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1 Introduction

In recent years, attention has increasingly focused on the distributional implications of au-

tomation, especially its role in reallocating workers across occupations and redistributing

income between labor and capital. Nevertheless, there remains a gap in our understand-

ing of how automation affects efficiency. This paper aims to bridge this gap.

Using French matched employer-employee data, I provide empirical evidence that

large firms are more likely to adopt automation capital, and that adoption leads to in-

creased firm productivity and labor market power. These results suggest that the adop-

tion of automation capital may have significant adverse efficiency effects beyond the neg-

ative distributional effects highlighted in the literature.

Understanding the magnitude of these losses is critical for designing optimal policies

to address both equity and efficiency concerns with automation. Much of the recent liter-

ature has focused on optimal tax policies to mitigate the adverse distributional effects of

automation. However, if the efficiency losses are large, then a policy response must also

include efficiency-enhancing policies, and steps must be taken to prevent the consolida-

tion of market power in automation-adopting firms. The absence of such measures can

increase the inequality between capital and labor.

To rationalize the empirical evidence and to quantify the magnitude of the efficiency

implications of automation adoption in imperfectly competitive markets, I construct a

general equilibrium model of oligopsonistic labor markets with endogenous automation

decisions, occupational choice, labor force participation, and entry.

The model has three main features. First, consistent with empirical evidence, I assume

that automation affects a firm’s technology in two ways ensuring that it has both distribu-

tional and efficiency implications. On the one hand, automation substitutes for workers in

routine occupations. This implies that a decline in the relative price of automation capital

reduces the demand for routine occupations, which (endogenously) reallocates workers

to non-routine occupations or out of the labor force. On the other hand, automation al-

lows firms to scale production, since it also endogenously increases a firm’s Hicks-neutral

technology.
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The second key feature of the model is an oligopsonistic occupational labor market,

consistent with recent work by Berger et al. (2022) and Azkarate-Askasua and Zerecero

(2020). Consequently, the model implies an endogenous distribution of markdowns in

equilibrium. The variance of the distribution of markdowns is the source of allocative

inefficiency in this economy.

These two key features, in conjunction, imply that a decline in the price of automation

capital, through the adoption of automation and its endogenous effect on firm productiv-

ity, will widen the variance of the distribution of markdowns, exacerbating misallocation

and reducing allocative efficiency in the economy.

To quantify efficiency losses, I then solve a benevolent social planner’s allocation prob-

lem and compare it to the decentralized economy. The planner’s solution has two key

differences from decentralized allocation that generate efficiency losses.

First, the presence of labor market power in the decentralized economy drives a wedge

between the marginal product of labor and marginal cost, distorting the optimal size dis-

tribution of producers – more productive producers are inefficiently small, while less

productive producers are inefficiently large. The social planner corrects this wedge, elim-

inating the associated allocative inefficiencies and restoring the optimal size distribution.

The second key difference is that automation capital is not misallocated in the plan-

ner’s allocation. Despite the absence of distortions in the market for automation capital

in the decentralized economy, misallocation in the labor market leads to inefficient alloca-

tion of automation capital across firms. Comparing the two allocations, for the given set

of calibrated parameters, I find that relatively more productive establishments adopt in-

efficiently low automation capital and less productive establishments adopt inefficiently

high automation capital. This is due to capital-labor substitutability in the production

function combined with more productive firms hiring inefficiently low amounts of labor

in equilibrium.

To study the quantitative implications of the model, I calibrate it to the French manu-

facturing sector in 2019. The impact of automation on output and welfare is moderated

by the parameters that determine the labor supply elasticities of workers, and those that

influence the endogenous impact of automation on firm productivity. These parameters

2



are calibrated using values from the literature. In future iterations, I will estimate them

directly from microdata using an instrumental variables strategy and exogenous trade

shocks as instruments.

Using the calibrated model, I conduct two counterfactuals experiments to quantify the

efficiency cost of automation. In the first experiment, which I refer to as the extensive mar-

gin effect of automation, I compare the decentralized and the planner’s allocation with

and without automation. In the second experiment, referred to as the intensive margin

effect of automation, I compare the allocations where the number of automation adopters

are held fixed but each adopted facing a lower cost of adoption.

The counterfactual experiments provide four key insights. First, automation increases

both output and average welfare at the extensive margin. I find that a decentralized econ-

omy with automation has 16.2% higher output and 0.9% higher average welfare than a

counterfactual economy without automation. Second, the welfare gains from automa-

tion are not evenly distributed. In particular, I find that the gain in average welfare for

routine workers is relatively smaller than the gain for non-routine workers. Third, I find

that automation exacerbates misallocation, both between and within firms. Importantly,

within-firm misallocation accounts for about 50% of the total misallocation. Finally, the

gains from automation are lost due to the increase in misallocation and market power.

Specifically, in the absence of labor market power, output and average welfare would

have increased by 15.9% and 56.8%, respectively.

Related Literature. This paper contributes to several strands of the literature. A key

contribution of this paper is that it incorporates recent empirical evidence showing that

automation improves firm productivity in a general equilibrium model with oligopson-

istic labor markets. A key implication of this model is that automation can endogenously

increase misallocation in the economy, reducing both output and welfare. This result is

closely related to, but distinct from, recent work on the aggregate effects of automation.

First, recent work by Eden and Gaggl (2018), Vom Lehn (2020), Jaimovich et al. (2021)

and Humlum (2022) have all examined the impact of automation on output and welfare.

However, they do so in the context of competitive product and labor markets. In con-
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trast, in this paper I develop an endogenous automation framework with heterogeneous

labor market power and show that abstracting from imperfect competition can bias our

estimates of output and welfare gains.

Second, recent work by Acemoglu and Restrepo (2023) examines the impact of au-

tomation on aggregate productivity and welfare with labor market imperfections.1 They

provide an alternative mechanism through which automation can reduce allocative inef-

ficiency. In their framework, automation is directed at high-return jobs, which displaces

workers from jobs where their marginal product is highest. This displacement reduces

allocative efficiency and thus welfare. In contrast, this paper shows that by affecting the

Hicks-neutral productivity of firms, automation can shift the variance of market power

in the economy, reducing allocative efficiency and increasing misallocation.

Third, the framework I develop also complements the recent work of Azar et al. (2023).

They provide a model that introduces monopsony power in a task-based framework and

show that wage-setting power has implications for the level of automation adopted by

firms. I extend their work by considering an oligopsonistic labor market, which has two

additional implications. First, both the level of automation and market power are en-

dogenous outcomes of the model. Second, the decision to automate now also depends on

one’s competitors in the market. This is an additional reason for the heterogeneity in the

level of automation adoption seen in the data.

Fourth, recent work has linked the increased use of automation to product market

concentration in an endogenous markup framework (Firooz et al., 2022). This paper com-

plements this literature by considering the impact of automation in a framework with

endogenous occupation-specific markdowns, and emphasizes that future work should

include market power on both sides to examine the aggregate impact of market power.

See the recent work by Deb et al. (2022), Deb et al. (2023), Gutiérrez (2022) and Trottner

(2023), who considers models with both product and labor market power.

Additionally, this paper is also related to the literature that studies both atomistic

monopsony (Card et al., 2018, Lamadon et al., 2022) and oligopsonistic labor markets

1In their framework, they model imperfections as exogenous wedges between marginal productivity
and wages, in the tradition of Hsieh and Klenow (2009) and Baqaee and Farhi (2020).
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(Berger et al., 2022). I follow quite closely the recent work of Azkarate-Askasua and Zere-

cero (2020) and extend their model by allowing for endogenous automation decisions.

One implication of this extension is that this paper proposes that the adoption of automa-

tion can have implications for the level, and then change, of the distribution of market

power in the economy.

This paper also builds on the insights of Beraja and Zorzi (2022) by examining the

optimal policy response to automation. While Beraja and Zorzi (2022) focuses on dynamic

issues such as the reallocation of workers across occupations and the credit constraints of

displaced workers, this paper instead considers the role of oligopsony and efficiency costs

of automation.

Finally, this framework has important implications for the literature on optimal robot

taxation (see Guerreiro et al., 2022, Costinot and Werning, 2018 and Thuemmel, 2023, Ko-

rinek and Stiglitz, 2018). Recent work by Guerreiro et al. (2022) shows that it is optimal to

tax robots while routine workers who cannot transition to new occupations remain active,

with zero optimal taxes thereafter. This model highlights the importance of considering

efficiency-enhancing policies together with optimal tax policies to mitigate both the dis-

tributional and efficiency costs of automation.

Outline. The remainder of the paper is structured as follows: In Section 3, I describe the

data used in the analysis, Section 3 shows the key facts pertaining to automation’s effect

on firm productivity and market power, Section 4 presents the model, Section 5 quantifies

the model, Section 6 shows the results and the last section concludes.

2 Data

I use four sources of French administrative data: the DADS Postes, FARE, EAP and the

French customs data.2 I focus my analysis on the period between 2009 and 2019. Below

is a brief description of these sources.

2DADS stands for Déclaration Annuelle des Données Sociales in French.
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DADS Postes. DADS Postes is a restricted dataset managed by the French National Sta-

tistical Institute (INSEE) and contains worker-level information such as wages, hours

worked, the worker’s firm identifier, and their occupational title. This information is

available for the universe of workers, allowing me to observe the entire workforce of a

given firm during the period of my analysis. No individual worker characteristics, such as

education level, worker identifier, or labor market experience, are available in the DADS

Postes. There is no additional information on the firm beyond the firm identifier and firm-

level aggregates on firm size and average wages. Further details on the classification of

occupations into abstract, routine, and manual groups can be found in the Appendix C.1.

I include all employees between the ages of 18 and 65 in my sample.

FARE. I merge DADS Postes with FARE (using the unique firm identifier "SIREN" in both

datasets) which contains balance sheet data of firms. From it, I extract measures of total

employment, revenue, value-added, capital, expenditure on intermediate inputs, labor

cost and industry affiliation of firms.

