%, where we have included the mean size of expected climate disasters to make a realistic assessment,
and h/g(0) = h1T∆T/g(0) = 12% (with ∆T = T −T0 = 0.4◦C). These are clearly small numbers, which justifies the assumptions in (14). In
practise, discounting of the future reduces the quantitative error introduced by larger values of the small parameters that arise in the future
when temperatures are larger. The real test will come from the comparison to full numerical optimisation in Section 6.
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We assume that solutions for the value function, J, and the policy variables, C and F, take the form (see also

van den Bremer and van der Ploeg (2021)):

J(K ,E)= J(0)(K ,E;ϵE)+ϵJ(1)(K ,E)+O
(
ϵ2)

,

C(K ,E)= C(0)(K ,E;ϵE)+ϵC(1)(K ,E)+O
(
ϵ2)

,

F(K ,E)= F (0)(K ,E;ϵE)+ϵF (1)(K ,E)+O
(
ϵ2)

,

(15)

where the structure of the solution is based on the underlying HJB equation. Similar equations can be written

down with overbars for the post-tip problem. The first terms in the brackets (before the semicolon) on the right-

hand side of the equations denote the functional dependence, whereas the second terms (after the semicolon)

denote the order of the functional dependence if this order is higher than zero. We refer to J(0)(K ,E;ϵE) as

having a ‘slow’ functional dependence on E, as differentiating J(0) with respect to E increases the order in ϵ by

1 (unlike differentiating with respect to K , which leaves the order unchanged).6 In equation (15), J(0) and J(1)

denote, respectively, the zeroth- and first-order terms in the value function perturbation series, and similarly

for consumption and fossil-fuel use. We note that the zeroth-order solution does take into account the effects of

cumulative emissions on damages and on the risk of climate disasters, but not the effects of variations in this

stock and of climate tipping, which arise at the next order. We will now consider the zeroth- and first-order

solutions for the value function in turn.

3.3.1 Zeroth-order solution

The zeroth-order expressions for the policy variables and aggregate output follow from the first-order optimality

conditions (11) and (12):

C(0) =
(
J(0)

K

)− 1
η
(
(1−γ)J(0)

) 1
η
η−γ
1−γ , F (0) =

(
(1−α)A(ϵE)

b

) 1
α

K , Y (0) = B(0)K , (16)

where B(0) ≡ B(D1E,0) is total factor productivity in the absence of a carbon price.

We conjecture that the zeroth-order solution is of the form J(0) =ψ0(ϵE)K1−γ, where ψ0(ϵE) needs to be deter-

mined. Treating the effects of D(ϵE) on total factor productivity and of λc(ϵE) on the risk of rare macroeconomic

disasters as small and constant for the purpose of deriving the zeroth-order solution, we substitute this conjecture

and the first-order optimality conditions (16) into the HJB equation (9) to obtain the following implicit, nonlinear

equation in ψ∗
0 ≡ (1−γ)ψ0:

1−γ
1−η

((
ψ∗

0
) η−1
η(1−γ) −ρ

)
+ (1−γ)g(0)(ψ∗

0 )− 1
2
γ(1−γ)σ2 +λeE

[
Z1−γ

e −1
]+λc(ϵE)E

[
Z1−γ

c −1
]= 0, (17)

6Appendix A.1 of van den Bremer and van der Ploeg (2021) explains how the perturbation method we use differs from a Taylor-series
expansion.

9

Electronic copy available at: https://ssrn.com/abstract=4666508



where g(0)(ψ∗
0 )=−δ+α

(
b

1−α
)1− 1

α A(ϵE)
1
α −(

ψ∗
0
) 1−1/η

1−γ − 1
2ϕ

(
α

(
b

1−α
)1− 1

α A(ϵE)
1
α − (

ψ∗
0
) 1−1/η

1−γ
)2

. We can solve this equa-

tion numerically for ψ∗
0 and thus for ψ0 =ψ∗

0 /(1−γ). Note that the expression for g(0) is not equal to the expected

growth rate (e.g., of the capital stock) owing to the presence of non-zero mean disasters, but equals the expected

growth rate in normal times when no disasters occur. The solution for ψ0 depends on the stock of cumulative

emissions through A(ϵE) and λc(ϵE). It is convenient to express the solution to (17) as

ψ0 = 1
1−γ

(
r⋆

) −η(1−γ)
1−η(

1−ϕi(0)
)1−γ , (18)

where the (zeroth-order accurate) discount rate r⋆ is given by

r⋆ = ρ+ (η−1)
[
g(0) − 1

2
γσ2 − λe

1−γE
[
1−Z1−γ

e
]− λc(ϵE)

1−γ E
[
1−Z1−γ

c
]]

, (19)

and the investment rate i(0) = I(0)
t /K t, which is also needed to evaluate g(0) = i(0) −δ−ϕ(

i(0))2 /2, follows from the

nonlinear implicit equation

− i(0) +α
(

b
1+α

)1− 1
α

A(ϵE)1/α− r⋆

1−ϕi(0) = 0, (20)

which follows from substituting the solutions for the policy variables (16) and the zeroth-order solution for the

value function (18) into the budget constraint, Y −bF− I−C = 0. In equations (16)-(20), we have made explicit the

origin of the slow functional dependence of the solutions (i.e. ψ∗
0 , g(0), r⋆, and i(0)) on E, that is, through A(ϵE)

and λc(ϵE).

Finally, we note that the zeroth-order solution is valid for both the pre- and post-tipping problems, as the

effect of tipping arises at higher order, and the solution is shown here without overbars for convenience only.

3.3.2 First-order solution

In line with the ordering assumption (14), three effects can potentially contribute to the first-order solution: the

effect of cumulative emissions on damages through D(ϵE) and on the risk of macroeconomic disasters through

λc(ϵE) and the effect of climate tipping through h(E) = O (ϵ). Since the marginal effects of cumulative emissions

on the ratio of damages to output (dD/dE = D1χ) and on the risk of macroeconomic disasters (dλc/dE = λ1χ)

are constant in our model, a first-order solution only arises in the pre-tip problem to account for climate tipping

(h(E)). If damages are a nonlinear (convex) function of temperature, as in the DICE integrated assessment model

(e.g., Nordhaus, 2017), and this degree of convexity exceeds the concavity of the dependence of temperature on the

atmospheric carbon stock, a first-order solution must also take account of non-constant marginal damages, as is

shown in van den Bremer and van der Ploeg (2021).7 Here, a first-order solution would also arise if temperature-

7In the notation of van den Bremer and van der Ploeg (2021), whose carbon stock is non-cumulative, the present model corresponds to the
case in which θET = 0 (and νχ = νλ = 0) in van den Bremer and van der Ploeg (2021).
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related risk of recurring climate-related disasters were a nonlinear instead of a linear function of the stock of

cumulative emissions.

By substituting the optimality conditions (16) into the HJB equation (9) and retaining only first-order terms

in ϵ, we obtain an equation that is solved by a value function of the form ϵJ(1) = ϵψ1(E)K1−γ, where the coefficient

ψ1(E) is given by (N.B., J = J(0) +ϵJ(1)):

ϵψ1(E)= h(E)
(
ψ0(ϵE)−ψ0(ϵE)

)
r⋆(ϵE)

, (21)

where ψ0 and ψ0 are the post- and pre-tipping values of the zeroth-order value function coefficient given by

equation (18) and r⋆ is the (zeroth-order accurate) discount rate given by (19) (see Appendix A for a derivation).

The first-order post-tipping value function is zero (ψ1 = 0), as climate tipping can only occur once in our model.

4 The Optimal Risk-Adjusted SCC

We will now proceed by using the zeroth- and first-order value function solutions derived in Section 3 to obtain

simple rules that provide a leading-order estimate of the SCC. We will distinguish two cases: without climate

tipping (Section 4.1) and with climate tipping (Section 4.2).

4.1 A rule for the optimal SCC without climate tipping

Without climate tipping, an estimate of the risk-adjusted SCC can be obtained based on the zeroth-order solution

alone. We refer to this as our leading-order approximation of the SCC. For ease of notation, we will drop the time

subscripts t throughout this section.

Result 1. Without the risk of climate tipping, the leading-order approximation to the SCC is

PR1 =
[

D1T +λc
1T

E
[
1−Z1−γ

c
]

1−γ
q(0)

B(0)

]
χY (0)

r⋆
, (22)

where the discount rate adjusted for risk and growth is given by

r⋆ = ρ+ (η−1)
[
g(0) − 1

2
γσ2 − λe

1−γE
[
1−Z1−γ

e
]− λc

1−γE
[
1−Z1−γ

c
]]

. (23)

Here, q(0) = 1
1−ϕi(0) denotes Tobin’s Q with i(0) the investment rate for the zeroth-order solution, and g(0) denotes the

expected growth rate net of macroeconomic and climate-related disasters.

Proof: This result follows from evaluating PR1 =− J(0)
E

J(0)
K

q(0).
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If the disaster sizes follow power distributions with parameters βe and βc, respectively (we require βe,βc >
γ−1), the expression for the optimal SCC (22) becomes PR1 =

[
D1T + λc

1T
βc+1−γ

q(0)

B(0)

]
χY (0)

r⋆ , where the discount rate

adjusted for risk and growth (23) becomes r⋆ = ρ+ (η−1)
(
g(0) − 1

2γσ
2 − λc

1+βc−γ −
λe

1+βe−γ
)
.

To interpret Result 1, note that the two terms in the square brackets in equation (22) correspond to the

expected marginal damage per unit of aggregate output from having one degree higher temperature. The first

term D1T is the (expected) marginal effect of one degree higher temperature on the damage ratio D, and indicates

the adverse effect of global warming on total factor productivity. The second term in the square brackets in (22)

is the expected marginal loss of one degree higher temperature due to a higher risk of a rare recurring climate-

related disaster. This term is proportional to the marginal increase in risk of such a disaster due to a higher

temperature, i.e., λc
1 = dλc(T)/dT, the TCRE (i.e., χ), and to the risk-adjusted expected loss (as a share of the

capital stock) due to such a disaster, E[1−Z1−γ
c ]

1−γ . This risk-adjusted expected loss increases in the coefficient of

relative risk aversion, γ. Since a temperature-related disaster hits the capital stock, the risk-adjusted expected

loss is in terms of units of lost capital. To get the expected loss in units of lost output of final goods, it must be

multiplied by q(0)/B(0) = q(0)K /Y (0) with q(0)K representing the replacement costs to rebuild the capital stock.

