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The Anatomy of Machine Learning-Based
Portfolio Performance

Abstract

The relevance of asset return predictability is routinely assessed by the economic value
that it produces in asset allocation exercises. Specifically, out-of-sample return fore-
casts are generated based on a set of predictors, increasingly via “black box” machine
learning models. The return forecasts then serve as inputs for constructing a portfolio,
and portfolio performance metrics are computed over the forecast evaluation period.
To shed light on the sources of the economic value generated by return predictability in
fitted machine learning models, we develop a methodology based on Shapley values—
the Shapley-based portfolio performance contribution (SPPC)—to directly estimate the
contributions of individual or groups of predictors to portfolio performance. We illus-
trate the use of the SPPC in an empirical application measuring the economic value of
cross-sectional stock return predictability based on a large number of firm characteris-
tics and machine learning.

JEL classifications: C53, C55, C58, G11, G17

Keywords: Asset return predictability, Machine learning, Out-of-sample forecast, Port-
folio construction, Economic value, Shapley value, XGBoost



1. Introduction

Asset return predictability is a leading topic in empirical asset pricing. Out-of-sample tests

are now routinely employed, as they are viewed as the most rigorous and informative tests of

return predictability, particularly in the era of “big data” and machine learning (e.g., Nagel

2021; Martin and Nagel 2022). In terms of analyzing out-of-sample return predictability,

in addition to assessing the statistical accuracy of return forecasts,1 it is now routine to

analyze the economic value of return predictability via asset allocation exercises. Specifically,

return forecasts based on a set of predictors serve as inputs for constructing a portfolio.

Portfolio performance metrics are then computed over a forecast evaluation period (and

perhaps compared to those for a benchmark portfolio) to measure the economic value of

return predictability from an investment perspective.

Recently, a spate of studies employs a multitude of firm characteristics and machine

learning methods to generate cross-sectional out-of-sample stock return forecasts (e.g., Frey-

berger, Neuhierl, and Weber 2020; Gu, Kelly, and Xiu 2020; Avramov, Cheng, and Metzker

2023; Han et al. 2023). They construct long-short portfolios by sorting stocks according to

their return forecasts for the next month and going long (short) stocks with the highest (low-

est) return forecasts. Similarly to studies of aggregate market return predictability,2 these

studies find that long-short portfolios based on machine learning forecasts provide substan-

tive economic value to investors, thereby furnishing strong evidence of cross-sectional stock

return predictability.

While there is growing evidence of the importance of stock return predictability in terms

of economic value, the existing literature does not provide a general methodology for mea-

1For example, in the context of aggregate equity market return predictability, the popular out-of-sample
R2 statistic (Fama and French 1989; Campbell and Thompson 2008) measures the proportional reduction
in mean squared error for a competing forecast based on the information in a set of predictors vis-à-vis a
näıve benchmark forecast that ignores the information. Han et al. (2023) develop a modified out-of-sample
R2 statistic for analyzing cross-sectional stock return forecasts.

2See Rapach and Zhou (2022) for a review of the literature on aggregate equity market return predictabil-
ity, including its economic value.
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suring how individual predictors in fitted machine learning models contribute to economic

value. In the present paper, we fill this gap in the literature by developing a methodology

based on Shapley (1953) values to directly estimate the contributions of individual or groups

of predictors to portfolio performance. This allows us to decompose portfolio performance in

terms of the underlying predictors—in essence, we “anatomize” economic value as reflected

by portfolio performance. Based on the logic of Shapley values, our methodology provides

a framework for fairly allocating the contributions of predictors in fitted prediction models

with respect to portfolio performance. We call our new measure the Shapley-based portfolio

performance contribution, which we denote for predictor p by SPPCp.

Our portfolio performance decomposition based on SPPCp can be viewed as a machine

learning model interpretation tool. With the growing popularity of machine learning models,

many of which are “black boxes,” numerous model interpretation devices have been devel-

oped, including variable importance metrics and measures of interactions and nonlinearities

(e.g., Dimopoulos, Bourret, and Lek 1995; Friedman 2001; Štrumbelj and Kononenko 2010,

2014; Goldstein et al. 2015; Ribeiro, Singh, and Guestrin 2016; Lundberg and Lee 2017;

Greenwell, Boehmke, and McCarthy 2018; Fisher, Rudin, and Dominici 2019; Apley and

Zhu 2020).3 Existing model interpretation tools are primarily designed to analyze fitted pre-

diction models based on training sample data. While conventional model interpretation tools

are informative for investigating the relevance of predictors in fitted models, in the context

of analyzing the economic value of return predictability, they do not directly measure how

predictors influence portfolio performance per se, which is the ultimate object of interest,

and they do not provide an exact decomposition of portfolio performance in terms of the

predictors. Our new SPPCp does these things, thereby providing a model interpretation tool

for deepening our understanding of the roles of individual or groups of predictors in fitted

machine learning models when it comes to the economic value of return predictability.4

3See Molnar (2022) for an informative textbook treatment of machine learning model interpretation tools.
4Moehle, Boyd, and Ang (2021) propose tools, some of which are based on Shapley values, that are

designed to attribute portfolio performance to “features” such as rebalancing frequency, leverage limits, and
ESG constraints. Our SPPCp is very different, as it measures the contributions of the predictors in fitted
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In presenting the SPPCp, we begin by reviewing the use of Shapley values for interpret-

ing fitted prediction models, as developed by Štrumbelj and Kononenko (2010, 2014) and

Lundberg and Lee (2017). To fix ideas, we focus on a setting where we forecast individual

stock returns based on firm characteristics using a pooled prediction model, as in, among

others, Freyberger, Neuhierl, and Weber (2020), Gu, Kelly, and Xiu (2020), and Avramov,

Cheng, and Metzker (2023). While we focus on this setting, the SPPCp can be computed

for any situation where we use a fitted prediction model (or ensemble of models) to forecast

asset returns, with the return forecasts serving as inputs for constructing a portfolio.

We explain how we extend conventional Shapley values to estimate the contributions of

predictors to (1) an out-of-sample return forecast, (2) a portfolio return, and (3) a port-

folio performance metric, resulting in the SPPCp. We emphasize that the SPPCp is very

flexible: it is model agnostic (i.e., it applies to any prediction model, including all types of

machine learning models), can be used for any strategy for mapping the return forecasts to

portfolio weights, and can be computed for any portfolio performance metric.5 The SPPCp

is estimated via a sampling-based algorithm, and we discuss computational issues in detail.

We illustrate the use of our new SPPCp measure in an extensive empirical application

investigating the economic value of forecasting individual stock returns using a machine

learning model and 207 firm characteristics from Chen and Zimmermann (2022). We generate

monthly out-of-sample firm-level stock return forecasts via the XGBoost algorithm (Chen

and Guestrin 2016), a powerful machine learning device based on decision trees that performs

well in forecasting competitions in a variety of domains. We use the XGBoost forecasts to

sort stocks into quintiles and construct a zero-investment portfolio that goes long (short)

the fifth (first) quintile, with each leg value weighted. The long-short portfolio based on

machine learning models to portfolio performance, thereby providing insight into the sources of the economic
value generated by return predictability. Jensen et al. (2022) and Aleti, Bollerslev, and Siggaard (2023)
recently develop measures for estimating the contributions of predictors to portfolio performance metrics in
different contexts. We explain how our SPPCp significantly differs from these measures in Section 2.2.

5The SPPCp can also be used to measure the contributions of predictors to portfolio performance when
machine learning approaches are used to directly estimate optimal portfolio weights (e.g., Kozak, Nagel, and
Santosh 2020; Jensen et al. 2022; Chen, Pelger, and Zhu forthcoming)
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the XGBoost forecasts performs impressively, generating annualized Sharpe and Calmar

ratios of 1.80 and 1.44, respectively, for the 1973:01 to 2021:12 forecast evaluation period,

both of which are well above the corresponding ratios for the aggregate market portfolio

(0.47 and 0.14, respectively). The XGBoost portfolio also generates economically large and

statistically significant alphas in the context of two leading multifactor models, namely, a

six-factor model comprised of the five Fama and French (2015) factors and a momentum

factor as well as the Hou et al. (2021) augmented q-factor model. In sum, we find that

firm-level stock return forecasts based on a large number of firm characteristics and machine

learning produce substantial economic value.

After placing the individual firm characteristics into 20 groups based on economic con-

cepts, we estimate the contributions of the predictor groups to portfolio performance using

the SPPCp. The Risk, Earnings, Seasonal momentum, and Momentum groups play leading

roles in accounting for the substantive Sharpe and Calmar ratios as well as the sizable al-

phas generated by the XGBoost portfolio. For example, the XGBoost portfolio increases the

Sharpe ratio by 1.33 vis-à-vis the market portfolio for the full 1973:01 to 2021:12 forecast

evaluation period; the four groups together account for 0.86 (65%) of the increase. In con-

trast, the Sales and Ownership groups contribute negatively to portfolio performance across

the different metrics.

The performance of the XGBoost portfolio tends to diminish after 2002, although it still

outperforms the market portfolio, especially during business-cycle recessions. To examine

how the contributions of the predictor groups to portfolio performance change over time,

we use the SPPCp to estimate the group contributions for subsamples and rolling windows

from the full forecast evaluation period. While the Risk and Momentum groups typically

make substantial positive contributions to portfolio performance through 2002, they often

make negative contributions thereafter. Groups making consistently positive and sizable

contributions over the full forecast evaluation period include Earnings, Seasonal momentum,

and Investment. Overall, the SPPCp sheds considerable light on how the predictor groups
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contribute to portfolio performance, thereby improving our understanding of the role of

predictors in generating economic value with respect to cross-sectional return predictability

in a machine learning model.

The rest of the paper is organized as follows. Section 2 provides background on the

conventional use of Shapley values for model interpretation and explains our extensions,

culminating in the SPPCp to estimate the contributions of predictors in machine learning

models to portfolio performance. Section 3 reports results for the empirical application.

Section 4 concludes.

2. Methodology

This section presents our methodology for decomposing portfolio performance in terms of

the underlying predictors that guide asset allocation using the SPPCp. In line with our

application in Section 3, we consider a setting in which we forecast individual stock returns

using firm characteristics via a pooled prediction model. It is straightforward to modify the

presentation in this section to accommodate other settings.

2.1. Shapley Values

As background, we begin with a description of conventional Shapley values, which are gen-

erally viewed as the most informative interpretation tool for fitted prediction models. The

intuition for using Shapley values for model interpretation is to exploit the analogy between

players in a cooperative game earning a payoff and the predictors in a forecasting model,

where the payoff corresponds to the model’s prediction.6 According to the logic of Shapley

values, payoffs are fairly allocated to the players in a game. In the context of prediction, we

are interested in fairly allocating the contributions of the predictors to a model’s prediction.

This is a nontrivial task, especially for models with correlated predictors and interactions

between them. Štrumbelj and Kononenko (2010, 2014) and Lundberg and Lee (2017) show

6Parts of this section draw on Borup et al. (2023, Section 2).
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how Shapley values can be used to allocate the contributions of the predictors to a predic-

tion made by the model. We adapt their ideas to a panel setting where a model generates

predictions for individual stock returns over time based on a set of firm characteristics.7

In terms of notation, we index individual predictors by p, with the index set of predictors

denoted by S = {1, . . . , P}. We index cross-sectional units by i and denote the index set of

cross-section units by C = {1, . . . , N}.8 We denote the P -vector of firm characteristics (i.e.,

predictors) for stock i in period t by xi,t = [ x1,i,t · · · xp,i,t ]′, while ri,t denotes the return

on stock i in period t. The prediction model is given by

ri,t+1 = f(xi,t) + εi,t+1, (1)

where f(xi,t) is the conditional expectation (i.e., prediction) function, and εi,t is a zero-

mean and serially uncorrelated disturbance term. The fitted model is denoted by f̂ . We use

Wj = {tj,start, . . . , tj,end−1} to represent the window of panel data observations used to train

the model. The prediction model can be estimated using an expanding or rolling window

along the time dimension; for the former (latter), the cardinality of Wj increases (remains

constant). We denote the prediction function evaluated at instance xi,t and trained using

window Wj by f̂(xi,t ;Wj).

