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Abstract

We explore the asset pricing implications of zero days-to-expiration (0DTE) options.
This new market has experienced remarkable growth in recent years and today ac-
counts for 45% of total S&P 500 option volume. Extracting information about
intra-day risk premia from 0DTEs, we document that: (i) most of the intra-day eq-
uity premium is attributable to market returns between -5% and 0%; (ii) investors
demand a high compensation to bear variance risk over the day, consistent with
extremely negative average returns of calls, puts and straddles; (iii) the intra-day
pricing kernel displays pronounced nonmonotonicities, especially around the at-the-
money region; (iv) 0DTE options are severely mispriced, in the sense that they do
not reflect risks implied by the time series of intra-day underlying returns; and (v)
the variance risk premium negatively predicts intra-day market returns, where this
negative relation is driven by the premium to bear positive return variation risk.
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1 Introduction

Due to the contingent nature of options, their prices across strikes allow to recover

investors’ expectations (incorporating compensation for risk) of the probability distribu-

tion of the underlying return over the options maturity (Breeden and Litzenberger, 1978;

Ross, 1976). Building on that, Jackwerth and Rubinstein (1996) and Aït-Sahalia and Lo

(1998) show how the risk-neutral distribution implied by S&P 500 options became more

left-skewed and leptokurtic after the 1987 crash, reflecting aversion to downside risk.

Relatedly, Bakshi, Kapadia, and Madan (2003) provide a comprehensive analysis of the

determinants of risk-neutral skewness based on similar spanning properties of options.

When confronted with the physical probabilities implied by the time series of mar-

ket returns, the risk-neutral distribution is informative about investors’ risk preferences.

Jackwerth (2000), Aït-Sahalia and Lo (2000) and Rosenberg and Engle (2002) exploit

this insight to estimate the projection of the economy-wide pricing kernel onto market

return states. The shape of this projection is often nonmonotonic, which is puzzling

under a representative investor framework.1 From a different perspective, Almeida and

Freire (2022) show that S&P 500 options can be reconciled with the time series of market

returns in the sense that their prices satisfy bounds consistent with risk-averse investors,

where the preferences of the marginal agent vary across the options.

The relation between expectations under risk-neutral and physical probabilities also

sheds light on compensation for specific types of risk in the dynamics of the underlying

asset returns. Beason and Schreindorfer (2022) decompose the one-month equity premium

into different parts of the return state space, revealing it mainly arises as compensation

for returns between -30% and -10%. Also leveraging the information content of options

relative to realized returns, Bollerslev, Tauchen, and Zhou (2009) show that the premium

for bearing variance risk is generally positive and helps predict future market returns.

Bollerslev, Todorov, and Xu (2015), Andersen, Fusari, and Todorov (2015) and Andersen,

Fusari, and Todorov (2017) document, instead, the special role of compensation for jump

risk in determining the equity and variance risk premia.

1This is known as the pricing kernel puzzle. See Cuesdeanu and Jackwerth (2018) for a recent survey.
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In this paper, we investigate the asset pricing implications of a new, unexplored

market: zero days-to-expiration (0DTE) S&P 500 options, i.e., options on the market

index expiring by the end of the same day. These are weekly options that were listed

a week before. Since May 2022, weeklies are listed every trading day by the Chicago

Board Options Exchange (CBOE), resulting in the daily availability of 0DTE options.2

While one-month options were among the most traded contracts up to ten years ago,

which partially justified the focus on these options by the literature, the landscape of

the option market has changed dramatically more recently. Today, the daily volume of

0DTEs accounts for around 45% of total S&P 500 option volume, being thus by far the

most traded maturity.3 The tremendous growth of these ultra short-maturity options has

made them a trending topic in financial media outlets, trader forums and social media.

Our interest in 0DTE options is justified not only by the fact that they are now

the most traded options in the market, but also because they contain new, valuable

information about investors’ risk preferences and risk premia over intra-daily horizons.4

To extract this information, we explore how 0DTE option prices and implied risk-neutral

probabilities relate to the time series of high-frequency market returns, leveraging different

methodologies available from the literature. Our analysis provides new asset pricing

stylized facts for ultra short-horizons and highlights how they are remarkably different

from the extant empirical evidence of longer horizons.

We start by analyzing average returns of 0DTE call and put options across strikes.

These are informative about investors’ preferences over intra-day market return states,

i.e., about the shape of the pricing kernel projected onto market returns over the op-

tions horizon. Calls experience low returns overall, which decrease with the strike and

eventually get highly negative. Following the rationale of Bakshi, Madan, and Panayotov

2The first S&P 500 weekly options were introduced by CBOE on October 28 2005 with Friday
expirations. Wednesday, Monday, Tuesday and Thursday expirations followed with introduction dates
of February 23 2016, August 15 2016, April 18 2022 and May 11 2022, respectively.

3This increase in the relative importance of short-dated options does not mean that the traded volume
in longer-dated options has decreased. On the contrary, their volume also increased, meaning that the
size of the option market has been increasing over time, and relatively more for short-dated options.

4While 0DTE options are extremely popular among retail investors, accounting for more than 75%
of their trading in S&P 500 options (Beckmeyer, Branger, and Gayda, 2023), the vast majority of 0DTE
S&P 500 trading (around 94%) is still attributable to institutional investors.
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(2010), this is evidence that the pricing kernel is increasing for some region of positive

market returns, violating monotonicity. Put returns are also negative, especially out-of-

the-money (OTM), indicating that the pricing kernel is a decreasing but steep function of

market returns in the negative return region, consistent with aversion to downside risk.

Such risk preferences have strong implications for the equity premium over intra-

daily horizons. Applying the decomposition of Beason and Schreindorfer (2022) to 0DTE

options and realized market returns, we find that most of the intra-day equity premium

stems from compensation to market returns between −5% and 0%. In contrast, positive

return states have a negative contribution. This happens when the pricing kernel is

nonmonotonic and marginal utility is high for positive market returns. In this case,

investors would be willing to pay a premium to hold Arrow-Debreu securities paying in

those states, i.e., they are willing to give up part of the compensation for equity risk.

Implications are also substantial for the variance risk premium.5 We first document

that the average returns of at-the-money (ATM) delta-hedged calls and straddles are sig-

nificantly negative. Since these strategies essentially represent long positions in volatility,

this means that investors are willing to pay a high premium to be protected against vari-

ance risk over the day (Bakshi and Kapadia, 2003; Coval and Shumway, 2001). This is

confirmed when we compute a direct estimate of the variance risk premium, similarly to

Bollerslev et al. (2009), but for the ultra-short horizons associated with 0DTE options.

The (annualized) average variance risk premium over the day can be up to four times

larger than what is usually observed for the one-month horizon.

To further disentangle the compensation demanded by investors to bear variation risk

in positive and negative market returns, we respectively compute the “good” and “bad”

components of the total variance risk premium, in the spirit of Kilic and Shaliastovich

(2019), for intra-daily horizons. Strikingly, while at the one-month horizon the “good”

variance risk premium is negative and the “bad” is highly positive, we find that the

intra-day premium for positive return variation risk is positive and often larger than the

premium for exposure to negative return variation. This, again, would be consistent with

5As Bollerslev et al. (2009), we define the variance risk premium as the difference between the risk-
neutral and the physical expected variance of the market return.
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a pricing kernel that is exceptionally high for positive market returns, such that investors

demand compensation for these states of high marginal utility.

The findings above provide indirect evidence that the pricing kernel as a function

of market returns is nonmonotonic and, in particular, high for positive returns. We also

estimate directly the intra-day pricing kernel implied by 0DTE options and high-frequency

market returns. We document that, regardless of the time of the day, on average there is

a pronounced and statistically significant hump in the pricing kernel around returns close

to one. That is, in the region where returns are more likely to occur, marginal utility is

higher for positive returns than for negative returns, which is aligned with our results on

option returns and market risk premia. Outside this region, we observe less pronounced,

but still statistically significant nonmonotonicities for positive returns, while the pricing

kernel is mostly monotonically decreasing for negative returns.

Our evidence shows that 0DTE option prices can only be reconciled with the phys-

ical distribution of market returns under a pricing kernel displaying pronounced non-

monotonicities. However, if we entertain the possibility that the 0DTE option market

is segmented, there could still be a different risk-averse trader in the market index that

is marginal in each option. To test for that, we compute, for each option, price bounds

from the physical distribution consistent with all pricing kernels that are monotonically

decreasing in market returns (Ritchken, 1985). Over our sample, only around 35% of

0DTE option prices satisfy these bounds, which is again in stark contrast with evidence

from longer horizons (Almeida and Freire, 2022). Most of the violations are concentrated

in ATM options, where their prices are often too high. This is consistent with the pro-

nounced hump observed in the pricing kernel projection. As a result, 0DTE options are

mostly “mispriced”, in the sense that they do not reflect the risks implied by the time

series of intra-day market returns under reasonable risk preferences.

Finally, we investigate whether 0DTE options contain predictive information for excess

market returns over the day. We consider predictive regressions using different regressors,

such as the variance risk premium, risk-neutral moments (Bakshi et al., 2003) and the

equity premium lower bound of Martin (2017). From these variables, only the variance
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risk premium significantly predicts returns, but with a negative coefficient, which is at

odds with the existing evidence for longer horizons. By substituting the total variance risk

premium with its “good” and “bad” components, we find that only the “good” component

helps predict market returns, with a strong and statistically significant negative sign.

In other words, the compensation for positive return variation risk drives the result for

the total variance risk premium. This negative relation is, once more, aligned with high

marginal utility in states of positive market returns: the higher the pricing kernel in this

region, the higher is the compensation for positive return variation risk and the more

negative is the contribution of positive return states to the equity premium.

The remainder of the paper is organized as follows. After a brief discussion of the

related literature, Section 2 describes the theoretical framework behind our analysis.

Section 3 presents the data and implementation details of the methods we use, while

Section 4 contains our empirical analysis. Section 5 concludes the paper. Appendix A

collects the figures and tables of the paper.

