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Abstract

What are the key elements to generate portfolio choices over the wealth distribution in line with

the data? In this paper, we argue that capturing preference heterogeneity across individuals

is one of them. Using a partial equilibrium Bewley-type model with endogenous portfolio

choice and cyclical skewness in labor income shocks, we show that heterogeneity in risk

aversion, impatience and portfolio diversification is crucial to match the empirical schedules

of unconditional risky share, participation and share of idiosyncratic variance in individual

portfolios. At the same time, these elements generate dispersion in wealth through their

heterogeneous effects on individuals’ investment decisions resulting in a cross-sectional

wealth distribution that provides a close fit of the data, particularly at the very top.
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1 Introduction

Increased availability of data on portfolio holdings and wealth at the individual level has
spurred growth in the literature on portfolio choice and capital income returns. On the empirical
side, Bach et al. (2020) and Fagereng et al. (2020) study how portfolio choice and return
heterogeneity vary over the wealth distribution. On the theoretical side, Benhabib et al. (2011)
and Hubmer et al. (2021) emphasize the importance of return heterogeneity in explaining wealth
accumulation over time at the individual level and wealth inequality in the cross-section.

Despite these recent advancements, explaining individuals’ portfolio choices and cross-
sectional wealth inequality remain two challenging issues in household finance and macroeco-
nomics, respectively. In this paper, we show that connecting the two literatures by introducing a
macroeconomic angle to the recent empirical findings in the household finance literature can help
to address both issues simultaneously. Specifically, we extend an otherwise standard incomplete
markets model along several dimensions to generate portfolio choice patterns consistent with
the empirical findings and show that such extensions improve the match of the cross-sectional
wealth distribution in the data, particularly at the very top.

The core of our framework is a Bewley model, the workhorse for studying the interplay
between the wealth distribution and macroeconomic aggregates. We add to the standard setting
endogenous portfolio choice, a non-normal return process, cyclical skewness in labor income
shocks, Epstein-Zin preferences and preference heterogeneity. The latter includes heterogeneity
in individuals’ time preference rate (TPR), risk aversion and ability or inclination towards
portfolio diversification.1 The result is a hybrid between Bewley-type and portfolio choice
models in the household finance literature.

We estimate the unobserved model parameters governing the heterogeneity in preferences
to match the increasing risky share, participation rate and share of idiosyncratic return risk over
the wealth distribution documented in Bach et al. (2020). As an outcome of the estimation,
the economy is populated by the following two types: one type features a relatively high risk
aversion and impatience (parameter values commonly used in the household finance literature),
whereas the other type is characterized by lower risk aversion and impatience (parameter values
commonly used in the macroeconomics literature). The former type also features a higher
preference for portfolio diversification than the latter.

The combination of individuals of both types delivers portfolio choice patterns that closely
match the patterns in the data. The aforementioned introduction of preference heterogeneity and

1Our specification allows also for heterogeneity in the elasticity of intertemporal substitution (EIS). However, as
discussed below in Section 3, in this paper we abstract from that because our framework does not allow to identify
well this parameter.
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the rich stochastic process governing income and returns - which we borrow from Catherine
(2021)2 - are crucial to generate the increasing relation between the risky share and wealth
quantiles. In particular, the income process is relevant to explain the risky share towards the
bottom of the wealth distribution and the preference heterogeneity towards the top. Intuitively,
human capital is a higher share of net worth at the bottom, which makes the stochastic properties
of income matter more than at the top, where, instead, preference parameters become the primary
determinant of portfolio choices.

These two channels ensure a positive correlation between risky shares and wealth over the
whole distribution. Towards the bottom, this trend follows from the hesitancy of asset-poor
individuals to invest in the stock market because of the riskiness of their labor income. At the
top, instead, such relationship is obtained only in combination with preference heterogeneity.
Intuitively, the optimal risky share of rich agents converges to the constant in Merton (1969), as
high wealth essentially protects the individual from non-linear features in our model. If all agents
share identical preference parameters, generating the empirically substantial positive relationship
between wealth and risky share is therefore impossible. However, preference heterogeneity
causes less risk-averse agents with a higher risky share to endogenously end up on the top of
the wealth distribution generating a positive relationship between risky shares and wealth in
the cross-section. In addition, because these individuals are characterized by lower portfolio
diversification, we also match the higher share of idiosyncratic variance at the top. Together
with the fact that their higher degree of patience ensures that less risk-averse and less diversified
individuals endogenously end up at the top of the distribution, these mechanisms also increase
wealth inequality through higher expected returns among the richest.

Finally, to gauge the relative importance of the different elements in our framework, we
compare the results in our benchmark model with counterfactuals in which we shut down different
components one at a time. More in detail, we solve a version with homogeneous preferences,
one with heterogeneity in just the time preference rate and another in just risk aversion, a version
without endogenous portfolio choice, one without idiosyncratic returns and one without skewness
in labor income and return shocks. Except for the case without idiosyncratic returns, in which
(in line with Hubmer et al., 2021) we find relatively small changes, in all the other cases either
the match of the portfolio schedules or of wealth inequality or of both is worsened.

2While we take from his paper most of the elements governing the joint stochastic process of income and returns, it
is important to state that we use them for different purposes than his paper. Indeed, rather than explaining portfolio
choices over the life-cycle dimension, we are interested in understanding them over the wealth distribution and how
they affect inequality through their impact on the formation of individual returns.
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Related literature. This paper contributes to both the household finance literature and to the
macroeconomics literature on wealth inequality.

Our main contribution to the former is capturing endogenously realistic portfolio choices
over the wealth distribution as documented in Swedish registry data by Bach et al. (2020). In
doing that, our paper relates to the literature studying the interplay between income, preference
heterogeneity and portfolio choices.

Both theoretical and empirical studies show that labor income is a determinant of portfolio
choice. For example, the persistent component of labor income is linked to human capital, and
from theory starting with Merton (1969) we know the latter influences participation and the
risky share. Fagereng et al. (2017) and Chang et al. (2018) further emphasize that the riskiness
of labor income influences portfolio choice (the riskier labor income, the lower the risky share).
Using Swedish registry data Catherine et al. (2020) show that workers facing higher cyclical
skewness display lower risky shares. In line with these findings - and those in Guvenen et al.
(2014) - we follow Catherine (2021) and include an income process in our model that features
skewness of idiosyncratic income shocks that is linked to movements in aggregate returns.

While including this central feature of Catherine (2021), we also extend his setting to allow
a rich set of parameters governing preference heterogeneity.3 Thus, our paper also relates to the
literature studying the role of the latter in portfolio choice models (e.g. Vestman, 2018).4 In
addition, as we use our framework to structurally estimate the parameters governing preference
heterogeneity, we also relate to the emerging household finance literature in this area (Calvet et
al., 2021).

Within the literature on wealth inequality, several studies emphasize that capturing return
heterogeneity is a crucial component to match the shape of the wealth distribution. Benhabib
et al. (2011) show analytically that the introduction of stochastic idiosyncratic returns implies
a wealth distribution that is Pareto. In their model, wealth accumulation and decumulation
occur randomly. Benhabib et al. (2015), Nirei and Aoki (2016) and Gabaix et al. (2016) are
further examples that introduce heterogeneous returns to the consumption-savings decision.
Benhabib et al. (2019) quantitatively show that heterogeneous returns jointly with savings and
bequests behavior are crucial elements for top wealth inequality and to explain social mobility.
Hubmer et al. (2021) study plausible explanations for the increase in wealth inequality in the U.S.
Heterogeneity in asset returns turns out to be key to account for the dynamics in wealth inequality.

3Also differently from his framework, we allow for idiosyncratic return shocks and use an infinite horizon setup.

4Vestman (2018) investigates the effects of joint heterogeneity in risk aversion, EIS and participation cost on stock
market participation patterns and their connection with home ownership. However, he does not consider the risky
share, which is the main focus of this paper. Furthermore, contrary to Vestman (2018), instead of presetting
preference parameters, we are estimating them.
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The return on assets is modelled as an increasing function of wealth plus an idiosyncratic shock.
Thus, individuals end up with different returns both because they have different wealth levels
(which can, potentially, be controlled through the savings decision) and because of randomness.
That returns on assets are increasing in wealth can be interpreted as reduced-form portfolio
choice that is consistent with the results by Bach et al. (2020) found in Swedish registry data.

Despite the fact that portfolio choice is a crucial component to generating individual returns,
the above papers take shortcuts in obtaining return heterogeneity. In order to take the driver of
return heterogeneity into account in models analysing the wealth distribution, it is of first-order
importance to endogenize an individual’s investment decision between different kinds of assets.
Our contribution to this literature is, therefore, adding realistic endogenous portfolio choices to
this class of models, and showing that the latter is crucial to capture wealth inequality. In doing
that, we also try to connect this research area with the household finance literature described
above.

Finally, as one important element in our framework to achieve a good match of the wealth
distribution in the data is preference heterogeneity, we also relate to the papers emphasizing
the role of the latter for inequality (see De Nardi and Fella, 2017, for a review). The new
element in our paper is considering a richer structure compared to what has been done so far.
In particular, our paper explores the consequences of introducing heterogeneity in impatience,
risk-aversion and lack of diversification5 - and of allowing correlations between them - on
the wealth distribution through their impact on both agents’ optimal consumption-savings and
portfolio choices. As we will see below, we find this to be an important element to fit the data
and to investigate the relative importance of different channels.