The Shapley value measures the marginal contribution of the predictor xp,i,t to the pre-

diction f̂(xi,t ;Wj) given S \ {p} (i.e., given the presence of all of the other predictors in the

model). By relying on insights from coalitional game theory, Shapley values fairly allocate

the marginal contributions among the individual predictors. Formally, adapting Štrumbelj

and Kononenko (2010, 2014) to our panel data framework, we can express the Shapley

value for predictor p and instance xi,t for a prediction model trained using the panel data

7In this section, we focus on regression prediction. The methodology can be straightforwardly applied
to classification prediction. We consider both regression and classification in our empirical application in
Section 3.

8For notational simplicity, we assume that the number of cross-sectional observations is the same each
period. In our empirical application in Section 3, the number of cross-sectional units changes over time. It
is straightforward to modify the notation to allow for time variation in the number of cross-sectional units.
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observations in window Wj as

ϕp(xi,t ;Wj) =
∑

Q⊆S\{p}

|Q|!(P − |Q| − 1)!

P !

[
ξQ∪{p}(xi,t ;Wj)− ξQ(xi,t ;Wj)

]
(2)

for p ∈ S, i ∈ C, and t ∈ Wj, where Q is a subset of predictors (i.e., a coalition), Q ⊆ S \{p}

constitutes the set of all possible coalitions of P − 1 predictors in S that exclude predictor

p, |Q| is the cardinality of Q,

ξQ(xi,t ;Wj) = E
[
f̂
∣∣Xk,i,t = xk,i,t ∀ k ∈ Q ;Wj

]
(3)

is the value function, and E is the expectation operator. Equation (3) is the prediction of the

fitted model conditional on the predictors in the coalition Q, with the predictors not in Q

integrated out. Accordingly, the expression in brackets in Equation (2), ξQ∪{p}(xi,t ;Wj) −

ξQ(xi,t ;Wj), is the change in the prediction of the fitted model when we condition on the

predictors in the coalition Q and predictor p relative to when we condition on the predictors

in Q only. Equation (2) takes a weighted average of the change in the value function for

all possible coalitions of P − 1 predictors that exclude p. The change in the value function

receives the weight |Q|!(P − |Q| − 1)!/P !, where the weights sum to one. In sum, to measure

the marginal contribution of p to the prediction corresponding to instance xi,t, Shapley values

rely on coalitions to control for the presence of the other predictors in the model.

Among other attractive properties, the Shapley value in Equation (2) is characterized by

local accuracy (or efficiency):

∑
p∈S

ϕp(xi,t ;Wj) = f̂(xi,t ;Wj)− E
[
f̂ ;Wj

]
(4)

for i ∈ C and t ∈ Wj, where E[f̂ ;Wi] is the baseline prediction corresponding to the

unconditional expectation of f̂ . This is a natural baseline for a prediction model, as it is the

forecast based on the empty coalition set. According to Equation (4), the model prediction
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corresponding to instance xi,t can be exactly decomposed (in terms of the deviation from the

baseline prediction) into the sum of the Shapley values for the individual predictors for that

instance. Other properties of Shapley values include missingness, symmetry, and linearity.9

In general, it is infeasible to exactly compute the Shapley value in Equation (2) for

more than a relatively small number of predictors. The issue is that the prediction function

contained in the value function needs to be evaluated for all possible coalitions of predictors

with and without p. Štrumbelj and Kononenko (2010, 2014) propose an algorithm based on

the sampling-based approach of Castro, Gómez, and Tejada (2009). We develop a refined

version of their algorithm to compute the Shapley value in Equation (2). In Section 2.2, we

extend the algorithm to estimate the contributions of the individual predictors to portfolio

performance.

We begin by expressing Equation (2) in the following equivalent form:

ϕp(xi,t ;Wj) =
1

P !

∑
O∈π(P )

[
ξPrep(O)∪{p}(xi,t ;Wj)− ξPrep(O)(xi,t ;Wj)

]
(5)

for p ∈ S, i ∈ C, and t ∈ Wj, where O is an ordered permutation for the predictor indices in

S, π(P ) is the set of all ordered permutations for S, and Prep(O) is the set of indices that

precede p in O. To implement the algorithm, we make a random draw m with replacement

of an ordered permutation from π(P ), denoted by Om. Using Om, we compute the following:

θ̂p,m(xi,t ;Wj) =
1

|C||Wj |
∑
u∈C

∑
s∈Wj

[
f̂(xk,i,t : k ∈ Prep(Om) ∪ {p}, xl,u,s : l ∈ Postp(Om) ;Wj)−

f̂(xk,i,t : k ∈ Prep(Om), xl,u,s : l ∈ Postp(Om) ∪ {p} ;Wj)
] (6)

for p ∈ S, i ∈ C, and t ∈ Wj, where Postp(O) is the set of indices that follow p in O. To

integrate out the predictors not in the coalition when computing the conditional expectation

in Equation (3), Equation (6) uses “background data” from the training sample (Štrumbelj

and Kononenko 2010, 2014; Lundberg and Lee 2017). In effect, Equation (6) samples from

the empirical marginal distribution of the training sample for the predictors not in the

9See Molnar (2022) for details on the other properties of Shapley values.
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coalition when integrating them out. Because this implicitly assumes that the predictors

in and not in the coalition are independently distributed, Lundberg and Lee (2017) suggest

sampling from the empirical conditional distribution for the predictors not in the coalition.

Nevertheless, to fairly allocate the contributions of the individual predictors, based on Pearl

(2009), Janzing, Minorics, and Blöbaum (2020) point out that it is more appropriate to use

the empirical marginal distribution. We follow the recommendation of Janzing, Minorics,

and Blöbaum (2020) in Equation (6).

The estimate of the Shapley value ϕp(xi,t ;Wj) in Equation (5) is given by

ϕ̂p(xi,t ;Wj) =
1

2M

2M∑
m=1

θ̂p,m(xi,t ;Wj) (7)

for p ∈ S, i ∈ C, and t ∈ Wj, where M is the number of draws. We increase the compu-

tational efficiency of the algorithm in two ways. First, we compute Shapley values for each

predictor p ∈ S for each random draw m (Castro, Gómez, and Tejada 2009). Second, we

employ antithetic sampling as a variance-reduction device by computing θ̂p,m(xi,t ;Wj) in

Equation (6) for the original order of a randomly drawn ordered permutation and when the

order is reversed (Mitchell et al. 2022). Like the actual Shapley value in Equation (2), the

estimate of the Shapley value in Equation (7) is characterized by local accuracy:

∑
p∈S

ϕ̂p(xi,t ;Wj) = f̂(xi,t ;Wj)− ¯̂
f(Wj)︸ ︷︷ ︸
ϕ̂∅(Wj)

(8)

for i ∈ C and t ∈ Wj, where

¯̂
f(Wj) =

1

|C||Wj|
∑
i∈C

∑
t∈Wj

f̂(xi,t ;Wj) (9)

is the average in-sample prediction for the model trained using sample Wj. The average

in-sample prediction corresponds to the baseline forecast based on the empty coalition set,

denoted by ϕ̂∅(Wj) in Equation (8).
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To this point, we have followed the convention of computing Shapley values for in-sample

model predictions corresponding to the training sample observations. For developing the

SPPCp in Section 2.2, it is helpful to define the Shapley value corresponding to an out-

of-sample observation. Suppose that we train a model using window Wj and generate an

out-of-sample return forecast for stock i and period tj,end + 1 based on the fitted model:

r̂i,tj,end+1 = f̂
(
xi,tj,end ;Wj

)
(10)

for i ∈ C. Modifying Equation (5), we define the Shapley value corresponding to the out-of-

sample forecast r̂i,tj,end+1 as

ϕp

(
xi,tj,end ;Wj

)
=

1

P !

∑
O∈π(P )

[
ξPrep(O)∪{p}

(
xi,tj,end ;Wj

)
− ξPrep(O)

(
xi,tj,end ;Wj

)]
(11)

for p ∈ S and i ∈ C. We suitably modify the algorithm to estimate Equation (11). After

making a random draw m, Equation (6) becomes

θ̂p,m
(
xi,tj,end ;Wj

)
= r̂i,tj,end+1,m,p

(
xi,tj,end+1 ;Wj

)
− r̂i,tj,end+1,m,\p

(
xi,tj,end+1 ;Wj

)
(12)

for p ∈ S and i ∈ C, where

r̂i,tj,end+1,m,p

(
xi,tj,end ;Wj

)
=

1

|C||Wj|
∑
u∈C

∑
s∈Wj

f̂
(
xk,i,tj,end : k ∈ Prep(Om) ∪ {p}, xl,u,s : l ∈ Postp(Om) ;Wj

) (13)

and

r̂i,tj,end+1,m,\p
(
xi,tj,end ;Wj

)
=

1

|C||Wj|
∑
u∈C

∑
s∈Wj

f̂
(
xk,i,tj,end : k ∈ Prep(Om), xl,u,s : l ∈ Postp(Om) ∪ {p} ;Wj

)
.

(14)
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The estimate of ϕp

(
xi,tj,end ;Wj

)
in Equation (11) is then given by

ϕ̂p

(
xi,tj,end ;Wj

)
=

1

2M

2M∑
m=1

θ̂p,m
(
xi,tj,end ;Wj

)
(15)

for p ∈ S and i ∈ C.

Observe that we continue to use background data from the training sample in Equa-

tion (12) to integrate out the predictors not in a coalition. In this way, we remain “true

to the model” that generates the out-of-sample forecast. The estimate of the Shapley value

for the out-of-sample prediction in Equation (15) continues to be characterized by local

accuracy:

∑
p∈S

ϕ̂p

(
xi,tj,end ;Wj

)
= f̂

(
xi,tj,end ;Wj

)︸ ︷︷ ︸
r̂i,tj,end+1

− ϕ̂∅(Wj) (16)

for i ∈ C. Equation (16) says that we can exactly decompose the one-step-ahead out-of-

sample return forecast for stock i into the contributions of the individual predictors.

2.2. Decomposing Portfolio Performance

Consider an investor who decides on their allocations across the N stocks for period tj,end+1

based on the set of return forecasts formed using data through period tj,end (r̂i,tj,end+1 =

f̂
(
xi,tj,end ;Wj

)
for i ∈ C). The allocation to i generally depends on the entire set of return

forecasts for tj,end + 1, so we denote the portfolio weight for i by the function

wi,tj,end+1

({
f̂
(
xi,tj,end ;Wj

)}
i∈C

)
(17)

for i ∈ C. The investor could, for example, employ a portfolio optimizer based on the

return forecasts or form a long-short portfolio by going long (short) the stocks with the

highest (lowest) return forecasts. Our methodology is general, so it applies to any strategy

for mapping the return forecasts to the portfolio weights.
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The portfolio return for tj,end + 1 is given by

rPorttj,end+1 =
∑
i∈C

wi,tj,end+1

({
f̂
(
xi,tj,end ;Wj

)}
i∈C

)
ri,tj,end+1. (18)

We can use the logic of Shapley values to decompose the portfolio return in Equation (18).

