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Abstract

We study the in-fill asymptotics of score-driven time series models. For general forms of model

mis-specification, we show that score-driven filters are consistent for the Kullback-Leibler (KL)

optimal time-varying parameter path, which minimizes the pointwise KL divergence between the

statistical model and the unknown dynamic data generating process. This directly implies that

for a correctly specified predictive conditional density, score-driven filters consistently estimate

the time-varying parameter path even if the model is mis-specified in other respects. We also ob-

tain distributional convergence results for the filtering errors and derive the filter that minimizes

the asymptotic filter error variance. Score-driven filters turn out to be optimal under correct

specification of the predictive conditional density. The results considerably generalize earlier

findings on the continuous-time consistency of volatility filters under mis-specification: they apply

to biased filters, use weaker assumptions, allow for more general forms of mis-specification, and

consider general time-varying parameters in non-linear time series models beyond the volatility

case. Several examples are used to illustrate the theory, including time-varying tail shape models,

dynamic copulas, and time-varying regression models.
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1 Introduction

Since their introduction by Creal et al. (2011, 2013) and Harvey (2013), score-driven models have led

to a wide range of new applied flexible non-linear time series models that are successfully applied to

describe time variation in economics and finance.1 These models update the time-varying parameter

by the score of the conditional predictive density. The popularity of the score-driven approach lies in

its generality, its ease of applicability, and its relative computational simplicity since the models can

be estimated by standard maximum likelihood methods. The asymptotic theory of these models has

recently been studied for particular cases in, for instance, Harvey (2013), Blasques et al. (2016, 2018),

Babii et al. (2019), and Hetland et al. (2023). A more general asymptotic statistical framework for

parameter estimation in univariate score-driven models has been formulated in Blasques et al. (2022).

Despite their popularity, the literature has remained remarkably silent on the theoretical corner-

stones of score-driven models, such as the consistency of filtered time-varying parameter paths and

the accuracy of their asymptotic approximations. This holds true even for the correctly specified

model case. If models are (severely) mis-specified, the asymptotic properties of filtered paths of

score-driven models in general settings remain largely unknown. It is here that the current paper

tries to make its main contribution. Next to the asymptotic framework for parameter estimation

mentioned earlier (Blasques et al., 2022), only two other contributions comment on the score-driven

framework’s general properties. First, Blasques et al. (2015, 2018) show that under specific conditions

the Kullback-Leibler (KL) divergence between the true, unknown conditional density and the model

density is improved if and only if the time-varying parameter mechanism uses a score-driven update,

or an equivalent thereof; see Blasques et al. (2023) for further generalizations of this result, and Creal

et al. (2019) for a similar result using other criteria than KL divergence, such as a generalized method

of moments criterion.2 Second, Buccheri et al. (2021) study the in-fill asymptotics for univariate

score-driven volatility filters, building on results of Nelson (1990, 1992).

1 The literature on score-driven models is by now quite extensive, including contributions on modeling time-varying
default probabilities and losses-give-default in panel data (see Creal et al., 2014; Babii et al., 2019), univariate time-
varying mean and volatility modeling (see for instance Harvey and Luati, 2014; Linton and Wu, 2020), multivariate
time-varying volatility modeling, including multivariate realized covariance matrices and multivariate copulas (see
for instance Creal et al., 2011; Lucas et al., 2014; Opschoor et al., 2018; Gorgi et al., 2019; Buccheri et al., 2021;
Hafner and Wang, 2023; Oh and Patton, 2018, 2023), time-varying regression models (Umlandt, 2023), spatial models
with dynamic parameters (Blasques et al., 2016; Gasperoni et al., 2021), time-varying tail shape models, (Massacci,
2017), time-varying cure rate models (Hansen and Schmidtblaicher, 2021), models for dynamic quantiles and tail
expectations (Patton et al., 2019; Catania and Luati, 2023), models for circular time-series and wind angles (Harvey
et al., 2023), time-varying eigenvalues (Hetland et al., 2023), mixture models for clustering (Lucas et al., 2019; Joao
et al., 2023), DSGE models with time-varying structural parameters (Angelini and Gorgi, 2018), state-space models
with time-varying parameters (Monache et al., 2021), models for data on bounded intervals (Gorgi, 2020), models for
multivariate discrete high-frequency tick-data (Koopman et al., 2018), models for classification trees and forests with
time variation (Patton and Simsek, 2023), and much more. For a more complete overview, see for instance the papers
section on http://www.gasmodel.com.

2Further theoretical discrete-time results on KL improvements have recently been derived by van Os (2023) for
modified versions of implicit score-driven models of Lange et al. (2022) as opposed to the explicit score-driven models
of Creal et al. (2013).
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All of these earlier results, however, remain quite specific. The approach of Blasques et al. (2015)

(BKL15 from now on), for instance, su↵ers from three major drawbacks. First, the framework of

BKL15 is in discrete time, limiting its conclusion to the validity of the direction of a (su�ciently

small) parameter update. It does not explicitly address whether the updates succeed in minimizing

the KL divergence in an asymptotic sense. Second, the results in BKL15 are local rather than global

in nature. In particular, they are only applicable in admissible sets, i.e., sets where the true density

dominates the model density (see Blasques et al., 2018). Admissibility of this type cannot be checked

empirically, which reduces the concept’s relevance. Creal et al. (2019) dispense with admissibility by

focusing on expected rather than realized KL improvements, but again can still only make statements

about the direction of the update. Finally, neither BKL15 nor Creal et al. (2019) establish consistency

of the filtered time-varying parameter, nor do they define what consistency could mean in this context

or what size of filtering errors to expect in the limit. Similarly, the in-fill asymptotic analysis of

Buccheri et al. (2021) restricts itself to the volatility case and robust, score-driven volatility filters. It

does not deal with other forms of parameter dynamics such as the wide variety of models mentioned

in Footnote 1. It also considers relatively mild forms of mis-specification, where volatility remains the

prime source of time-variation, and there is no more fundamental mismatch between the time-varying

parameter in the model and in the data generating process (DGP).

In this paper, we address the above issues in a general framework that fills a number of gaps

in the literature. First, we show under what conditions score-driven filters are consistent for the

true time-varying parameter path, even if the model is dynamically mis-specified otherwise. This

includes, for instance, settings where the DGP is of state-space form with a time-varying parameter

driven by its own stochastic process, such that the observation-driven score-based filter is obviously

mis-specified.

Second, even if the model is more severely mis-specified, whether due to the incorrect choice of

the predictive conditional density or the time-varying parameter, we show that score-driven filters

are still consistent estimators for the KL-optimal time-varying parameter path. This path minimizes

(pointwise) the KL divergence between the possibly mis-specified statistical model and the unknown

DGP. The result holds under very general conditions, including cases where the time-varying parameter

and the pseudo-true parameter do not coincide, or are even of di↵erent dimensions. We do not require

a similar notion of admissibility as in Blasques et al. (2018).

Third, we derive the asymptotic behavior of scaled filtering errors, i.e., the scaled di↵erence between

the estimated time-varying parameter and its pseudo-true counterpart. Interestingly, using these new

asymptotic results, we are able to study the variance of filtering error as a function of the shape of

the parameter update. This allows us to construct an optimal update function for observation-driven

filters from a minimum variance perspective. Our findings highlight that score-driven filters are
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the optimal choice if the model’s conditional predictive density is correctly specified. If there is

mis-specification, we show that the (infeasible) optimal update function is proportional to the true

density’s score function, even in cases where the model contains fewer time-varying parameters than

the DGP.

A number of our tools are taken from the familiar work of Nelson (1990, 1992, 1996) for the

continuous time limit of generalized autoregressive conditional heteroskedasticity (GARCH) filters,

and as applied to score-driven volatility filters by Buccheri et al. (2021). We also build on the

slightly less familiar results of Nelson and Foster (1994). In particular, our results on the asymptotic

distribution of filtering errors are inspired by the two-time-scales approach of Nelson and Foster.

However, we also considerably generalize their approach. First, Nelson and Foster (1994) establish

results for filtering errors around the true time-varying parameter path, which in their case is volatility.

In our setting, such a true time-varying parameter path may not exist, and the best we can hope for

is to recover a KL-optimal path. The notion of mis-specification of this type, however, invalidates

some of the key steps in Nelson and Foster’s approach that builds upon the overlap between the true

and filtered time-varying parameters, and we show how to overcome these issues. We also show how

to establish the asymptotic properties of score-driven filters in mis-specified under-parameterized

settings, i.e., settings where the DGP contains more time-varying parameters than the model itself.

Like Nelson (1990, 1992, 1996) and Nelson and Foster (1994), we treat the static parameters of

the filtering equations as fixed in this paper and do not consider data-driven (or estimated) choices

for these parameters. Rather we concentrate on the properties of the filter itself as an ‘estimator’ for

the unknown KL-optimal parameter path, in line with the above references. We leave the issue of

parameter estimation to future work; see for instance Jensen and Lange (2010) for some results in the

volatility setting. However, we gather some additional results for a more generic setting than the one

considered in the main text, where we allow convergence rates to vary over the di↵erent components

of the filtering equation. This might provide a relevant stepping-stone for a further analysis of the

e↵ect of parameter estimation; see the remarks on convergence rates in Jensen and Lange (2010).

The remainder of this paper is structured as follows. Section 2 o↵ers an intuitive understanding

of our asymptotic framework by presenting a simple motivating example. Section 3 then introduces

the general formal modeling set-up. Section 4 develops the asymptotic framework for the score-driven

filter, including consistency to the true or pseudo-true time-varying parameter path, the asymptotic

normality of the filtering errors, and the shape of minimum variance filters. Section 5 contains a

number of illustrative applications of the theory. Section 6 concludes. The appendix gathers the

proofs and supplementary materials.

We adopt the following notational conventions. Vectors and matrices are in bold, whereas scalars

are non-bold. For a vector x = (xj) 2 Rn, its p-norm is denoted by kxkp = (
Pn

j=1 |xj|p)1/p. The
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induced p-norm for a matrix A is defined as kAkp = supx 6=0 kAxkp/kxkp. The subscripts are omitted

whenever p = 2. We write diag (A,B) for a block-diagonal matrix with blocks A and B. Let bxc be

the integer part of x 2 R. Finally, we use C to denote generic constants that can change from line to

line.

2 A motivating example

To set the stage, we first discuss an example that highlights the main aspects of the theory developed

in the subsequent sections of this paper. We consider the case of a Pareto distribution with a

time-varying tail shape parameter that we attempt to filter using the score-driven approach of Creal

et al. (2013) and Harvey (2013). Score-driven filters for time-varying tail shapes have been studied in

for instance Massacci (2017) and D’Innocenzo et al. (2023).

Assume a univariate time series yh(ti,h) observed at the discrete time points ti,h = i · h for

i = 1, . . . , nh with nh = bT0/hc for some fixed T0 > 0. Note that in order to derive our subsequent

results, we thus actually consider a sequence of time series indexed by h for h # 0. We assume that
⇣
yh(ti+1,h)

�� h(ti,h) =  

⌘
has a conditional probability density function (pdf) given by

qh

�
y; 

�
=
⇣
h � `( )

⌘�1
✓

y

h �

◆�1/`( )�1

, y � h � > 0, (2.1)

where  h(ti,h) is the time-varying parameter that we try to filter below. The distribution in (2.1) is

a Pareto distribution with tail-shape parameter `( ). Let `( ) = 4�1
�
1 + exp(� /4)

��1 2 (0, 1/4),

which ensures that the 4th order conditional moment of yh(ti+1,h) always exists for any  2 R. Models

such as (2.1) are for instance used to assess the occurrence of extreme risks, the occurrence of which

may vary with changing economic and market conditions.

Our main interest lies in the asymptotic properties of observation-driven filters when applied to

estimate the time-varying parameter  h(ti,h). The time-variation in the true  h(ti,h) may itself not

be observation-driven. Here and elsewhere in the paper we assume that the dynamics of  h(ti,h) are

specified by their own discrete-time stochastic process. For this introductory example, we assume

 h(ti+1,h) = h a+ (1� h b) h(ti,h) + h
1/2

B ⌘i+1, (2.2)

where ⌘i+1 are i.i.d. innovations with zero mean and unit variance, and a, b, and B are constants.

These underlying dynamics, however, are unknown to the statistician. As mentioned, the statistician’s

goal is to filter the (log) tail shape-parameter from the data. For this, she may use a possibly mis-

specified model. As an illustration, consider the case where the statistician uses a slightly di↵erently
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parameterized version of the same Pareto distribution,

ph

�
y; ✓
�
=
�
h �
��1

exp(�✓)
✓

y

h �

◆� exp(�✓)�1

, y � h� > 0, (2.3)

where she uses the exponential function to transform a possibly negative ✓ into the positive tail-shape

parameter exp(✓). For filtering the tail-shape parameter, the statistician uses a score-driven filter,

specified as

✓h(ti+1,h) = h! + (1� h �)✓h(ti,h) + h
1/2

gh

�
yh(ti+1,h), ✓h(ti,h)

�
, (2.4)

with

gh

�
yh(ti+1,h), ✓h(ti,h)

�
= ↵

@ log ph
�
yh(ti+1,h); ✓h(ti,h)

�

@✓
= ↵

✓
exp

⇥
� ✓h(ti,h)

⇤
ln

✓
yh(ti+1,h)

h �

◆
� 1

◆
;

(2.5)

see Creal et al. (2013) for more details, and Massacci (2017) and D’Innocenzo et al. (2023) for

applications. We follow Nelson and Foster (1994) and Nelson (1996) by considering fixed values of the

parameters ↵, � and ! in the filtering equation (2.4) and do not consider data-driven (or estimated)

parameter choices; more on this can be found in Section 4.4. We thus mainly look at the filter as an

estimator for the true, unknown time-varying parameter path  h(·) or its transform `( h(·)).

The filter in Eq. (2.4) is clearly mis-specified for the true time-varying tail-shape parameter in

at least two ways. First, the true Pareto tail-shape `( h(ti,h)) in (2.1) can only take values in the

range (0, 1/4), whereas the filtered tail-shape parameter exp(✓h(ti,h)) in (2.3) can take values in R+.

Second, the true tail-shape  h(ti+1,h) in (2.2) is driven by its own disturbances ⌘i+1 and thus has

parameter-driven dynamics as defined by Cox (1981), whereas the filter ✓h(ti+1,h) in (2.5) is driven

by the values of yh(ti+1,h) and ✓h(ti,h) via the function gh and thus has observation-driven dynamics.

Despite this double mis-specification, this paper shows that exp(✓h(ti,h)) consistently estimates the

true `( h(ti,h)) as h # 0.

The current mis-specification in the model and filter in Eqs. (2.1)–(2.5) is relatively mild. In later

examples in Section 5, we also establish consistency for much more severe forms of mis-specification.

These include settings where the true density qh and model density ph di↵er, or where the true

parameter  and the model parameter ✓ capture di↵erent aspects of the distribution or even di↵er in

dimension. In such settings, consistency can in general no longer be towards the true time-varying

parameter  h(ti,h), but will instead be towards the Kullback-Leibler optimal value.

To develop some intuition for the general results obtained in this paper, consider a new parameter
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✓
?
h(ti,h) defined as

exp(✓?h(ti,h)) = `( h(ti,h)) () ✓
?
h(ti,h) = ln

⇣
`
⇥
 h(ti,h)

⇤⌘
. (2.6)

This parameter ✓?h(ti,h) is the ‘pseudo true’ value of ✓h(ti,h) in the sense that it gives the same value

of the tail-shape parameter exp(✓?h(ti,h)) as the (transformed) true time-varying parameter `( h(ti,h)).

Using this ✓?h(ti,h), we define the key quantity of this paper, namely the filtering error zh(ti,h) =

✓h(ti,h)� ✓
?
h(ti,h). By combining Eqs. (2.2) and (2.4) and defining �zh(ti+1,h) = zh(ti+1,h)� zh(ti,h),

we obtain

�zh(ti+1,h) = h
1/2

gh

�
yh(ti+1,h), ✓h(ti,h)

�
� h

1/2 d✓
?
h(ti,h)

d h(ti,h)
B⌘i+1 +OP (h), (2.7)

where we use the notation OP (h) to denote terms of the form h ·Xh for some random sequence (Xh)

that is bounded in probability. Using a first order Taylor series approximation of (2.7) around ✓?h(ti,h),

we get

�zh(ti+1,h) = h
1/2 @gh

�
yh(ti+1,h), ✓?h(ti,h)

�

@✓
zh(ti,h)+h

1/2


gh

�
yh(ti+1,h), ✓

?
h(ti,h)

�
� d✓?h(ti,h)

d h(ti,h)
B⌘i+1

�
+OP (h).

(2.8)

A formal analysis of the validity of all steps is provided in Section 4. Ignoring the OP (h) term, which

converges to zero in probability as h # 0, Eq. (2.8) can be recognized as a first order autoregressive

(AR) process for zh(ti+1,h) with random AR coe�cient 1�h
1/2

Ai+1,h and innovation h
1/2
⇣i+1,h, where

Ai+1,h = �
@gh

�
yh(ti+1,h), ✓?h(ti,h)

�

@✓
, ⇣i+1,h = gh

�
yh(ti+1,h), ✓

?
h(ti,h)

�
� d✓?h(ti,h)

d h(ti,h)
B⌘i+1.

Given the definition of ✓?h(ti,h) in (2.6) and the fact that gh

�
yh(ti+1,h), ✓?h(ti,h)

�
from (2.5) is the

derivative of the log Pareto density, it follows that the innovations ⇣i+1,h of this autoregressive process

have zero mean. After iterating, and neglecting the OP (h) term, we arrive at

zh(ti+1,h) = zh(t0,h)
iY

j=0

h
1� h

1/2
Aj+1,h

i
+

iX

j=0

h
1/2
⇣j+1,h

iY

k=j+1

h
1� h

1/2
Ak+1,h

i

⇡ zh(t0,h) exp


�

iX

j=0

h
1/2

Aj+1,h

�
+

iX

j=0

h
1/2
⇣j+1,h exp


�

iX

k=j+1

h
1/2

Ak+1,h

�
, (2.9)

where the second line follows from the approximation 1� h
1/2

x ⇡ exp(�h
1/2

x) for h # 0, and where

we use the convention that the product over the empty set equals 1. We re-write the argument of the

7



first exponential in (2.9) as

�h
1/2

iX

j=0

⇣
Aj+1,h � E

⇥
Aj+1,h

��  h(tj,h), ✓
?
h(tj,h)

⇤⌘
� h

1/2
iX

j=0

E
⇥
Aj+1,h

��  h(tj,h), ✓
?
h(tj,h)

⇤
. (2.10)

If i is of order h�1, the first sum in (2.10) converges in distribution and hence is bounded in probability,

whereas the second part of (2.10) diverges to �1 if

E
⇥
Aj+1,h

��  h(tj,h), ✓
?
h(tj,h)

⇤
= �E

"
@gh

�
yh(tj+1,h), ✓?h(tj,h)

�

@✓

�����  h(tj,h), ✓
?
h(tj,h)

#
> 0. (2.11)

The latter clearly holds in our current example if ↵ > 0, as we have �E[Aj+1,h |  h(tj,h), ✓?h(tj,h)] =

↵ exp
�
� ✓

?
h(tj,h)

�
E
⇥
ln
�
yh(tj+1,h)/(h�)

�
|  h(tj,h), ✓?h(tj,h)

⇤
= ↵ exp

�
� ✓

?
h(tj,h)

�
`
�
 h(tj,h)

�
= ↵.

Eq. (2.11) also plays a key role in our formal set-up in Section 4.

Combining all elements, the first expression on the right-hand side of (2.9) converges to zero

in probability regardless of the starting value zh(t0,h). A similar argument shows that the second

expression in (2.9) converges to zero in probability, such that the filtering error zh(ti+1,h) converges

to zero in probability and, thus, ✓h(ti,h) is consistent for ✓?h(ti,h) as h # 0. For our Pareto example

this is illustrated in Figure 1 for two randomly drawn realizations of the data at di↵erent frequencies:

h = 1/252 and h = 1/(252 · 78) = 1/19656, i.e., a year of daily and a year of 5-minute frequency

observations, respectively. As the frequency increases, we clearly see that (i) the filtering errors zh(ti,h)

become smaller, such that ✓h(ti,h) and ✓?h(ti,h) overlap more and more closely, and (ii) the filter ✓h(ti,h)

oscillates faster and faster around its target value ✓?h(ti,h).