We also observe from equation (22) that our estimate of the optimal SCC is proportional to the transient

climate response to cumulative emissions, χ, and to world aggregate output of final goods, Y (0)
t .8 Furthermore,

our estimate of the SCC is inversely proportional to the risk- and growth-adjusted discount rate r⋆ given in

equation (23). This rate is used to discount all future marginal damages of emitting one ton of carbon today,

taking account of normal macroeconomic uncertainties and the risk of recurring climate-related disasters and of

marginal damages and losses due to climate disasters that grow in line with the economy.

Hence, our expression for the optimal SCC (22) generalises the expressions derived in van den Bremer and

van der Ploeg (2021), which ignored temperature-related risks of rare macroeconomics disasters and in which case

the SCC reduces to PR1 = D1T
χY (0)

r⋆ . The novelty of Result 1 is that it contains an additional term to correct for

the adverse effects of global warming on the risk of recurring macroeconomic disasters. Due to the “AK” feature

of our macroeconomic model, the SCC is proportional to the aggregate capital stock or GDP, which in turn are

proportional to each other.

Both components of the SCC given in (22) decrease in the risk-adjusted discount rate (23). Hence, for a

constant growth rate g(0), a lower pure rate of time preference (ρ) implies a lower discount rate and a higher

SCC.9 If the coefficient of intergenerational inequality aversion (η) exceeds one or equivalently the elasticity of

intertemporal substitution (1/η) is less than one, equation (22) and (23) indicate that lower economic growth and

8In fact, the SCC is proportional to aggregate output that prevails in the absence of carbon pricing. This is a direct result of the approxi-
mations we have made.

9In contrast to exogenous Ramsey growth models such as Golosov et al. (2014) and Nordhaus (2017), our rate of economic growth g(0) is
endogenous. Hence, there are indirect effects on the optimal SCC via the growth rate g(0). For example, the direct effect of a higher rate of
pure time preference ρ is to lower the SCC and the indirect effect is to raise the SCC as economic growth is lowered (for η> 1). Together, the
effect of a higher rate of pure time preference on the discount rate is always positive and thus always negative on the SCC). See also van den
Bremer and van der Ploeg (2021).
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higher macroeconomic uncertainty whether stemming from geometric Brownian motion or from negative climate-

related disaster shocks lower the discount rate and increase the SCC.

It is instructive to decompose the discount rate (23) when disasters follow a power distribution:

r⋆ = ρ︸︷︷︸
pure time
preference

+ηg(0)
total︸ ︷︷ ︸

affluence
effect

−g(0)
total︸ ︷︷ ︸

growing
damages

−1
2

(1+η)γσ2
total︸ ︷︷ ︸

prudence
effect

+γσ2
total︸ ︷︷ ︸

insurance
effect

, (24)

where g(0)
total ≡ g(0) −λe/

(
1+βe

)−λc/
(
1+βc

)
is the total expected growth rate, corrected for the expected effect of

macroeconomic and climate-related disasters, and σ2
total ≡σ2+2λe/

((
1+βe

)(
1+βe −γ

))+2λc/
((

1+βc
)(

1+βc −γ
))

can be thought of as a measure of total uncertainty, combining normally distributed shocks with the effects of

macroeconomic and climate-related disasters.10

The first two terms in (24) correspond to the deterministic Keynes–Ramsey rule: the rate of pure time pref-

erence ρ plus the affluence effect ηg(0)
total. The affluence effect captures that, if growth and aversion to inter-

generational inequality aversion are high, policy makers prefer to postpone climate action to periods if people

are richer.11 The third term, −g(0)
total corrects the discount rate for the growth rate of the economy and growing

damages (as damages are proportional to output), so that a higher growth rate increases the SCC. Together, the

second and the third terms act to increase the discount rate and reduce the SCC if intergenerational inequality

is high enough (i.e, η> 1).

The fourth term − 1
2 (1+η)γσ2

total is the prudence term, which indicates that regular macroeconomic uncer-

tainty as well as the risk of macroeconomic and climate-related disasters necessitate precautionary saving, which

depresses the interest rate in equilibrium. As a result, the SCC and the carbon price are higher. This effect is

larger for higher degrees of relative risk aversion (γ), relative prudence (1+η) and macroeconomic volatility (σ> 0,

λc > 0 and λe > 0).

The fifth term γσ2
total is the insurance effect, stemming from the perfect correlation between damages and

losses due to macroeconomic and climate-related disasters on the one hand and output on the other hand: in

future states of nature, damages and losses are high when output and consumption are high and the marginal

utility of consumption is low. Policy makers thus employ a higher discount rate and undertake less climate action.

This effect is larger for higher degrees of relative risk aversion (γ) and macroeconomic volatility (σ> 0, λc > 0 and

λe > 0).

10Note that the coefficient relative risk aversion γ appears in this measure of total uncertainty because of the non-normal nature of these
shocks. As βe and βc are generally much larger than γ (see Section 5, the effect of γ is quantitatively unimportant, and can conceptually be
ignored.

11The increased desire to consume and save less requires a higher interest rate for household-investors to willingly hold the safe asset,
which is in fixed supply.
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4.1.1 The equity premium and the risk-free rate

Without risk of climate tipping, the leading-order estimate of the equity premium is

rp = γσ2 + ∑
i=e,c

λiE
[
(1−Zi)(Z

−γ
i −1)

]
(25)

and of the risk-free rate is

r f = ρ+ηg(0) − 1
2
γ(1+η)σ2 − ∑

i=e,c
λiE

[
(Z−γ

i −1)+ η−γ
1−γ (1−Z1−γ

i )
]
. (26)

This result extends well-known expressions in the macro-finance literature to allow for temperature-dependent

risk of climate-related disasters. The discount rate for evaluating the SCC, equation (23), can be written as

r⋆ = r f + rp − g(0)
total, where g(0)

total ≡ g(0) − ∑
i=e,c

λiE[1−Zi] (27)

The discount rate r⋆ is the return on risky assets r f + rp minus the growth rate that takes account of of expected

damages from disasters, g(0)
total. While preference parameters are typically unobservable, the risk-free interest

rate, the equity premium, and economic growth are observable. Equation (27) offers a market-based calibra-

tion strategy for preference parameters and other not directly observable parameters by matching asset-pricing

moments and the economic growth rate.

4.2 A rule for the Optimal SCC with climate tipping

To allow for the risk of an irreversible climate tipping point, we will also make use of the first-order value function

derived in Section 3.3.2.

4.2.1 Post-tip SCC

The optimal post-tip SCC can simply be obtained from Result 1 and equation (22), by ensuring that post-tip values

of the TCRE are used:

PR1 =
[

D1T +λc
1T

E
[
1−Z1−γ

c
]

1−γ
q(0)

B
(0)

]
χY

(0)

r⋆
, (28)

where Tobin’s Q q(0), the capital-output ratio B
(0)

, output Y
(0)

and the optimal discount rate r⋆ must all be

evaluated in a post-tipping world (i.e., with χ= χ).
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4.2.2 Pre-tip SCC

Result 2. With temperature-dependent risks of recurring climate-related disasters and of irreversible climate

tipping, the pre-tip SCC can be estimated by

PR2 = PR1

ψ0

ψ
+ h′(E)

r⋆
Y (0)q(0)

B(0)
1

1−γ
(
ψ0 −ψ0

ψ

)
+ h(E)

r⋆

(
PR1

ψ0

ψ
−PR1

ψ0

ψ

)
, (29)

where h′(E) = h1. The post-tip SCC PR1 and the pre-tip SCC in the absence of tipping PR1 can be obtained from

Result 1 and are given by

PR1 =
[

D1T +λc
1T

E
[
1−Z1−γ

c
]

1−γ
q(0)

B(0)

]
χY (0)

r⋆
, PR1 =

[
D1T +λc

1T
E
[
1−Z1−γ

c
]

1−γ
q(0)

B
(0)

]
χY

(0)

r⋆
. (30)

Here, q(0) = 1
1−ϕi(0) and q(0) = 1

1−ϕi
(0) denote Tobin’s Q before and after tipping, respectively.

Proof: Using perturbation analysis, it can be shown that ϵψ1 = h(E)ψ0(E)−ψ0(E)
r∗ (see Section 3.3.2) and thus

ψ(E)=ψ0(E)+h(E)ψ0(E)−ψ0(E)
r⋆ , where ψ(E) is defined by J ≡ψ(E)K1−γ. The optimal SCC follows from evaluating

P =− JE
JK

q =−ψ′(E)
1−γ qK . We obtain12

PR2 =−
[
ψ′

0(E)+h′(E)
ψ0(E)−ψ0(E)

r⋆
+h(E)

ψ
′
0(E)−ψ′

0(E)
r⋆

]
q(0)K
1−γ

1
ψ

. (31)

Note that we have additionally assumed that the risk- and growth-adjusted discounted rate, r⋆, and Tobin’s Q,

q(0), are unaffected by marginal changes in the stock of cumulative emissions, E, which is approximately the case

in all our numerical simulations. We can rewrite (31) as (29), using PR1 =− ψ′
0(E)

ψ0(E)(1−γ) q(0)K and PR1 =− ψ
′(E)

ψ(E)(1−γ) qK

without risk of climate tipping. Result 1 then establishes that the latter two prices are given by equation (30).

Further details are given in Appendix A. □

If there is a risk of climate tipping (h(E) > 0), the anticipated future damages caused by a future upward

jump in the transient climate response to cumulative emissions (TCRE) and the resulting higher temperatures

need to be internalised.13 To be precise, the carbon price needs to be adjusted to mitigate the risk of a climate

tipping point (second term in the square brackets in equation (29)), and carbon needs to be repriced to allow for

the anticipated effect that the TCRE jumps up in the future (third term in the square brackets in equation (29).