1.1 Related literature

Our paper mainly relates to three strands of the literature. The first strand consists

of a few papers (so far) studying the new 0DTE option market from different lenses. Bro-

gaard, Han, and Won (2023) show that more 0DTE option trading increases the volatility

of the underlying asset, while Dim, Eraker, and Vilkov (2024) provide contrary evidence

based on 0DTE aggregate gamma. Beckmeyer et al. (2023) document that 0DTE options

are popular among retail traders, even though these investors mainly experience losses

in this market. Bandi, Fusari, and Renò (2023) present a novel option pricing formula

designed for 0DTEs and analyze the role of leverage and volatility-of-volatility in deter-

mining instantaneous market risk premia. Vilkov (2023) investigates the performance

of different 0DTE option trading strategies. We contribute by exploring a broad set of

asset pricing implications of 0DTE options, including investors’ risk preferences implied

by their prices and their implications for intra-day risk premia.

The second strand, already discussed in the introduction, recovers information about
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investors’ expectations and risk preferences from options. We provide novel asset pricing

stylized facts for intra-daily horizons using information from the new 0DTE market,

which is the most relevant option market today. In particular, we analyze the intra-

day pricing kernel implied by 0DTEs and show how it is a nonmonotonic function of

market returns. Relatedly, Aleti and Bollerslev (2023) study intra-day realizations of a

pricing kernel obtained from high-frequency returns of factors constructed from a monthly

conditioning set of variables. In contrast, the pricing kernel we analyze is forward-looking

and completely conditional on the time of the day that the options are observed.

The third literature strand investigates return predictability over relatively short hori-

zons. Gao, Han, Zhengzi Li, and Zhou (2018) and Baltussen, Da, Lammers, and Martens

(2021) document intra-day momentum patterns across different markets, relating them

to infrequent portfolio rebalancing and hedging demand, respectively. Aït-Sahalia, Fan,

Xue, and Zhou (2022) study the predictability of ultra high-frequency stock returns us-

ing machine learning methods. Aleti, Bollerslev, and Siggaard (2023) predict intra-day

market returns with high-frequency cross-sectional returns of the factor zoo. Almeida,

Ardison, Freire, Garcia, and Orlowski (2023), Almeida, Freire, Garcia, and Hizmeri (2023)

and Alexiou, Bevilacqua, and Hizmeri (2023) use high-frequency market returns, cross-

sectional stock returns and option returns, respectively, to estimate volatility and tail

risk measures and predict risk premia over daily horizons. We show that 0DTEs contain

useful predictive information about intra-day risk premia over the options horizon. More

specifically, the variance risk premium negatively predicts excess market returns over the

day, which is driven by a strong negative relation between the premium for positive return

variation risk and future market returns.

2 Theoretical background

In this section, we present the theoretical background behind our analysis of the asset

pricing implications of 0DTE options. We first describe what is the pricing kernel implied

by options. Then, we discuss its relation with expected option returns, market risk premia
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and option price bounds. Finally, we explain how this framework will be used to study

the 0DTE option market.

2.1 The pricing kernel

In the absence of arbitrage, the current price Pt of any asset is given by the expectation

of the future asset payoff XT at time T = t+ τ multiplied by the pricing kernel mt,T :

Pt = EP[mt,TXT |Ft] ≡
∫

XT (s)mt,T (s) π
P
t,T (s) ds, (1)

where s represents the state of the economy, Ft is the information available to investors at

time t and πP
t,T (s) is the probability density function (PDF) under the physical measure

Pt. The pricing kernel distorts the physical measure as to reflect investors’ compensation

for risk, such that one can take simple expectations to calculate the price of any asset.

More specifically, given the almost sure positivity of mt,T under no-arbitrage, the

pricing kernel induces a change of measure from the physical measure Pt to the risk-

neutral measure Qt. Given a risk-free rate Rf from t to T , this can be seen by noting

that Et[mt,T ] = 1/Rf , and dividing and multiplying (1) by Et[mt,T ]:

Pt =
1

Rf

∫
XT (s)

mt,T (s)

Et[mt,T ]
πP
t,T (s) ds =

1

Rf

∫
XT (s) π

Q
t,T (s) ds ≡

1

Rf

EQ[XT |Ft], (2)

where πQ
t,T (s) is the PDF under the risk-neutral measure Qt. This PDF is often called the

state-price density, as it defines the (forward) prices of Arrow-Debreu securities paying

one dollar at time T if state of nature s is realized, and zero elsewhere. In contrast,

πP
t,T (s) can be interpreted as the expected payoff of an Arrow-Debreu security for state s.

From (1) and (2), it becomes evident that the pricing kernel is the ratio of discounted

risk-neutral probabilities and physical probabilities:

mt,T (s) =
1

Rf

πQ
t,T (s)

πP
t,T (s)

. (3)

The economy-wide pricing kernel above depends on the realization of the state s of the
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economy. However, there is no consensus among researchers on which are the relevant

state variables to consider from a modeling perspective.

As an alternative, a large strand of the literature, starting with Jackwerth (2000), Aït-

Sahalia and Lo (2000) and Rosenberg and Engle (2002), has proposed to focus instead

on the projection of the pricing kernel onto states Rt,T of the market return:

mt,T (Rt,T ) =
1

Rf

πQ
t,T (Rt,T )

πP
t,T (Rt,T )

. (4)

The main advantage is that this projection can be estimated using S&P 500 options and

the time series of market returns. On the one hand, the seminal result of Breeden and

Litzenberger (1978) allows to recover from option prices across different strikes the risk-

neutral distribution of underlying returns over the maturity τ of the options, πQ
t,T (Rt,T ).

On the other hand, historical market returns are informative about the physical dis-

tribution πP
t,T (Rt,T ).6 Importantly, mt,T (Rt,T ) has the same pricing implications as the

economy-wide pricing kernel mt,T (s) for assets with payoffs that depend only on Rt,T .

The focus on the projection of the pricing kernel onto S&P 500 returns is also justified

by the general interest in learning about investors’ risk preferences towards the market

index and associated equity and variance risk premia. In particular, if one assumes that

the market index is equal to the aggregate wealth and a representative agent exists,

mt,T (Rt,T ) is the marginal utility of this agent. Under this interpretation, the pricing

kernel should be monotonically decreasing in market returns if the representative agent

is risk-averse. However, the literature provides extensive evidence for monthly or longer

horizons that mt,T (Rt,T ) is a nonmonotonic (generally U-shaped) function of returns

instead, characterizing the pricing kernel puzzle (Cuesdeanu and Jackwerth, 2018).7 In

the next subsections, we discuss how various objects of interest in our analysis relate to

the pricing kernel and its shape.

6There is a potential mismatch of conditioning information sets when estimating πQ
t,T (Rt,T ) with

option prices, that are forward-looking, and πP
t,T (Rt,T ) with historical returns, that are backward-looking

(see, e.g., Linn, Shive, and Shumway, 2018). We discuss how we handle that empirically in Section 3.4.
7More recently, Almeida and Freire (2023) show that if one interprets mt,T (Rt,T ) as representing the

preferences of a marginal agent in the option market instead of a representative investor, a nonmonotonic
shape is not puzzling but rather reflects the risk exposures from the marginal agent’s options positions.
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2.2 Expected option returns

The shape of the pricing kernel has direct implications for expected option returns.

The expected return of a call option can be defined as below:8

µc
t(St, Rt,T , K) =

Et[max(StRt,T −K, 0)]

Et[max(StRt,T −K, 0)mt,T (Rt,T )]
− 1, (5)

where St is the market index at t and K is the option strike price. The expected return of

a put option is analogously defined for the payoff max(K − StRt,T , 0). The numerator in

(5) is the expected payoff of the option under the physical measure, while the denominator

is the expected payoff under the risk-neutral measure, i.e., the option price.

Coval and Shumway (2001) show that if mt,T (Rt,T ) is monotonically decreasing, calls

(puts) have expected returns that are positive (negative) and increase with the strike

price. Intuitively, a monotonically decreasing mt,T (Rt,T ) shifts probability mass towards

states where the call (put) is less (more) valuable. Therefore, as the strike increases, the

call price decreases by more than the expected payoff, increasing the expected return.

Conversely, as the strike decreases, the put price decreases by less than the expected

payoff, decreasing the expected return. If instead the pricing kernel is a U-shaped func-

tion of returns (i.e., increasing for some region of positive returns), Bakshi et al. (2010)

show that expected call returns are decreasing in the strike and negative beyond a strike

threshold. This is because mt,T (Rt,T ) shifts probability mass towards states where the

call option is more valuable, such that the call price decreases by less than the expected

payoff as the strike increases, decreasing the expected return.9

2.3 Market risk premia

The shape of mt,T (Rt,T ), or, equivalently, how πQ
t,T (Rt,T ) relates to πP

t,T (Rt,T ), is infor-

mative about which return states are compensated via the equity premium. To see that,

first note that the conditional equity premium can be written as:

8To see that, note that Et[
max(StRt,T−K,0)

Et[max(StRt,T−K,0)mt,T (Rt,T )] ] =
Et[max(StRt,T−K,0)]

Et[max(StRt,T−K,0)mt,T (Rt,T )] .
9Since a U-shaped pricing kernel is declining in the region of negative market returns, the implications

for expected put returns are the same as under a monotonically decreasing shape.
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Et[Rt,T ]−Rf =

∫ ∞

0

Rt,T [π
P
t,T (Rt,T )− πQ

t,T (Rt,T )]dRt,T . (6)

To decompose the unconditional equity premium, Beason and Schreindorfer (2022) take

the unconditional expectation of (6) and consider net market returns to define:

EP (x) =

∫ x

−1
R [πP(R)− πQ(R)]dR∫∞

−1
R [πP(R)− πQ(R)]dR

, (7)

where πP(R) = E[πP
t,T (Rt,T )] and πQ(R) = E[πQ

t,T (Rt,T )]. EP (x) measures the fraction of

the average equity premium that is associated with market returns below x.