To understand the latter and to find the right scaling for obtaining an approximating distribution

for the filtering error zh(ti+1,h), we take another look at (2.8). By viewing this equation as a discretized

stochastic di↵erential equation we see that we must multiply the equation by h
�1/4 in order for drift

and innovation terms to be balanced in the sense that the variance of the innovation terms and

the size of the drift terms are of the same order in h. Indeed, defining z̃h(ti,h) = h
�1/4

zh(ti,h) and

multiplying (2.8) by h
�1/4, we obtain

h
�1/4�zh(ti+1,h) = �h

1/2
Ai+1,h h

�1/4
zh(ti,h) + h

1/4
⇣i+1,h +OP (h

3/4)

() �z̃h(ti+1,h) = �h
1/2

Ai+1,h z̃h(ti,h) + h
1/4
⇣i+1,h +OP (h

3/4). (2.12)

Even though the drift and the variance terms are now both of order h1/2 and thus balanced, their

size remains uncommonly large compared to the ‘standard’ setting where both would be of order

h. This is problematic if we wish to approximate the distribution of z̃h(ti+1,h) by that of a di↵usion

process with a drift term of bounded variation. To see this, recall that the time increment between
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Figure 1: Consistency for the score-driven tail-shape filter for the Pareto distribution
The figure contains the path of a simulated tail-shape model using Eqs. (2.1) and (2.2) over a time span T0 = 4
and h equal to either 1/252 (daily data) or 1/19656 (5-minute data). The parameters in the DGP are chosen as
(a, b, B,�) = (1,�3, 3, 100) and the innovations ⌘i follow an i.i.d. standard normal distribution. The resulting
target ‘true’ parameter ✓?h(ti,h) from (2.6), with (!,�,↵) = (0.01,�0.01, 0.6), is given in black and uses the
right-hand y-axis. The underlying data yh(ti,h) are drawn as gray bars at the bottom and use the left-hand
y-axis. The filtered value ✓h(ti,h) using the filter (drawn in red) is given by Eq. (2.4). Drawn in blue, we also
provide the filtered ✓h(ti,h) using the optimal filter from Section 4.3.

z̃h(ti+1,h) and z̃h(ti,h) is h. Hence, for any bounded Ai+1,h the variation of the drift term on a finite

time interval would be of order h1/2 · (1/h) and thus diverge to infinity for h # 0, i.e., the drift term of

the approximating di↵usion process would become of unbounded rather than of bounded variation.

A solution is suggested if we again iterate the autoregression for z̃h(ti+1,h) and use the same

approximation as before: 1� h
1/2

x ⇡ exp(�h
1/2

x). In contrast to what we did earlier, we now only

iterate back to z̃h(tm,h) rather than z̃h(t0,h) for some 0 < m < i+ 1. Omitting approximation errors,

we obtain

z̃h(ti+1,h) = exp


�

iX

j=m

h
1/2

Aj+1,h

�
z̃h(tm,h) +

iX

j=m

h
1/4
⇣j+1,h exp


�

iX

k=j+1

h
1/2

Ak+1,h

�
. (2.13)

We can now immediately see that if i � m is of order h
�1/2, then under appropriate conditions

Pi
j=m h

1/2
Aj+1,h converges to a constant as it is a sum of h�1/2 random terms multiplied by h

1/2.

Similarly, we can expect that under appropriate conditions
Pi

j=m h
1/4
⇣j+1,h exp

�
�
Pi

k=j+1 h
1/2

Ak+1,h

�

converges in distribution to a normally distributed random variable, as it is a sum of h�1/2 random

terms multiplied by h
1/4. This (heuristically) establishes a distributional convergence result for the

scaled (inflated) filtering errors z̃h(ti,h), which is made precise in Section 4.2.

It is interesting to also highlight here the implication of the above heuristic result for the time

span between z̃h(ti+1,h) and z̃h(tm,h). Because our observations are on an equidistant time grid with

grid size h, the time span between z̃h(ti+1,h) and z̃h(tm,h) is of order h�1/2
h = h

1/2, which converges

to zero as h # 0; see again Section 4.2 for the formal results. The formal proofs make use of results on
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the convergence of Markov chains to di↵usion processes, similar to Nelson and Foster (1994). To use

these for establishing an approximating distribution for the filtering error, we need a workaround for

the time span that shrinks to zero as h # 0. As in Nelson and Foster (1994), the workaround consists

of transforming time on a shrinking interval to a new time index on a fixed interval and considering

the filtering error process and its convergence properties on this new time scale and fixed interval

length.

Figure 2 illustrates the approach. In the two top panels, we plot the unscaled filtering errors zh(ti,h)

for two frequencies using the same vertical axis. Looking at times T = 1/2 (corresponding to the lower

limit, i.e., tm+1,h ⌘ T ) and T +Mh
1/2 (corresponding to the upper limit, i.e., ti+1,h ⌘ T +Mh

1/2 such

that i�m is of order h�1/2), each figure has a small (red) box stretching the time span [T, T +Mh
1/2].

As the frequency 1/h increases, this box shrinks in size, both vertically (due to the consistency) and

horizontally (due to T +Mh
1/2 ! T as h # 0). Zooming out the filtering errors, scaling them by

h
�1/4 and considering them on the interval (0,M ], we obtain the inserted figures in the top panels

or the zoomed-in figures in the middle panels. We see that the scaled-up-and-streched-out filtering

errors behave more and more like a non-degenerate stochastic process as h # 0. In Section 4.2 we

formally show that this process converges to an Ornstein-Uhlenbeck type process in the limit, which

is plausible by comparing the explicit solution of the Ornstein-Uhlenbeck process with Eq. (2.13) and

the arguments given below this equation.

Finally, the two bottom panels in Figure 2 show the distributional convergence of the scaled

filtering error. Clearly, an asymptotic normality result appears to apply. In particular, we obtain an

explicit expression for the asymptotic variance of the filtering errors given the convergence of the

scaled filtering errors to the Ornstein-Uhlenbeck process in the transformed time scale. Looking at

Eq. (2.8), this variance will be composed of three elements: (i) the variance of the innovation process

B⌘i+1 of the underlying true time-varying parameter, scaled by d✓?h(ti,h)/d h(ti,h), (ii) the variance

of the filter innovations gh
�
yh(ti+1,h), ✓?h(ti,h)

�
, and (iii) the filter mean-reversion parameter as defined

by the expectation of Ai+1,h ⌘ �@gh
�
yh(ti+1,h), ✓?h(ti,h)

�
/@✓. Given that the variance is a function

of the filter’s forcing variable gh( · , · ), we can therefore ask ourselves what is the best gh( · , · ) that

minimizes the asymptotic filter error variance. It turns out that this is the score-driven filter of

Creal et al. (2013) and Harvey (2013), where the score is scaled with the square root inverse Fisher

information matrix in the sense of Creal et al. (2013).

The simulated path of the optimal and a score-driven filter with ad-hoc chosen parameters as shown

in Figure 1 reveals that the optimal filter (blue) is much less erratic compared to the score-driven

filter with ad-hoc parameters (red). After de-meaning and standardizing the filtering errors for their

(di↵erent) asymptotic means and variances, the lower panels in Figure 2 show that both the ad-hoc

and optimal filter have asymptotically normally distributed filtering errors as h # 0, as shown later in
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Figure 2: Motivating example: simulated sample paths of filtering errors, scaled and ‘stretched’ filtering
errors, and their distribution

The left and right panels display the results for two di↵erent frequencies of h: 1/252 for daily data and 1/19656 for 5-
minute data, respectively. The top panels show the filtering errors for a simulated path of the tail-shape model using Eqs.
(2.1) and (2.2) over a time span of T0 = 4. The parameters in the DGP are chosen as (a, b, B,�) = (1, 3, 3, 100). The
filtered value ✓h(ti,h) is computed using the score-driven filter as given by Eq. (2.4), with (!,�,↵) = (�0.01, 0.01, 0.6).
The boxed area shows the range of the fast time scale, [T, T +Mh1/2] for T = 1/2, and is zoomed-in inside the top
panels as well as in the second row of plots. These plots in the second row scale the filtering errors by h�1/4 and
‘stretch’ the time axis visually to the full width of the figure and range from ⌧ 2 [0,M ] using a new time index ⌧ .
The bottom panels show the distribution of the scaled and re-centered filtering errors using the expressions for the
asymptotic mean and variance in Eq. (4.22). The resulting histogram should become standard normal (benchmark
curve) as h # 0. The panels also provide results for the filtered ✓h(ti,h) using the optimal filter (✓opth ) from Section 4.3.

this paper.

3 General set-up

We now extend Section 2 to the general set-up used in the remainder of this paper. Consider a

discretely observed multivariate time series yh(ti,h) of dimension ky for ti,h = i ·h, where i = 1, . . . , nh,

nh = bT0/hc, and T0 > 0 as defined in Section 2. Let yh(t) = yh(ti,h) whenever t 2 [ti,h, ti+1,h). This

defines a sequence of stochastic processes
�
yh(t)

 
t2[0,T0]

indexed by h, where we focus on the in-fill
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asymptotic setting with h # 0. We assume that yh(ti+1,h)
�� h(ti,h) has a conditional probability

density function (pdf) denoted as qh( · ; h(ti,h)), where  h(ti,h) 2  for an open and convex parameter

space  ⇢ Rk , and where  h(ti,h) is given through the stochastic recurrence equation

� h(ti+1,h) =  h(ti+1,h)� h(ti,h) = hah

�
 h(ti,h)

�
+ h

1/2
Bh

�
 h(ti,h)

�
⌘i+1. (3.1)

The initial values yh(0) and  h(0) may be fixed or random. This set-up covers a wide range of data

generating processes, including the set-ups for studying volatility of Nelson (1990, 1992) and Buccheri

et al. (2021). It is clear, however, that the set-up is not restricted to the volatility case, but can also

cover time-varying means, tail shapes, or other time-varying higher order moments.

We assume that neither qh( · ; h(ti,h)) nor the transition equation (3.1) is known to the researcher.

Instead, the researcher (possibly incorrectly) assumes that yh(ti+1,h)
��✓h(ti,h) has pdf ph( · ;✓h(ti,h)),

where ✓h(ti,h) 2 ⇥ for some open convex parameter space ⇥ ⇢ Rk✓ , and where ✓h(ti,h) is obtained

from the filtering equation

�✓h(ti+1,h) = h! + h�✓h(ti,h) + h
1/2

gh

�
yh(ti+1,h),✓h(ti,h)

�
, (3.2)

where gh is measurable for any h. To simplify notation, we confine ourselves to the common scenario

above. It is worth noting, however, that we can allow the coe�cients ah and Bh in Eq. (3.1) and !,

and � in Eq. (3.2) to depend on both  h(ti,h) and yh(ti,h), for instance, to allow for asymmetry or

leverage type e↵ects. Additionally, we can allow for di↵erent shrinking rates of h in Eq. (3.2). We

comment on this in Section 4.4.

We call the recursion in (3.2) the filter. In this paper, we particularly focus on score-driven filters.

These set the function gh(y,✓) equal to a scaled version of the ‘score’ of the predictive conditional

model density, i.e., to a scaled version of @ log ph(y;✓)/@✓; see Creal et al. (2013).

The set-up above covers a range of di↵erent statistical models and forms of mis-specification. Next

to the score-driven models, for instance, it also covers the case of a (mis-specified) GARCH model for

a stochastic volatility DGP by setting gh(yh(ti+1,h),✓h(ti,h)) = h
�1
yh(ti+1,h)2 � ✓h(ti,h); see Nelson

and Foster (1994). However, the set-up above allows for much more general forms of mis-specification.

For instance, the DGP may be a skewed Student’s t distribution qh( · ; h(ti,h)) with time-varying

skewness parameter  h(ti,h), whereas the statistical model is a normal distribution ph( · ;✓h(ti,h))

with time-varying mean ✓h(ti,h). This goes considerably beyond the setting studied in Nelson and

Foster (1994), which restricts itself to the setting where qh( · ; h(ti,h)) and ph( · ;✓h(ti,h)) may di↵er,

but  h(ti,h) and ✓h(ti,h) still have the same interpretation.

Similar to Nelson and Foster (1994), we take the parameters ! and � in (3.2) as given and abstract

from the problem of data-driven parameter choice or parameter estimation. Instead, we focus on the
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problem of estimating the unknown time-varying parameters, referred to as the ‘filtering problem’

in the literature. The rates in terms of h in (3.2) are chosen in line with Nelson (1990, 1992) and

result in a non-degenerate asymptotic statistical theory. It is well known that as h # 0, estimated

parameters of GARCH processes tend to the integrated iGARCH case, and this is embedded in the

current set-up. Jensen and Lange (2010) study a setting with more general rates of convergence of

the di↵erent terms in (3.2) when studying parameter estimation. We can extend our current set-up

easily to allow for such more general rates of h and we comment on this in Section 4.4. For a clearer

exposition in the main text, however, we stick to the simplified set-up as in (3.2).

Given the substantial possible mis-specification between the DGP and the statistical model, our

first task is to define a sensible target for the mis-specified filter. For this, we introduce the concept

of a pseudo-true parameter and a pseudo-true parameter path. Consider the Kullback-Leibler (KL)

divergence from the model density ph( · ;✓) to the true unknown DGP density qh( · ; ), for any h > 0,

KL
�
qh( ), ph(✓)

�
=

Z
log

✓
qh(y; )

ph(y;✓)

◆
qh(y; ) dy

=

Z
�
log qh(y; )

�
qh(y; ) dy �

Z
�
log ph(y;✓)

�
qh(y; ) dy.

(3.3)

We then consider the parameter ✓ that minimizes this KL divergence and label it the pseudo-true

parameter. The KL divergence has strong information-theoretic roots and provides an adequate

target for the filter. It provides the best value of ✓ to bring the model density close to the true

unknown density, even if we do not know the form of the latter. Note that this definition of the

pseudo-true parameter is applicable even in extreme cases of mis-specification, such as the earlier

case where qh( · ; h(ti,h)) is a skewed Student’s t with time-varying skewness parameter  h(ti,h) and

ph( · ;✓h(ti,h)) is a normal distribution with time-varying mean ✓h(ti,h). In such cases  h(ti,h) and

✓h(ti,h) have very di↵erent meanings, and in the extreme could even be defined on very di↵erent

parameter spaces  and ⇥. Note that if the model is correctly specified, the pseudo-true and true

parameter values coincide. However, the correct specification of the distribution family of qh alone is

neither necessary nor su�cient for this.

Throughout the paper, we impose the following assumptions related to KL divergence.

Assumptions:

For any (✓, ) 2 ⇥ ⇥  and h > 0, let mj, j = 0, 1, be some functions that are independent of ✓

and integrable with respect to Qh( · ; ), where Qh( · ; ) is the cumulative distribution function (cdf)

associated with qh( · ; ).

KL.1 Existence of KL divergence: 8(✓, ) 2 ⇥⇥ ,
R �� log qh(y; )

��qh(y; ) dy < 1,
�� log ph(y,✓)

�� 
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m0(y).

KL.2 Identification: 8 2  , 8h > 0, the function ✓ 7! KL
�
qh( ), ph(✓)

�
has a unique minimizer

in ⇥.

KL.3 Interchangeability of di↵erentiation and integration: 8h > 0, ✓ 7! log ph(y;✓) is di↵erentiable

almost surely for y; for all ✓ = (✓1, . . . , ✓k✓) 2 ⇥,
��@ log ph(y;✓)/@✓j

��  m1(y), j = 1, . . . , k✓.

KL.4 Existence of global implicit functions: Let fh(✓, ) =
R �

@ log ph(y;✓)/@✓
�
qh(y; ) dy. For any

(✓, ) 2 ⇥⇥ , suppose fh is a continuous mapping and is continuously di↵erentiable in the first

variable ✓. Moreover, there exists a unique mapping ◆h :  ! ⇥ such that fh

�
◆h( ), 

�
= 0.

The first two assumptions have been previously considered by White (1982, Assumption A3).

Assumption KL.1 ensures that the KL divergence is well-defined. Assumption KL.2 allows us to

define the pseudo-true parameter at time i, denoted by ✓?h(ti,h), as

✓
?
h(ti,h) = arg min

✓2⇥
KL
⇣
qh( h(ti,h)), ph(✓)

⌘
, i = 1, . . . , nh. (3.4)

Assumption KL.3 can be found in standard textbooks, e.g., Schilling (2017, Theorem 12.5), Klenke

(2020, Theorem 6.28). With
�� log ph(y,✓)

��  m0(y) in Assumption KL.1, Assumption KL.3 ensures

the interchangeability of di↵erentiation (with respect to ✓) and the integral sign in the minimization

problem (3.4) above. It is possible to impose a weaker condition with more complex notation, see

Talvila (2001). By Assumptions KL.1 and KL.3, we obtain the first-order condition (FOC) for ✓?h(ti,h):

fh

�
✓
?
h(ti,h), h(ti,h)

�
=

Z
@ log ph(y;✓)

@✓

����
✓=✓?h(ti,h)

qh(y; h(ti,h)) dy = 0. (3.5)

With the FOC (3.5), Assumption KL.4 implies that ✓?h(ti,h) = ◆h

�
 h(ti,h)

�
for some appropriate

function ◆h( · ). Clearly, ◆h( ) =  if the model is correctly specified. One can find a su�cient

condition for the existence of a global implicit function in Zhang and Ge (2006). We provide some

examples in Section 5.

We call the sequence ✓?h(ti,h), for i = 1, . . . , nh, the pseudo-true parameter path and use it as

a target for the filter ✓h(ti,h) in (3.2). If ✓h(ti,h) succeeds in recovering ✓?h(ti,h) pointwise at every

moment in time, then the filter succeeds in adapting the mis-specified dynamic density ph( · ;✓h(ti,h))

as best as possible in a KL sense to the unknown true dynamic density qh( · ; h(ti,h)), despite the

density, the time-varying parameter, and the dynamic set-up all being mis-specified. This seems the

best one can hope for given the generality of the current set-up. In the next section, we establish
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the conditions for filter consistency and show that score-driven filters automatically satisfy these

conditions. In addition, we establish an asymptotic normality result for the filtering errors and show

the conditions under which score-driven filters minimize the asymptotic filter error variance.

Motivating example (continued). For the Pareto tail-shape model from Section 2, Eq. (3.5) boils

down to

Z 
exp

�
� ✓

?
h(ti,h)

�
ln
⇣

y

h �

⌘
� 1

�
qh(y; h(ti,h)) dy = exp

�
� ✓

?
h(ti,h)

�
`
�
 h(ti,h)

�
� 1 = 0, (3.6)

such that we get the pseudo-true parameter path ✓?h(ti,h) = ln
�
`[ h(ti,h)]

�
, i = 1, . . . , nh, as in (2.6).

4 Asymptotic theory

In this section, we derive our three main results. First, in Section 4.1 we formulate the conditions

under which the filter ✓h(ti,h) in Eq. (3.2) is consistent for ✓?h(ti,h). We then conclude that the

score-driven filter of Creal et al. (2013) satisfies these conditions and is therefore consistent for

the true parameter path if the observation density ph is correctly specified, or for the pseudo-true

parameter path if the model is mis-specified. Second, in Section 4.2 we derive the distributional

convergence of the filtering errors ✓h(ti,h)� ✓?h(ti,h) and obtain the asymptotic filter error variance.

As alluded to in Section 2 the distributional convergence of the filtering error is non-standard in two

regards: first the scaling sequence is h�1/4 rather than the usual h�1/2, and second the convergence

in distribution takes place on a transformed time axis. In Section 4.3 we then consider the optimal

choice of gh

�
yh(ti+1,h),✓h(ti,h)

�
if the pdf of the DGP qh(yh(ti+1,h); h(ti,h)) is known and obtain

that score-driven filters are in that case also optimal. We also show that the optimal shape of

gh

�
yh(ti+1,h),✓h(ti,h)

�
may become time-varying if the dimension of  h(ti,h) exceeds that of ✓h(ti,h).

We conclude with a short discussion on extensions to models with alternative convergence rates.

In the rest of this section, we adopt the following notation. For i = 0, 1, . . ., let

xh(ti,h) =

0

@�h(ti,h)

 h(ti,h)

1

A , zh(ti,h) = h
��

✓h(ti,h)� ✓?h(ti,h)
�
,  2 [0, 1/4] , (4.1)

such that zh(ti,h) is the scaled filtering error. The new k�-dimensional process {�h(ti,h)} is explained

further below and may take di↵erent forms, contingent upon the specific application. For instance, in

cases where the coe�cients ah and Bh in (3.1) depend on yh(ti,h) or its partial sums, it is appropriate

to set �h(ti,h) equal to yh(ti,h), respectively to its partial sums.

The joint process
��

xh(ti,h), zh(ti,h)
�
, i � 0

 
is assumed to be a time-homogeneous Markov chain.
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For simplicity and in line with Nelson and Foster (1994), we also assume there is no feedback from

zh(ti,h) to xh(ti,h). That is, given
�
xh(ti,h), zh(ti,h)

�
, we assume that xh(ti+1,h) is independent of

zh(ti,h); see Eq. (A.5) in Appendix A. Throughout this section, we set
�
�h(t), h(t), zh(t),✓h(t)

�
=

�
�h(ti,h), h(ti,h), zh(ti,h),✓h(ti,h)

�
for t 2 [ti,h, ti+1,h).

4.1 Consistency

We first consider filter consistency, i.e., pointwise convergence of ✓h(t) to ✓?h(t) for any t > 0. The

following conditions are imposed to obtain filter consistency (FC).