In terms of the algorithm, we modify Equation (12) as follows:

θ̂p,m

({
xi,tj,end

}
i∈C

;Wj

)
=∑

i∈C

[
wi,tj,end+1

({
r̂i,tj,end+1,m,p

(
xi,tj,end ;Wj

)}
i∈C

)
ri,tj,end+1

]
−

∑
i∈C

[
wi,tj,end+1

({
r̂i,tj,end+1,m,\p

(
xi,tj,end ;Wj

)}
i∈C

)
ri,tj,end+1

] (19)

for p ∈ S. Equation (19) measures the change in the portfolio return for period tj,end + 1

when we condition on the predictors in the coalition including and excluding predictor p.

When integrating out the predictors not in a coalition, we again use background data from

the training sample Wj so that we remain true to the model that generates the set of return

forecasts that determines the portfolio weights. To estimate the Shapley-based contribution

of predictor p to the portfolio return, Equation (15) becomes

ϕ̂p

({
xi,tj,end

}
i∈C

;Wj

)
=

1

2M

2M∑
m=1

θ̂p,m

({
xi,tj,end

}
i∈C

;Wj

)
(20)

for p ∈ S.

An important issue in implementing the Shapley-based decomposition of the portfolio

return is deciding on the return corresponding to the empty coalition set. With the empty

coalition set, we have no predictors to determine the portfolio weights in Equation (17), so we

need to specify the portfolio return for the empty coalition set, which we denote by rBase
tj,end+1,

since the portfolio can be viewed as a “baseline” portfolio. We need rBase
tj,end+1 to compute
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Equation (19) when p is the first element in the ordered permutation Om. Furthermore,

rBase
tj,end+1 appears in the local accuracy condition.

The selection of the baseline portfolio is at the discretion of the researcher. To determine

the baseline portfolio, it is sensible to ask, “If I had an empty set of predictors—and so no

predictor information—how would I form a portfolio?” A relevant baseline will depend on the

context; for example, for a portfolio that broadly invests in equities, the CRSP value-weighted

aggregate market portfolio seems a natural choice. The portfolio return decomposition in

Equation (20) satisfies local accuracy:

∑
p∈S

ϕ̂p

({
xi,tj,end

}
i∈C

;Wj

)
= rPorttj,end+1 − rBase

tj,end+1. (21)

Based on a property of Shapley values, Equation (21) indicates that we can decompose the

portfolio return in period tj,end + 1 (in terms of the deviation from the baseline portfolio

return) into the return contributions made by each of the P predictors.

Finally, we extend our approach to compute the SPPCp. To do so, we need to take

into account the entire series of out-of-sample return forecasts and corresponding portfolio

returns over the forecast evaluation period. In terms of the time dimension, we assume that

the sample of panel data spans T periods and that data through period Tin are used to train

the model that generates the first set of out-of-sample return forecasts for period Tin+1. The

model is then retrained using panel data through Tin + 1 to generate the next set of return

forecasts for Tin + 2. Continuing in this manner through the end of the available sample,

T − Tin = D sets of return forecast are generated, where the final model is trained using

panel data through T − 1 to generate the last set of return forecasts for T . We define the

index set of training windows used to fit the sequence of models as W = {1, . . . , D}, where

tj,end corresponds to Tin, Tin + 1, . . . , T − 1 for j = 1, 2, . . . , D, respectively.

The key insight for computing the SPPCp is to wrap a function corresponding to the

performance metric around the portfolio returns. Denoting a performance metric function
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by M(·), which depends on the sequence of portfolio returns over the forecast evaluation

period, we modify Equation (19) in the algorithm to

θ̂p,m

({
xi,tj,end

}
i∈C

;W,M
)
=

M

{∑
i∈C

[
wi,tj,end+1

({
r̂i,tj,end+1,m,p

(
xi,tj,end ;Wj

)}
i∈C

)
ri,tj,end+1

]}
j ∈W

−

M

{∑
i∈C

[
wi,tj,end+1

({
r̂i,tj,end+1,m,\p

(
xi,tj,end ;Wj

)}
i∈C

)
ri,tj,end+1

]}
j ∈W


(22)

for p ∈ S. The Shapley-based estimate of the contribution of predictor p to the portfolio

performance metric is then given by

ϕ̂p

({
xi,tj,end

}
i∈C

;W,M
)

︸ ︷︷ ︸
SPPCp

=
1

2M

2M∑
m=1

θ̂p,m

({
xi,tj,end

}
i∈C

;W,M
)

(23)

for p ∈ S. Again, the local accuracy property of Shapley values applies, so the contributions

of the predictors to the performance metric sum to the metric for the portfolio in excess of

that for the baseline portfolio:

∑
p∈S

SPPCp = M
({

rPorttj,end+1

}
j ∈W

)
−M

({
rBase
tj,end+1

}
j ∈W

)
. (24)

Our SPPCp in Equation (23) allows a researcher to estimate how an individual predictor

contributes to portfolio performance, while Equation (24) indicates that the sum of the

SPPCp estimates provide an exact decomposition of portfolio performance relative to the

baseline portfolio.

In sum, the Shapley value ascertains the contribution of an individual predictor p to a

prediction by forming a coalition of predictors and measuring the change in value of the

prediction when p is included and excluded in the conditioning set based on the coalition in

the fitted prediction model. The change in the value of the prediction corresponding to p
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is averaged over many coalitions to arrive at the Shapley value, which provides a procedure

for fairly allocating the contribution of p to the fitted model’s prediction. We extend the

logic of the Shapley value to an entity of interest to an investor (e.g., a portfolio return or

performance metric). Thus, we measure the contribution of p to the entity of interest by

forming a coalition of predictors and computing the change in value of the entity when p is

included and excluded in the conditioning set based on the coalition in the fitted prediction

model. We average the change in value corresponding to p over many coalitions, providing a

Shapley-based approach for fairly allocating the contribution of p to portfolio performance.

We emphasize that the SPPCp is very general. It is model agnostic, so it applies to

any fitted prediction model (linear or nonlinear, parametric or nonparametric). It also

accommodates any rule for mapping the return forecasts to portfolio weights as well as any

performance metric.

Two recent papers propose methods for measuring the contributions of predictors to

portfolio performance metrics. In the context of developing a framework for constructing an

“implementable efficient frontier” via machine learning that accounts for transaction costs,

Jensen et al. (2022) propose an “economic feature importance” measure of how a feature

(i.e., predictor) affects realized utility. The measure is based on permutation feature im-

portance (Breiman 2001), an intuitive approach for assessing feature importance in machine

learning models. However, the permutation approach does not possess the attractive proper-

ties of Shapley values, including local accuracy. In contrast, because our SPPCp is based on

Shapley values, it is characterized by local accuracy, so it exactly decomposes any portfolio

performance metric—including realized utility—into the contributions made by the complete

set of features.

Aleti, Bollerslev, and Siggaard (2023) predict the intraday aggregate market return based

on a large set of cross-sectional predictors and the LASSO (Tibshirani 1996), which they use

to implement intraday trading strategies for ETFs. They develop a Shapley-based algorithm

to measure the contributions of the predictors to Sharpe ratios and alphas for linear models
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with no interactions among the predictors. In contrast, our SPPCp is model agnostic, so it

can be applied to any prediction model, including nonlinear machine learning models.

2.3. Computational Issues

A challenge in estimating the SPPCp is computational cost. The computational time for

estimating the SPPCp is dominated by the need to evaluate the fitted prediction function

f̂ many times. When computing the SPPCp, we need to evaluate the change in the out-

of-sample return forecast for firm i when adding predictor p to the coalition of predictors

preceding it in the randomly drawn ordered permutation Om, which in turn requires eval-

uating r̂i,tj,end+1,m,p and r̂i,tj,end+1,m,\p in Equation (13) and Equation (14), respectively. For

r̂i,tj,end+1,m,p (r̂i,tj,end+1,m,\p), we need to integrate out the predictors following p (following and

including p) in Om. To accomplish this, we effectively average over the panel training sample

observations, so we need to evaluate f̂ for each observation in the panel training data twice,

once with and once without p integrated out. We also need to repeat this process for each

predictor p ∈ S. This, however, allows us to eliminate half of the number of evaluations of

f̂ , so we need to evaluate f̂ once for each predictor p ∈ S with the predictors following p

integrated out using each observation in the panel training data.10 To measure the change

in the out-of-sample return forecast when adding predictor p to the coalition of predictors

preceding it in Om for all of the firms, we evaluate r̂i,tj,end+1,m,p and r̂i,tj,end+1,m,\p for i ∈ C.

In effect, we need to evaluate f̂ for each predictor for each observation in the panel training

data for each firm.

To this point, we have focused on computations for a single month, but we need to

perform the computations for each month in the entire out-of-sample period. In total, we

10By way of example, consider three predictors and the ordered permutation Om = {3, 2, 1}, so predictor
3 is added to the coalition of predictors first, then 2, then 1. The effect of adding predictor 3 is measured
by computing the forecast conditional on predictor 3 with predictors 2 and 1 integrated out and comparing
it to the forecast based on the empty coalition set that integrates out all of the predictors. The effect of
adding predictor 2 is measured by computing the forecast conditional on predictors 3 and 2 with predictor 1
integrated out and comparing it to the forecast conditional on predictor 3 with predictors 2 and 1 integrated
out. Clearly, we do not need to recompute the latter, as we have already computed it in the first step when
predictor 3 is added to the empty predictor coalition set.
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need to evaluate f̂ for each predictor and each firm for all of the observations in the panel

training data and all of the months in the out-of-sample period. Furthermore, we need to do

this 2×M times for the sampling-based approach (taking into account antithetic sampling).

In the empirical application in Section 3, we analyze the contributions of 20 groups of

predictors formed on the basis of economic concepts for the 1973:01 to 2021:12 out-of-sample

period (588 months). We have an average of approximately 2,000 firms for each month in

the out-of-sample period as well as an average of about 750,000 firm-month observations

for the sequence of panel training datasets. There are two dimensions along which to limit

computational costs: (1) the number of randomly drawn ordered permutations (M) and (2)

the proportion of training sample observations to use when integrating out predictors. A

decrease in each leads to a proportional reduction in computational time. For our empirical

application, we set M = 50 (for a total of 2×50 = 100 ordered permutations with antithetic

sampling) and use 10% of the training sample observations when integrating out predictors.11

Thus, as a first step, we need to evaluate fitted prediction functions approximately 20×

588× 2,000× 0.10× 750,000× 50× 2 = 176,400,000,000,000 times to compute the required

forecasts in Equations (13) and (14) for the out-of-sample period. In this computationally

expensive first step, we used 306 and 274 core-months of Intel Xeon Platinum 8260 and

Intel Xeon Gold 6148 processors, respectively, with AVX-512 enabled. To substantially

reduce computational time after this step, note that Equations (13) and (14) are the lowest

unit in any decomposition of a portfolio performance metric. We store the forecasts on

disk and cache Equations (13) and (14) in memory when we compute the SPPCp for a

specific performance metric. The benefits of this cannot be overstated. After the extensive

306 + 274 = 580 core-months of computations in the first step, we can compute all of the

predictor contributions for any performance metric nearly instantly because we no longer

11It is standard to set M to a relatively low value and use a subsample of the training sample observations
when computing conventional Shapley values; for example, the popular SHAP package in python uses defaults
of M = 10 and 100 observations from the training sample (corresponding to roughly 0.01% of the training
sample observations on average in our application). We use more rigorous settings to improve estimation
accuracy.