Returns around zero contribute only marginally to the equity premium (as R ≈ 0),

such that EP (x) is expected to be flat around those states. Outside this region, the shape

of the EP (x) function will depend on the shape of the (average) pricing kernel. Under a

monotonically decreasing pricing kernel, every state R contributes positively to the equity

premium, i.e., EP (x) is always increasing. To see that, note that in the negative return

region, R < 0 and the pricing kernel is above 1, which means that πP(R)−πQ(R) < 0, such

that R [πP(R)− πQ(R)] > 0 and EP (x) is increasing. Analogously, in the positive return

region, R > 0 and the pricing kernel is below 1, which means that πP(R) − πQ(R) > 0,

such that R [πP(R) − πQ(R)] > 0 and EP (x) is again increasing. Now, if we consider

instead a U-shaped pricing kernel where πQ(R) is above πP(R) (i.e., pricing kernel is

above 1) for some positive return R > 0, then R [πP(R) − πQ(R)] < 0 and EP (x) is

decreasing, i.e., such positive returns contribute negatively to the equity premium.

Our economic interpretation for these relations is as follows. For each state R, consider

the asset that pays R in this state and zero otherwise, i.e., the asset buying R units of

the Arrow-Debreu security of state R. Then, R [πP(R) − πQ(R)] is the expected payoff

minus the price of this asset. If the pricing kernel is monotonically decreasing, these

assets have a low (high) payoff when the pricing kernel is high (low), such that they are

speculative assets with a positive expected return, i.e., R [πP(R)− πQ(R)] > 0. In other

words, investors would require compensation for holding any of these assets, such that

all states contribute positively to the equity premium. In contrast, if there is a U-shape
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where the pricing kernel is high for a region of positive returns, the assets in this region

will have a high payoff when the pricing kernel is high, such that they are hedging assets

with a negative expected return, i.e., R [πP(R)−πQ(R)] < 0. That is, investors would be

willing to give up compensation to hedge against these states, such that they contribute

negatively to the equity premium.

The pricing kernel projection onto market returns is also informative about the magni-

tude of the variance risk premium. Defined as the difference between the risk-neutral and

physical expected variance of the market return over horizon τ , it reflects the compensa-

tion investors require for bearing variance risk (Bollerslev et al., 2009). Baele, Driessen,

Ebert, Londono, and Spalt (2019) demonstrate that the variance risk premium is closely

related to expected option returns. In particular, it can be written as a weighted average

of expected returns of put and call options across strikes, with negative weights. Con-

sequently, the variance risk premium is higher under a U-shaped pricing kernel, where

both call and put expected returns are negative, than under a monotonically decreasing

pricing kernel. Intuitively, this premium reflects compensation for extreme negative and

positive return states, such that this compensation is higher when mt,T (Rt,T ) is U-shaped.

It is also possible to decompose the total variance risk premium into the specific com-

pensation for variation risk in positive and negative market returns (Kilic and Shalias-

tovich, 2019). Analogously to above, the risk premium for positive (negative) return

variation is a weighted average of expected call (put) returns, with negative weights. If

the pricing kernel is monotonically decreasing (U-shaped), expected call returns are posi-

tive (negative) and the positive return variation premium is negative (positive). That is,

if marginal utility is high for positive market returns, investors would be willing to pay

a premium to be protected against large positive returns. On the other hand, the more

negative expected put returns are, the steeper is the pricing kernel for negative returns

and the higher is the compensation for negative return variation.

The expected returns of specific option strategies contain further information about

the variance risk premium. Bakshi and Kapadia (2003) and Coval and Shumway (2001)

show, respectively, that negative delta-hedged option returns and negative straddle re-

12

Electronic copy available at: https://ssrn.com/abstract=4701401



turns reflect a positive variance risk premium. These strategies profit from (and are a

hedge against) increases in market volatility, such that a negative expected return indi-

cates that investors are willing to pay a premium to be protected against variance risk.

2.4 Option price bounds

The shape of mt,T (Rt,T ) says something about how the risk-neutral distribution im-

plied by option prices compares to the physical distribution implied by market returns.

A related, but alternative way of investigating this relation is by comparing observed op-

tion prices with option price bounds consistent with the physical distribution πP
t,T (Rt,T )

and specific risk preferences. Of particular interest for us are the second-order stochastic

dominance (SSD) bounds (Levy, 1985; Perrakis and Ryan, 1984; Ritchken, 1985), which

provide the maximum and minimum price for a given option consistent with risk-averse

investors trading in the underlying asset and the risk-free rate. In other words, these

bounds give all option prices compatible with the set of pricing kernels that are mono-

tonically decreasing in the market returns.

A violation of the SSD lower (upper) bound by a given option means that any risk-

averse investor can improve expected utility by taking a long (short) position in the

option, or, equivalently, that the option dominates (is dominated by) the underlying

asset by second-order stochastic dominance. That is, a violation would mean that there

is no marginal investor in the index, risk-free rate and the option with a monotonically

decreasing pricing kernel (i.e., satisfying risk aversion). This option is often regarded

as “mispriced” as its price cannot be reconciled with the physical distribution under

reasonable risk preferences.

It is important to note that SSD bounds offer complementary insights relative to the

pricing kernel in (4). If mt,T (Rt,T ) is monotonically decreasing, then this pricing kernel

is part of the SSD admissible set and the option prices will be inside the SSD bounds. In

contrast, if mt,T (Rt,T ) is nonmonotonic, this means that no unique monotonically decreas-

ing pricing kernel prices all options, but it is still possible that different monotonically

decreasing pricing kernels price the different options in the cross-section. Conversely, if
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option prices satisfy SSD bounds, this does not mean that mt,T (Rt,T ) is monotonically

decreasing, whereas if they violate the bounds, this implies that mt,T (Rt,T ) is nonmono-

tonic. In fact, while empirical evidence favors a U-shaped pricing kernel projection at the

one-month horizon, Almeida and Freire (2022) show that S&P 500 option prices gener-

ally satisfy SSD bounds, where options with different moneyness require heterogeneous

investors who differ in their assessment of tail risk to be priced.10

2.5 Empirical strategy

The theoretical framework described above provides insights into investors’ risk pref-

erences over the horizon τ corresponding to the maturity of the options used. Most of

the literature applying these methods has focused on the one-month horizon or longer,

partially motivated by the liquidity of the associated options. However, as previously

described, the option market has changed dramatically over the last few years. Now, the

most traded contracts are 0DTE options, which give investors the opportunity to hedge

against or make leveraged bets on specific market movements over the day. As such,

0DTEs are a valuable source of information about risk premia and compensation for risk

at intra-daily horizons. We aim to extract and analyze this information.

We will consider different times of the day for t, while T will always be the market

close, which is usually at 16:00. More specifically, our analysis will be based on the

cross-section of 0DTEs at 10:00, 10:30, 11:00, 11:30, 12:00, 12:30, 13:00, 13:30 and 14:00,

such that the horizon/option maturity τ will be 6, 5.5, 5, 4.5, 4, 3.5, 3, 2.5 and 2 hours,

respectively. In the next section, we show that this range of times of the day is where

the relative option bid-ask spread is reasonably stable at its minimum over the day.

For each of those times of the day, we will estimate the pricing kernel in (4), calculate

option returns of different strategies (from t to T ), decompose the corresponding equity

premium, estimate the variance risk premium and compute SSD bounds for each option.

10This evidence differs from that by Constantinides, Jackwerth, and Perrakis (2009), who find sub-
stantial violations of SSD bounds in the S&P 500 option market. The main reason for this difference is
that the conditional physical distribution they estimate keeps the volatility constant over long periods of
time, during which volatility varies considerably. In contrast, Almeida and Freire (2022) adjust volatility
daily in the estimation of the conditional physical distribution.
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3 Data description and implementation details

3.1 Data

We obtain the intra-day S&P 500 option data from CBOE, which includes bid and ask

quotes, trading volume, open interest and underlying asset price at 1-minute intervals.

We define the price of an option as the bid and ask midpoint. We select all dates

between January 6 2012 and July 3 2023 for which 0DTE SPXW options are available.

The first weeklies were introduced by CBOE on October 28 2005 with Friday expirations.

Wednesday, Monday, Tuesday and Thursday expirations followed with introduction dates

February 23 2016, August 15 2016, April 18 2022 and May 11 2022, respectively. This

means that our sample contains one day per week up until February 23 2016, then two

days per week until August 15 2016, three days per week until April 18 2022, four days

per week until May 11 2022, and all days of the week afterwards. We have 1,417 dates

in total, where roughly 20% of those dates is between May 11 2022 and July 3 2023.

Figure 1 depicts the striking evolution of the 0DTE option market over the last years

in terms of its fraction of trading volume relative to the entire S&P 500 option market.

While 0DTEs accounted for only around 2% of total trading volume in 2012, today they

represent nearly 45% of the entire option market and are the most traded maturity. As

noted by Bandi et al. (2023), this corresponds to a daily notional dollar volume of around 1

trillion dollars. This meteoric increase can partially be explained by the daily availability

of 0DTE options since May 2022, allowing investors to hedge and make leveraged bets

on specific intra-daily market movements for any day of the week.

To clean the raw option data, we aim to avoid as much as possible options with small

trading volume and zero bid, while also selecting a comparable set of strikes over time.

What mainly defines the range of strikes being traded on a given day is volatility: on

days where volatility is high (low), large return realizations are more (less) likely to occur,

such that investors trade options for a larger (smaller) range of strikes. For this reason,

we classify options in terms of their standardized log-moneyness kstd = log(K/St)
σBS(0)

√
τ
, which

controls for the level of volatility as σBS(0) is the ATM implied volatility for time of the
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day t and maturity τ .

By analyzing the 0DTE option data, we identify that the range of kstd between −6

and 6 strikes a good balance between trading volume and low proportion of zero bids.

This can be visualized in the upper subplots of Figure 2, which report, for different times

of the day and bins of kstd, the average trading volume and proportion of contracts with

zero bid over time. As can be seen, the bulk of trading volume is within the kstd range

of −3 and 3, whereas the volume outside the interval [−6, 6] is negligible. At the same

time, zero bids are essentially inexistent for kstd ∈ [−3, 2] and then occur increasingly

more for more extreme moneyness levels. Our interval of [−6, 6] avoids the extremely

large proportion of zero bids of deeper OTM put options.