Assumptions:

FC.1 The dynamics of
�
 h(t)

 
:

(a) 8⌘ > 0, limh#0 supk k⌘
��ah( )�a( )

�� = 0, limh#0 supk k⌘
��Bh( )�B( )

�� = 0, where

a(·) and B(·) are continuous;

(b) 8i 2 Z+, the following moment conditions hold almost surely: E
�
⌘i+1

��xh(ti,h) = x, zh(ti,h) =

z
�
= 0; E

⇣
⌘i+1⌘

>
i+1

���xh(ti,h) = x, zh(ti,h) = z

⌘
= Ik ; 8⌘ > 0, 9K⌘ > 0 such that (s.t.)

sup
k(x,z)k⌘

E
⇣��⌘i+1

��4
���xh(ti,h) = x, zh(ti,h) = z

⌘
 K⌘. (4.2)

FC.2 The dynamics of
�
�h(t)

 
: for every ⌘ > 0, there exist µ(·) 2 Rk� , ⌦�⌘(·) 2 Rk�⇥k , and

⌦��(·) 2 Rk�⇥k� , s.t.

lim
h#0

sup
k(x,z)k⌘

����h
�1E

⇣
��h(ti+1,h)

��xh(ti,h) = x, zh(ti,h) = z

⌘
� µ(x)

���� = 0,

lim
h#0

sup
k(x,z)k⌘

����h
�1/2E

⇣�
��h(ti+1,h)

�
⌘
>
i+1

��xh(ti,h) = x, zh(ti,h) = z

⌘
�⌦�⌘(x)

���� = 0,

lim
h#0

sup
k(x,z)k⌘

����h
�1E

⇣�
��h(ti+1,h)

��
��h(ti+1,h)

�> ���xh(ti,h) = x, zh(ti,h) = z

⌘
�⌦��(x)

���� = 0,

where µ(·), ⌦�⌘(·), and ⌦��(·), are continuous, and µ(·) is uniformly bounded. Moreover,

lim
h#0

sup
k(x,z)k⌘

h
�1E

⇣����h(ti+1,h)
��4
���xh(ti,h) = x, zh(ti,h) = z

⌘
= 0, (4.3)

FC.3 The initial values
�
xh(0), zh(0)

�
satisfy: (a) lim suph#0

⇥
E kxh(0)k2 + E kzh(0)k2

⇤
< 1; (b) as

h # 0, xh(0) ) x(0), where x(0) has probability measure ⌫x,0. Moreover, ⌫x,0,
⇣
µ(x)>,a( )>

⌘>
,

and
⇣

⌦��(x) ⌦�⌘(x)B( )>

B( )⌦�⌘(x)> B( )B( )>

⌘
uniquely specify the distribution of a di↵usion process x(t)
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(as the distributional limit of xh(ti,h) as h # 0) with initial distribution ⌫x,0, drift vector
⇣
µ(x)>,a( )>

⌘>
, and di↵usion matrix

⇣
⌦��(x) ⌦�⌘(x)B( )>

B( )⌦�⌘(x)> B( )B( )>

⌘
.

FC.4 Implicit functions: for j = 1, 2, . . . , k✓, let ◆h,j(·) be twice di↵erentiable, where ◆h,j(·) is the jth

element of ◆h(·).

(a) 8⌘ > 0, 9C0,⌘ > 0 s.t.

lim sup
h#0

sup
k k⌘

��◆h( )
��  C0,⌘. (4.4)

Moreover, for any  2 [0, 1/4) in Eq. (4.1),

lim
h#0

sup
k k⌘

h
1/4�

����
@◆h,j( )

@ 

���� = 0, lim
h#0

sup
k k⌘

h
1/2�

����
@
2
◆h,j( )

@ @ >

���� = 0. (4.5)

(b) 8 1, 2 2  , 8h > 0, there exist nondecreasing functions Vh,j : R+ ! R+, j = 1, 2, . . . , k✓,

such that

����
@
2
◆h,j( 1)

@ @ > � @
2
◆h,j( 2)

@ @ >

����  Vh,j

�
k 1 � 2k

�
. (4.6)

Moreover, 8⌘ > 0, 8 2 [0, 1/4], j = 1, 2, . . . , k✓,

lim
h#0

sup
k(x,z)k⌘

h
�1�2E

h
V

2
h,j

�
k� h(ti+1,h)k

�
k� h(ti+1,h)k4

�� xh(ti,h) = x, zh(ti,h) = z

i
= 0.

(4.7)

FC.5 Forcing variables: 8h > 0, y 2 Rky , gh(y, · ) is twice di↵erentiable, satisfying

E
h
gh

�
yh(ti+1,h),✓

?
h(ti,h)

� ��xh(ti,h) = x, zh(ti,h) = z

i
= 0. (4.8)

Moreover, for every ⌘, ⌘̃ > 0,

lim
h#0

sup
k(x,z)k⌘

h
 E
"
sup
k✓k⌘̃

����
@
2
gh,j

�
yh(ti+1,h),✓

�

@✓@✓>

����

����� xh(ti,h) = x, zh(ti,h) = z

#
= 0, (4.9)

lim sup
h#0

sup
k(x,z)k⌘

E
 ���gh

�
yh(ti+1,h),✓h(ti,h)

����
2
���� xh(ti,h) = x, zh(ti,h) = z

�
 C1,⌘, (4.10)

where  2 [0, 1/4] as in Eq. (4.1), and gh,j(y,✓) is the jth element of gh(y,✓), j = 1, . . . , k✓,
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and C1,⌘ > 0 is some constant. Finally, define

A(x) = � lim
h#0

E


@

@✓>
gh

⇣
yh(ti+1,h),✓

?
h(ti,h)

⌘ ���� xh(ti,h) = x

�
. (4.11)

For any ⌘ > 0 and kxk  ⌘, all the eigenvalues of A(x) have strictly positive real parts.

We briefly discuss the assumptions in turn. Assumption FC.1 restricts the dynamics of the

true time-varying parameter  h(ti,h). In our current formulation of Assumption FC.1, we consider

parameters ah and Bh that do not depend on yh(ti,h). If necessary, the setup can easily be extended

to accommodate such dependence by incorporating yh(ti,h) into �h(ti,h). We do not pursue this here

in order not to overburden the notation. Eq. (4.2) excludes too fat-tailed innovation processes for

 h(ti,h) for consistent filtering results.

Conditions FC.2 and FC.3 are in line with the work on convergence to continuous time volatility

filters of Nelson (1990, 1992) and Nelson and Foster (1994) and set the convergence rates of the mean

and variance of �h(ti,h) in our in-fill asymptotic experiment. The generality introduced by the new

process �h(ti,h) serves two purposes. First, it allows us to consider more general settings than the

volatility setting of Nelson (1996) and Nelson and Foster (1994). Second, it also allows us to relax

some of the moment conditions required in Nelson (1996), Nelson and Foster (1994), and Buccheri

et al. (2021). In particular, note that we do not require fourth-order conditional moments of the data

yh(ti+1,h) itself. This is particularly important when considering robust filters as in Creal et al. (2013)

or Buccheri et al. (2021). Instead, (4.3) restricts the degree of fat-tailedness of the new �h(ti+1,h) to

ensure filter consistency. The condition might possibly be relaxed to the existence of slightly more

than second-order moments. We stick to the current stricter formulation to keep in line with Ethier

and Nagylaki (1980, 1988).

Condition FC.4 requires su�cient smoothness of the implicit function that links the pseudo-true

parameter ✓?h(ti,h) to the true time-varying parameter  h(ti,h). It is worth noting that Assumption

FC.4(b) is automatically satisfied if @◆h,j( )/@ is independent of  , which can be achieved by setting

Vh,j ⌘ 0. More generally, the condition holds when
��@2◆h,j(·)/@ @ >

��  Mh,j, where Mh,j > 0 is

deterministic with h
1/2�

Mh,j = o(1), for every j = 1 . . . , k✓.

Finally, Assumption FC.5 puts conditions on the forcing variable gh

�
yh(ti+1,h),✓?h(ti,h)

�
of the filter,

i.e., on its ‘News Impact Curve’ (NIC). Eq. (4.8) ensures that the forcing variable has zero conditional

expectation when evaluated at the pseudo-true parameter. For instance, if yh(ti+1,h)
��xh(ti,h) = (�, )

is independent of the �-algebra �
�
�h(ts,h), s  i

�
, then Eq. (4.8) may be equivalently written as

E
h
gh

�
yh(ti+1,h), ◆h( )

� ��xh(ti,h) =
�
�, 

�i
=

Z
gh

�
y, ◆h( )

�
qh (y; ) dy = 0.
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It is then immediately clear from the FOC (3.5) that a GAS(1,1) score-driven filter as proposed by

Creal et al. (2013) with

gh

�
yh(ti+1,h),✓

�
= sh(✓)

@ log ph (yh(ti+1,h);✓)

@✓
, (4.12)

where sh(✓) is some scaling matrix such as the inverse of the Fisher information matrix, automatically

satisfies condition (4.8). Condition (4.8) is also implicitly assumed in Nelson and Foster (1994), but

evaluated at  h(ti,h) rather than ✓?h(ti,h). As we allow for much more general forms of mis-specification,

even scenarios where the dimensions of  h(ti,h) and ✓?h(ti,h) di↵er, using  h(ti,h) in (4.8) would not

be viable. Therefore, we make the assumption explicit and also replace the true parameter  h(ti,h)

with its pseudo-true equivalent ✓?h(ti,h). Condition (4.10) is similar to Eq. (3.19) in Nelson and

Foster (1994) and is typically easily satisfied by score-driven filters for fat-tailed observations; see also

Buccheri et al. (2021).

The final condition in Eq. (4.11), and in particular the positive real part of its eigenvalues, is

important for consistency. It coincides with condition Eq. (2.11) in Section 2, where it was used in the

intuitive informal derivation to establish independence from initial conditions and a vanishing filtering

errors in (2.10). This condition is easily met for many time-varying volatility models as well as for

many non-standard examples; see Section 5. Again, the theory can be further generalized to allow for

vanishing eigenvalues at appropriate rates at the cost of further notational complexity. For instance,

we can allow the right-hand side of (4.11) to vanish at the rate of hc for some c 2 (0, 1/2) and still

obtain consistency. For c = 1/2, however, consistency is lost and we only obtain mean-reversion of

✓h(ti,h) around ✓?h(ti,h). This is an important special case and happens in some settings where we

filter for a time-varying mean parameter. We refer to Section 5.3 for an example of this.

With the above set of assumptions in place, we can now formulate the following theorem that

establishes the consistency of the filter to the pseudo-true time-varying parameter path.

Theorem 1 (Filter Consistency)

Under Assumptions KL.1 - KL.4, FC.1 - FC.5, we have

h
��

✓h(t)� ✓?h(t)
� p! 0k✓⇥1, 8 2 [0, 1/4), 8t 2 (0, T0), (4.13)

where “
p!” denotes convergence in probability as h # 0.

The strict upper bound 1/4 of  is reflected in the proof, see Eq. (B.13). It is a bound that is to be

expected given the earlier work of Nelson and Foster (1994), who show that the scaled filtering error

for  = 1/4 has a non-degenerate limiting distribution.
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Motivating example (continued). Suppose Assumptions FC.1 and FC.3 hold in the motivating

example of Section 2, where ⌘i+1 follows a standard normal distribution. The process �h plays no

particular role in the example, so we set it to �h ⌘ 0, such that also Assumption FC.3 holds trivially.

In this case, conditioning on xh(ti,h) is equivalent to conditioning on  h(ti,h) only. Assumption FC.4 is

met given the specification of the pseudo-true parameter derived at the end of Section 3 in terms of  .

Finally, Assumption FC.5 can be verified given the score-driven specification. Note that the function

gh

�
yh(ti+1,h), ✓?h(ti,h)

�
only holds a logarithmic transformation of the data, such that we only require a

squared log-moment of yh(ti+1,h) to exist for the moment conditions in the assumption to be satisfied.

This holds by construction given `( h(ti,h)) < 1/4 and thus 4th order conditional moments of yh(ti+1,h)

exist. As shown in Section 2 A( ) = ↵E
⇣
[`( )]�1 ln

�
yh(ti+1,h)/(h�)

�
|  h(ti,h) =  

⌘
= ↵, which is

positive as long as ↵ > 0. As all the assumptions are satisfied, Theorem 1 applies and the score-driven

filter in the motivating example is consistent for ✓?h(ti,h), even though the filter is mis-specified for

the true dynamics as well as for the parameterization. The consistency was visually illustrated in

Figure 1.

4.2 Weak convergence

In this section, we establish the weak convergence of the filtering error ✓h(ti,h) � ✓
?
h(ti,h), where

again we allow the model to be severely mis-specified. As mentioned at the beginning of Section 4

and illustrated in Section 2, this leads to a non-standard asymptotic setting, similar to that in the

volatility context of Nelson and Foster (1994) and Nelson (1996). The non-standard feature is that

we do not only need to scale the filtering error by h
�1/4 to establish a non-degenerate limiting result,

but in addition also need to change the time axis and time span over which we consider the filtering

error process.

To accommodate the first, let ezh(ti,h) be defined as zh(ti,h), but with  = 1/4. This provides

exactly the correct inflation factor for the filter error variance. To accommodate the second part, let

ezT,h(⌧) = ezh

�
T + ⌧h

1/2
�
, (4.14)

where T 2 [0, T0), ⌧ is a new time index on a ‘fast time scale’ in the sense of Nelson and Foster (1994)

and Nelson (1996). As discussed in the motivating example (Section 2), this new time scale is needed

because the filtering error process converges faster and faster (time-wise) to zero as h # 0 compared to

a regular time process. As a result, the filter ✓h(ti,h) oscillates faster and faster around the pseudo-true

✓
?
h(ti,h) as h # 0. This may be counter-intuitive at first, as both ✓h(t) and ✓?h(t) converge on the

normal time scale, whereas their di↵erence apparently does not. The reason is that the drift term of
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the unscaled filtering error process has the same order of magnitude in h as its di↵usion part; see the

appendix for proof. On a normal time scale, the scaled filtering errors ezh(ti,h) gradually resemble a

white noise process when h approaches 0, as shown in the top panel of Figure 2. On the new fast

time scale ⌧ , by contrast, the process
�
xT,h(⌧) = xh

�
T + ⌧h

1/2
� 

operates more and more slowly as

h # 0 and eventually degenerates into a constant. At the same time {ezT,h(⌧)} converges weakly to a

di↵usion process, yielding a non-degenerate distributional result for the asymptotic scaled filtering

errors (the inserted frames in the top panels of Figure 2). We consider this limiting di↵usion at a

point T +M h
1/2 for some positive real M . This implies that we consider the filtering error process

on a shorter and shorter time interval that in the limit collapses to a point. We show in Section 5

that this limiting result serves as a good approximation for a fixed h, even when it is relatively large.

The following assumptions are required to establish the result for the asymptotic distribution

(AD). Note that � h(t+ h) =  h

�
(bt/hc · h+ h

�
� h

�
bt/hc · h

�
; similar expressions hold for the

other processes.

Assumptions:

AD.1 The process
��

xh(t), z̃h(t)
� 

, t > 0, satisfies Assumptions FC.1, FC.4, and FC.5, albeit with

some modifications as described below.

(a) For j = 1, . . . , k✓, if @◆h,j( )/@ does not rely on  , let '1 > 0 be some constant (can be

arbitrarily small). Otherwise, let '1 > 2. Then replace (4.2) in Assumption FC.1(b) by

E
⇣��⌘bt/hc+1

��2+'1
���xh(t) = x, ezh(t) = z

⌘
 K⌘.

(b) Replace (4.5) and (4.7) in Assumption FC.4, respectively, by

lim
h#0

sup
k k⌘

h
1/4

����
@◆h,j( )

@ 

����
1+2/'2

= 0, lim
h#0

sup
k k⌘

h
1/4

����
@
2
◆h,j( )

@ @ >

���� = 0, (4.15)

and

lim
h#0

sup
k(x,z)k⌘

h
�3/2(1+'2/2)E

h
V

2+'2
h,j

�
k� h(t+ h)k

�

k� h(t+ h)k2(2+'2)
�� xh(t) = x, ezh(t) = z

i
= 0, (4.16)

for some '2 > 0.
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(c) Replace (4.9) and (4.10) in Assumption FC.5, respectively, by

lim
h#0

sup
k(x,z)k⌘

h
1/2 E

"
sup
k✓k⌘̃

����
@
2
gh,j

�
yh(t+ h),✓

�

@✓@✓>

����
2
����� xh(t) = x, ezh(t) = z

#
= 0,

lim sup
h#0

sup
k(x,z)k⌘

E
 ���gh

�
yh(t+ h),✓h(t)

����
2+'3

���� xh(t) = x, ezh(t) = z

�
 C1,⌘,

where '3 > 0. Further, A(x) in Assumption FC.5 should be read as

A(x) = � lim
h#0

E

@

@✓>
gh

⇣
yh(t+ h),✓?h(t)

⌘ ����xh(t) = x

�
.

We require A(x) to be twice continuously di↵erentiable in x.

AD.2 As h # 0, the following convergence holds uniformly on every bounded (x, z) set:

h
�1/2E

⇣
��h(t+ h)

���xh(t) = x, ezh(t) = z

⌘
! 0, (4.17)

h
�1/2 Cov

⇣
��h(t+ h)

���xh(t) = x, ezh(t) = z

⌘
! 0. (4.18)

For every ⌘ > 0, there exists C2,⌘ > 0 s.t.

lim
h#0

sup
k(x,z)k⌘

E
⇣��h�1/2��h(t+ h)

��2+'4
���xh(t) = x, ezh(t) = z

⌘
 C2,⌘, (4.19)

where '4 > 0. Moreover,

lim
h#0

sup
k(x,z)k⌘

h
1/2E

"����
@

@✓>
gh

⇣
yh(t+ h),✓?h(t)

⌘����
2
�����xh(t) = x, ezh(t) = z

#
= 0. (4.20)

Condition (4.16) implies (4.7) for any '2 > 0. It is easily met in the examples in this paper.

Overall, the set of assumptions for weak convergence is stricter than that for filter consistency.

However, it is worth noting that the conditional moments specified in Assumption AD.1(a) and

(4.19) can potentially be slightly weaker compared to their counterparts for filter consistency. This

distinction may arise from the weaker nature of Theorem 2, which solely focuses on the process within

an interval that gradually shortens to length zero in the limit.

We now obtain the following limiting distributional approximation for the scaled filtering errors.

Theorem 2 (Asymptotic Distribution)

Let tT,⌧,h = T +⌧h1/2 for T 2 [0, T0). Define ⇣h(t) = gh

�
yh(t),✓?h(t�h)

�
�
�
@◆h( )/@ >�

B( )⌘bt/hc,
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and

⌃(x) = lim
h#0

E

⇣h

�
tT,⌧,h + h

�
⇣h

�
tT,⌧,h + h

�>
����xh

�
tT,⌧,h

�
= x = (�, )

�
. (4.21)

Let �0 be any bounded open subset of Rky+k +k✓ on which for some " > 0, the real parts of all the

eigenvalues of A(x) are bounded below by ". Suppose that ⌃(x) is twice continuously di↵erentiable

in x, and that Assumptions AD.1 - AD.2 hold for t = tT,⌧,h. Under Assumptions KL.1 - KL.4, for

every (x, z) 2 �0 and ⌧ > 0,

ezT,h(⌧)
���
�
xT,h(0), ezT,h(0)

�
= (x, z)

d! N
⇣
b(⌧,x, z),V (⌧,x)

⌘
, (4.22)

where “
d!” denotes convergence in distribution as h # 0, b(⌧,x, z) = exp

⇥
� ⌧A(x)

⇤
z, and

V (⌧,x) = exp
⇥
� ⌧A(x)

⇤⇢
Z ⌧

0

exp
⇥
sA(x)

⇤
⌃(x) exp

⇥
sA(x)>

⇤
ds

�
exp

⇥
� ⌧A(x)>

⇤
.

As mentioned, Theorem 2 focuses on the process within the interval [T, T +⌧h1/2] which eventually

collapses to the point T as h # 0. It is worth noting that Theorem 2 can be extended to the weak

convergence of the process
�
ezT,h(⌧ )

 
⌧2[0,M ]

, M < 1, i.e., for the time interval [T, T +Mh
1/2] on the

natural time scale. More specifically, as discussed in Nelson and Foster (1994) and Nelson (1996), it

converges weakly to the di↵usion

dZ(⌧) = �A(x)Z(⌧)d⌧ +⌃(x)1/2dW⌧ , as h # 0, (4.23)

where W⌧ is a standard Brownian motion.

As opposed to Theorem 1, the weak convergence in Eq (4.22) is conditional on the initial values
�
xT,h(0), ezT,h(0)

�
= (x, z). To ensure it is a meaningful condition, one implicitly requires that the

sample path of
��

xh(T ), ezh(T )
� 

is nonexplosive everywhere for an arbitrary T � 0. Under this

initial condition, some assumptions for filter consistency can be dropped. For instance, FC.3 (a) –

(b) are in that case automatically fulfilled. Both theorems require the sample path of the process
��

xh(t), ezh(t)
� 

to have no discrete jumps as guaranteed by (4.2) and (4.3) for filter consistency,

and Assumption AD.1(a) and (4.19) for weak convergence. As such, the conditions for obtaining

asymptotic distributions and filter consistency are indeed similar.

Since the convergence in distribution in (4.22) holds for every finite ⌧ = M , a variant of Lemma

5.2 of Helland (1982) as given in Appendix F implies it also holds for some M ⌘ M(h) ! 1, as h # 0.

For this M(h), we may have a simple approximation of the conditional distribution of ezh(T +Mh
1/2)
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given by N
�
0,V ⇤�, where

V
⇤ =

Z 1

0

exp
⇥
� sA(x)

⇤
⌃(x) exp

⇥
� sA(x)>

⇤
ds. (4.24)

By Problem 6.6 in Karatzas and Shreve (1998, p. 357), V ⇤ also satisfies the following useful identity

A(x)V ⇤ + V
⇤
A(x)> = ⌃(x). (4.25)

It is worth mentioning that neither Lemma 5.2 in Helland (1982) nor its variant in Appendix F

specifies the divergence rate of M(h). Therefore, there is no theoretical guidance on determining

which sequence {M(h)} ensures the validity of (4.22) for ezT,h(M(h)). Choosing some rate M(h)

with h
1/2

M(h) ! 0, as h # 0, may be used for purposes of approximation, but lacks as yet a formal

guarantee that it is the appropriate rate to obtain distributional convergence of ezT,h(M(h)) for

diverging M(h).