17

https://shap.readthedocs.io/en/latest/
https://www.python.org/


need to evaluate f̂ and integrate out predictors over the training sample observations. Using

the computed forecasts from the first step, we compute the series of portfolio returns inside

the curly brackets in Equation (22). To compute the SPPCp for any performance metric,

we only need to evaluate the metric wrapped around the series of portfolio returns (which is

typically much less expensive than evaluating f̂) about 20×50×2 = 2,000 times, which incurs

no meaningful computational time for the performance metrics considered in the empirical

application in this paper.12

3. Empirical Application

In this section, we use the SPPCp from Section 2 to analyze a leading question in empirical as-

set pricing: Which types of firm characteristics are important for determining cross-sectional

expected stock returns? In line with recent studies, we analyze the relevance of firm char-

acteristics using out-of-sample tests (e.g., Lewellen 2015; Green, Hand, and Zhang 2017;

Freyberger, Neuhierl, and Weber 2020; Gu, Kelly, and Xiu 2020; Avramov, Cheng, and

Metzker 2023; Han et al. 2023). As in these studies, we forecast one-month-ahead cross-

sectional returns using a large number of firm characteristics. The cross-sectional return

forecasts are then used to form zero-investment long-short portfolios.

3.1. Data

We use data for a large set of firm characteristic data from Chen and Zimmermann (2022),

which are available at the Open Source Asset Pricing website. The data are comprised of

207 firm characteristics from the voluminous literature on cross-sectional expected returns.

We use data spanning 1960:01 to 2021:12 (744 months). Following Freyberger, Neuhierl, and

Weber (2020) and Gu, Kelly, and Xiu (2020), we transform each characteristic each month

by cross-sectionally ranking the characteristics and then mapping the ranks into the [−1, 1]

interval. Monthly firm-level stock return data are from CRSP. We consider all firms listed

12We plan to post the code used to compute the SPPCp estimates for the performance metrics reported
in the empirical application in Section 3.
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Table 1. Characteristic Groups

The table provides groups for 207 firm characteristics from Chen and Zimmermann (2022) used in
the empirical application in Section 3. The characteristics are grouped according to 20 economic
categories. The characteristic descriptions are from the Open Source Asset Pricing website; more
information on the data and their sources is provided there.

(1) (2) (3)

Description Description Description

Panel A: Earnings (9)

Excluded expenses Earnings consistency Earnings streak length

Earnings announcement return Earnings surprise streak Analyst earnings per share

Decline in analyst coverage Earnings surprise Earnings-to-price ratio

Panel B: Earnings forecast (10)

Earnings forecast to price Long-vs-short EPS forecasts Earnings forecast revisions

EPS forecast revision Long-term EPS forecast Up forecast

Change in forecast and accrual Predicted analyst forecast error EPS forecast dispersion

Down forecast EPS

Panel C: Financing (10)

Convertible debt indicator Net equity financing Leverage component of BM

Change in current operating liabilities Net external financing Market leverage

Change in financial liabilities Book leverage (annual) Net debt to price

Net debt financing

Panel D: Financing alt (7)

Composite equity issuance Initial public offerings Share issuance (5 year)

Composite debt issuance Share issuance (1 year) Spinoffs

Debt issuance

Panel E: Investment (14)

Cash to assets Growth in book equity Investment to revenue

Net operating assets Change in equity to assets Change in PPE and inv/assets

Real estate holdings Change in long-term investment Growth in advertising expenses

Tangibility Change in net operating assets Advertising expense

Asset growth Growth in long term operating assets

on NYSE, AMEX, and NASDAQ with a market value on CRSP at the end of the previous

month and a non-missing value for common equity in the firm’s annual financial statement.

We compute the excess return for each stock in a given month using the CRSP risk-free

return.13

Table 1 lists the 207 firm characteristics from Chen and Zimmermann (2022) along with

their descriptions from Open Source Asset Pricing. To keep computational costs manageable,

13As in Gu, Kelly, and Xiu (2020), we fill in missing values for a firm characteristic in a given month with
the cross-sectional median for the available characteristic observations for that month.
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Table 1 (continued)

(1) (2) (2)

Description Description Description

Panel F: Inverstment alt (12)

Change in capital inv (ind adj) Inventory growth Deferred revenue

Change in capex (2 years) Change in net noncurrent op assets Change in net financial assets

Change in capex (3 years) Change in net working capital Employment growth

Brand capital investment Change in current operating assets Total accruals

Panel G: Lead lag (9)

Customer momentum Customers momentum Price delay coeff

Earnings surprise of big firms Suppliers momentum Price delay SE adjusted

Industry return of big firms Price delay R square Conglomerate return

Panel H: Liquidity (11)

Pastor-Stambaugh liquidity beta Probability of informed trading Days with zero trades (version 1)

Bid-ask spread Size Days with zero trades (version 2)

Amihud’s illiquidity Share turnover volatility Days with zero trades (version 3)

Price

Panel I: Momentum (11)

Firm age—momentum Momentum (12 month) Momentum in high volume stocks

52 week high Momentum (6 month) Momentum based on FF3 residuals

Industry momentum Junk stock momentum Trend factor

Intermediate momentum Momentum and LT reversal

Panel J: Ownership (11)

Sin stock (selection criteria) Takeover vulnerability Inst own and idio vol

Active shareholders Inst own and forecast dispersion Short interest

Breadth of ownership Inst own and market to book Governance index

Inst own among high short interest Inst own and turnover

Panel K: Profitability (14)

Mohanram G-score Gross profits / total assets Return on assets (qtrly)

Piotroski F-score Inventory growth Net income / book equity

Cash productivity Operating profits / book equity Taxable income to income

Cash-based operating profitability Operating profitability R&D adjusted O score

Change in taxes Operating leverage

Panel L: R&D (8)

Citations to R&D expenses Organizational capital IPO and no R&D spending

Patents to R&D expenses R&D over market cap Unexpected R&D increase

R&D capital-to-assets R&D ability

we consolidate the predictors into 20 groups based on economic concepts.14 We use the 34

categories in Chen and Zimmermann (2022) as a starting point and make various adjustments

14Harvey, Liu, and Zhu (2016), McLean and Pontiff (2016), Freyberger, Neuhierl, and Weber (2020),
and Hou, Xue, and Zhang (2020) also categorize characteristics into five to six groups based on economic
concepts. We specify a larger number of more narrowly defined economic groups, as we use the SPPCp to
estimate the contributions of the groups to various performance metrics.
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Table 1 (continued)

(1) (2) (3)

Description Description Description

Panel M: Reversal (7)

Intangible return using BM Intangible return using Sale2P Medium-run reversal

Intangible return using CFtoP Long-run reversal Short-term reversal

Intangible return using EP

Panel N: Risk (12)

Frazzini-Pedersen beta Coskewness Idiosyncratic risk

CAPM beta Return skewness Idiosyncratic risk (3F model)

Tail risk beta Idiosyncratic skewness (3F model) Idiosyncratic risk (AHT)

Coskewness using daily returns Systematic volatility Maximum return over month

Panel O: Risk alt (12)

Real dirty surplus Industry concentration (equity) IPO and age

Pension funding status Volatility smirk near the money Credit Rating Downgrade

Industry concentration (sales) Put volatility minus call volatility Exchange Switch

Industry concentration (assets) Cash-flow to price variance Firm age based on CRSP

Panel P: Sales (10)

Change in asset turnover Percent operating accruals Sales growth over overhead growth

Abnormal accruals Percent total accruals Revenue growth rank

Accruals Sales growth over inventory growth Order backlog

Change in order backlog

Panel Q: Seasonal momentum (10)

Momentum without the seasonal part Off season reversal years 16 to 20 Return seasonality years 11 to 15

Off season long-term reversal Return seasonality years 2 to 5 Return seasonality years 16 to 20

Off season reversal years 6 to 10 Return seasonality years 6 to 10 Return seasonality last year

Off season reversal years 11 to 15

Panel R: Valuation (12)

Predicted div yield next month Dividend seasonality Change in recommendation

Efficient frontier index Share repurchases Consensus recommendation

Dividend initiation Equity duration Analyst recs and short-interest

Dividend omission Analyst optimism Analyst value

Panel S: Valuation ratio (11)

Book-to-market and accruals Cash flow to market Sales-to-price

Total assets to market Enterprise component of BM Net payout yield

Book to market using most recent ME Enterprise multiple Payout yield

Book to market using December ME Sales-to-price

Panel T: Volume (6)

Past trading volume Option volume to average Volume to market equity

Option to stock volume Share volume Volume trend

to arrive at our 20 groups, with a goal of having groups that are reasonably similar in size.

As shown in Table 1, the number of characteristics in a group ranges from six (Volume) to 14

(Investment and Profitability), so no groups are inordinately larger than others. Defining the
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groups quite narrowly enables us to differentiate between types of characteristics in terms of

a wide variety of economic concepts. Owing to the linearity property of Shapley values, all

of the results for the SPPCp in Section 2.2 hold for groups of individual characteristics.

3.2. Portfolio Construction and Prediction Models

Similarly to a number of recent studies (e.g., Freyberger, Neuhierl, and Weber 2020; Gu,

Kelly, and Xiu 2020; Avramov, Cheng, and Metzker 2023; Han et al. 2023), we construct

a zero-investment long-short portfolio that goes long (short) stocks with highest (lowest)

machine learning return forecasts for the next month. We use 1960:01 to 1972:12 (156

months) as the initial in-sample estimation period and generate firm-level out-of-sample

return forecasts and long-short portfolio returns for 1973:01 to 2021:12 (588 months). To

keep the fitted prediction model timely, we retrain the model each month as additional data

become available using a rolling window to generate the one-month-ahead firm-level return

forecasts.

We compute return forecasts using both classification and regression prediction models.

For the classification model, there are five classes, from the bottom 20% to the top 20%

of stocks in terms of their returns. We describe the classification and regression prediction

models in more detail below, after explaining how we construct the long-short portfolios.

To construct the long-short portfolio for month t+1 based on information through month

t, we proceed as follows. We generate return forecasts for all available stocks for month t+1

using data through month t. Before forming the portfolio, to limit the role of small-cap

stocks, we drop stocks with market capitalization below the NYSE 20th percentile at the

end of month t. For the classification model, we take long (short) positions in those stocks

predicted to be in the top (bottom) class in month t + 1.15 To further limit the role of

small-cap stocks, the long and short legs are value weighted. We scale the weights in the

long and short legs to sum to 1 and −1, respectively. For the regression model, we sort

15For the classification model, note that the number of stocks in the long leg does not necessarily equal
the number in the short leg.
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stocks in terms of their return forecasts and take long (short) positions in those stocks in

the top (bottom) 20% of sorted stocks. We again value weight the long and short legs and

scale them to sum to 1 and −1, respectively.

We generate monthly firm-level out-of-sample return forecasts based on the 207 firm

characteristics listed in Table 1 using the XGBoost algorithm (Chen and Guestrin 2016).

XGBoost is based on decision trees, which allow for nonlinearities in predictive relations

via multiway interactions and higher-order effects of predictors. A decision tree partitions

the predictor space into non-overlapping regions and assigns a prediction (or score) for the

target in each region. The classification and regression tree (CART) algorithm (Breiman et

al. 1984) is typically used to partition the predictor space by applying a sequence of splitting

rules. The split at the top of a tree is the “root node,” subsequent splits are “internal nodes,”

and the final set of subgroups that define the predictive regions at the bottom of the tree

are the “terminal” or “leaf nodes.” Decision trees can be used for both classification and

regression problems. For a classification problem, the prediction is the class with the highest

probability in a given leaf node; for a regression problem, the prediction is the average value

of the target observations in a given leaf node.

XGBoost employs gradient boosting (Breiman 1997; Friedman 2001), which entails con-

structing an ensemble prediction function additively, where each function in the sequence is

a relatively simple model; in the case of a decision tree, each function is a “shallow” tree.

Simple models typically have low variance but relatively high bias. Gradient boosting seeks

to lower the bias and thus improve out-of-sample performance in light of the bias-variance

trade-off by fitting a decision tree to the residuals for the previous tree in the sequence.

To help guard against overfitting and further improve out-of-sample performance, stochastic

gradient boosting (Friedman 2002) refines conventional gradient boosting by using a ran-

domly drawn subsample of the training data when fitting each decision tree in the sequence.