French Customs data. Following Aghion et al. (2022) and Acemoglu and Restrepo (2022),

I construct a proxy for automation adoption using French customs data on imported in-

termediate goods from abroad. The imported products used to identify automation in-

vestment fall under the following Harmonized System codes: industrial robots, special

purpose machines, numerically controlled machines, automatic machine tools, automatic

welding machines, weaving and knitting machines, special purpose textile machines, au-

tomatic conveyors, and regulating and control instruments. I construct two different def-

initions of automation. The first definition includes only "industrial robots" (i.e., robot

adoption), and the second definition includes all of the variables listed above. For the

descriptive analysis presented in section 3, I focus on the first definition.

EAP. To estimate firm-level unobservables such as productivity and labor market power,

I need to estimate the firm’s production function. Using a revenue-based production

function instead of output can potentially lead to identification problems with these un-
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observables.3 The EAP (Enquête Annuelle de Production) is based on a product-level statis-

tical survey conducted by INSEE, which exhaustively covers manufacturing firms with

at least 20 employees or sales of more than 5 million euros, as well as a representative

sample of smaller firms. This data allow to observe revenues and quantities separately

across 10-digit industries. I follow the same steps as outlined in De Ridder et al. (2022) to

construct the data.

3 Facts

In this section, I present three key findings. First, consistent with existing evidence, I

show that firms that tend to adopt automation capital are large. Specifically, I analyze

the pre-adoption differences between firms that adopt automation and those that don’t,

focusing on observable characteristics such as sales, capital, and employment.4 Second,

using production function estimation, I document that the adoption of automation leads

to an increase in firm productivity.5 Third, I document a new fact: I find that firms that

adopt automation capital reduce the pass-through of productivity to wages and reduce

their markdowns, suggesting an increase in their labor market power.

Fact 1: Large firms adopt automation capital

To understand which firms adopt automation capital, I compare firms along observable

and unobservable characteristics in the year prior to adoption. In practice, I run the fol-

3 See the work of Bond et al. (2021) and De Ridder et al. (2022) who point out the potential identification
problem in the case of estimating markups with revenue production function.

4 Humlum (2022) shows that robot adopters are larger in terms of sales, payroll, and employment in
Denmark. Acemoglu et al. (2020) shows that 1% of French manufacturing firms adopt robots in 2010-2015,
while account for 20% of total employment. Kariel (2021) shows that automating firms in Italy are larger,
more productive, and pay higher wages.

5 Note that Stiebale et al. (2020) uses production function estimation to show that, for 6 European coun-
tries, firms that adopted robots increased their productivity, markups, and profits between 2004 and 2013.
To complement this finding, I provide new evidence on how these productivity gains are persistent over
time.
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Table 1: Log difference of firm outcomes in period t − 1 before adoption

β̂
Clustered

Standard Errors
R2 Observations

Log Revenue 1.174*** 0.091 0.233 374,203

Log Capital 1.327*** 0.116 0.311 369,348

Log Total Employment 0.931*** 0.079 0.079 374,214

Log Labor Cost 1.056*** 0.085 0.102 374,214

Log Material 1.232*** 0.094 0.388 374,189

Log Average Hourly Wage 0.125*** 0.015 0.309 374,213

Occupational Employment

- Abstract 1.345*** 0.088 0.282 374,214

- Routine 0.857*** 0.083 0.361 374,214

- Manual 0.628*** 0.091 0.405 374,214

Occupational Hourly Wages

- Abstract 0.045*** 0.016 0.107 374,209

- Routine 0.081*** 0.014 0.209 374,214

- Manual 0.108*** 0.019 0.092 374,213

Notes: *** p < 0.01, ** p < 0.05, * p < 0.1. I cluster the standard errors by industry × year. For those firms
that adopt automation capital, I only retain them until the first year they adopt automation capital to avoid
double counting their effects on the variable of interest. Firm productivity and markdowns are estimated
using production function estimation, the details of which are presented in the Appendix B. I use the two-
digit occupational codes to classify occupations into Abstract, Routine and Manual occupations based on
the classfication adopted by Albertini et al. (2017). Details are provided in Appendix C.1.

lowing regression on the data:

log(Yibt−1) = c + β × Ribt + λbt + ϵibt

where Yibt−1 denotes the dependent variable of interest in the year prior to robot adoption

for firm i, industry b, and time period t − 1, Ribt is a dummy variable that takes the value

1 if a firm adopts automation capital in period t, and λbt denotes industry × year fixed

effects. The result of this regression is reported in Table 1.

Consistent with existing evidence, I find that the estimated coefficient is positive and
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Table 2: Effect of automation adoption on change in future productivity

(1) (2) (3) (4) (5)

zibt 0.961*** 0.922*** 0.926*** 0.341*** 0.317***

(0.006) (0.009) (0.008) (0.024) (0.040)

Ribt 0.053*** 0.053*** 0.048*** 0.063** 0.069*

(0.009) (0.011) (0.011) (0.027) (0.036)

Year FE ✓ × × ✓ ×

Industry FE × ✓ × × ×

Industry × Year FE × × ✓ × ✓

Firm FE × × × ✓ ✓

Observations 763,930 763,930 763,930 763,930 763,930

R2 0.932 0.931 0.940 0.965 0.969

Adjusted R2 0.932 0.931 0.939 0.958 0.963

Notes: *** p < 0.01, ** p < 0.05, * p < 0.1. Cluster standard errors are reported in the parenthesis. I cluster
the standard errors by firm. The dependent variable is the estimated Hicks-neutral technology in period
t + 1. The estimates presented in the table are generated after weighing each firm by its total employment.
Note that the difference in the number of observations between Tables 1 and 2 is due to the fact that Table
1 is constructed after merging DADS with FARE, while Table 2 is constructed using FARE only (as no
occupational level employment or wages are required).

significantly different from zero. This suggests that firms that adopt automation capi-

tal tend to have higher sales, capital, total employment, labor costs, intermediate inputs

(materials), average hourly wages, average occupational hourly wages, and occupational

employment in the pre-adoption period compared to non-adopters.

9



Figure 1: Effect of robot adoption on change in firm productivity
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Notes: I regress the change in estimated firm productivity between period t and t − k, for k ∈ {1, 2, . . . , 10},
on firm productivity in period t − k, a dummy indicating automation adoption in t − k, and industry ×
year fixed effects. The estimated coefficients on the automation adoption dummy are plotted in the graphs,
separately for the weighted (red) and unweighted (blue) regressions. The vertical bars indicate the confi-
dence intervals.

Fact 2: Automation increases firm’s future productivity

To examine the impact of automation adoption on firm productivity, I estimate the fol-

lowing regression

zibt+1 = c + α × zibt + β × Ribt +Zi + λbt + ϵibt (1)

where zibt denotes the estimated Hicks-neutral productivity at time t.6 Equation 1 allows

me to examine the effect of automation adoption on future firm productivity. In particular,

if β̂ is positive, it implies that adoption has a positive impact on future productivity. The

results of this exercise is presented in Table 2.

I estimate β using two different sources of variation. In columns (1)-(3), I estimate the

coefficient of interest using between variation. Specifically, I compare the future produc-

6 I use production function estimation to estimate firm-specific Hicks-neutral productivity and Zi de-
notes firm fixed effects. See Appendix B for more details.
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tivity of adopters and non-adopters after controlling for their initial productivity, year,

industry, and industry × year fixed effects. The results show that the future productivity

of adopters is about 5% higher than that of non-adopters. Since this difference could be

driven by unobserved permanent differences across firms, I rely on within-firm variation

to estimate β by controlling for firm fixed effects. In this exercise, β is only identified by

the change in a firm’s adoption status (i.e., Rjt going from 0 to 1). The results are shown in

columns (4) and (5). In the preferred specification, i.e., column 5, where I control for firm

fixed effects along with industry-specific time trends, I find that automation adoption in-

creases firm productivity by about 7% and that the estimated coefficient is significant at

10%.

To get a sense of how persistent the productivity advantage of automation adoption

is, I regress the change in estimated firm productivity between period t and t − k, for

k ∈ {1, 2, . . . , 10}, on firm productivity in period t − k, a dummy indicating automation

adoption in t − k, and industry × year fixed effects. The results of this exercise are shown

in figure 1. I find that firms that adopt automation capital not only improve their produc-

tivity more than non-adopters, but that this productivity gain they experience persists

over time. Moreover, the results are robust to weighting the regression by total employ-

ment. This implies that automation adoption provides firms with a substantial and grow-

ing productivity advantage that persists over the long run. Next, I examine whether this

productivity advantage leads firms to exercise more market power in the labor market.

Fact 3: Automation increases labor market power of firms

To examine the impact of automation on firms’ labor market power, I first assess the

passthrough of productivity gains to wages. This analysis helps distinguish between

competitive and imperfectly competitive market structures, which in turn informs the

quantitative analysis in the next section. Specifically, I run the following regression:

∆wibt = c + γ × ∆zibt + λbt + ϵibt
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Figure 2: Estimated Productivity-Wage Passthrough
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Notes: In all of the regressions, I control for industry × year fixed effects and firm’s productivity in period
t − k. Vertical bars indicate confidence intervals.

where, ∆wibt = wibt − wibt−1 is the change in the average log hourly wage in firm i and

∆zibt = zibt − zibt−1 denotes the estimated change log productivity.7 As before, I control

for industry × year fixed effects. To understand how passthrough heterogeneity differs

by firm size, I run the regression by firm percentile, where firms are assigned a percentile

based on their average productivity. The estimate coefficients, γ̂, are shown in Figure 2.

Next, I examine the effect of automation adoption on the change in passthrough.