12Strictly speaking, the second term in the square brackets in (31) is O (ϵ2), whereas the first and third terms are O (ϵ1); the latter corresponds
to the order to which our result is valid formally. Similarly, 1/ψ terms should formally be expanded in powers of ϵ with terms of O (ϵ2) and
above neglected. We nevertheless retain both these types of higher-order terms in Result 2, as they are readily available, make Result 2 easier
to interpret, and we do not foresee other additional terms arising at O (ϵ2) from Result 1. Furthermore, our full numerical optimisation in
Section 6 confirm their inclusion improves the accuracy of our rule.

13If the arrival rate of climate tipping is zero, h(E)= 0, equation (29) reduces back to Result 1 because then ψ1 and ψ=ψ0.
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The second term h′(E)
r⋆

Y (0) q(0)

B(0)
1

1−γ
(
ψ0−ψ0

ψ

)
is positive if the hazard rate of tipping increases with temperature.

Since the economy is worse off after the irreversible climate tipping point, we have ψ0 <ψ0.14 The term captures

the expected marginal loss from having one degree higher temperature. This term implies that a larger depen-

dence of the risk of irreversible climate tipping on temperature h1T , a higher TCRE χ, combining as h′(E)= h1Tχ,

and a larger risk-adjusted loss to welfare 1
1−γ

(
ψ0−ψ0

ψ

)
> 0 resulting from the tip increase the optimal SCC. Just as

for the risk of recurring climate-related disaster risks, this effect is more pronounced if the economy is more risk

averse (as captured by the 1
1−γ

(
ψ0−ψ0

ψ

)
term).

The third term h(E)
r⋆

(
PR1

ψ0
ψ

−PR1
ψ0
ψ

)
allows for the risk of climate tipping itself. It is equal to the tip arrival rate

multiplied by the gap between the post-tip and the pre-tip SCC weighted by pre- and post-tip welfare, respectively,

discounted at the pre-tip risk-adjusted discount rate. This term prices in that at some uncertain date in the future,

the TCRE (χ) and thus damages jump up. This pushes up the optimal SCC (independent of whether the hazard

rate of the climate tipping point is dependent on temperature and thus endogenous or not).

5 Market-Based Calibration

Our calibration strategy builds upon Pindyck and Wang (2013), van den Bremer and van der Ploeg (2021), and

Hambel et al. (2022). In the past, the influence of climate change on asset markets was negligible and the

historical impact of climate change on the economy was, if anything, moderate, at least in developed countries.

Thus, we first calibrate the economic part of our model by disregarding climate damages (business as usual, BAU).

We then discuss the climate parts. The resulting market-based calibration is summarised in Table 1. Section 6.3

considers ethics-based calibrations with a lower discount rate to capture that policy makers are more patient than

the market.

5.1 Macroeconomic uncertainties

For the normal macroeconomic uncertainty we assume an annual volatility of 2% (σ= 2%/year1/2), matching the

historical volatility of consumption (cf. Wachter, 2013). For the recurring macroeconomic and climate-related

disasters, we assume that the recovery rates, Zi = 1−ℓi, i ∈ {e, c}, have power distributions over (0,1) with param-

eters βi > 0. The jump size distribution is thus determined by the density function ζi(Zi)=βiZ
βi−1
i , Zi ∈ (0,1) (cf.

Pindyck and Wang 2013), so that the nth moment of the recovery rate is E[Zn
i ] = βi

βi+n . We follow Barro and Jin

(2011) and define a disaster as an event that destroys more than ℓ⋆e = 10% of the capital stock, GDP and aggregate

consumption. With this cut-off, their historical consumption data suggest an annualdisaster probability of 3.8%

and average loss of 20% when a disaster strikes: E[ℓe|ℓe > ℓ⋆e ] = 0.2 and λe
∫ 1−ℓ⋆e

0 ζe(Ze)dZe = 3.8%/year. These

values give coefficients βe = 8 and λe = 8.8%/year.

14Note thatψ⋆ ≡ (1−γ)ψ> 0, andψ0 >ψ0 as welfare after climate tipping is lower, so that this term is indeed positive (1−γ< 0, (ψ0−ψ0)/ψ<
0).
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For the temperature-related risk of rare climate-related disasters, we assume that the intensity of disasters

rises linearly in temperature with λc
0 = 0.3%/year and λc

1T = 9.6%/year/◦C and that the expected loss is 1.5% and

thus E[1− Zc] = 0.015 (cf. Karydas and Xepapadeas, 2022 and Hambel et al., 2022 for more details). Fitting a

power distribution, we obtain βc = 65.7. To put those numbers into perspective, consider an initial temperature

anomaly of T0 = 1.1◦C. This implies that the initial one-year probability of a climate disaster with an average

damage of 1.5% of the capital stock ($17.25 trillion) is 1−exp(−(0.003+0.096T0)×1.0)≈ 10.3%, so that on average

every 9.7 years a climate disaster hits the economy and the expected annual damage to the capital stock is $1.78

trillion per year.15 At 2 degrees Celsius, the one-year probability of a climate disaster increases to 17.7%, and

a climate-related disaster strikes every 5.64 years. Note that climate-related disasters occur more frequently

than non-climate-related macroeconomics disasters,16 but tend to have a smaller negative impact on the economy

when they strike.

5.2 Preferences and production

We follow van den Bremer and van der Ploeg (2021) and use an energy share of 1−α= 4.3% and an energy cost

parameter of b = $540 per ton of carbon. Given an initial world GDP of Y (0) = $115 trillion/year, this corresponds

in a business-as-usual scenario with P = 0 to an initial fossil use of F0 = 115×0.043/0.54 = 9.16 GtC/year (giga

tons of carbon per year). We set the coefficient of intergenerational inequality aversion η= 1.5 corresponding to an

elasticity of intertemporal substitution of 2/3, which is close to the value in the DICE model. There is an ongoing

debate in the asset pricing literature on this parameter. E.g., Vissing-Jørgensen and Attanasio (2003), combine

equity and consumption data and estimate an EIS (1/γ) of 1.5. On the other hand, Hall (1988) and estimate an

EIS well below one.

Given these parameter choices, we calibrate the remaining parameters to match expected GDP growth g(0) =
2% per year in normal times, so that without rare macroeconomic disasters we have an average consumption rate

of C(0)

B(0)K = 73% of GDP, a risk-free interest rate of r f = 0.8%/year, an equity premium of 6.5%/year, a return on risky

assets of 7.3%/year, and a Tobin’s Q of q(0) = 1.38 (cf. Pindyck and Wang, 2013; Hambel et al., 2021a). They imply

that the growth- and risk-adjusted discount rate needed to calculate the SCC is r⋆ = 5.3%/year. Without climate

change (as used for the zeroth-order approximation), we can obtain closed-form expressions for these quantities

(see Appendix B) to pin down the remaining preference and production parameters: ρ = 5.08%/year, η = 5.347,

A∗ = 0.1231, and ϕ= 12.5 (see Table 1).

15UN (2020) reports that extreme major weather events have roughly doubled from 1980-1999 to 2000-2019 (from 4,212 to 7,348 events)
with a global economic cost of $1.63 and $2.97 trillion, respectively. So, our calibration is within this range. For further and more detailed
discussion on the evidence of global warming on the frequency of climate-related events (river floods, tropical cyclones, crop failure, wildfires,
droughts, and heatwaves), see Lange et al. (2020).

16For example, at 2 degrees Celsius λc =λc
T0 +λc

T1T = 19.5%/year > λe = 8.8%/year. This is true for all T > 0.89◦C.
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Preferences Coefficient of relative risk aversion: γ= 5.347
Coefficient of intergenerational inequality aversion: η= 1.5
Elasticity of intertemporal substitution: 1/η= 0.6667
Pure rate of time preference: ρ = 5.08%/year

Economy Initial world GDP (2021): Y (0)
0 = $115 trillion/year

Initial world capital stock (2021): K0 = $1150 trillion
Total factor productivity: A∗ = 0.1231 and B(0,0)= 0.1
Adjustment cost parameter: ϕ= 12.5

Macroeconomic Capital stock:
uncertainties Growth in normal times: g(0) = 2%/year

Annual Volatility: σ= 2%/year1/2

Macroeconomic disasters (not climate related):
Arrival rate of disasters: λe = 8.8%/year
Mean size of disasters: E[ℓe]= 20%
Shape parameter of power distribution: βe = 8
Macroeconomic disasters (climate related):
Mean size of disasters: E[1−Zc]= 1.5%
Shape parameter of power distribution: βc = 65.7
Arrival rate of disasters: λc

0T = 0.3%/year and λc
1T = 9.6%/year/◦C

Fossil fuel Initial global emissions in BAU scenario (2021): F0 = 9.16 GtC/year
Share of fossil fuel in value added: 1−α= 4.3%
Cost of fossil fuel: b = 540 $/tC

Temperature Initial temperature (2021): T0 = 1.1◦C
Transient climate response to cumulative emissions (pre-tip): χ= 1.8◦C/TtC
Initial cumulative emissions (2021): E0 = 0 GtC
Marginal effect of temperature: D1T = 0.9%/◦C

Climate Arrival rate of tipping point: h0T = 0 and h1T = 0.6%/◦C/year
tipping point Transient climate response to cumulative emissions (post-tip): χ=2.5◦C/TtC

Table 1: Market-Based Calibration.

5.3 Climate system and global warming damages

For the climate tipping point, we assume that the TRCE jumps from χ = 1.8◦C/TtC before to χ = 2.5◦C/TtC af-

ter the tip.17 The instantaneous probability of tipping rises linearly in temperature with h0 = 0 and h1T =
0.6%/◦C/year. Initial temperature T0 = 1.1◦C in 2021. Cumulative emissions are measured relative to the total

cumulative emission stock of 611.1 GtC in 2021 emitted since the beginning of the industrial revolution (consis-

tent with χ= 1.8◦C/TtC), so that E0 = 0.