The paper is structured as follows. Section 2 outlines the model, section 3 describes our
calibration procedure, section 4 presents results on our benchmark specification, section 5
investigates counterfactuals and section 6 concludes.

2 Model

Agents and preferences. The economy is populated by a continuum of infinitely lived ex-ante
identical individuals deriving utility from consumption (28,C) through Epstein-Zin preferences.
Agents differ in terms of preference parameters. We capture this heterogeneity with an individual-
specific preference state (\8,C) which, in turn, determines impatience (X), risk aversion (W), the

5Including lack of diversification as a preference parameter allows us to match on the part of the wealth distribution
in which idiosyncratic return variance is more important, and hence we can investigate the relative importance of
idiosyncratic return shocks realistically.
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inverse of the elasticity of intertemporal substitution (k) and the lack of diversification6 (Z).
Preferences are, then, given by the following expression:

*8,C =

[
(1 − X(\8,C))21−k(\8,C )

8,C
+ X(\8,C)

(
EC*

1−W(\8,C )
8,C+1

) 1−k (\8,C )
1−W (\8,C )

] 1
1−k (\8,C )

Financial assets. Agents can invest in two financial assets, one risky with time-varying
individual-specific gross return '8,C+1 and one safe with constant gross return ' 5 . Letting small
letters indicate log returns, A8,C+1 is equal to:

A8,C+1 = A1,C+1 + A2,C+1 + [8,C+1 − < (1)

The effective return individual 8 gets by investing in the risky asset is the sum of two systematic
components, one co-varying with labor market conditions (A1) and one that does not (A2), of
an idiosyncratic component ([) and is net of management cost <, that is thus paid conditional
on holding the risky asset. The systematic components are modeled as in Catherine (2021).
Specifically, to take into account stock market crashes, A1 is distributed as a mixture of Normals:

A1,C+1 =


A1,C+1

8.8.3.∼ N
(
`
A
, f2

A1

)
w.p. ?A

A1,C+1
8.8.3.∼ N

(
`A , f

2
A1

)
w.p. 1 − ?A

(2)

Without loss of generality, we interpret ?A as the probability of stock market crashes and `
A
the

expected log return during these periods. Similarly, 1 − ?A is the probability of normal periods
and `A the corresponding average log return. The other systematic component, A2, is drawn from
a Normal distribution:

A2,C+1
8.8.3.∼ N

(
0, f2

A2

)
Finally, the idiosyncratic component, [8,C+1, is modeled as follows:

[8,C+1
8.8.3.∼ N

(
−
f2
8A

2
, f2

8A

)
where f8A = fAZ (\8,C), with fA being the standard deviation of the systematic part of the log
return and the preference parameter Z (\8,C) governing the share of idiosyncratic risk in total
portfolio volatility. Note that this specification ensures that idiosyncratic risk is not priced since
the idiosyncratic part does not affect the mean return.7

Introducing the idiosyncratic component enables us to understand the relative importance
of systematic and idiosyncratic return shocks. However, as standard portfolio choice models
imply that everyone should invest in some efficient mixture of riskless and risky assets, it is
far from straightforward to represent lack of diversification in a framework otherwise based on
optimizing behavior.

6The next paragraph provides a detailed explanation of lack of diversification.

7For the exact formulas of the statistical moments of the full return process see Appendix C.
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Our modeling choice implies the following: rather than having access to the same risky
asset, each individual rationally invests in her own risky asset, which has identical expected
excess return as the market, but additional preference-dependent idiosyncratic risk. While
guaranteeing that idiosyncratic risk is not priced, this strategy also implies - in line with the
empirical findings in Calvet et al. (2007) - that agents worse at diversifying will, everything else
equal, optimally choose a lower risky share, and vice versa.

However, linking the share of idiosyncratic risk to a stable preference type also effectively
restricts the domain of portfolio composition decisions. In other words, we do not model how
lack of diversification arises (e.g. financial knowledge, overconfidence, reliance on private
equity) but, rather, capture in reduced form that agents’ ability or desire to diversify is limited
and that they optimally decide how to allocate their wealth given this constraint. Thus, our
approach lies between a completely micro-founded, realistic model of portfolio choice in the
presence of a menu of different risky assets, and a framework in which the stochastic properties
of returns over the wealth distribution are hard-wired (Hubmer et al., 2021).

Investing in the risky asset is subject to a fixed participation cost 5 that is paid in every
period the agent chooses to hold that asset. Finally, individuals face a borrowing limit on their
total savings proportional to the exogenously set parameter B. The repayment rate per unit of
borrowing is equal to the risk-free rate.

Labor income process. We follow Catherine (2021) for modeling the stochastic process
governing labor income. Let H8,C denote the residual of log individual earnings. We assume
that H8,C is the sum of an aggregate component (FC) and of two idiosyncratic components, one
persistent (I8,C) and one transitory (a8,C):

H8,C = FC + I8,C + a8,C (3)

The aggregate component follows a random walk with drift, driven by shocks to the market
return through a parameter _AF:

FC = 6 + FC−1 + _AFA1,C + qC (4)

where qC
8.8.3.∼ N

(
0, f2

q

)
.

The persistent component is an AR(1) process:

I8,C = dI8,C−1 + Y8,C (5)

with innovations drawn from a mixture of Normals:

Y8,C =


Y
8,C

8.8.3.∼ N
(
`
Y,C
, f2

Y

)
w.p. ?Y

Y8,C
8.8.3.∼ N

(
`Y,C , f

2
Y

)
w.p. 1 − ?Y

(6)

Without loss of generality, we interpret ?Y as the probability of tail events and `
Y,C
, f

Y,C
the

expected value and standard deviation of persistent income shocks during tail events, respectively.
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A similar interpretation holds for the parameters governing the distribution of normal events. To
match the cyclicality of skewness, `

Y,C
is defined as:

`
Y,C
= `Y + _YF (FC − FC−1) (7)

Thus, tail events imply on average higher persistent shocks during expansions and vice versa
during recessions. In addition, since these shocks have zero mean, it must hold:

?Y`
Y,C
+ (1 − ?Y)`Y,C = 0 (8)

Finally, the transitory shock is Normally distributed, with variance depending on whether the
persistent shock was drawn from the tail distribution or not:

a8,C =


a
8,C

8.8.3.∼ N
(
0, f2

a

)
if Y8,C = Y8,C

a8,C
8.8.3.∼ N

(
0, f2

a

)
if Y8,C = Y8,C

(9)

As discussed in detail by Catherine (2021), including countercyclical income risk enables to
obtain realistic portfolio choices over the life cycle. Intuitively, if adverse income shocks occur
with greater probability when the stock market is low, agents with relatively high human capital
(i.e. the young and the poor) will be more cautious when investing in risky financial instruments.

The reason for retaining this feature in our framework is two-fold. First, examining whether
a mechanism allowing to match portfolio choices over age can also produce realistic risk-taking
patterns over the wealth distribution is an interesting question. Second, by including a potential
alternative channel of generating increasing risky shares over the wealth distribution relative to
preference heterogeneity, we let the estimation decide whether the latter is crucial to match the
desired patterns.

Safety net. To take into account how welfare programs potentially affect consumption,
savings and portfolio choice, we follow Catherine (2021) who models the Supplemental
Nutrition Assistance Program (sometimes called food stamp program). Specifically, working-age
individuals with wealth holdings below 5% of the average national wage and earnings below
20% of the wage index receive 6% of the wage index minus 30% of their earnings as benefits.
Mathematically:

18,C = max
{
0.06 · exp(FC) − 0.3 · exp(H8,C), 0

}
if 08,C < 0.05 · exp(FC) (10)

and exp(H8,C) < 0.2 · exp(FC)

where 18,C denotes the benefits and 08,C cash-on-hand, which is defined in the next paragraph.

The optimization problem. At the beginning of each period C, the agent enters with given
cash-on-hand 08,C , persistent income I8,C , preference state \8,C , and aggregate income FC . She then
chooses how much to consume in the current period 28,C , how much to save for the next period
B8,C , whether to hold risky assets �8,C (dummy equal to one if she participates) and, conditional on
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participation, the share of savings invested in risky assets b8,C .
Let Ξ8,C := (08,C , I8,C , \8,C , FC) denote the state, ' 5 := exp(A 5 ) the gross risk free return and

'4
8,C+1 := exp(A8,C+1) − ' 5 the excess return. Then the maximization problem of agent 8 is:

+ (Ξ8,C) = max
{28,C ,B8,C ,b8,C ,�8,C}

{
(1 − X(\8,C))21−k(\8,C )

8,C
+ X(\8,C)

(
EC

[
+ (Ξ8,C+1)1−W(\8,C )

] ) 1−k (\8,C )
1−W (\8,C )

} 1
1−k (\8,C )

(11)
subject to

28,C + B8,C + �8,C 5 = 08,C (12)

08,C+1 =
[
' 5 + b8,C'48,C+1

]
B8,C + exp(H8,C+1) + 18,C+1 (13)

B8,C ≥ B̄ · exp(FC) (14)

The borrowing constraint (14) varies over time through the dependence on the aggregate part of
labor income FC , which can be interpreted as this constraint becoming tighter in recessions and
looser in expansions.8 Appendix B describes in detail how the model is solved numerically.