Specifically, I run the following regression:

∆wibt = c + γ × ∆zibt + α × Ribt + β × (∆zibt × Ribt) + λbt + ϵibt

The results of this exercise are shown in Table 3. The key variable of interest is the coef-

ficient β, which indicates whether firms reduce the passthrough to wages after adopting

automation capital. A reduction in the passthrough is potentially indicative of an increase

in firms’ market power. As before, I rely on within and between sources of variation to

7 I use production function estimation to estimate firm-specific Hicks-neutral productivity. See the
Appendix B for more details.
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Table 3: Effect of robot adoption on change in passthrough

(1) (2) (4) (5) (6)

∆zibt 0.316*** 0.315*** 0.312*** 0.278*** 0.281***

(0.038) (0.040) (0.038) (0.039) (0.040)

Ribt 0.002 0.003 0.002 0.003 -0.007

(0.003) (0.002) (0.004) (0.011) (0.017)

∆zibt × Ribt -0.118*** -0.122*** -0.090*** -0.078* -0.055

(0.043) (0.041) (0.035) (0.044) (0.038)

Year FE ✓ × × ✓ ×

Industry FE × ✓ × × ×

Industry × Year FE × × ✓ × ✓

Firm FE × × × ✓ ✓

Observations 763,471 763,471 763,471 763,471 763,471

R2 0.302 0.297 0.408 0.435 0.530

Adjusted R2 0.301 0.297 0.406 0.318 0.430

Notes: *** p < 0.01, ** p < 0.05, * p < 0.1. Cluster standard errors are reported in the parenthesis. I
cluster the standard errors by industry × year. The dependent variable is the change in average log wages
between t and t − 1. The estimates presented in the table are generated after weighing each firm by its total
employment.

identify the parameter of interest. The results relying on between variation show that

firms adopting robots reduce passthrough by 9 percentage points (pp). Using within-

firm variation to identify β shows that passthrough is reduced by between 5 and 7 pp,

but the preferred specification, which controls for both firm and industry × year fixed

effects, is no longer significant. In unreported results, I also present direct evidence of the

adoption of automation on future markdowns. I find that automation adoption reduces

future markdowns, and the result is robust to within and between variation in the data.

In sum, the evidence suggests that large firms adopt automation capital, which in turn

improves their productivity and market power. In what follows, I construct a general

equilibrium consistent with the facts documented in the data to quantify the efficiency
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costs of automation adoption.

4 Model

The three key elements of the model are that i) the adoption of automation responds en-

dogenously to declining prices of automation capital, ii) firms that adopt automation also

improve their productivity, and iii) firms compete in oligopsonistic labor markets. The

implications of these features are that declining prices of automation affect the distribu-

tion of firms’ labor market power, inducing misallocation that reduce aggregate output

and welfare relative to the socially efficient outcome. The extension with an endogenous

participation decision and entry is described in section 4.4.

Environment. I consider a static economy with four types of agents: L workers, I en-

trepreneurs, each of whom owns an establishment, a final good producer, and a rep-

resentative firm supplying automation capital. Workers optimally choose one of three

occupations - abstract (a), routine (r), or manual (m) - and their establishment. There are

two types of entrepreneurs: those who adopt automation capital and those who do not.

This extensive margin is assumed to be exogenous in the baseline model. Both adopters

and non-adopters hire workers to produce output. Entrepreneurs consume profits, while

workers consume wages as income. I assume that output markets are perfectly competi-

tive and that occupational labor markets are oligopsonistic. Specifically, I assume that there

are many local labor markets, but only a finite number of firms competing within a mar-

ket. Occupation-specific markdowns are both endogenously determined in equilibrium

and vary across firms. A final good producer aggregates the varieties produced by firms,

and a representative firm supplies automation capital at zero profit. In the following, I

give an overview of the notation and then describe the problems and solutions for agents

in this economy.

Notation. I index establishments by i, workers by n, occupations by o, location by r and

industry by b. The economy consists of a set of establishment I = {1, . . . , I}, workers
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N = {1, . . . , L}, occupations O = {a, r, m}, locations R = {1, . . . , R}, and industries B =

{1, . . . , B}. Each establishment i hires workers from all three occupations but is located in

a specific location r and belongs to an industry b.8 I define a local labor market, indexed by

j, as a occupation × location × industry group cell.9 I denote the set of local labor market

by J = {1, . . . , J} and the number of establishments within a market by Ij. Finally, I

denote the set of local labor markets conditional on occupation o as Jo = {1, . . . , Jo}.10 In

what follows, I use entrepreneurs, firms, plants and establishments interchangeably.11

4.1 Workers

The exposition of the worker’s problem follows closely the work by Azkarate-Askasua

and Zerecero (2020). A worker in the model optimally chooses an occupation and an

establishment to work at. Specifically, a worker n chooses the occupation-establishment

pair (o, i) that maximizes their utility:

unio = cnzniovnj, (2)

where cn denotes consumption of the final good. The term znio represents an idiosyncratic

utility shock specific to worker n’s match with establishment i and occupation o. The term

vj captures an idiosyncratic shock specific to the local labor market j where establishment

i is located.12 Following Eaton and Kortum (2002), I assume both idiosyncratic utility

shocks are drawn from Fréchet distributions:

1. The occupation-establishment specific shock znio has the cumulative distribution

8 In the quantitative exercise, I use commuting zone as location and 4-digit industry classification to
define an industry.

9 Recent work by Nimczik (2020) and Jarosch et al. (2019) defines local labor markets using worker
flows and stochastic block models. As a robustness check in future iterations, I will evaluate the sensitivity
of the key results to data-driven labor market definitions.

10 Given a local labor market is defined as an interaction of occupation × location × industry, variation
in local labor markets within occupation o is either due to change in location or industry or both.

11In the empirical counterpart, I define a producer as a firm as I do not have any balance-sheet informa-
tion at the level of the establishment.

12 In this model, I only consider the worker’s discrete occupational and establishment choice at the
extensive margin, not hours supplied at the intensive margin. Implicitly, I assume workers are equally
productive and supply labor hours inelastically.
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function (cdf) P(z) = e−Tioz−ϵo where Tio > 0 and ϵo > 1. Tio denotes the average

utility derived from the (o, i) pair.

2. The local labor market specific shock vj has a cdf P(v) = e−v−η
, with η > 1. The

mean of vj is assumed to be 1 for all labor markets j.

The parameters ϵo and η pin down the dispersion of the idiosyncratic shocks, as they

are inversely related to the variance of the taste shocks. Intuitively, these parameters gov-

ern worker mobility - higher values imply it is easier for workers to switch jobs within

and across markets. Consequently, labor supply curve of the worker is more elastic for

high values of ϵo and η.13 The parameter ϵo is allowed to differ across occupations which

implies that workers’ ability to switch jobs within a market depends on their occupation.

As will be explained later, this gives rise to differences in markdowns across occupations,

partially due to differing within market mobility costs. Finally, I assume that ϵo < η < ∞,

which implies that jobs within a market are more substitutable than across markets, for

all three occupations.

Optimal labor supply decision. Since wages are the only source of earnings, the indirect

utility to worker n from the (o, i) pair is:

unio = wiozniovnj. (3)

The following proposition states the solution to the worker’s problem:

Proposition 1. The probability that worker n selects occupation-establishment pair (o, i) is:

χio =
Tiowϵo

io
Φj

×
Φ

η
ϵo
j Γη

o

Φ
, (4)

13 Alternatively, following Berger et al. (2022), one could also interpret ϵo and η as mobility costs to
switch jobs - higher values correspond to lower costs for workers to switch jobs.

16



where

Φj = ∑
i′∈j

Ti′owϵo
i′o, Φ = ∑

o
∑

j∈Jo

Φ
η
ϵo
oj Γη

o , Γo = Γ
(

ϵo − 1
ϵo

)
,

and Γ(·) denotes the Gamma function.

Proof. See Appendix A.1.

Intuitively, the worker makes their optimal choice in two steps. First, they choose

the local labor market j based on their draw of the market-specific utility shock vnj. Sec-

ond, given the chosen market j, they optimally select an establishment i within that mar-

ket based on the occupation-establishment specific utility znio. In Proposition 1, the term

Φ
η
ϵo
j Γη

o

Φ represents the probability of choosing market j. The term Tiowϵo
io

Φj
represents the prob-

ability of then choosing establishment i within the chosen market j. Given this result, we

can characterize the upward-sloping, inverse labor supply function faced by each estab-

lishment:

lio(wio) = χio(wio)× L. (5)

4.2 Producers

There are three types of producers in an economy: First, there are I entrepreneurs in the

economy, each of whom produces goods yi that are perfectly substitutable using either

occupational labor or a combination of labor and automation capital.14 Second, a final

good producer who linearly aggregates yi supplied by entrepreneurs to produce the con-

sumption good Y, and finally automation capital producers who use the final good Y to

produce and supply automation capital to entrepreneurs. I will first outline the problem

and optimal solutions for the final good and automation capital producers, respectively,

followed by that of the entrepreneurs.

14 I do not include endogenous entry in this framework. For recent work that includes entry with strate-
gic competition, see Edmond et al. (2023) and De Loecker et al. (2018). Recent work by Bao and Eeckhout
(2023) has made further progress on this front by incorporating strategic innovation into an entry game to
deter competition. In addition, I do not model the endogenous decision of agents to become either work-
ers or entrepreneurs. Recent work by Deb (2023) considers such an endogenous decision with strategic
interaction.
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Final good producer. The producer of the final good produces the consumption good Y

using linear technology and taking the price as given. The final good producer’s profit

maximization problem is as follows:

Π = PYY − p
( I0

∑
i=1

y0
i +

I

∑
i=I0+1

y1
i

)
, Y =

( I0

∑
i=1

y0
i +

I

∑
i=I0+1

y1
i

)
(6)

where y1
i (y

0
i ) denotes the output produced by entrepreneur i who adopts (does not adopt)

automation capital and I − I0 denotes the total number of entrepreneurs who adopt au-

tomation capital. I normalize the price of the consumption good to be equal to 1. Profit

maximization implies that p = PY = 1.

Automation capital producers. I follow Guerreiro et al. (2022) and assume that automa-

tion capital is produced by a representative firm that takes prices as given. It costs ϕK

units of final good Y to produce one unit of automation capital. One unit of automa-

tion capital is sold at price pX. The representative firm chooses X to maximize profits:

ΠX = pXX − ϕXX. It follows that in equilibrium pX = ϕX and profits are zero.