Nordhaus and Moffat (2017) perform a meta study of global warming damages and come up with a preferred

estimate of 0.18% of output per temperature squared (i.e., D = 0.0018T2), to which they add a 25% for unmeasured

damages. Hence, their damage function DNM17 = 0.00225T2, and the losses due to global warming at 1.5, 2, and

2.5 degrees Celsius equal D(T = 1.5◦C) = 0.51%, D(T = 2◦C) = 0.9%, and D(T = 2.5◦C) = 1.41%, respectively. We

17These values are well in line with the findings of Allen et al. (2009) and Matthews et al. (2009).
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calibrate our damage function so that it fits the slope of the damage function of Nordhaus and Moffat (2017) (i.e.,

dDNM17/dT = 0.0045T) at a temperature increase of 2◦C, setting D0 = 0 and D1T = 0.9%/◦C.

6 How Accurate is the Rule for the Optimal SCC?

To test the accuracy of our approximate rules for the optimal SCC given by Result 1 and Result 2, we use

the market-based calibration in Table 1 and our rules to calculate an estimate of the optimal SCC. Section 6.1

compares this with a SCC obtained from full numerical optimisation of the model based on a grid-based finite-

difference approach (cf. Munk and Sørensen (2010) and see Appendix E).18 Section 6.2 shows how sensitive the

accuracy of our rules for the optimal SCC is with respect to our small-parameter assumptions, relating to the

strength of each of the three global warming externalities. Section 6.3 acknowledges that the market-based cal-

ibration leads to a very low SCC and investigates the size of the optimal SCC and the accuracy of our rules if

policy makers are more patient than private-sector agents. Such an ethics-based calibration also offers a more

challenging test of our simple rules.

6.1 Accuracy of rule for optimal SCC with market-based calibration

6.1.1 The SCC in 2021

Table 2 summarises the results for six different settings using the market-based calibration in Table 1. We find

that errors of the simple rule compared to the full numerical optimisation are small. We note that values of the

SCC are relatively small, which is due to the relatively high discount rates that follow from the market-based

calibration (cf. values of r⋆ in Table 2).

Table 2, panel (a) indicates that the accuracy of the simple rule in Result 1 is excellent in models without

a climate tipping point; the deviation between our estimate of the optimal SCC from our simple rule and the

numerical solution is always less than 0.7%. The error is higher if the rule also takes account of the temperature-

related risk of recurring macroeconomic disasters, but still negligible for practical purposes. Table 2, panel (b)

shows the analogous results when there is a temperature-related risk of an irreversible climate tipping point.

The risk of climate tipping calls for a higher price of carbon, which is in line with the detailed analysis of Dietz

et al. (2021a), who find that, collectively, climate tipping points increase the SCC by about a quarter (our effect

is smaller in magnitude). With climate tipping, our estimate of the optimal SCC based on the simple rule in

Result 2 is somewhat less accurate than without tipping, although the deviation between the simple rule and the

fully nonlinear numerical solution is still very small. Our estimate of the optimal SCC when all the three global

18In Appendix E, we show that by eliminating K , the problem can be reduced to a numerical optimisation problem in a single state variable,
E, and time. We solve this using 4 time steps per year and 100 nodes for E. More time steps or a finer grid do not increase the accuracy of the
numerical results, and we can conclude the numerical solutions have converged.
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(a) Without a climate tipping point
Method of calculation Rule Numerical Error r⋆

($/tCO2) ($/tCO2) (%/year)
TFP damages only 9.60 9.60 −0.04% 5.30%
Temperature-related recurring disasters only 23.53 23.73 −0.85% 5.23%
both TFP damages and temperature-related disasters 33.17 33.40 −0.69% 5.23%

(b) With a climate tipping point
Method of calculation Rule Numerical Error r⋆

($/tCO2) ($/tCO2) (%/year)
TFP damages only 10.33 10.62 −2.72% 5.29%
Temperature-related recurring disasters only 26.41 26.35 −0.23% 5.22%
both TFP damages and temperature-related disasters 36.67 37.12 −1.21% 5.22%

Table 2: Calculation of the Optimal SCC ($/tCO2) using the Market-Based Calibration. Results are based on the
market-based calibration summarised in Table 1 and compare the performance of the rule to the numerical solution. The
table also shows how the three climate externalities affect the growth- and risk-adjusted discount rate r⋆, compared to the
value of 5.30%/year in the absence of climate change.

warming externalities are simultaneously present leads to an error in our estimate of the optimal SCC of only

−1.21%.19

The final columns of Table 2 indicate that the growth- and risk-adjusted discount rate, r⋆, falls, especially

as a result of recurring climate-related disasters. This is due to precautionary savings, and it further boosts the

increase in the SCC.

6.1.2 The SCC as a function of temperature

Figure 1 shows how higher temperatures than our starting temperature of 1.1◦C affect the accuracy of the rules

for the optimal SCC. Grey lines ( ) show the results obtained by the simple rules while black lines ( )

show the results obtained from the full numerical optimisation. Panel (a) shows the results when global warming

only affect total factor productivity through the damage function. Panel (b) shows the results when temperature-

related recurring climate-related disasters also occur. Panel (c) shows the results when all three global warming

externalities are present.

The optimal SCC increases with temperature in each of the three panels even though the marginal impact

of temperature on output D1T and the marginal effect of temperature on the risk of recurring climate-related

disasters λc
1T and on the risk of a climate tipping point h1T are constant. The reason for this is that the discount

rate r⋆ given in equation (23) reacts negatively to higher temperatures due to the higher risks of climate-related

disasters, λc(T(E)), provided that the elasticity of intertemporal substitution is less than one (and the coefficient

of intergenerational inequality aversion η > 1, as is the case in the calibration in Table 1). Hence, the effect of

19We note that all our estimates of the SCC slightly under-estimate the SCC compared to the full numerical optimisation. If needed,
higher-order terms in the perturbation series could be derived to reduce the error margins.
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Figure 1: Temperature Sensitivity of Optimal SCC ($/tCO2) with Market-Based Calibration. The graphs depict the
sensitivity of the optimal SCC with respect to temperature. Grey lines ( ) show the results obtained by the simple rules
while black lines ( ) show the results obtained from full numerical optimisation. Panel (a) shows the results when global
warming only affects total factor productivity. Panel (b) shows the results when there is also a temperature-related risk of
recurring climate-related disasters. Panel (c) shows the results when all three global warming externalities are present.

higher temperatures on the optimal SCC must be positive, as is confirmed in each of the panels of Figure 1. Notice

that the optimal SCC and temperature would be negatively related in models with an elasticity of intertemporal

substitution greater than one (i.e., η< 1). Table 2 and Figure 1 also indicate that the temperature-related risk of

recurring climate-related disasters significantly boosts the SCC (roughly by a factor 2.5), much more so than the

temperature-related risk of an irreversible climate tipping point.

6.2 Testing the small-parameter assumptions

Our perturbation analysis gives an accurate estimate of the optimal SCC when our three small parameters are

‘small’. How small is ‘small’? To test whether the small parameters are indeed small enough, we examine how

the accuracy of the rule varies with the size of the three small parameters. Figure 2 does this for the first two

small parameters, i.e., the marginal effect of temperature on the damage ratio D1T and the marginal effect of

temperature on the intensity of climate-related macroeconomic disasters λc
1T , by showing how the optimal SCC,

both evaluated with our simple rule and with numerical optimisation, varies with these two parameters (without

risk of a climate tipping point, h = 0). Given an initial temperature anomaly of T0 = 1.1◦C, the benchmark value

λc
1T = 9.6%/year/◦C means that a climate disaster happens every 9.7 years, while a value of λc

1T = 19.2%/year/◦C

(double) means that such an event happens every 5.2 years on average. The left-hand panel confirms that a higher

adverse effects of temperature on total factor productivity D1T and on the risk of recurring disasters λc
1T increase

the SCC according to our rule. The right-hand panel shows that the relative error compared with full numerical

optimisation varies from close to zero to at most −1.5%. The rule thus performs well for a realistic range of the

size of the first two small parameters with the market-based calibration.
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Figure 2: Sensitivity of the SCC and Accuracy without Climate Tipping Risk (h = 0). Panel (a) illustrates how the
marginal effect of temperature on the damage ratio D1T and the marginal effect of temperature on the intensity of climate-
related macroeconomic disasters λc

1 affect the optimal SCC if temperature is fixed at T0 = 1.1◦C. Note that the benchmark
calibration values are D1T = 0.9%/◦C and λc

1 = 0.3+9.6×1.1= 10.9%/year. Panel (b) illustrates the relative deviation between
the simple rule and the numerical optimum as a function of these parameters.

We also consider the accuracy of our rule when there is a risk of a climate tipping point. Figure 3 is the same

as Figure 2 but with h1T = 0.6%/◦C/year. We confirm again that the optimal SCC is higher, the more sensitive

the adverse effects of global warming on total factor productivity and on the risk of recurring climate-related

disasters are to temperature (D1T and λc
1T , respectively). The main difference is that the error compared to full

numerical optimisation is a little higher, up to −2% (instead of the −1.21% reported in Table 6.1).