3 Estimation and calibration

The goal of the calibration is to deliver a parametrized model in line with novel empirical
evidence on portfolio choice over the wealth distribution documented in Bach et al. (2020). To
do so, we follow a two-step approach. First, we exogenously set the parameters governing the
income and return processes. Second, we estimate the fixed participation cost and individuals’
preference parameters. We describe in the following the details of the procedure adopted.

3.1 Exogenously set parameters

Since we model the stochastic processes governing income and returns as in Catherine
(2021), we use the same parameter estimates reported in his paper. While an extensive explanation
of the estimation procedure can be found there, we still provide a brief description of the approach.
The parameters governing the aggregate processes (`

A
, `A , fA1 , fA2 , ?A , fq, 6, _AF), are estimated

by Simulated Method of Moments (SMM) to capture the joint dynamics of log yearly SP500
returns and aggregate wage log growth from US Social Security panel data on earnings by
targeting mean, standard deviation, third and fourth standardized moments (skewness and
kurtosis) and the correlation between these two series. Estimation of the stochastic process for
individual income requires, instead, to find values for (?Y, `Y, _YF, fY, fY, fa, fa, d). To do so,

8This assumption also makes the value function homogeneous with respect to FC , which allows us to reduce the
dimensionality of the problem by one.
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SMM is used again targeting the time series between 1978 and 2010 of the standard deviation of
log earnings growth at the one- and five-year horizons, Kelly’s skewness of log earnings growth
at the one-, three- and five-year horizons (from Guvenen et al., 2014) and the within-cohort
variance of log earnings for ages between 25 and 60 (from Guvenen et al., 2021).

The risk-free rate A 5 is set as in Catherine (2021) to 0.02, which is a standard value in the
literature (e.g. Cocco et al., 2005; Gomes and Michaelides, 2005). Finally, no borrowing is
allowed so B̄ is set to zero. Table 1 summarizes all these parameter choices.

3.2 Estimated parameters

The main contribution of our estimation exercise is to obtain structural estimates of
individuals’ preference parameters - and of their heterogeneity - from their observed portfolio
choices over the wealth distribution. To achieve this, we assume that the economy is populated
by two types (i.e. the support of \8,C has two states).9

It is worth noticing that, as \ is a vector including time preference rate (X), risk aversion (W),
inverse EIS (k), and lack of diversification (Z), our model enables the investigation of potential
heterogeneities across all these dimensions simultaneously. Nevertheless, as it cannot be well
identified in our framework, in all the results reported from here onwards, k is set to unity for all
types. Indeed, while the different role of k from that of risk aversion W is discerned through the
adoption of Epstein-Zin preferences, as highlighted by Aguiar et al. (2021), joint identification
of EIS and time preference rate is problematic in a model without liquidity differences across
assets.10 In any case, we show in the results section below that heterogeneity in k is not necessary
to match our targets.

Summing up, eight parameters are estimated in total: six preference parameters (X, W, Z , for
each type), the share of individuals of the first type, and the fixed participation cost.

Targets. The main targets of our estimation are portfolio choice patterns over the wealth
distribution. To compute them, we rely on the data from Bach et al. (2020), compiled from
Swedish administrative sources covering earnings and wealth holdings of all Swedish residents
between 1999 and 2007, and on the figures already available in their appendix. While a detailed

9In our current specification, agents’ preference types are assumed to remain fixed over time, as this reduces
considerably the computational time. We have experimented with an extension of the model allowing transitions
between types according to a Markov process in which the transition probabilities are jointly estimated with the
other parameters and did not find not significant differences.

10The main idea behind identification in their framework is that low EIS agents care more about consumption
smoothing and so invest more in liquid assets. We plan to include the joint estimation of the EIS with the remaining
preference parameters in future versions of this paper.
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description can be found in their paper, for our purposes it is worth reminding that wealth
holdings cover cash, pension wealth, financial securities (including funds, stocks, derivatives,
and bonds), private equity, real estate wealth, and debt. These data are then aggregated at the
household level using household identifiers. The measure of wealth we will refer to throughout
the paper is net wealth, defined - as they do - as the sum of all wealth holdings within the
household minus debt.

When deciding how to allocate their savings, in our model individuals choose between a
safe and a single “composite” risky asset. To map excess returns, participation and the share
of idiosyncratic risk by asset type in Bach et al. (2020), into those of a composite risky asset,
we proceed as follows. First, we classify the different assets into safe and risky: cash, money
market funds, pension wealth and residential real estate belong to the former group, while all
other securities, private equity and commercial real estate to the latter. We then define the
participation rate for the composite asset as the share of people in each wealth quantile holding
any risky asset classified as such according to the method just described.11. To obtain the excess
return and the portfolio share of idiosyncratic risk in each wealth quantile, we multiply, instead,
the reported share of wealth invested in each asset type by, respectively, the expected excess
returns and the share of idiosyncratic risk for that particular asset. We further rescale these
excess returns by the average yearly excess return of the SIXRX Swedish equity index, that is is
8.7% over the 1983-2016 period (Bach et al., 2020). This transforms excess returns into the
implicit unconditional risky share invested in the risky asset and eases comparison with other
studies in the literature.

Figure 1 displays the resulting schedules of the unconditional risky share, participation
and share of idiosyncratic risk over the wealth distribution. As in Bach et al. (2020), wealthier
households are more likely to hold risky assets, invest a higher share of their wealth in those risky
assets and load their portfolios with more idiosyncratic risk than poorer households. These three
schedules constitute our calibration targets, together with the ratio of aggregate wealth to income
- which in Sweden is equal to four as reported by Bach et al. (2018) - for a total of 49 moments.

Estimation results. The SMM estimation procedure comprises a global and a local stage.12
In the global stage, we generate 1,000 parameter vectors from a Sobol sequence.13 For every

11We kindly thank Paolo Sodini for sharing the moments on participation as well as the moments on the Swedish
wealth distribution that we compare our estimated model to in section 4.2

12To preserve computational feasibility, for the estimation procedure we adopt smaller grids than those reported
in Appendix B.1, which we use in the results section. Specifically, we use 3 quadrature nodes, 75 points for the
cash-on-hand grid, and 15 points for the grid of income’s persistent component.

13Again for computational feasibility, guided by the arguments that will be outlined below when describing the results,
we restrict the global stage of the estimation to search in regions of the parameter space in which the predominant
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parameter vector Φ, we solve and simulate the model and then evaluate:

3 (Φ)′Ω3 (Φ), (15)

where 3 (Φ) is a vector containing the implied deviations of the model moments from their
targets in the data and Ω is a diagonal weighting matrix. The deviations from the targets in
3 (Φ) are computed as a percentage deviation for the wealth-to-income ratio and relative to the
average over the wealth distribution for the remaining targets. The weighting matrix puts 50%
of the weight on the wealth-to-income ratio and splits the remaining 50% equally between the
schedules of the unconditional risky share, participation, and share of idiosyncratic variance
over the wealth distribution. We choose the parameter vector from the Sobol sequence that
minimizes equation (15) and proceed to the local step. At this stage, we take the candidate from
the first step as an initial starting point and perform a local optimization using the Nelder-Mead
algorithm to minimize again equation (15).

The estimated parameters are presented in Table 1. Type-two individuals discount the
future less strongly than type-one agents (X of 0.96 vs. 0.87), are less risk averse (W of 1.37 vs.
10.31), and seek a lower degree of portfolio diversification. In particular, the estimated values
for portfolio diversification imply that the share of idiosyncratic variance in return variance for
type-two individuals is 57% (Z = 1.08), whereas it is 28% for type-one agents (Z = 0.59).14 As
illustrated by the figures just reported, the results imply a very stark separation across the two
types in terms of preferences. In particular, the lower risk aversion and diversification found for
type-two agents resemble common anecdotal traits among entrepreneurs.15

Type-one individuals are predominant in this economy, as they make up 96% of the total
population. This is an interesting result for two reasons. First, it is surprising that, while the
preference parameters of type-two agents are more in line with those usually adopted in the
macro literature on wealth inequality, the majority of individuals are of type-one, which is
characterized by lower time preference rate and high risk aversion, a combination more often
used in the household finance literature. Second, despite what just noted, it indicates that only a
small fraction of type-two agents is needed to replicate portfolio choice patterns over wealth in
the data (and, as we will see below, also wealth inequality).

type has jointly lower time preference rate, higher risk aversion, and higher portfolio diversification. The local stage,
instead, is not bounded by this constraint.

14The share of idiosyncratic variance in total return variance can be computed using the formula for return variance
reported in Appendix C.

15There is a vast literature on entrepreneurship and wealth inequality (see De Nardi and Fella, 2017, for a review)
emphasizing the tension between individual ability and borrowing frictions and its impact on agents’ savings
behavior, an element which is not present in our model but that might have been captured by our estimation
procedure through preference parameters.
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Finally, the stock market participation cost 5 is estimated at 0.001, which is roughly 0.05%
of the average yearly income and is smaller than the values typically found in the literature (e.g.
Vissing-Jorgensen, 2003).