The bottom subplots of Figure 2 further display the average implied volatilities (IVs)

and average number of strikes for each bin. For all times of the day, 0DTE IVs display

a smile across moneyness, where OTM puts and calls are equally expensive in terms of

IV. This is in contrast to the usual smirk observed for longer-maturity S&P 500 options

(where IVs are much higher for OTM puts than for OTM calls). The average IVs outside

kstd ∈ [−6, 6] are extremely high, which highlights the importance of excluding these

options that are not traded and would contaminate results.11 As for the average number

of strikes, it is approximately constant across moneyness bins and decreases from around

4 at 10:00 to 2 strikes per bin at 14:00.

Having defined our option sample, we proceed to choose a set of times of the day

for our analysis with the goal of being representative while feasible to report results. To

guide our choice, Figure 3 reports, for our option sample, the 0DTE trading volume and

relative bid-ask spread over the day. While trading volume is higher at market open and

close, these times of the day are also the ones with highest bid-ask spread over the day.

The bid-ask spread tends to be relatively stable at its minimum between 10:00 and 14:00.

For this reason, we select this range of times of the day for our analysis, with intervals of

30 minutes to keep it feasible to report the results.

11IVs outside kstd ∈ [−6, 6] are that high due to the deeper OTM options that have very small, but still
positive prices, while the probability of returns occurring such that they finish in-the-money is virtually
zero. Since these deeper OTM options are not traded, their extremely high IVs are artificial and do not
reflect market expectations.
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Finally, our high-frequency data for 1-minute market returns comes from Refinitiv

Tick History, from January 1996 to July 2023. The risk-free rate, which we obtain for the

same sample, is the daily 1-month Treasury bill from the FRED (Federal Reserve Bank

of St. Louis) website. We assume that the risk-free rate is constant over the day.

3.2 Option returns

For a given day in our sample and time of the day t, we compute hold-until-maturity

returns of different portfolios of options expiring at the end of the day. We first calculate

the return of the call (put) option with price Oc
t,T (Op

t,T ) and strike K as:

Rc =
max(ST −K, 0)

Oc
t,T

− 1, Rp =
max(K − ST , 0)

Op
t,T

− 1, (8)

where ST is the market index at the maturity of the option. We will analyze how call and

put returns vary with the strike price over our sample, which is informative about the

shape of the intra-day pricing kernel. To have returns of options with exactly the same

moneyness for each day of our sample, we use the interpolated option prices coming from

the procedure described in the next subsection.

Then, we compute the returns of different option strategies that are insightful about

the variance risk premium. First, we consider simple straddle returns obtained from the

simultaneous purchase of an ATM call and ATM put with strike K:

Simple-Straddle =
max(ST −K, 0) + max(K − ST , 0)

Oc
t,T +Op

t,T

− 1. (9)

We focus on the ATM straddle that is more exposed to volatility risk. In addition, we

calculate the return of an exactly delta-neutral ATM straddle:

Straddle = wRc + (1− w)Rp, w = −
∆p/O

p
t,T

∆c/Oc
t,T −∆p/O

p
t,T

, (10)

where ∆c (∆p) is the call (put) Black-Scholes delta.

Finally, we follow Bakshi and Kapadia (2003) by calculating ATM delta-hedged call
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returns as:

∆-Hedged =
max(ST −K, 0)−Oc

t,T −∆c(ST − St)− rft (O
c
t,T −∆cSt)× τ

(24×365)

St

, (11)

where rft is the annualized risk-free rate and τ is the time to maturity expressed in hours,

e.g., τ = 6. Since the straddle and delta-hedged strategies are essentially long positions

in market volatility, we will analyze their average returns over our sample to extract

information about the variance risk premium over the day. For these strategies, we use

the observed price of the option closest to ATM.

3.3 Risk-neutral distribution

For a given day of our sample and time of the day, we estimate the risk-neutral

distribution from the cross-section of 0DTE option prices. Breeden and Litzenberger

(1978) show that, under no-arbitrage and in the presence of a continuum of options

across strikes, risk-neutral probabilities are equal to the risk-free rate times the second

derivative of option prices with respect to the strike price:

πQ
t,T (Rt,T ) = St ×Rf ×

∂2Oc
t,T (K)

∂K2

∣∣∣∣∣
K=ST

, (12)

where the strikes represent different states of the underlying asset price at maturity and

multiplying by St performs a change of variables from πQ
t,T (ST ) to πQ

t,T (Rt,T ).

In practice, however, we only observe a discrete set of strikes that sometimes does

not cover the whole range of moneyness. For this reason, it is necessary to interpolate

and extrapolate observed option prices to compute the derivative and estimate πQ
t,T (Rt,T ).

To do so, we follow the standard practice in the literature of converting option prices to

IVs using the Black and Scholes (1973) formula, fitting an interpolant to them, using

the interpolant to generate IVs for a fine grid of strikes, translating IVs back to option

prices, and computing (12) over the fine grid of strikes via finite differences.12 Only OTM

12It is important to emphasize that this approach does not assume that the Black and Scholes (1973)
model is valid. Rather, the Black and Scholes (1973) formula is only used as a one-to-one mapping
between option prices and IVs. This is done because fitting the IV curve is much easier than fitting
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options are used to fit the interpolant, as they are more liquid than in-the-money (ITM)

options, which should contain redundant information by put-call parity.

We fit the IV curve across strikes using the parsimonious Stochastic Volatility In-

spired (SVI) method of Gatheral (2004). This method has also been used by Beason and

Schreindorfer (2022) to estimate the risk-neutral distribution and combines reliable inter-

polation of the IV curve with well-behaved extrapolation for extreme moneyness levels.

More specifically, the SVI describes the square of IV with the function:

σ2
BS(k) = a+ b

{
ρ(k −m) +

√
(k −m)2 + σ2

}
, (13)

where k = log(K/St) is the log-moneyness and a, b, ρ, m and σ are parameters.13 We fit

(13) to the cross-section of observed 0DTE IVs and estimate the parameters by minimizing

the IV mean squared error with a constrained nonlinear programming solver.14

Figure 4 plots, for a representative date of our sample, the observed 0DTE IVs and the

fitted IVs using the SVI method. The SVI provides an excellent fit to the smile displayed

by 0DTEs, with OLS R2’s higher than 95%, while filtering out noise in the observed IV

curve.15 This, in turn, results in well-behaved risk-neutral distributions, as can be seen in

Figure 5. These distributions are obtained by interpolating and extrapolating the IVs in

a grid using the SVI method, mapping the IVs back to option prices and then computing

πQ
t,T (Rt,T ) via the Breeden and Litzenberger (1978) formula. The plot shows how the

broad range of standardized log-moneyness we consider translates to a narrow range of

return states that investors believe the market can experience over this particular day. As

the time gets closer to market close, the risk-neutral distribution gets narrower, reflecting

that there is less room for large return realizations.

option prices as IVs are comparable across strikes.
13More specifically, a controls the IV level, b the IV slope, ρ the asymmetry of the IV slope for negative

and positive k, m the horizontal location of the IV curve, and σ the ATM curvature of the IV curve.
14The SVI is well defined for a ∈ R, b ≥ 0, |ρ| ≤ 1, m ∈ R, σ > 0 and a+ b σ

√
1− ρ2 ≥ 0. We impose

these constraints in the optimization, with two small modifications: we replace a+ b σ
√

1− ρ2 ≥ 0 with
the slightly stronger restriction a ≥ 0, which yields better behaved extrapolations for the right tail, and
we impose σ ≥ 0.01, which helps discipline the IV ATM curvature.

15The average R2 fit of the SVI over our sample is 95.13%, 95.25%, 95.11%, 95.23%, 95.39%, 95.13%,
94.07%, 94.23%, and 93.94%, at 10:00, 10:30, 11:00, 11:30, 12:00, 12:30, 13:00, 13:30, and 14:00 hours,
respectively.

19

Electronic copy available at: https://ssrn.com/abstract=4701401



3.4 Physical distribution

To calculate the pricing kernel projection and the SSD option price bounds, we need to

estimate the conditional physical distribution πP
t,T (Rt,T ). Aït-Sahalia and Lo (2000) and

Jackwerth (2000) rely directly on the historical market return distribution, where there is

a trade-off between using a short sample, which makes the distribution conditional, and

using a long sample, which improves the estimation precision, especially for the tails. A

more recent approach has been to take the unconditional return distribution from a long

sample and make it conditional by adjusting for the conditional volatility at time t using

GARCH models (see, e.g., Barone-Adesi, Engle, and Mancini, 2008). This preserves the

empirical patterns of skewness, kurtosis, and tail probabilities, but has the drawback

that GARCH models can be misspecified. Even if one uses realized variance instead to

make the distribution conditional, there is still a potential mismatch of conditioning sets

in comparing backward-looking information from historical returns with forward-looking

information from option prices (see, e.g., Linn et al., 2018).

We follow a similar approach to Almeida and Freire (2022) to overcome the issues

above. For a given day in our sample and time of the day, we first estimate the historical

return distribution as the histogram of past market returns from t to T over a long sample

starting on January 1996.16 Then, we make the return distribution conditional by setting

its volatility equal to the ATM IV at time t of the current day, which is forward-looking.