Entrepreneurs. Entrepreneurs have CES preferences defined over their consumption ci:

ui = f (ci). (7)

Their consumption equals their profits from production, which I discuss below. The en-

trepreneurs are endowed with a technology and are heterogeneous ex-ante in terms of

their productivity, z̃i. Entrepreneur i using automation capital has the following nested

18



constant elasticity of substitution (CES) production function:

y1
i = f (z̃i, xi)︸ ︷︷ ︸

= zi

×
[

ϕ
1
γ l̂

γ−1
γ

iR + (1 − ϕ)
1
γ l̂

γ−1
γ

iN

] γ
γ−1

(8)

l̂iR =

[
ϕ

1
γR
R l

γR−1
γR

iR + (1 − ϕR)
1

γR x
γR−1

γR
i

] γR
γR−1

l̂iN =

[
ϕ

1
γN
N l

γN−1
γN

iA + (1 − ϕN)
1

γN l
γN−1

γN
iM

] γN
γN−1

where xi denotes the level of automation capital optimally adopted by entrepreneur i; l̂iR

denotes the CES aggregate of routine occupation labor and automation capital, where γR

is the elasticity of substitution between the two inputs; l̂iN denotes the CES aggregate of

non-routine abstract and manual occupation labor, where γN is the elasticity of substitu-

tion between the two occupations; and γ denotes the elasticity of substitution between

routine and non-routine CES composites.

The specification of the production function implies that the adoption of automation

has implications for the occupational composition of firms and for firm productivity. First,

assuming γR > 1, which implies that routine labor and automation capital are gross sub-

stitutes, a decline in the price of automation capital will induce firms to substitute away

from routine labor toward more automation capital. Second, the adoption of automation

has scale effects because it endogenously affects productivity at the firm level. While firms

differ ex-ante in their productivity draws z̃i, their realized productivity ex-post depends on

the level of automation capital adopted. 15 Thus, the production function allows automa-

tion capital to both substitute for routine occupations and increase firm productivity.

The technology of entrepreneurs that do not adopt automation capital is specified as

follows:

y0
i = z̃i ×

[
ϕ

1
γ l

γ−1
γ

iR + (1 − ϕ)
1
γ l̂

γ−1
γ

iN

] γ
γ−1

. (9)

Market Structure. Before outlining the entrepreneur’s solution, I discuss the product and

labor market competition she faces. Entrepreneurs are price-takers in the product market

15Recent empirical evidence supports this specification. Using Spanish manufacturing data, Koch et al.
(2021) find that robot adoption has a statistically significant positive effect on firms’ Hicks-neutral total
factor productivity.
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and compete oligopsonistically in the labor market, which implies wage-setting power.

Consequently, they face a perfectly elastic demand curve and an upward sloping labor

supply curve (equation 5). This has three implications. First, trivially, it means that an

entrepreneur is potentially non-atomistic in the labor market. Second, entrepreneurs will

act strategically within their own local labor market. Finally, as will be shown below,

occupation-specific markdowns will be endogenous and vary with firm size.

Profit Maximization. Entrepreneurs maximize profits by optimally choosing wages and,

depending on whether they use automation capital, choosing the optimal level of au-

tomation.

π1
i = max

wiA, wiR, wiM, xi
y1

i − ∑
o ∈ O

wiolio(wio, w−io, Φj, Φ) − pxxi, (10)

π0
i = max

wiA, wiR, wiM
y0

i − ∑
o ∈ O

wiolio(wio, w−io, Φj, Φ). (11)

Within each occupational labor market, entrepreneurs compete á la Cournot with each

other, which implies that their optimal choice of wages will also depend on their com-

petitors posted wages within the market, as well as on the market and aggregate indexes,

Φj and Φ, respectively.

Optimal occupational demand: Cournot Competition. Regardless of whether they use

automation capital or not, all entrepreneurs choose the optimal level of labor to maximize

profits. The first-order condition for profit maximization with respect to wages gives the

following occupational labor demand equation:

wio =

(
eio

eio + 1

)
︸ ︷︷ ︸
Markdowns

×
∂yk

i
∂lio︸︷︷︸

Marginal Product of Labor

, o ∈ O, k ∈ {0, 1}. (12)

Equation (12) states that wages wio equal the marginal product of labor multiplied by a

wedge resulting from the labor market power of entrepreneurs, which I call the mark-

down. The markdowns in the model are firm- and occupation-specific, resulting from
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market power in the occupation labor market, where eio is the elasticity of labor supply.

In this model, the markdowns have the following analytical solution:

eio

eio + 1
≡ δio =

ϵo(1 − sio|j) + ηsio|j
ϵo(1 − sio|j) + ηsio|j + 1

, sio|j =
Tiowϵo

io
Φj

. (13)

Equation (13) reveals that markdowns are influenced by: (1) the mobility costs parameters

ϵo and η, which govern workers’ mobility within and across markets respectively, and (2)

the employment share sio|j of the establishment-occupation pair in its local market j.

High mobility costs, represented by low values of ϵo and η, result in a larger mark-

down. When the employment share sio|j is high, the establishment behaves more like a

monopsonist in its local market, pushing the markdown towards its upper limit of η
η+1 .

Conversely, a lower employment share suggests more intra-market competition for labor,

with the markdown nearing the lower bound of ϵo
ϵo+1 . In essence, greater monopsony

power arises from a combination of high employment share and low job mobility, en-

abling entrepreneurs to charge a higher markdown.

Optimal automation choice. Entrepreneurs adopting automation capital choose the op-

timal quantity by equating the marginal cost of an additional unit of automation (i.e., its

price, pX) with its marginal benefit, i.e., the marginal productivity of an additional unit of

automation capital.

px =

[
ϕ

1
γ l̂

γ−1
γ

iR + ϕ̃
1
γ l̂

γ−1
γ

iN

] γ
γ−1 ∂zi

∂xi︸ ︷︷ ︸
Endogenous Productivity Effect

+ zi
∂

∂xi

[
ϕ

1
γ l̂

γ−1
γ

iR + ϕ̃
1
γ l̂

γ−1
γ

iN

] γ
γ−1

︸ ︷︷ ︸
Within-firm Substitution Effect

. (14)

Given the adopter’s production technology, an additional unit of automation has two

effects: the substitution of automation capital for routine labor and an improvement in

the firm’s technical efficiency (which is the first term on the right-hand side of the above

equation).
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4.3 Equilibrium

In this section, I aggregate the individual decisions of entrepreneurs and workers and

provide the definition of the equilibrium. I also outline a computational algorithm for

solving the equilibrium numerically.

Aggregation. Recall that X is the total supply of automation capital in the economy. In

equilibrium, X equals the total demand for automation capital, which is the sum of the

optimal adoption decisions of all entrepreneurs i:

X =
I

∑
i=I0+1

xi (15)

Aggregate output Y is either consumed by workers and entrepreneurs or used to pro-

duce automation capital X. Consumption comes from the profits of entrepreneurs and

the wages paid to workers. The production of automation capital requires the fixed cost

fX per robot plus the constant marginal cost ϕ. Therefore, total output must satisfy the

following aggregate resource constraint:

Y =
I0

∑
i=1

π0
i +

I

∑
i=I0+1

π1
i + ∑

i∈I
∑

o∈O
wiolio + (px × X). (16)

Equilibrium definition. With the aggregation conditions defined, I now formally define

the equilibrium of this economy.

Definition 1. Given establishment-level productivity z̃i, worker-level distributions of idiosyn-

cratic utility shock P(z) and P(v), preference parameters {ϵa, ϵr, ϵm, η}, and technology parame-

ters {ϕ, ϕR, ϕN, γ, γR, γN}, amenities {Tia, Tir, Tim}I
i=1, total number of entrepreneurs adopting

automation I − I0, and cost of producing a unit of automation capital ϕ, an equilibrium of this

economy consists of establishment-level wages {wia, wir, wim}I
i=1, labor supply {lia, lir, lim}I

i=1,

output {yi}I
i=1, automation capital {xi}I

i=Io+1, and aggregate price of automation capital pX, and

output Y such that the following conditions are satisfied:

1. Workers choose their occupation-establishment pair so as to maximize their utility, in accor-
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dance with equations (2)-(6).

2. Entrepreneurs determine labor demand by setting wages, and optimize these to maximize

their profits. This is subject to the labor supply constraint as defined in equation (5).

3. Entrepreneurs that adopt automation make optimal decisions regarding the level of adoption

of automation capital, as outlined in equation (14).

4. The aggregate demand for automation capital is equal to its aggregate supply as outlined in

equation (15).

Computational details and the algorithm used to solve the equilibrium are provided in

Appendix A.2

Model summary. Table 4 summarizes the model variables into three categories. Category

I lists the primitives of the model, and categories II and III specify the endogenous objects

of the model, at the establishment and aggregate levels, respectively.

Benchmark cases. The model nests two important special cases under certain parametric

constraints. The first is efficient allocation, which is achieved when establishment-level

wedges are one. This occurs when ϵo = η = ∞. The second is the atomistic monopsony

bound with constant markdowns. This requires either Ij → ∞ or ϵo → η in the labor

market. In contrast to the full model, market power in these bounds determines how

income is distributed between workers and entrepreneurs without loss of output due to

allocative inefficiency.

4.4 Extensions

Endogenous Labor Force Participation. I endogenize labor force participation follow-

ing Azkarate-Askasua and Zerecero (2020) by incorporating home production into the

framework. Within each occupational labor market, I add a market that contains a single

establishment that pays a home production wage wuo and amenities Tuo. Following steps
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Table 4: Summary of model variables

I. Primitives

η Within-market dispersion parameter γ, γR, γN Elasticity of Substitution

ϵo Across-market dispersion parameter ϕ, ϕR, ϕN Weight parameters

ϕX Cost of producing a unit of automation pX Price of automation capital

znio, νj Idiosyncratic amenities z̃i Firm productivity

I − Io Total # of automation adopters I, L Total number of estab., workers

Tio Occupation-specific amenities Ij Number of estab. in a market

II. Endogenous variables - Establishment

wio Wages lio Employment

p Output prices yio Output quantities

δio Markdowns eio Labor supply elasticity

πi Profits xi Optimal level of automation

III. Endogenous variables - Aggregates

X Aggregate level of automation Y Aggregate output

Π Aggregate Profits PY Price of aggregate output, norm. to 1

outlined in Appendix A.1, we can calculate the total number of workers in occupation o

who are out of the labor force as:

Luo =
Tuowϵo

uoΓη
o

Φ
L, (17)

where

Φ = Φe + Φnp, Φe = ∑
j∈J

Φ
η
ϵo
j Γη

o , Φnp = ∑
u∈O

(Tuowϵo
uo)

η
ϵo Γη

o . (18)

This extends the occupational choice model to include the option of leaving the labor

force. Changes in automation costs can then affect not only occupational reallocation but

also labor force participation.