Now we test the accuracy of our rule with respect to the third small parameter: the hazard rate of climate

tipping h. To do so, we vary the marginal effect of temperature on this hazard rate, h1T . Figure 4, panel (a) shows

how varying the size of this parameter impacts the optimal SCC. For this purpose, we consider the benchmark

model with all three externalities and vary h1T . The figure shows that a higher intensity of climate tipping points

increases the SCC almost linearly according to our rule as shown in the grey line ( ), where the apparently

quadratic error reflects the validity of our estimate for the SCC up first order in the small parameter, resulting in

second-order (quadratic) errors. The figure also suggests that the true SCC obtained numerically ( ) reacts in

a more concave manner to the tipping probability even if this probability is linear in temperature. Panel (b) shows

that the relative error compared with numerical optimisation varies from less than 1% if tipping is switched off

to about 2% if h1T is double that in the benchmark calibration. The rule thus performs very well.
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Figure 3: Sensitivity of the SCC and Accuracy with Climate Tipping Risk (h1T = 0.6%/◦C/year). Panel (a) illustrates
how the marginal effect of temperature on the damage ratio D1T and the marginal effect of temperature on the intensity
of climate-related macroeconomic disasters λc

1T affect the optimal SCC (for T0 = 1.1◦C). Panel (b) illustrates the relative
deviation between the simple rule and the numerical optimum as a function of the same parameters.
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Figure 4: Tipping Risk Sensitivity of the Optimal SCC (D1T = 0.9%/◦C, λc
1T = 9.6%/◦C/year). Panel (a) illustrates

how the marginal effect of temperature on the intensity of climate tipping h1T affects the optimal social cost of carbon (for
T0 = 1.1◦C). The benchmark value is h1T = 0.6%/◦C/year. The black line ( ) show the numerical solution and the grey line
( ) the SCC determined by Result 2. Panel (b) illustrates the relative deviation between the simple rule and the numerical
optimum as a function of h1T .
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6.3 Ethics-based calibration with lower discount rates

So far, we have studied a market-based calibration of our integrated assessment model that matches the equity

premium rp in equation (25), the return on safe assets or risk-free rate r f in equation (26), the return on risk

assets r f + rp, and the rate of economic growth. This leads to the growth- and risk-adjusted discount rate (23), to

be used for calculating our estimate of the optimal SCC from equation (22) (Result 1) or (42) (Result 2).

However, a market-based calibration may not coincide with the preferences of a government, which are more

likely to be based on ethical or, alternatively, on political-economy considerations. For example, our calibration

has a rather high pure rate of time preference of ρ = 5.08%/year. In contrast, Stern et al. (2006) follows Frank

Ramsey and argue that discounting the utility of future generations is unethical and, therefore, an almost zero

pure rate of time preference should be used. Here, we analyse what happens to the optimal SCC if we follow a

more ethical approach with a lower utility discount rate of ρ = 2.27%/year, corresponding to a growth- and risk-

adjusted discount rate of r⋆ = 3%/year, and an even lower utility discount rate of ρ = 1.06%/year, corresponding to

r⋆ = 2%/year, instead of the market-based ρ = 5.08%/year given in Table 1 and the corresponding r⋆ = 5.3%/year.

These ethics-based choices of the utility discount rate assume that policy makers are more patient than the

private sector.20

Table 3 reports our estimates of the optimal SCC for these two lower discount rates. Our conclusions are as

follows. First, our simple rule for the SCC, if we allow for all three types of global warming externalities, gives

a SCC of $91/tCO2 if r⋆ = 3%/year and $182/tCO2 if r⋆ = 2%/year. Second, with the lower discount rates, Table

3 indicates that the effect of recurring climate disasters is even more substantial compared to the effect of the

climate tipping point. Third, unsurprisingly, the numerical errors increase for lower discount rates, although

errors are still at most −3.3% compared to the numerical optimum.

To analyse the effects of the three types of global warming externalities and the risk-adjusted discount rate

r⋆ on the optimal SCC over time, Figure 5 plots the evolution of the optimal SCC in nine scenarios. The three

columns refer to the three different values of r⋆, and the three rows to the three types of climate externalities. In

the first row, there are only damages to TFP, in the second row there is also the risk of recurring climate-related

disasters, and the last row shows the SCC with all three types of externalities. The black lines ( ) depict

the median evolution of the SCC in the respective scenario, the dashed lines ( ) the 5% and 95% quantiles,

and the dotted lines ( ) show a particular sample path.21 Comparing the first and the second column, it is

apparent that recurring climate disasters give the SCC a boost. In contrast, the tipping point provides a relatively

small additional contribution to the median evolution of the SCC. However, if the tipping risk materialises in a

particular path, as shown in ( ), then the SCC experiences a significant jump upward of about 25%. The

result holds regardless of the discount rate, but the SCC decreases sharply in r⋆. It is also shown that for lower

20Barrage (2018) shows that the government then needs two instruments to achieve the first-best outcome: a carbon tax to correct for the
global warming externalities and a capital subsidy to correct for private-agent savings being sub-optimally low. See also van der Ploeg and
Rezai (2022).

21All paths are simulated using the same random numbers in all nine scenarios.
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(a) Benchmark calibration with market annual discount rate of r⋆ = 5.3%/year
Method of calculation Rule Numerical Error

($/tCO2) ($/tCO2)
TFP damages only 9.60 9.60 −0.04%
TFP damages and recurring climate disasters 33.17 33.40 −0.69%
TFP damages, climate disasters, and climate tipping 36.67 37.12 −1.21%

(b) With lower annual discount rate of r⋆ = 3%/year
Method of calculation Rule Numerical Error

($/tCO2) ($/tCO2)
TFP damages only 17.01 17.06 −0.28%
TFP damages and recurring climate disasters 75.78 77.26 −1.91%
TFP damages, climate disasters, and climate tipping 90.67 91.62 −1.04%

(c) With even lower annual discount rate of r⋆ = 2%/year
Method of calculation Rule Numerical Error

($/tCO2) ($/tCO2)
TFP damages only 25.47 25.63 −0.63%
TFP damages and recurring climate disasters 139.19 143.88 −3.26%
TFP damages, climate disasters, and climate tipping 181.87 179.50 1.32%

Table 3: Ethics-Based Calculation of Optimal SCC (US $/tCO2) with Lower Discount Rates. Apart from the lower
choice of utility discount rates ρ in panels (b) and (c) (i.e., ρ = 2.27% and 1.06%, respectively, instead of 5.08% per year), to
ensure that r⋆ equals 3%/year and 2%/year, respectively, results are based on the calibration summarised in Table 1.

discount rates the 5% quantile of SCC increases faster than in the market-based calibration with the higher

utility discount rate.

7 Road-Testing the SCC Rule in Different Models

Here we conduct two more challenging tests of the robustness of our simple rule by checking how well it performs

compared to the true numerical optimum in models that are different from what we have used to derive our

rule. We investigate the robustness of our rule when there is technical progress in the production of fossil fuel

and when the economy has two sectors, a green and a carbon-intensive one. Neither of these alterations of our

economic model affects our rule for the optimal SCC except through its effects on aggregate economic activity (see

Appendix D). We also extend our rule to allow for shocks to the damage ratio and show that this gives accurate

predictions of the optimal SCC.

7.1 Technical progress in fossil fuel extraction

The model we have used in the previous sections to derive the optimal SCC assumes a constant cost of fossil

fuel in terms of units of final goods, b. Here, we assume that this cost b drops by 2% per year due to technical
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Figure 5: Simulation of the Optimal SCC. Column a) refers to the market-based calibration. Columns b) and c) refer
to the ethics-based choices of utility discount rates. Row 1 considers the case with TFP damages only, row 2 considers TFP
damages and recurring climate disasters, and row 3 considers all three externalities. The black lines ( ) depict the median
evolution of the optimal SCC, the dashed lines ( ) give 5% and 95% quantiles, and the dotted lines ( ) give a sample
path.
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progress and check whether our rule for the optimal SCC (which depends on b through Y (0), cf. (13)) performs

well compared with the numerical optimum. Table 5 in Appendix D indicates that the simple rule for the optimal

SCC is a good estimate of the true numerical optimum for each of the three discount rates, but less so if there

is a risk of a climate tipping point and the discount rate is low. The rule thus performs reasonably well even if

allowance is made for technological progress in fossil fuel production. As can be seen by comparing Table 5 in

Appendix D with Table 3, the reason is that the SCC itself is not much affected by technological progress in fossil

fuel production.

7.2 Two-sector model of the economy

We also investigate the accuracy of our rule by road-testing it in a model with a carbon-intensive and a green pro-

duction sector. We use the model of Hambel et al. (2022) which we refer to for technical details. The green sector

uses carbon-free energy as input; the carbon-emitting sector deploys fossil fuel, leading to emissions, warming

and damages to aggregate output as well as higher risks of climate-related disasters and a climate tipping point.

Both energy sources are available at a cost, and the consumption goods produced in the two sectors are perfect

substitutes. The economy can reallocate capital from the dirty to the green capital stock which is also costly.

From an computational point of view such a model is significantly more complex than the benchmark framework

as it is burdened by an additional state variable, which leads to a multiplication of the run time of the solution

algorithm. We emphasise that our simple rule is not affected by this issue.

Table 6 in Appendix D indicates that our simple rule works very well in the two-sector economy in most

specifications even though it has been derived for the one-sector economy. In case of climate tipping and low

discount rates, the errors are a bit larger than in our benchmark specification.We have also tested the rule for

the optimal SCC in settings with imperfect substitutes between clean and carbon-intensive final goods (with the

consumption goods produced in both sectors aggregated in a CES-consumption bundle). The results indicate that

this has an almost negligible influence on the optimal SCC.

7.3 Stochastic shocks to the damage ratio and the TCRE

So far, we have assumed a deterministic value for the marginal effect of temperature on the damage ratio, D1T . If

we allow for stochastic shocks to the damage ratio where the distribution of these shocks is skewed and displays

mean reversion, we slightly adjust our simple rules along the lines of van den Bremer and van der Ploeg (2021).

This new rule is given in Result 3 in C.2 and indicates that stochastic shocks to the damage ratio increase the

optimal SCC provided these shocks have a skewed distribution (θ > 0). We find numerically that shocks to the

damage ratio (i) indeed increase the optimal SCC, and (ii) do not affect the accuracy of our rule. Moreover, since

only the expectation of the TCRE matters, stochastic shocks to the TCRE do not affect the optimal SCC if they

are normally distributed.

27

Electronic copy available at: https://ssrn.com/abstract=4666508



8 Concluding Remarks

We have presented an integrated assessment model of climate and the economy with a wide range of uncer-

tainties, ranging from regular (normal) macroeconomic shocks and risks of recurring macroeconomic disasters to

recurring climate-related macroeconomic disasters and an irreversible climate tipping point whose arrival rates

increase with global warming. We have applied perturbation analysis to obtain a tractable and intuitive rule for

the optimal SCC that deals with all these uncertainties. This rule provides an estimate of the optimal SCC that is

formally exact when three small parameters are infinitesimally small and provides a very accurate estimate of the

risk-adjusted SCC compared to a full numerical optimisation for realistic values of these small parameters. The

rule internalises three externalities arising from the negative effects of emissions on temperature and produc-

tion damages and the positive effects of emissions and temperature on the frequency of temperature-dependent

recurring climate disasters and the risk of a climate tipping point.