That is, we use minimal option information to make the conditioning sets of πP
t,T (Rt,T )

and πQ
t,T (Rt,T ) comparable. While other papers also use the ATM IV as a proxy for

expected physical volatility (e.g., Dew-Becker, Giglio, and Kelly, 2021), it contains a risk

premium and is, therefore, a biased proxy. We do not view this as an issue for our analysis,

however, as we are being conservative in giving πP
t,T (Rt,T ) the “best shot” at being close to

πQ
t,T (Rt,T ). In this sense, if we find nonmonotonicities in the pricing kernel and violations

of the SSD bounds, we know that these patterns would be even more extreme under the

return distribution with the “true” conditional expectation of physical variance.
16Following Almeida and Freire (2022), we also impose the sensible economic restriction of a 5% lower

bound on the annualized equity premium over the risk-free rate. That is, if the annualized mean of the
unconditional return distribution generates a premium less than 5% over the risk-free rate, we demean
the returns and reintroduce a 5% equity premium.
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The resulting conditional physical distribution is an unsmoothed histogram. For the

purpose of estimating the pricing kernel projection, it is necessary to smooth it to ob-

tain a well-behaved PDF. We follow Jackwerth (2000) in fitting a kernel density with a

Gaussian kernel to smooth the histogram and obtain πP
t,T (Rt,T ). Figure 5 displays, for a

representative date of our sample, the conditional physical distribution together with the

risk-neutral distribution for different times of the day. The (discounted) ratio between

the risk-neutral and physical PDFs gives the estimate of the pricing kernel projection

mt,T (Rt,T ) for that day and horizon.

3.5 Pricing kernel, risk premia and SSD bounds

Given the estimated risk-neutral distribution πQ
t,T (Rt,T ) and physical distribution

πP
t,T (Rt,T ), we compute the pricing kernel on a given day as the ratio of the two probabil-

ity distributions multiplied by the inverse of the appropriate risk-free rate, as in (4). We

will investigate the shape of the pricing kernel over our sample.

Using the same estimated physical distribution, we compute, for each call option with

strike K, the following SSD upper and lower price bounds as in Ritchken (1985):17

Cmax = E[max(StRt,T −K, 0)]/E[Rt,T ], (14)

Cmin = E[max(StRt,T −K, 0)|StRt,T < s∗j ]
1

Rf

, (15)

where s∗j is chosen such that E[StRt,T |StRt,T < s∗j ] = StRf . All expectations are calculated

under the estimated πP
t,T (Rt,T ) over the grid of states Rt,T . Equation (14) says that

the maximum price of the call should be the price such that the expected call return

equals the expected return on the market. The interpretation for the lower bound is less

straightforward. Ritchken (1985) uses linear programming techniques to show that these

bounds contain all prices for the call option consistent with the set of pricing kernels

that are monotonically decreasing in Rt,T . The bounds for the put option with strike K

can be obtained via put-call parity. We will compare the bounds to the observed option

17Perrakis and Ryan (1984) and Levy (1985) derive the same bounds following different approaches.
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prices to identify any potential mispricing of the 0DTEs.

We follow Beason and Schreindorfer (2022) to implement the decomposition of the un-

conditional equity premium as in (7). First, we estimate the unconditional risk-neutral

distribution πQ(R) over our sample as the average of the conditional risk-neutral dis-

tributions, i.e., the average of πQ
t,T (Rt,T ) state by state. With that, we can evaluate∫∞

−1
RπQ(R)dR numerically over the grid of R (which is equal to the grid of Rt,T − 1).

Then, we compute
∫∞
−1

RπP(R)dR from the unconditional empirical distribution of market

returns (of the horizon of the option) over our sample as (1/T )
∑T

i=1Ri,t,T1{Ri,t,T ≤ x},

where T denotes the total number of days, Ri,t,T is the realized market return of day i

from time of the day t to market close T , and we consider x’s over the grid of R. This is

equivalent to computing the integral under the unconditional physical distribution.

Finally, we compute a measure of the variance risk premium similarly to Bollerslev

et al. (2009). They calculate it for the one-month horizon as the risk-neutral expected

variance over the next month minus the physical expected variance proxied by the realized

variance from the previous month to the current one. Analogously, our variance risk

premium V RPt,T from time t to T is the expected risk-neutral variance implied by the

cross-section of 0DTEs at time t minus the realized variance from t to T of the previous

day. The expected risk-neutral variance is computed as in Bakshi et al. (2003):

V Q
t,T =

∫ ∞

St

2[1− log(K/St)]

K2
Oc

t,T (K)dK +

∫ St

0

2[1 + log(St/K)]

K2
Op

t,T (K)dK, (16)

where we compute the integrals using the interpolated and extrapolated option prices

from the SVI method. The realized variance RVt,T is the sum of 1-minute squared log-

returns on the market index. To disentangle the compensation demanded by investors to

bear variation risk in positive and negative market returns, we also compute the “good”

and the “bad” variance risk premium in the spirit of Kilic and Shaliastovich (2019). The

former (latter), V RP+
t,T (V RP−

t,T ), is defined as the first (second) integral in (16) minus

the sum of 1-minute squared market returns times an indicator function for a positive

(negative) return. Naturally, V RPt,T = V RP+
t,T + V RP−

t,T .
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4 Empirical results

4.1 Option returns

We start by analyzing the returns of different option strategies. Focusing first on how

the returns of vanilla call and put options change across strike prices, Figures 6 and 7

plot the median call and put returns over our sample, respectively, together with the

corresponding 25th and 75th percentiles. We report percentiles of the returns instead

of averages as these measures are more robust to outliers.18 Observed patterns are very

similar across different times of the day. Call options experience low returns overall,

which are decreasing with the strike and eventually negative. Following the rationale

of Bakshi et al. (2010), this provides evidence that the intra-day pricing kernel is a U-

shaped function of market returns, i.e., that it is increasing in a region of positive return

states. The percentiles reveal that there is some variation in call returns over time. The

25th percentile is consistent with a more pronounced U-shape. For the 75th percentile,

returns are increasing up to the ATM region and then decrease, suggesting a much weaker,

albeit still present, pricing kernel nonmonotonicity. Taking at face value, these results

indicate that writing naked OTM calls is usually profitable in the 0DTE option market.

This would be aligned with investors requiring compensation for bearing positive return

variation risk.

Figure 7 reports the results for puts. Median returns are always negative, and in

particular are equal to -100% for all OTM puts. This is consistent with a steep, mono-

tonically decreasing pricing kernel in the region of negative market returns, reflecting

investors’ aversion to downside risk. However, there is some variation in returns over

time. Put returns can be even more negative, as seen with the 25th percentile, while

in some occasions they can be positive and decreasing with the strike, as seen with the

75th percentile. The latter case suggests there may also be nonmonotonicities in negative

market return states over part of the sample. Again, writing naked OTM puts is usually

a profitable strategy, compatible with compensation for negative return variation risk.

18Due to the small prices of 0DTE options, for some days returns can be quite extreme.
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We further consider the returns of ATM delta-hedged call options, straddles and

delta-neutral straddles. As the return distribution of delta-neutral strategies is better

behaved, we analyze average returns over our sample. Figure 8 displays the average

returns together with 95% bootstrap confidence bands for different times of the day. All

strategies produce negative average returns, consistent with a positive intra-day variance

risk premium. Since these strategies are essentially long positions in volatility, a negative

average return indicates that investors are willing to pay a premium to be protected

against variance risk over the day. On the other hand, an investor disposed to be exposed

to this risk would profit from shorting delta-hedged calls and straddles in the 0DTE

market. The confidence bands indicate that the statistical significance of the negative

average returns is stronger from 12:00 to 14:00.

4.2 Intra-day risk premia

We now investigate the implications of 0DTE options for intra-day market risk premia.

Figure 9 plots the decomposition of the equity premium across return states for different

times of the day. Most of the equity premium stems from compensation to market

returns between -5% and 0%. Strikingly, these states account for 300% (3000%) of the

equity premium from 10:00 (14:00) to close, which would amount to an annualized equity

premium of 40% (150%), as can be seen in the right axis of the plot. These extreme

values are due to the fact that positive market returns contribute negatively to the equity

premium. This is consistent with a strongly U-shaped pricing kernel, as discussed in

Section 2.3. Since marginal utility is high for positive market returns, investors are

willing to pay a premium to hold Arrow-Debreu securities paying in these states, such

that these states have a negative contribution to the equity premium. In other words,

the intra-day equity premium, which is around 10% annualized over our sample, would

be much higher if the pricing kernel were monotonically decreasing.

For comparison, Beason and Schreindorfer (2022) show that at the one-month horizon,

most of the equity premium stems from returns between -30% and -10%. Moreover, states

up to a monthly market return of 5% account for around 120% of the equity premium,
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while higher returns contribute negatively to it. The more extreme values we find for

the intra-day equity premium reveal how the nonmonotonicity of the pricing kernel is

relatively much more pronounced at the ultra-short horizons we consider.

We next estimate, for each day and time of the day, the V RPt,T and its two compo-

nents, V RP+
t,T and V RP−

t,T . Table 1 reports summary statistics over our sample of each

of these measures for different times of the day. Across all times, the average V RPt,T

is high and significantly positive, confirming the evidence from option returns that in-

vestors require substantial compensation to bear variance risk over the day. In fact, the

annualized V RPt,T varies from 2.87% to 8.00% depending on the time of the day, which

is considerably larger than the usual 2% variance risk premium at the monthly horizon

(Bollerslev et al., 2009). Interestingly, both V RPt,T components are significantly positive

as well. In particular, our evidence that V RP+
t,T is positive is consistent with a U-shaped

pricing kernel: investors require compensation to bear variation risk in the region of

positive market returns. This is in contrast to the one-month V RP+, which Kilic and

Shaliastovich (2019) estimate to be negative on average. Even more striking is that this

compensation is of similar magnitude, and in fact larger from 11:30 onwards, than the

compensation for bearing negative return variation risk as captured by V RP−
t,T .

Figure 10 plots, for different times of the day, the time series of the (one-week moving

average of the) V RPt,T , V RP+
t,T and V RP−

t,T . Up to 2022, the three measures are almost

always positive, while afterwards negative values become more frequent. The largest spike

that stands out in the plot is associated with the COVID-19 crisis. During this period,

the total variance risk premium reached extreme values such as 150%. Importantly, this

spike is driven by both the positive return variation risk premium (V RP+
t,T ) and the

negative return variation risk premium (V RP−
t,T ).