Entry. To endogenize entry in the model, I proceed as follows. I assume that there are

K potential entrants, where αK are potential adopters of robot technology and (1 − α)K
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are potential non-adopters of robot technology. As a result, in each local labor market

there is an average of (αK)/J potential robot adopters and ((1 − α)K)/J potential non-

adopters. The fixed operating cost incurred by non-robot firms is denoted f , while firms

that choose robot technology face an additional operating cost denoted fR. To determine

the equilibrium set of entrants in each market, a refinement of Nash equilibrium, similar

to the method of De Loecker et al. (2018) is employed. This approach involves selecting

an equilibrium through a specific procedure, which I outline below.

I assume that all firms initially enter the labor market. Once they enter, the model’s

equilibrium is determined based on the computational algorithm described earlier, which

allows for the calculation of the profits of each firm in the economy. Among the firms with

negative profits, those with the lowest profits are eliminated first. This process results

in a revised set of entrants, and the equilibrium is recalculated based on this updated

composition. This algorithm iterates until a point is reached where no firm would make

positive profits by entering the market.

4.5 Planner’s problem

In this section, I first define measures of average and median welfare per worker in the

model economy. I then formulate and solve the social planner’s problem. Later, I com-

pare the efficient allocation with the decentralized equilibrium.

Welfare. The following proposition defines the average and median welfare per worker

in this framework.

Proposition 2. The average and median welfare per worker is defined as follows:

W = E

[
max

j

{
Ej(max

i
wizio)vj

}]
= Φ

1
η Γ

(
η − 1

η

)
, (19)

WMed = Median
[

max
j

{
Ej(max

i
wizio)vj

}]
∝ Φ

1
η . (20)

where Φ = ∑j∈J Φ
η
ϵo
j Γη

o , W denotes the average welfare per worker, WMed denotes median wel-
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fare and Γ(·) denotes the Gamma function.

Proof. See Appendix A.1.

Planner’s problem. Given the definition of average welfare, I now outline the social

planner’s problem, which can be stated as follows:

max
liA, liR, liM, ci, xi

Φ
1
η Γ

(
η − 1

η

)
L︸ ︷︷ ︸

Total welfare of workers

+
I

∑
i=1

f (ci)︸ ︷︷ ︸
Total welfare of entrepreneurs

(21)

subject to Y =
I0

∑
i=1

c0
i +

I

∑
i=I0+1

c1
i + ∑

i∈I
∑

o∈O
wiolio + (px × X) (22)

lio =
Tiowϵo

io
Φj

×
Φ

η
ϵo
j Γη

o

Φ
× L (23)

The planner chooses employment, consumption for entrepreneurs and the optimal level

of automation capital to maximize the total welfare of workers and entrepreneurs in the

economy (equation 21) subject to the economy’s resource constraint (equation 22), and

the inverse labor supply function (equation 23).

The planner’s solution to the optimal choice of labor problem implies that she equates

the marginal benefit to aggregate output of an additional unit of labor in occupation o

with its marginal cost, the wage:

wio =
∂yi

∂lio
. (24)

Comparing this to the decentralized economy solution, we see that the establishment-

level wedge due labor market power does not appear in equation (24). This is because the

planner’s decision maximizes total social welfare, including the welfare of both workers

and entrepreneurs, while entrepreneurs in the decentralized economy make decisions

based on private returns. The planner’s optimal labor allocation implies no misallocation

due to dispersion in the establishment-specific wedge across firms.

Similarly, in the case of the optimal level of automation capital for plant i, the planner
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equates marginal cost to marginal benefit.

px =

[
ϕ

1
γ l̂

γ−1
γ

iR + ϕ̃
1
γ l̂

γ−1
γ

iN

] γ
γ−1 ∂zi

∂xi
+ zi

∂

∂xi

[
ϕ

1
γ l̂

γ−1
γ

iR + ϕ̃
1
γ l̂

γ−1
γ

iN

] γ
γ−1

(25)

Since firms do not exercise market power in the market for automation capital, the op-

timal condition chosen by the planner coincides with that of the decentralized economy.

As shown below, this does not imply that the decentralized economy chooses the same

level of automation capital as the planner. Since labor markets are misallocated and in-

puts are imperfect substitutes, there will also be a misallocation in the optimal amount of

automation capital in the planner’s economy. From the planner’s point of view, automa-

tion increases aggregate output at the margin, but also incurs two social costs that are not

internalized by decentralized firms: first, increased misallocation within and across firms

due to higher productivity-enhancing markups and markdowns; and second, the reallo-

cation of workers from routine to lower-paying manual occupations, where entrepreneurs

exercise higher monopsony power, or non-employment. In the quantitative exercise, we

try to quantify each of these channels.

Finally, for optimal entrepreneur consumption, the planner equalizes consumption

across all entrepreneurs such that:

u′(ci) = u′(cj) =⇒ ci = cj = c (26)

which implies that there is no consumption inequality between entrepreneurs in the econ-

omy.

4.6 Characterization

Next, I compare the optimal allocations in the planner’s economy with the allocation

chosen by the planner. I then consider the implications of the misallocation in the la-

bor market for the optimal choice of automation. Finally, I consider how automation in

imperfectly competitive markets endogenously affects market power and misallocation

through its effect on firm productivity.
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Figure 3: Decentralized vs. Planner’s Allocation: Employment and Wages
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Misallocation in occupational labor markets. As mentioned earlier, a comparison of the

planner’s first-order conditions with those of the decentralized economy shows that the

establishment-specific markdowns are absent from the planner’s condition. These dis-

counts depend on the employment shares of firms within the market, which reflect pro-

ductivity differences. Firms with higher shares and higher productivity can charge higher

markdowns, while less productive firms with lower shares charge lower markdowns.

From a planner’s perspective, this implies a misallocation of labor in the decentralized

economy. High markdown firms are not large enough because they under-hire labor and

under-produce. Meanwhile, less productive low-markdown firms overproduce relative

to the planner’s optimum.

Figures 3a and 3b illustrates this in a simulated duopsony model with many identical

markets. Establishment 2 has higher productivity than Establishment 1. The planner allo-

cates more labor to the more productive firm. The planner also pays higher wages in both

establishments, with the more productive firm receiving even higher wages. Thus the

planner’s allocation deviates from the decentralized equilibrium due to establishment-

level labor market power. This misallocation reduces both output and welfare in the
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Figure 4: Decentralized vs. Planner’s Allocation: Automation Capital

(a) Level of Automation Capital
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decentralized economy relative to the planner’s allocation, both of which are quantified

below.

Misallocation in the automation capital market. Next, let’s compare the optimal alloca-

tion of automation capital between the planner and the decentralized economy. Even if

the planner’s first-order condition coincides with the decentralized economy, automation

capital will be misallocated across establishments.

This is due to the misallocation of labor due to labor market power and the imperfect

substitutability between labor and automation. Since more productive establishments

will under-hire labor and less productive establishments will over-hire labor in the de-

centralized economy, the marginal product of automation capital will be lower than the

planner’s optimum. The opposite is true for less productive establishments. Therefore,

more productive firms will under utilize automation capital, while less productive firms

will over utilize it relative to the social optimum. Whether the use of automation in more

productive firms is higher or lower than the efficient level depends on the substitutability

of automation and labor.

In the current simulation in Figures 4a and 4b, automation and routine labor are as-
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Figure 5: Automation’s Implication on Misallocation
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sumed to be gross substitutes, while non-routine labor is complementary, consistent with

existing evidence. This implies that the introduction of automation reinforces the misal-

location of labor. More automation further reduces labor demand in high-productivity

firms, while increasing it in low-productivity firms. This lowers output and wages rela-

tive to the planner’s allocation.

Automation’s endogenous effect of misallocation. As emphasized earlier, labor is mis-

allocated in the decentralized economy. The magnitude of this misallocation depends on

the variance of the within-market employment share, which, together with the labor mo-

bility parameters ϵo and η, constrains the variance of the distribution of markdown. By

adopting robots, firms are able to endogenously improve their technical efficiency, which

increases the variance of the ex-post productivity distribution, i.e. the distribution of zi,

relative to the ex-ante productivity distribution, i.e. the distribution of z̃i. This widens

the distribution of the within-market employment share, which widens the misallocation

and lowers output and welfare relative to the socially optimal allocation.

Since empirical evidence suggests that large firms adopt automation capital and ben-

efit from improved productivity from such adoption decisions, in the current framework
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this translates into a shift in the distribution of market power in the economy. Thus, in

general equilibrium, automation provides them with an additional lever to restrict la-

bor demand and under produce relative to the social optimum, highlighting the nuanced

implications of automation technologies in imperfectly competitive environments with

pre-existing distortions.

This is illustrated in Figures 5a and 5b, where I show the effect of falling automa-

tion prices on misallocation. The figure shows the effect of the decline in the price of

automation capital on the distribution of the within-market employment share and the

dispersion of discounts. We see that as the price declines, firms adopt a larger amount of

automation capital, improving their productivity and scale, and increasing the dispersion

of discounts.

5 Quantitative Analysis

This section provides details of the quantitative analysis used to examine the impact of

robot adoption on output and welfare. First, I describe how I calibrate the baseline ver-

sion of my model without labor force participation and entry, which I will include in

future iterations. Finally, the section concludes with a description of the counterfactual

experiments conducted using the calibrated model.