Preference parameters
Type 1 Type 2

X time preference rate 0.87 0.96 estimated

W risk aversion 10.31 1.37 estimated

k inverse EIS 1.0 1.0 preset

Z lack of diversification 0.59 1.08 estimated

share of individuals 0.96 0.04 estimated

Participation and management costs, borrowing limit
5 fixed participation cost 0.001 estimated

< management fee 0.01 Catherine (2021)

B borrowing limit 0 preset

Returns
A 5 risk-free rate 0.02

Catherine (2021)

`
A

mean syst. return crashes −0.245

`A mean syst. return normal times 0.115

fA1 cond. st. dev. syst. return, part linked to F 0.077

?A probability crashes 0.146

fA2 st. dev. syst. return, part not linked to F 0.114

Income
6 drift aggregate wage growth 0.008

Catherine (2021)

_AF sensitivity aggregate wage growth to return 0.161

fq st.dev. aggregate wage growth shock 0.017

d autocorrelation persistent component 0.967

`Y constant mean persistent shock, tail −0.086

_YF sensitivity mean perm. shock to ΔF, tail 4.291

?Y probability tail events 0.136

f
Y

st.dev. persistent shock, tail 0.562

fY st.dev. persistent shock, non-tail 0.037

f
a

st.dev. transitory shock, tail 0.895

fa st.dev. transitory shock, non-tail 0.089

Table 1: Model parameters values.
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4 Model fit

4.1 Targeted moments

We begin by assessing how well the model, which we refer to as our benchmark model in
the following sections, matches the targeted moments. The wealth-to-income ratio is 4.09, which
is close to 4, the value in the data. The unconditional risky share (defined as the individual
portfolio’s expected excess return over the market’s), the share of idiosyncratic risk in the total
variance of the individual portfolio, and the participation rate over the wealth distribution are
reported in Figure 1 against their empirical counterparts.

Figure 1: Policies (model vs. data) and share of Type 2 individuals over the wealth distribution.

Overall, the calibration procedure matches well the portfolio choices over the wealth
distribution, even though it slightly undershoots the participation rate in the bottom quantiles.

Why does preference heterogeneity enable us to closely replicate the empirical patterns?
The outcome of the calibration implies that the economy is predominantly populated by type-
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one individuals, distinguished by higher impatience, higher risk aversion, and lower share
of idiosyncratic risk in their portfolios. Only 4% are type-two agents, who feature opposite
characteristics. However, as shown in the bottom right panel of Figure 1, mainly thanks to their
higher X parameter, in equilibrium individuals of the latter type endogenously concentrate at
the top of the wealth distribution.16 As in the model portfolio choice patterns over the wealth
distribution are largely determined by the relative share of types, the increasing number of
type-two individuals - whose estimated preference parameters imply a high risky share and high
idiosyncratic risk at the same time - over wealth allows the framework to reproduce the trends in
the data.

It is also worth noticing that the estimated participation fixed cost, 0.05% of average yearly
income, is very small compared to other (often unrealistically large) values used in the literature.
The fact that more risk-averse individuals mainly populate the bottom of the wealth distribution -
where participation is not an obviously optimal choice - is the reason why our model can match
participation and portfolio choices with a low fixed cost. Indeed, high-risk aversion combined
with the effect of countercyclical income risk, implies that even a small value of this parameter
has a sufficient deterring effect on stock market entry.17

4.2 Untargeted moments: wealth distribution

Table 2 presents the model’s performance in matching the share of total wealth held by
different quantiles of the wealth distribution. We compare our results with empirical values
computed by Krueger et al. (2016) using PSID (2006) and SCF (2007) data and, since we
use portfolio choice moments from Swedish administrative data to estimate the model, with
corresponding measures of the Swedish wealth distribution. Furthermore, to check how our
framework compares to a state-of-the-art model of wealth inequality without portfolio choice,
we add a column with the values generated by the benchmark model in Krueger et al. (2016).

16Figure A.1 reports the mass of the two types in levels.

17This mechanism is missing in a representative agent model in which, by construction, a high fixed cost is required
to discourage the average agent from participating.
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Share held by (%): Benchmark Krueger et al. (2016) PSID (2006) SCF (2007) Sweden (2000-2007)
Q1 2.2 0.3 -0.9 -0.2 -1.1

Q2 5.6 1.2 0.8 1.2 2.8

Q3 9.2 4.7 4.4 4.6 8.7

Q4 15.5 16.0 13.0 11.9 19.4

Q5 67.5 77.8 82.7 82.5 70.2

90-95 % 11.5 17.9 13.7 11.1 13.4

95-99 % 22.5 26.0 22.8 25.3 17.9

Top 1 % 20.1 14.2 30.9 33.5 21.3

Wealth Gini 0.64 0.77 0.77 0.78 0.69

Table 2: Share of wealth held by people in different quantiles of the wealth distribution: benchmark

model vs. data and a state-of-the-art model of wealth inequality.

The model matches well the share of wealth held by the 90-95%, 95-99%, and top 1%
groups in the US. In the first two cases, it gets closer than Krueger et al. (2016) who, instead,
overshoot the actual values. In the last case, despite being still very far from the corresponding
figure in the data, compared to theirs, our model is able to generate a six percentage points higher
share of wealth held. Remarkably, our framework delivers an even better match of top wealth
inequality in Sweden18, except for the share held by the 95-99% group, which is slightly higher
in the model.

When looking at the distribution as a whole, instead, the performance is less satisfactory.
In particular, the first three quintiles hold too much wealth compared to the data, and, as a
consequence, the last quintile holds too little. This translates into lower Gini coefficients for
wealth inequality than the actual values. Allowing for borrowing - and thus for agents to have
negative wealth - might attenuate this issue, which is particularly relevant for the first quintile.19

5 Counterfactuals

After having presented the fit of our benchmark specification, in this section we investigate
the role of different model components in matching the targeted moments and generating a
realistic wealth distribution. To this end, we shut down different features of our benchmark
model and quantify the counterfactual predictions.

18This is likely related to the fact that we estimate the preference parameters using portfolio choices over wealth from
Swedish data.

19We plan to extend the model towards this direction in future research.
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5.1 Homogeneous preferences

One of themain novelties of this paper is introducing rich heterogeneity in agents’ preferences.
In the following, we argue that this feature of our framework is crucial for explaining the targeted
moments on portfolio choice over the wealth distribution shown in Figure 1. To this end, we
re-estimate the model restricting preference parameters to be identical for both types.20 Table 3
reports the parameter estimates for this case. With only one type, the values are in between the
figures obtained in the benchmark case, as this minimizes the differences at the extrema of the
schedules. This is also clearly visible from Figure 2, which shows the unconditional risky share
(left panel) and the share of idiosyncratic variance (right panel) over the wealth distribution for
this specification and the benchmark model. Notably, the estimated fixed cost with is higher than
in the benchmark case: as there is just one value for risk aversion, agents at the bottom need to
be discouraged more from participating.21

The first argument for why the model without preference heterogeneity cannot deliver
the empirical patterns concerns the schedule of the unconditional risky share over the wealth
distribution. In the data - see Figure 1 - the risky share is increasing throughout the distribution,
a feature which is captured by our model with preference heterogeneity. With only one type,
instead, the unconditional risky share is flat at zero for the first four deciles and increases up to
roughly 25% between the fourth and seventh decile. In contrast to the empirical patterns, risky
shares are constant or even decline in wealth for the top three deciles of the distribution.

Apart from the participation fixed cost, that risky shares initially increase in wealth is due
to the forces highlighted in Catherine (2021). Despite their high human capital-to-wealth ratio,
asset-poor individuals choose not to invest in the stock market due to the riskiness of their labor
income. The strength of this effect vanishes as individuals become richer, but, at the same
time, their human capital-to-wealth ratio declines. The risky share, therefore, plateaus before
converging back to Merton’s constant (Merton, 1969).

Despite the mechanism just described, the benchmark model with preference heterogeneity
delivers increasing risky shares even at the top of the wealth distribution thanks to compositional
effects. Indeed, due to their lower risk aversion, the risky share of type-two individuals converges
to a higher constant than for type-one agents. As the share of type two individuals rises at the
top, the risky share increases.

20To be precise, we re-estimate X, W, Z and the participation cost 5 while targeting the same moments as for the
benchmark model.

21Figure A.2 reports the schedule of participation over wealth.
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Figure 2: Policies over the wealth distribution in the model without preference heterogeneity, compared

to the benchmark and data.

The second argument is related to the schedule of the share of idiosyncratic risk in total
return risk over the wealth distribution. Figure 1 shows that (as in Bach et al. (2020)) the share
of idiosyncratic risk is increasing in wealth, i.e., wealthier households hold relatively more
idiosyncratic risk in their risky portfolios.

In our setting, the variance of the idiosyncratic return component is governed by Z , i.e.
individuals with the same Z face the same idiosyncratic risk. Heterogeneity in the share of
idiosyncratic return variance, therefore, arises only through differences in Z across agents.

Compositional effects are again crucial for our benchmark model to replicate the empirical
patterns for this schedule. Type-one individuals with relatively low Z (and thus low idiosyncratic
risk) mostly populate the bottom of the wealth distribution, whereas type-two agents with
relatively high Z (and thus high idiosyncratic risk) endogenously end up at the top. As a result,
the share of idiosyncratic risk is increasing over the wealth distribution. As illustrated in the
right panel of Figure 2, without Z heterogeneity, the same quantity is constant.