XGBoost is a well known and powerful algorithm that employs stochastic gradient boosting
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to fit prediction models based on decision trees.16 It is a leading performer in forecasting

competitions and compares favorably to other popular machine learning methods, particu-

larly when the data are “tabular,” as in our application (e.g., Elsayed et al. 2021; Grinsztajn,

Oyallon, and Varoquaux 2022).

An important step for improving out-of-sample performance is tuning the hyperparam-

eters for the XGBoost algorithm.17 We use a “walk-forward” procedure that respects the

time-series dimension of the panel data to tune the hyperparameters. When computing the

first set of out-of-sample return forecasts for 1973:01, we reserve the last 36 months (1970:01

to 1972:12) of the 1960:01 to 1972:12 initial in-sample estimation sample as a validation

period for tuning the hyperparameters. We first train prediction models via XGBoost using

data for 1960:01 to 1969:12 and the different combinations of the hyperparameter values. We

plug the characteristic values for 1969:12 into the fitted models to generate return forecasts

for 1970:01 and compute long-short portfolio weights and the associated portfolio return

corresponding to the different combinations of hyperparameter values. Next, we train pre-

diction models via XGBoost using data for 1960:01 to 1970:01 and the different combinations

of the hyperparameter values, plug the characteristic values for 1970:01 into the fitted models

to generate return forecasts for 1970:02, and compute long-short portfolio weights and the

associated portfolio return corresponding to the different combinations of hyperparameter

values. We continue in this manner through the end of the validation period and compute

Sharpe ratios over the validation period for the long-short portfolio returns corresponding to

the different combinations of hyperparameter values. We select the combination of hyper-

parameter values that produces the highest Sharpe ratio over the validation period. Then,

16For the classification (regression) problem, we use log loss (mean squared error) as the objective function
when training the prediction model.

17We tune the following XGBoost hyperparameters: “max depth,” “reg alpha,” “reg lambda,” “subsam-
ple,” “colsample bytree,” “min child weight”; we set “n estimators” to 100. See the documentation on
“XGBoost Parameters” for details on the hyperparameters. Because we tune a large number of hyperparam-
eters and consider a wide grid of values for each, it is extremely computationally expensive to consider all
possible combinations of hyperparameter values. Instead of an exhaustive search, we use Optuna (Akiba et
al. 2019), which employs the Tree-structured Parzen Estimator (TPE) algorithm to conduct a smart search.
This substantially reduces computational costs while still making it likely that the selected combination of
hyperparameter values is nearly optimal.
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using the selected combination of hyperparameter values and the 1960:01 to 1972:12 sam-

ple, we train the prediction model via XGBoost, plug the 1972:12 characteristic values into

the fitted model, and generate the set of return forecasts for the first out-of-sample month

(1973:01).

To generate the next set of out-of-sample return forecasts for 1973:02, we use 1960:02

to 1973:01 as the estimation period (so we use a rolling estimation window). We tune the

hyperparameters using the walk-forward procedure, with the last 36 months of the estimation

period serving as the validation sample. Using the tuned hyperparameters and the 1960:02

to 1973:01 estimation sample, we train the prediction model via XGBoost, plug the 1973:01

characteristic values into the fitted model, and produce the set of return forecasts for 1973:02.

Continuing in this fashion, we generate firm-level return forecasts based on the 207 firm

characteristics and XGBoost for each month of the forecast evaluation period. We generate

return forecasts using both classification and regression prediction models, which we denote

by XGBoost(c) and XGBoost(r), respectively. The firm-level monthly return forecasts serve

as inputs for constructing the long-short portfolios, as described above. The return forecasts

and long-short portfolio weights are based on information available at the time of forecast

formation so that there is no “look-ahead” bias in the long-short portfolio returns.

We focus on XGBoost forecasts in the empirical application, which is designed to illustrate

the use of the SPPCp in analyzing the roles of return predictors in contributing to portfolio

performance. In future research, we plan to analyze more exhaustively how return predic-

tors contribute to portfolio performance for forecasts generated using other popular machine

learning techniques, such as random forests (Breiman 2001) and deep neural networks. Nev-

ertheless, as shown in Section 3.3, the long-short portfolio based on the XGBoost(c) forecasts

exhibits quite impressive performance, so the XGBoost algorithm provides an informative

machine learning device for analyzing the contributions of cross-sectional stock return pre-

dictors to portfolio performance.
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3.3. Decomposing Portfolio Performance

Table 2 reports performance metrics for the long-short portfolios based on the XGBoost(c)

and XGBoost(r) return forecasts for the 1973:01 to 2021:12 forecast evaluation period. For

reference, metrics are also reported for the CRSP value-weighted aggregate market portfolio.

The XGBoost(c) portfolio delivers impressive performance overall. Its annualized mean

return is 22.58%, while its annualized volatility is 12.53%. These statistics compare to

values of 7.44% and 15.86%, respectively, for the market portfolio excess return. The mean

and volatility for the XGBoost(c) portfolio translate into an annualized Sharpe ratio of 1.80,

which is nearly four times larger than that for the market portfolio (0.47). The maximum

drawdown for the XGBoost(c) portfolio is only 15.70%, leading to an annualized Calmar

ratio of 1.44. Again, the maximum drawdown and Calmar ratio compare quite favorably to

those for the market portfolio (54.36% and 0.14, respectively).

To examine if a long-short portfolio generates a significant risk-adjusted return, we esti-

mate alphas for two leading multifactor models. The first is a six-factor model comprised of

the five Fama and French (2015) factors and a momentum factor (FF6).18 The second is the

Hou et al. (2021) augmented q-factor model (Q5), which adds an expected growth factor to

the four factors from the original q-factor model (Hou, Xue, and Zhang 2015).19 The XG-

Boost(c) portfolio generates economically sizable annualized alphas of 19.45% and 16.29%

for the FF6 and Q5 multifactor models, respectively. Both alpha estimates are significant

at the 1% level. This indicates that exposures to popular systematic risk factors from the

literature cannot account for the average return of the XGBoost(c) portfolio. Indeed, the

risk-adjusted average returns (alphas) in the last two columns of Table 2 are reasonably close

to the unadjusted average return in the second column for the XGBoost(c) portfolio.

Although the long-short portfolio based on the XGBoost(r) return forecasts outperforms

the market portfolio, it does not perform as well as the long-short portfolio based on the XG-

18The factor data for the FF6 model are from Kenneth French’s Data Library.
19The factor data for the augmented q-factor model are from Lu Zhang’s website.
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Table 2. Portfolio Performance

The table reports performance metrics for zero-investment long-short portfolios that invest in avail-
able stocks in a given month. The long-short portfolio is constructed by sorting stocks according to
their excess return forecasts for the available stocks in a given month based on the XGBoost model
in the first column. The excess return forecasts are based on the 207 firm characteristics in Table 1.
“XGBoost(c)” (“XGBoost(r)”) is a classification (regression) model. Before forming the portfolio,
stocks with market capitalization below the NYSE 20th percentile are dropped. The portfolio based
on the XGBoost(c) model goes long (short) stocks predicted to be in the top (bottom) quintile of
excess returns; the portfolio based on the XGBoost(r) model goes long (short) the 20% of stocks
with the highest (lowest) excess return forecasts. The long and short legs are value weighted. The
forecast evaluation period is 1973:01 to 2021:12. “MDD” is the maximum drawdown. “Ann. FF6
alpha” is the annualized alpha for a multifactor model that includes the five Fama and French
(2015) factors and a momentum factor. “Ann. Q5 alpha” is the annualized alpha for the Hou et al.
(2021) augmented q-factor model; t-statistics for the alphas are in brackets; ∗, ∗∗, and ∗∗∗ indicate
significance at the 10%, 5%, and 1% levels, respectively. “Market” is the CRSP value-weighted
market portfolio.

(1) (2) (3) (4) (5) (6) (7) (8)

Ann. Ann.
Ann. Ann. Sharpe Calmar Ann. Ann.

Model mean volatility ratio MDD ratio FF6 alpha Q5 alpha

XGBoost(c) 22.58% 12.53% 1.80 15.70% 1.44 19.45% 16.29%

[9.82]∗∗∗ [6.93]∗∗∗

XGBoost(r) 9.33% 13.06% 0.71 36.12% 0.26 5.02% 3.15%

[2.75]∗∗∗ [1.11]

Market 7.44% 15.86% 0.47 54.36% 0.14 − −

Boost(c) return forecasts. The XGBoost(r) portfolio produces an annualized mean return of

9.33%. Together with an annualized volatility of 13.06%, this leads to an annualized Sharpe

ratio of 0.71, which is over 50% higher than that for the market portfolio but well below

half that for the XGBoost(c) portfolio. The XGBoost(r) portfolio’s maximum drawdown

of 36.12% is more than 30% lower (twice as large) than that for the market (XGBoost(c))

portfolio. Accordingly, although the annualized Calmar ratio of 0.26 for the XGBoost(r)

portfolio is nearly twice that of the market portfolio, it is only about a fifth of that for the

XGBoost(c) portfolio. The XGBoost(r) portfolio provides alphas of 5.02% and 3.15% for the

FF6 and Q5 models, respectively; the first is significant at the 1% level, while the second is
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insignificant at conventional levels. The alphas for the XGBoost(r) portfolio are well below

those for the XGBoost(c) portfolio.

Overall, the results in Table 2 show that XGBoost return forecasts based on the 207 firm

characteristics serve as valuable inputs for long-short portfolios. The long-short portfolio

constructed using the XGBoost(c) return forecasts that are based on a classification model

performs especially well in terms of Sharpe and Calmar ratios as well as risk-adjusted returns

in the context of leading multifactor models from the literature. In what follows, we employ

the SPPCp in Equation (23) to estimate the contributions of each of the 20 predictor groups

in Table 1 to the performance metrics for the XGBoost(c) portfolio. Although we focus

on decomposing the performance metrics for the XGBoost(c) portfolio, which performs the

best, we reiterate that the SPPCp can be used to decompose the performance of any port-

folio constructed from return forecasts based on a set of predictors. If a portfolio performs

poorly, our method can identify the predictors that are primarily responsible for the subpar

performance.

It is perhaps not surprising that the XGBoost(c) model works better for constructing

the long-short portfolio than the XGBoost(r) model. XGBoost(c) is a classification model,

and forming the long-short portfolio also entails classification, as the portfolio goes long

(short) the 20% of stocks with the highest (lowest) expected returns. Of course, we need

return forecasts based on a regression model in some situations, such as constructing mean-

variance optimal portfolios. Again, the SPPCp can be used to estimate the contributions of

the return predictors to portfolio performance in this context.

Next, we use the SPPCp in Equation (23) to estimate the contributions of each of the

20 predictor groups for the XGBoost(c) portfolio to the performance metrics in Table 2.

As discussed in Section 2.2, to operationalize our method, we need to select the return

corresponding to the empty coalition set, which serves as a baseline. For the average return,

volatility, Sharpe ratio, maximum drawdown, and Calmar ratio, a natural baseline is the

excess return for the CRSP value-weighted market portfolio. If an investor does not have
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access to any predictors (the empty coalition set), it seems reasonable to simply hold the

market portfolio, so we estimate the contribution of each predictor group to the metrics in

the second through sixth columns for the XGBoost(c) portfolio in terms of the deviation

from the market portfolio. When measuring the contributions of the predictor groups to the

multifactor alphas, an appropriate economic baseline is zero. This is the risk-adjusted return

that we expect when the factors adequately capture the main sources of systematic risk in

the economy, so the predictors do not add economic value.