5.1 Calibration

In this iteration of the paper, I choose key parameter values based on those used in the

literature to calibrate the model for the year 2019.16 I calibrate only a limited set of param-

eters concerning the distribution of z̃i using French administrative data. A summary of

these parameters is presented in the table 5. In ongoing work, I am structurally estimating

these parameters.

The elasticity of substitution between routine and non-routine occupations, γR, is cho-

sen from the recent work of Humlum (2022), who structurally estimates a production

16In this iteration, I consider the baseline model without endogenous labor force participation and entry.
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function on the Danish data. The estimate of the elasticity of substitution between rou-

tine occupations and automation capital is chosen from Vom Lehn (2020), who calibrates

this value from US data. Since the value is greater than 1, it implies that robots are gross

substitutes for routine workers. I assume that zi = (z̃
γz−1

γz
i + x

γz−1
γz

i )
γz

γz−1 where γz moder-

ates the endogenous effect of automation capital on productivity zi. I set γz = 3.5 in the

baseline calibration.

The parameters ϵo, which determine the within-market mobility of workers, and the

are based on the recent work of Azkarate-Askasua and Zerecero (2020), who estimate the

labor supply equation using administrative data for the French manufacturing sector. For

the case of η, I choose a value close to that estimated by Azkarate-Askasua and Zerecero

(2020), but restrict it to be greater than 1, since this allows me to compute average welfare

in my model.17

The share of the number of robot adopters in the French economy is chosen from the

recent work by Acemoglu et al. (2020) who show that only 1% of the French manufactur-

ing firms purchased robots between 2010 and 2015.

Finally, I calibrate the value of the cost of producing automation capital using pub-

licly available information on Statista that provides information on the average cost of

industrial automation.

5.2 Counterfactual experiments

I conduct two counterfactual experiments to quantify the welfare and output consequences

of automation. First, in the extensive margin experiment, I compare the decentralized and

planner economies with and without any automation adoption. This is done by setting

the share of adopting firms to zero in both economies. Second, in the intensive margin ex-

periment, I examine the effect of a 10% decline in the price of automation capital. The two

experiments allow for an analysis of how automation affects output and welfare through

extensive margin adoption differences and intensive margin price-driven adoption in-

centives. Comparing the decentralized and planned outcomes isolates the contribution

17The expected welfare is undefined for values of η < 1.
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Table 5: Model Calibration

Parameter Description Value Source

γ EoS (R vs. NR composite) 0.49 Humlum (2022)

γR EoS (R vs. Robots) 1.38 Vom Lehn (2020)

ϕR Weight Parameter 0.49 Vom Lehn (2020)

ϕN Weight Parameter 0.51 Humlum (2022)

ϵo Within-market substitutability 4.05 AZ (2020)
I−Io

I Fraction of robot adopters 1% Acemoglu et al. (2020)

pX Unit cost of automation e27000 Statista

γZ Effect of robots on productivity 3.5 Externally set

γN EoS (A vs. M) 0.81 Externally set

η Across-market substitutability 1.1 Externally set

Tio Firm-occupation specific amenities 1.0 Externally set

µz̃ Mean of ln(z̃) 4.15 Internally Calibrated

σs
z̃ Variance of ln(z̃) 0.68 Internally Calibrated

ϕ Weight Parameter 0.55 Internally Calibrated

Notes: EoS stands for elasticity of substitution, R stands for routine occupations, NR stand for non-routine
occupations, A stands for abstract occupation and M stands for manual occupations. AZ is shorthand for
Azkarate-Askasua and Zerecero (2020).

Table 6: Effect of Automation on Output and Average Welfare

Output

(% ∆)

Average Welfare

(% ∆)

All Abstract Routine Manual

Extensive Margin
Decentralised 16.17 2.82 6.33 1.66 6.20

Planner 18.86 4.62 8.64 3.10 8.76

Intensive Margin
Decentralised 0.85 0.29 0.20 0.12 0.40

Planner 0.91 0.20 0.41 0.16 0.42
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Table 7: Effect of Automation on Output Gap

Homogenous

Labor

(a)

No

Automation

(b)

Extensive

Margin

(c)

Intensive

Margin

(d)

c − b

(e)

d − c

(f)(
YDC−YP

YP

)
× 100

No -1.9 -4.1 -4.2 -2.2 -0.1

Yes -0.9 -1.8 -1.9 -0.9 0.0

Contribution

Within Misallocation
-51.9% -55.5% -55.6% - -

Notes: YDC denotes aggregate output in the decentralized economy while YP denotes aggregate output in
the planner’s economy.

of misallocation.

6 Results

In this section, I will examine the effects of automation on both output and welfare. I will

define and analyze output and welfare gaps and discuss how automation affects these

gaps. I will also address the question of how much of the loss in output and welfare can

be attributed to automation-induced market power.

Implications on Output. The first result concerns the effect of automation on aggregate

output. To examine this, I compare the output of a decentralized economy with and

without automation. As shown in Table 6, automation leads to a 16.2% increase in output

in the decentralized economy compared to an economy without automation. It’s worth

noting, however, that this increase is less than what I observe in the planner’s economy,

where automation would have increased output by 18.9%. Even at the intensive margin,

automation continues to increase output, but the planner’s economy maintains a higher

level of output.

I then examine the impact of automation on misallocation by evaluating how it affects

the output gap. This gap is defined as (YP − YDC)/YP, which represents the percentage
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Table 8: Effect of Automation on Average Welfare Gap

Homogenous

Labor

(a)

No

Automation

(b)

Extensive

Margin

(c)

Intensive

Margin

(d)

c − b

(e)

d − c

(f)(
W

DC−W
P

W
P

)
× 100

No -29.3 -30.5 -30.4 -1.2 0.1

Yes -14.0 -14.6 -14.5 -0.6 0.0

% Contribution

Within Misallocation
-52.2% -52.3% -52.2% - -

Notes: W
DC denotes average welfare in the decentralized economy while W

P denotes average welfare in
the planner’s economy.

difference in output between the planner’s (YP) economy and the decentralized economy

(YDC). The results, presented in Table 7, show that in an economy without any automa-

tion, the output gap is 1.9 percent. This suggests that the planner’s economy produces

1.9 percent more output than the decentralized economy because it corrects for the mis-

allocation due to labor market power in the decentralized economy. Column (e) of Table

7 shows that once automation is introduced in both economies, the output gap increases

by 2.2 percentage points. This increase shows that automation exacerbates misallocation

by increasing the variance of labor market power across firms.

A parallel pattern emerges when I consider the impact of automation on misallocation

at the intensive margin, although the magnitudes are much smaller. The reduction in

prices resulting from automation leads to an increase in misallocation of 0.1 percentage

points. Taken together, these results provide evidence that automation has a direct impact

on firms’ (labor) market power.

Shifting focus, I examine the source of the misallocation. Since firms exercise labor

market power over different occupations, it becomes clear that labor is misallocated not

only across firms, but also within firms. To quantify the contribution of within-firm mis-

allocation, I assume that labor is homogeneous, implying that firms do not exert different

degrees of market power over workers. My analysis shows that intra-firm misallocation

accounts for a substantial 51.9% of total misallocation.
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Implications on Welfare. The effect of automation on average welfare reveals several

important insights. First, I find that automation does indeed increase average welfare, but

to a lesser extent than in the planner’s economy. As shown in Table 6, the introduction of

automation in the decentralized economy leads to an average welfare increase of 0.85%,

compared to an increase of 0.91% in the planner’s economy.

In addition, the welfare gains from automation are not evenly distributed across oc-

cupations. In particular, automation disproportionately benefits non-routine abstract and

manual occupations, whose average welfare increases by 6.33% and 6.20%, respectively,

compared to a more modest 1.66% increase for routine workers. This pattern of effects

persists at the intensive margin, reinforcing the notion that automation has different ef-

fects on different occupational groups.

Next, I turn to the impact of automation on the welfare gap between the planner’s

economy and the decentralized economy, which is detailed in Table 8. I define the aver-

age welfare gap as (W
DC − W

P
)/W

P, where W
DC and W

P denote average welfare in

the decentralized and the planner’s economy, respectively. First, without automation, the

welfare gap between these two economies shows that the average welfare in the plan-

ner’s economy is 30.5% higher than in the decentralized economy. However, this gap

increases with the introduction of automation. Specifically, automation increases the wel-

fare gap by 1.2 percentage points at the extensive margin and remaining unchanged at

the intensive margin. These results suggest that automation has a limited impact on the

average welfare gap between the two economies. Consequently, the observed gains in

average welfare appear to be driven primarily by changes at the extremes of the welfare

distribution.

Finally, I show that intra-firm misallocation plays a crucial role in contributing to the

average welfare gap. When labor is assumed to be homogeneous, its presence signifi-

cantly reduces the average welfare gap by 52.2%. This underscores the importance of

addressing within-firm misallocation to reduce the average welfare gap resulting from

automation.
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Table 9: Effect of Automation on Output and Welfare Loss

Homogenous

Labor
Extensive Margin Intensive Margin

(
∆YP−∆YDC

∆YP

)
× 100

No 15.9 10.8

Yes 8.3 5.3(
∆W

P
o −∆W

DC
o

∆W
P
o

)
× 100

No 56.8 0.0

Yes 30.6 0.0

How much output and welfare is lost due to automation-induced market power? To

assess the magnitude of output and welfare losses attributable to automation-induced

market power, I employ a difference-in-differences statistic. This involves calculating the

difference in the change in output between the decentralized and the planner’s economy,

expressed as a fraction of the change in output in the planner’s economy itself.

For clarity, consider an example: If the change in output resulting from automation in

the planner’s economy amounts to 10 units, whereas the corresponding change in the de-

centralized economy is 5 units, then the loss in output due to automation-induced market

power would be 50%.

The findings, detailed in Table 9, reveal significant losses in both output and welfare

stemming from automation, both at the extensive and intensive margins. Specifically,

at the extensive margin, output loss stands at approximately 15.9%, while welfare loss

reaches 56.8%.