4.3 Investors’ risk preferences

The previous subsections provide indirect evidence that the pricing kernel as a func-

tion of market returns is nonmonotonic and high for positive market returns. In this

subsection, we estimate the pricing kernel directly for each time of the day and analyze
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its average shape over our sample. Figure 11 displays the results for a range of (gross)

market returns between 0.98 and 1.02. This is the largest range for which the pricing ker-

nels over different days of our sample (including days with low volatility) are well-defined.

As can be seen, regardless of the time of the day, there is a pronounced hump around the

at-the-money region, i.e., around returns close to 1. This is consistent with our previous

results: in the region where returns are more likely to occur, marginal utility is higher

for positive returns than for negative returns.

To be able to better compare across days with different volatility and incorporate

information from the whole range of the return space of each day, Figure 12 reports

average pricing kernels over standardized return states (i.e., in the standardized log-

moneyness space). Similarly to before, the feature that is pervasive across all times of

the day is a pronounced hump around the at-the-money region, where the pricing kernel

increases from kstd equal to −1 up to 1, and then decreases. However, nonmonotonicity

is also observed outside this region. For higher return states, depending on the time of

the day, there are either additional humps or an overall increasing shape. We refer to all

of those patterns generally as a U-shape, in the sense that there are increasing segments

in marginal utility for positive returns, even though the exact pattern can sometimes be

better described by an S- or W-shape. For negative returns, further nonmonotonicities

occur at extreme negative kstd states.

To assess the statistical significance of the observed nonmonotonicities, we test with

bootstrap replications the null hypothesis that the difference between the average pricing

kernel at kstd and kstd− 1 is negative (i.e., the pricing kernel is decreasing in this region),

against the alternative hypothesis that the difference is positive (i.e., the pricing kernel

is increasing in this region), for each kstd among −5, −4, ..., up to 6. Table 2 reports the

results. For nearly all times of the day, we reject that the pricing kernel is decreasing

from kstd levels −1 to 0 and from 0 to 1. That is, the hump around the at-the-money

region is statistically significant. We also reject monotonicity from 3 to 4 and 5 to 6

standardized return states for most of the times of the day. Again, nonmonotonicity for

negative returns is concentrated in the extremely negative standardized return states.
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4.4 0DTE (mis)pricing

So far, we have shown that 0DTE option prices can only be jointly reconciled with

the physical distribution of market returns under a pricing kernel displaying pronounced

nonmonotonicities. In this subsection, we address the problem from a different angle. For

each option, we compute SSD bounds from the physical distribution consistent with all

pricing kernels that are monotonically decreasing in market returns. In other words, we

entertain the possibility that the option market is segmented and test whether, for each

option, a risk-averse investor that is marginal in the market index and the risk-free rate

would also be marginal in the option. As discussed in Section 2.4, a nonmonotonic pricing

kernel projection does not necessarily imply that option prices violate SSD bounds.

Table 3 reports, for each time of the day, the percentage over our sample of options

on a given category that: satisfy the SSD bounds; violate the upper bound; or violate

the lower bound. Patterns are similar across the day. Strikingly, only around 40% (30%)

of the call (put) prices are consistent with monotonically decreasing pricing kernels. This

is mainly driven by the ATM category, where only around 7% of the prices satisfy the

SSD bounds. In particular, we observe mainly upper bound violations, meaning that

ATM option prices are usually too high, in the sense that any risk-averse investor would

improve expected utility by selling ATM options. This is consistent with the pronounced

hump in the ATM region observed in the pricing kernel projection. On the other hand,

OTM calls and puts almost never violate the upper bound, while their prices are below

the lower bound reasonably often, i.e., they are generally too cheap from the perspective

of these investors. ITM options frequently violate both the upper and lower bound, which

can be due to the fact that they are less liquid and may present unreliable prices. Overall,

0DTE options are mostly “mispriced”, in that they do not reflect the risks implied by the

time series of intra-day market returns under reasonable risk preferences.

Figures 13 and 14 help visualize these patterns by plotting the average over our

sample of the SSD bounds and the call and put prices, respectively, in IV space across

standardized log-moneyness. Focusing first on the calls, it can be seen that average

ATM option prices are above the upper bound, while OTM option prices are very close
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to the lower bound, reflecting the patterns in violations discussed above. ITM option

prices are on average within the bounds, which reflects the fact that upper and lower

bound violations for this category occur in similar proportions. As for the puts, it is

evident how both ATM and deep ITM options are too expensive on average relative to

the bounds, while OTM put prices are close to the lower bound. The main takeaway from

the figures is that 0DTEs do not violate SSD bounds due to the smile of the IV curve, as

the monotonically decreasing pricing kernels also generate a smile. The mispricing comes

from specific categories of options being either too expensive or cheap.

4.5 Return predictability

Finally, we investigate whether ex-ante measures based on 0DTE options are able to

predict realized excess market returns. We first focus on the variance risk premium and

its components, given that these measures summarize the compensation investors require

to bear variation risk in different regions of the market return space. Then, we analyze

as predictors the risk-neutral variance, skewness and kurtosis as in Bakshi et al. (2003),

the realized variance, and the SVIX of Martin (2017), which represents a lower bound

for the equity premium under a negative correlation assumption. We consider predictive

regressions over our sample for different times of the day, where all variables are available

in real time at t and are used to predict the market return from t to T .

Table 4 reports the results for univariate predictive regressions based on V RPt,T ,

V RP+
t,T and V RP−

t,T , and a multivariate regression including both V RP+
t,T and V RP−

t,T .

The total variance risk premium negatively predicts the intra-day equity premium, with

statistical significance at 11:00, 11:30, 12:00 and 13:00. This is at odds with the positive

relation documented at monthly or longer horizons (Bollerslev et al., 2009). Using the

two components of the V RPt,T in the predictive regressions sheds light on this finding.

The V RP+
t,T is a strong predictor of market returns, with a negative coefficient that is

statistically significant at all times of the day, except for 14:00. In contrast, there is a

positive relation between V RP−
t,T and future returns, which is generally insignificant and

of weaker magnitude. That is, the results for V RPt,T are driven by V RP+
t,T . The R2 of
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the regressions is also much higher than for the total V RPt,T , which mainly comes from

the predictive power of V RP+
t,T , as can be seen from the univariate regressions.

The negative relation between V RP+
t,T and market returns from t to T is consistent

with a U-shaped pricing kernel. As discussed in Section 2.3, the equity premium can be

seen as the total compensation required for holding assets paying R in each market return

state, and zero otherwise. When marginal utility for positive market return states is high,

these assets are hedges, such that investors are willing to give up compensation to hold

them, resulting in a smaller equity premium. As V RP+
t,T summarizes the compensation

for positive return variation risk, this explains the negative relation with future returns.

On the other hand, since the Arrow-Debreu-like assets paying R for negative return states

are speculative assets (as they pay a low payoff when the pricing kernel is high), investors

require compensation to hold them and they contribute positively to the equity premium.

This explains the positive relation between V RP−
t,T and future market returns. The fact

that the effect of V RP+
t,T is dominant over that of V RP−

t,T reflects the exceptional role

that the U-shape plays in the intra-daily horizons. This, again, is in contrast to the

one-month horizon or longer where the positive coefficient of V RP−
t,T is predominant and

drives the positive relation between the total V RPt,T and the equity premium.

Table 5 contains the results for the univariate predictive regressions based on RV ,

risk-neutral skewness and kurtosis, and SV IX. As can be seen, none of these measures

is able to predict the intra-day equity premium. That is, we find no evidence of an intra-

day risk-return trade-off. In particular, the fact that the lower bound of Martin (2017),

SV IX, does not predict future returns, could either mean that the bound is not tight at

the intra-daily horizons we consider, or that the negative correlation assumption under

which the bound is derived is not valid. More specifically, this assumption states that the

covariance between Rt,T and mt,T (Rt,t)× Rt,T must be negative. While this condition is

valid under most macro-finance models, it would be violated under a pricing kernel with

pronounced nonmonotonicities. Given the extensive evidence from our analysis in favor

of such nonmonotonicity over intra-daily horizons, this seems like a plausible explanation.

Table 6 further considers predictive regressions for the variance risk premium mea-
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sures including the risk-neutral moments as controls.19 We consider times of the day

for which V RPt,T was significant in the univariate regressions. As can be observed, the

inclusion of the controls only makes the negative relation between the total variance risk

premium and future market returns stronger and more significant. Among the controls,

SV IX becomes marginally significant with a positive coefficient at 11:30 and 13:00, while

the other variables have no predictive power. When we replace V RPt,T with its two com-

ponents, we see that the R2 increases substantially and only V RP+
t,T is a statistically

significant predictor of returns, where a higher value of this variable leads to a lower

equity premium. This provides additional robustness to the findings of this subsection.

5 Conclusion

We explore the asset pricing implications of the new 0DTE option market, which today

accounts for around 45% of total S&P 500 option volume. These options contain valuable

information about investors’ risk preferences and risk premia over the intra-daily horizons

for which the options expire. We extract this information from different perspectives and

document a number of new stylized facts. First, most of the equity premium arises as

compensation for market returns between -5% and 0%, where positive returns contribute

negatively to the equity premium. Second, the average returns of calls, puts and different

option strategies that are long in volatility are highly negative, which is consistent with

the high variance risk premium we document over the day. Surprisingly, the total intra-

day variance risk premium is mainly attributed to the compensation for bearing positive

return variation risk. Third, direct estimates of the pricing kernel projection onto market

returns reveal pronounced nonmonotonicities, especially around the at-the-money region.