Motivating example (continued). Assumption AD.1 is trivial to check given the functional form

of ✓?h(ti,h) and the Gaussianity of ⌘i+1. Also part (c) follows easily for ↵ > 0 from the existence of

4th order conditional moments of yh(ti+1,h) given `( h(ti,h)) 2 (0, 1/4) and the simple expression

of A(x) = A( ) = ↵ as derived at the end of Section 4.1. Finally, Assumption AD.2 is fulfilled

given �h ⌘ 0 and the finiteness of a squared logarithmic conditional moment of yh(ti+1,h). Therefore,

Theorem 2 applies and the filtering errors in the motivating example converge weakly to a normal on

the ‘fast time scale’ ⌧ . This explains the distributional convergence visualized in Figure 2.

4.3 Optimality

One might ask whether there is an ‘optimal’ form of the forcing variable gh

�
yh(ti+1,h),✓h(ti,h)

�
that

defines the filter. In Nelson and Foster (1994) and Nelson (1996), optimality was defined in terms of

minimizing the matrix mean-squared error (MSE), i.e., the trace of V ⇤. From the definition of ⌃(x)

in Eq. (4.21), we see that the asymptotic filter error variance has three components: (i) the variance

of the forcing variable gh

�
yh(ti+1,h),✓h(ti,h)

�
, (ii) the variance of the (re-scaled) innovation B( )⌘i+1,

and (iii) the expectation of their cross-term. The latter can be non-zero if ⌘i+1 and yh(ti+1,h) are

conditionally dependent, which is not the case in our leading example. Each of the above three

components plays a role in the expression for the optimal filter under mis-specification.

Further intuition may be obtained as follows. As the asymptotic variance contains both ⌃(x)

and A(x), the asymptotic variance can be lowered if we can ‘minimize’ ⌃(x). This can be done by

minimizing the expected quadratic distance between gh and the scaled conditional expectation of ⌘i+1
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given yh(ti+1,h). ‘Maximizing’ A(x), on the other hand, also helps to lower the asymptotic variance

and corresponds to maximizing the covariance between gh and the score of qh( · ) with respect to  .

This can be seen from the definition of A(x), which can be rewritten as

A(x) = � lim
h#0

E


@

@✓?>
gh

�
yh(ti+1,h),✓

?
h(ti,h)

� ���� xh(ti,h) = x = (�, )

�

= lim
h#0

E

gh

�
yh(ti+1,h),✓

?
h(ti,h)

�@ log qh(
�
yh(ti+1,h), )

@ >

���� xh(ti,h) = x =
�
�, 

��
Qh

�
✓̃
�>

.

This equation is similar to Eq. (4.1) in Nelson and Foster (1994) and Eq. (A.7) in Nelson (1996),

except for the additional scaling by Qh(✓̃), defined in Eq. (4.31) below, which is due to the fact that

our setting allows for much more general forms of mis-specification.

Before continuing, it is worth mentioning that we allow for k✓  k rather than restricting k✓ = k 

as in Nelson and Foster (1994) and Nelson (1996). This allows us to also study settings where there are

more time-varying parameters in the DGP than there are in the model itself.3 When discussing filter

optimality, this additional flexibility requires some additional notation to establish the appropriate

results. To this end, we define an artificial pseudo-true parameter ✓†h(ti,h) = ◆
†
h

�
 h(ti,h)

�
2 Rk �k✓

that summarizes the additional (unknown) parameters in  . For instance, in the context of our

leading example, we could add a time-varying scale parameter to the DGP besides the currently

time-varying tail shape. The new parameter ✓†h(ti,h) would then be a new function of  h(ti,h) that

would be di↵erent from ✓
?
h(ti,h) almost everywhere. We gather ✓?h(ti,h) and the new ✓

†
h(ti,h) in a new

vector and write

✓̃h(ti,h) = ◆̃h

�
 h(ti,h)

�
=

0

@✓
?
h(ti,h)

✓
†
h(ti,h)

1

A 2 Rk , ◆̃h( · ) =

0

@◆h( · )

◆
†
h( · )

1

A . (4.26)

We assume that this new mapping ◆̃( · ) is one-to-one.

To establish the optimality result, we also introduce the following notation:

Sh (y, ) =
@ log qh (y; )

@ 
, (4.27)

Ph

�
y,�, 

�
=

✓
@◆h( )

@ >

◆
E
h
B( )⌘i+1

��� (yh(ti+1,h),�h(ti,h), h(ti,h)) = (y,�, )
i
. (4.28)

The score Sh(y, ) is now the score of the DGP density qh(y; ) rather than of the model density

ph(y;✓). We will find later on that this DGP score is key in finding the optimal filter. In fact, if the

true DGP density qh(y; ) is known, a score-driven filter turns out to be optimal. The definition

of Ph(y,�, ) is needed if the DGP has conditional dependence between yh(ti+1,h) and ⌘i+1. This

3Note that when k✓ > k , the pseudo-true parameter path is not well-defined, as there may be multiple pseudo-true
parameter paths that correspond to the same true path.
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can be important for instance in a volatility context with leverage-type e↵ects, i.e., a conditional

correlation between financial returns and volatilities, with volatilities increasing more with negative

returns than with positive returns yh(ti+1,h).

We now formulate the following assumptions for obtaining filter optimality (FO).

Assumptions:

Let k � k✓ and let e⇥ ⇢ Rk be open and convex.

FO.1 8h > 0 and 8✓̃ 2 e⇥, ✓ 7! gh

�
y, ✓̃

�
is di↵erentiable almost surely for y;

��@gh,i

�
y, ✓̃

�
/@✓j

��, i, j =

1, . . . , k , are dominated by functions that are independent of ✓̃ =
�
✓1, . . . , ✓k✓ , ✓k✓+1, . . . , ✓k 

�
2

e⇥ and integrable with respect to the distribution Qh( · ; ).

FO.2 As in (4.8), we assume

E

gh

⇣
yh(ti+1,h), ✓̃h(ti,h)

⌘ ���xh(ti,h) = x, ezh(ti,h) = z

�
= 0. (4.29)

FO.3 8h > 0, qh(yh(ti+1,h) ; ) is continuously di↵erentiable in  almost everywhere, with one-sided

partial derivatives everywhere, and for some ' > 0,

E
✓���Ph

�
yh(ti+1,h),�, 

����
2+' ���xh(ti,h) = (�, )

◆
, E

✓���Sh

�
yh(ti+1,h), 

����
2+' ���xh(ti,h) = (�, )

◆
,

are bounded uniformly on every bounded (�, ) set as h # 0.

FO.4 8✓̃ 2 e⇥, suppose the inverse map ◆̃�1
h (✓̃) exists and is di↵erentiable. There is a unique, positive

semidefinite solution W to the matrix Riccati equation:

E

Ph

�
yh(ti+1,h),�, 

�
Sh

�
yh(ti+1,h), 

�>
Qh

�
✓̃
�> ���xh(ti,h) = (�, )

�
W

+WE

Qh

�
✓̃
�
Sh

�
yh(ti+1,h), 

�
Ph

�
yh(ti+1,h),�, 

�> ���xh(ti,h) = (�, )

�

+WE

Qh

�
✓̃
�
Sh

�
yh(ti+1,h), 

�
Sh

�
yh(ti+1,h), 

�>
Qh

�
✓̃
�> ���xh(ti,h) = (�, )

�
W

= E

8
<

:

"✓
@◆h( )

@ >

◆
B⌘i+1 � Ph

�
yh(ti+1,h),�, 

�
#

⇥
"✓

@◆h( )

@ >

◆
B⌘i+1 � Ph

�
yh(ti+1,h),�, 

�
#> �����xh(ti,h) = (�, )

9
=

;, (4.30)

where

Qh

�
✓̃
�
=

✓
@◆̃

�1
h (✓̃)

@✓?>

◆>

. (4.31)
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Assumption FO.1 guarantees, similarly to Assumption KL.3, the interchangeability of di↵erentia-

tion (with respect to the parameters) and integration for gh. The moment conditions in Assumption

FO.3 ensure that (4.30) and (4.32) are well defined. Finally, Assumption FO.4 ensures that there is a

solution to the equation that determines the minimum variance filter. With these assumptions in

place, we can formulate the following result.

Theorem 3 (Optimal Filter)

Under Assumptions KL.1 - KL.4, AD.1 - AD.2, FO.1 - FO.4, for every h > 0, the trace of covariance

matrix is minimized if

gh

�
· ,�, ◆̃h( )

�
= gh

⇣
· ,�, ◆h( ), ◆†h( )

⌘
= Ph

�
· ,�, 

�
+WhQh

�
✓̃
�
Sh

�
· , 

�
, (4.32)

where Wh = Wh(�, ) is the positive semidefinite solution to (4.30), and Qh

�
✓̃
�
is defined in Eq.

(4.31). Moreover, the minimized covariance matrix is Wh.

The result in (4.32) is clearly recognizable as a score-driven model based on the true DGP

density qh(y; ). The score-driven filter transforms the dynamics for  into dynamics for ✓̃ via

the transformation Qh(✓̃). The term involving Ph( · ,�, ) accounts for the conditional correlation

between yh(ti+1,h) and ⌘i+1, such as leverage e↵ects in the volatility context, and causes the filter to

react possibly asymmetrically to new observations yh(ti+1,h).

In general, a closed-form expression of Wh is not available. There are, however, two important

special cases of Theorem 3 that are worth mentioning. We summarize them in the following two

corollaries.

Corollary 1

If Ph ⌘ 0, then Wh = B�1/2
h

�
B1/2

h ChB1/2
h

�1/2B�1/2
h is a solution to (4.30) with

Bh = E

Qh

�
✓̃
�
Sh

�
yh(ti+1,h), 

�
Sh

�
yh(ti+1,h), 

�>
Qh

�
✓̃
�>
����xh(ti,h) = (�, )

�
,

and Ch =

✓
@◆h( )

@ >

◆
BB

>
✓
@◆h( )

@ >

◆>

.

Corollary 2

Consider ◆h( ) =  for any h > 0 and  2  . In the case where Ph ⌘ 0, and the model density

ph

�
· ; ◆h( )

�
coincides with the DGP density qh( · ; ), the optimal filter in (4.32) is given by the

score-driven filter as defined by Creal et al. (2013).

Moreover, let’s suppose that E
h
Sh

�
yh(ti+1,h), 

�
Sh

�
yh(ti+1,h), 

�> ���xh(ti,h) = (�, )
i
and BB

>
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commute (Horn and Johnson 2012, Theorem 1.3.12), for instance, they are diagonal, which clearly

includes the scalar case k = 1.4 In this scenario, the asymptotic covariance matrix Wh simplifies to:

Wh =

⇢
E
h
Sh

�
yh(ti+1,h), 

�
Sh

�
yh(ti+1,h), 

�> ���xh(ti,h) = (�, )
i��1/2�

BB
>�1/2

. (4.33)

The term of conditional expectation in (4.33) represents the Fisher information matrix; a larger

Fisher information results in a smaller Wh. Furthermore, BB
> measures the variation of the true

parameter path; a larger BB
> implies less accuracy of the optimal filter. Multiplying the score with

Wh in (4.33), we achieve an optimal score-driven filter.

Particularly Corollary 2 is interesting. It highlights that a score-driven filter is not only consistent

but also optimal if the true density is known, despite mis-specifications in the stochastic nature of

the true process
�
 h(t)

 
. This provides a further theoretical motivation for the use of score-driven

models. It also provides guidance for the choice of scaling: for achieving a minimum asymptotic filter

error variance, inverse square root information matrix scaling could be preferable to the commonly

used inverse information matrix scaling, depending on the value of B.

Even in case the true model density is known, we note that (4.32) would have to be re-parameterized

before it could be applied: the formulation is in terms of  rather than ✓. A re-parameterization can

easily be obtained by exploiting the one-to-one mapping between  and ✓̃. We then obtain

gh

⇣
· ,�, ◆h( ), ◆†h( )

⌘
= Ph

✓
· ,�, ◆̃�1

h

⇣
◆h( ), ◆

†
h( )

⌘◆

+Wh

✓
�, ◆̃

�1
h

⇣
◆h( ), ◆

†
h( )

⌘◆
Qh

⇣
◆h( ), ◆

†
h( )

⌘
Sh

✓
· , ◆̃�1

h

⇣
◆h( ), ◆

†
h( )

⌘◆
,

and replace ◆h
�
 h(ti,h)

�
by ✓h(ti,h) in the recursion equation (3.2).

4.4 Alternative convergence rates

At this point, it is useful to remark that the consistency and weak convergence results of Sections 4.1

to 4.3 can be generalized to a setting with more general rates of h in the transition equations for

 h(ti+1,h) and/or ✓h(ti+1,h). More specifically, we are interested in variations of the filter recursion

(3.2) of the form

�✓h(ti+1,h) = h
�!! + h

���✓h(ti,h) + h
�↵/2gh

�
yh(ti+1,h),✓h(ti,h)

�
, �!, �� � �↵/2 > 0.

4Two matrices A,B are said to commute if AB = BA.
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For �! = �� = �↵ = 1, we recover Eq. (3.2), with � = �↵/2 in the proof of Theorem 1. Theorem 1 and

thus consistency therefore continues to hold for  2 [0, �↵/4) if one replaces Eq. (4.5) in Assumption

FC.4 by

lim
h#0

sup
k k⌘

h
1/2��↵/4�

����
@◆h,j( )

@ 

���� = 0, lim
h#0

sup
k k⌘

h
1��↵/2�

����
@
2
◆h,j( )

@ @ >

���� = 0,

and (4.7) by

lim
h#0

sup
k(x,z)k⌘

h
��↵�2E

h
V

2
h,j

�
k� h(ti+1,h)k

�
k� h(ti+1,h)k4

�� xh(ti,h) = x, zh(ti,h) = z

i
= 0.

Theorems 2 and 3 continue to hold under the original sets of conditions if �↵ = 1 and �!, �� > 1/2

that remain unspecified. For �↵ < 1, the innovation of the filter is of a larger order of magnitude in h

than the DGP’s innovation. Such generalizations may seem interesting in the light of simulations

shown in Jensen and Lange (2010). These authors study the e↵ect of parameter estimation and

conjecture that, depending on the setting, values of �↵ in the range 0.75 – 0.88 may be relevant in the

context of GARCH volatility models with estimated parameters. Parameter estimation is beyond

the scope of our current paper and is left for future research. The discussion on general rates of h

nevertheless suggests that the results of this paper may still apply in a slightly modified form, albeit

with di↵erent rates of convergence for the filtering errors. In particular, in that case, the appropriate

scaling of the filtering errors becomes h��↵/4
�
✓h(ti,h)� ✓?h(ti,h)

�
to obtain a non-degenerate limiting

result, and the fast time scale has to be altered to T +⌧h1��↵/2. A larger impact of the forcing variable

in the filtering equation (i.e., lower values of �↵), thus results in a slower rate of convergence of the

filtering error towards zero, and a faster rate of oscillation around zero, i.e., a speeding up of the fast

time scale ⌧ . Additionally, as the filter innovation dominates the DGP innovation asymptotically, this

leads to an altered asymptotic variance in Theorem 2 with B( ) in Eq. (4.21) now set to zero. The

expression for the optimal filter based on the minimum variance degenerates in this case with both

the ‘leverage correction’ Ph

�
y,�, 

�
from Eq. (4.28) and the matrix Wh solving (4.30) collapsing to

zero. This degeneracy is easily resolved by replacing the minimum variance criterion by a minimum

mean-squared-error criterion, in which case the optimal forcing variable is again directly proportional

to the true score function with respect to  for any finite M . Such a change of criterion was irrelevant

before, as the asymptotic filter error variance up till now could not reach zero given the presence of

the DGP innovations ⌘i+1 in the limiting expressions.
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5 Illustrative examples

In this section, we discuss four examples to illustrate di↵erent aspects of the theory. In Section 5.1

we illustrate how the variable �h(ti,h) can play to include exogenous variables as (partial) drivers

of time variation in parameters. We do so by extending the motivating example from Section 2.5

In Section 5.2, we apply the theory to filtering a time-varying copula dependence parameter for

the Clayton copula using a score-driven filter. Here, we also show how the theory can be applied

to other existing filters in the literature, such as the original copula filter of Patton (2006). We

introduce a slight modification of the original filter, which we prove to be consistent and asymptotically

normal. Section 5.3 discusses the case of filtering a time-varying regression parameter and shows the

consistency result no longer applies when filtering a time-varying drift rate. In that case we obtain

mean-reversion of the filtering errors towards zero, but not consistency. Finally, in Section 5.4 we

consider a fully mis-specified example where the model and DGP density di↵er and the true and

filtered parameters capture di↵erent aspects of the distribution. Here we establish consistency to the

Kullback-Leibler optimal value ✓?h(ti,h).

5.1 Including an exogenous regressor in the filter

We start by modifying the filter in the motivating example from Section 2 with an exogenous variable

�h(ti,h) as

✓h(ti+1,h) = h! + h � �h(ti,h) + (1� h �)✓h(ti,h) + h
1/2

gh

�
yh(ti+1,h), ✓h(ti,h)

�
, (5.1)

with gh

�
yh(ti+1,h), ✓h(ti,h)

�
as in Eq. (2.4), and (!, �, �) 2 R3. Examples of such models for time-

varying tail shapes can be found in for instance D’Innocenzo et al. (2023). We assume �h(ti+1,h) =

(1� c h)�h(ti,h) + h
1/2
⇣i+1 for some i.i.d. innovation sequence {⇣i} that is independent of {⌘i}. The

set-up can be further relaxed to a general Markov structure for �h(ti,h), as we only need the triplet
�
�h(ti,h), h(ti,h), zh(ti,h)

�
to be Markovian for our theory to apply.

The main change to the earlier set-up of the motivating example is that we now have to check

Assumptions FC.2 and AD.2. Both of these follow easily if ⇣i has finite fourth order moments. The

theoretical results of the paper thus readily extend to time-varying parameter filters that are partly

driven by explanatory variables.

5Other interesting examples include, for instance, stochastic volatility models with leverage e↵ects, such as Danielsson
(1994), Yu (2005), or Li et al. (2019).
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5.2 Bivariate copulas

As our second example, consider a filter for a time-varying copula parameter as introduced by Patton

(2006), with score-driven applications introduced in Creal et al. (2013). We fully focus on the copula

part and abstract from modeling the marginals to simplify the exposition. Consider a random vector

yh(ti+1,h) = (y1h(ti+1,h), y2h(ti+1,h)) that follows a Clayton copula distribution C(yh(ti+1,h);  ̃h(ti,h))

given by

C
�
y;  ̃

�
=
⇣
(y1)

� ̃ + (y2)
� ̃ � 1

⌘�1/ ̃

,  ̃ := exp( ) > 0, y = (y1, y2)
>,
, (5.2)

 h(ti+1,h) = µh+ (1� ah) h(ti,h) +
p
hB⌘i+1, (5.3)

where ⌘i+1 is i.i.d. standard normal. For convenience, define the short-hand notation Q(y; ✓) =

(y1)�✓ + (y2)�✓ � 1, where y = (y1, y2), such that the copula density is given by

c(y; ✓) = (1 + ✓) (y1y2)
�(1+✓)

Q(y; ✓)�(2+1/✓)
. (5.4)

We assume the model density is correctly specified, such that ph and qh coincide. To derive the

(optimal) score-driven filter, we note that

S(y; ✓) =
@

@✓
log c(y; ✓)

= (1 + ✓)�1 � log(y1y2) + ✓
�2 logQ(y; ✓) + (✓�1 + 2)

(y1)�✓ log y1 + (y2)�✓ log y2
Q(y; ✓)

. (5.5)

Using this, we obtain the filtering equation

�✓h(ti+1,h) = h! + h�✓h(ti,h) + ↵

p
hS
�
yh(ti+1,h); ✓h(ti,h)

�
. (5.6)

Note that the filter will still be mis-specified for the true parameter dynamics in (5.3), as the filter is

observation-driven, whereas the DGP is not. Since
R
[0,1]2(@ log c(y; ✓)/@✓) c(y; ✓) dy = 0, we have the

global implicit function given by ✓?h(ti,h) =  ̃h(ti,h) = ◆h( h(ti,h)) = exp( h(ti,h)).

We note that most of the conditions in the assumptions from Section 4 are trivially satisfied

in the current model set-up, noting �h plays no particular role and can thus be set to �h ⌘ 0.

Assumption FC.5 requires ↵ > 0 and the information matrix I(✓) of the Clayton copula with respect

to ✓ to exist. For this we can use the explicit expression derived on p. 418 of Oakes (1982),

I(✓) = 1

(✓ + 1)2
+

2

✓(✓ + 1)(2✓ + 1)
+

4(✓ + 1)

3✓ + 1
� 2(2✓ + 1)

✓
⇢(✓), (5.7)
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where

⇢(✓) =
1

(3✓ + 1)(2✓ + 1)

(
1+

✓ + 1

2✓


 1

✓
1

2✓

◆
� 1

✓
✓ + 1

2✓

◆�
+

1

2✓


 1

✓
✓ + 1

2✓

◆
� 1

✓
2✓ + 1

2✓

◆�)
,

and  1( · ) denotes the trigamma function. As we have that both A(x) and the conditional variance

of gh
�
yh(ti+1,h), ✓h(ti,h)

�
from Assumption FC.5 are equal to the information matrix, the conditions

are satisfied for ✓ > 0.