Furthermore, consistent with previous observations, addressing differential market

power over occupations leads to noteworthy improvements in mitigating these losses. In

a scenario without any within-firm misallocation, output losses decrease to 8.3%, and wel-

fare losses reduce to 30.6%. These results underscore the substantial impact of automation-

induced market power on output and welfare, while also emphasizing the potential ben-

efits of addressing within-firm misallocation.
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7 Conclusion

In conclusion, this paper documents that large firms are more likely to adopt automa-

tion capital, and that adoption leads to higher productivity and increased labor market

power for firms. It constructs a general equilibrium model that is consistent with the evi-

dence from the microdata, incorporating oligopsonistic labor markets, automation adop-

tion choice, occupational choice, labor force participation choice, and entry.

It argues that when large firms adopt automation in non-competitive markets and

increase their productivity, this shifts the mean and variance of the distribution of mar-

ket power across the economy. This shift, in turn, exacerbates misallocation within the

economy, leading to substantial welfare and output losses relative to a socially optimal

allocation. The model developed in this paper quantifies these losses and shows that au-

tomation can lead to an approximate 15.9% reduction in output and a substantial 56.8%

reduction in total welfare. Furthermore, it highlights that the welfare gains are dispro-

portionately skewed in favor of those who adopt automation capital and non-routine

workers relative to routine workers.

Looking ahead, there are two promising avenues for future research. First, the cur-

rent model does not explicitly model the product market power of firms. The qualitative

effects of product market power may be similar to those of labor market power, but quan-

titatively these effects may differ significantly and warrant further investigation. There-

fore, the results presented in this paper should be viewed as a lower bound on the effect

of automation on efficiency losses. Analyzing how automation affects output and welfare

losses in a model that accounts for both product and labor market power is an important

area for future research.

Second, an important area for future research is in the area of optimal tax policy, espe-

cially when considering the impact of automation on economic efficiency. While current

work has appropriately focused on the distributional consequences of automation, the

results presented here underscore the need for a comprehensive approach that combines

efficiency and distributional policies to effectively address the implications of the increas-

ing prominence of robots in our economic landscape. As we continue to explore the mul-
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tifaceted effects of automation, these avenues of research will be essential in shaping our

understanding and policy responses in this evolving landscape.
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Appendix

A Derivations

A.1 Derivations of Propositions and Corollaries

Proposition 1. The probability that worker n selects occupation-establishment pair (o, i) is:

χio =
Tiowϵo

io
Φj

×
Φ

η
ϵo
j Γη

o

Φ

where

Φj = ∑
i′∈j

Ti′owϵo
i′o, Φ = ∑

o
∑

j∈Jo

Φ
η
ϵo
oj Γη

o , Γo = Γ
(

ϵo − 1
ϵo

)

Proof. This proof closely follows the derivation in Appendix A.1 of Azkarate-Askasua

and Zerecero (2020). I derive it again here, consistent with the notation of the model

developed in Section 4, for the sake of completeness.

As highlighted in the main text, the indirect utility of worker n is given by

unio = cnzniovnj,

where zio and vj are idiosyncratic utility shocks drawn from Fréchet distributions as fol-

lows:

P(z) = e−Tioz−ϵo and P(v) = e−v−η
.

I assume that workers first observe the realization of the market-specific shock vj for all

local labor markets. After optimally choosing their local labor market, they observe the

establishment-specific shock and choose the establishment where they supply their unit

of labor. The unconditional probability of a worker going to occupation o in establishment

1



i of market j is thus equal to

χio = P(wiozio|j ≥ max
i′ ̸=i

wi′ozi′o|j)︸ ︷︷ ︸
A. Probability of choosing i|market j

× P
[
Ej(max

i
wiozio|j)vj ≥ max

j′ ̸=j
Ej′(max

i
wiozio|j′)vj′

]
︸ ︷︷ ︸

B. Probability of choosing market j

.

In the following, I first derive the probability that a worker chooses establishment i con-

ditional on having chosen market j. Later, I derive the probability that a worker chooses

market j.

Step A. To derive the probability of choosing establishment i conditional on choosing

market j, I first derive the following probability density functions and the cumulative

density functions, which will be used later to calculate this probability:

Gi(ϑ) = P[wiozio|j ≤ ϑ] = P

[
zio|j ≤

ϑ

wio

]
= e−Tiowϵo

io ϑ−ϵo ,

dGi(ϑ)

dϑ
≡ gi(ϑ) = Tioϵowϵo

io ϑ−(ϵo+1)e−Tiowϵo
io ϑ−ϵo .

Assuming that wiozio|j = ϑ, we get

P(max
i′ ̸=i

wi′ozi′o|j ≤ ϑ) =
⋂
i′ ̸=i

P(wi′ozi′o|j ≤ ϑ) = ∏
i′ ̸=i

e−Ti′owϵo
i′oϑ−ϵo

= e−Φ−i
j ϑ−ϵo

= G−i
j (ϑ),

where Φ−i
j = ∑i′ ̸=i Ti′owϵo

i′o. Note that we can also write

Gj(ϑ) = P(max
i

wiozio|j ≤ ϑ) = e−Φjϑ
−ϵo ,

where Φj = ∑i∈j Tiowϵo
io . Like before, we can calculate the probability density function

using the cumulative density function as follows:

dGj(ϑ)

dϑ
≡ gj(ϑ) = ϑ−(ϵo+1)ϵoΦje−Φjϑ

−ϵo .
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Given these distributions, the probability of choosing i given j:

P(max
i′ ̸=i

wi′ozi′o|j ≤ wiozio|j) =
∫ ∞

0
P(max

i′ ̸=i
wi′ozi′o|j ≤ ϑ)gi(ϑ)dϑ

=
∫ ∞

0
e−Φ−i

j ϑ−ϵo
Tioϵowϵo

io ϑ−(ϵo+1)e−Tiowϵo
io ϑ−ϵo dϑ

=
Tiowϵo

io
Φj

∫ ∞

0
ϑ−(ϵo+1)ϵoΦje−Φjϑ

−ϵo dϑ

=
Tiowϵo

io
Φj

Step B. Next, I calculate the probability of a worker optimally choosing market j. To

calculate this probability, I first need to calculate Ej(maxi wiozio|j).

Ej(max
i

wiozio|j) =
∫ ∞

0
ϑΦjϵoϑ−(ϵo+1)e−Φjϑ

−ϵo dϑ =
∫ ∞

0
ϵoΦjϑ

−ϵo e−Φjϑ
−ϵo dϑ.

To simplify the integral, we change the name of the variables as follows:

x = Φjϑ
−ϵo ,

dx
dϑ

= −ϵoΦjϑ
−(ϵo+1) = −ϵo

x
ϑ

Replacing the change of variables in the above integral, we get

Ej(max
i

wiozio|j) =
∫ ∞

0
ϵoΦjϑ

−ϵo e−Φjϑ
−ϵo dϑ = Φ

1
ϵo
j Γ

(
ϵo − 1

ϵo

)
= Φ

1
ϵo
j Γo

where Γ(·) is the Gamma function defined as Γ(z) =
∫ ∞

0 tz−1e−tdt. Following same steps

as in Step A, we can calculate the probability of choosing market j as follows:

P
(
Φ

1
ϵo
j Γovj ≥ max

j′ ̸=j
Φ

1
ϵo
j′ Γovj′

)
=

∫ ∞

0
e−Φ−jϑ−η

ηΦ
η
ϵo
j Γη

o ϑ−(η+1)e−Φ
η
ϵo
j Γη

o ϑ−η

dϑ

=
Φ

η
ϵo
j Γη

o

Φ

∫ ∞

0
ηΦϑ−(η+1)e−Φϑ−η

dϑ

=
Φ

η
ϵo
j Γη

o

Φ
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Hence, we can write that

χio =
Tiowϵo

io
Φj

×
Φ

η
ϵo
j Γη

o

Φ
.

Proposition 2. The average and median welfare per worker is defined as follows:

W = E

[
max

j

{
Ej(max

i
wizio)vj

}]
= Φ

1
η Γ

(
η − 1

η

)
,

WMed = Median
[

max
j

{
Ej(max

i
wizio)vj

}]
∝ Φ

1
η .

where Φ = ∑j∈J Φ
η
ϵo
j Γη

o , W denotes the average welfare per worker, WMed denotes median wel-

fare and Γ(·) denotes the Gamma function.

Proof. We can calculate this object in terms of model parameters in two parts. In the first

part, using the result from the proof of Proposition 1, Step B, we can calculate

Ej(max
i

wioz1
io|j) = Φ

1
ϵo
j Γ

(
ϵo − 1

ϵo

)
= Φ

1
ϵo
j Γo.

Next, we can calculate E
[

maxj Φ
1

ϵo
j Γovj

]
in three steps. Define the random variable S =

maxj Φ
1

ϵo
j Γovj. We can calculate the CDF of S as follows:

P(S ≤ ϑ) =
⋂

j

(Φ
1

ϵo
j Γovj ≤ ϑ) = ∏

j
e−Φ

η
ϵj
j Γη

0 ϑ−η

= e−Φϑ−η ≡ K(ϑ),

where Φ = ∑j Φ
η
ϵj
j Γη

o . We can calculate the PDF as follows:

∂K(ϑ)
∂ϑ

= k(ϑ) = ηΦϑ−(η+1)e−Φϑ−η
.
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From here on, we know the PDF and hence we can calculate the expectation as follows:

E
[

max
j

Φ
1

ϵo
j Γovj

]
=

∫ ∞

0
ϑηΦϑ−(η+1)e−Φϑ−η

dϑ

=
∫ ∞

0
ηΦϑ−ηe−Φϑ−η

dϑ.

To simplify the integral, we change the name of the variables

x = Φϑ−η,
dx
dϑ

= −ηΦϑ−(η+1) = −η
x
ϑ

.

Replacing the change of variables in the above integral, we get

E
[

max
j

Φ
1

ϵo
j Γovj

]
=

∫ ∞

0
ηΦϑ−ηe−Φϑ−η

dϑ

=
∫ ∞

0
ηxe−xdϑ =

∫ 0

∞
(−ϑ)e−xdx = Φ

1
η

∫ ∞

0
x−

1
η e−xdx

= Φ
1
η Γ

(η − 1
η

)
A.2 Computational details

General equilibrium models with oligopsony are typically solved by relying on algo-

rithms that exploit the block-recursive structure of these models. One first sequentially

solves for the fixed point of the within-market employment share for each market in

the economy, and then computes model aggregates using the shares from the first step.