We have compared this rule for the optimal SCC, which can be evaluated on the back of an envelope, with

the value we obtain from full numerical optimisation of our integrated assessment model using the method of

finite differences for solving the Hamilton–Jacobi–Bellman equation. This comparison makes clear that our rule

for the optimal SCC is very accurate for our market-based calibration. Although this rule performs less well with

a more ethics-based calibration with lower discount rates, it still provides close estimates of the optimal SCC. A

decomposition analysis of the optimal SCC suggests that the temperature-dependent risks of recurring climate-

related disasters and of a climate tipping point significantly increase the SCC by a factor of 4 to 6 compared

to when only the adverse effects of global warming on productivity are taken account of. Climate tipping and

especially recurring climate-related disasters require a much higher price of carbon and a much more ambitious

climate policy. We have also shown that the present rule can readily be adapted to allow for the presence of

skewed and persistent shocks to the damage ratio. These shocks also require a higher carbon price.

We have also challenged the robustness of our rule for the optimal SCC by road-testing it in more general

models for which the rule was not designed. If there is ongoing technological progress in the production of fossil

fuel instead of a constant cost of fossil fuel or if there is two-sector instead of one-sector growth with either

imperfect or perfect substitution between the carbon-intensive and green final goods, the rule for the optimal

SCC still performs remarkably well.

Both the accuracy and robustness of our estimates of the SCC are thus good, especially if the parameters

that we assume to be small —- the sensitivities of the damage ratio and the risk of climate-related disasters with

respect to temperature and the risk of climate tipping — are indeed small enough, as they are in our calibration,

and the discount rate is not too small. If we allowed for higher-order terms in the derivation of the optimal SCC,

the accuracy of our rule would improve further.
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In future research, we will examine how rules for the optimal SCC perform if extended in various directions.22

One can extend rules for the optimal SCC given in Results 1 and 2 to allow for multiple recurring climate-related

disasters, varying from floods, droughts, hurricanes to bush fires. Each of these disasters may have different

intensities and distributions. Following Cai et al. (2016) and Lemoine and Traeger (2016) one can also allow

for multiple climate tipping points.23 Further extensions of the rules for the SCC may deal with more general

carbon cycle and temperature dynamics, uncertainty in and convexity of the damage ratio, uncertainty in the

temperature response, and correlations between the shocks to the climate, damages, and the economic system.

These extensions may also deal with nonlinear positive feedback effects in the climate system and with tail risks

arising from skewed distributions.

We foresee that AI-based techniques will have an increasing role to play in the derivation of such simple rules,

as we have derived in this paper. For example, Friedl et al. (2023) have developed deep-learning based algorithms

to derive optimal climate policies in the face of wide-ranging types of economic, climatic and damage uncertainties

including tipping points and parametric uncertainty quantification. A novelty is that a Gaussian-based surrogate

model is estimated that is used to analyse the social cost of carbon with respect to uncertain model parameters.

Our perturbation analysis offers an extension of generalised asset-pricing formulae for the social cost of carbon.

In future work, symbolic regression may be used to obtain a rule for the optimal SCC, which is both accurate and

can be interpreted along the lines of existing asset-pricing theories of the SCC.24 Such developments have the

potential to provide a step change in our understanding of carbon pricing in uncertain environments.
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APPENDICES

A Derivation of the first-order value function

To derive the first-order value function J(1), we begin by noting from the pre-tip HJB equation (10) that the first-

order conditions (11) and (12) are unaffected by the climate-tipping term in the HJB equation (the rightmost term

in (10)), as this term does not depend directly on the policy variables C and F.

Furthermore, we note that, as a result of the linearity of the dependence of the risk of climate-related re-

curring disasters λc and the damage function D on E, their marginal effects dλc/dE = λc
1 and dD/dE = D1 are

constant and not a function of E, resulting in J(0)
E (as obtained from (18)) being only a ‘slow’25 function of E. As

a result, the first-order ‘forcing’ term J(0)
E ωF (0) does not give rise to a first-order value function that is a ‘fast’

function of E and thus does not yield an additional contribution to the SCC (P ∝ JE). We therefore ignore this

term.

Inspection of the HJB equation (10) shows that a first-order solution of the form ϵJ(1) = ϵψ1K1−γ can be

found. Substitution of the series expansion (15) into the HJB equation (10), in which the optimal solutions for the

policy variables have already been substituted in from the first-order conditions (11) and (12), and retaining only

first-order terms in h =O (ϵ) gives:

K1−γ(ψ0 −ψ0)+ 1
2

K1−γ(−1+γ)γσ2ψ1 +K1−γ∆λψ1K1−γ(1−γ)
(
(i(1) −ωi(0) i(1))ψ0 +

(
−δ+ i(0) − 1

2
ω

(
i(0)

)2
)
ψ1

)
+ 1

1−η
[
−K1−γ(γ−η)

(−K1−γ(−1+γ)ψ0
)− 1

1−γ+
η

1−γ
[
−ρ (−K1−γ(−1+γ)ψ0

) 1−η
1−γ

+
(
(−1)−1/ηK(1−γ)

1−η
(−1+γ)η (−1+ωi(0))−1/ηψ

1−η
(−1+γ)η
0

)1−η ]
ψ1

+ (−K1−γ(−1+γ)ψ0
)1− 1−η

1−γ
[
− (−1+η)ρ

(−K1−γ(−1+γ)ψ0
) 1

1−γ−
η

1−γ ψ1

(−1+γ)ψ0

+ 1
(−1+γ)η

(−1)1−
1
η K(1−γ)−

1
−1+γ+ 1

(−1+γ)η (1−η)(−1+ωi(0))−1− 1
ηψ

−1− 1
−1+γ+ 1

(−1+γ)η
0 ×(

(−1)−1/ηK(1−γ)
1−η

(−1+γ)η (−1+ωi(0))−1/ηψ

1−η
(−1+γ)η
0

)−η (
−ωi(1)ψ0 +γωi(1)ψ0 +ψ1 −ηψ1 −ωi(0)ψ1 +ηωi(0)ψ1

)]]
= 0,

where ∆λ is a shorthand for λeE[Z1−γ
e −1]+λcE[Z1−γ

c −1], and we have divided by h. This equation still has two

unknowns, ψ1 and i(1), and must be solved together with the budget constraint, Y − bF − I −C = 0, at the same

order of approximation. Again using the optimal solutions for the policy variables from the first-order conditions

25The terms ‘fast’ and ‘slow’ in perturbation analysis are used to denote the functional dependence on E. A ‘fast’ dependence leaves the
order of the term unchanged upon differentiation. A ‘slow’ dependence increases the order.
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(11) and (12) and retaining only the first-order terms in h =O (ϵ) yields a second equation relating ψ1 and i(1):

− i(1) + (−1)−1/η(1−γ)
1

(γ−1)η− 1
γ−1ψ

1
(γ−1)η− 1

γ−1−1
0 (ωi(0) −1)−

1
η−1(−ηψ1 +ηωi(0)ψ1 −ωi(0)ψ1 +γωi(1)ψ0 −ωi(1)ψ0 +ψ1)
(γ−1)η

= 0,

(32)

which can be solved for i(1) in terms of ψ1:

i(1) = (−1)−1/η(1−γ)
1

(γ−1)η− 1
γ−1ψ

1
(γ−1)η− 1

γ−1−1
0 (ωi(0) −1)−

1
η−1(−ηψ1 +ηωi(0)ψ1 −ωi(0)ψ1 +ψ1)

(γ−1)η

 (−1)−1/ηω(1−γ)
1

(γ−1)η − 1
γ−1 +1

ψ

1
(γ−1)η − 1

γ−1
0 (ωi(0)−1)−

1
η −1

(γ−1)η +1

 . (33)

Substituting i(1) from (33) and the zeroth-order solution for ψ0 from (18), we obtain after considerable but trivial

manipulation:

ϵψ1 =
h

(
ψ0 −ψ0

)
r⋆

, (34)

where r⋆ was obtained as part of the zeroth-order solution and is given by (19).

B Details of the market-based calibration

Assuming no negative impact of climate change on the economy, we can derive closed-form expressions for key

economic variables in our model. Given the parameter values for economic uncertainty and the share of fossil-

fuel use, we calibrate the remaining parameters under that assumption to match an expected GDP growth rate

of g(0) = 2% in normal times, i.e., in the absence of rare macroeconomic disasters, an average consumption rate of

χ(0) ≡ C(0)

B(0)K = 73% of GDP, a risk-free interest rate of r f = 0.8%/year, an equity risk premium of rp = 6.5%/year, a

return on risky assets of 7.3%/year, and a Tobin’s Q of q(0) = 1.38. The following equations constitute a non-linear

system that relates ρ, γ, B(0), δ, and ϕ to those quantities.