Fourth, 0DTE options present severe violations of stochastic dominance bounds, and

thus can be seen as mispriced in the sense that they do not reflect the risks implied by the

time series of intra-day market returns under risk-averse preferences. Fifth, the variance

risk premium negatively predicts market returns over the day, which is mainly driven by

the negative relation between future returns and the compensation for variation risk in
19Results including RV instead of SV IX are very similar.
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positive market returns. Our empirical results are all consistent with a strong U-shape

in the pricing kernel as a function of market returns. While there is a large literature

documenting the pricing kernel puzzle and attempting to explain nonmonotonic patterns

at the one-month horizon, we find that the shape of the pricing kernel is even more

puzzling at the intra-daily horizons associated with 0DTE options.
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A Figures and tables

Figure 1: Yearly fraction of trading volume in 0DTE options
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Note: The figure depicts the yearly fraction of trading volume in 0DTE S&P 500 options relative
to the entire S&P 500 option market. The sample ranges from January 6 2012 to July 3 2023.
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Figure 2: Descriptive statistics of raw 0DTE option data

Note: The figure plots, in four subplots, for different times of the day and different standardized
log-moneyness bins, the average trading volume, proportion of contracts with zero bid, average
implied volatility and average number of strikes. The sample ranges from January 6 2012 to July
3 2023.
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Figure 3: Trading volume and relative bid-ask spread of 0DTE options over the day

Note: The left plot of this figure depicts the time series average of the trading volume in terms
of number of contracts of 0DTE S&P 500 options over the day. The right plot depicts the time
series average of the average relative bid-ask spread across all 0DTE options over the day, where
the relative spread is computed as (Ask − Bid)/MidQuote. The sample ranges from January 6
2012 to July 3 2023.
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Figure 4: SVI fit for 0DTE options
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Note: The figure plots, for a representative date of our sample, the observed 0DTE IVs and the
fitted IVs using the SVI method for different times of the day. The OLS R2 fit is also reported.
Standardized log-moneyness is defined as log(K/St)
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Figure 5: Market return risk-neutral and physical distributions over intra-daily horizons
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Note: The figure plots, for a representative date of our sample and for different times of the day,
the market return risk-neutral distribution and physical distribution estimated as described in
Section 3.3 and 3.4, respectively. The horizontal axis represents gross market return states.
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Figure 6: 0DTE call returns across strikes
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Note: The figure plots the 25th, median and 75th percentiles of returns (in %) of call options with
different strikes over our sample. The sample ranges from January 6 2012 to July 3 2023.
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Figure 7: 0DTE put returns across strikes
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Note: The figure plots the 25th, median and 75th percentiles of returns (in %) of put options with
different strikes over our sample. The sample ranges from January 6 2012 to July 3 2023.

Figure 8: Average returns of 0DTE option strategies
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Note: The figure plots, for different times of the day, the average returns together with 95% confi-
dence bands for ATM delta-hedged calls, delta-neutral straddles and simple straddles. Confidence
bands are based on 2,500 bootstrap replications. The sample ranges from January 6 2012 to July
3 2023.
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Figure 9: Intra-day equity premium decomposition

Note: The figure plots, for different times of the day, the intra-day equity premium decomposition
implied by 0DTE options. The left vertical axis displays the fraction of the equity premium
stemming from market returns below x, while the right vertical axis displays the total annualized
equity premium that would be implied from market returns up to x. The sample ranges from
January 6 2012 to July 3 2023.
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Figure 10: Intra-day variance risk premium over time
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Note: The figure plots, for different times of the day, the one-week moving average (for ease of
visualization) of the V RPt,T , V RP+

t,T and V RP−
t,T over time. The measures are annualized. The

sample ranges from January 6 2012 to July 3 2023.
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Figure 11: Average intra-day pricing kernels over return states
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Note: The figure plots, for different times of the day, the average of the pricing kernel, as a function
of market returns, over time. The sample ranges from January 6 2012 to July 3 2023.
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Figure 12: Average intra-day pricing kernels over standardized log-moneyness
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Note: The figure plots, for different times of the day, the average of the pricing kernel, as a function
of standardized log-moneyness, over time. The sample ranges from January 6 2012 to July 3 2023.
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Figure 13: Average SSD bounds and prices for 0DTE call options
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Note: The figure plots, for different times of the day, the average of the SSD option price bounds
(in dashed blue) against the average option prices (in red circles) for calls, in implied volatility
space, over standardized log-moneyness. The sample ranges from January 6 2012 to July 3 2023.
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Figure 14: Average SSD bounds and prices for 0DTE put options
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Note: The figure plots, for different times of the day, the average of the SSD option price bounds
(in dashed blue) against the average option prices (in red circles) for puts, in implied volatility
space, over standardized log-moneyness. The sample ranges from January 6 2012 to July 3 2023.
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Table 1: Intra-day variance risk premium

10:00:00 10:30:00 11:00:00 11:30:00 12:00:00 12:30:00 13:00:00 13:30:00 14:00:00

Panel A: V RP
Mean 3.275 4.023 2.879 4.214 3.085 5.275 4.209 8.005 6.388
St. Dev. 10.141 11.716 9.381 11.332 10.595 15.658 17.667 24.041 23.191
25th Percentile 0.853 1.087 0.779 1.092 0.810 1.308 0.984 1.929 1.456
75th Percentile 4.078 4.705 3.870 5.124 4.129 5.818 4.736 7.988 6.475
p-value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Panel B: V RP+

Mean 1.459 1.889 1.394 2.110 1.614 2.789 2.259 4.278 3.483
St. Dev. 4.757 5.505 4.671 5.515 5.315 7.615 8.679 11.463 10.448
25th Percentile 0.570 0.711 0.603 0.808 0.673 0.999 0.811 1.507 1.273
75th Percentile 1.935 2.353 1.988 2.654 2.262 3.250 2.789 4.583 3.851
p-value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Panel C: V RP−

Mean 1.816 2.134 1.485 2.104 1.456 2.486 1.946 3.727 2.905
St. Dev. 5.928 6.720 5.247 6.288 5.732 8.492 9.493 13.096 13.738
25th Percentile 0.301 0.324 0.169 0.278 0.111 0.282 0.123 0.416 0.213
75th Percentile 2.191 2.424 1.893 2.402 1.875 2.651 2.042 3.506 2.734
p-value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Note: The table reports, for each time of the day, summary statistics of the V RPt,T , V RP+
t,T and V RP−

t,T over our
sample. The variance risk premium measures are annualized and expressed in percentage points. The p-values for
the test with null hypothesis that the mean is smaller than or equal to zero, against the alternative that the mean
is positive, are implemented using bootstrapped standard errors with 2,500 replications. The sample ranges from
January 6 2012 to July 3 2023.

Table 2: Intra-day pricing kernel nonmonotonicity

−5 −4 −3 −2 −1 0 1 2 3 4 5 6

10:00:00 Mean −0.296 0.270⋆⋆⋆ −0.576 −0.368 −0.172 0.089⋆⋆⋆ 0.285⋆⋆⋆ −0.731 −0.116 −0.020 0.126⋆⋆⋆ 0.213⋆⋆⋆

St. Dev. 0.587 0.343 0.443 0.283 0.210 0.191 0.341 0.428 0.389 0.196 0.213 0.253

10:30:00 Mean −0.108 0.314⋆⋆⋆ −0.753 −0.211 −0.154 0.162⋆⋆⋆ 0.179⋆⋆⋆ −0.748 −0.114 0.071⋆⋆⋆ −0.010 0.020⋆⋆⋆

St. Dev. 0.460 0.352 0.543 0.239 0.213 0.208 0.375 0.429 0.265 0.191 0.235 0.177

11:00:00 Mean −0.914 0.098⋆⋆⋆ −0.657 −0.344 −0.193 0.095⋆⋆⋆ 0.239⋆⋆⋆ −0.641 −0.148 0.123⋆⋆⋆ 0.040⋆⋆⋆ 0.004
St. Dev. 1.128 0.452 0.589 0.296 0.248 0.215 0.382 0.470 0.347 0.324 0.352 0.261

11:30:00 Mean −0.318 −0.151 −0.450 −0.153 −0.132 0.183⋆⋆⋆ 0.095⋆⋆⋆ −0.674 −0.097 0.050⋆⋆⋆ −0.059 0.071⋆⋆⋆

St. Dev. 0.504 0.429 0.356 0.197 0.223 0.234 0.407 0.442 0.217 0.134 0.209 0.122

12:00:00 Mean 0.033⋆⋆⋆ −0.058 −0.396 −0.338 −0.265 0.121 0.235⋆⋆⋆ −0.610 −0.115 0.080⋆⋆⋆ 0.054⋆⋆⋆ 0.133⋆⋆⋆

St. Dev. 0.364 0.649 0.552 0.341 0.271 0.225 0.415 0.481 0.368 0.414 0.395 0.370

12:30:00 Mean 0.226⋆⋆⋆ −0.144 −0.182 −0.195 −0.174 0.235⋆⋆⋆ 0.046⋆⋆⋆ −0.631 −0.052 0.028⋆⋆⋆ −0.056 0.034⋆⋆⋆

St. Dev. 0.252 0.408 0.349 0.262 0.257 0.250 0.425 0.481 0.267 0.241 0.205 0.139

13:00:00 Mean −0.097 0.180⋆⋆⋆ −0.221 −0.406 −0.270 0.124⋆⋆⋆ 0.197⋆⋆⋆ −0.532 −0.132 0.131⋆⋆⋆ −0.115 −0.203
St. Dev. 0.472 0.340 0.338 0.325 0.299 0.231 0.428 0.512 0.324 0.229 0.287 0.305

13:30:00 Mean −0.160 0.250⋆⋆⋆ −0.020 −0.301 −0.184 0.279⋆⋆⋆ −0.081 −0.556 0.047⋆⋆⋆ −0.100 −0.008 −0.083
St. Dev. 0.407 0.204 0.264 0.229 0.245 0.261 0.438 0.454 0.234 0.179 0.133 0.101

14:00:00
Mean 0.394⋆⋆⋆ −0.606 −0.154 −0.408 −0.346 0.121⋆⋆⋆ 0.170⋆⋆⋆ −0.408 −0.136 0.223⋆⋆⋆ −0.157 0.013⋆⋆⋆

St. Dev. 0.332 0.548 0.299 0.281 0.329 0.239 0.441 0.545 0.308 0.217 0.327 0.194

Note: The table reports the mean and standard deviation of the difference between the pricing kernel at kstd and kstd − 1, for kstd among −5, −4, ..., 6.
We denote with ⋆, ⋆⋆, and ⋆⋆⋆ significance at the 10%, 5% and 1% level, respectively, of the test of the null hypothesis that the difference in the average
pricing kernel at kstd and kstd − 1 is negative (i.e., the pricing kernel is decreasing in this region), against the alternative hypothesis that the difference is
positive (i.e., the pricing kernel is increasing in this region). The test is based on 2,500 bootstrap replications. The sample ranges from January 6 2012
to July 3 2023.