The previous two points highlight the role of heterogeneity in risk aversion W and portfolio
diversification Z . In both cases, we described that compositional effects due to the endogenous
sorting of the two types over the wealth distribution were key to generating the increasing
schedules of the risky share and of the share of idiosyncratic risk. To reinforce the argument,
therefore, it is also important to highlight that attributing a higher degree of patience X to type-two
individuals (less risk averse and less diversified) and a lower one to type-one agents (risk averse
and diversified) ensures that the former endogenously end up at the top of the wealth distribution.
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Estimated value: Benchmark No het. Only X Only W No idio. ret. No skew.

Time preference rate, X
Type 1 0.87 0.91 0.75 0.92 0.88 0.88

Type 2 0.96 0.96 0.92 0.96 0.96

Risk aversion, W
Type 1 10.31 6.54 5.42 4.34 9.22 18.42

Type 2 1.37 5.42 6.31 1.20 1.28

Diversification, Z
Type 1 0.59 0.63 0.67 0.76 0 0.64

Type 2 1.08 0.67 0.76 0 1.09

Fixed cost, 5 0.001 0.020 0.007 0.079 0.001 0.005

Share of Type 1 0.96 1 0.74 0.69 0.96 0.97

Table 3: Parameter estimates: benchmark model vs. alternative specifications. “No het.” indicates the

model without preference heterogeneity, “Only X” the model with only heterogeneity in X, “Only W” the

model with only heterogeneity in W, “No idio. ret.” the model without idiosyncratic returns and “No

skew.” the model without tail income shocks, stock market crashes and correlation between the income

and return processes.

In addition to the effects on portfolio choice, shutting down preference heterogeneity has
further implications for wealth inequality. It is known at least since Krusell and Smith (1998)
that heterogeneity in patience (X in our model) across individuals, can generate higher wealth
inequality than the restricted case. The reason is that more patient individuals with higher saving
rates are concentrated at the top of the wealth distribution in equilibrium, generating a longer
right tail. The quantitative impact of preference heterogeneity on the wealth distribution is shown
in Table 4. The Gini coefficient declines from 0.64 in the benchmark model to 0.61 in the model
without preference heterogeneity, mainly due to a lower share of wealth held by the top quantile.
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Share held by (%): Benchmark No het. Only X Only W No port. No idio. ret. No skew.
Q1 2.2 1.9 0.5 1.2 2.4 2.2 2.3

Q2 5.6 5.4 1.5 4.0 6.5 5.7 5.9

Q3 9.2 10.0 2.9 7.7 10.8 9.6 9.7

Q4 15.5 17.9 10.2 16.1 18.0 16.2 16.2

Q5 67.5 64.8 85.0 71.0 62.3 66.3 65.8

90-95 % 11.5 12.8 17.6 14.0 12.3 12.0 11.2

95-99 % 22.5 20.2 28.4 22.9 18.8 21.6 22.2

Top 1 % 20.1 16.0 21.1 17.9 16.1 18.3 19.0

Wealth Gini 0.64 0.61 0.79 0.68 0.58 0.62 0.62

Table 4: Share of wealth held by people in different quantiles of the wealth distribution: benchmark

model vs. alternative specifications. “No het.” indicates the model without preference heterogeneity,

“Only X” the model with only heterogeneity in X, “Only W” the model with only heterogeneity in W, “No

port.” the model without endogenous portfolio choice, “No idio. ret.” the model without idiosyncratic

returns and “No skew.” the model without tail income shocks, stock market crashes and correlation

between the income and return processes.

Understanding policies. In order to shed some light on the mechanisms driving the results
for the model without preference heterogeneity, it is useful to examine the policy functions.

There are two well known factors (see e.g. Campbell and Viceira, 2002) shaping the optimal
choice of the risky share: the human capital-wealth ratio and the extent to which human capital
has bond-like properties (i.e. should human capital be considered more similar to a safe or risky
asset). This follows from the fact that optimal consumption is a function of such ratio, so its
level and riskiness matter for consumption smoothing.

In a model where income is bond-like (see for example the benchmark specification in
Cocco et al., 2005), the optimal risky share is 100% for the wealth-poor, and gradually declines
as human capital gets smaller relative to wealth. The specification we use, however, features
cyclically skewed income shocks, which helps to generate realistic portfolio choices as first
shown in Catherine (2021). Intuitively, if the most adverse income shocks are more likely to
happen in times of bad stock market performance, agents with low wealth must be more careful
in their portfolio decisions.

To visualize this effect and to show that we replicate the findings of Catherine (2021), Figure
3 presents the policy functions for the risky share (b) over cash-on-hand for three different values
- low, medium and high - of the persistent component of idiosyncratic income. For the sake of
the argument, note that the x-axis is in log scale and that the participation cost is temporarily set
to a very low value to make patterns more visible.
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Figure 3: Policy functions for the risky share (b) for different states of the persistent component of

idiosyncratic income. The three I values approximately correspond to the 25th, 50th and 75th percentiles

of the steady state persistent income distribution.

In contrast to the bond-like human capital case, the optimal risky share for all three income
states starts at zero, then gradually increases and finally decreases in cash-on-hand. The strongest
effect is for agents with a higher I state and, for those among themwith low levels of cash-on-hand,
the standard finding of a positive relationship between human capital and the risky share is even
reversed. This is because negatively skewed income shocks are especially severe for agents with
higher persistent income as a fraction of total wealth.

There are two conclusions to draw from this discussion. Firstly, even lacking preference
heterogeneity, the cyclical skewness channel helps to match portfolio patterns for the wealth-poor,
as the extreme risk-taking of agents with a high human capital-to-wealth ratio implied by more
traditional income processes is reduced. However, for most persistent income states, the increase
in optimal risky share happens over a relatively narrow range of wealth (note the log scale in
Figure 3). Thus - secondly - even if participation costs are absent, this mechanism alone has
difficulties matching the gradual increase in the empirical risk-taking patterns over the whole
wealth distribution. In particular, since any channel relying on the nature of human capital is
by construction weak for agents with a low human capital-to-wealth ratio, without preference
heterogeneity the model cannot match any increase at the top of the wealth distribution, which
highlights the importance of this latter element for our results.

5.2 Fixed portfolio choice

To what extent does optimal portfolio choice amplify the effect of preference heterogeneity
on wealth inequality? In this section, we study the counterfactual predictions of the benchmark
model without endogenous portfolio choice. Specifically, we solve the model fixing for all
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individuals the share invested in the risky asset such that the ratio of risky assets held in the
economy to total net wealth equals that of the benchmark specification.22

The impact on wealth inequality of optimal portfolio choice is significant, particularly at
the top. Table 4 shows that under fixed portfolio choices, the wealth Gini decreases from 0.64 in
the benchmark model to 0.58 and that the share of wealth held by the top quintile and by the top
1% decreases, respectively, from 67.5% to 62.5% and from 20.1% to 16.1%.23

The explanation for this finding is the following. Type-two individuals have a higher optimal
risky share, which results in higher average returns than the rest of the population and amplifies
the impact of larger saving rate due to lower impatience, as well as the large idiosyncratic shocks
they are exposed to. Thus, when they are not forced to choose the same portfolio composition
as the rest of the population, they are more likely to land on the top of the wealth distribution.
The quantitative importance of these channels is illustrated in Figure 4, which shows that the
concentration of type-two individuals among the wealthy is strongest in the benchmark model
with endogenous portfolio choice.

Figure 4: Share of type 2 individuals, benchmark model vs. model without portfolio choice.

As a result (see Figure 1), in line with the empirical patterns, in the model with preference
heterogeneity and free portfolio choice, the average unconditional risky share is an increasing
function of wealth, even at the very top of the distribution.

22Since all the targeted moments (except for the wealth-to-income ratio) are related to portfolio choice, we do not
re-estimate the model parameters for this counterfactual, but use the same values of the benchmark case.

23Note that in an alternative counterfactual with the share of risky assets fixed at zero, the effect on wealth inequality
would be even larger.
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5.3 No idiosyncratic returns

To understand the role of idiosyncratic returns in shaping the wealth distribution, we evaluate
the performance of another counterfactual model without idiosyncratic returns. Specifically, we
set Z equal to zero, which, in turn, implies zero mean and variance of log idiosyncratic returns
[8,C for all individuals 8 and periods C.24 As depicted in Figure 5, the model-generated policies
match the data almost as accurately as the benchmark. The estimates of the common parameters
across the two specifications are also similar, as reported in Table 3.

Figure 5: Policies over the wealth distribution in the model without idiosyncratic return risk, compared

to the benchmark and data.

Table 4 shows the effect on the wealth distribution. As participation is low for the bottom
quantiles in the benchmark and the counterfactual model, idiosyncratic returns barely affect
the share of wealth held by the lowest three quintiles. The effect is largest for the top quantiles
where agents participate more. For the top 1% of the wealth distribution, the share of wealth
held declines from 20.1% in the benchmark to 18.3% in the model without idiosyncratic returns.
When looking at total wealth inequality as measured by the Gini coefficient, the decrease in
inequality is not too pronounced: 0.64 in the benchmark vs. 0.62 in the counterfactual. The
limited impact of the idiosyncratic component of returns is in line with the results in Hubmer et
al. (2021), who also find a small effect and mainly clustered at the top.