To compute the optimal filter, we use the chain rule to obtain the true score function S0(y; ) as

S0(y; ) =
@

@ 
log
⇥
c
�
y;  ̃

�⇤
=

✓
@

@ ̃
log
⇥
c
�
y;  ̃

�⇤◆d ̃

d 
= S

�
y; exp( )

�
exp( ),

where S( · ) is defined in (5.5). By Corollary 1, we obtain Ch = exp(2 )B2. Moreover, we note that

Bh = E
⇢h

S
�
yh(ti+1,h); exp( )

�i2 ��� h(ti,h) =  

�
,

which equals the Fisher information of the Clayton copula distribution with respect to  ̃h(ti,h), for

which we again use the result of Oakes (1982). Therefore,

Wh =

✓
Ch
Bh

◆1/2

=


exp(2 )B2

I
�
exp( )

�
�1/2

.

Using the reparametrization ✓h(ti,h) = exp( h(ti,h)), combining these results gives the optimal filter:

�✓opth (ti+1,h) = h! + h�✓
opt
h (ti,h) +

p
h
⇥
✓
opt
h (ti,h) |B|

⇤ h
I
�
✓
opt
h (ti,h)

�i�1/2

S
�
y; ✓opth (ti,h)

�
, (5.8)

which is a score-driven model with square-root inverse information matrix scaling in the sense of Creal

et al. (2013), where the coe�cient |B| is the standard deviation of the true, unknown innovations to

 h(ti+1,h) times the Jacobian of the mapping from  to ✓. Figure 3 confirms the consistency of this

optimal filter and also shows that the optimal filter shows a less spiky behavior than the filter in (5.6)

with ad-hoc chosen parameters !, ↵, and �.

It is also interesting to see how our results can be applied to existing filters for copula parameters.

We consider a slightly revised version of the filter from Patton (2006),

⇠h(ti+1,h) = ! + h � ⇠h(ti,h) +
p
h↵
��y1h(ti+1,h)� y2h(ti+1,h)

��, (5.9)

where ⇠h(ti,h) is the lower-tail-dependence parameter. The original filter has an additional logistic

mapping around the right-hand side of (5.9) to ensure that the tail-dependence probability ⇠h(ti,h) is
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Figure 3: Filter consistency for the Clayton copula
The DGP is a Clayton copula density with true parameter exp( h(ti,h)) as given in (5.3) and the parameters given by
(µ, a,B) = (0.5, 5, 1). The sampling frequency is h = 1/19656. The filter equation is given in (5.6), with the parameters
(!,�,↵) = (0.5,�0.1, 2). We take (!,�,↵) = (0.5,�0.1,�1.4) for the adjusted Patton filter.

always between zero and one. The filter as stated in Eq. (5.9) is not well-balanced for an asymptotic

analysis, because the forcing variable ↵
��y1h(ti+1,h)�y2h(ti+1,h)

�� does not have a zero conditional mean.

The e↵ect of this is that the filter diverges as h # 0. This defect is easily corrected by subtracting the

conditional mean of the forcing variable under the Clayton copula density from the last term in (5.9),

leading to the slightly adjusted Patton filter

⇠h(ti+1,h) = ! + h � ⇠h(ti,h) +
p
h↵

⇣��y1h(ti+1,h)� y2h(ti+1,h)
���m(⇠h(ti,h))

⌘
, (5.10)

m(⇠h(ti,h)) = 2�1/✓h(ti,h)
2F1

�
1 + ✓h(ti,h)

�1
, 2✓h(ti,h)

�1
, 1 + 2✓h(ti,h)

�1
, 1/2

�
� 1, (5.11)

where 2F1( · ) is a confluent hypergeometric function, and ⇠h(ti,h) = 2�1/✓h(ti,h), i.e., the upper-tail-

dependence parameter for the Clayton copula. We refer to Appendix E for a detailed derivation.

Implementing the de-meaned copula filter from Eq. (5.10), we plot ✓Patton,adjh = �1/ log2(⇠h(ti,h))

in Figure 3. The figure clearly shows that this adjusted version of the original filter of Patton (2006)

is consistent. In the right-hand panel of the figure we moreover show the simulated distribution of the

filtering errors. We see that the optimal filter’s mean is closer to zero and its variance is somewhat

smaller than that of the adjusted Patton filter, in line with the theory presented. Finally, looking at

the histograms of the demeaned and standardized simulations (not shown in figure), we also obtain

that both filtering errors are well approximated by the normal distribution with the asymptotic mean

and variance as derived in this paper for h # 0.
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5.3 Time-varying regression coe�cients

Let f be an arbitrary pdf and G := {gµ,�, µ 2 R, � > 0} be a location-scale family. Assume that for

any h the pdf of yh(ti+1,h) =
�
y1h(ti+1,h), y2h(ti+1,h)

�
given  h(ti,h) equals

qh

�
yh(ti+1,h); h(ti,h)

�
= f(y1h(ti+1,h))

g0,1

⇣
y2h(ti+1,h)� h(ti,h) y1h(ti+1,h)

�✏
p
h

⌘

�✏

p
h

, (5.12)

i.e., we have the following regression model with a time-varying coe�cient  h(ti,h) and random

regressor y1h(ti,h):

y2h(ti+1,h) =  h(ti,h)y1h(ti+1,h) +
p
h�✏✏i+1, (5.13)

where ✏i+1 has pdf g0,1 2 G. One can interpret y2h(ti+1,h) as an excess stock return, while y1h(ti+1,h)

is the excess return on the market as in the CAPM model with time-varying betas; see for instance

Umlandt (2023) for score-driven asset pricing models.

The statistician works with the mis-specified joint pdf

ph

�
yh(ti+1,h); ✓h(ti,h)

�
= f̃(y1h(ti+1,h))

1p
2⇡h

exp

✓
� [y2h(ti+1,h)� ✓h(ti,h)y1h(ti+1,h)]2

2h

◆
, (5.14)

where f̃ is also an arbitrary pdf. It is clear that the conditional pdf of y2h(ti+1,h)
�� �y1h(ti+1,h), ✓h(ti,h)

�

is specified by the statistician as N
�
✓h(ti,h)y1h(ti+1,h), h

�
. The integral in (3.5) here becomes a double

integral

ZZ
y1
y2 � ✓y1

h
f(y1)

g0,1

⇣
y2� y1
�✏

p
h

⌘

�✏

p
h

dy2 dy1

=

Z
y1f(y1)

Z
y2

h

g0,1

⇣
y2� y1
�✏

p
h

⌘

�✏

p
h

dy2 dy1 � ✓

Z
y
2
1

h
f(y1)

Z
g0,1

⇣
y2� y1
�✏

p
h

⌘

�✏

p
h

dy2 dy1

=

Z
y1f(y1)  y1 dy1 � ✓

Z
y
2
1f(y1) dy1 = 0.

Hence, we can readily derive the global implicit function ◆h as ✓?h(ti,h) = ◆h

�
 h(ti,h)

�
=  h(ti,h).

Clearly, such a relation holds true for any f , f̃ , and g0,1 with a finite second and first moment,

respectively. Therefore, if the score-driven filter is consistent, it remains consistent across a wide

range of mis-specified scenarios, reminiscent of the classical consistency results of quasi-maximum

likelihood estimation; see White (1982).
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Based on (5.14), the score-driven filtering equation used by the statistician is given by

�✓h(ti+1,h) = h!+h�✓h(ti,h)+↵h
�⇣
⇣
y1h(ti+1,h)

⇥
y2h(ti+1,h)�✓h(ti,h)y1h(ti+1,h)

⇤⌘
, ↵, ⇣ > 0, (5.15)

where we use a flexible rate h
⇣+1/2 for the forcing variable. Without loss of generality, assume that

y1h(i) is i.i.d. with a mean µ1 h and a variance �2
1 h. Furthermore, let ✏i be i.i.d. and follow a standard

Student’s t distribution with ⌫ > 0 degrees of freedom, denoted as t⌫ . The process {�h(ti,h)} in Eq.

(4.1) plays no role in the current example and is set to 0 for all i 2 Z+.

For consistency, only Assumption FC.5 is non-trivial to check. The remaining assumptions are

easily verified. For any ⌫ > 2 and using the filter in Eq. (5.15), the expressions for A(x) and ⌃(x) as

defined in (4.11) and (4.21) become

A(x) = ↵ lim
h#0

n
h
�(⇣+1/2)

�
µ
2
1h

2 + �
2
1h
�o

, ⌃(x) = ↵
2
�
2
✏ lim

h#0

n
h
�2⇣
�
µ
2
1h

2 + �
2
1h
�o ⌫

⌫ � 2
+B

2
.

It is clear from the above equations that the asymptotic behavior of the filter is determined by the

values of �1 and ⇣. We distinguish two cases.

(a) For �1 > 0, we take ⇣ = 1/2. Then A(x) = ↵�
2
1 > 0 and ⌃(x) = ↵

2
�
2
1�

2
✏ ⌫/(⌫ � 2) + B

2. The

(mis-specified) filter in (5.15) is then consistent with asymptotic variance

V (⌧,x) =
h
1� exp

�
� 2↵�2

1⌧
�i 1

2↵�2
1

✓
↵
2
�
2
1�

2
✏

⌫

⌫ � 2
+B

2

◆
,

which for large ⌧ can be approximately optimized by taking ↵ = (�1�✏)�1|B|
p

(⌫ � 2)/⌫.

(b) For �1 = 0 and µ1 6= 0, i.e., in the case of filtering a time-varying intercept, we do not have

consistency. More specifically, consider the case µ1 6= 0. If we choose ⇣ = 3/2, we have that

A(x) = ↵µ
2
1 > 0, but ⌃(x) = ↵

2
�
2
✏µ

2
1⌫/(⌫ � 2)

�
limh#0 h

�1
 
+B

2 = +1. This implies that the

asymptotic variance diverges to infinity under this scaling. If we choose ⇣ = 1, then ⌃(x) < 1,

but A(x) = limh#0 O
�
h
1/2
�
, such that Assumption FC.5 fails. In fact, the filter will not be

consistent, but instead converge to an Ornstein-Uhlenbeck (OU) process. As a result, the

filtering errors become mean-reverting around zero, but do not converge to zero for every time

t. This is important for models that filter a time-varying location, such as Harvey and Luati

(2014).

The consistency results are visualized in Figure 4. We clearly see that for the non-degenerate regressor

case (left-hand plot) the score-driven filter is consistent, whereas for the time-varying intercept case

(right-hand plot) it is not.
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Figure 4: Filter (in)consistency for time-varying regression models
Consider �✏ = 1 in Eq. (5.12) and let  h(ti+1,h) be generated by  h(ti+1,h) = (1 � ah) h(ti,h) +

p
hB⌘i+1 with

(a,B) = (10, 1). Moreover, ✏i is i.i.d. t⌫ with ⌫ = 2.5. Fix the level parameter µ1 of y1h(ti+1,h) at µ1 = 5. The left-hand
side gives the path of ✓h(ti,h) (red for the Gaussian, and blue for the optimal filter), where (!,�,↵) = (0.1,�1, 0.1), and
✓?h(ti,h) (black) for the case of a non-degenerate regressor y1h(ti+1,h). Here the filter is consistent. The right-hand plot
gives the same curves for the case of a degenerate regressor (intercept), where the filtering errors are mean-reverting
to zero, but the filter is not consistent. Here �1 denotes the variance parameter of the regressor y1h(ti+1,h), and h�⇣

denotes the scaling of the forcing variable in the filter (5.15). Data of the dependent variable y2h(ti+1,h) are in gray
bars and use the left-hand y-axis. The filters use the right-hand y-axis.

Now we derive the optimal filter. Note that the score is

Sh

�
yh(ti+1,h), h(ti,h)

�
=

(⌫ + 1)y1h(ti+1,h)
⇥
y2h(ti+1,h)�  h(ti,h)y1h(ti+1,h)

⇤

h⌫�2
✏ +

⇥
y2h(ti+1,h)�  h(ti,h)y1h(ti+1,h)

⇤2 .

By Corollary 1, we have Bh = (⌫ + 1)(µ2
1h+ �

2
1)/ [(⌫ + 3)�2

✏ ] and Ch = B
2, leading to

Wh =

 
(⌫ + 3)�2

✏

(⌫ + 1)(µ2
1h+ �2

1)

!1/2

|B|.

The filtering equation for the optimal filter as stated in Theorem 3 is then given by

�✓opth (ti+1,h) = h! + h�✓
opt
h (ti,h) + h

1/2

 
(⌫ + 3)�2

✏

(⌫ + 1)(µ2
1h+ �2

1)

!1/2

⇥
(⌫ + 1)y1h(ti+1,h)

⇥
y2h(ti+1,h)�  h(ti,h)y1h(ti+1,h)

⇤

h⌫�2
✏ +

⇥
y2h(ti+1,h)�  h(ti,h)y1h(ti+1,h)

⇤2 |B|. (5.16)

The simulated (finite-sample) filtering errors and there de-meaned and scaled counterparts using

the asymptotic approximations are shown in Figure 5 for T = 0.5 and two di↵erent frequencies. In the

upper panels, we show the raw filtering errors for di↵erent frequencies. Clearly, for lower frequencies

the filtering errors are obviously larger. We also see in the top-right graph that the filtering errors

based on the optimal filter are more concentrated and have less fat tails. This is also seen from the red

peaks in the filter in Figure 4 and may motivate the use of robust filters for time-varying regression

parameters as in Umlandt (2023). To assess the adequacy of the asymptotic distribution, the lower

panels de-mean and scale the filtering errors by the appropriate expressions for the mean and variance
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Figure 5: Distributions for filtering errors in time-varying regression models
The top panels give the distribution of the filtering errors for the Gaussian filter in Eq. (5.15) in blue and the optimal
filter in yellow. The bottom panels prove the same results, but are now demeaned and scaled using the expressions for
the mean and variance of the asymptotic distribution to assess the adequacy of the asymptotic normal approximation,
where (T,M) = (1/2, 4). We refer the reader to Figure 4 for the specification of parameters.

of the asymptotic normal distribution. The optimal filter satisfies this asymptotic approximation

better for both frequencies considered in the figure.

5.4 Fully mis-specified models

Let the DGP’s conditional density be of the generalized Pareto type with a time-varying tail shape,

qh(yh(ti+1,h); h(ti,h)) = h
�1
 ̃h(ti,h) ·

⇥
1 + h

�1
yh(ti+1,h)

⇤� ̃h(ti,h)�1
, (5.17)

where  ̃h(ti,h) = ⌫ + exp( h(ti,h)) is a scalar time-varying shape parameter with fixed lower bound ⌫.

The conditional expectation of yh(ti+1,h) is given by h/( ̃h(ti,h)� 1). The dynamics of  h(ti,h) are

assumed to be given by

� h(ti+1,h) = h
�
a0 � a1  h(ti,h)

�
+ h

1/2
a2 ⌘i+1, a0, a1, a2 � 0, (5.18)

for a scalar i.i.d. standard normal process ⌘i+1 that is independent of yh(ti+1,h) conditional on  h(ti,h).

As the tail shape is parameterized by  ̃h(ti,h) = ⌫ + exp( h(ti,h)), we can easily control the number

of finite conditional moments of yh(ti+1,h), with ⌫ being a strict upper bound.

As a filter, we employ the Multiplicative Error Model (MEM) of Engle and Gallo (2006). The

37



MEM model is score-driven for an exponential distribution with a time-varying scale, see (Creal et al.,

2013). To ensure the positivity of the scale, we take the log-scale of the MEM as our time-varying

parameter that we filter from the data. This gives the conditional model density

ph

�
yh(ti+1,h); ✓h(ti,h)

�
= h

�1 exp
⇣
� ✓h(ti,h)� h

�1
e
�✓h(ti,h) yh(ti+1,h)

⌘
, (5.19)

with filter dynamics

�✓h(ti+1,h) = h
�
b0 � b1✓h(ti,h)

�
+ h

1/2
b2

⇣
h
�1
e
�✓h(ti,h) yh(ti+1,h)� 1

⌘
. (5.20)

To compute the pseudo true parameter, note that Eq. (3.5) collapses to

fh

�
✓
?
h(ti,h), h(ti,h)

�
=

Z ⇣
h
�1

e
�✓?h(ti,h) y � 1

⌘
qh(y; h(ti,h)) dy = 0 ()

✓
?
h(ti,h) = log

Z
y

h
qh(y; h(ti,h)) dy = � log

�
 ̃h(ti,h)� 1

�
= � log

�
⌫ � 1 + exp( h(ti,h)

�
,

(5.21)

for ⌫ + exp( h(ti,h)) > 1. The pseudo-true parameter ✓?h(ti,h) is thus obviously and in a predictable

way mis-specified for the true time-varying parameter  h(ti,h). The mis-specification, in this case, is

quite severe: the conditional model density (exponential) and true conditional density (generalized

Pareto) are quite di↵erent. Moreover, the model parameter ✓?h(ti,h) even has an entirely di↵erent

interpretation than  h(ti,h), with ✓?h(ti,h) measuring scale variation, and  h(ti,h) measuring tail shape

variation.

Assumptions FC.1 to FC.4 are easily checked by setting �h( · ) ⌘ 0, and using the Gaussianity

of ⌘i+1 and the fact that ✓?h(ti,h) = � log
�
⌫ � 1 + exp( h(ti,h))

�
is smooth for ⌫ > 1 and sub-linear:

its second derivative with respect to  equals �(⌫ � 1)e� /(1 + (⌫ � 1)e� )2, which for ⌫ > 1 has a

maximum absolute value of 1/4. To check the final Assumption FC.5, we use the (score-driven) filter

dynamics already stated in Eq. (5.20), which yield

E
h
gh

�
yh(ti+1,h), ✓

?
h(ti,h)

� ��xh(ti,h) = x, zh(ti,h) = z

i

= e
�✓?h(ti,h) E


yh(ti+1,h)

h

��xh(ti,h) = x, zh(ti,h) = z

�
� 1 = 0,
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Figure 6: Consistency illustration for the MEM example
The figure contains the path of a simulated tail-shape model using Eqs. (5.17) and (5.18) for T = 4 and h
equal to either 1/252 (daily data) or 1/19656 (5 minute data). The parameters in the DGP are chosen
as a0 = 0, a1 = a2 = 3, and ⌫ = 2.1. The resulting pseudo-true parameter ✓?h(ti,h) from (5.21) is given in
black and uses the right-hand y-axis. The underlying data yh(ti,h) are drawn as gray bars at the bottom
and use the left-hand y-axis. The filtered value ✓h(ti,h) using the MEM type filter (drawn in red) is given
by Eq. (5.20), with b0 = log(ȳ/h), b1 = 3, b2 = 1, and ȳ the sample mean of yh(ti,h). Drawn in blue, we
also provide the filtered ✓h(ti,h) using the optimal filter from Section 4.3.

using Eq. (5.21). Also Eq. (4.9) is satisfied for ⌫ > 1, as

lim
h#0

sup
k(x,z)k⌘

h
 |b2|E

"
sup
k✓k⌘̃

����
e
�✓
yh(ti+1,h)

h

����

����� xh(ti,h) = x, zh(ti,h) = z

#

 lim
h#0

sup
k(x,z)k⌘

h
|b2|

exp(⌘̃)

⌫ � 1 + exp(✓?h(ti,h))
= 0. (5.22)

Eq. (4.10) is easily satisfied if we assume ⌫ > 2, because

lim sup
h#0

sup
k(x,z)k⌘

E

h
�2
e
�2✓h(ti,h)yh(ti+1,h)

2
�� xh(ti,h) = x, zh(ti,h) = z

�

 lim sup
h#0

sup
k(x,z)k⌘

2e�2✓h(ti,h)

( ̃h(ti,h)� 1)( ̃h(ti,h)� 2)
 2e2⌘

(⌫ � 1)(⌫ � 2)
. (5.23)

Finally, we obtain that A(x) = b2 exp
�
✓
?
h(ti,h)� ✓

?
h(ti,h)

�
= b2 in (4.11), which is clearly positive if

b2 > 0. Therefore, Assumption FC.5 is satisfied.

As a result, for ⌫ > 2, Theorem 1 applies and we obtain consistency of the score-driven filter to

the pseudo-true parameter. An example is provided in Figure 6. We show two score-driven filtering

results: the MEM filter with ad-hoc parameters, and an optimal filter as derived later on. Both filters

satisfy the conditions for consistency, and it is clearly seen that the filtered ✓h(ti,h) in both cases lies

close to the pseudo-true ✓?h(ti,h), despite severe mis-specification. The fit becomes tighter as h # 0.