χ(0) = q(0)

B(0)

[
ρ+ (η−1)

(
g(0) −0.5γσ2 − λe

βe −γ+1

)]
, (35)

g(0) =−δ+B(0)(1−χ(0) −α)− 1
2
ϕ

(
B(0))2(

1−χ(0) −α)2 − λe

βe +1
, (36)

r f = ρ+ηg(0) − 1
2
γ(1+η)σ2

c −λe
(η−γ)(αe −γ)+γ(βe −γ+1)

(αe −γ)(αe −γ+1)
, (37)

rp = γσ2 +λeγ
[ 1
βe −γ

− βe

(βe +1)(βe −γ+1)

]
, (38)

q(0) = 1
1−ϕi(0) . (39)

For the derivation of these equations and for further details, we refer to Pindyck and Wang (2013) and Hambel

et al. (2022).
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C Stochastic shocks to the damage ratio and the TCRE

Damages from global warming are notoriously uncertain (see Nordhaus and Moffat (2017)). We can allow for

stochastic shocks to the damage ratio in the same manner as in van den Bremer and van der Ploeg (2021). Let

the damage ratio be given by

D(T,µ)= 1−D1T max(µ,0)1+θT, (40)

where µ is a persistent normally-distributed shock to the damage function, and θ ≥ 0.26 Here, θ controls the

skewness of the damage distribution. The stochastic process for µ is independent of the process driving economic

activity and is described by the Ornstein–Uhlenbeck process,27

dµ= ν(µ−µ)+σµdWµ, (41)

where Wµ is a Wiener process, σµ is the volatility, ν is the mean-reversion coefficient, and µ is the steady-state

value of µ. With uncertainty, the volatility and skewness of the damage ratio increase with time.28 We assume

that shocks to the TCRE are distributed with means χ (pre-tipping) and χ (post-tipping). This suggests the

following extended rule for the optimal SCC.

Result 3. With all three global warming externalities and stochastic shocks to the damage ratio and normally

distributed shocks to the TCRE, the leading-order estimate of the optimal SCC is

PR3 = PR1

ψ0

ψ
+ h(E t)

r⋆
(
PR1

ψ

ψ
−PR1

ψ0

ψ

)
+h′(E t)

Y (0)
t q(0)

t

B(0)r⋆
ψ−ψ0

(γ−1)ψ
, (42)

where h′(E t) = h1χ. The post-tip SCC PR1 and the pre-tip SCC in the absence of tipping PR1 can be obtained from

Result 1 and are given by

PR1 =
[

D1T∆+λc
1T

E
[
1−Z1−γ

c
]

1−γ
q(0)

t

B(0)

]
χY (0)

t
r⋆

, PR1 =
[

D1T∆+λc
1T

E
[
1−Z1−γ

c
]

1−γ
q(0)

t

B
(0)

]
χY (0)

t

r⋆
.

Tobin’s Q q(0), and the discount rate r⋆ are as in Result 2, and the correction for skewed damage shocks with mean

reversion is

∆≡µ1+θ
(
1+ 1

2
θ (1+θ)

(
σµ/µ

)2

r⋆+2v

)
. (43)

26For simplicity, we abstract from damage ratios that are a convex function of temperature.
27In equation (40), we truncate this process, so as to formally exclude negative values of µ, which typically have negligibly small probability.

An alternative is the Cox–Ingersol–Ross process, which avoids negative outcomes.

28Note that µ(t) is normally distributed with mean µ(0)e−νt +ν(1− e−νt) and variance
σ2
µ(1−e−2νt))

2ν .

36

Electronic copy available at: https://ssrn.com/abstract=4666508



(a) Without a climate tipping point
Method of calculation Rule Numerical Error

($/tCO2) ($/tCO2)
TFP damages 11.72 12.31 -4.86%
TFP damages and temperature-related disasters 35.32 36.21 -2.45%

(b) With a climate tipping point
Method of calculation Rule Numerical Error

($/tCO2) ($/tCO2)
TFP damages 12.77 13.81 -7.53%
TFP damages and temperature-related disasters 38.95 40.46 -3.73%

Table 4: Calculation of the Optimal SCC (US $/tCO2) with Shocks to the Damage Ratio and Market-Based Cali-
bration. The table summarises the SCC in four different settings with the calibration summarised in Table 1 and compares
the performance of the rule to the numerically optimised value of the SCC.

Proof: Along similar lines to the proof in van den Bremer and van der Ploeg (2021).

We see from equation (43) that if shocks to the damage ratio are normally distributed (θ = 0), the optimal SCC

is unaffected by damage ratio uncertainty because then ∆=µ is a constant. However, equation 43 indicates that,

if shocks to the damage ratio have a right-skewed distribution (θ > 0), damage ratio uncertainty pushes up the

optimal SCC. The effect of damage uncertainty on the SCC is larger if skew (θ) and normalised volatility (σµ/µ)

are high and mean reversion (ν) and the risk- and growth-adjusted interest rate are low.

Since shocks to the transient climate response to cumulative emissions are normally distributed, they do not

affect this rule for the optimal SCC.

C.1 Calibration of shocks to the damage ratio

For the stochastic shocks to the damage ratio (see section C), we follow van den Bremer and van der Ploeg (2021)

and set the steady-state value of these shocks to µ = 0.28. This value ensures that the long-run damage ratio

equals our calibrated value of D1T = µ3.7 = 0.9% reported in Table 1. The annual volatility, skew parameter and

mean reversion coefficient for the distribution of these shocks are set to σµ = 2.3%, θ = 2.7, and ν= 0.05 per year,

respectively. The mean reversion coefficient implies that damage shocks persist on average for 20 years.

C.2 Accuracy of the rule with stochastic shocks to the damage ratio

The numerical analysis in Table 4 indicates that the rule for the optimal SCC in Result 3 generally produces

fairly accurate SCCs. However, with recurring climate-related disasters, the accuracy of the simple rule is a bit

higher because they dominate the TFP damage and its uncertainty. It is not surprising that the additional state

variable µ reduces the accuracy of the simple rule somewhat.
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(a) Benchmark calibration with market-based discount rate of r⋆ = 5.3%/year
Method of calculation Rule Numerical Error

($/tCO2) ($/tCO2)
TFP damages 9.60 9.57 0.31%
TFP damages and recurring climate disasters 33.12 32.62 1.53%
TFP damages, climate disasters, and climate tipping 36.67 37.03 −0.97%

(b) With lower discount rate of r⋆ = 3%/year
Method of calculation Rule Numerical Error

($/tCO2) ($/tCO2)
TFP damages 17.06 16.67 2.29%
TFP damages and recurring climate disasters 75.78 76.33 −0.73%
TFP damages, climate disasters, and climate tipping 90.67 91.46 −0.86%

(c) With even lower discount rate of r⋆ = 2%/year
Method of calculation Rule Numerical Error

($/tCO2) ($/tCO2)
TFP damages 25.47 24.35 4.40%
TFP damages and recurring climate disasters 139.19 142.72 −2.54%
TFP damages, climate disasters, and climate tipping 181.87 179.64 1.24%

Table 5: Road-Testing the Rule for the Optimal SCC (US $/tCO2) with Technical Progress in Fossil Fuel Produc-
tion. The rule is tested outside the realm for which it was derived, namely when there is steady technical progress in fossil
fuel extraction instead of a constant cost of fossil fuel.

.

D Numerical results for two extensions in Section 7

Here we present Tables 5 and 6, which give the numerical results for two extensions of our core integrated

assessment models by allowing for (1) the cost of green energy to fall due to learning by doing; and (2) a green

and a brown economic sector (see Section 7).

E Numerical solution approach

In order to solve the model numerically, we first decompose the value function into two parts and reduce the

number of state variables by one. This leads to a simplified HJB equation, which can then be solved numerically.

E.1 Auxiliary calculations

Aggregate consumption is given by

C ≡ A[1−D(E,χ,µ)]KαF1−α− I −bF.
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(a) Benchmark calibration with market-based discount rate of r⋆ = 5.3%/year
Method of calculation Rule Numerical Error

($/tCO2) ($/tCO2)
TFP damages 9.60 9.58 0.21%
TFP damages and recurring climate disasters 33.12 32.93 0.57%
TFP damages, climate disasters, and climate tipping 36.67 37.28 −1.63%

(b) With lower discount rate of r⋆ = 3%/year
Method of calculation Rule Numerical Error

($/tCO2) ($/tCO2)
TFP damages 17.06 16.90 0.94%
TFP damages and recurring climate disasters 75.78 75.11 0.88%
TFP damages, climate disasters, and climate tipping 90.67 88.37 2.60%

(c) With even lower discount rate of r⋆ = 2%/year
Method of calculation Rule Numerical Error

($/tCO2) ($/tCO2)
TFP damages 25.47 25.00 1.85%
TFP damages and recurring climate disasters 139.19 133.34 4.20%
TFP damages, climate disasters, and climate tipping 181.87 168.75 7.77%

Table 6: Road-testing the Optimal SCC (US $/tCO2) in a Two-Sector Model of the Economy. The rule is tested
outside the realm for which it was derived, namely when there is a carbon-intensive and a green sector instead of one sector
of the economy.

The HJB equation for the general case with each of the three global warming externalities and damage uncer-

tainty is

0=max
F,I

[ 1
1−η

C1−η−ρ[(1−γ)J]
1−η
1−γ

[(1−γ)J]
1−η
1−γ−1

+ JK
(−δK + I − 1

2ϕ(I/K)2K
)

+ JEϖF + 1
2 JKK K2σ2 + Jµν(µ−µ)+ 1

2 Jµµσ2
µ

+ ∑
i=e,c

λi(T0 +χE)
(
E[J(K(1−ℓi),E,χ,µ)]− J

)+H(T0 +χE)
(
J(K ,E,χ,µ)− J

)
1{χ=χ0}

]
.

Define f = F/K , i = I/K , and c = C/K . Conjecture a value function of the form

J(K ,E,µ,χ)= 1
1−γK1−γV (E,µ,χ).

The Epstein–Zin aggregator is then given by

1
1−η

C1−η−ρ[(1−γ)J]
1−η
1−γ

[(1−γ)J]
1−η
1−γ−1

= ρθc1−ηV 1−1/θu(K)−ρθu(K)V ,
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where u(K)= 1
1−γK1−γ and θ = 1−γ

1−η . Substituting this conjecture and its partial derivatives into the HJB equation

and dividing by u(K) yields the following HJB equation for V =V (E,µ,χ):

0=max
F,I

[
ρθV 1−1/θc1−η−ρθV +V (1−γ)

(−δ+ i− 1
2ϕi2)+VE f K0 − 1

2γ(1−γ)σ2V +Vµν(µ−µ)

+ 1
2 Vµµσ2

µ+V
∑

i=e,c
λi(T0 +χE)E[(1−ℓi)1−γ−1]+H(T0 +χE)

(
V (E,χ,µ)−V

)
1{χ=χ0}

]
. (44)

where c = A(E,χ,µ) f 1−α− i−bf .