5.4 Heterogeneity in one preference parameter

To highlight the effects coming from impatience and risk aversion in isolation, we solve for
counterfactuals where we restrict the model to heterogeneity in a single preference parameter

24As there is no idiosyncratic return risk, when we estimate this restricted model we only target the schedules of risky
share and participation over the wealth distribution (and wealth-to-income ratio).
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(X, W). In particular, we re-estimate the model parameters two times and in each estimation we
allow for heterogeneity in just one of them. We target the same moments as in the benchmark
model.

The estimated parameters and the effect on the wealth distribution are presented in Tables
3 and 4 in the columns “Only X” and “Only W”. We will analyze more in detail below the
results from the two specifications, but it is already worth noticing that both these counterfactual
models generate higher wealth inequality (especially the former) without providing a good fit to
empirical portfolio choice patterns, as illustrated in Figure 6.

Figure 6: Policies over the wealth distribution. Specifications allowing for heterogeneity in one preference
parameter at a time, compared to the benchmark and data.

Only X. A low discount factor implies both low saving rates and low participation, so in theory
this setup can make the type more willing to invest into stocks concentrate on the top of the
wealth distribution. However, since this margin does not affect substantially the conditional risky
share, the increasing risky share pattern is matched only through the participation channel and
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hence it is not sufficiently gradual. Furthermore, after full participation the risky share cannot
increase anymore in wealth. The attempt to match portfolio choice only through heterogeneity in
the discount factor results in a rather extreme value for X of the majority type, namely 0.75. Due
to the resulting powerful separation between the two types over the wealth distribution, wealth
inequality becomes large, even surpassing the empirical benchmark from Swedish data.25

Only W. As high risk aversion implies low stock holdings, but high savings, generating a stock
holder type on the top of the wealth distribution is less straightforward by heterogeneity in W.
Therefore portfolio choice patterns are matched again mostly through the participation margin,
and the calibrated risk aversion parameters are estimated to match the average stock holdings
over the region where participation occurs, achieving a slightly less pronounced decrease in
risky share for the richest than in the “Only X” case.

5.5 No skewness in labor income and return

Labor income and returns in the benchmark model are skewed. We have discussed the
implications of these properties for the policy functions in section 5.1. In this section, we turn
off skewness in labor income and returns and assess how well this restricted model performs. To
be precise, we turn off stock market crashes, tail income shocks and the correlation between the
income and return process.26

As for the previous counterfactuals, the parameter estimates are shown in Table 3. Intuitively,
to match a given schedule of participation, risk aversion or the fixed portfolio cost need to
increase as skewness risk disappears. This is exactly what the parameter estimates point to. Risk
aversion of type-one individuals increases to roughly 18, while the fixed cost of participation
increases roughly five times relative to the benchmark case. Figure 7 shows the fit of the targeted
portfolio choice patterns. The share of idiosyncratic variance in total return variance is well
matched, however the model overshoots the unconditional risky share and participation for most
percentiles of the wealth distribution.

25That X heterogeneity can generate high wealth inequality is known at least from Krusell and Smith (1998).

26While turning off skewness, we ensure that returns and labor income have the same mean and variance as in the
benchmark model. For a detailed outline see Appendix D.
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Figure 7: Policies over the wealth distribution when skewness and correlations are turned off, compared

to the benchmark and data.

Even though preference heterogeneity still enables to accurately match inequality (see
Table 4) and all portfolio patterns for the top 10% of the wealth distribution, without skewness
and correlation in income and return risk the model struggles to provide a good fit on the
lower portion of the wealth distribution. In particular, in line with the predictions of standard
portfolio choice models (as discussed in section 5.1), between the initial jump due to increasing
participation and the final hike due to the compositional effect, the average risky share is a
counterfactually decreasing function of wealth.

6 Conclusion

This paper introduces a macroeconomic angle to the recent empirical findings on portfolio
choice by answering the following questions. First, which additional model ingredients to an
otherwise standard incomplete-markets model suffice to generate portfolio choice characteristics
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consistent with the data? Second, how do those different model ingredients help to generate a
realistic wealth distribution?

We include heterogeneity in individual preferences and a rich process that features cyclical
skewness in earnings and idiosyncratic returns à la Catherine (2021) to a Bewley model with
endogenous portfolio choice. We estimate the parameters governing preference heterogeneity
to match the portfolio choice patterns documented in Bach et al. (2020). Heterogeneity in
patience, risk aversion and the desire to diversify idiosyncratic return risk are three examples
of preference heterogeneity that jointly generate realistic portfolio choice patterns over the
wealth distribution. Alternative model specifications that abstract from preference heterogeneity,
endogenous portfolio choice and non-normalities in the shocks’ distributions worsen the fit of
the portfolio choice patterns considerably. The combination of preference heterogeneity and
endogenous portfolio choice further yields a close match of the wealth distribution, particularly
at the top.

This paper attempts to connect the household finance literature on portfolio choice and
the macroeconomics literature on wealth inequality. We find that a key element to do that
is preference heterogeneity: one type of individuals is characterized by a relatively high risk
aversion and a low time preference rate - commonly used in the household finance literature
- whereas the other, much less numerous type of individuals features preference parameters
commonly used in the macroeconomics literature. Interestingly, this result is an outcome of our
parameter estimation rather than an exogenous assumption.

The model presented in this paper captures salient features of portfolio choice in the data
endogenously and delivers quantitative predictions on the distribution of wealth. In ongoing
work, we quantify dynamic effects of changes in the environment, e.g. aggregate return shocks
or modifications in the tax schedule, on the distribution of wealth along the transition, accounting
for the optimal response in individuals’ portfolio choices.
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A Additional figures

Panel (a): Benchmark Panel (b): Homogeneous preferences

Panel (c): Fixed portfolio choice Panel (d): No idiosyncratic returns

Panel (e): Only X heterogeneity Panel (f): Only W heterogeneity

Panel (g): No skewness

Figure A.1: Mass of types over wealth (y-axis for Type 2 on the right) in different model specifications.
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Figure A.2: Participation over the wealth distribution in the model with homogeneous preferences (stars),

compared to benchmark (diamonds) and data (circles).

B Numerical solution

B.1 Discretization and grids construction

Normally distributed random variables. Let - be an i.i.d. Normally distributed random
variable with mean `G and standard deviation fG . We discretize - using Gaussian quadrature.
Specifically, the support of - is approximated with a finite grid of values G1, . . . , G#@

computed
as follows:

G 9 = `G +
√

2fG/ 9 , 9 = 1, . . . , #@

where the / 9 ’s are Gauss-Hermite nodes and the probability mass of each point of the discretized
support is computed as:

?(G 9 ) = l 9/
√
c, 9 = 1, . . . , #@

where the l 9 ’s are Gauss-Hermite weights. This procedure is used to discretize A2,C , qC , [8,C
and the distributions of a8,C and A1,C conditional, respectively, on tail/non-tail event and on stock
market crash/normal period. #@ is the same for all shocks.

Persistent component of idiosyncratic income. We approximate the process governing the
evolution of I8,C as follows: (i) we discretize the conditional distribution of Y8,C , (ii) we compute
the evolution of the persistent component according to equation (5) and (iii) we evaluate the
model functions at the resulting value of I8,C . The advantage of this method is that it requires
to discretize just the conditional distribution of Y8,C , which is easier than discretizing the full
process of I8,C . In particular, the crucial connections between the higher moments of I8,C and
other variables are preserved. The disadvantage is that the resulting values of I8,C will very often
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be off grid, so we need a grid of values that captures well the behavior of the model at such
points given our interpolation procedure.27

Given the above discussion, the grids for Y8,C and I8,C are constructed as follows. The
conditional distribution of Y8,C is discretized using the procedure described above for Normally
distributed shocks with #@ points. To set up the grid for I8,C , instead, we first construct an
exponentially spaced grid of (#I − 1)/2 + 1 points with minimum value equal to zero, maximum
value equal to Imax and spacing parameter equal to spacingI. This gives us the positive side of
the grid plus the central point (which is therefore equal to zero). Then, we add the negative
(#I − 1)/2 values by taking the negative of the positive values just computed and obtain the full
grid of #I points.

Cash-on-hand and savings. For reasons that will be explained when describing the interpola-
tion procedure, we need to keep track of the minimum value of cash-on-hand implied by each
value in the grid of I8,C . Thus, we construct #I grids of cash-on-hand values - one for each grid
value of I8,C - each of which is an exponentially spaced grid of #0 points with minimum value
equal to the lowest possible realization of cash-on-hand - computed from equation (13) - implied
by the specific grid value of I8,C under consideration, the borrowing limit and the discretized
values of the shocks, maximum value equal to 0max and spacing parameter equal to spacing0.

The grid for savings B8,C is an exponentially spaced grid of #B points with minimum value
equal to B, maximum value equal to Bmax and spacing parameter equal to spacingB.

Table 5 summarizes our choices for the numerical parameters.

#@ #I #0 #B Imax 0max Bmax spacingI spacing0 spacingB
5 15 350 #0 3.5 300.0 300.0 1.6 1.25 1.25

Table 5: Numerical parameters.