Table 3 reports the contributions of the 20 predictor groups for the performance met-

rics for the XGBoost(c) portfolio. The top four contributions for each metric in terms of

improving portfolio performance are in bold. According to the local accuracy property in

Equation (24), the baseline contribution and those of the 20 predictor groups sum to the total

in the last row of Table 3 (apart from rounding), where the last row equals the corresponding

value for the XGBoost(c) portfolio in Table 2.

Beginning with the mean return in Table 3, the baseline value for the market portfolio is

7.44%. Since the mean return for the XGBoost(c) portfolio is 22.58%, the 20 predictor groups

together increase the average return by 15.14 percentage points. The top four predictor

groups are Risk, Momentum, Earnings, and Seasonal momentum, with contributions of 4.82,

4.50, 2.50, and 1.58 percentage points, respectively. These four groups collectively contribute

to an increase in the average return of 13.40 percentage points, which is nearly 90% of the

increase provided by the XGBoost(c) portfolio. Other groups making contributions above

0.50 percentage points are Lead lag, Investment, Profitability, and Earnings forecast (1.13,

1.13, 0.97, and 0.89 percentage points, respectively). A handful of groups make sizable

negative contributions to the average return, including Reversal, Ownership, Volume, and

Sales (−1.66, −0.96, −0.70, and −0.50 percentage points, respectively). With respect to

volatility, the XGBoost(c) portfolio lowers it by 3.33 percentage points vis-à-vis the market

portfolio. The largest contributors to the reduction in volatility are Valuation ratio, Volume,
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Table 3. Portfolio Performance Contributions

The table reports the contributions of the 20 predictor groups to the performance metrics in Ta-
ble 2 for the long-short portfolio based on the XGBoost(c) return forecasts. The contributions are
estimated using the SPPCp in Equation (23). Table 1 lists the individual firm characteristics in
each of the 20 predictor groups. The forecast evaluation period is 1973:01 to 2021:12. The numbers
in a column may not add to the value in the “Total” row due to rounding; 0.00 indicates less than
0.005 in absolute value. The top four contributions for each metric in terms of improving portfolio
performance are in bold.

(1) (2) (3) (4) (5) (6) (7) (8)

Ann. Ann.
Ann. Ann. Sharpe Calmar Ann. Ann.

Predictor group mean vol. ratio MDD ratio FF6 alpha Q5 alpha

Baseline 7.44% 15.86% 0.47 54.36% 0.14 0% 0%

Risk 4.82 −0.16 0.35 −3.03 0.24 4.34 4.29

Earnings 2.50 −0.29 0.20 −3.54 0.10 2.72 2.02

Seasonal momentum 1.58 −0.85 0.16 −7.72 0.14 2.38 2.49

Momentum 4.50 2.34 0.15 4.58 0.08 3.25 2.16

Lead lag 1.13 −0.52 0.10 −3.85 0.06 0.95 0.57

Investment 1.13 −0.26 0.10 −6.78 0.11 1.70 0.95

Valuation ratio 0.28 −1.24 0.09 −6.63 0.15 0.38 0.58

Risk alt 0.48 −0.63 0.09 −7.09 0.17 1.27 0.76

Profitability 0.97 −0.35 0.06 −3.38 0.07 0.61 −0.88

Earnings forecast 0.89 0.26 0.05 0.76 0.04 0.85 0.92

Valuation 0.04 −1.06 0.05 −3.73 0.02 0.77 0.48

Financing 0.21 0.02 0.02 −0.12 0.02 0.14 0.29

Financing alt 0.25 −0.09 0.02 −0.69 0.02 0.70 0.29

Volume −0.70 −1.18 0.02 −3.17 0.04 −0.43 0.17

Liquidity 0.18 1.26 0.02 3.47 0.08 −0.19 0.35

Investment alt −0.06 0.06 0.00 −1.78 0.02 0.15 0.08

R&D 0.06 0.07 0.00 −0.87 0.00 0.42 −0.03

Reversal −1.66 −0.38 −0.03 3.11 −0.02 −0.32 1.46

Sales −0.50 0.00 −0.04 1.01 −0.02 −0.18 −0.65

Ownership −0.96 −0.32 −0.06 0.79 −0.03 −0.09 −0.01

Total 22.58% 12.53% 1.80 15.70% 1.44 19.45% 16.29%

Valuation, and Seasonal Momentum (−1.24, −1.18, −1.06, and −0.85 percentage points,

respectively).

In terms of the Sharpe ratio in Table 3, the baseline value for the market portfolio is

0.47. Since the Sharpe ratio for the XGBoost(c) portfolio is 1.80, the 20 predictor groups
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together increase the Sharpe ratio by a sizable 1.33. The top four predictor groups are Risk,

Earnings, Seasonal momentum, and Momentum, with contributions of 0.35, 0.20, 0.16, and

0.15, respectively. These four groups collectively contribute to an increase in the Sharpe ratio

of 0.86 or 65% of the total increase. The remaining predictor groups can be divided into

three categories. First, there are groups making smaller but still noteworthy contributions

in the range of 0.05 to 0.10, led by Lead lag and Investment, both with contributions of 0.10.

Second, a set of groups makes minor contributions of essentially zero to 0.02. Third, three

groups that contributed negatively to the average return—Reversal, Sales, and Ownership—

also make negative contributions to the Sharpe ratio (−0.03, −0.04, and −0.06, respectively).

The XGBoost(c) portfolio reduces the maximum drawdown for the market portfolio from

54.36% all the way to 15.70%, a substantive reduction of 38.66 percentage points. The groups

most responsible for the decrease include Seasonal momentum, Risk alt, Investment, and

Valuation ratio, with contributions of −7.72, −7.09, −6.78, and −6.63 percentage points,

respectively. Other groups lowering the maximum drawdown by more that three percentage

points are Lead lag, Valuation, Earnings, Profitability, Volume, and Risk (−3.85, −3.73,

−3.54, −3.38, −3.17, and −3.03 percentage points, respectively).

The results for the Calmar ratio are broadly similar to those for the Sharpe ratio. The

XGBoost(c) portfolio increases the Calmar ratio from 0.14 for the market portfolio to 1.44, a

substantial increase of 1.30. Risk is the predictor group that makes the largest contribution

(0.24) to the increase in the performance metric. In addition to Risk, groups making contri-

butions of 0.10 or more include Risk alt, Valuation ratio, Seasonal momentum, Investment,

and Earnings (0.17, 0.15, 0.14, 0.11, and 0.10, respectively). Like the Sharpe ratio, Reversal,

Sales, and Ownership make negative contributions (−0.02, −0.02, and −0.03, respectively).

Turning to the alphas for the FF6 and Q5 mutlifactor models in Table 3, the top four

predictor groups in terms of contributions to the Sharpe ratio are also the top four in terms

of contributions to the FF6 and Q5 alphas. For the FF6 model, Risk, Momentum, Earnings,

and Seasonal momentum contribute 4.34, 3.25, 2.72, and 2.38 percentage points, respectively,
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to alpha, which accounts for 12.69 percentage points of the total alpha for the XGBoost(c)

portfolio of 19.45%. Other groups contributing more than 50 basis points include Invest-

ment, Risk alt, Lead lag, Earnings forecast, Valuation, Financing alt, and Profitability (1.70,

1.27, 0.95, 0.85, 0.77, 0.70, and 0.61 percentage points, respectively). Reversal, Sales, and

Ownership continue to make negative contributions (−0.32, −0.18, and −0.09 percentage

points, respectively), along with Volume and Liquidity (−0.43 and −0.19 percentage points,

respectively).

For the Q5 model, Risk, Seasonal momentum, Momentum, and Earnings provide con-

tributions of 4.29, 2.49, 2.16, and 2.02 percentage points, respectively, to alpha. These

contributions comprise 10.96 percentage points of the total alpha of 16.29%. Other note-

worthy contributions in excess of 50 basis points are made by Investment, Earnings forecast,

Risk alt, Valuation ratio, and Lead lag (0.95, 0.92, 0.76, 0.58, and 0.57 percentage points,

respectively). Sales and Ownership again make negative contributions (−0.65 and −0.01

percentage points, respectively), as do Profitability and R&D (−0.88 and −0.03 percentage

points, respectively).

Overall, the SPPCp values reported in Table 3 enable us to identify the predictor groups

that are primarily responsible for the strong performance of the XGBoost(c) portfolio accord-

ing to the metrics reported in Table 2. Four groups—Risk, Earnings, Seasonal momentum,

and Momentum—stand out in Table 3 as leading contributors to the economic value pro-

vided by cross-sectional return predictability. These groups make the largest contributions

to the Sharpe and Calmar ratios as well as the alphas for the FF6 and Q5 multifactor models.

There are also groups that consistently detract from portfolio performance, especially Sales

and Ownership.

It is interesting to note that the leading predictor groups often contain variables that are

used to construct factors via sorting that appear in the FF6 and Q5 models. Nevertheless,

the XGBoost(c) portfolio generates large alphas in the context of both models. This indicates

that XGBoost(c) processes the information in cross-sectional return predictors in a manner
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that differs substantially from the construction of factors in leading multifactor models to

produce substantive economic value.

0.0% 2.5% 5.0% 7.5% 10.0% 12.5% 15.0% 17.5% 20.0%
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Panel A: FF6 multifactor model
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Panel B: Q5 multifactor model

Figure 1. Alpha Long- and Short-Leg Contributions

Each panel depicts a waterfall diagram with each predictor group’s contribution to alpha for the
long-short portfolio based on the XGBoost(c) return forecasts in terms of the long and short legs.
The contributions are estimated using the SPPCp in Equation (23). The dark (light) green segments
are the positive contributions of the long (short) leg; the dark (light) red segments are the negative
contributions of the long (short) leg. Panel A (B) reports results for the FF6 (Q5) multifactor
model. The numbers correspond to the contributions of the long and short legs together reported
in the last two columns of Table 3; parentheses indicate a negative number.
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Researchers are often interested in how the long and short legs separately affect the

performance of long-short portfolios. We can use the SPPCp to address this issue. As an

example, Figure 1 presents waterfall diagrams depicting the contributions of the predictor

groups to the long and short legs of the long-short portfolio based on the XGBoost(c) return

forecasts for the FF6 and Q5 multifactor model alphas. The diagram includes the group

contributions to the alphas reported in the last two columns of Table 3, with negative

numbers in parentheses. Panel A (B) reports results for the FF6 (Q5) model. The dark

(light) green segments are the positive contributions to the risk-adjusted return on the long

(short) leg20 ; the dark (light) red segments are the negative contributions to the risk-adjusted

return on the long (short) leg. The base of the waterfall shows the total contributions of

the long and short legs to the alpha. For both multifactor models, the long and short legs

contribute approximately equally to the long-short portfolio alpha.

There are interesting contrasts in the contributions of predictor groups across the long

and short legs. Consider, for example, Risk, which makes the largest contributions to the

long-short portfolio alpha for both models. In both cases, the contribution of Risk to the

alpha is considerably larger for the short leg. Other groups whose short-leg contributions are

substantially larger than their long-leg contributions for both models include Investment and

Earnings forecast. In contrast, the long-leg contributions are relatively large for Seasonal

momentum. For Momentum and Earnings, two of the leading predictor groups for both

models, the groups’ long- and short-leg contributions are fairly similar.