See the algorithms proposed by Azkarate-Askasua and Zerecero (2020) and Berger et al.

(2022) for more details.

Applying such algorithms to the current model is computationally challenging be-

cause the production technology is constant elasticity of substitution (CES) and the au-

tomation choice is an endogenous outcome of the model. CES technology implies that

occupational labor markets are no longer separable in the model. This means that the

occupational employment share depends not only on competitors within the market but

also on competitors across markets. Therefore, the dimension of the system of equations

required to solve for the fixed point of the within-market employment share is quite large.
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Moreover, since both occupational employment and automation are endogenous objects,

one needs to solve for these quantities jointly, which further increases the dimension of

the system of equations. In practice, I found it unstable to solve the large dimension of

the system of equations.

To address the stability issues, I develop a nested fixed-point algorithm to compute the

equilibrium. I start with an initial guess of the occupational employment share of estab-

lishment i in the aggregate, i.e. χio, for all occupations. Thus, the size of the initial guess

is 3 × I, where, as before, I is the total number of establishments in the economy and 3 is

the total number of occupations. Conditional on the guess, I compute lio = χio × L. Given

this, I solve for the fixed point to determine the optimal level of automation adopted for

those entrepreneurs who adopt automation capital. Next, I compute the within-market

occupational employment share using lio and wages using the inverse labor supply equa-

tion. Finally, I update the initial estimate by calculating the occupational employment

share of establishment i. I iterate until the model converges. Since the initial estimates

are all bounded between 0 and 1 and sum to 1, the speed of convergence depends on the

share of establishments employing automation capital and whether the initial estimate of

the price of automation capital is above the limit of the marginal productivity of capital.

The algorithm is stable and converges relatively quickly in practice. Below I outline it

using the equations of the model:

1. Initialize the algorithm by taking a guess of χt
io, ∀i, o. Note that (i) 0 < χio < 1 and

(ii) ∑i ∑o χio = 1.

2. Compute lio using the labor supply equation of the model: lio = χio × L

3. Compute within market employment share for each occupationa-establishment pair

using the following equation:

sio|j =
lio

∑k∈j lko

4. Pin down the first order condition of automation capital for robot adopters, x∗i , us-
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ing equation 14:

px =

[
ϕ

1
γ l̂

γ−1
γ

iR + ϕ̃
1
γ l̂

γ−1
γ

iN

] γ
γ−1 ∂zi

∂xi
+ zi

∂

∂xi

[
ϕ

1
γ l̂

γ−1
γ

iR + ϕ̃
1
γ l̂

γ−1
γ

iN

] γ
γ−1

This step requires solving the root of the above equation.

5. Compute wio, ∀i, o for both adopters and non-adopters using first order conditions

in equation 12:

wio =

(
eio

eio + 1

)
×

∂yk
i

∂lio
, o ∈ O, k ∈ {0, 1}.

6. Computed the model given value of χio using equilibrium wages:

χio =
Tiowϵo

io
Φj

×
Φ

η
ϵo
j Γη

o

Φ
,

where

Φj = ∑
i′∈j

Ti′owϵo
i′o, Φ = ∑

o
∑

j∈Jo

Φ
η
ϵo
oj Γη

o , Γo = Γ
(

ϵo − 1
ϵo

)

7. Check if convergence is achieved by verifying if the following condition is satisfied:

max
{
|χt

io − χt+1
io |

}
≤ 1e−8

8. If the condition is not satisfied, then update χio using the following rule:

χt+1
io = (1 − ψ)χt+1

io + ψχt
io

B Production Function Estimation

To estimate Hicks-neutral productivity and firm-specific markdowns, I follow the work of

Gandhi et al. (2009). In particular, I use the “inverse share equation” to separate the mea-
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surement error in the production function from Hicks-neutral productivity, as suggested

by Gandhi et al. (2009), and I estimate markdowns by assuming that firms are price takers

in the output market and the market for intermediate inputs.Concretely, I denote a firm’s

output by Yjt which I define as follows:

Yjt = Qjt × exp(ϵjt) =

[
αKK

γ−1
γ

jt + αLL
γ−1

γ

jt + αM M
γ−1

γ

jt

] κγ
γ−1

× exp(ω̂jt)× exp(ϵjt)

where, abusing notation, I assume that j denotes a firm and t denotes time. Assuming

that firms are price-takers in the intermediate inputs market while price-setters in the

output and the labor market, I get the following first-order conditions.18 This leads to the

following system of equation:

ϵjt = ln Sjt − ln Qjt +
∂Qjt

∂Mjt
+ ln Mjt

ω̂jt = log
(

Yjt

Qjteϵjt

)
δjt =

Wjt

καL
[

exp(ω̂jt)
] γ−1

κγ L
− 1

γ

jt Q
γ(κ−1)+1

κγ

jt Pt

where Sjt denotes the inverse of the share of materials in total revenues, i.e., Sjt =
Rjt

PMt Mjt
.

The estimation is currently in progress. In it, I also relax the assumption that the output

market is perfectly competitive. This means that I can no longer use revenue deflated

by a price index as a proxy for output. To resolve the issues with revenue production

function, I rely on the French administrative data that allows me to observe prices and

quantities separately. In order to construct the results presented in Section 3, I calibrate

the values of the structural parameters from literature estimating production function

using manufacturing data. Currently, I have used the following values in estimation:

αK = 0.25, αL = 0.50, αM = 0.25, κ = 0.9, γ = 0.7. In order to compute the markdown,

I am simply going to assume that the output market is perfectly competitive and the

intermediate material market is also perfectly competitive.

18Note that I derive this equations assuming that firms are profit-maximizers as opposed to cost mini-
mizers.
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C Data Appendix

C.1 Occupational Classification

Every job in DADS Postes is categorized by a two-digit PCS occupational code. Follow-

ing the occupational classification adopted by Albertini et al. (2017) in their work on job

polarization in France, I aggregate these 22 codes into three groups: abstract, routine and

manual occupations. The classification into three groups is based on following defini-

tions:

• Abstract: These occupations include problem-solving and managerial tasks as pri-

mary functions on their job. Examples of occupations included in this group are

engineers (PCS 38), executives (PCS 37) and scientists (PCS 34).

• Routine: This group includes occupations that perform cognitive or physical tasks

that follow closely prescribed sets of rules and procedures and are executed in a

well-controlled environment. Example includes occupations such industrial work-

ers (PCS 62 and 67), office workers (PCS 54) and mid-level managers (PCS 46).

• Manual: This occupational group do not need to perform abstract problem-solving

or managerial tasks but are nevertheless difficult to automate because they require

some flexibility in a less than fully predictable environment. Example includes per-

sonal service workers (PCS 56), driver and security workers (PCS 53 and 64) among

others.

The occupational grouping tries to capture the fact that automation and ICT capi-

tal should replace workers performing repetitive tasks. Further details concerning the

assignment process, the employment share of each occupational group in 1994, and its

change over time is documented in Appendix A, Table A1 (Abstract), Table A2 (Manual),

Table A3 (Routine).

Next, I document the classification of occupations into three groups in Table A1 (Ab-

stract), Table A2 (Manual), Table A3 (Routine). As mentioned in the main text, I follow
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the classification adopted by Albertini et al. (2017). For completeness, I also describe the

representative 4-digit sub-occupations description. The main idea that this classification

tries to capture is that routine occupations can be directly substituted by advances in

ICT technology while non-routine occupations is only indirectly affected. Non-routine

occupations are further classified based on their task content: non-cognitive are abstract

occupations and non-routine manual are called manual occupations. In Figure ??, I plot

the employment share of selected PCS occupational groups and their change over time.

The change in employment share for routine occupations by manufacturing and non-

manufacturing industries is plotted in Figure ??.

Table A1: List of PCS occupations categorized as Abstract

Title
2-digit

PCS Codes

Representative 4-digit

sub-occupations

Engineers 38

Technical managers for large companies,

Engineers and R&D manager,

Electrical chemical and materials engineers,

IT R&D engineers,

Purchase, planning, quality control and production managers,

Telecommunications engineers and specialists

Top Managers, Executives 37
Managers of large companies,

Finance, accounting, sales and advertising managers

Health Professionals, Teachers 42 + 43 High school teachers, Education counsellors, Nurse, Physiotherapist

Scientific, creative professionals 34 + 35 Professors, Public Researchers, Psychology Specialists, Pharmacists

Heads of Business 21 + 23 Heads of businesses (large and small businnes included)
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Table A2: List of PCS occupations categorized as Manual

Title
2-digit

PCS Codes

Representative 4-digit

sub-occupations

Personal Service workers 56

Restaurant servers, food prep workers.

Hotel employees, Barbers, Hair Stylists,

Beauty shop employees, Child care providers,

Home health aids, Residential building janitors,

Caretakers

Drivers, Security workers 53 + 64 Truck, taxi and delivery drivers

Manual workers 63 + 68

Includes both skilled and unskilled:

Gardener, Master electricians, bricklayers, carpenters, Master cooks,

Bakers, butchers

Crane and forklift operator 65
Warehouse truck and forklift drivers, heavy crane and vehicle operators,

Other skilled warehouse workers

Table A3: List of PCS occupations categorized as Routine

Title
2-digit

PCS Codes

Representative 4-digit

sub-occupations

Industrial workers 62 + 67

Includes both low and high-skilled:

Construction workers

Metalworkers, pipe fitters, wielders,

Operators of electrical and electronic equipment,

Shipping, moving and warehouse workers,

Production workers

Mid-level managers 46
Mid-level professionals in various industries,

Store, hotel and food service managers

Foremen, supervisors 48
Foremen and supervisors from

manufacturing industries, food service industries

Office workers 54 Receptionist, secretaries

Technicians 47
Installation and maintenance

of IT and non-IT equipments

Retail workers 55 Retails employees, cashiers
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