B.2 Solving the optimization problem

Whenever it does not lead to confusion, we are dropping time and individual specific indices.
To ease up exposition, we also drop the dependence of the value and policy functions (and thus
of the preference parameters) on \. First of all note that as FC follows a random walk and utility
is homogeneous, we can scale with the wage level and reduce the state-space by one dimension.
Let us define Ĝ = G/exp(F) for a generic variable G representing 2, 0, B and equivalently for log

27See below for more details on the interpolation method.
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income, H, we define exp( Ĥ) = exp(H)/exp(F). Also define

+̂ (0, I) = + (0, I, 0)

so that we can write

+ (0, I, F) = exp(F)+
( 0

exp(F) , I, 0
)
= exp(F)+̂ (0̂, I).

Now the optimization problem can be written as

+̂ (0̂, I) = max
{2̂,B̂,b}

{
(1 − X)2̂1−k + X

[
E
[
4(F

′−F) (1−W)+̂ (0̂′, I′)1−W
] ] 1−k

1−W

} 1
1−k

subject to

2̂ + B̂ + �8,C 5̂ = 0̂

0̂′ =
[
' 5 + b'4′

]
B̂4F−F

′ + exp( Ĥ′) + 1̂′

B̂ ≥ B̄.

To simplify ideas and notation, let us introduce

+̃ ( B̂, b, I) =
[
E
[
4(F

′−F) (1−W)+̂ (0̂′, I′)1−W
] ] 1−k

1−W

The first order condition with respect to the risky share is then:

0 =
m+̃ ( B̂, b, I)

mb
=

1 − k
1 − W

[
+̃ ( B̂, b, I)

] W−k
1−k
E
[
(1 − W)4(F′−F) (1−W)+̂ (0̂′, I′)−W m+̂ (0̂

′, I)
m0̂′

30̂′

3b

]
0 =E

[
4−W(F

′−F)+̂ (0̂′, I′)−W m+̂ (0̂
′, I)

m0̂′
'4′

]
,

where for the last equation we used that +̃ ( B̂, b, I) ≠ 0. The first order condition for the
consumption/saving decision reads:

(1 − X) (1 − k)2̂−k = X m+̃ ( B̂, b, I)
mB̂

(1 − X) (1 − k)2̂−k = X1 − k
1 − W

[
+̃ ( B̂, b, I)

] W−k
1−k
E
[
(1 − W)4(F′−F) (1−W)+̂ (0̂′, I′)−W m+̂ (0̂

′, I)
m0̂′

30̂′

3B̂

]
(1 − X)2̂−k = X

[
+̃ ( B̂, b, I)

] W−k
1−k
E
[
4−W(F

′−F)+̂ (0̂′, I′)−W m+̂ (0̂
′, I)

m0̂′
(' 5 + b'4′)

]
and the envelope condition is:
m+̂ (0̂, I)
m0̂

=
1

1 − k
[
+̂ (0̂, I)

]k [
(1 − X) (1 − k)2̂−k 32̂

30̂
+ X

[m+̃ ( B̂, b, I)
mB̂

3B̂

30̂
+ m+̃ ( B̂, b, I)

mb

3b

30̂

] ]
m+̂ (0̂, I)
m0̂

= (1 − X)
[
+̂ (0̂, I)

]k
2̂(0̂, I)−k

After simplifying the two first order conditions read

0 =E
[
4−W(F

′−F)+̂ (0̂′, I′)k−W 2̂′(0̂′, I′)−k'4′
]

(B.1)

2̂−k = X
[
+̃ ( B̂, b, I)

] W−k
1−k
E
[
4−W(F

′−F)+̂ (0̂′, I′)k−W 2̂′(0̂′, I′)−k (' 5 + b'4′)
]

(B.2)

34



Algorithm to solve for value and policy functions To solve equations (B.1) and (B.2) we
need to evaluate expectations over policy and value function both on and off the grid points for
cash-on-hand and persistent income. Sections B.3 and B.4 provide further details on how we
compute expectations and interpolate.

1. Assume we have a guess for +̂ , 2̂ and b. For starting one can simply take 2̂′(0̂, I) = 0̂,
+̂ ′(0̂, I) = (1 − X)

1
1−k 0̂ with an arbitrary b′ function. Fix a grid {\1, . . . , \: , . . . , \ } for

the preference states, {I1, . . . , I 9 , . . . , I"} for the possible values of persistent income and
{B̂1 = B̄, B̂2, . . . , B̂8, . . . , B̂# } for savings.

2. For all 8, 9 (i.e. for any preference and persistent income state)
(a) For all i (savings values) compute

i. the optimal risky share b (under participation only, for non-participation set
b = 0 and go to ii.). Recall that b is chosen to maximize +̃ ( B̂, b, I) and that
(ignoring constants)

m+̃ ( B̂, b, I)
mb

= E
[
4−W(F

′−F)+̂ (0̂′, I′)k−W 2̂′(0̂′, I′)−k'4′
]
.

From the second order condition it follows that there is a unique local maximum.
Optimal risky share is computed as follows:
A. if a risky share of 1 was optimal in the previous iteration, check whether

this is still true. This is the case if
m+̃ ( B̂, b, I)

mb
> 0.

If not, save the information that b < 1.
B. if a risky share of 0 was optimal in the previous iteration, check whether

this is still true. This is the case if
m+̃ ( B̂, b, I)

mb
< 0.

If not, save the information that b > 0.
C. if in the previous iteration neither b = 0 nor b = 1 was optimal, use the

secant method (combined with the information from i. and ii.) to find b
such that

m+̃ ( B̂, b, I)
mb

= 0.

For the secant method two starting points are needed. As the first point use
the previous iteration’s optimal risky share. The second point is found by
moving slightly to the left or right of the first point (depending on the sign
of m+̃ ( B̂,b,I)

mb
).

ii. optimal consumption 2̂ by solving

2̂−k = X
[
+̃ ( B̂, b, I)

] W−k
1−k
E
[
4−W(F

′−F)+̂ (0̂′, I′)k−W 2̂′(0̂′, I′)−k (' 5 + b'4′)
]
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With this at hand we can compute the value function as

+̂ =

{
(1 − X)2̂1−k + X

[
E
[
4(F

′−F) (1−W)+̂ ′(0̂′, I′)1−W
] ] 1−k

1−W

} 1
1−k

and cash-on-hand as
0̂ = 2̂ + B̂ + �̂ 5

Note that for computing cash-on-hand the budget constraint for participation
and non-participation differ wrt. to the participation costs. Due to the discrete
choice of whether to participate or not, computation of consumption, value and
cash-on-hand has to be done separately assuming using the optimal risky share
computed in (i) and assuming non-participation.

(b) Interpolate the value function and the policy functions for consumption and the risky
share (separately for participation and non-participation) over cash-on-hand. By
comparing value functions over the cash-on-hand grid we obtain at which part of the
grid the agent is participating. We connect value functions and policy functions over
the cash-on-hand grid at an n environment around the participation threshold.

3. Convergence is declared when the absolute change in the optimal risky share and the
relative change of optimal consumption policies are both smaller than a pre-specified
tolerance at every grid point.

B.2.1 Changes when k = 1

The value function satisfies

+̂ (0̂, I) = max
{2̂,B̂,b}

{
2̂1−X

[
E
[
4(F

′−F) (1−W)+̂ (0̂′, I′)1−W
] ] X

1−W
}

+̃ ( B̂, b, I) =
[
E
[
4(F

′−F) (1−W)+̂ (0̂′, I′)1−W
] ] X

1−W

The first order condition with respect to the risky share is:

0 =
m+̃ ( B̂, b, I)

mb
= 2̂1−X X

1 − W

[
+̃ ( B̂, b, I)

] W−1+X
X

E
[
(1 − W)4(F′−F) (1−W)+̂ (0̂′, I′)−W m+̂ (0̂

′, I′)
m0̂′

30̂′

3b

]
0 =E

[
4−W(F

′−F)+̂ (0̂′, I′)−W m+̂ (0̂
′, I′)

m0̂′
'4′

]
,

where for the last equation we used that +̃ ( B̂, b, I) ≠ 0. The first order condition for the
consumption/saving decision reads:

(1 − X)2̂−X+̃ ( B̂, b, I) = 2̂1−X m+̃ ( B̂, b, I)
mB̂

(1 − X)2̂−1+̃ ( B̂, b, I) = X

1 − W

[
+̃ ( B̂, b, I)

] W−1+X
X

E
[
(1 − W)4(F′−F) (1−W)+̂ (0̂′, I′)−W m+̂ (0̂

′, I′)
m0̂′

30̂′

3B̂

]
(1 − X)2̂−1 = X

[
+̃ ( B̂, b, I)

] W−1
X

E
[
4−W(F

′−F)+̂ (0̂′, I′)−W m+̂ (0̂
′, I′)

m0̂′
(' 5 + b'4′)

]
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and the envelope condition is:
m+̂ (0̂, I)
m0̂

= (1 − X)2̂−X+̃ ( B̂, b, I) 32̂
30̂
+ 2̂1−X

[m+̃ ( B̂, b, I)
mB̂

3B̂

30̂
+ m+̃ ( B̂, b, I)

mb

3b

30̂

]
m+̂ (0̂, I)
m0̂

= (1 − X)2̂−X+̃ ( B̂, b, I)

After simplifying the two first order conditions read

0 =E
[
4−W(F

′−F)+̂ (0̂′, I′)1−W 2̂′(0̂′, I′)−1'4′
]

(B.3)

2̂−1 = X
[
+̃ ( B̂, b, I)

] W−1
X

E
[
4−W(F

′−F)+̂ (0̂′, I′)1−W 2̂′(0̂′, I′)−1(' 5 + b'4′)
]

(B.4)

B.3 Interpolation

The solution procedure outlined in section B.2 will very often require to evaluate the value
function and the consumption policy at points off the grid. As explained in section B.1, we do
not discretize the persistent component of idiosyncratic income, which implies that we need to
interpolate these functions not only at points off the cash-on-hand grid, but also off the grid of
persistent income. In other words, we need a 2-dimensional interpolation procedure over the
(0, I) grid. This is achieved by 2-dimensional linear interpolation.