E.2 Numerical algorithm

Basic idea We face a time-homogeneous problem with an infinite time horizon. Since the boundary conditions

on V are unknown, we transform the problem into a similar one with a finite time horizon denoted by tmax. In

our implementation, we consider a model with a finite time horizon and choose a conjecture for V (tmax,E,µ),

which mimics the shape of the true yet unknown value function.29 Starting with this terminal condition, we work

backwards through the time grid until the differences between the value function in t+1 and t become negligibly

small and the solution converges to that of an infinite time horizon.

Definition of the grid We use a grid-based solution approach to solve the non-linear PDE. We discretize the

(t,E,µ)-space using an equally-spaced lattice. Its grid points are defined by

{
(tn,E i,µ j) | n = 0, · · · , Nt, i = 0, · · · , NE , j = 0, · · · , Nµ

}
,

where tn = n∆t, E i = i∆E , and µ j = j∆µ for some fixed grid size parameters ∆t, ∆E , and ∆µ that denote the

distances between two grid points. The numerical results are based on a choice of NE = 100, Nµ = 50 and 4 time

steps per year. Our results hardly change if we use a finer grid or more time steps per year. In the sequel, Vn,i, j

denotes the approximated value function at the grid point (tn,E i,µ j) and πn,i, j refers to the corresponding set of

optimal controls. We apply an implicit finite-difference scheme.

Finite-differences approach In this paragraph, we describe the numerical solution approach in more detail.

We adapt the numerical solution approach used by Munk and Sørensen (2010). The numerical procedure works

as follows. At any point in time, we make a conjecture for the optimal strategy π∗
n,i, j. A good guess is the value

at the previous grid point since the abatement strategy varies only slightly over a small time interval, i.e., we set

πn−1,i, j =π∗
n,i, j. Substituting this guess into the HJB equation yields a semi-linear PDE:

0= ρθV 1−1/θc1−η+M1V +M2VE +M3VEE +M4Vµ+M5Vµµ (45)

29We have tested several conjectures, and find that the concrete choice of V (tmax,E,µ) does only affect how long it takes until the algorithm
converges, but does not affect the limit itself. An obvious conjecture is the leading-order approximation for the value function, i.e., V = (1−γ)ψ0.
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with state-dependent coefficients Mi = Mi(t,E,µ), see equation (44). Due to the implicit approach, we approximate

the time derivative by forward finite differences. In the approximation, we use the so-called ’up-wind‘ scheme

that stabilizes the finite-difference approach. Therefore, the relevant finite differences at the grid point (n, i, j)

are given by

D+
EVn,i, j =

Vn,i+1, j −Vn,i, j

∆E
, D−

EVn,i, j =
Vn,i, j −Vn,i−1, j

∆E
,

D+
µVn,i, j =

Vn,i, j+1 −Vn,i, j

∆µ
, D−

µVn,i, j =
Gn,i, j −Gn,i, j−1

∆µ
,

D2
EEVn,i, j =

Vn,i+1, j −2Vn,i, j +Vn,i−1, j

∆2
E

, D2
µµVn,i, j =

Vn,i, j+1 −2Vn,i, j +Vn,i, j−1

∆2
µ

D+
t Vn,i, j =

Vn+1,i, j −Vn,i, j

∆t
.

Substituting these expressions into the PDE above yields the following semi-linear equation for the grid point

(tn,mi,τ j)

Vn+1,i, j
1
∆t

=Vn,i, j

[
−M1 + 1

∆t
+abs

( M2

∆E

)
+abs

( M4

∆µ

)
+2

M3

∆2
E
+2

M5

∆2
µ

]
+µn,i−1, j

[ M−
2

∆E
− M3

∆2
E

]
+Vn,i+1, j

[
− M+

2
∆E

− M3

∆2
E

]
+Vn,i, j−1

[ M−
4

∆µ
− M5

∆2
µ

]
+Vn,i, j+1

[
− M+

4
∆µ

− M5

∆2
µ

]
+δθV 1−1/θ

n,i, j c1−1/ψ
n,i, j

Therefore, for a fixed point in time each grid point is determined by a non-linear equation. This results in a

non-linear system of (Nµ+1)(NE +1) equations that can be solved for the vector

Vn = (Vn,1,1, · · · ,Vn,1,NS ,Vn,2,1, · · · ,Vn,2,NS , · · · ,Vn,NT ,1, · · · ,Vn,NE ,Nµ ).

Using this solution we update our conjecture for the optimal controls at the current point in the time dimension.

We apply the above-mentioned first-order conditions and finite-difference approximations of the corresponding

derivatives. Finally, we calculate the optimal SCC using those partial derivatives.

Post-tip problem To determine the optimal SCC with climate tipping, we solve the HJB equation (9) for the

post-tip problem numerically as described above. We then solve the HJB equation (10) for the pre-tip problem

in a similar fashion. Given the solution V of the post-tip problem on the whole grid, the semi-linear PDE of the
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pre-tip problem read

0= ρθV 1−1/θc1−η+M1V +M2VE +M3VEE +M4Vµ+M5Vµµ+H(T0 +χE)[V −V ]. (46)

This semi-linear PDE can now be solved along the lines of the post-tip problem.

F More general rules for the optimal SCC

In this section we briefly discuss various extension of our estimate of the optimal SCC given in Results 1, 2, and 3.

In particular, we allow for multiple recurring climate-related disasters and climate tipping points, more general

carbon cycle and temperature dynamics, and uncertainty in and convexity of the damage ratio.

F.1 Multiple disasters or tipping points

We will indicate the different climate-related disasters by the subscript i and the different climate tipping points

by the subscript j to allow for to allow for different risks and impacts. Following the notation in Results 2 and 3,

the post-tip SCC P j for tipping element j and the pre-tip SCC in the absence of tipping P(0) are

P(0)
R1 =

D1T +∑
i
λc

1,i

E
[
1−Z1−γ

c,i
]

1−γ
q(0)

B(0)

 χY (0)

r⋆
, P j,R1 =

D1T +∑
i
λc

1,i

E
[
1−Z1−γ

c,i
]

1−γ
q(0)

B
(0)

 χY (0)

r⋆
.

Provided the risks of recurring climate-related disasters and climate tipping points are independent, it is

straightforward to extend our rule for the optimal SCC for multiple disasters and tipping points by setting

PR2 =
∑

j

[
P(0)ψ0

ψ j
+ h j(E)

r⋆
(
P j

ψ j

ψ j
−P(0)ψ0

ψ j

)
+h′

j(E)
Y (0)q(0)

B(0)r⋆
ψ0 −ψ j

(1−γ)ψ j

]
,

and equation (23) becomes r⋆R1 = ρ+(η−1)
(
g(0) − 1

2γσ
2 +∑

i

(
λci(T)
1−γ E[1−Z1−γ

ci ]
)
+ λe

1−γE[1−Z1−γ
e ]

)
. It is thus straight-

forward to extend Result 2 and allow for multiple, different temperature-related risks of climate-related disasters

or climate tipping points.

F.2 More general carbon cycle and temperature dynamics

Following Matthews et al. (2009), Allen et al. (2009), and policy analysis of the IPCC, we have modelled tem-

perature as a function of cumulative emissions. However, most integrated assessment models have used linear

dynamic models of carbon cycle and temperature dynamics to mimick the big climate science models. These linear
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models typically specify the dynamics of the I stocks of carbon by

dSi = (ϱ1iFe−gt −ϱ2iSi)dt, i = 1, . . . , I, (47)

and the stock of atmospheric carbon by SA = ∑I
i=1ϱ3iSi. Here the parameters 0 ≤ ϱ1i ≤ 1, i = 1, . . . , I satisfy∑I

i=1ϱ1i = 1, and regulate the share of emissions that goes to each carbon box. The parameters ϱ2i ≥ 0, i = 1, . . . , I,

indicate the decay rate of carbon in each box. The different carbon stocks may refer to the bottom and lower

parts of the oceans and the bottom and lower parts of the atmosphere or may be the result of a mathematical

fitting exercise to mimick the responses of the detailed climate science models. Note that there is always a part

of atmospheric carbon that stays up in the atmosphere forever for all practical intents and purposes, which is

captured by setting ϱ21 = 0. The parameters 0 ≤ ϱ3i ≤ 1, satisfy
∑I

i=1ϱ3i = 1 and define the stock of atmospheric

carbon. For example, Golosov et al. (2014) uses a 2-box model with I = 2, Nordhaus (2017) uses a 3-box model

with I = 3. A popular model among climate scientists is the 4-box model with I = 4 put forward by Joos et al.

(2013).

Following Golosov et al. (2014), we suppose that the convexity of the function relating the damage ratio

to temperature more or less outweighs the concavity of the logarithmic Arrhenius’ law relating temperature to

the stock of atmospheric carbon. For example, in Nordhaus (2017) the damage ratio is a quadratic function of

temperature. The reduced-form damage ratio is then approximately a linear function of the stock of atmospheric

carbon: D = D0A +D1ASA instead of our formulation with the stock of cumulative emissions, D(D1E) = D0 +
χD1T E in equation (5). We also assume that the intensities of recurring climate disasters and of irreversible

climate tipping points are slightly convex functions of temperature to offset the concave (logarithmic) function

relating temperature to the atmospheric stock, so that these intensities are also roughly linear functions of the

stock of atmospheric carbon. Hence, the marginal intensities of recurring disasters and of tipping points with

respect to the stock of atmospheric carbon are approximately constant and given by λA and hA , respectively.

Armed with these assumptions, it follows that 1/r⋆ in the rule for the optimal SCC in Results 2 and 3 become
ϱ1,1
r⋆ + ϱ1,2

r⋆+ϱ2,2
+ ..+ ϱ1,I

r⋆+ϱ2,I
So, the shorter the lifetime of carbon in a particular box, the less the emissions that enter

this box contribute the SCC. It is easy to extend this result to allow for stochastic shocks to the damage ratio (cf.

Result 2).
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