For the asymptotic normality of the filtering errors, only Assumption AD.1(c) is less trivial. Note

that gh
�
yh(ti+1,h), ✓h(ti,h)

�
= b2[h�1

e
�✓h(ti,h)yh(ti+1,h)� 1], where yh(ti+1,h) has a generalized Pareto

conditional distribution as in (5.17). For ⌫ > 2, the first equation in Assumption AD.1(c) is then
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directly satisfied by a similar argument as in Eq. (5.23). We also obtain

lim sup
h#0

sup
k(x,z)k⌘

e
�✓h(t)E

 ���h�1
yh(t+ h)

���
2+'3

���� xh(t) = x, z̃h(t) = z

�
 C1,⌘,

as long as ⌫ > 2 by choosing '3 = (⌫�2)/2. Finally, A(x) = b2, establishing that Assumption AD.1(c)

holds if b2 > 0. For Eq. (4.20) we have

lim
h#0

sup
k(x,z)k⌘

h
1/2E

"
e
�2✓?h(t) yh(t+ h)2

h2

�����xh(t) = x, z̃h(t) = z

#
= lim

h#0
sup

k(x,z)k⌘
2 h

1/2 = 0.

As a result, Theorem 2 applies and the scaled filtering errors are asymptotically normal. As

exp(�✓?h(ti,h))yh(ti+1,h)/h has a conditional unit exponential distribution, the conditional variance of

gh

�
yh(t+ h), ✓?(t)

�
= h

�1 exp
�
� ✓

?
h(tbt/hc,h)

�
yh(tbt/hc+1,h)� 1 is equal to 1, and thus

⌃(x) = b
2
2

⌫ + e
 

⌫ � 2 + e 
+ a

2
2

e
2 

(⌫ � 1 + e )2
, V

⇤ =

Z 1

0

exp(�2b2 s)⌃(x) ds = (2b2)
�1⌃(x). (5.24)

The asymptotic variance of the filtering error thus clearly increases if the true underlying time-varying

parameter  h(ti,h) has a larger variance, i.e., if a2 is larger. Also, the asymptotic variance is non-

monotonic in b2. A larger b2 means a larger reaction to the score of the model density. This allows

the filter to react more timely to changes in the underlying time-varying  h(ti,h) and thus reduces

V
⇤ via the factor (2b2)�1 in (5.24). At the same time, a larger b2 may cause over-shooting and thus

a larger asymptotic variance, which is the reason why b
2
2 enters ⌃(x). The two e↵ects result in a

bias-variance trade-o↵ that can be used to select an optimal value of b2.

To compute the optimal filter in this example, we first invert the mapping from  to ✓? and

determine its derivatives. We obtain

◆h( ) = � log(⌫ � 1 + e
 ) () ◆

�1
h (✓?) =  = log(1 + e

�✓? � ⌫),

@◆h( )

@ 
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�
�
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�

e�✓
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@◆
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@✓?
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�e
�✓?

1 + e�✓
? � ⌫

=
�
�
⌫ � 1 + e

 
�

e 
.

Using the generalized Pareto distribution (5.17), we have

Sh(yh(ti+1,h), h(ti,h)) =

"
1

 ̃h(ti,h)
� log

✓
1 +

yh(ti+1,h)

h

◆#�
 ̃h(ti,h)� ⌫

�
,

E
h
Sh(yh(ti+1,h), )

2
��� h(ti,h) =  

i
= E


� @

@ 
Sh(yh(ti+1,h), )

���� h(ti,h) =  

�
=

e
2 h(ti,h)

�
⌫ + e h(ti,h)

�2 ,

with  ̃h(ti,h) = ⌫ + e
 h(ti,h). Substituting these results into the expressions for Bh and Wh using
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Figure 7: MEM example: finite sample distributions of filtering errors
The figure contains the simulated distributions of filtering errors for the dynamic tail-shape model from Eqs.
(5.17) and (5.18) for T = 1/2 and M = 4 and h equal to either 1/252 (daily data) or 1/19656 (5 minute
data). The parameters in the DGP are chosen as a0 = 0, a1 = a2 = 3, and ⌫ = 2.1. In blue, we draw the
filtering errors based on the MEM type filter given by Eq. (5.20) with b0 = log(ȳ/h), b1 = 3, b2 = 1, and ȳ
the sample mean of yh(ti,h). In yellow, we provide the distribution of filtering errors using the optimal
filter.

Corollary 1, we obtain, conditional on  h(ti,h) =  ,

Bh =
h
Qh

�
✓
?
h(ti,h)

�i2 e
2 h(ti,h)

�
⌫ + e h(ti,h)
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⌫ � 1 + e 

�2 |a2| =
⇥
1� (⌫ � 1)e✓

?⇤
(1 + e

✓?) |a2|.

Using the above derivations, we now simulate the distribution of filtering errors using T = 1/2 and

M = 4. The results can be found in Figure 7. The figure shows that the distribution of filtering errors

is indeed tighter for the optimal filter than for the MEM type filter, in line with Theorem 3. This

holds for both the low and high frequency considered. For low frequencies, the optimal filter shows a

slight bias, though its tails are substantially smaller than those of the suboptimal filter. For high

frequencies, the bias disappears, and the gain in smaller variance remains and dominates the result.

The intuition for the smaller variance in this case stems from the more robust nature of the score-

driven filter for the DGP density. Rather than being linear in yh(ti+1,h), the optimal filter is based

on Sh

�
yh(ti+1,h), h(ti,h)

�
and thus logarithmic in yh(ti+1,h). As such, it reacts much less fiercely on

incidental large observations. Such observations may be prevalent if the tail index  ̃h(ti,h) = ⌫+e
 h(ti,h)

in the data generating process reaches its lower bound ⌫, see also the simulated data in Figure 6. As

a result, the MEM type filter may behave much more erratically in these settings than the optimal

filter, resulting in the more spiky behavior of the filtered path in Figure 6, and the larger tails for the

MEM filtering error distribution in Figure 7.
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6 Conclusions

In this paper, we studied the theoretical properties of score-driven models in a generic setting using

the tools from an in-fill asymptotic experiment. We have established that score-driven filters are

consistent for the time-varying parameter if the model’s conditional predictive density is correctly

specified, or more generally, if the Kullback-Leibler optimal parameter coincides with the true time-

varying parameter. If the model is mis-specified, the score-driven filter is still consistent for the

Kullback-Leibler optimal parameter path, i.e., for the path of a parameter that at every time point

minimizes the Kullback-Leibler divergence between the model density and the unknown DGP. Such a

result considerably generalizes earlier results from the literature for volatility models to the more

generic non-linear time series context, while at the same time allowing for more general forms of

mis-specification. It also generalizes earlier discrete time results as in Blasques et al. (2015) to the

continuous time context.

We further derived the asymptotic distribution of filtering errors in this general setting. The

asymptotic result was non-standard in the sense that it required both a scaling of filtering errors as

well as a ‘stretching’ of the time axis to obtain a non-degenerate limiting result. The asymptotic

normal approximation appeared to work well in settings with di↵erent frequencies.

Using the asymptotic normality of the filtering errors, we considered the choice of the optimal

filter. The optimal filter turned out to be a score-driven filter based on the true conditional predictive

distribution of the DGP. This filter serves as an (infeasible) benchmark, enabling us to assess the

quality of other filters. At the same time, it motivates the use of score-driven models in settings

where one believes the model to conditional predictive density is correctly specified.
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A General asymptotic results

In this section, we provide an overview of the fundamental conditions necessary for establishing the

asymptotic properties of observation-driven filters under mis-specification. Let
�
Vh(ti,h), i = 0, 1, . . . ,

 

be a generic time-homogeneous Markov chain in a metric space Eh corresponding to a one-step

transition function. In our context, Vh(ti,h) encompasses various components, typically including the

observed data or transformations thereof, the dynamic parameters, and the (scaled) filtering error,

for example,

Vh(ti,h) =
⇣
yh(ti,h), h(ti,h), h

��
✓h(ti,h)� ✓?h(ti,h)

�⌘
, (A.1)

for some  2 [0, 1/4]. Note that for a time-inhomogeneous process {V (t)}, Exercise 1.10 in Revuz and

Yor (1999, Chapter III) implies that the time-space process {(t,V (t))} is time-homogeneous. Thus,

it is possible to make the transition probability depend on time by making the time index ti,h an

element of Vh(ti,h). Let’s assume that both �h : Eh ! Rn and  h : Eh ! Rm are Borel measurable.

We can then define Xh(ti,h) = �h

�
Vh(ti,h)

�
and Zh(ti,h) =  h

�
Vh(ti,h)

�
. In most of the examples we

are considering, the expression Xh(ti,h) can take the form of
�
yh(ti,h), h(ti,h)

�
, and Zh(ti,h) would

be represented as h��
✓h(ti,h)� ✓?h(ti,h)

�
. Here, Vh(ti,h) corresponds to the expression given in (A.1).

We assume
��

Xh(ti,h),Zh(ti,h)
�
, i = 0, 1, . . .

 
forms a time-homogeneous Markov chain in Rn ⇥

Rm. However, if the process is non-Markovian, we refer to the discussions in Norman (1975) and

Ethier and Nagylaki (1988, p. 527) for further insights. More specifically, let ⌫h be a probability

measure on (Rn ⇥ Rm
,B (Rn ⇥ Rm)), where B (Rn ⇥ Rm) are the Borel sets on Rn ⇥ Rm. We use

D ([0,1),Rn ⇥ Rm) to denote the space of functions, endowed with the Skorohod metric, from [0,1)

into Rn⇥Rm that are right continuous with finite left limits. For h > 0, let ⇧h (x, z, · ) be a transition

function on Rn ⇥ Rm and Ph be a (fixed) probability measure on D ([0,1),Rn ⇥ Rm) such that

Ph

⇥�
Xh(ti,h),Zh(ti,h)

�
2 �

⇤
= ⌫h (� ) , 8� 2 B (Rn ⇥ Rm) , (A.2)

Ph

⇥�
Xh(t),Zh(t)

�
=
�
Xh(ti,h),Zh(ti,h)

�
, ti,h  t < ti+1,h

⇤
= 1, (A.3)

Ph

⇥�
Xh(ti+1,h),Zh(ti+1,h)

�
2 �

��Fh(ti,h)
⇤
= ⇧h

�
Xh(ti,h),Zh(ti,h),�

�
, (A.4)

where Fh(ti,h) is a �-algebra generated byXh(0),Xh(t1,h), . . . ,Xh(ti,h) andZh(0),Zh(t1,h), . . . ,Zh(ti,h),

and moreover, (A.4) holds almost surely under Ph for all i � 0 and all � 2 B (Rn ⇥ Rm). For conve-

nience, we adopt the following condition that rules out feedback from {Zh(ti,h)} to {Xh(ti,h)}: for

every Borel subset �x of Rn and for all h > 0,

⇧h (x, z,�x ⇥ Rm) is independent of z. (A.5)
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This assumption can also be omitted by making some modifications to the assumptions presented

below; see also the discussion following the Assumptions below.

The following assumptions are adapted from Ethier and Nagylaki (1988) and Nelson (1992). The

first four assumptions imply the weak convergence of the process {Xh(t)} to {X(t)}, as h # 0, whose

distribution can be uniquely determined (Assumption A4).

Assumptions:

A1 Xh(0) ) X(0) as h # 0, where X(0) has probability measure ⌫̃0.

A2 For every ⌘ > 0,

lim
h#0

sup
k(x,z)k⌘

���h�1E
⇥
�Xh(ti+1,h)

��Xh(ti,h) = x, Zh(ti,h) = z
⇤
� eµ(x)

��� = 0,

lim
h#0

sup
k(x,z)k⌘

���h�1E
h
(�Xh(ti+1,h)) (�Xh(ti+1,h))

> ��Xh(ti,h) = x, Zh(ti,h) = z

i
� e⌦(x)

��� = 0,

where eµ( · ) and e⌦( · ) are continuous, and the expectations above are taken under Ph.

A3 For every ⌘ > 0 and all j = 1, . . . , n,

lim
h#0

sup
k(x,z)k⌘

���h�1E
h
(�Xh(ti+1,h))

4
j

��Xh(ti,h) = x, Zh(ti,h) = z

i ��� = 0, (A.6)

where (a)j denotes the jth element of a vector a.

A4 ⌫̃0, eµ(x), and e⌦(x) uniquely specify the distribution of a di↵usion process X(t) with initial

distribution ⌫̃0, drift vector eµ(x), and di↵usion matrix e⌦(x).

A5 For some �, 0 < � < 1, and for every ⌘ > 0,

lim
h#0

sup
k(x,z)k⌘

���h��E
⇥
�Zh(ti+1,h)

��Xh(ti,h) = x, Zh(ti,h) = z
⇤
� c(x, z)

��� = 0, (A.7)

where for all x 2 Rn, c(x,0) = 0, and

lim
h#0

sup
k(x,z)k⌘

����h
��E

h
(�Zh(ti+1,h)) (�Zh(ti+1,h))

> ��Xh(ti,h) = x, Zh(ti,h) = z

i ���� = 0. (A.8)

A6 For each x 2 Rn, z 2 Rm, define the di↵erential equation with an initial condition

dZ(t,x, z)

dt
= c (x,Z (t,x, z)) , Z (0,x, z) = z. (A.9)

We require 0m⇥1 is a global asymptotically stable solution of (A.9) for bounded values of x and
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z, i.e., for every ⌘ > 0,

lim
t!1

sup
k(x,z)k⌘

kZ(t,x, z)k = 0. (A.10)

A7 There exist Borel functions ⇢h : Eh ! [0,1), and constants �(⌘, h) > 0 such that

lim
⌘!1

lim inf
h#0

inf
v 62G⌘,h

⇢h(v) = 1, G⌘,h =
n
v 2 Eh :

��(�h(v), h(v))
��  ⌘

o
, (A.11)

lim sup
⌘!1

lim sup
h#0

�(⌘, h) < 1, (A.12)

lim sup
h#0

E
⇥
⇢h

�
Vh(0)

�⇤
< 1, (A.13)

and for every ⌘ > 0 and h > 0,

sup
v2G⌘,h

⇢
h
�1E

h
⇢h

�
Vh(ti+1,h)

�
� ⇢h(v)

��Vh(ti,h) = v

i
� �(⌘, h)⇢h(v)

�
 0. (A.14)

Note that the moment conditions in Assumption A2 are independent of z under Ph by Eq. (A.5).

Similar conditions have been imposed in Ethier and Nagylaki (1988), see their Eqs. (1.10), (1.15), and

(1.16). One can consider allowing eµ( · ) and e⌦( · ) to depend on z, thereby modifying Assumption A4

accordingly. In this case, condition (A.5) can be dropped. Appendix A in Nelson (1990) summarizes

a set of conditions that imply the distributional uniqueness as required in Assumption A4. Further

intuition may be given as follows. Assumptions A2, A3, and A5, may imply that, for some � 2 (0, 1),

h
�1E

" 
�Xh(ti+1,h)

�Zh(ti+1,h)

! �����Xh(ti,h) = x, Zh(ti,h) = z

#
⇡
 

eµ(x)
h
��1

c(x, z)

!
,

as h # 0. Note that h��1 ! 1 as h # 0. If the process
��

Xh(t),Zh(t)
� 

does not explode in finite

time, which is guaranteed by Assumptions A3, A4, and A7, then Zh(t) must converge to 0, requiring

the di↵erential equation in Assumption A6 has a stable solution of 0. Therefore, we have the following

theorem that serves as a valuable result for demonstrating the filter consistency, see Theorem 2.1 of

Ethier and Nagylaki (1988) as well as Theorem 2.2 of Nelson (1992).

Theorem A.1 (Ethier and Nagylaki, 1988)

Let Assumptions A1 - A7 hold. Then, for each t > 0,

Zh(t)
p! 0m⇥1, as h # 0. (A.15)

We now present the asymptotic results that establish the weak convergence of filtering errors.
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To achieve this, we define Vh(ti,h) as given in Eq. (4.1) with  = 1/4. Furthermore, we define

fXh(ti,h) = �h

�
Vh(ti,h)

�
=
�
�h(ti,h), h(ti,h)

�
and eZh(ti,h) =  h

�
Vh(ti,h)

�
= h

�1/4
�
✓h(ti,h)� ✓?h(ti,h)

�
.

For ⌧ � 0, let fXT,h(⌧) = fXh

�
T + ⌧h

1/2
�
and eZT,h(⌧) = eZh

�
T + ⌧h

1/2
�
. We begin by presenting the

assumptions.

Assumptions:

Let t be a function of (T, ⌧, h) given by t ⌘ T + ⌧h
1/2.

A8 The following functions are well-defined and twice-di↵erentiable in x = (�, ):

A(x) ⌘ � lim
h#0

E
"

@

@✓>
gh

⇣
yh(t+ h),✓?h(t)

⌘ �����
fXh(t) = x

#
, (A.16)

⌃(x) ⌘ lim
h#0

E

8
<

:

"
gh

⇣
yh(t+ h),✓?h(t)

⌘
�
✓
@◆h( )

@ >

◆
B⌘bt/hc+1

#

⇥
"
gh

⇣
yh(t+ h),✓?h(t)

⌘
�
✓
@◆h( )

@ >

◆
B⌘bt/hc+1

#> ������
fXh(t) = x = (�, )

9
=

;. (A.17)

Further,

h
�1/2E

h
�fXh(t+ h)

�� fXh(t) = x, eZh(t) = z

i
! 0, (A.18)

h
�1/2 Cov

h
�fXh(t+ h)

�� fXh(t) = x, eZh(t) = z

i
! 0, (A.19)

and

h
�1/2E

h
� eZh(t+ h)

�� fXh(t) = x, eZh(t) = z

i
! �A(x)z, (A.20)

h
�1/2 Cov

h
� eZh(t+ h)

�� fXh(t) = x, eZh(t) = z

i
! ⌃(x), (A.21)

as h # 0 uniformly on every bounded (x, z) set.

A9 For some ' > 0, the following conditional expectations

E
h��h�1/2�fXh(t+ h)

��2+'
��� fXh(t) = x, eZh(t) = z

i
, (A.22)

are bounded as h # 0, uniformly on every bounded (x, z) set. Moreover,

h
�1/2E

h��� eZh(t+ h)
��2+'

��� fXh(t) = x, eZh(t) = z

i
! 0, (A.23)

uniformly on every bounded (x, z) set.
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The set of Assumptions A8 - A9 is high-level and appears to be isolated from Assumptions A1 -

A7. However, as seen in Theorems 1 - 2, the verification of these two sets of assumptions leads to

similar conditions.

The following theorem is an adaption of Theorem 2.1 in Nelson (1996). The univariate counterpart

is established in Nelson and Foster (1994, Theorem 3.1). It states that, for M > 0, the process
� eZT,h(⌧)

 
⌧2[0,M ]

, defined on the fast time scale, converges weakly to a di↵usion process conditional

on
�fXT,h(0), eZT,h(0)

�
= (x, z).

Theorem A.2 (Nelson, 1996)

Let Assumptions A8 - A9 be satisfied. Let �0 be a bounded, open subset of Rky+k +k✓ on which for

some " > 0, the real parts of all the eigenvalues of A(x) are bounded below by ". Then for every

(x, z) 2 �0, conditional on
�fXT,h(0), eZT,h(0)

�
= (x, z),

� eZT,h(⌧)
 
⌧2[0,M ]

converges weakly to the

di↵usion

dZ(⌧) = �A(x)Z(⌧)d⌧ +⌃(x)1/2dW⌧ , as h # 0, (A.24)

where W⌧ is a standard Brownian motion. This convergence is uniform on �0. Further, for every

(x, z) 2 �0,

eZT,h(⌧)
���
�fXT,h(0), eZT,h(0)

�
= (x, z)

d! N
⇣
b(⌧,x, z),V (⌧,x)

⌘
, as h # 0, (A.25)

where b(⌧,x, z) = exp
⇥
� ⌧A(x)

⇤
z and

V (⌧,x) = exp
⇥
� ⌧A(x)

⇤⇢
Z ⌧

0

exp
⇥
sA(x)

⇤
⌃(x) exp

⇥
sA(x)>

⇤
ds

�
exp

⇥
� ⌧A(x)>

⇤
.

It is important to note that Eqs. (A.18) - (A.19) are inherently satisfied within the DGP in

Nelson (1996). Therefore, they are only implicitly imposed by Nelson (1996). Given the additional

mis-specification in our setting, we explicate these assumptions. Additionally, instead of enforcing

(A.23), Nelson (1996) requires that

E
���gh

⇣
yh(t+ h),✓h(t)

⌘���
2+'
���� fXh(t) = x, , eZh(t) = z

�

be bounded as h # 0, uniformly on every bounded (x, z) set. While this condition implies (A.23)

within Nelson’s framework, it may not necessarily hold true within our own framework. We therefore

again make this assumption explicit.

The key to proving Theorem A.2 involves three steps.
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(i) By Eqs. (A.18) - (A.22), one argues that the first two conditional moments

h
�1/2E

" 
�fXh(t+ h)

� eZh(t+ h)

! �����
fXh(t) = x, eZh(t) = z

#
!
 

0

�A(x)z

!
,

as h # 0, uniformly on every bounded (x, z) set, and similarly,

h
�1/2 Cov

2

4

0

@�
fXh(t+ h)

� eZh(t+ h)

1

A

������
fXh(t) = x, eZh(t) = z

3

5! diag
⇣
0,⌃(x)

⌘
.

(ii) By Eqs. (A.22) and (A.23),

h
�1/2E

2

4
�����

 
�fXh(t+ h)

� eZh(t+ h)

!�����

2+' �����
fXh(t) = x, eZh(t) = z

3

5! 0,

uniformly on every bounded (x, z) set.

(iii) Let � = 1/2 in Theorem 2.1 of Nelson and Foster (1994). This leads to the joint weak

convergence of the process
��fXh(t), eZh(t)

�
=
�fXT,h(⌧), eZT,h(⌧)

� 
⌧2[0,M ]

for t = T + ⌧h
1/2.