B.4 Computing expectations

In order to solve the model, it is necessary to compute expectations of some non trivial
functions. In the most general case, we need to compute expectations with respect the shocks
A1, A2, q, Y, a and [.28 To do that, we proceed as follows: (i) for all the possible combinations
of grid values of these variables, we compute the value of the function (ii) we multiply it by
the probability of that particular combination of values (iii) once we have done this for all
the possible combinations we sum up all the function values obtained. Note that except for
transitions in the preference state, the grid values and probabilities of the other shocks coincide
with Gaussian quadrature nodes and weights29, which enables us to compute expectations very
accurately. Finally, remember that the distributions of A1 is conditional on the realization or
not of a stock market crash and, similarly, those of Y and a on the realization of a tail event or
not. This is taken into account simply by scaling the probability of the discretized conditional
distributions of these variables by the probability of these events.

28Cases in which we do not need to take expectations with respect to one or more of these variables can be handled by
the same procedure outlined here with straightforward modifications.

29See section B.1.
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B.5 Simulation and stationary distributions

In this model the unique aggregate state is the distribution of agents across individual
states which are characterized by the triple (\8,C , I8,C , 08,C). As described before, values of all
these states are approximated by a finite grid, therefore in the numerical setting the distribution
object can be described as a vector of length #C · #I · #0 containing the probability weights
corresponding to each individual state. To simulate the economy we need to compute the
transition probabilities of moving from one individual state to another, which naturally depend
on the actual value of the aggregate shocks. Therefore to examine the dynamic properties of the
distribution and to characterize the quasi steady state distribution we need to construct transition
matrices corresponding to all values of the aggregate shocks we want to simulate and then
aggregate them into a quasi steady state transition matrix.

Conditional transition matrices Taken a realization of the aggregate shocks (A1, A2, q) given
for each individual state we can compute future cash-on-hand and future persistent income
corresponding to each realization of idiosyncratic shocks, where these are simulated from the
grids described in B.1. Since in the generic case the simulated cash-on-hand and I values do not
fall on grid point, the conditional probability weight corresponding to each simulated (0, I) pair
is distributed between the neighboring 4 (or on edges of the grid 2) points proportionally to their
relative distance. To avoid extrapolation errors, I is truncated between −I<0G and I<0G . From
the transition probabilities of moving from one individual state to another we can build up the
transition matrices conditional on any realisation of the aggregate shocks.

Unconditional transition matrix To obtain a steady state distribution we need an “average
transition matrix”. One way of defining one would be taking the conditional transition matrix
corresponding to the average values of all aggregate shocks. However, a steady state computed
from such a matrix would miss all the consequences of cyclical movements in moments of
idiosyncratic shocks, central to our analysis. Therefore we compute our steady state matrix as a
weighted average of the conditional transition matrices corresponding to shock values used in
the policy iteration, where weights are the probabilities that the given combination of shocks
takes place. Hence all entries in the steady state matrix are the true unconditional transition
probabilities of moving from one individual state to another (before knowing the shock values).

Steady state distribution The steady state is found by iteration, i.e. multiplying an arbitrary
vector with the unconditional transition matrix until convergence. Note that the aggregate state
object is a distribution over preference type, persistent income and cash-on-hand. Using the
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optimal saving policy function, we can compute steady state distribution over preference type,
persistent income and end-of-period assets, which is what we refer to as wealth distribution.

C Distribution of total return

Denote the pdf of a normal distribution with mean ` and variance f2 with 5# (`,f2) and the
pdfs of A1, A2 and [ with 5A1 , 5A2 and 5[. Since the latter three random variables are independent,
we can write the joint pdf of (A1, A2, [) as

5(A1,A2,[) (A1, A2, [) = 5A1 (A1) 5A2 (A2) 5[ ([) =

=?A 5# (`
A
,f2

A1)
5# (0,f2

A2)
5# (−Z2f2

A /2,Z2f2
A )+

+ (1 − ?A) 5# (`A ,f2
A1)
5# (0,f2

A2)
5# (−Z2f2

A /2,Z2f2
A )

where f2
A = f

2
A1 + ?A`

2
A
+ (1 − ?A)`2

A − `2
A + f2

A2 and `A = ?A`A + (1 − ?A)`A . By properties of
normal distirbutions, it follows that A1 + A2 + [ follows a mixed normal distribution with pdf

5(A1+A2+[) (A) = ?A 5# (`
A
−Z2f2

A /2,f2
A1+f

2
A2+Z2f2

A ) (A) + (1 − ?A) 5# (`A−Z2f2
A /2,f2

A1+f
2
A2+Z2f2

A ) (A)

and total risky return 'A = exp(A1+A2+[) follows a corresponding mixed log-normal distribution.
Therefore:

E ['A] =?A exp
(
`
A
− Z2f2

A /2 + (f2
A1 + f

2
A2 + Z

2f2
A )/2

)
+

+ (1 − ?A) exp
(
`A − Z2f2

A /2 + (f2
A1 + f

2
A2 + Z

2f2
A )/2

)
=

=?A exp
(
`
A
+ (f2

A1 + f
2
A2)/2

)
+ (1 − ?A) exp

(
`A + (f2

A1 + f
2
A2)/2

)
and

E
[
'2
A

]
=?A exp

(
2`

A
− Z2f2

A + 2(f2
A1 + f

2
A2 + Z

2f2
A )

)
+

+ (1 − ?A) exp
(
2`A − Z2f2

A + 2(f2
A1 + f

2
A2 + Z

2f2
A )

)
=

=?A exp
(
2`

A
+ 2f2

A1 + 2f2
A2 + Z

2f2
A

)
+ (1 − ?A) exp

(
2`A + 2f2

A1 + 2f2
A2 + Z

2f2
A

)
so that:

V ['A] =E
[
'2
A

]
− (E ['A])2 = ?A exp

(
2`

A
+ 2f2

A1 + 2f2
A2 + Z

2f2
A

)
+

+ (1 − ?A) exp
(
2`A + 2f2

A1 + 2f2
A2 + Z

2f2
A

)
−

− ?2
A exp

(
2`

A
+ f2

A1 + f
2
A2

)
− (1 − ?A)2 exp

(
2`A + f2

A1 + f
2
A2

)
−

− 2?A (1 − ?A) exp
(
`
A
+ `A + f2

A1 + f
2
A2

)
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Assuming ?A = 1 we would have:

V ['A] = exp
(
2`A + f2

A1 + f
2
A2

) (
exp

(
f2
A1 + f

2
A2 + Z

2f2
A

)
− 1

)
≈

≈ exp
(
2`A + f2

A1 + f
2
A2

) (
f2
A1 + f

2
A2 + Z

2f2
A

)
=

=

(
1 + Z2

)
exp

(
2`A + f2

A

)
f2
A

which is intuitive.

D Counterfactuals

In this appendix we describe how we run the counterfactual experiments listed in section 5.

D.1 No idiosyncratic returns

To shut down idiosyncratic return shocks, we simply set Z (\8,C) = 0 for all 8 and C.

D.2 No skewness in labor income and return

Stock market crashes. To eliminate stock market crashes, the distribution of A1 should be
non-skewed while retaining its mean and variance from the benchmark specification with no
preference heterogeneity. This is done by setting:

A1,C
8.8.3.∼ N

(
`A , f̃

2
A1

)
where `A = ?A`

A
+ (1 − ?A)`A and f̃2

A1 = f
2
A1 + ?A`

2
A
+ (1 − ?A)`2

A − `2
A .

Connection between wages and returns. Shutting down the connection between wages and
returns implies that equation (4) should be replaced with:

FC = 6 + FC−1 + _AF`A + qC

Skewness in idiosyncratic shocks. To turn off the skewness of idiosyncratic shocks, the
distributions of Y and a and should be replaced by non-skewed distributions having identical
first and second moments as in the benchmark parametrization with no preference heterogeneity.
Therefore:

Y8,C
8.8.3.∼ N

(
0, f2

Y

)
a8,C

8.8.3.∼ N
(
0, f2

a

)
where

f2
a = ?Yf

2
a
+ (1 − ?Y)f2

a
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and

f2
Y = ?Yf

2
Y

+ (1 − ?Y)f2
Y + ?Y (`Y + _YF (6 + _AF`A))2

+ (1 − ?Y)
(
− ?Y

1 − ?Y
(`Y + _YF (6 + _AF`A))

)2

= ?Yf
2
Y
+ (1 − ?Y)f2

Y +
?Y

1 − ?Y
(`Y + _YF (6 + _AF`A))2
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