To this point, we have computed predictor group contributions for long-short portfo-

lio performance metrics over the full 1973:01 to 2021:12 forecast evaluation period. The

SPPCp can be used to estimate predictor contributions for any subsample of interest. To

provide motivation for subsample analysis, Figure 2 shows the cumulative log return for the

XGBoost(c) portfolio for the full 1973:01 to 2021:12 out-of-sample period. For reference,

the cumulative log excess return for the market portfolio is also shown. The XGBoost(c)

20We use the negative of the return on the short leg, as this represents a positive contribution to the
long-short portfolio alpha.
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Figure 2. Cumulative Log Returns

The figure depicts the cumulative log return for the long-short portfolio based on the XGBoost(c)
return forecasts and the cumulative log excess return for the CRSP value-weighted market portfo-
lio. Vertical bars indicate business-cycle recessions as dated by the National Bureau of Economic
Research.

portfolio performs especially well through approximately 2002, after which it “flattens out”

to an extent.21 The XGBoost(c) portfolio performs considerably better than the market

portfolio during business-cycle recessions throughout the entire 1973:01 to 2021:12 forecast

evaluation period. After 2002, the XGboost(c) portfolio continues to perform particularly

well during recessions—especially the Great Recession—but its performance is less impres-

sive during expansions via-à-vis the pre-2003 period. Investor learning about cross-sectional

return predictability from academic studies (McLean and Pontiff 2016) provides at least a

partial potential explanation for the decrease in performance for the XGBoost(c) portfolio

during the second subsample.

Table 4 provides additional information on differences in long-short portfolio performance

over time by reporting the performance metrics from Table 2 for the 1973:01 to 2002:12 and

2003:01 to 2021:12 subsamples. Panel A (B) of Table 4 provides results for the XGBoost(c)

21Green, Hand, and Zhang (2017) make a similar finding for a long-short portfolio constructed from sorted
return forecasts generated using linear Fama and MacBeth (1973) regressions based on 94 firm characteristics.
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Table 4. Portfolio Performance for Subsamples

Panel A reports performance metrics from Table 2 for the long-short portfolio based on the XG-
Boost(c) return forecasts for the 1973:01 to 2002:12 and 2003:01 to 2021:12 subsamples. “MDD” is
the maximum drawdown. “Ann. FF6 alpha” is the annualized alpha for a multifactor model that
includes the five Fama and French (2015) factors and a momentum factor. “Ann. Q5 alpha” is the
annualized alpha for the Hou et al. (2021) augmented q-factor model; t-statistics for the alphas
are in parentheses; ∗, ∗∗, and ∗∗∗ indicate significance at the 10%, 5%, and 1% levels, respectively.
“Market portfolio” in Panel B is the CRSP value-weighted market portfolio.

(1) (2) (3) (4) (5) (6) (7) (8)

Ann. Ann.
Ann. Ann. Sharpe Calmar Ann. Ann.

Subsample mean volatility ratio MDD ratio FF6 alpha Q5 alpha

Panel A: XGBoost(c) portfolio

1973:01–2002:12 29.74% 12.51% 2.38 12.06% 2.47 24.54% 22.25%

[11.51]∗∗∗ [7.66]∗∗∗

2003:01–2021:12 11.29% 11.86% 0.95 15.70% 0.72 9.68% 8.53%

[3.93]∗∗∗ [2.73]∗∗∗

Panel B: Market portfolio

1973:01–2002:12 5.04% 16.56% 0.30 51.43% 0.10 − −
2003:01–2021:12 11.23% 14.63% 0.77 51.51% 0.22 − −

(market) portfolio. According to the different metrics, the performance of the XGBoost(c)

portfolio generally declines from the first to the second subsample, in line with Figure 2.

The annualized average return for the XGBoost(c) portfolio falls from 29.74% in the first

subsample to 11.29% in the second. With limited changes in volatility and the maximum

drawdown over the subsamples, the annualized Sharpe (Calmar) ratio declines from 2.38 to

0.95 (2.47 to 0.72). The average return, Sharpe ratio, and Calmar ratio increase for the

market portfolio from the first subsample to the second, but they remain below those for

the XGBoost(c) portfolio for both subsamples. Stark differences remain in the maximum

drawdown between the XGBoost(c) and market portfolios for the two subsamples, with

values of 12.06% and 15.70% (51.43% and 51.51%) for the former (latter) for the first and

second subsamples, respectively. The annualized alphas for the XGBoost(c) portfolio fall

from 24.54% to 9.68% (22.25% to 8.53%) from the first subsample to the second for the FF6
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(Q5) model; nevertheless, the alphas remain economically sizable and statistically significant

at the 1% level for both models for the second subsample.

Baseline
Risk

Earnings
Momentum

Seasonal momentum
Lead lag

Investment
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Earnings forecast
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Total
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0.06

0.05
0.03
0.03
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Panel A: 1973:01-2002:12 subsample
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Panel B: 2003:01-2021:12 subsample

Figure 3. Sharpe Ratio Contributions for Subsamples

Each panel depicts a waterfall diagram with each predictor group’s contribution to the Sharpe
ratio for the long-short portfolio based on the XGBoost(c) return forecasts. The contributions are
estimated using the SPPCp in Equation (23). Panel A (B) reports results for the 1973:01 to 2002:12
(2003:01 to 2021:21) subsample. Parentheses indicate a negative number.

Overall, Figure 2 and Table 4 indicate that the performance of the XGBoost(c) portfolio

deteriorates to a degree from the 1973:01 to 2002:12 to the 2003:01 to 2021:12 subsample but

that it continues to outperform the market portfolio and deliver sizable alphas. Next, we use
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the SPPCp to estimate the contributions of the predictor groups to the performance metrics

for the two subsamples. Figure 3 provides waterfall diagrams showing the contributions

of the groups to the Sharpe ratio, with the market portfolio continuing to serve as the

benchmark. For the 1973:01 to 2002:12 subsample in Panel A, 18 of the 20 groups increase

the Sharpe ratio for the XGBoost(c) portfolio relative to that for the market portfolio; the

two exceptions are Ownership and Sales. Risk makes the largest contribution of 0.60, which

is twice as large as the Sharpe ratio for the baseline market portfolio (0.30). Other groups

making contributions above 0.20 in the first subsample include Earnings, Momentum, and

Seasonal momentum (0.28, 0.27, and 0.21, respectively).

The contributions of the predictor groups often change markedly for the 2003:01 to

2021:12 subsample in Panel B. The baseline Sharpe ratio for the market portfolio increases

to 0.77, while the Sharpe ratio for the XGBoost(c) portfolio is 0.95, so the contributions sum

to 0.18. Nine (eleven) of the groups contribute positively (negatively) to the Sharpe ratio.

The contribution of Risk falls from 0.60 in Panel A to 0.04 in Panel B. The contribution

of Momentum goes from sizably positive (0.27) to negative (−0.08) as we move move from

Panel A to B. Despite making a positive contribution (0.05) in Panel A, Reversal reverses

to making the largest negative contribution (−0.13) in Panel B.

Figure 4 is an analogous version of Figure 3 for the Calmar ratio. The overall story

is similar, although many more of the predictor groups (17 out of 20) make a positive

contribution in the second subsample in Figure 4. For the first subsample, Risk, Momentum,

Seasonal momentum, and Earnings make contributions that are twice as large or larger than

the Calmar ratio for the baseline market portfolio (0.10). With the exception of Sales, all

of the groups contribute positively to the Calmar ratio in Panel A. The Calmar ratio for

the baseline market portfolio increases to 0.22 in the second subsample; given the Calmar

ratio of 0.72 for the XGBoost(c) portfolio for the second subsample, the total contribution

of the groups is 0.50 (while it is 2.37 for the first subsample). As in Figure 3, Momentum

goes from making a sizably positive contribution (0.38) in Panel A of Figure 4 to a negative
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Figure 4. Calmar Ratio Contributions for Subsamples

Each panel depicts a waterfall diagram with each predictor group’s contribution to the Calmar
ratio for the long-short portfolio based on the XGBoost(c) return forecasts. The contributions are
estimated using the SPPCp in Equation (23). Panel A (B) reports results for the 1973:01 to 2002:12
(2003:01 to 2021:21) subsample. Parentheses indicate a negative number.

contribution (−0.03) in Panel B, and Reversal goes from making a positive contribution

(0.04) in Panel A to the largest negative contribution (−0.05) in Panel B.

Figures 5 and 6 report analogous results to Figure 1 in terms of the contributions to

the multifactor alphas for the two subsamples. With respect to the alpha for the FF6

model in Figure 5, the results for the first subsample in Panel A are similar to those for
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Figure 5. FF6 Alpha Long- and Short-Leg Contributions for Subsamples

Each panel depicts a waterfall diagram with each predictor group’s contribution to alpha for the
long-short portfolio based on the XGBoost(c) return forecasts in terms of the long and short
legs. The contributions are estimated using the SPPCp in Equation (23). Alpha is measured
in the context of the FF6 multifactor model. The dark (light) green segments are the positive
contributions of the long (short) leg; the dark (light) red segments are the negative contributions
of the long (short) leg. Panel A (B) reports results for the 1973:01 to 2002:12 (2003:01 to 2021:21)
subsample. Parentheses indicate a negative number.

the full forecast evaluation period in Panel A of Figure 1. Risk, Momentum, Earnings, and

Seasonal momentum make sizable contributions in the first subsample in Figure 5, with the

contribution of Risk falling predominantly on the short leg, while the contributions of the
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other groups are more evenly distributed across the long and short legs. The alpha falls

from 24.54% to 9.68% from the first to the second subsample. Risk, Momentum, Earnings,

and Seasonal momentum continue to make positive contributions, but their magnitudes are

reduced. As with the Sharpe and Calmar ratios over the subsamples, Reversal evinces a

reversal of its own, making a contribution of 1.93 percentage points in the first subsample

(primarily via the long leg), which subsequently falls to−1.76 percentage points in the second

subsample (again primarily via the long leg).

The subsample results in Figure 6 for the alpha for the Q5 model are broadly similar to

those in Figure 5 for the FF6 model. Reversal exhibits an even stronger reversal in Figure 6

as we move from the first to the second subsample. Its contribution is a substantive 3.85

percentage points in the first subsample but falls to −1.68 percentage points in the second

(both effects are primarily concentrated in the long leg). Liquidity also exhibits a marked

turnaround in its contributions across the subsamples, going from a positive contribution of

1.14 percentage points in the first subsample to a negative contribution of −0.44 percentage

points in the second.

Table 4 and Figures 3 to 6 investigate changes in portfolio performance and the predic-

tor group contributions by dividing the full forecast evaluation period into non-overlapping

subsamples. Another popular strategy for examining how results change over time is the

use of rolling windows of data over the forecast evaluation period. Again, the SPPCp can

be employed in this context. We compute performance metrics for the XGBoost(c) portfolio

using 60-month rolling windows and then estimate the predictor group contributions via

the SPPCp for the rolling windows. Figure 7 displays the sequences of Sharpe and Calmar

ratios as well as FF6 and Q5 alphas computed using the rolling windows. The performance

metrics tend to fall when data beyond 2002 are included in the window. In addition, there is

a tendency for the metrics to increase when the windows incorporate data from recessions.

This is clearly evident for the Sharpe ratio and the alphas around the Great Recession. The
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Figure 6. Q5 Alpha Long- and Short-Leg Contributions for Subsamples

Each panel depicts a waterfall diagram with each predictor group’s contribution to alpha for the
long-short portfolio based on the XGBoost(c) return forecasts in terms of the long and short
legs. The contributions are estimated using the SPPCp in Equation (23). Alpha is measured
in the context of the Q5 multifactor model. The dark (light) green segments are the positive
contributions of the long (short) leg; the dark (light) red segments are the negative contributions
of the long (short) leg. Panel A (B) reports results for the 1973:01 to 2002:12 (2003:01 to 2021:21)
subsample. Parentheses indicate a negative number.

performance metrics also markedly increase for windows that include data near the end of

the sample, corresponding to the advent of the COVID-19 crisis.
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Figure 7. Portfolio Performance for 60-Month Rolling Windows

Each panel depicts the performance metric in the panel heading for the long-short portfolio based
on the XGBoost(c) return forecasts. The metrics are computed using 60-month rolling windows
over the 1973:01 to 2021:12 forecast evaluation period. The horizontal axis corresponds to the end
of the 60-month rolling window. Vertical bars indicate business-cycle recessions as dated by the
National Bureau of Economic Research.