49

Electronic copy available at: https://ssrn.com/abstract=4701401



Table 3: Option price bounds for 0DTE options

10:00:00 10:30:00 11:00:00 11:30:00 12:00:00 12:30:00 13:00:00 13:30:00 14:00:00

Panel A: Calls

All Calls
In 37.406 40.729 40.814 40.158 35.509 34.420 37.863 43.902 34.852
Upper 28.467 26.889 26.373 27.621 26.697 27.666 27.537 24.152 26.378
Lower 34.127 32.382 32.813 32.221 37.795 37.914 34.600 31.947 38.771

OTM
In 60.819 64.409 65.970 61.882 57.971 54.621 58.203 67.859 54.723
Upper 9.110 8.444 8.643 12.748 7.622 9.392 7.824 3.504 5.279
Lower 30.071 27.147 25.387 25.370 34.407 35.987 33.973 28.637 39.998

ATM
In 7.715 8.378 8.557 9.925 7.126 7.709 8.862 9.200 5.204
Upper 64.834 65.432 65.017 63.927 67.019 68.082 69.377 68.169 69.596
Lower 27.451 26.190 26.425 26.148 25.855 24.209 21.761 22.632 25.199

ITM
In 18.239 23.645 21.911 25.306 18.374 20.247 24.632 28.929 22.608
Upper 36.193 31.663 29.792 28.083 31.229 30.786 32.021 28.708 32.184
Lower 45.568 44.692 48.298 46.611 50.397 48.967 43.347 42.363 45.208

Panel B: Puts

All Puts
In 24.595 29.450 29.561 32.180 27.719 30.562 35.369 40.521 29.170
Upper 35.515 33.962 34.106 33.876 36.096 34.050 31.874 30.102 33.778
Lower 39.891 36.588 36.333 33.945 36.185 35.388 32.758 29.377 37.052

OTM
In 42.950 50.125 49.237 55.027 47.552 52.695 60.898 66.601 49.033
Upper 5.460 5.165 4.750 4.496 6.784 5.930 5.017 3.930 6.951
Lower 51.590 44.710 46.013 40.477 45.663 41.375 34.084 29.469 44.016

ATM
In 7.296 8.024 7.881 8.904 5.550 6.344 8.338 9.676 4.812
Upper 69.558 70.597 72.181 72.136 77.160 75.485 72.324 71.270 75.515
Lower 23.146 21.379 19.939 18.961 17.290 18.171 19.338 19.054 19.673

ITM
In 8.882 12.391 14.295 13.195 12.613 13.034 14.446 20.800 14.395
Upper 57.746 53.529 53.382 53.201 53.450 49.794 46.536 43.525 48.123
Lower 33.373 34.080 32.324 33.604 33.938 37.172 39.018 35.675 37.482

Note: The table reports, for each time of the day and for each class of options, the percentage of options over our sample for
which prices fall within the SSD bounds (In), above the SSD upper bound (Upper) and below the SSD lower bound (Lower).
The OTM put (ITM call), ATM and ITM put (OTM call) categories are defined as standardized log-moneyness below −1,
between −1 and 1, and above 1, respectively. The sample ranges from January 6 2012 to July 3 2023.
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Table 4: Predicting excess market returns with variance risk premium

10:00:00 10:30:00 11:00:00

V RP −0.031 −0.015 −0.047⋆

t-stat −0.643 −0.442 −1.776
V RP+ −0.050 −0.110⋆ −0.038 −0.139⋆ −0.068⋆⋆ −0.132⋆⋆

t-stat −1.258 −1.657 −1.244 −1.820 −2.400 −2.112
V RP− −0.013 0.075 0.005 0.121 −0.023 0.081
t-stat −0.238 0.786 0.120 1.297 −0.807 1.212
R2 (%) 0.160 0.417 0.027 0.758 0.045 0.287 0.005 1.171 0.501 1.059 0.122 1.622

11:30:00 12:00:00 12:30:00

V RP −0.046⋆⋆ −0.054⋆⋆ −0.026
t-stat −2.087 −2.029 −0.607
V RP+ −0.071⋆⋆⋆ −0.187⋆⋆⋆ −0.074⋆⋆⋆ −0.156⋆⋆ −0.049 −0.218⋆⋆

t-stat −3.892 −2.821 −2.850 −2.105 −1.367 −2.413
V RP− −0.020 0.137⋆ −0.031 0.099 −0.004 0.190⋆

t-stat −0.649 1.759 −1.004 1.243 −0.075 1.720
R2 (%) 0.542 1.307 0.105 2.717 0.851 1.608 0.278 2.504 0.200 0.723 0.004 3.034

13:00:00 13:30:00 14:00:00

V RP −0.081⋆⋆⋆ −0.026 −0.032
t-stat −2.657 −0.526 −0.793
V RP+ −0.097⋆⋆⋆ −0.203⋆⋆⋆ −0.045 −0.238⋆⋆ −0.042 −0.075
t-stat −3.765 −2.716 −1.166 −2.166 −1.123 −1.471
V RP− −0.062⋆ 0.119 −0.008 0.211 −0.023 0.040
t-stat −1.727 1.389 −0.136 1.540 −0.550 0.639
R2 (%) 2.137 3.084 1.245 4.051 0.250 0.771 0.022 3.451 0.500 0.838 0.247 1.076

Note: The table reports, for each time of the day, the results from different predictive regressions over our sample using V RPt,T , V RP+
t,T and

V RP−
t,T to predict the excess market return from t to T . Regressors are standardized to have mean zero and unit variance. We compute the

t-statistics using Newey-West robust standard errors with a lag length equal to 5. We denote with ⋆, ⋆⋆, and ⋆⋆⋆ significance at the 10%, 5%
and 1% level, respectively. The sample ranges from January 6 2012 to July 3 2023.
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Table 5: Predicting excess market returns with risk measures

10:00:00 10:30:00 11:00:00 11:30:00 12:00:00 12:30:00 13:00:00 13:30:00 14:00:00

RV 0.022 0.050 0.036 0.046 0.025 0.028 0.036 0.060 0.052
t-stat 0.383 1.180 0.856 1.129 0.535 0.572 0.740 1.272 1.334
R2 (%) 0.082 0.505 0.294 0.546 0.188 0.237 0.426 1.366 1.312

MFIS −0.005 0.000 −0.008 −0.013 −0.011 −0.004 −0.008 0.000 0.004
t-stat −0.251 −0.007 −0.469 −0.896 −0.710 −0.287 −0.551 −0.038 0.327
R2 (%) 0.003 0.000 0.014 0.045 0.033 0.006 0.020 0.000 0.008

MFIK 0.003 0.009 0.009 0.007 0.003 −0.015 −0.011 −0.018 −0.013
t-stat 0.164 0.456 0.553 0.431 0.187 −0.953 −0.737 −1.068 −0.949
R2 (%) 0.002 0.017 0.020 0.013 0.002 0.069 0.042 0.118 0.084

SV IX 0.001 0.028 0.006 0.009 −0.010 −0.001 −0.034 0.010 0.005
t-stat 0.017 0.606 0.169 0.229 −0.206 −0.019 −0.725 0.157 0.088
R2 (%) 0.000 0.154 0.009 0.021 0.029 0.000 0.373 0.035 0.012

Note: The table reports, for each time of the day, the results from univariate predictive regressions over our
sample using RV , MFIS (risk-neutral skewness), MFIK (risk-neutral kurtosis) and SV IX to predict the
excess market return from t to T . Regressors are standardized to have mean zero and unit variance. We
compute the t-statistics using Newey-West robust standard errors with a lag length equal to 5. We denote
with ⋆, ⋆⋆, and ⋆⋆⋆ significance at the 10%, 5% and 1% level, respectively. The sample ranges from January 6
2012 to July 3 2023.
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Table 6: Predicting excess market returns with variance risk premium and controls

11:00:00 11:30:00 12:00:00 13:00:00

V RP −0.071⋆⋆⋆ −0.098⋆⋆⋆ −0.070⋆⋆⋆ −0.167⋆⋆⋆

t-stat −2.588 −3.840 −3.001 −3.459
V RP+ −0.136⋆⋆ −0.186⋆⋆⋆ −0.161⋆⋆ −0.214⋆⋆⋆

t-stat −2.050 −2.644 −2.108 −2.717
V RP− 0.084 0.121 0.098 0.066
t-stat 1.120 1.261 1.287 0.971
MFIS −0.002 0.018 −0.009 0.016 −0.010 0.013 −0.011 0.007
t-stat −0.117 0.832 −0.505 0.820 −0.544 0.689 −0.615 0.394
MFIK 0.016 0.021 0.011 0.016 −0.003 0.008 −0.013 −0.006
t-stat 0.706 0.940 0.515 0.837 −0.129 0.379 −0.656 −0.306
SV IX 0.050 0.006 0.081⋆ 0.025 0.030 0.012 0.102⋆ 0.074
t-stat 0.995 0.119 1.739 0.514 0.564 0.270 1.774 1.572

R2
adj (%) 0.585 1.343 1.123 2.481 0.768 2.217 3.090 4.329

Note: The table reports, for each time of the day, the results from multivariate predictive regressions
over our sample based on V RPt,T , V RP+

t,T , V RP−
t,T , RV , MFIS (risk-neutral skewness), MFIK

(risk-neutral kurtosis) and SV IX to predict the excess market return from t to T . Regressors are
standardized to have mean zero and unit variance. We compute the t-statistics using Newey-West
robust standard errors with a lag length equal to 5. We denote with ⋆, ⋆⋆, and ⋆⋆⋆ significance at
the 10%, 5% and 1% level, respectively. The sample ranges from January 6 2012 to July 3 2023.
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