More importantly, since the drift and covariance of fXT,h(⌧) are asymptotically zeros, the

process
�fXT,h(⌧)

 
⌧2[0,M ]

degenerates to the initial value fXT,h(0) = fXh(T ) in the limit, while
� eZT,h(⌧)

 
⌧2[0,M ]

becomes a di↵usion.

In contrast to Theorem A.1, the weak convergence described in Eqs. (A.24) and (A.25) is

conditional on the initial values
�fXT,h(0), eZT,h(0)

�
= (x, z). Since T � 0 can take any value,

this condition fundamentally requires that the sample path of
��fXh(t), eZh(t)

� 
is non-explosive

everywhere, as specified in Assumption A7. Under this (strong) condition, it is intuitively possible to

relax or drop certain assumptions for filter consistency. For instance, Assumption A1 is automatically

satisfied in this case. However, both theorems still require the sample path of the process
�fXh(t)

 
to

be finite and, asymptotically, free from discrete jumps. This explains why checking the two sets of

assumptions, namely Assumptions A1 - A7 and Assumptions A8 - A9, ultimately leads to similar

constraints, despite their apparent di↵erences.

B Filter consistency

For any ⌘ > 0, define two compact sets N 1(⌘) = {x = (�, ) : k(�, )k  ⌘} ⇢ Rk� ⇥  and

N 2(⌘) = {(x, z) = (�, , z) : k(�, , z)k  ⌘} ⇢ Rk� ⇥  ⇥ Rk✓ .

Proof of Theorem 1 Let Vh(ti,h) in Appendix A be specified as Vh(ti,h) =
⇣
�h(ti,h), h(ti,h), h��

✓h(ti,h)�
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✓
?
h(ti,h)

�⌘
. Define �h and  h such that xh(ti,h) = �h

�
Vh(ti,h)

�
and zh(ti,h) =  h

�
Vh(ti,h)

�
, where

xh(ti,h) and zh(ti,h) are shown in Eq. (4.1). To apply Theorem A.1, we shall verify Assumptions A1 -

A7 for
��

xh(ti,h), zh(ti,h)
� 

. Let Ei,h [ · ] = E
⇥
·
��xh(ti,h) = x = (�, ), zh(ti,h) = z

⇤
. We separate

the proof into three main parts. Note that Parts I and III do not impose conditions on the value of 

as given in Eq. (4.1).

I. Verify Assumptions A1 - A4

We first verify Assumptions A2 - A3. Let eµ(x) =
⇣

µ(x)
a( )

⌘
and e⌦(x) =

⇣
⌦��(x) ⌦�⌘(x)B( )>

B( )⌦�⌘(x)> B( )B( )>

⌘
.

By Assumption FC.2, we have

lim
h#0

sup
(x,z)2N 2(⌘)

���h�1Ei,h

⇥
�xh(ti+1,h)

⇤
� eµ(x)

���

= lim
h#0

sup
(x,z)2N 2(⌘)

������

0

@h
�1Ei,h

⇥
��h(ti+1,h)

⇤
� µ(x)

ah( )� a( )

1

A

������
= 0, (B.1)

and similarly,

lim
h#0

sup
(x,z)2N 2(⌘)

���h�1Ei,h

h
(�xh(ti+1,h)) (�xh(ti+1,h))

>
i
� e⌦(x)

��� = 0.

Then Assumption A2 is fulfilled. Using the conditions of the fourth-order moments given in As-

sumptions FC.1 - FC.2, and the cr-inequality, one can immediately verify Assumption A3. Finally,

Assumption FC.3 contains Assumptions A1 and A4.

II. Verify Assumptions A5 - A6

We first verify Eq. (A.7) in Assumption A5. It is worth noting that the results presented below,

including Eq. (B.9), hold true for any  2 [0, 1/4]. Take � = 1/2. For every ⌘ > 0,

h
��Ei,h

⇥
�zh(ti+1,h)

⇤

= h
�1/2�Ei,h

⇥
�✓h(ti+1,h)��✓?h(ti+1,h)

⇤

= h
1/2�

�Ei,h

⇥
✓h(ti,h)

⇤
+ h

�Ei,h

h
gh

�
yh(ti+1,h),✓h(ti,h)

�i
� h

�1/2�Ei,h

⇥
�✓?h(ti+1,h)

⇤
+ h

1/2�
!.

(B.2)

Conditional on
�
xh(ti,h), zh(ti,h)

�
= (�, , z), we have by definition ✓h(ti,h) � ✓

?
h(ti,h) = ✓h(ti,h) �

◆h( ) = h

z. Using Assumption FC.4, we have the first term in (B.2)

sup
(x,z)2N 2(⌘)

���h1/2�
�Ei,h

⇥
✓h(ti,h)

⇤���  C sup
(x,z)2N 2(⌘)

⇥
h
1/2kzk+ h

1/2�k◆h( )k
⇤
= o(1).
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For the second term in (B.2), we expand element-wise gh

�
yh(ti+1,h),✓h(ti,h)

�
in a Taylor series

around gh

�
yh(ti+1,h),✓?h(ti,h)

�
. Using the identity a

>
Ha = tr

�
a
>
Ha

�
=
⇥
vec
�
H

>�⇤> vec(aa>) for

any a 2 RK , H 2 RK⇥K , K 2 Z+, by Eq. (4.8) in Assumption FC.5, we arrive at

h
�Ei,h

h
gh

�
yh(ti+1,h),✓h(ti,h)

�i
= Ei,h


@

@✓>
gh

�
yh(ti+1,h),✓

?
h(ti,h)

��
z+h

�Ei,h

⇥
Ri,h

�
gh, ✓̄

?
h(ti,h)

�⇤
,

(B.3)

with

Ri,h

�
gh, ✓̄

?
h(ti,h)

�
=

1

2

0

BBBBBBBB@

vec


@
2

@✓@✓>
gh,1

⇣
yh(ti+1,h), ✓̄?h,1(ti,h)

⌘�>

...

vec


@
2

@✓@✓>
gh,k✓

⇣
yh(ti+1,h), ✓̄?h,k✓(ti,h)

⌘�>

1

CCCCCCCCA

vec
h�
✓h(ti,h)� ✓?h(ti,h)

��
✓h(ti,h)� ✓?h(ti,h)

�>i
,

where gh,j

�
yh(ti+1,h), ·

�
is the jth element of the vector gh

�
yh(ti+1,h), ·

�
, j = 1, . . . , k✓, and ✓̄?h,j(ti,h)

lie on the segment joining ✓h(ti,h) and ✓?h(ti,h). Note that
��✓̄?h,j(ti,h) � ✓

?
h(ti,h)

��  h
kzk  h


⌘

conditional on zh(ti,h) = z, j = 1, . . . , k✓. For every ⌘ > 0 and every j = 1, . . . , k✓, there exists a

constant �1 = �1(⌘) > 0 such that
��✓̄?h,j(ti,h)

�� 
��✓?h(ti,h)

��+
��✓̄?h,j(ti,h)� ✓?h(ti,h)

��  �1 by Eq. (4.4)

in Assumption FC.4, as h # 0. By Eq. (4.9), we obtain

��h�Ei,h

⇥
Ri,h

�
gh, ✓̄

?
h(ti,h)

�⇤��  Ckzk2
k✓X

j=1

h
Ei,h

(
sup

k✓k�1

����
@
2

@✓@✓>
gh,j

�
yh(ti+1,h),✓

�����

)
= o(1), (B.4)

uniformly on the bounded set N 2(⌘). Therefore, for every ⌘ > 0,

lim
h#0

h
�Ei,h

h
gh

�
yh(ti+1,h),✓h(ti,h)

�i
= �A(x)z, uniformly on N 2(⌘), (B.5)

where A(x) is defined in Assumption FC.5.

For the third term in (B.2), note that �✓?h(ti+1,h) = ◆h

�
 h(ti+1,h)

�
� ◆h

�
 h(ti,h)

�
. Recall ◆h,j(·)

is the jth element of ◆h(·). For j = 1, . . . , k✓, using a Taylor expansion of ◆h,j
�
 h(ti+1,h)

�
around

◆h,j

�
 h(ti,h)

�
, the jth element of Ei,h

⇥
�✓?h(ti+1,h)

⇤
can be written as

Ei,h

"✓
@◆h,j

�
 h(ti,h)

�

@ >

◆
� h(ti+1,h)

#
+

1

2
Ei,h

"
�
� h(ti+1,h)

�>
✓
@
2
◆h,j

�
 ̄h(ti,h)

�

@ @ >

◆�
� h(ti+1,h)

�
#
,

where  ̄h(ti,h) lies on the segment joining  h(ti+1,h) and  h(ti,h). Note that, by Assumptions FC.1
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and FC.4,

������
h
�1/2�Ei,h

"✓
@◆h,j

�
 h(ti,h)

�

@ >

◆
� h(ti+1,h)

#������
=

�����h
1/2�

✓
@◆h,j( )

@ >

◆
ah( )

����� = o(1), (B.6)

uniformly on N 2(⌘). Recall
��A>

BA
��  kBk

��A>
A
�� for any symmetric matrixB. Since

�� ̄h(ti,h)�

 h(ti,h)
��  k� h(ti+1,h)k, 8⌘ > 0,

sup
(x,z)2N 2(⌘)

������
h
�1/2�Ei,h

"
�
� h(ti+1,h)

�>
 
@
2
◆h,j

�
 ̄h(ti,h)

�

@ @ >

!
�
� h(ti+1,h)

�
# ������

 sup
(x,z)2N 2(⌘)

h
�1/2�Ei,h

(�����
@
2
◆h,j

�
 ̄h(ti,h)

�

@ @ >

�����
��� h(ti+1,h)

��2
)

 sup
(x,z)2N 2(⌘)

h
�1/2�Ei,h

(����
@
2
◆h,j( )

@ @ >

����
��� h(ti+1,h)

��2 + Vh,j

�
k� h(ti+1,h)k

���� h(ti+1,h)
��2
)

 sup
k k⌘

h
1/2�

����
@
2
◆h,j( )

@ @ >

����+ sup
(x,z)2N 2(⌘)

h
�1/2�Ei,h

h
Vh,j

�
k� h(ti+1,h)k

���� h(ti+1,h)
��2
i

= o(1) + sup
(x,z)2N 2(⌘)

h
�1/2�Ei,h

h
Vh,j

�
k� h(ti+1,h)k

���� h(ti+1,h)
��2
i
,

where the second inequality and the last step follow from (4.6) and (4.5) in Assumption FC.4,

respectively. Moreover, for any random variable X, we note that
�
Ei,h|X|r

�1/r 
�
Ei,h|X|s

�1/s
,

s > r > 0, by the conditional Hölder inequality. Therefore, by (4.7) in Assumption FC.4,

sup
(x,z)2N 2(⌘)

h
�1/2�Ei,h

h
Vh,j

�
k� h(ti+1,h)k

���� h(ti+1,h)
��2
i


⇢

sup
(x,z)2N 2(⌘)

h
�1�2Ei,h

h
V

2
h,j

�
k� h(ti+1,h)k

���� h(ti+1,h)
��4
i�1/2

= o(1). (B.7)

Combining the results above, we obtain

sup
(x,z)2N 2(⌘)

������
h
�1/2�Ei,h

"
�
� h(ti+1,h)

�>
 
@
2
◆h,j

�
 ̄h(ti,h)

�

@ @ >

!
�
� h(ti+1,h)

�
# ������

= o(1). (B.8)

By (B.6) - (B.8), we have h
�1/2�Ei,h

⇥
�✓?h(ti+1,h)

⇤
= o(1) uniformly on N 2(⌘) for every ⌘ > 0.

Combining (B.2) - (B.8), for every ⌘ > 0, we obtain

lim
h#0

h
��Ei,h

⇥
�zh(ti+1,h)

⇤
= �A(x)z, uniformly on N 2(⌘). (B.9)

Let c(x, z) = �A(x)z. Clearly, c(x,0) = 0 for all x 2 Rn, and thus Eq. (A.7) follows.
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We move on to checking Eq. (A.8) in Assumption A5. Assume  < 1/4 now. It su�ces to show:

lim
h#0

sup
(x,z)2N 2(⌘)

����h
�1/2�2Ei,h

h�
�✓h(ti+1,h)

��
�✓h(ti+1,h)

�>i
���� = 0, (B.10)

lim
h#0

sup
(x,z)2N 2(⌘)

����h
�1/2�2Ei,h

h�
�✓?h(ti+1,h)

��
�✓?h(ti+1,h)

�>i
���� = 0, (B.11)

lim
h#0

sup
(x,z)2N 2(⌘)

����h
�1/2�2Ei,h

h�
�✓h(ti+1,h)

��
�✓?h(ti+1,h)

�>i
���� = 0, (B.12)

for every ⌘ > 0. Note that by the cr-inequality and Assumption FC.4,

����h
�1/2�2Ei,h

h�
�✓h(ti+1,h)

��
�✓h(ti+1,h)

�>i
����  h

�1/2�2Ei,h

h���✓h(ti+1,h)
��2
i

 Ch
1/2�2Ei,h

���gh

�
yh(ti+1,h),✓h(ti,h)

����
2
�
+ o
�
h
1/2
�
,

(B.13)

where the o
�
h
1/2
�
-term is uniform on N 2(⌘). Then Eq. (B.10) is immediate by Eqs. (B.13) and

(4.10) in Assumption FC.5. Similarly, by the second-order Taylor expansion of ◆h
�
 h(ti+1,h)

�
around

◆h

�
 h(ti,h)

�
, the cr-inequality, and using similar arguments for (B.8), 8⌘ > 0, we have

sup
(x,z)2N 2(⌘)

����h
�1/2�2Ei,h

h�
�✓?h(ti+1,h)

��
�✓?h(ti+1,h)

�>i
����  C

k✓X

j=1

(
sup

k k⌘
h
1/2�2

����
@◆h,j( )

@ >

����
2

+ sup
k k⌘

h
3/2�2

����
@
2
◆h,j( )

@ @ >

����
2

+ sup
(x,z)2N 2(⌘)

h
�1/2�2Ei,h

h
V

2
h,j

�
k� h(ti+1,h)k

���� h(ti+1,h)
��4
i)

= o(1).

(B.14)

We obtain (B.11). As a result, Eq. (B.12) immediately follows from (B.13) - (B.14) and the

Cauchy-Schwarz inequality.

Finally, for every x 2 Rk� ⇥ Rk , z 2 Rk✓ , define the following ordinary di↵erential equation:

dZ(t,x, z)

dt
= �A(x)Z(t,x, z), Z(0,x, z) = z. (B.15)

Since all the eigenvalues of A(x) have strictly positive real parts in every bounded subset of Rk� ⇥Rk 

(Assumption FC.5), Assumption A6 is fulfilled, see e.g., Eq. (3.15) in Nelson (1992), Ethier and

Nagylaki (1980, Remarks, p. 20).

III. Verify Assumption A7

We follow Nelson (1992, Proof of Theorem 3.1) and define �(z) = z
>
z
⇥
1� exp

�
�z

>
z
�⇤
, !(x) =
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�
x
>
x
�1/2 ⇥

1� exp
�
�x

>
x
�⇤
,

⇢h(x, z) = ⇢(x, z) = 2 + �(z) + !(x). (B.16)

Then Eq. (A.11) is immediate. Moreover, Part (a) in Assumption FC.3 directly implies Eq. (A.13).

It su�ces to show that there is a �(⌘, h) satisfying (A.12) such that for every ⌘ > 0 and h > 0,

sup
(x,z)2N 2(⌘)

n
h
�1Ei,h

h
!
�
xh(ti+1,h)

�
� !(x)

i
� �(⌘, h)

⇥
1 + !(x)

⇤o
 0. (B.17)

sup
(x,z)2N 2(⌘)

n
h
�1Ei,h

h
�
�
zh(ti+1,h)

�
� �(z)

i
� �(⌘, h)

⇥
1 + �(z)

⇤o
 0, (B.18)

Note that (B.17) and (B.18) would follow if for every ⌘ > 0 and h > 0, there existK1(⌘, h), K2(⌘, h) > 0

such that

sup
(x,z)2N 2(⌘)

⇢
h
�1Ei,h

h
!
�
xh(ti+1,h)

�
� !(x)

i
�K1(⌘, h)

�
 0, (B.19)

sup
(x,z)2N 2(⌘)

⇢
h
�1Ei,h

h
�
�
zh(ti+1,h)

�
� �(z)

i
�K2(⌘, h)

�
 0. (B.20)

Indeed, as �(·),!(·) � 0, (B.17) and (B.18) follow from (B.19) and (B.20) by letting �(⌘, h) =

K1(⌘, h) _K2(⌘, h). If �(⌘, h) satisfies (A.12), then we obtain Assumption A7.

For (B.19), simple algebra implies

sup
x2Rky⇥Rk 

����
@!(x)

@x

���� = sup
x2Rky⇥Rk 

����
xp
x>x

⇥
1� exp

�
� x

>
x
�⇤

+ 2x
p
x>x exp

�
� x

>
x
�����  C.

By a Taylor series and Eq. (B.1), we have

sup
(x,z)2N 2(⌘)

���h�1Ei,h

h
!
�
xh(ti+1,h)

�
� !(x)

i��� = sup
(x,z)2N 2(⌘)

����
@!(x̄h(ti,h))

@x> h
�1Ei,h

⇥
�xh(ti+1,h)

⇤����

 C sup
(x,z)2N 2(⌘)

���h�1Ei,h

⇥
�xh(ti+1,h)

⇤���

 C

 
1 + sup

x2N 1(⌘)

��µ(x)
��
!
,

as h # 0, where x̄h(ti,h) is on the line segment between xh(ti+1,h) and xh(ti,h) = x. Since µ(·) is

uniformly bounded (Assumption FC.2), one can find a su�ciently large K1 > 0, which is independent

of ⌘ and h, such that (B.19) holds with K1(⌘, h) ⌘ K1.
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For (B.20), let z̄h(ti,h) lie on the segment joining zh(ti,h) = z and zh(ti+1,h), then

h
�1Ei,h

⇥
�
�
zh(ti+1,h)

�
� �(z)

⇤

= h
�1@�(z)

@z> Ei,h

⇥
�zh(ti+1,h)

⇤
+

1

2
h
�1Ei,h

h
Ri,h

�
�, z̄h(ti,h)

�i

= h
��1

⇢
@�(z)

@z> h
��Ei,h

⇥
�zh(ti+1,h)

⇤
+

1

2
h
��Ei,h

h
Ri,h

�
�, z̄h(ti,h)

�i�
, (B.21)

where Ri,h

�
�, z̄h(ti,h)

�
=
⇥
�zh(ti+1,h)

⇤>@2�(z̄h(ti,h))

@z@z>

⇥
�zh(ti+1,h)

⇤
,

@�(z)

@z
= 2z

⇥
1 +

�
z
>
z � 1

�
exp

�
� z

>
z
�⇤

,

@
2
�(z)

@z@z> = 2Ik✓
⇥
1 +

�
z
>
z � 1

�
exp

�
� z

>
z
�⇤

� 4zz> ⇥(z>
z � 2) exp

�
� z

>
z
�⇤

.

Before continuing, we point out two properties of the partial derivatives above. First, using

0 < 1 +
�
z
>
z � 1

�
exp

�
� z

>
z
�
=
⇥
1� exp

�
� z

>
z
�⇤

+ z
>
z exp

�
� z

>
z
�
 C, (B.22)

��zz>⇥(z>
z � 2) exp

�
� z

>
z
�⇤��  C, it is not hard to obtain supz2Rk✓

⇣
k@�(z)/@zk/kzk

⌘
 C and

supz2Rk✓

��@2�(z)/@z@z>
��  C. Second, note that, for any x � 0, we have |1 � exp(�x)|  |x|,

exp(�x)  1, and |(x� 2) exp(�x)|  2. If kzk ! 0, then

����
@�(z)

@z

����  2kzk
⇣���z>

z exp
�
� z

>
z
����+

���1� exp
�
� z

>
z
����
⌘
 4kzk3,

����
@
2
�(z)

@z@z>

����  4kzk2 + 8kzk2  12kzk2.
(B.23)

Moreover, by similar steps for showing Eq. (A.8), for every ⌘ > 0, we have

lim sup
h#0

sup
(x,z)2N 2(⌘)

����h
��Ei,h

n⇥
�zh(ti+1,h)

⇤>⇥
�zh(ti+1,h)

⇤o���� = 0. (B.24)

With a slight abuse of notation and utilizing the uniformly bounded property of @2�(z)/@z@z>,

Eqs. (B.9), (B.21), and (B.24), we arrive at

h
�1Ei,h

⇥
�
�
zh(ti+1,h)

�
��(z)

⇤
= h

��1

(
� @�(z)

@z> A(x)z+o

✓����
@�(z)

@z

����

◆
+o

✓����
@
2
�(z)

@z@z>

����

◆)
, (B.25)

where the o(·)-terms are uniform on N 2(⌘). Clearly, (B.20) and (A.12) are immediate if kzk = 0

(because �(z) ⌘ 0). We assume kzk 6= 0 next. By (B.25) above, we observe two main cases for

h
�1Ei,h

⇥
�
�
zh(ti+1,h)

�
� �(z)

⇤
.
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(i) For any K > 0 (possibly depending on ⌘) and � > 0, in neighborhoods of the form 0 < kzk 

Kh
�, the right-hand side (RHS) of Eq. (B.25) can be written as

h
��1
n
� 2

⇥
1 +

�
z
>
z � 1

�
exp

�
� z

>
z
�⇤

z
>
A(x)z + o(kzk3) + o(kzk2)

o

= h
��1
n
O(kzk2) + o(kzk3) + o(kzk2)

o
, (B.26)

using the construction of @�(z)/@z and (B.23), where the O(kzk2) term is strictly negative

because 1 +
�
z
>
z � 1

�
exp

�
� z

>
z
�
> 0 as mentioned in (B.22). Clearly, the O(kzk2) term

is in the strict sense, i.e., it is not o(kzk2). As such, it dominates the other terms asymptoti-

cally. Therefore, h�1Ei,h

⇥
�
�
zh(ti+1,h)

�
� �(z)

⇤
is asymptotically negative (may be bounded or

unbounded). In this case, there exists a su�ciently large K2 > 0, which is independent of ⌘ and

h, such that (B.20) holds with K2(⌘, h) ⌘ K2. Clearly, �(⌘, h) = K1(⌘, h)_K2(⌘, h) ⌘ K1 _K2

fulfills (A.12).