Figures 8 and 9 depict the contributions of the 20 predictor groups to the Sharpe and Cal-

mar ratios, respectively, computed for the 60-month rolling windows. For a given window,

we standardize the contributions by the maximum group contribution for that window.22

The results in Figures 8 and 9 are similar and reveal noteworthy patterns in the group con-

tributions over time. For example, Risk and Momentum frequently make among the largest

contributions for windows ending through the early 2000s, while they subsequently often

22Thus, a line in Figure 8 has a maximum value of one when the group’s contribution is equal to the
maximum contribution for that window; a standardized contribution of −1 means that the group makes a
negative contribution that is equal in magnitude to the maximum contribution for that window.
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Figure 8. Sharpe Ratio Contributions for 60-Month Rolling Windows

The figure depicts the contributions of the 20 predictor groups to the annualized Sharpe ratios
for the long-short portfolio based on the XGBoost(c) return forecasts. The Sharpe ratios are
computed using 60-month rolling windows over the 1973:01 to 2021:12 forecast evaluation period.
The horizontal axis corresponds to the end of the 60-month rolling window. The contributions are
estimated using the SPPCp in Equation (23) and are standardized by the maximum contribution
to the Sharpe ratio in a given rolling window. Vertical bars indicate business-cycle recessions as
dated by the National Bureau of Economic Research.

make sizable negative contributions. Other groups making contributions that substantially

vary between positive and negative values include Profitability, Earnings forecast, and Rever-

sal. Groups making more consistent positive contributions over time include Earnings and

Seasonal momentum. In general, the contributions in Figures 8 and 9 appear more stable for

44



2
1
0
1

(A) Risk (B) Earnings (C) Seasonal momentum (D) Momentum

2
1
0
1

(E) Lead lag (F) Investment (G) Valuation ratio (H) Risk alt

2
1
0
1

(I) Profitability (J) Earnings forecast (K) Valuation (L) Financing

2
1
0
1

(M) Financing alt (N) Volume (O) Liquidity (P) Investment alt

19
80

19
85

19
90

19
95

20
00

20
05

20
10

20
15

20
20

2
1
0
1

(Q) R&D

19
80

19
85

19
90

19
95

20
00

20
05

20
10

20
15

20
20

(R) Reversal

19
80

19
85

19
90

19
95

20
00

20
05

20
10

20
15

20
20

(S) Sales

19
80

19
85

19
90

19
95

20
00

20
05

20
10

20
15

20
20

(T) Ownership

Figure 9. Calmar Ratio Contributions for 60-Month Rolling Windows

The figure depicts the contributions of the 20 predictor groups to the annualized Calmar ratios
for the long-short portfolio based on the XGBoost(c) return forecasts. The Calmar ratios are
computed using 60-month rolling windows over the 1973:01 to 2021:12 forecast evaluation period.
The horizontal axis corresponds to the end of the 60-month rolling window. The contributions are
estimated using the SPPCp in Equation (23) and are standardized by the maximum contribution
to the Calmar ratio in a given rolling window. Vertical bars indicate business-cycle recessions as
dated by the National Bureau of Economic Research.

windows ending through the early 2000s; for windows ending after that, the contributions

fluctuate more.

Figures 10 and 11 show the contributions of the predictor groups to the alphas based on

the FF6 and Q5 multifactor models, respectively, computed based on the 60-month rolling

windows. The two figures tell a similar story with respect to the contributions to the alphas

45



2

1

0

1
(A) Risk (B) Earnings (C) Seasonal momentum (D) Momentum

2

1

0

1
(E) Lead lag (F) Investment (G) Valuation ratio (H) Risk alt

2

1

0

1
(I) Profitability (J) Earnings forecast (K) Valuation (L) Financing

2

1

0

1
(M) Financing alt (N) Volume (O) Liquidity (P) Investment alt

19
80

19
85

19
90

19
95

20
00

20
05

20
10

20
15

20
20

2

1

0

1
(Q) R&D

19
80

19
85

19
90

19
95

20
00

20
05

20
10

20
15

20
20

(R) Reversal

19
80

19
85

19
90

19
95

20
00

20
05

20
10

20
15

20
20

(S) Sales

19
80

19
85

19
90

19
95

20
00

20
05

20
10

20
15

20
20

(T) Ownership

Figure 10. FF6 Alpha Contributions for 60-Month Rolling Windows

The figure depicts the contributions of the 20 predictor groups to the annualized alphas for the
long-short portfolio based on the XGBoost(c) return forecasts. The alphas are estimated in the
context of the FF6 multifactor model and computed using 60-month rolling windows over the
1973:01 to 2021:12 forecast evaluation period. The horizontal axis corresponds to the end of the
60-month rolling window. The contributions are estimated using the SPPCp in Equation (23) and
are standardized by the maximum contribution to the alpha in a given rolling window. Vertical
bars indicate business-cycle recessions as dated by the National Bureau of Economic Research.

over time. For windows ending prior to the early 2000s, Risk nearly always contributes pos-

itively and sizably to the alphas, but it often makes large negative contributions thereafter.

Momentum, valuation ratio, and Reversal also often make substantive negative contributions

after the early 2000s. Earnings, Seasonal momentum, and Investment make sizable positive

contributions on a reasonably consistent basis over time. Overall, similarly to Figures 8
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Figure 11. Q5 Alpha Contributions for 60-Month Rolling Windows

The figure depicts the contributions of the 20 predictor groups to the annualized alphas for the long-
short portfolio based on the XGBoost(c) return forecasts. The alphas are estimated in the context of
the Q5 multifactor model and computed using 60-month rolling windows over the 1973:01 to 2021:12
forecast evaluation period. The horizontal axis corresponds to the end of the 60-month rolling
window. The contributions are estimated using the SPPCp in Equation (23) and are standardized
by the maximum contribution to the alpha in a given rolling window. Vertical bars indicate
business-cycle recessions as dated by the National Bureau of Economic Research.

and 9, the contributions tend to exhibit greater fluctuations in Figures 10 and 11 after the

early 2000s.
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4. Conclusion

Asset return predictability is now commonly assessed in terms of economic value as reflected

by portfolio performance metrics. A researcher generates out-of-sample return forecasts for

one or more assets, increasingly using a large set of predictors and a machine learning model.

The return forecasts then serve as inputs to construct a portfolio over the forecast evaluation

period, and portfolio performance metrics are used to measure the economic value of return

predictability from an investment perspective. While measuring the economic value of return

predictability is important for assessing the relevance of return predictability, it is also vital

to understand the sources of the economic value provided by return predictability.

The information in the underlying predictors in fitted machine learning models is the

ultimate source of return predictability and its associated economic value. However, the

existing literature does not provide a general procedure for decomposing economic value

as measured by a portfolio performance metric into the contributions of the underlying

predictors. The present paper fills this gap in the literature by developing the SPPCp, a new

model interpretation tool founded on Shapley values that directly estimates the contributions

of individual or groups of predictors in fitted prediction models to portfolio performance.

Based on the logic of Shapley value, the SPPCp fairly allocates the predictor contributions

to the portfolio performance metric. The SPPCp values for the set of predictors provide

an exact decomposition of the performance metric in terms of the underlying predictors,

thereby anatomizing machine learning-based portfolio performance. The SPPCp is very

flexible: it can be used for any prediction model, any strategy for mapping return forecasts

to portfolio weights, and any performance metric. In sum, the SPPCp provides a powerful

tool for deepening our understanding of the sources of the economic value produced by return

predictability.

We illustrate the use of the SPPCp in an empirical application investigating firm-level

stock return predictability based on 207 firm characteristics from Chen and Zimmermann
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(2022). We use the XGBoost algorithm, a powerful machine learning device, to generate

monthly out-of-sample return classification forecasts based on the firm characteristics for

1973:01 to 2021:12, where the individual stocks are predicted to be in quintiles in terms of

their returns for the next month. Based on the forecasts, we construct a zero-investment

portfolio that goes long (short) stocks predicted to be in the top (bottom) quintile. To

minimize the role of small-cap stocks when forming the portfolio, we drop stocks with market

capitalization below the NYSE 20th percentile and employ value weighting in the long and

short legs. The long-short portfolio delivers substantial economic value in terms of Sharpe

and Calmar ratios as well as risk-adjusted returns in the context of leading multifactor

models.

We categorize the firm characteristics into 20 groups according to economic concepts and

estimate the SPPCp for the predictor groups and portfolio performance metrics. Groups

making the largest positive contributions to portfolio performance over the full 1973:01 to

2021:12 forecast evaluation period include Risk, Earnings, Seasonal momentum, and Mo-

mentum, while Sales and Ownership make negative contributions. The performance of the

long-short portfolio generally declines after 2002, but it still performs relatively well, espe-

cially during business-cycle recessions. To shed light on the sources of the change in portfolio

performance over time, we estimate the SPPCp for the predictor groups for subsamples and

rolling windows from the full forecast evaluation period. The SPPCp estimates reveal that

the contributions of the Risk and Momentum groups to the performance metrics typically

decrease substantively after 2002, often becoming negative. In contrast, the Earnings, Sea-

sonal momentum, and Investment groups make positive and sizable contributions to portfolio

performance on a relatively consistent basis over time, indicating that these characteristic

groups are more reliable predictors of cross-sectional stock returns in a machine learning

framework when it comes to economic value.

Due to its flexibility, in future research, the SPPCp can be used to analyze predictor

contributions to portfolio performance in a variety of settings. We focus on the XGBoost
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algorithm to forecast individual stock returns in the empirical application in the present

paper; the empirical application can be extended to analyze predictor contributions for al-

ternative machine learning models as well as ensembles of models. The voluminous literature

on aggregate stock market return predictability considers a lengthy list of predictors, and it

would be informative to measure the contributions of predictors in machine learning models

to the economic value generated by aggregate market return predictability. In addition to

equities, our methodology can be used to investigate predictor contributions to economic

value for portfolios formed from any asset class or combinations of asset classes. It would

be illuminating to analyze predictor contributions in machine learning models to portfolio

performance for a range of asset classes and to explore whether common patterns of predictor

importance exist.

Our methodology can also be used to estimate the contributions of predictors to mean-

variance efficient (MVE) portfolios, whose weights relate to the stochastic discount factor.

For example, Kozak, Nagel, and Santosh (2020), Jensen et al. (2022), and Chen, Pelger, and

Zhu (forthcoming) develop machine learning methods for estimating the weights of MVE

portfolios based on large numbers of firm characteristics. The SPPCp can be adapted to this

setting to estimate the contributions of the firm characteristics to the performance of the

MVE portfolio over an out-of-sample period, thereby providing further insight into the key

drivers of the stochastic discount factor.

References

Akiba, T., S. Sano, T. Yanase, T. Ohta, and M. Koyama (2019). Optuna: A Next-Generation

Hyperparameter Optimization Framework. In: Proceedings of the 25th ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining.

Aleti, S., T. Bollerslev, and M. Siggaard (2023). Intraday Market Return Predictability

Culled from the Factor Zoo. Working Paper (available at

https://ssrn.com/abstract=4388560).

50

https://ssrn.com/abstract=4388560


Apley, D. W. and J. Zhu (2020). Visualizing the Effects of Predictor Variables in Black Box

Supervised Learning Models. Journal of the Royal Statistical Society. Series B (Statistical

Methodology) 82:4, 1059–1086.

Avramov, D., S. Cheng, and L. Metzker (2023). Machine Learning Versus Economic Re-

strictions: Evidence from Stock Return Predictability. Management Science 69:5, 2587–

2619.

Borup, D., P. Goulet Coulombe, D. E. Rapach, E. C. M. Schütte, and S. Schwenk-Nebbe
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