(ii) Otherwise, the first term in the curly brackets on the RHS of (B.25) dominates the remaining

terms, and as a result, h�1Ei,h

⇥
�
�
zh(ti+1,h)

�
� �(z)

⇤
diverges to �1. The arguments in Part

(i) follow immediately.

The verification of Assumptions A1 - A7 allows one to use Theorem A.1, yielding Theorem 1. ⌅

C Weak convergence

Proof of Theorem 2 Let t ⌘ T + ⌧h
1/2, without the dependence on (T, ⌧, h) for brevity in notation.

Recall that ezh(t) = h
��

✓h(t) � ✓
?
h(t)
�
with  = 1/4. Without confusion, let Et,h (Covt,h) be the

expectation (covariance) conditional on
�
xh(t), ezh(t)

�
= (x, z). We shall apply Theorem A.2. As

such, we verify Assumptions A8 - A9. The equations (A.18) - (A.19) in Assumption A8 are directly

derived from the dynamics of by the dynamics of
�
� h(t+ h)

 
and (4.17) - (4.18). Furthermore, Eq.

(B.9) continues to hold for ezh(t) with minor modifications under Assumption AD.1 (subsequently,

Assumptions FC.1, FC.4, FC.5). Hence, we have (A.20), and moreover,

h
�1/2 Covt,h

�
�ezh(t+ h)

�

= h
�1/2Et,h

h�
�ezh(t+ h)

��
�ezh(t+ h)

�>i� h
1/2
h
h
�1/2Et,h

�
�ezh(t+ h)

�ih
h
�1/2Et,h

�
�ezh(t+ h)

�>i

= h
�1Et,h

h�
�✓h(t+ h)��✓?h(t+ h)

��
�✓h(t+ h)��✓?h(t+ h)

�>i
+O

�
h
1/2
�
,

where the O(·)-term is uniform on N 2(⌘), ⌘ > 0. Next, we use the second-order Taylor expansions

repeatedly to find the terms dominating the asymptotic order of �✓h(t+ h)��✓?h(t+ h). Note that,
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conditional on
�
xh(t), ezh(t)

�
= (x, z) = (�, , z) 2 N 2(⌘),

h
�1/2

�
�✓h(t+ h)��✓?h(t+ h)

�
=:

3X

`=1

⌅h,` + eRt,h

�
gh,x, z

�
+ R̆t,h

�
◆h,x, z

�
+O

�
h
1/2
�
, (C.1)

where the O(·)-term is uniform on N 2(⌘),

⌅h,1 = gh

⇣
yh(t+ h),✓?h(t)

⌘
�
✓
@◆h( )

@ >

◆
Bh( )⌘bt/hc+1,

⌅h,2 = h
1/4 @

@✓>
gh

⇣
yh(t+ h),✓?h(t)

⌘
z, ⌅h,3 = �h

1/2@◆h( )

@ > ah( ).

By Eq. (4.20) and Assumption FC.4(a), respectively, we have sup(x,z)2N 2(⌘) Et,h

��⌅h,2

��2 = o(1) and

supk k⌘
��⌅h,3

��2 = o(h1/2). Moreover, the first remainder term is bounded as, for some K1,⌘, K2,⌘ > 0,

��� eRt,h

�
gh,x, z

����  K1,⌘

k✓X

j=1

(
h
1/2 sup

k✓kK2,⌘

����
@
2

@✓@✓>
gh,j

�
yh(t+ h),✓

�����

)
.

Then AD.1(c) implies sup(x,z)2N 2(⌘) Et,h

��� eRt,h

�
gh,x, z

����
2

= o(h1/2).

For the second remainder term, there are two cases. If @◆h,j( )/@ > does not depend on  , and

thus @2◆h,j(·)/@ @ > ⌘ 0, we have
��R̆t,h

�
◆h,x, z

��� ⌘ 0, and thus, sup(x,z)2N 2(⌘) Et,h

��R̆t,h

�
◆h,x, z

���2 ⌘

0 for any '1 > 0, where '1 is given in Assumption AD.1(a). Otherwise, it is bounded as

���R̆t,h

�
◆h,x, z

����  C

k✓X

j=1

(
h
1/2

����
@
2
◆h,j( )

@ @ >

����
��⌘bt/hc+1

��2+h
�1/2

Vh,j

�
k� h(ti+1,h)k

���� h(ti+1,h)
��2
)
.

In this case, we require '1 � 2 to ensure the existence of Et,h

��⌘bt/hc+1

��4. For '1 � 2, by

Assumption AD.1(b) , we obtain sup(x,z)2N 2(⌘) Et,h

��R̆t,h

�
◆h,x, z

���2 = o(h1/2) + o(h1/2). Com-

bining the results above into (C.1) and using conditional Cauchy-Schwarz inequality, we obtain

limh#0 h
�1/2 Covt,h

�
�ezh(t+ h)

�
= ⌃(x) uniformly on N 2(⌘). Therefore, Eq. (A.21) in Assumption

A8 is satisfied.

Now we check Assumption A9. Recall 'j , j = 2, 3, 4, from Assumptions AD.1(c), AD.2, respectively,

and let ' = min{'1/2 � 1,'2,'3,'4}. By Assumptions AD.1(a) and (4.19), (A.22) is immediate.

Moreover, by the cr-inequality and Assumption AD.1(c), (A.23) can be written as

h
�1/2Et,h

h���ezh(t+ h)
��2+'

i
= h

�(1+'/4)Et,h

h���✓?h(t+ h)
��2+'

i
+O(h'/4), (C.2)

where the O(·)-term is uniform on N 2(⌘). By Assumption AD.1(b) and employing similar reasoning

as discussed earlier, we can conclude that the first component in (C.2) is o(1), which holds uniformly
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on N 2(⌘). After verifying (A.23), we proceed to apply Theorem A.2, which yields the pointwise

limiting distribution given by (4.22). ⌅

D Optimality

Proof of Theorem 3 As in Nelson (1996, Proof of Theorem 2.2), we first guess a solution and then

verify its global optimality. We use Ei,h[ · ] = E
⇥
·
��xh(ti,h) = x = (�, )

⇤
in the current proof with a

slight abuse of notation. Recall ◆̃h(·) =
�
◆h(·), ◆†h(·)

�>
in Eq. (4.26) and let ✓̃ =

�
✓
?
,✓

†�> = ◆̃h( ).

Before continuing, the following two identities, similar to Lemma A.1 and Eq. (A.7) in Nelson (1996),

are useful:

Ei,h

"
gh

�
yh(ti+1,h), ◆̃h( )

�>
✓
@◆h( )

@ >

◆
B( )⌘i+1

#
= Ei,h

h
gh

�
yh(ti+1,h), ◆̃h( )

�>
Ph

�
yh(ti+1,h),�, 

�i
,

(D.1)

and

�Ei,h


@

@✓?>
gh

�
yh(ti+1,h), ◆̃h( )

��
= Ei,h

h
gh

�
yh(ti+1,h), ◆̃h( )

�
Sh

�
yh(ti+1,h), 

�>i
Qh

�
✓̃
�>

, (D.2)

where @gh

�
yh(ti+1,h), ◆̃h( )

�
/@✓

?> = @gh

⇣
yh(ti+1,h), ◆h( ), ◆

†
h( )

⌘
/@✓

?> denotes the partial deriva-

tive w.r.t. the second vector component ◆h(·). Moreover, Ph(·), Sh(·), and Qh

�
✓̃
�
, are defined in Eqs.

(4.28), (4.27), and (4.31), respectively. The first identity (D.1) is a straightforward result from the

law of iterated expectation for nested subfields (Davidson, 1994, Theorem 10.26, p. 155). To see the

second identity (D.2), we note that by the condition (4.29) and  = ◆̃
�1
h

�
✓̃
�
(Assumption FO.4),

0 =
@

@✓?>
Ei,h

h
gh

�
yh(ti+1,h), ◆̃h( )

�i

=
@

@✓?>

Z
gh

�
y, ◆̃h( )

�
qh(y; ) dy

=

Z 
@gh

�
y, ◆̃h( )

�

@✓?>
qh(y; ) + gh

�
y, ◆̃h( )

�@qh(y; )
@ >

@◆̃
�1
h

�
✓̃
�

@✓?>

�
dy

=

Z
@gh

�
y, ◆̃h( )

�

@✓?>
qh(y; ) dy

�
+

"Z
gh

�
y, ◆̃h( )

�
Sh(y, )

>
qh(y; ) dy

#
@◆̃

�1
h

�
✓̃
�

@✓?>

= Ei,h


@

@✓?>
gh

�
yh(ti+1,h), ◆̃h( )

��
+ Ei,h

h
gh

�
yh(ti+1,h), ◆̃h( )

�
Sh

�
yh(ti+1,h), 

�>i@◆̃�1
h

�
✓̃
�

@✓?>
.

Recall the definition of Qh

�
✓̃
�
in Eq. (4.31). We obtain Eq. (D.2) by subtracting the first term from

both sides.
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I. The guess step

Let L ,h = @◆h( )/@ >. Without taking limh#0, we similarly define

Ah(gh) = �Ei,h


@

@✓?>
gh

�
yh(ti+1,h), ◆̃h( )

��
,

⌃h(gh) = Ei,h

⇢h
gh

�
yh(ti+1,h), ◆̃h( )

�
�L ,hB( )⌘i+1

ih
gh

�
yh(ti+1,h), ◆̃h( )

�
�L ,hB( )⌘i+1

i>�
,

with explicit dependence on gh. For any arbitrarily small h > 0, the optimal gh must fulfill the matrix

Riccati equation as in (4.25):

Ah(gh)Vh(gh) + Vh(gh)Ah(gh)
> = ⌃h(gh), (D.3)

where Vh(gh) is the resulting solution (for x = (�, ) given). Taking the trace on both sides of the

matrix Riccati equation, and interchanging it with expectations, yields

0 = tr
�
⌃h(gh)

�
� 2 tr

�
Ah(gh)Vh(gh)

�

= Ei,h

(
gh

�
yh(ti+1,h), ◆̃h( )

�>
gh

�
yh(ti+1,h), ◆̃h( )

�
� 2gh

�
yh(ti+1,h), ◆̃h( )

�>
Ph

�
yh(ti+1,h),�, 

�

+ ⌘>
i+1B( )>L>

 ,hL ,hB( )⌘i+1 � 2
h
Vh(gh)Qh

�
✓̃
�
Sh

�
yh(ti+1,h), 

�i>
gh

�
yh(ti+1,h), ◆̃h( )

�
)
,

using the identities (D.1) - (D.2). Then we di↵erentiate both sides w.r.t. gh( · , · ), treating gh(y, ✓̃)

as a separate choice variable for each (y, ✓̃). It implies that the optimal gh, for x = (�, ) given,

takes the following form:

gh

�
· ,�, ◆̃h( )

�
= Ph

�
· ,�, 

�
+ Vh(�, )Qh

�
✓̃
�
Sh

�
· , 

�
, (D.4)

where, for every h, Vh solely depends on (�, ) by reparametrization. Substituting gh in (D.4) back

to the matrix Riccati equation (D.3) implies Vh(�, ) is the solution to Eq. (4.30) by routine algebra

and using a similar argument for (D.1).

II. Global optimality

We drop all function arguments when no confusion is caused. We consider another choice of gh that

satisfies the assumptions in Theorem 2, say g̃h = Ph +WhQhSh +Hh, where Hh is a vector-valued

function with the same arguments of Ph and Sh. As required in Assumption FC.5, we assume that

all the eigenvalues of Ah(g̃h) have strictly positive real parts so that there is a bounded Vh(g̃h) that
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is the asymptotic covariance matrix of the filter errors (Lancaster and Tismenetsky, 1985, Chapter

12.3, Theorem 3). By the matrix Riccati equation and the definition of ⌃h(·), we have

Ah(g̃h)Vh(g̃h) + Vh(g̃h)Ah(g̃h)
> = ⌃h(g̃h), (D.5)

where

⌃h(g̃h) = Ei,h

h�
Ph +WhQhSh +Hh �L ,hB⌘i+1

��
Ph +WhQhSh +Hh �L ,hB⌘i+1

�>i
.

Similarly, the construction in (D.4) gives (D.3) with

⌃h(gh) = Ei,h

h�
Ph +WhQhSh �L ,hB⌘i+1

��
Ph +WhQhSh �L ,hB⌘i+1

�>i
.

Note that by the law of iterated expectations, we have

Ei,h

h�
Ph �L ,hB⌘i+1

�
H

>
h

i
= 0. (D.6)

With (D.6), subtracting (D.3) from (D.5) and simplifying the expressions leads to

Ah(g̃h)
�
Vh(g̃h)� Vh(gh)

�
+
�
Vh(g̃h)� Vh(gh)

�
Ah(g̃h)

> = Ei,h

�
HhH

>
h

�
. (D.7)

The same arguments below (A.10) in Nelson (1996) implies that Vh(g̃h)�Vh(gh) is positive semidefinite,

and Vh(g̃h) = Vh(gh) if and only if Ei,h

�
HhH

>
h

�
= 0. That is, Hh ⌘ 0 and thus g̃h = gh. ⌅

E Patton filter correction for Clayton copula

Recall c(y; ✓) in Eq. (5.4), where y = (y1, y2). To demean the Patton filter, we need to compute

the conditional expectation of |y1h(ti+1,h) � y2h(ti+1,h)|. For this, we first realize that due to the

exchangeability of the Clayton copula we have that

Z 1

0

Z 1

0

|y1 � y2| c(y; ✓) dy1 dy2 =
Z 1

0

Z y1

0

y1 c(y; ✓) dy2 dy1 �
Z 1

0

Z 1

y2

y2 c(y; ✓) dy1 dy2

�
Z 1

0

Z 1

y1

y1 c(y; ✓) dy2 dy1 +

Z 1

0

Z y2

0

y2 c(y; ✓) dy1 dy2

= 2

Z 1

0

Z y2

0

y2 c(y; ✓) dy1 dy2 � 2

Z 1

0

Z 1

y2

y2 c(y; ✓) dy1 dy2.
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Note that

Z
c(y; ✓)dy1 = (y2)

�✓�1
⇣
(y1)

�✓ + (y2)
�✓ � 1

⌘�1�1/✓

=

✓
y1

y2

◆✓+1 ⇣
1 + (y1)

✓
�
(y2)

�✓ � 1
� ⌘�1�1/✓

.

We then get
R y2
0 y2 c(y; ✓) dy1 = y2

�
2� (y2)✓

��1�1/✓
and

R 1

y2
y2 c(y; ✓) dy1 = y2 � y2

�
2� (y2)✓

��1�1/✓
.

Taking these results together, we arrive at

Z 1

0

Z 1

0

|y1 � y2| c(y; ✓) dy1 dy2 = 4

Z 1

0

y2

⇣
2� (y2)

✓
⌘�1�1/✓

dy2 � 1.

Finally, note that

Z 1

0

y2

⇣
2� (y2)

✓
⌘�1�1/✓

dy2 =

Z 1

0

y2 2�1�1/✓
⇣
1� 2�1(y2)

✓
⌘�1�1/✓

dy2

=

Z 1

0

y2 2�1�1/✓
1X

k=0

�
✓
�1 + 1

�
k

2�k(y2)k✓

k!
dy2

= 2�1�1/✓
1X

k=0

�
✓
�1 + 1

�
k

2�k

k!

Z 1

0

(y2)
k✓+1 dy2

= 2�1�1/✓
1X

k=0

(✓�1 + 1)k
(k + 2✓�1)

✓
�1 2�k

k!

=
2�1�1/✓

✓

1X

k=0

(✓�1 + 1)k (2✓�1)k
2✓�1 (1 + 2✓�1)k

2�k

k!

= 2�2�1/✓
2F1

⇣
1 + ✓

�1
, 2✓�1 ; 1 + 2✓�1 ; 2�1

⌘
,

where (a)k = a(a+1) · · · (a+ k� 1) denotes the Pochhammer symbol, and where we used (1+ z)�a =
P1

k=0 (a)kz
k
/k! for |z| < 1 and a > 0. ⌅

F Helland’s result for weak convergence

We first give the part a) of Lemma 5.2 in Helland (1982).

Lemma F.1 (Helland, 1982)

Let Y , (Yn)n�1 and (Yn,k)n�1,k�1 be random variables. Suppose that

(i) Yn,k
p! Yn as k ! 1 for each n;

(ii) Yn
p! Y as n ! 1.

Then for any increasing sequence (kn) such that kn ! 1 fast enough we have Yn,kn
p! Y .

Clearly, for the claim made in the main text we need Helland’s result with convergence in
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probability replaced by convergence in distribution in the assumptions as well as in the conclusion.

Because we need one additional assumption we state the result in Helland (1982) with convergence in

probability replaced by weak convergence explicitly.

Lemma F.2

Let Y , (Yn)n�1 and (Yn,k)n�1,k�1 be random variables. Suppose that

(i) Yn,k
d! Yn as k ! 1 for each n;

(ii) Yn
d! Y as n ! 1;

(iii) Y1, Y2, . . . and Y have a continuous distribution.

Then there exists an increasing sequence (kn) such that kn ! 1 and we have Yn,kn
d! Y .

Proof We first show that there exists a sequence (k̆(n)) such that the sequence of random variables

Yn,k̆(n) is tight. Note first that for any ✏ > 0 there exists by assumption (i) and Prohorov’s theorem

an M(✏) such that

P
�
||Yn||  M(✏)

�
> 1� ✏

2
, 8n 2 N.

For n = 1 there exists by the Portmanteau lemma and the fact that Y1 has a continuous distribution

according to assumption (iii) a k̃(1) such

��P
�
||Y1,k||  M(✏)

�
� P

�
||Y1||  M(✏)

���  ✏

2
, 8k � k̃(1).

Therefore,

P
�
||Y1,k||  M(✏)

�
> 1� ✏, 8k � k̃(1).

By the same arguments there exists a k̃(2) with

P
�
||Y2,k||  M(✏)

�
> 1� ✏, 8k � k̃(2).

Continuing like this there is a sequence (k̃(n)) such that

P
�
||Yn,k||  M(✏)

�
> 1� ✏, 8k � k̃(n).

Appendix p.20



Now define the sequence (k̆(n)) by

k̆(1) = k̃(1);

k̆(2) = max{k̆(1), k̃(2)}+ 1;

k̆(3) = max{k̆(2), k̃(3)}+ 1;

...
...

...

Clearly (k̆(n)) is an increasing sequence and by construction we have

P
�
||Yn,k̆(n)||  M(✏)

�
> 1� ✏, 8n.

I.e. the sequence (Yn,k̆(n)) is tight and therefore has by Prohorov’s theorem a subsequence that

converges weakly. Denote the distributional limit of this convergent subsequence by X. We are going

to show that X is distributed as Y which will finish the proof. For this let d be any metric on the

space of probability measures that metricises convergence in distribution; see, for example, Dudley

(2002, Chapter 11). Assume now that X is not distributed as Y . Then there exists a � > 0 such

d(X, Y ) > �. Let ✏ > 0 be arbitrary. Then

a) By assumption (ii) there exists an n1 such that

d(Yn, Y )  ✏

3
, 8n � n1;

b) Because Yn,k̆(n) converges weakly to X there is an n2 such that

d(Yn,k̆(n), X)  ✏

3
, 8n � n2;

c) From the above we know that for n3 := max{n1, n2} there is a k̄(n3) such that

d(Yn3,k, Yn3) 
✏

3
, 8k � k̄(n3).

Choosing ✏ = � in a)-c) they imply that

d(Y,X)  �,

which is a contradiction. Hence, X is distributed as Y and this finishes the proof. ⌅

Appendix p.21


	1 Introduction
	2 A motivating example
	3 General set-up
	4 Asymptotic theory
	4.1 Consistency
	4.2 Weak convergence
	4.3 Optimality
	4.4 Alternative convergence rates

	5 Illustrative examples
	5.1 Including an exogenous regressor in the filter
	5.2 Bivariate copulas
	5.3 Time-varying regression coefficients
	5.4 Fully mis-specified models

	6 Conclusions
	A General asymptotic results
	B Filter consistency
	C Weak convergence
	D Optimality
	E Patton filter correction for Clayton copula
	F Helland's result for weak convergence

